Skip to content

Sybila implementation of DeepGRNCS, enhanced with support for setting random seed.

Notifications You must be signed in to change notification settings

sybila/DeepGRNCS

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

32 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DeepGRNCS: Deep learning-based framework for jointly inferring Gene Regulatory Networks across Cell Subpopulations

Dependencies

  • Python == 3.9
  • Pytorch == 2.0.0
  • scikit-learn == 1.3.0
  • numpy == 1.22.3
  • pandas == 2.0.3

Usage

Dataset

  1. For simulated gene expression datasets, regulatory networks between genes are inferred. Prepare the gene expression dataset in the following format:
Cell1 Cell2 ……
Gene1 0.046 1.720 ……
Gene2 1.817 0.019 ……
…… …… …… ……
  1. For real gene expression datasets, regulatory networks between tfs and genes are inferred. Prepare the scRNA-seq dataset (as above), along with information on TFs and genes in the following format:
TF index
TF1 1
TF2 3
…… ……
Gene index
Gene1 0
Gene2 2
…… ……

Where 'index' indicates the column index position of the TF (gene) in the scRNA-seq dataset.

Command to run DeepGRNSC

  1. Inferring GRNs based on Gaussian simulated datasets:
python main.py --task "DeepGRNCS_demo" --data_file "data/ExpressionData" --save_name "output" --net_number 3
  1. Inferring GRN based on BoolODE simulated dataset:
python main.py --task "DeepGRNCS" --data_file "data/ExpressionData" --save_name "output" --net_number 3
  1. Inferring GRNs based on real datasets:
python main.py --task "DeepGRNCS_TF" --data_file "data/ExpressionData" --tf_file "data/TF.csv" --gene_file "data/Target.csv"  --save_name "output" --net_number 3
  1. Inferring GRN based on a single real dataset:
python main.py --task "DeepGRNCS_TF_Single" --data_file "data/ExpressionData.csv" --tf_file "data/TF.csv" --gene_file "data/Target.csv"  --save_name "output" 

About

Sybila implementation of DeepGRNCS, enhanced with support for setting random seed.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%