-
Notifications
You must be signed in to change notification settings - Fork 78
Description
Hey everyone,
as mentioned on Zulip I am using macsima data, where the macsima reader by default adds the Scale transformation to the coordinate system. I noticed that when I remove this my aggregation results are slightly different. This is most prominent for small signals, for larger signals it is not so pronounced. My original use case was for the mean intensity. For sum its very obvious that the absolute values change due to the transform, but the ratios stay similar.
Of course I understand that it makes sense to apply the transform before doing the aggregation, since they are intended for example for aligning my labels with the image. Still it was a bit unintuitive for me that this happens as a new user. Maybe this could be highlighted also a bit more in the tutorials. As requested below is a small example.
import spatialdata as sd
from spatialdata.datasets import blobs
from spatialdata.transformations import set_transformation, Scale
sdata = blobs()
# set scale transformation to new coordinate system. global coord system has Identity transform
scale_transform = Scale([0.1, 0.1], ("x", "y"))
set_transformation(sdata["blobs_image"], transformation=scale_transform, to_coordinate_system="scaled")
set_transformation(sdata["blobs_labels"], transformation=scale_transform, to_coordinate_system="scaled")
global_sum = sdata.aggregate(values="blobs_image", by="blobs_labels", target_coordinate_system="global")
print(global_sum["table"].X[:1])
#<Compressed Sparse Row sparse matrix of dtype 'float64'
# with 3 stored elements and shape (1, 3)>
# Coords Values
# (0, 0) 1309.3692551660652
# (0, 1) 1587.8641823936478
# (0, 2) 3125.1190857645483
scaled_sum = sdata.aggregate(values="blobs_image", by="blobs_labels", target_coordinate_system="scaled")
print(scaled_sum["table"].X[:1])
#<Compressed Sparse Row sparse matrix of dtype 'float64'
# with 3 stored elements and shape (1, 3)>
# Coords Values
# (0, 0) 12.758250581405642
# (0, 1) 15.427204091295
# (0, 2) 31.23271691509622
global_mean = sdata.aggregate(values="blobs_image", by="blobs_labels", agg_func="mean", target_coordinate_system="global")
print(global_mean["table"].X[:1])
#<Compressed Sparse Row sparse matrix of dtype 'float64'
# with 3 stored elements and shape (1, 3)>
# Coords Values
# (0, 0) 0.08696083251418378
# (0, 1) 0.10545687603066001
# (0, 2) 0.20755257260839133
scaled_mean = sdata.aggregate(values="blobs_image", by="blobs_labels", agg_func="mean", target_coordinate_system="scaled")
print(scaled_mean["table"].X[:1])
#<Compressed Sparse Row sparse matrix of dtype 'float64'
# with 3 stored elements and shape (1, 3)>
# Coords Values
# (0, 0) 0.08449172570467313
# (0, 1) 0.10216691451188742
# (0, 2) 0.2068391848681869