-
Notifications
You must be signed in to change notification settings - Fork 295
Open
Labels
bugSomething isn't workingSomething isn't working
Description
⚙️ Your current environment
The output of python collect_env.py
### Environment Information ###
Python Version: `3.10`
llm-compressor Version: `0.8.1`
compressed-tensors Version: `0.12.2`
transformers Version: `4.57.1`
torch Version: `2.8.0`
CUDA Devices: `A100 GPU`
AMD Devices: `None`
🐛 Describe the bug
from transformers import AutoTokenizer, AutoModelForCausalLM
MODEL_ID = "./Qwen3-Next-80B-A3B-Instruct"
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, torch_dtype="auto",trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID,trust_remote_code=True)
from datasets import load_dataset
NUM_CALIBRATION_SAMPLES=256
MAX_SEQUENCE_LENGTH=2048
# Load dataset.
ds = load_dataset("HuggingFaceH4/ultrachat_200k", split=f"train_sft[:{NUM_CALIBRATION_SAMPLES}]")
ds = ds.shuffle(seed=42)
# Preprocess the data into the format the model is trained with.
def preprocess(example):
return {"text": tokenizer.apply_chat_template(example["messages"], tokenize=False,)}
ds = ds.map(preprocess)
# Tokenize the data (be careful with bos tokens - we need add_special_tokens=False since the chat_template already added it).
def tokenize(sample):
return tokenizer(sample["text"], padding=False, max_length=MAX_SEQUENCE_LENGTH, truncation=True, add_special_tokens=False)
ds = ds.map(tokenize, remove_columns=ds.column_names)
from llmcompressor import oneshot
from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor.modifiers.smoothquant import SmoothQuantModifier
# Configure the quantization algorithms to run.
recipe = [
SmoothQuantModifier(smoothing_strength=0.8),
GPTQModifier(targets="Linear", scheme="W8A8", ignore=["lm_head", "re:.*mlp.gate$", "re:.*mlp.shared_expert_gate$","re:.*linear_attn.*"]),
]
# Apply quantization.
oneshot(
model=model,
dataset=ds,
recipe=recipe,
max_seq_length=MAX_SEQUENCE_LENGTH,
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
)
# Save to disk compressed.
# SAVE_DIR = MODEL_ID.rstrip("/").split("/")[-1] + "-W8A8-Dynamic-Per-Token"
SAVE_DIR = "./Qwen3-Next-80B-A3B-Instruct-w8a8"
model.save_pretrained(SAVE_DIR, save_compressed=True)
tokenizer.save_pretrained(SAVE_DIR)
Some parameters have become random parameters, such as input_layernorm, etc.
If I set the SmoothQuantModifier(smoothing_strength=0.8),
It seems that deleting it won't print the parameters of the quantized norm, but it's extremely slow
🛠️ Steps to reproduce
No response
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't working