Skip to content

Implement the generalized normal distribution #3133

Open
@jachymb

Description

@jachymb

Description

Implement Generalized normal distribution https://en.wikipedia.org/wiki/Generalized_normal_distribution

Why this is useful?

It generalizes the normal (for p=2) and double exponential (Laplace) distribution (for p=1) and in the limit case also the uniform (p → ∞) for the shape parameter p.

These correspond to the $L_p$ norms when used for regularization and in other cases.

For examples:

y ~ normal(X*beta, sigma);

produces the criterion minimize $L_2$ norm of (X*beta-y) (a.k.a. least squares). But then

y ~ double_exponential(X*beta, sigma);

produces the criterion minimize $L_1$ norm of (X*beta-y). (a.k.a. least absolute deviations)

Similarly, in the Bayesian interpretation of ridge and LASSO,

beta ~ normal(0, lambda);
y ~ normal(X*beta, sigma);

produces the $L_2$ regularized ridge and

beta ~ double_exponential(0, lambda);
y ~ normal(X*beta, sigma);

produces the $L_1$ regularized LASSO.

Using the Generalized normal distribution would allow to conveniently use an arbitrary $L_p$ norm for the optimization criterion, or to even find the suitable value of p when used as a parameter.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions