Skip to content

Top100MathematicalTheoremsInCoq

HugoHerbelin edited this page Mar 13, 2009 · 80 revisions

#language en ||Rank || Theorem || Statement || Formalisation available from || ||<|2>1 ||<|2> The Irrationality of the Square Root of 2 || {{{Theorem sqrt2_not_rational : forall p q : nat, q <> 0 -> p * p = 2 * (q * q) -> False.}}} || UserContributions/Nijmegen/QArithSternBrocot/sqrt2.v|| || {{{ exists n, exists p, n ^2 = 2* p^2 /\ n <> 0}}} || SquareRootTwo || || 2 || Fundamental Theorem of Algebra || {{{Lemma FTA : forall f : CCX, nonConst _ f -> {z : CC | f ! z [=] Zero}.}}} <
> {{{Lemma FTA_a_la_Henk : forall f : CCX, {x : CC | {y : CC | AbsCC (f ! x[-]f ! y) [>]Zero}} -> {z : CC | f ! z [=] Zero}.}}} || UserContributions/Nijmegen/CoRN/fta/FTA.v|| || 3 ||The Denumerability of the Rational Numbers ||{{{Theorem Q_is_denumerable: is_denumerable Q.}}} <
> ''where''<
> {{{Definition is_denumerable A := same_cardinality A nat.}}} <
>{{{Definition same_cardinality (A B:Set):= {f:A->B & { g:B->A |}}} <
> {{{ (forall b,(compose _ _ _ f g) b= (identity B) b) /\ forall a,(compose _ _ _ g f) a = (identity A) a}}.}}}|| UserContributions/Nijmegen/QArithSternBrocot/Q_denumerable.v|| || 4 || Pythagorean Theorem || ??? || UserContributions/Sophia-Antipolis/geometry || || 6 || Gödel's Incompleteness Theorem || {{{ forall T : System, Included Formula NN T -> RepresentsInSelf T -> DecidableSet Formula T -> }}} {{{ }}} {{{{ f : Formula | (Sentence f) /\ ({SysPrf T f} + {SysPrf T (notH f)} -> Inconsistent LNN T)} }}} ||UserContributions/Berkeley/Godel || ||11 || The Infinitude of Primes || {{{
(EX l:(list Prime) | (p:Prime)(In p l))}}} || NotFinitePrimes || ||15 || Fundamental Theorem of Integral Calculus || {{{Lemma FTC1 : forall (J : interval) (F : PartFunct IR) (contF : Continuous J F)}}} {{{ }}} {{{(x0 : IR) (Hx0 : J x0) (pJ : proper J), Derivative J pJ (([-S-]contF) x0 Hx0) F}}} {{{ }}} {{{Lemma FTC2 : forall (J : interval) (F : PartFunct IR) (contF : Continuous J F)}}} {{{ }}} {{{(x0 : IR) (Hx0 : J x0) (pJ : proper J) (G0 : PartFunct IR), Derivative J pJ G0 F ->}}} {{{ }}} {{{ {c : IR | Feq J (([-S-]contF) x0 Hx0{-}G0) [-C-]c} }}} {{{ }}} {{{Lemma Barrow : forall (J : interval) (F : PartFunct IR), Continuous J F ->}}} {{{ }}} {{{forall (pJ : proper J) (G0 : PartFunct IR) (derG0 : Derivative J pJ G0 F) (a b : IR)}}} {{{ }}} {{{(H : Continuous_I (Min_leEq_Max a b) F) (Ha : J a) (Hb : J b),}}} {{{ }}} {{{let Ha' := Derivative_imp_inc J pJ G0 F derG0 a Ha in}}} {{{ }}} {{{let Hb' := Derivative_imp_inc J pJ G0 F derG0 b Hb in}}} {{{ }}} {{{Integral H[=]G0 b Hb'[-]G0 a Ha'}}} || UserContributions/Nijmegen/CoRN || ||17 || De Moivre's Theorem || ??? || UserContributions/Sophia-Antipolis/ || ||20 || All Primes Equal the Sum of Two Squares || {{{forall n, 0 <= n -> (forall p, prime p -> Zis_mod p 3 4 -> Zeven (Zdiv_exp p n)) -> sum_of_two_square n}}} ||UserContributions/Sophia-Antipolis/SumOfTwoSquare || ||23 || Formula for Pythagorean Triples || {{{Lemma pytha_thm1 : forall a b c : Z, (is_pytha a b c) -> (pytha_set a b c).}}} {{{Lemma pytha_thm2 : forall a b c : Z, (pytha_set a b c) -> (is_pytha a b c).}}} || http://coq.inria.fr/contribs/Fermat4.html (File Pythagorean.v) by ''http://cedric.cnam.fr/~delahaye/'' and ''http://www-lipn.univ-paris13.fr/~mayero/'' || ||25 || Schroeder--Bernstein Theorem || {{{forall A B:Ensemble U, A <=_card B -> B <=_card A -> A =card B.}}} || UserContributions/Rocq/SCHROEDER || ||26 || Leibnitz's Series for Pi || ??? || UserContributions/Nijmegen/CoRN || ||27 || Sum of the Angles of a Triangle || ??? ||UserContributions/Sophia-Antipolis/ || ||32 || The Four Color Problem || ??? || GeorgesGonthier http://research.microsoft.com/~gonthier/ || ||35 || Taylor's Theorem || {{{Lemma Taylor}}} {{{ }}} {{{: forall (I : interval) (pI : proper I) (F : PartFunct IR) (n : nat)}}} {{{ }}} {{{(f : forall i : nat, i < S n -> PartFunct IR)}}} {{{ }}} {{{(derF : forall (i : nat) (Hi : i < S n),}}} {{{ }}} {{{Derivative_n i I pI F (f i Hi)) (F' : PartFunct IR),}}} {{{ }}} {{{Derivative_n (S n) I pI F F' ->}}} {{{ }}} {{{forall (a b : IR) (Ha : I a),}}} {{{ }}} {{{I b ->}}} {{{ }}} {{{forall e : IR,}}} {{{ }}} {{{Zero[<]e ->}}} {{{ }}} {{{forall Hb' : Dom F b,}}} {{{ }}} {{{ {c : IR | Compact (Min_leEq_Max a b) c |}}} {{{ }}} {{{forall}}} {{{ }}} {{{Hc : Dom}}} {{{ }}} {{{(F'{}[-C-](One[/]nring (fac n)[//]nring_fac_ap_zero IR n){} }}} {{{ }}} {{{([-C-]b{-}FId){^}n) c,}}} {{{ }}} {{{AbsIR}}} {{{ }}} {{{(F b Hb'[-]}}} {{{ }}} {{{Taylor_Seq I pI F n f derF a Ha b}}} {{{ }}} {{{(Taylor_aux I pI F n f derF a b Ha)[-]}}} {{{ }}} {{{(F'{}[-C-](One[/]nring (fac n)[//]nring_fac_ap_zero IR n){} }}} {{{ }}} {{{([-C-]b{-}FId){^}n) c Hc*)[<=]e} }}} || UserContributions/Nijmegen/CoRN || ||44 || Binomial Theorem || {{{(a + b) ^ n = \sum(i < n.+1) (bin n i * (a ^ (n - i) * b ^ i))}}} || http://coqfinitgroup.gforge.inria.fr/binomial.html#exp_pascal|| ||49 || Cayley-Hamilton Theorem || Every square matrix is a root of its characteristic polynomial : {{{forall A, (Zpoly (char_poly A)).[A] = 0}}} || Math Components Project : http://coqfinitgroup.gforge.inria.fr/charpoly.html#Cayley_Hamilton|| ||<|2> 51 ||<|2> Wilson's Theorem || {{{forall p, prime p -> Zis_mod (Zfact (p - 1)) (- 1) p}}} || UserContributions/Sophia-Antipolis/ || ||{{{forall p, 1 < p -> (prime p <-> p %| (fact (p.-1)).+1)}}} || http://coqfinitgroup.gforge.inria.fr/binomial.html#wilson || ||52 ||The Number of Subsets of a Set || ??? || ??? || ||55 || Product of Segments of Chords || {{{forall A B C D M O:point, samedistance O A O B -> samedistance O A O C -> samedistance O A O D ->}}}<
> {{{collinear A B M -> collinear C D M -> }}}<
> {{{ (distance M A)(distance M B)=(distance M C)(distance M D) / parallel A B C D. }}} || to appear next... || ||<|2>60 ||<|2> Bezout's Theorem || ??? || StandardLibrary/Coq.ZArith.Znumtheory || || {{{forall m n, m > 0 -> {a | a < m & m %| gcdn m n + a * n} }}} <
> {{{forall m n, n > 0 -> {a | a < n & n %| gcdn m n + a * m} }}}|| http://coqfinitgroup.gforge.inria.fr/div.html#bezoutl || ||61 || Theorem of Ceva || ??? ||UserContributions/Sophia-Antipolis/ || ||65 || Isosceles Triangle Theorem || ??? ||UserContributions/Sophia-Antipolis/ || ||66 || Sum of a Geometric Series || {{{Lemma power_series_conv}}} {{{ }}} {{{: forall c : IR, AbsIR c[<]One -> convergent (power_series c)}}}<
> {{{Lemma power_series_sum}}} {{{ }}} {{{: forall c : IR,}}} {{{ }}} {{{AbsIR c[<]One ->}}} {{{ }}} {{{forall (H : Dom (f_rcpcl' IR) (One[-]c))}}} {{{ }}} {{{(Hc0 : convergent (power_series c)),}}} {{{ }}} {{{series_sum (power_series c) Hc0=}}}||UserContributions/Nijmegen/CoRN || ||69 || Greatest Common Divisor Algorithm || ??? ||StandardLibrary/Coq.ZArith.Znumtheory || ||71 || Order of a Subgroup || {{{forall (gT : finGroupType) (G H : {group gT}), H :<=: G -> (#|H| * #|G : H|)%N = #|G|}}} || http://coqfinitgroup.gforge.inria.fr/groups.html#LaGrange || |||| || || || ||72 || Sylow Theorem || {{{Lemma Sylow_exists: forall (p : nat) (gT : finGroupType) (G : {group gT}), {P : {group gT} | p.-Sylow(G) P} }}} <
> {{{Lemma Sylow_subj: forall (p : nat) (gT : finGroupType) (G P Q : {group gT}),}}} <
> {{{ p.-Sylow(G) P -> Q :<=: G -> p.-group Q -> exists2 x : gT, x \in G & Q :<=: P :^ x }}}<
> {{{Lemma card_Syl_dvd : forall (p : nat) (gT : finGroupType) (G : {group gT}), #|'Syl_p(G)| %| #|G| }}}<
> {{{Lemma card_Syl_mod : forall (p : nat) (gT : finGroupType) (G : {group gT}), prime p -> #|'Syl_p(G)| %% p = 1}}} || http://coqfinitgroup.gforge.inria.fr/sylow.html || ||74 || The Principle of Mathematical Induction || {{{forall P : nat -> Prop, P 0 -> (forall n : nat, P n -> P (S n)) ->}}} {{{ forall n : nat, P n}}}|| StandardLibrary || ||75 || The Mean Value Theorem || {{{Lemma Law_of_the_Mean : forall (I : interval) (pI : proper I) (F F' : PartFunct IR),}}} {{{ }}} {{{Derivative I pI F F' ->}}} {{{ }}} {{{forall a b : IR,}}} {{{ }}} {{{I a ->}}} {{{ }}} {{{I b ->}}} {{{ }}} {{{forall e : IR,}}} {{{ }}} {{{Zero[<]e ->}}} {{{ }}} {{{ {x : IR | Compact (Min_leEq_Max a b) x |}}} {{{ }}} {{{forall (Ha : Dom F a) (Hb : Dom F b) (Hx : Dom F' x),}}} {{{ }}} {{{AbsIR (F b Hb[-]F a Ha[-]F' x Hx*)[<=]e} }}} {{{ }}} {{{Lemma Law_of_the_Mean_ineq : forall (I : interval) (pI : proper I) (F F' : PartFunct IR),}}} {{{ }}} {{{Derivative I pI F F' ->}}} {{{ }}} {{{forall a b : IR,}}} {{{ }}} {{{I a ->}}} {{{ }}} {{{I b ->}}} {{{ }}} {{{forall c : IR,}}} {{{ }}} {{{(forall x : IR,}}} {{{ }}} {{{Compact (Min_leEq_Max a b) x ->}}} {{{ }}} {{{forall Hx : Dom F' x, AbsIR (F' x Hx)[<=]c) ->}}} {{{ }}} {{{forall (Ha : Dom F a) (Hb : Dom F b),}}} {{{ }}} {{{F b Hb[-]F a Ha[<=]c[*]AbsIR (b[-]a)}}} || UserContributions/Nijmegen/CoRN || ||79 || The Intermediate Value Theorem || {{{Lemma Civt_op}}} {{{ }}} {{{: forall f : CSetoid_un_op IR,}}} {{{ }}} {{{contin f ->}}} {{{ }}} {{{(forall a b : IR, a[<]b -> {c : IR | a[<=]c /\ c[<=]b | f c[#]Zero}) ->}}} {{{ }}} {{{forall a b : IR,}}} {{{ }}} {{{a[<]b ->}}} {{{ }}} {{{f a[<=]Zero ->}}} {{{ }}} {{{Zero[<=]f b -> {z : IR | a[<=]z /\ z[<=]b /\ f z[=]Zero} }}} || UserContributions/Nijmegen/CoRN || ||80 || The Fundamental Theorem of Arithmetic || ??? || UserContributions/Eindhoven/POCKLINGTON || ||87 || Desargues's Theorem || ??? ||UserContributions/Sophia-Antipolis/geometry || ||89 || The Factor and Remainder Theorems || ??? || StandardLibrary || ||94 || The Law of Cosines || ??? || UserContributions/Sophia-Antipolis/ || ||97 || Cramer's rule || {{{forall (R : comRingType) (n : nat) (A : matrix R n n), A *m \adj A = \Z (\det A)}}} || Math Components Project : http://coqfinitgroup.gforge.inria.fr/matrix.html#mulmx_adjr || ||98 || Bertrand’s Postulate || {{{forall n : nat, 2 <= n -> exists p : nat, prime p /\ n < p /\ p < 2 * n}}} || UserContributions/Sophia-Antipolis/Bertrand ||


  • The theorems regarding angles or triangles are proved in one of the two UserContributions/Sophia-Antipolis/geometry or UserContributions/Sophia-Antipolis/Angles (please specify if you know which contrib package contains them).

  • The Ranks are taken from the original list of Top100MathematicalTheorems.

  • See Also http://www.cs.ru.nl/~freek/100/

Clone this wiki locally