diff --git a/.gitignore b/.gitignore
index 14e941ab..002d5b3d 100644
--- a/.gitignore
+++ b/.gitignore
@@ -1,5 +1,6 @@
*.swp
+*.un~
node_modules/
/lib
site/
-release/
\ No newline at end of file
+release/
diff --git a/visual/index.html b/visual/index.html
index 59710a9e..c862858a 100644
--- a/visual/index.html
+++ b/visual/index.html
@@ -20,6 +20,8 @@
+
+
@@ -223,6 +225,7 @@
Options
+
diff --git a/visual/js/controller.js b/visual/js/controller.js
index f5260710..252f9d10 100644
--- a/visual/js/controller.js
+++ b/visual/js/controller.js
@@ -47,6 +47,11 @@ var Controller = StateMachine.create({
from: '*',
to: 'ready'
},
+ {
+ name: 'randomMap',
+ from: '*',
+ to: 'ready',
+ },
{
name: 'clear',
from: ['finished', 'modified'],
@@ -195,6 +200,16 @@ $.extend(Controller, {
}, View.nodeColorizeEffect.duration * 1.2);
// => ready
},
+ onrandomMap: function(event, from, to) {
+ setTimeout(function() {
+ Controller.clearOperations();
+ Controller.clearAll();
+ Controller.buildNewGrid();
+ Controller.setDefaultStartEndPos();
+ Controller.buildRandomWall();
+ }, View.nodeColorizeEffect.duration * 1.2);
+ // => ready
+ },
/**
* The following functions are called on entering states.
@@ -216,6 +231,11 @@ $.extend(Controller, {
text: 'Clear Walls',
enabled: true,
callback: $.proxy(this.reset, this),
+ }, {
+ id: 4,
+ text: 'Random Map',
+ enabled: true,
+ callback: $.proxy(this.randomMap, this),
});
// => [starting, draggingStart, draggingEnd, drawingStart, drawingEnd]
},
@@ -381,6 +401,27 @@ $.extend(Controller, {
buildNewGrid: function() {
this.grid = new PF.Grid(this.gridSize[0], this.gridSize[1]);
},
+ buildRandomWall: function() {
+ var viewX = this.viewX, viewY = this.viewY,
+ startX = this.startX, startY = this.startY,
+ endX = this.endX, endY = this.endY;
+
+ noise.seed(Math.random());
+ for (var x = 1; x < viewX - 1; ++ x) {
+ for (var y = 1; y < viewY - 1; ++ y) {
+ if ((x - startX) * (x - startX) + (y - startY) * (y - startY) < 25) {
+ continue;
+ }
+ if ((x - endX) * (x - endX) + (y - endY) * (y - endY) < 25) {
+ continue;
+ }
+ var value = noise.simplex2(x / viewX, y / viewY);
+ if (value > 0.45) {
+ this.setWalkableAt(x, y, false);
+ }
+ }
+ }
+ },
mousedown: function (event) {
var coord = View.toGridCoordinate(event.pageX, event.pageY),
gridX = coord[0],
@@ -463,23 +504,29 @@ $.extend(Controller, {
* It will detect user's display size, and compute the best positions.
*/
setDefaultStartEndPos: function() {
- var width, height,
- marginRight, availWidth,
+ var marginRight,
+ numCols = this.gridSize[0],
+ numRows = this.gridSize[1],
centerX, centerY,
endX, endY,
+ startX, startY,
nodeSize = View.nodeSize;
- width = $(window).width();
- height = $(window).height();
+ marginRight = $('#algorithm_panel').width() + 60;
+ this.viewX = Math.min(($(window).width() - marginRight) / nodeSize, numCols) - 1;
+ this.viewY = Math.min($(window).height() / nodeSize, numRows) - 1;
+ centerX = Math.ceil(this.viewX / 2);
+ centerY = Math.floor(this.viewY / 2);
- marginRight = $('#algorithm_panel').width();
- availWidth = width - marginRight;
+ startX = Math.ceil(Math.random() * centerX);
+ startY = Math.ceil(Math.random() * centerY);
+ this.setStartPos(startX, startY);
- centerX = Math.ceil(availWidth / 2 / nodeSize);
- centerY = Math.floor(height / 2 / nodeSize);
+ endX = Math.ceil(Math.random() * centerX) + centerX;
+ endY = Math.ceil(Math.random() * centerY) + centerY;
+ this.setEndPos(endX, endY);
- this.setStartPos(centerX - 5, centerY);
- this.setEndPos(centerX + 5, centerY);
+ console.log('%d,%d| %d,%d -> %d,%d', this.viewX, this.viewY, startX, startY, endX, endY);
},
setStartPos: function(gridX, gridY) {
this.startX = gridX;
diff --git a/visual/lib/perlin.js b/visual/lib/perlin.js
new file mode 100755
index 00000000..72eb856e
--- /dev/null
+++ b/visual/lib/perlin.js
@@ -0,0 +1,311 @@
+/*
+ * A speed-improved perlin and simplex noise algorithms for 2D.
+ *
+ * Based on example code by Stefan Gustavson (stegu@itn.liu.se).
+ * Optimisations by Peter Eastman (peastman@drizzle.stanford.edu).
+ * Better rank ordering method by Stefan Gustavson in 2012.
+ * Converted to Javascript by Joseph Gentle.
+ *
+ * Version 2012-03-09
+ *
+ * This code was placed in the public domain by its original author,
+ * Stefan Gustavson. You may use it as you see fit, but
+ * attribution is appreciated.
