|
| 1 | +import os |
| 2 | +import psycopg2 |
| 3 | +from psycopg2 import sql |
| 4 | +import csv |
| 5 | +import random |
| 6 | +from datetime import datetime, timedelta |
| 7 | + |
| 8 | +# 요일을 나타내는 숫자 리스트 (0: 월, 1: 화, ..., 6: 일) |
| 9 | +WEEK_DAYS = ["0", "1", "2", "3", "4", "5", "6"] |
| 10 | + |
| 11 | + |
| 12 | +# 랜덤한 요일 문자열을 생성하는 함수 |
| 13 | +def generate_random_days(): |
| 14 | + num_days = random.randint(1, 7) # 1~7개의 요일을 선택 |
| 15 | + random_days = random.sample(WEEK_DAYS, num_days) |
| 16 | + random_days.sort() # 요일이 순서대로 정렬되도록 |
| 17 | + return "".join(random_days) # 예: '012' -> 월, 화, 수 |
| 18 | + |
| 19 | + |
| 20 | +# 데이터베이스 연결 설정 |
| 21 | +def connect_to_db(): |
| 22 | + conn = psycopg2.connect( |
| 23 | + dbname="taskie_test_db", |
| 24 | + user="testuser", |
| 25 | + password="testpass", |
| 26 | + host="127.0.0.1", |
| 27 | + port="9000", |
| 28 | + ) |
| 29 | + return conn |
| 30 | + |
| 31 | + |
| 32 | +# CSV 파일로 대량의 랜덤 데이터 생성 |
| 33 | +def generate_csv_for_user(file_name, row_count): |
| 34 | + with open(file_name, mode="w", newline="") as file: |
| 35 | + writer = csv.writer(file) |
| 36 | + writer.writerow( |
| 37 | + [ |
| 38 | + "username", |
| 39 | + "password", |
| 40 | + "email", |
| 41 | + "profile_image", |
| 42 | + "nickname", |
| 43 | + ] # id 및 created_at 제외 |
| 44 | + ) |
| 45 | + |
| 46 | + for i in range(1, row_count + 1): |
| 47 | + username = f"user_{i}" |
| 48 | + password = f"pass_{i}" |
| 49 | + email = f"user_{i}@example.com" |
| 50 | + profile_image = f"profile_{i}.png" |
| 51 | + nickname = f"nick_{i}" |
| 52 | + writer.writerow( |
| 53 | + [username, password, email, profile_image, nickname] |
| 54 | + ) |
| 55 | + |
| 56 | + print(f"Generated {row_count} rows of data into {file_name}.") |
| 57 | + |
| 58 | + |
| 59 | +def generate_csv_for_habit(file_name, row_count, user_count): |
| 60 | + with open(file_name, mode="w", newline="") as file: |
| 61 | + writer = csv.writer(file) |
| 62 | + writer.writerow( |
| 63 | + [ |
| 64 | + "title", |
| 65 | + "end_time_minutes", |
| 66 | + "start_time_minutes", |
| 67 | + "repeat_days", |
| 68 | + "repeat_time_minutes", |
| 69 | + "activated", |
| 70 | + "user_id", |
| 71 | + "created_at", |
| 72 | + "updated_at", |
| 73 | + ] # id 및 created_at 제외 |
| 74 | + ) |
| 75 | + |
| 76 | + for i in range(1, row_count + 1): |
| 77 | + title = f"Habit {i}" |
| 78 | + end_time_minutes = random.randint(0, 1440) |
| 79 | + start_time_minutes = random.randint(0, 1440) |
| 80 | + repeat_days = generate_random_days() # 랜덤한 요일 생성 |
| 81 | + repeat_time_minutes = random.randint(0, 1440) |
| 82 | + activated = random.choice([True, False]) |
| 83 | + user_id = random.randint(1, user_count) |
| 84 | + created_at = (datetime.now()).strftime("%Y-%m-%d %H:%M:%S") |
| 85 | + updated_at = (datetime.now()).strftime("%Y-%m-%d %H:%M:%S") |
| 86 | + writer.writerow( |
| 87 | + [ |
| 88 | + title, |
| 89 | + end_time_minutes, |
