|
448 | 448 | ")" |
449 | 449 | ] |
450 | 450 | }, |
451 | | - { |
452 | | - "cell_type": "code", |
453 | | - "execution_count": null, |
454 | | - "metadata": {}, |
455 | | - "outputs": [], |
456 | | - "source": [ |
457 | | - "print(last_val_valid)" |
458 | | - ] |
459 | | - }, |
460 | | - { |
461 | | - "cell_type": "code", |
462 | | - "execution_count": null, |
463 | | - "metadata": {}, |
464 | | - "outputs": [], |
465 | | - "source": [ |
466 | | - "print(last_val_train)" |
467 | | - ] |
468 | | - }, |
469 | | - { |
470 | | - "cell_type": "code", |
471 | | - "execution_count": null, |
472 | | - "metadata": {}, |
473 | | - "outputs": [], |
474 | | - "source": [ |
475 | | - "print(global_min_loss)" |
476 | | - ] |
477 | | - }, |
478 | | - { |
479 | | - "cell_type": "code", |
480 | | - "execution_count": null, |
481 | | - "metadata": {}, |
482 | | - "outputs": [], |
483 | | - "source": [ |
484 | | - "print(last_max_loss)" |
485 | | - ] |
486 | | - }, |
487 | | - { |
488 | | - "cell_type": "code", |
489 | | - "execution_count": null, |
490 | | - "metadata": {}, |
491 | | - "outputs": [], |
492 | | - "source": [ |
493 | | - "print(global_max_loss)" |
494 | | - ] |
495 | | - }, |
496 | 451 | { |
497 | 452 | "cell_type": "code", |
498 | 453 | "execution_count": 16, |
|
510 | 465 | ") # keep it under the 25% part of figure" |
511 | 466 | ] |
512 | 467 | }, |
513 | | - { |
514 | | - "cell_type": "code", |
515 | | - "execution_count": null, |
516 | | - "metadata": {}, |
517 | | - "outputs": [], |
518 | | - "source": [ |
519 | | - "print(min_loss)" |
520 | | - ] |
521 | | - }, |
522 | | - { |
523 | | - "cell_type": "code", |
524 | | - "execution_count": null, |
525 | | - "metadata": {}, |
526 | | - "outputs": [], |
527 | | - "source": [ |
528 | | - "print(max_loss)" |
529 | | - ] |
530 | | - }, |
531 | | - { |
532 | | - "cell_type": "code", |
533 | | - "execution_count": null, |
534 | | - "metadata": {}, |
535 | | - "outputs": [], |
536 | | - "source": [ |
537 | | - "print(ylim_min)" |
538 | | - ] |
539 | | - }, |
540 | | - { |
541 | | - "cell_type": "code", |
542 | | - "execution_count": null, |
543 | | - "metadata": {}, |
544 | | - "outputs": [], |
545 | | - "source": [ |
546 | | - "print(ylim_max)" |
547 | | - ] |
548 | | - }, |
549 | 468 | { |
550 | 469 | "cell_type": "code", |
551 | 470 | "execution_count": 17, |
|
588 | 507 | "fig, ax = plt.subplots(1, 1)\n", |
589 | 508 | "model.history[\"elbo_train\"].plot(ax=ax, label=\"train\")\n", |
590 | 509 | "model.history[\"elbo_validation\"].plot(ax=ax, label=\"validation\")\n", |
591 | | - "ax.set(\n", |
592 | | - " title=\"Negative ELBO over training epochs\", ylim=(ylim_min, ylim_max)\n", |
593 | | - ") # you can still plug in you numbers\n", |
| 510 | + "if isinstance(ylim_min, (int, float)) and isinstance(ylim_max, (int, float)):\n", |
| 511 | + " ax.set(title=\"Negative ELBO over training epochs\", ylim=(ylim_min, ylim_max))\n", |
| 512 | + "else:\n", |
| 513 | + " ax.set(title=\"Negative ELBO over training epochs\")\n", |
594 | 514 | "ax.legend()" |
595 | 515 | ] |
596 | 516 | }, |
|
1334 | 1254 | "sc.tl.dendrogram(protein, groupby=TOTALVI_CLUSTERS_KEY, use_rep=TOTALVI_LATENT_KEY)" |
1335 | 1255 | ] |
1336 | 1256 | }, |
1337 | | - { |
1338 | | - "cell_type": "code", |
1339 | | - "execution_count": 34, |
1340 | | - "metadata": {}, |
1341 | | - "outputs": [ |
1342 | | - { |
1343 | | - "data": { |
1344 | | - "text/plain": [ |
1345 | | - "'1.11.1'" |
1346 | | - ] |
1347 | | - }, |
1348 | | - "execution_count": 34, |
1349 | | - "metadata": {}, |
1350 | | - "output_type": "execute_result" |
1351 | | - } |
1352 | | - ], |
1353 | | - "source": [ |
1354 | | - "import scipy\n", |
1355 | | - "scipy.__version__ \n", |
1356 | | - "sc.__version__" |
1357 | | - ] |
1358 | | - }, |
1359 | 1257 | { |
1360 | 1258 | "cell_type": "markdown", |
1361 | 1259 | "metadata": { |
|
0 commit comments