Skip to content

How to reproduce results of the paper? #96

@Devil-Ideal

Description

@Devil-Ideal

I read the paper and downloaded the AG news dataset,and tested PET model on it,but there is a great margin between my results and the author's results. I set parameters as below. To be specifically, I just used 10 examples for train(10 shot),model type is roberta,model_name_or_path is roberta-large,and I used all patterns for AG news. I did not change other parameters. And here is my results:
==============my results===============
acc-p0: 0.6450877192982456 +- 0.053859095516898825
acc-p1: 0.7874561403508772 +- 0.01841603941808791
acc-p2: 0.5642543859649123 +- 0.06912621607498706
acc-p3: 0.6119298245614034 +- 0.09528808314997761
acc-p4: 0.7537719298245614 +- 0.07473549078343446
acc-all-p: 0.6725 +- 0.10462149351553651
===============parameters setting===========
parser.add_argument("--train_examples", default=10, type=int,
help="The total number of train examples to use, where -1 equals all examples.")
parser.add_argument("--method", required=False, default='pet', choices=['pet', 'ipet', 'sequence_classifier'],
help="The training method to use. Either regular sequence classification, PET or iPET.")
parser.add_argument("--data_dir", default="./agnews/", type=str, required=False,
help="The input data dir. Should contain the data files for the task.")
parser.add_argument("--model_type", default="roberta", type=str, required=False, choices=MODEL_CLASSES.keys(),
help="The type of the pretrained language model to use")
parser.add_argument("--model_name_or_path", default="roberta-large", type=str, required=False,
help="Path to the pre-trained model or shortcut name")
parser.add_argument("--task_name", default="agnews", type=str, required=False, choices=PROCESSORS.keys(),
help="The name of the task to train/evaluate on")
parser.add_argument("--output_dir", default="./output/", type=str, required=False,
help="The output directory where the model predictions and checkpoints will be written")

# PET-specific optional parameters
parser.add_argument("--wrapper_type", default="mlm", choices=WRAPPER_TYPES,
                    help="The wrapper type. Set this to 'mlm' for a masked language model like BERT or to 'plm' "
                         "for a permuted language model like XLNet (only for PET)")
parser.add_argument("--pattern_ids", default=[0,1,2,3,4], type=int, nargs='+',
                    help="The ids of the PVPs to be used (only for PET)")

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions