Skip to content

Commit 28a6b57

Browse files
authored
Merge pull request #95 from usc-isi-i2/development
Development
2 parents ef56e8d + 55ec392 commit 28a6b57

File tree

2 files changed

+17
-12
lines changed

2 files changed

+17
-12
lines changed

tl/__init__.py

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,2 +1,3 @@
11
name = "tl"
2-
__version__ = "0.8"
2+
__version__ = "0.9"
3+

tl/features/cell_context_matches.py

Lines changed: 15 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -388,17 +388,21 @@ def compute_property_scores(self, row_column_pairs: set, n_context_columns: set)
388388
int_prop['col2'] = col2
389389
properties_df_list.append(int_prop)
390390
if len(properties_df_list) > 0:
391-
properties_df = pd.concat(properties_df_list)
392-
property_value_list = []
393-
grouped_obj = properties_df.groupby(['column', 'col2', 'property_'])
394-
for cell, group in grouped_obj:
395-
property_score = (group['avg_score'].sum(axis=0))
396-
property_value_list.append([cell[2], cell[0], cell[1], property_score])
397-
property_value_df = pd.DataFrame(property_value_list, columns=['property_', 'column', 'col2', 'property_score'])
398-
property_value_df = property_value_df.sort_values(by=['column', 'property_score'], ascending=[True, False])
399-
# Saving the top 3 properties for each column column pair that we have.
400-
# <column, col2> is equivalent to <from, to>
401-
most_important_property_df = property_value_df.groupby(['column', 'col2']).head(3)
391+
properties_df = pd.concat(properties_df_list)
392+
property_value_list = []
393+
grouped_obj = properties_df.groupby(['column', 'col2', 'property_'])
394+
for cell, group in grouped_obj:
395+
property_score = (group['avg_score'].sum(axis=0))
396+
property_value_list.append([cell[2], cell[0], cell[1], property_score])
397+
property_value_df = pd.DataFrame(property_value_list,
398+
columns=['property_', 'column', 'col2', 'property_score'])
399+
property_value_df = property_value_df.sort_values(by=['column', 'property_score'],
400+
ascending=[True, False])
401+
# Saving the top 3 properties for each column column pair that we have.
402+
# <column, col2> is equivalent to <from, to>
403+
most_important_property_df = property_value_df.groupby(['column', 'col2']).head(3)
404+
else:
405+
most_important_property_df = pd.DataFrame(columns=['property_', 'column', 'col2', 'property_score'])
402406
if self.save_relevant_properties:
403407
self.write_relevant_properties(most_important_property_df)
404408

0 commit comments

Comments
 (0)