-
Notifications
You must be signed in to change notification settings - Fork 12
First Hardware Data
Changhao Li edited this page May 21, 2025
·
40 revisions
Consult this page for further information on how we define quantum volume.
quantum_volume.input.json
{
"benchmark_name": "Quantum Volume",
"num_qubits": 4,
"shots": 1000,
"trials": 2,
"confidence_level": 0.95
}
Commit: 0fe3783
Command:
python metriq_gym/run.py dispatch quantum_volume.input.json --provider <provider> --device <device>
| provider | device | type | timestamp | output |
|---|---|---|---|---|
| ibm | ibm_brussels | Quantum Volume | 2025-03-06T13:09:28.818993 | QuantumVolumeResult(num_qubits=4, confidence_pass=True, xeb=0.886970796512533, hog_prob=0.8, hog_pass=True, p_value=0.0, trials=2) |
| ibm | ibm_strasbourg | Quantum Volume | 2025-03-06T13:10:22.988862 | QuantumVolumeResult(num_qubits=4, confidence_pass=True, xeb=0.7935890724559819, hog_prob=0.8005, hog_pass=True, p_value=0.0, trials=2) |
| ibm | ibm_sherbrooke | Quantum Volume | 2025-03-06T13:09:54.316455 | QuantumVolumeResult(num_qubits=4, confidence_pass=True, xeb=0.8802381283386798, hog_prob=0.832, hog_pass=True, p_value=0.0, trials=2) |
| aws | arn:aws:braket:eu-north-1::device/qpu/iqm/Garnet | Quantum Volume | 2025-03-06T12:36:10.980330 | QuantumVolumeResult(num_qubits=4, confidence_pass=True, xeb=0.7639047976125721, hog_prob=0.763, hog_pass=True, p_value=0.0, trials=2) |
| aws | arn:aws:braket:us-west-1::device/qpu/rigetti/Ankaa-3 | Quantum Volume | 2025-03-06T12:34:46.668602 | QuantumVolumeResult(num_qubits=4, confidence_pass=True, xeb=0.19129354830311393, hog_prob=0.6505000000000001, hog_pass=False, p_value=0.0, trials=2) |
bseq.input.json
{
"benchmark_name": "BSEQ",
"shots": 1000
}
Command:
python metriq_gym/run.py dispatch bseq.input.json --provider <provider> --device <device>
| provider | device | type | timestamp | commit | output |
|---|---|---|---|---|---|
| ibm | ibm_brussels | BSEQ | 2025-02-26T21:07:07.650854 | feb06fd | BSEQResult(largest_connected_size=52, fraction_connected=0.4094488188976378) |
| ibm | ibm_strasbourg | BSEQ | 2025-02-26T21:12:42.886197 | feb06fd | BSEQResult(largest_connected_size=37, fraction_connected=0.29133858267716534) |
| ibm | ibm_sherbrooke | BSEQ | 2025-02-26T21:26:20.717108 | feb06fd | BSEQResult(largest_connected_size=100, fraction_connected=0.7874015748031497) |
| ibm | ibm_fez | BSEQ | c749d44 | ||
| ibm | ibm_torino | BSEQ | 2025-03-17T15:56:30.779962 | c749d44 | BSEQResult(largest_connected_size=71, fraction_connected=0.5338345864661654) |
| ibm | ibm_marrakesh | BSEQ | 2025-03-17T15:58:09.022280 | c749d44 | BSEQResult(largest_connected_size=150, fraction_connected=0.9615384615384616) |
| aws | arn:aws:braket:eu-north-1::device/qpu/iqm/Garnet | BSEQ | 2025-02-26T21:21:58.614002 | feb06fd | BSEQResult(largest_connected_size=20, fraction_connected=1.0) |
| aws | arn:aws:braket:us-west-1::device/qpu/rigetti/Ankaa-3 | BSEQ | 2025-02-26T21:24:00.500747 | feb06fd | BSEQResult(largest_connected_size=6, fraction_connected=0.07317073170731707) |
Check Issue 64 for the plot of hardware results as a function of number of qubits. The table below are partial results.
qml_kernel.input.json
{
"benchmark_name": "QML Kernel",
"num_qubits": 20,
"shots": 1000
}
Command:
python metriq_gym/run.py dispatch qml_kernel.input.json --provider <provider> --device <device>
| Provider | Device | Date | Qubits | Shots | Trials | Accuracy |
|---|---|---|---|---|---|---|
| ibm | ibm_sherbrooke | 2025-03-07 | 20 | 1024 | 1 | 0.12109375 |
| ibm | ibm_kyiv | 2025-03-09 | 20 | 1024 | 1 | 0.2841796875 |
| ibm | ibm_torino | 2025-03-11 | 20 | 1024 | 1 | 0.4853515625 |