| 90 | + start_time_minutes, |
| 91 | + repeat_days, |
| 92 | + repeat_time_minutes, |
| 93 | + activated, |
| 94 | + user_id, |
| 95 | + created_at, |
| 96 | + updated_at, |
| 97 | + ] |
| 98 | + ) |
| 99 | + |
| 100 | + print(f"Generated {row_count} rows of data into {file_name}.") |
| 101 | + |
| 102 | + |
| 103 | +def generate_csv_for_habit_log(file_name, row_count, habit_count): |
| 104 | + with open(file_name, mode="w", newline="") as file: |
| 105 | + writer = csv.writer(file) |
| 106 | + writer.writerow(["completed_at", "habit_id"]) # id 제외 |
| 107 | + |
| 108 | + for i in range(1, row_count + 1): |
| 109 | + completed_at = ( |
| 110 | + datetime.now() - timedelta(days=random.randint(0, 365)) |
| 111 | + ).strftime("%Y-%m-%d %H:%M:%S") |
| 112 | + habit_id = random.randint(1, habit_count) |
| 113 | + writer.writerow([completed_at, habit_id]) |
| 114 | + |
| 115 | + print(f"Generated {row_count} rows of data into {file_name}.") |
| 116 | + |
| 117 | + |
| 118 | +def generate_csv_for_routine(file_name, row_count, user_count): |
| 119 | + with open(file_name, mode="w", newline="") as file: |
| 120 | + writer = csv.writer(file) |
| 121 | + writer.writerow( |
| 122 | + [ |
| 123 | + "title", |
| 124 | + "start_time_minutes", |
| 125 | + "repeat_days", |
| 126 | + "user_id", |
| 127 | + "created_at", |
| 128 | + "updated_at", |
| 129 | + ] # id 및 created_at 제외 |
| 130 | + ) |
| 131 | + |
| 132 | + for i in range(1, row_count + 1): |
| 133 | + title = f"Routine {i}" |
| 134 | + start_time_minutes = random.randint(0, 1440) |
| 135 | + repeat_days = generate_random_days() # 랜덤한 요일 생성 |
| 136 | + user_id = random.randint(1, user_count) |
| 137 | + created_at = (datetime.now()).strftime("%Y-%m-%d %H:%M:%S") |
| 138 | + updated_at = (datetime.now()).strftime("%Y-%m-%d %H:%M:%S") |
| 139 | + writer.writerow( |
| 140 | + [ |
| 141 | + title, |
| 142 | + start_time_minutes, |
| 143 | + repeat_days, |
| 144 | + user_id, |
| 145 | + created_at, |
| 146 | + updated_at, |
| 147 | + ] |
| 148 | + ) |
| 149 | + |
| 150 | + print(f"Generated {row_count} rows of data into {file_name}.") |
| 151 | + |
| 152 | + |
| 153 | +def generate_csv_for_routine_element( |
| 154 | + file_name, row_count, routine_count, user_count |
| 155 | +): |
| 156 | + with open(file_name, mode="w", newline="") as file: |
| 157 | + writer = csv.writer(file) |
| 158 | + writer.writerow( |
| 159 | + [ |
| 160 | + "title", |
| 161 | + "order", |
| 162 | + "duration_minutes", |
| 163 | + "routine_id", |
| 164 | + "created_at", |
| 165 | + "updated_at", |
| 166 | + "user_id", |
| 167 | + ] # id 및 created_at 제외 |
| 168 | + ) |
| 169 | + |
| 170 | + for i in range(1, row_count + 1): |
| 171 | + title = f"Routine Element {i}" |
| 172 | + order = random.randint(1, 10) |
| 173 | + duration_minutes = random.randint(1, 120) |
| 174 | + routine_id = random.randint(1, routine_count) |
| 175 | + created_at = (datetime.now()).strftime("%Y-%m-%d %H:%M:%S") |
