-
Notifications
You must be signed in to change notification settings - Fork 700
Top100MathematicalTheoremsInCoq
#language en
||Rank || Theorem || Statement || Formalisation available from ||
||<|2>1 ||<|2> The Irrationality of the Square Root of 2 || {{{Theorem sqrt2_not_rational : forall p q : nat, q <> 0 -> p * p = 2 * (q * q) -> False.}}} || UserContributions/Nijmegen/QArithSternBrocot/sqrt2.v||
|| {{{ exists n, exists p, n ^2 = 2* p^2 /\ n <> 0}}} || SquareRootTwo ||
|| 2 || Fundamental Theorem of Algebra || {{{Lemma FTA : forall f : CCX, nonConst _ f -> {z : CC | f ! z [=] Zero}.}}} <(EX l:(list Prime) | (p:Prime)(In p l))}}} || NotFinitePrimes ||
||15 || Fundamental Theorem of Integral Calculus || {{{Lemma FTC1 : forall (J : interval) (F : PartFunct IR) (contF : Continuous J F)}}} {{{ }}} {{{(x0 : IR) (Hx0 : J x0) (pJ : proper J), Derivative J pJ (([-S-]contF) x0 Hx0) F}}} {{{ }}} {{{Lemma FTC2 : forall (J : interval) (F : PartFunct IR) (contF : Continuous J F)}}} {{{ }}} {{{(x0 : IR) (Hx0 : J x0) (pJ : proper J) (G0 : PartFunct IR), Derivative J pJ G0 F ->}}} {{{ }}} {{{ {c : IR | Feq J (([-S-]contF) x0 Hx0{-}G0) [-C-]c} }}} {{{ }}} {{{Lemma Barrow : forall (J : interval) (F : PartFunct IR), Continuous J F ->}}} {{{ }}} {{{forall (pJ : proper J) (G0 : PartFunct IR) (derG0 : Derivative J pJ G0 F) (a b : IR)}}} {{{ }}} {{{(H : Continuous_I (Min_leEq_Max a b) F) (Ha : J a) (Hb : J b),}}} {{{ }}} {{{let Ha' := Derivative_imp_inc J pJ G0 F derG0 a Ha in}}} {{{ }}} {{{let Hb' := Derivative_imp_inc J pJ G0 F derG0 b Hb in}}} {{{ }}} {{{Integral H[=]G0 b Hb'[-]G0 a Ha'}}} || UserContributions/Nijmegen/CoRN ||
||17 || De Moivre's Theorem || ??? || UserContributions/Sophia-Antipolis/ ||
||20 || All Primes Equal the Sum of Two Squares || {{{forall n, 0 <= n -> (forall p, prime p -> Zis_mod p 3 4 -> Zeven (Zdiv_exp p n)) -> sum_of_two_square n}}} ||UserContributions/Sophia-Antipolis/SumOfTwoSquare ||
||23 || Formula for Pythagorean Triples || {{{Lemma pytha_thm1 : forall a b c : Z, (is_pytha a b c) -> (pytha_set a b c).}}} {{{Lemma pytha_thm2 : forall a b c : Z, (pytha_set a b c) -> (is_pytha a b c).}}} || http://coq.inria.fr/contribs/Fermat4.html (File Pythagorean.v) by ''http://cedric.cnam.fr/~delahaye/'' and ''http://www-lipn.univ-paris13.fr/~mayero/'' ||
||25 || Schroeder--Bernstein Theorem || {{{forall A B:Ensemble U, A <=_card B -> B <=_card A -> A =card B.}}} || UserContributions/Rocq/SCHROEDER ||
||26 || Leibnitz's Series for Pi || ??? || UserContributions/Nijmegen/CoRN ||
||27 || Sum of the Angles of a Triangle || ??? ||UserContributions/Sophia-Antipolis/ ||
||32 || The Four Color Problem || ??? || GeorgesGonthier http://research.microsoft.com/~gonthier/ ||
||35 || Taylor's Theorem || {{{Lemma Taylor}}} {{{ }}} {{{: forall (I : interval) (pI : proper I) (F : PartFunct IR) (n : nat)}}} {{{ }}} {{{(f : forall i : nat, i < S n -> PartFunct IR)}}} {{{ }}} {{{(derF : forall (i : nat) (Hi : i < S n),}}} {{{ }}} {{{Derivative_n i I pI F (f i Hi)) (F' : PartFunct IR),}}} {{{ }}} {{{Derivative_n (S n) I pI F F' ->}}} {{{ }}} {{{forall (a b : IR) (Ha : I a),}}} {{{ }}} {{{I b ->}}} {{{ }}} {{{forall e : IR,}}} {{{ }}} {{{Zero[<]e ->}}} {{{ }}} {{{forall Hb' : Dom F b,}}} {{{ }}} {{{ {c : IR | Compact (Min_leEq_Max a b) c |}}} {{{ }}} {{{forall}}} {{{ }}} {{{Hc : Dom}}} {{{ }}} {{{(F'{}[-C-](One[/]nring (fac n)[//]nring_fac_ap_zero IR n){} }}} {{{ }}} {{{([-C-]b{-}FId){^}n) c,}}} {{{ }}} {{{AbsIR}}} {{{ }}} {{{(F b Hb'[-]}}} {{{ }}} {{{Taylor_Seq I pI F n f derF a Ha b}}} {{{ }}} {{{(Taylor_aux I pI F n f derF a b Ha)[-]}}} {{{ }}} {{{(F'{}[-C-](One[/]nring (fac n)[//]nring_fac_ap_zero IR n){} }}} {{{ }}} {{{([-C-]b{-}FId){^}n) c Hc*)[<=]e} }}} || UserContributions/Nijmegen/CoRN ||
||44 || Binomial Theorem || {{{(a + b) ^ n = \sum(i < n.+1) (bin n i * (a ^ (n - i) * b ^ i))}}} || http://coqfinitgroup.gforge.inria.fr/binomial.html#exp_pascal||
||49 || Cayley-Hamilton Theorem || Every square matrix is a root of its characteristic polynomial : {{{forall A, (Zpoly (char_poly A)).[A] = 0}}} || Math Components Project : http://coqfinitgroup.gforge.inria.fr/charpoly.html#Cayley_Hamilton||
||<|2> 51 ||<|2> Wilson's Theorem || {{{forall p, prime p -> Zis_mod (Zfact (p - 1)) (- 1) p}}} || UserContributions/Sophia-Antipolis/ ||
||{{{forall p, 1 < p -> (prime p <-> p %| (fact (p.-1)).+1)}}} || http://coqfinitgroup.gforge.inria.fr/binomial.html#wilson ||
||52 ||The Number of Subsets of a Set || ??? || ??? ||
||55 || Product of Segments of Chords || {{{forall A B C D M O:point, samedistance O A O B -> samedistance O A O C -> samedistance O A O D ->}}}<
> {{{Lemma FTA_a_la_Henk : forall f : CCX, {x : CC | {y : CC | AbsCC (f ! x[-]f ! y) [>]Zero}} -> {z : CC | f ! z [=] Zero}.}}} || UserContributions/Nijmegen/CoRN/fta/FTA.v||
|| 3 ||The Denumerability of the Rational Numbers ||{{{Theorem Q_is_denumerable: is_denumerable Q.}}} <
> ''where''<
> {{{Definition is_denumerable A := same_cardinality A nat.}}} <
>{{{Definition same_cardinality (A B:Set):= {f:A->B & { g:B->A |}}} <
> {{{ (forall b,(compose _ _ _ f g) b= (identity B) b) /\ forall a,(compose _ _ _ g f) a = (identity A) a}}.}}}|| UserContributions/Nijmegen/QArithSternBrocot/Q_denumerable.v||
|| 4 || Pythagorean Theorem || ??? || UserContributions/Sophia-Antipolis/geometry ||
|| 6 || Gödel's Incompleteness Theorem || {{{ forall T : System, Included Formula NN T -> RepresentsInSelf T -> DecidableSet Formula T -> }}} {{{ }}} {{{{ f : Formula | (Sentence f) /\ ({SysPrf T f} + {SysPrf T (notH f)} -> Inconsistent LNN T)} }}} ||UserContributions/Berkeley/Godel ||
||11 || The Infinitude of Primes || {{{
> {{{collinear A B M -> collinear C D M -> }}}<
> {{{ (distance M A)(distance M B)=(distance M C)(distance M D) / parallel A B C D. }}} || to appear next... ||
||<|2>60 ||<|2> Bezout's Theorem || ??? || StandardLibrary/Coq.ZArith.Znumtheory ||
|| {{{forall m n, m > 0 -> {a | a < m & m %| gcdn m n + a * n} }}} <
> {{{forall m n, n > 0 -> {a | a < n & n %| gcdn m n + a * m} }}}|| http://coqfinitgroup.gforge.inria.fr/div.html#bezoutl ||
||61 || Theorem of Ceva || ??? ||UserContributions/Sophia-Antipolis/ ||
||65 || Isosceles Triangle Theorem || ??? ||UserContributions/Sophia-Antipolis/ ||
||66 || Sum of a Geometric Series || {{{Lemma power_series_conv}}} {{{ }}} {{{: forall c : IR, AbsIR c[<]One -> convergent (power_series c)}}}<
> {{{Lemma power_series_sum}}} {{{ }}} {{{: forall c : IR,}}} {{{ }}} {{{AbsIR c[<]One ->}}} {{{ }}} {{{forall (H : Dom (f_rcpcl' IR) (One[-]c))}}} {{{ }}} {{{(Hc0 : convergent (power_series c)),}}} {{{ }}} {{{series_sum (power_series c) Hc0=}}}||UserContributions/Nijmegen/CoRN ||
||69 || Greatest Common Divisor Algorithm || ??? ||StandardLibrary/Coq.ZArith.Znumtheory ||
||71 || Order of a Subgroup || {{{forall (gT : finGroupType) (G H : {group gT}), H :<=: G -> (#|H| * #|G : H|)%N = #|G|}}} || http://coqfinitgroup.gforge.inria.fr/groups.html#LaGrange ||
|||| || || ||
||72 || Sylow Theorem || {{{Lemma Sylow_exists: forall (p : nat) (gT : finGroupType) (G : {group gT}), {P : {group gT} | p.-Sylow(G) P} }}} <
