Description
Description
Implement Generalized normal distribution https://en.wikipedia.org/wiki/Generalized_normal_distribution
Why this is useful?
It generalizes the normal (for p=2) and double exponential (Laplace) distribution (for p=1) and in the limit case also the uniform (p → ∞) for the shape parameter p.
These correspond to the
For examples:
y ~ normal(X*beta, sigma);
produces the criterion minimize
y ~ double_exponential(X*beta, sigma);
produces the criterion minimize
Similarly, in the Bayesian interpretation of ridge and LASSO,
beta ~ normal(0, lambda);
y ~ normal(X*beta, sigma);
produces the
beta ~ double_exponential(0, lambda);
y ~ normal(X*beta, sigma);
produces the
Using the Generalized normal distribution would allow to conveniently use an arbitrary