| 176 | + updated_at = (datetime.now()).strftime("%Y-%m-%d %H:%M:%S") |
| 177 | + user_id = random.randint(1, user_count) |
| 178 | + |
| 179 | + writer.writerow( |
| 180 | + [ |
| 181 | + title, |
| 182 | + order, |
| 183 | + duration_minutes, |
| 184 | + routine_id, |
| 185 | + created_at, |
| 186 | + updated_at, |
| 187 | + user_id, |
| 188 | + ] |
| 189 | + ) |
| 190 | + |
| 191 | + print(f"Generated {row_count} rows of data into {file_name}.") |
| 192 | + |
| 193 | + |
| 194 | +def prepare_file(file_name): |
| 195 | + if os.path.exists(file_name): |
| 196 | + os.remove(file_name) |
| 197 | + print(f"Preparing file: {file_name}") |
| 198 | + |
| 199 | + |
| 200 | +def generate_csv_for_routine_log( |
| 201 | + file_name, row_count, routine_count, routine_element_count |
| 202 | +): |
| 203 | + prepare_file(file_name) |
| 204 | + |
| 205 | + with open(file_name, mode="w", newline="") as file: |
| 206 | + writer = csv.writer(file) |
| 207 | + writer.writerow( |
| 208 | + [ |
| 209 | + "duration_seconds", |
| 210 | + "completed_at", |
| 211 | + "is_skipped", |
| 212 | + "routine_id", |
| 213 | + "routine_element_id", |
| 214 | + ] # id 제외 |
| 215 | + ) |
| 216 | + |
| 217 | + for i in range(1, row_count + 1): |
| 218 | + duration_seconds = random.randint(30, 3600) |
| 219 | + completed_at = ( |
| 220 | + datetime.now() - timedelta(days=random.randint(0, 365)) |
| 221 | + ).strftime("%Y-%m-%d %H:%M:%S") |
| 222 | + is_skipped = random.choice([True, False]) |
| 223 | + routine_id = random.randint(1, routine_count) |
| 224 | + routine_element_id = random.randint(1, routine_element_count) |
| 225 | + writer.writerow( |
| 226 | + [ |
| 227 | + duration_seconds, |
| 228 | + completed_at, |
| 229 | + is_skipped, |
| 230 | + routine_element_id, |
| 231 | + routine_id, |
| 232 | + ] |
| 233 | + ) |
| 234 | + |
| 235 | + print(f"Generated {row_count} rows of data into {file_name}.") |
| 236 | + |
| 237 | + |
| 238 | +# PostgreSQL에 CSV 파일을 사용해 대량 데이터 삽입 |
| 239 | +def copy_from_csv(conn, table_name, file_name, columns): |
| 240 | + cursor = conn.cursor() |
| 241 | + with open(file_name, "r") as file: |
| 242 | + cursor.copy_expert( |
| 243 | + sql.SQL( |
| 244 | + """ |
| 245 | + COPY {} ({}) FROM STDIN WITH CSV HEADER |
| 246 | + """ |
| 247 | + ).format( |
| 248 | + sql.Identifier(table_name), |
| 249 | + sql.SQL(", ").join(map(sql.Identifier, columns)), |
| 250 | + ), |
| 251 | + file, |
| 252 | + ) |
| 253 | + conn.commit() |
| 254 | + cursor.close() |
| 255 | + |
| 256 | + |
| 257 | +# 데이터베이스 테이블에 대량 데이터 삽입 |
| 258 | +def insert_large_data(): |
| 259 | + conn = connect_to_db() |
| 260 | + |
| 261 | + # 각 테이블에 대한 CSV 파일 생성 및 데이터 삽입 |
| 262 | + user_count = 1000000 |
| 263 | + habit_count = 1000000 |
| 264 | + habit_log_count = 500000 |
| 265 | + routine_count = 5000000 |
| 266 | + routine_element_count = 200000 |
| 267 | + routine_element_log_count = 100000 |
| 268 | + |
| 269 | + # 사용자 데이터 생성 및 삽입 |
| 270 | + generate_csv_for_user("mock/user_data.csv", user_count) |
| 271 | + copy_from_csv( |
| 272 | + conn, |
| 273 | + "user", |
| 274 | + "mock/user_data.csv", |
| 275 | + ["username", "password", "email", "profile_image", "nickname"], |
| 276 | + ) |
| 277 | + |
| 278 | + # 습관 데이터 생성 및 삽입 |
| 279 | + generate_csv_for_habit("mock/habit_data.csv", habit_count, user_count) |
| 280 | + copy_from_csv( |
| 281 | + conn, |
| 282 | + "habit", |
| 283 | + "mock/habit_data.csv", |
| 284 | + [ |
| 285 | + "title", |
| 286 | + "end_time_minutes", |
| 287 | + "start_time_minutes", |
| 288 | + "repeat_days", |
| 289 | + "repeat_time_minutes", |
| 290 | + "activated", |
| 291 | + "user_id", |
| 292 | + "created_at", |
| 293 | + "updated_at", |
| 294 | + ], |
| 295 | + ) |
| 296 | + |
| 297 | + # 습관 로그 데이터 생성 및 삽입 |
| 298 | + generate_csv_for_habit_log( |
| 299 | + "mock/habit_log_data.csv", habit_log_count, habit_count |
| 300 | + ) |
| 301 | + copy_from_csv( |
| 302 | + conn, |
| 303 | + "habit_log", |
| 304 | + "mock/habit_log_data.csv", |
| 305 | + ["completed_at", "habit_id"], |
| 306 | + ) |
| 307 | + |
| 308 | + # 루틴 데이터 생성 및 삽입 |
| 309 | + generate_csv_for_routine( |
| 310 | + "mock/routine_data.csv", routine_count, user_count |
| 311 | + ) |
| 312 | + copy_from_csv( |
| 313 | + conn, |
| 314 | + "routine", |
| 315 | + "mock/routine_data.csv", |
| 316 | + [ |
| 317 | + "title", |
| 318 | + "start_time_minutes", |
| 319 | + "repeat_days", |
| 320 | + "user_id", |
| 321 | + "created_at", |
| 322 | + "updated_at", |
| 323 | + ], |
| 324 | + ) |
| 325 | + |
| 326 | + # 루틴 요소 데이터 생성 및 삽입 |
| 327 | + generate_csv_for_routine_element( |
| 328 | + "mock/routine_element_data.csv", |
| 329 | + routine_element_count, |
| 330 | + routine_count, |
| 331 | + user_count, |
| 332 | + ) |
| 333 | + copy_from_csv( |
| 334 | + conn, |
| 335 | + "routine_element", |
| 336 | + "mock/routine_element_data.csv", |
| 337 | + [ |
| 338 | + "title", |
| 339 | + "order", |
| 340 | + "duration_minutes", |
| 341 | + "routine_id", |
| 342 | + "created_at", |
| 343 | + "updated_at", |
| 344 | + "user_id", |
| 345 | + ], |
| 346 | + ) |
| 347 | + |
| 348 | + # 루틴 로그 데이터 생성 및 삽입 |
| 349 | + generate_csv_for_routine_log( |
| 350 | + "mock/routine_log_data.csv", |
| 351 | + routine_element_log_count, |
| 352 | + routine_count, |
| 353 | + routine_element_count, |
| 354 | + ) |
| 355 | + copy_from_csv( |
| 356 | + conn, |
| 357 | + "routine_log", |
| 358 | + "mock/routine_log_data.csv", |
| 359 | + [ |
| 360 | + "duration_seconds", |
| 361 | + "completed_at", |
| 362 | + "is_skipped", |
| 363 | + "routine_element_id", |
| 364 | + "routine_id", |
| 365 | + ], |
| 366 | + ) |
| 367 | + |
| 368 | + # 연결 종료 |
| 369 | + conn.close() |
| 370 | + print("Data inserted successfully.") |
| 371 | + |
| 372 | + |
| 373 | +if __name__ == "__main__": |
| 374 | + insert_large_data() |
0 commit comments