> {{{Lemma Sylow_subj: forall (p : nat) (gT : finGroupType) (G P Q : {group gT}),}}} <
> {{{ p.-Sylow(G) P -> Q :<=: G -> p.-group Q -> exists2 x : gT, x \in G & Q :<=: P :^ x }}}<
> {{{Lemma card_Syl_dvd : forall (p : nat) (gT : finGroupType) (G : {group gT}), #|'Syl_p(G)| %| #|G| }}}<
> {{{Lemma card_Syl_mod : forall (p : nat) (gT : finGroupType) (G : {group gT}), prime p -> #|'Syl_p(G)| %% p = 1}}} || http://coqfinitgroup.gforge.inria.fr/sylow.html ||
||74 || The Principle of Mathematical Induction || {{{forall P : nat -> Prop, P 0 -> (forall n : nat, P n -> P (S n)) ->}}} {{{ forall n : nat, P n}}}|| StandardLibrary ||
||75 || The Mean Value Theorem || {{{Lemma Law_of_the_Mean : forall (I : interval) (pI : proper I) (F F' : PartFunct IR),}}} {{{ }}} {{{Derivative I pI F F' ->}}} {{{ }}} {{{forall a b : IR,}}} {{{ }}} {{{I a ->}}} {{{ }}} {{{I b ->}}} {{{ }}} {{{forall e : IR,}}} {{{ }}} {{{Zero[<]e ->}}} {{{ }}} {{{ {x : IR | Compact (Min_leEq_Max a b) x |}}} {{{ }}} {{{forall (Ha : Dom F a) (Hb : Dom F b) (Hx : Dom F' x),}}} {{{ }}} {{{AbsIR (F b Hb[-]F a Ha[-]F' x Hx*)[<=]e} }}} {{{ }}} {{{Lemma Law_of_the_Mean_ineq : forall (I : interval) (pI : proper I) (F F' : PartFunct IR),}}} {{{ }}} {{{Derivative I pI F F' ->}}} {{{ }}} {{{forall a b : IR,}}} {{{ }}} {{{I a ->}}} {{{ }}} {{{I b ->}}} {{{ }}} {{{forall c : IR,}}} {{{ }}} {{{(forall x : IR,}}} {{{ }}} {{{Compact (Min_leEq_Max a b) x ->}}} {{{ }}} {{{forall Hx : Dom F' x, AbsIR (F' x Hx)[<=]c) ->}}} {{{ }}} {{{forall (Ha : Dom F a) (Hb : Dom F b),}}} {{{ }}} {{{F b Hb[-]F a Ha[<=]c[*]AbsIR (b[-]a)}}} || UserContributions/Nijmegen/CoRN ||
||79 || The Intermediate Value Theorem || {{{Lemma Civt_op}}} {{{ }}} {{{: forall f : CSetoid_un_op IR,}}} {{{ }}} {{{contin f ->}}} {{{ }}} {{{(forall a b : IR, a[<]b -> {c : IR | a[<=]c /\ c[<=]b | f c[#]Zero}) ->}}} {{{ }}} {{{forall a b : IR,}}} {{{ }}} {{{a[<]b ->}}} {{{ }}} {{{f a[<=]Zero ->}}} {{{ }}} {{{Zero[<=]f b -> {z : IR | a[<=]z /\ z[<=]b /\ f z[=]Zero} }}} || UserContributions/Nijmegen/CoRN ||
||80 || The Fundamental Theorem of Arithmetic || ??? || UserContributions/Eindhoven/POCKLINGTON ||
||87 || Desargues's Theorem || ??? ||UserContributions/Sophia-Antipolis/geometry ||
||89 || The Factor and Remainder Theorems || ??? || StandardLibrary ||
||94 || The Law of Cosines || ??? || UserContributions/Sophia-Antipolis/ ||
||97 || Cramer's rule || {{{forall (R : comRingType) (n : nat) (A : matrix R n n), A *m \adj A = \Z (\det A)}}} || Math Components Project : http://coqfinitgroup.gforge.inria.fr/matrix.html#mulmx_adjr ||
||98 || Bertrand’s Postulate || {{{forall n : nat, 2 <= n -> exists p : nat, prime p /\ n < p /\ p < 2 * n}}} || UserContributions/Sophia-Antipolis/Bertrand ||
-
The theorems regarding angles or triangles are proved in one of the two UserContributions/Sophia-Antipolis/geometry or UserContributions/Sophia-Antipolis/Angles (please specify if you know which contrib package contains them).
-
The Ranks are taken from the original list of Top100MathematicalTheorems.
-
See Also http://www.cs.ru.nl/~freek/100/
To the extent possible under law, the contributors of the Rocq wiki have waived all copyright and related or neighboring rights to their contributions.
By contributing to the Rocq wiki, you agree that you hold the copyright and you agree to license your contribution under the CC0 license or you agree that you have permission to distribute your contribution under the CC0 license.