|
| 1 | +/* |
| 2 | + * SPDX-FileCopyrightText: Copyright (c) 2025, NVIDIA CORPORATION. |
| 3 | + * SPDX-License-Identifier: Apache-2.0 |
| 4 | + */ |
| 5 | +package com.nvidia.cuvs.lucene; |
| 6 | + |
| 7 | +import static com.nvidia.cuvs.lucene.TestUtils.generateDataset; |
| 8 | +import static com.nvidia.cuvs.lucene.TestUtils.generateRandomVector; |
| 9 | + |
| 10 | +import java.io.IOException; |
| 11 | +import java.util.ArrayList; |
| 12 | +import java.util.HashSet; |
| 13 | +import java.util.List; |
| 14 | +import java.util.Random; |
| 15 | +import java.util.Set; |
| 16 | +import java.util.logging.Logger; |
| 17 | +import org.apache.lucene.codecs.Codec; |
| 18 | +import org.apache.lucene.document.Document; |
| 19 | +import org.apache.lucene.document.Field; |
| 20 | +import org.apache.lucene.document.KnnFloatVectorField; |
| 21 | +import org.apache.lucene.document.StringField; |
| 22 | +import org.apache.lucene.index.DirectoryReader; |
| 23 | +import org.apache.lucene.index.IndexWriter; |
| 24 | +import org.apache.lucene.index.IndexWriterConfig; |
| 25 | +import org.apache.lucene.index.Term; |
| 26 | +import org.apache.lucene.index.VectorSimilarityFunction; |
| 27 | +import org.apache.lucene.search.IndexSearcher; |
| 28 | +import org.apache.lucene.search.KnnFloatVectorQuery; |
| 29 | +import org.apache.lucene.search.Query; |
| 30 | +import org.apache.lucene.search.ScoreDoc; |
| 31 | +import org.apache.lucene.search.TermQuery; |
| 32 | +import org.apache.lucene.search.TopDocs; |
| 33 | +import org.apache.lucene.store.Directory; |
| 34 | +import org.apache.lucene.tests.analysis.MockAnalyzer; |
| 35 | +import org.apache.lucene.tests.analysis.MockTokenizer; |
| 36 | +import org.apache.lucene.tests.index.RandomIndexWriter; |
| 37 | +import org.apache.lucene.tests.util.LuceneTestCase; |
| 38 | +import org.apache.lucene.tests.util.LuceneTestCase.SuppressSysoutChecks; |
| 39 | +import org.apache.lucene.tests.util.TestUtil; |
| 40 | +import org.junit.BeforeClass; |
| 41 | +import org.junit.Test; |
| 42 | + |
| 43 | +@SuppressSysoutChecks(bugUrl = "") |
| 44 | +public class TestAcceleratedHNSWDeletedDocuments extends LuceneTestCase { |
| 45 | + |
| 46 | + protected static Logger log = |
| 47 | + Logger.getLogger(TestAcceleratedHNSWDeletedDocuments.class.getName()); |
| 48 | + |
| 49 | + static final Codec codec = |
| 50 | + TestUtil.alwaysKnnVectorsFormat(new Lucene99AcceleratedHNSWVectorsFormat()); |
| 51 | + private static Random random; |
| 52 | + |
| 53 | + @BeforeClass |
| 54 | + public static void beforeClass() throws Exception { |
| 55 | + assumeTrue("cuVS not supported", Lucene99AcceleratedHNSWVectorsFormat.supported()); |
| 56 | + random = random(); |
| 57 | + } |
| 58 | + |
| 59 | + @Test |
| 60 | + public void testVectorSearchWithDeletedDocuments() throws IOException { |
| 61 | + |
| 62 | + try (Directory directory = newDirectory()) { |
| 63 | + int datasetSize = random.nextInt(200, 1000); // 200-1200 documents |
| 64 | + int dimensions = random.nextInt(64, 256); // 64-320 dimensions |
| 65 | + int topK = Math.min(random.nextInt(20) + 5, datasetSize / 2); // 5-25 results |
| 66 | + float deletionProbability = random.nextFloat() * 0.4f + 0.1f; // 10-50% deletion rate |
| 67 | + |
| 68 | + float[][] dataset = generateDataset(random, datasetSize, dimensions); |
| 69 | + Set<Integer> deletedDocs = new HashSet<>(); |
| 70 | + |
| 71 | + // Create index with all documents having vectors |
| 72 | + try (RandomIndexWriter writer = createWriter(directory)) { |
| 73 | + for (int i = 0; i < datasetSize; i++) { |
| 74 | + Document doc = new Document(); |
| 75 | + doc.add(new StringField("id", String.valueOf(i), Field.Store.YES)); |
| 76 | + doc.add( |
| 77 | + new KnnFloatVectorField("vector", dataset[i], VectorSimilarityFunction.EUCLIDEAN)); |
| 78 | + writer.addDocument(doc); |
| 79 | + } |
| 80 | + |
| 81 | + // Delete documents randomly based on probability |
| 82 | + for (int i = 0; i < datasetSize; i++) { |
| 83 | + if (random.nextFloat() < deletionProbability) { |
| 84 | + writer.deleteDocuments(new Term("id", String.valueOf(i))); |
| 85 | + deletedDocs.add(i); |
| 86 | + } |
| 87 | + } |
| 88 | + writer.commit(); |
| 89 | + } |
| 90 | + |
| 91 | + // Search and verify deleted documents are not returned |
| 92 | + try (DirectoryReader reader = DirectoryReader.open(directory)) { |
| 93 | + IndexSearcher searcher = newSearcher(reader); |
| 94 | + // Use a random vector for query |
| 95 | + float[] queryVector = generateRandomVector(dimensions, random); |
| 96 | + |
| 97 | + Query query = new KnnFloatVectorQuery("vector", queryVector, topK); |
| 98 | + ScoreDoc[] hits = searcher.search(query, topK).scoreDocs; |
| 99 | + |
| 100 | + // Verify we got results |
| 101 | + assertTrue("Should have search results", hits.length > 0); |
| 102 | + |
| 103 | + // Verify no deleted documents in results |
| 104 | + for (ScoreDoc hit : hits) { |
| 105 | + String docId = reader.storedFields().document(hit.doc).get("id"); |
| 106 | + int id = Integer.parseInt(docId); |
| 107 | + assertFalse( |
| 108 | + "Deleted document " + id + " should not appear in results", deletedDocs.contains(id)); |
| 109 | + log.info("Found non-deleted document: " + id + ", Score: " + hit.score); |
| 110 | + } |
| 111 | + |
| 112 | + // Verify deleted documents are truly deleted |
| 113 | + for (int deletedId : deletedDocs) { |
| 114 | + TopDocs result = |
| 115 | + searcher.search(new TermQuery(new Term("id", String.valueOf(deletedId))), 1); |
| 116 | + assertEquals( |
| 117 | + "Deleted document " + deletedId + " should not be found", |
| 118 | + 0, |
| 119 | + result.totalHits.value()); |
| 120 | + } |
| 121 | + } |
| 122 | + } |
| 123 | + } |
| 124 | + |
| 125 | + @Test |
| 126 | + public void testVectorSearchWithMixedDeletedAndMissingVectors() throws IOException { |
| 127 | + |
| 128 | + try (Directory directory = newDirectory()) { |
| 129 | + int datasetSize = random.nextInt(200) + 50; // 50-250 documents |
| 130 | + int dimensions = random.nextInt(256) + 64; // 64-320 dimensions |
| 131 | + int topK = Math.min(random.nextInt(20) + 5, datasetSize / 2); // 5-25 results |
| 132 | + float vectorProbability = random.nextFloat() * 0.5f + 0.3f; // 30-80% have vectors |
| 133 | + float deletionProbability = random.nextFloat() * 0.3f + 0.1f; // 10-40% deletion rate |
| 134 | + |
| 135 | + float[][] dataset = generateDataset(random, datasetSize, dimensions); |
| 136 | + Set<Integer> docsWithoutVectors = new HashSet<>(); |
| 137 | + Set<Integer> deletedDocs = new HashSet<>(); |
| 138 | + |
| 139 | + // Create index with mixed documents |
| 140 | + try (RandomIndexWriter writer = createWriter(directory)) { |
| 141 | + for (int i = 0; i < datasetSize; i++) { |
| 142 | + Document doc = new Document(); |
| 143 | + doc.add(new StringField("id", String.valueOf(i), Field.Store.YES)); |
| 144 | + // Randomly assign categories |
| 145 | + String category = random.nextBoolean() ? "A" : "B"; |
| 146 | + doc.add(new StringField("category", category, Field.Store.YES)); |
| 147 | + |
| 148 | + // Randomly decide whether to add vectors |
| 149 | + if (random.nextFloat() < vectorProbability) { |
| 150 | + doc.add( |
| 151 | + new KnnFloatVectorField("vector", dataset[i], VectorSimilarityFunction.EUCLIDEAN)); |
| 152 | + } else { |
| 153 | + docsWithoutVectors.add(i); |
| 154 | + } |
| 155 | + writer.addDocument(doc); |
| 156 | + } |
| 157 | + |
| 158 | + // Delete documents randomly |
| 159 | + for (int i = 0; i < datasetSize; i++) { |
| 160 | + if (random.nextFloat() < deletionProbability) { |
| 161 | + writer.deleteDocuments(new Term("id", String.valueOf(i))); |
| 162 | + deletedDocs.add(i); |
| 163 | + } |
| 164 | + } |
| 165 | + writer.commit(); |
| 166 | + } |
| 167 | + |
| 168 | + // Test vector search behavior |
| 169 | + try (DirectoryReader reader = DirectoryReader.open(directory)) { |
| 170 | + IndexSearcher searcher = newSearcher(reader); |
| 171 | + float[] queryVector = generateRandomVector(dimensions, random); |
| 172 | + |
| 173 | + Query query = new KnnFloatVectorQuery("vector", queryVector, topK); |
| 174 | + ScoreDoc[] hits = searcher.search(query, topK).scoreDocs; |
| 175 | + |
| 176 | + // Verify results |
| 177 | + for (ScoreDoc hit : hits) { |
| 178 | + String docId = reader.storedFields().document(hit.doc).get("id"); |
| 179 | + int id = Integer.parseInt(docId); |
| 180 | + assertFalse("Deleted document should not appear", deletedDocs.contains(id)); |
| 181 | + assertFalse("Document without vector should not appear", docsWithoutVectors.contains(id)); |
| 182 | + log.info("Found document with vector: " + id + ", Score: " + hit.score); |
| 183 | + } |
| 184 | + |
| 185 | + // Test filtered search with deletions |
| 186 | + Query filter = new TermQuery(new Term("category", "A")); |
| 187 | + Query filteredQuery = new KnnFloatVectorQuery("vector", queryVector, topK, filter); |
| 188 | + ScoreDoc[] filteredHits = searcher.search(filteredQuery, topK).scoreDocs; |
| 189 | + |
| 190 | + for (ScoreDoc hit : filteredHits) { |
| 191 | + Document doc = reader.storedFields().document(hit.doc); |
| 192 | + String category = doc.get("category"); |
| 193 | + assertEquals("Should only match category A", "A", category); |
| 194 | + int id = Integer.parseInt(doc.get("id")); |
| 195 | + assertFalse( |
| 196 | + "Deleted document should not appear in filtered results", deletedDocs.contains(id)); |
| 197 | + } |
| 198 | + } |
| 199 | + } |
| 200 | + } |
| 201 | + |
| 202 | + @Test |
| 203 | + public void testVectorSearchAfterAllDocumentsDeleted() throws IOException { |
| 204 | + |
| 205 | + try (Directory directory = newDirectory()) { |
| 206 | + int datasetSize = random.nextInt(20) + 5; // 5-25 documents for this test |
| 207 | + int dimensions = random.nextInt(128) + 32; // 32-160 dimensions |
| 208 | + int topK = Math.min(random.nextInt(10) + 5, datasetSize); // 5-15 results |
| 209 | + |
| 210 | + float[][] dataset = generateDataset(random, datasetSize, dimensions); |
| 211 | + |
| 212 | + // Create and delete all documents |
| 213 | + try (IndexWriter writer = new IndexWriter(directory, createWriterConfig())) { |
| 214 | + for (int i = 0; i < datasetSize; i++) { |
| 215 | + Document doc = new Document(); |
| 216 | + doc.add(new StringField("id", String.valueOf(i), Field.Store.YES)); |
| 217 | + doc.add( |
| 218 | + new KnnFloatVectorField("vector", dataset[i], VectorSimilarityFunction.EUCLIDEAN)); |
| 219 | + writer.addDocument(doc); |
| 220 | + } |
| 221 | + writer.commit(); |
| 222 | + |
| 223 | + // Delete all documents |
| 224 | + for (int i = 0; i < datasetSize; i++) { |
| 225 | + writer.deleteDocuments(new Term("id", String.valueOf(i))); |
| 226 | + } |
| 227 | + writer.commit(); |
| 228 | + writer.forceMerge(1); // Force merge to apply deletions |
| 229 | + } |
| 230 | + |
| 231 | + // Verify search returns no results |
| 232 | + try (DirectoryReader reader = DirectoryReader.open(directory)) { |
| 233 | + IndexSearcher searcher = newSearcher(reader); |
| 234 | + float[] queryVector = generateRandomVector(dimensions, random); |
| 235 | + |
| 236 | + Query query = new KnnFloatVectorQuery("vector", queryVector, topK); |
| 237 | + TopDocs results = searcher.search(query, topK); |
| 238 | + |
| 239 | + assertEquals( |
| 240 | + "Should return no results when all documents are deleted", |
| 241 | + 0, |
| 242 | + results.totalHits.value()); |
| 243 | + } |
| 244 | + } |
| 245 | + } |
| 246 | + |
| 247 | + @Test |
| 248 | + public void testVectorSearchWithPartialDeletionAndReindexing() throws IOException { |
| 249 | + |
| 250 | + try (Directory directory = newDirectory()) { |
| 251 | + int datasetSize = random.nextInt(200) + 50; // 50-250 documents |
| 252 | + int dimensions = random.nextInt(256) + 64; // 64-320 dimensions |
| 253 | + int topK = Math.min(random.nextInt(20) + 5, datasetSize / 2); // 5-25 results |
| 254 | + float deletionProbability = random.nextFloat() * 0.3f + 0.1f; // 10-40% deletion rate |
| 255 | + |
| 256 | + float[][] dataset = generateDataset(random, datasetSize, dimensions); |
| 257 | + List<Integer> activeDocIds = new ArrayList<>(); |
| 258 | + |
| 259 | + // Initial indexing |
| 260 | + try (IndexWriter writer = new IndexWriter(directory, createWriterConfig())) { |
| 261 | + int initialDocs = datasetSize / 2 + random.nextInt(datasetSize / 4); // 50-75% of dataset |
| 262 | + for (int i = 0; i < initialDocs; i++) { |
| 263 | + Document doc = new Document(); |
| 264 | + doc.add(new StringField("id", String.valueOf(i), Field.Store.YES)); |
| 265 | + doc.add( |
| 266 | + new KnnFloatVectorField("vector", dataset[i], VectorSimilarityFunction.EUCLIDEAN)); |
| 267 | + writer.addDocument(doc); |
| 268 | + activeDocIds.add(i); |
| 269 | + } |
| 270 | + |
| 271 | + // Delete some documents randomly |
| 272 | + List<Integer> candidatesForDeletion = new ArrayList<>(activeDocIds); |
| 273 | + for (int docId : candidatesForDeletion) { |
| 274 | + if (random.nextFloat() < deletionProbability) { |
| 275 | + writer.deleteDocuments(new Term("id", String.valueOf(docId))); |
| 276 | + activeDocIds.remove(Integer.valueOf(docId)); |
| 277 | + } |
| 278 | + } |
| 279 | + |
| 280 | + // Add new documents with higher IDs |
| 281 | + for (int i = initialDocs; i < datasetSize; i++) { |
| 282 | + Document doc = new Document(); |
| 283 | + doc.add(new StringField("id", String.valueOf(i), Field.Store.YES)); |
| 284 | + doc.add( |
| 285 | + new KnnFloatVectorField("vector", dataset[i], VectorSimilarityFunction.EUCLIDEAN)); |
| 286 | + writer.addDocument(doc); |
| 287 | + activeDocIds.add(i); |
| 288 | + } |
| 289 | + writer.commit(); |
| 290 | + } |
| 291 | + |
| 292 | + // Verify search behavior after deletions and additions |
| 293 | + try (DirectoryReader reader = DirectoryReader.open(directory)) { |
| 294 | + IndexSearcher searcher = newSearcher(reader); |
| 295 | + float[] queryVector = generateRandomVector(dimensions, random); |
| 296 | + |
| 297 | + Query query = new KnnFloatVectorQuery("vector", queryVector, topK); |
| 298 | + ScoreDoc[] hits = searcher.search(query, topK).scoreDocs; |
| 299 | + |
| 300 | + Set<Integer> resultIds = new HashSet<>(); |
| 301 | + for (ScoreDoc hit : hits) { |
| 302 | + String docId = reader.storedFields().document(hit.doc).get("id"); |
| 303 | + int id = Integer.parseInt(docId); |
| 304 | + resultIds.add(id); |
| 305 | + assertTrue("Result should be from active documents", activeDocIds.contains(id)); |
| 306 | + } |
| 307 | + |
| 308 | + log.info( |
| 309 | + "Search returned " |
| 310 | + + hits.length |
| 311 | + + " results from " |
| 312 | + + activeDocIds.size() |
| 313 | + + " active documents"); |
| 314 | + } |
| 315 | + } |
| 316 | + } |
| 317 | + |
| 318 | + private RandomIndexWriter createWriter(Directory directory) throws IOException { |
| 319 | + return new RandomIndexWriter( |
| 320 | + random(), |
| 321 | + directory, |
| 322 | + newIndexWriterConfig(new MockAnalyzer(random(), MockTokenizer.SIMPLE, true)) |
| 323 | + .setCodec(codec) |
| 324 | + .setMergePolicy(newTieredMergePolicy())); |
| 325 | + } |
| 326 | + |
| 327 | + private IndexWriterConfig createWriterConfig() { |
| 328 | + return newIndexWriterConfig(new MockAnalyzer(random(), MockTokenizer.SIMPLE, true)) |
| 329 | + .setCodec(codec) |
| 330 | + .setMergePolicy(newTieredMergePolicy()); |
| 331 | + } |
| 332 | +} |
0 commit comments