+ *
+ */
+
+(function(global){
+ var module = global.noise = {};
+
+ function Grad(x, y, z) {
+ this.x = x; this.y = y; this.z = z;
+ }
+
+ Grad.prototype.dot2 = function(x, y) {
+ return this.x*x + this.y*y;
+ };
+
+ Grad.prototype.dot3 = function(x, y, z) {
+ return this.x*x + this.y*y + this.z*z;
+ };
+
+ var grad3 = [new Grad(1,1,0),new Grad(-1,1,0),new Grad(1,-1,0),new Grad(-1,-1,0),
+ new Grad(1,0,1),new Grad(-1,0,1),new Grad(1,0,-1),new Grad(-1,0,-1),
+ new Grad(0,1,1),new Grad(0,-1,1),new Grad(0,1,-1),new Grad(0,-1,-1)];
+
+ var p = [151,160,137,91,90,15,
+ 131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
+ 190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
+ 88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
+ 77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
+ 102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
+ 135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
+ 5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
+ 223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
+ 129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
+ 251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
+ 49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
+ 138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180];
+ // To remove the need for index wrapping, double the permutation table length
+ var perm = new Array(512);
+ var gradP = new Array(512);
+
+ // This isn't a very good seeding function, but it works ok. It supports 2^16
+ // different seed values. Write something better if you need more seeds.
+ module.seed = function(seed) {
+ if(seed > 0 && seed < 1) {
+ // Scale the seed out
+ seed *= 65536;
+ }
+
+ seed = Math.floor(seed);
+ if(seed < 256) {
+ seed |= seed << 8;
+ }
+
+ for(var i = 0; i < 256; i++) {
+ var v;
+ if (i & 1) {
+ v = p[i] ^ (seed & 255);
+ } else {
+ v = p[i] ^ ((seed>>8) & 255);
+ }
+
+ perm[i] = perm[i + 256] = v;
+ gradP[i] = gradP[i + 256] = grad3[v % 12];
+ }
+ };
+
+ module.seed(0);
+
+ /*
+ for(var i=0; i<256; i++) {
+ perm[i] = perm[i + 256] = p[i];
+ gradP[i] = gradP[i + 256] = grad3[perm[i] % 12];
+ }*/
+
+ // Skewing and unskewing factors for 2, 3, and 4 dimensions
+ var F2 = 0.5*(Math.sqrt(3)-1);
+ var G2 = (3-Math.sqrt(3))/6;
+
+ var F3 = 1/3;
+ var G3 = 1/6;
+
+ // 2D simplex noise
+ module.simplex2 = function(xin, yin) {
+ var n0, n1, n2; // Noise contributions from the three corners
+ // Skew the input space to determine which simplex cell we're in
+ var s = (xin+yin)*F2; // Hairy factor for 2D
+ var i = Math.floor(xin+s);
+ var j = Math.floor(yin+s);
+ var t = (i+j)*G2;
+ var x0 = xin-i+t; // The x,y distances from the cell origin, unskewed.
+ var y0 = yin-j+t;
+ // For the 2D case, the simplex shape is an equilateral triangle.
+ // Determine which simplex we are in.
+ var i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
+ if(x0>y0) { // lower triangle, XY order: (0,0)->(1,0)->(1,1)
+ i1=1; j1=0;
+ } else { // upper triangle, YX order: (0,0)->(0,1)->(1,1)
+ i1=0; j1=1;
+ }
+ // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
+ // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
+ // c = (3-sqrt(3))/6
+ var x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
+ var y1 = y0 - j1 + G2;
+ var x2 = x0 - 1 + 2 * G2; // Offsets for last corner in (x,y) unskewed coords
+ var y2 = y0 - 1 + 2 * G2;
+ // Work out the hashed gradient indices of the three simplex corners
+ i &= 255;
+ j &= 255;
+ var gi0 = gradP[i+perm[j]];
+ var gi1 = gradP[i+i1+perm[j+j1]];
+ var gi2 = gradP[i+1+perm[j+1]];
+ // Calculate the contribution from the three corners
+ var t0 = 0.5 - x0*x0-y0*y0;
+ if(t0<0) {
+ n0 = 0;
+ } else {
+ t0 *= t0;
+ n0 = t0 * t0 * gi0.dot2(x0, y0); // (x,y) of grad3 used for 2D gradient
+ }
+ var t1 = 0.5 - x1*x1-y1*y1;
+ if(t1<0) {
+ n1 = 0;
+ } else {
+ t1 *= t1;
+ n1 = t1 * t1 * gi1.dot2(x1, y1);
+ }
+ var t2 = 0.5 - x2*x2-y2*y2;
+ if(t2<0) {
+ n2 = 0;
+ } else {
+ t2 *= t2;
+ n2 = t2 * t2 * gi2.dot2(x2, y2);
+ }
+ // Add contributions from each corner to get the final noise value.
+ // The result is scaled to return values in the interval [-1,1].
+ return 70 * (n0 + n1 + n2);
+ };
+
+ // 3D simplex noise
+ module.simplex3 = function(xin, yin, zin) {
+ var n0, n1, n2, n3; // Noise contributions from the four corners
+
+ // Skew the input space to determine which simplex cell we're in
+ var s = (xin+yin+zin)*F3; // Hairy factor for 2D
+ var i = Math.floor(xin+s);
+ var j = Math.floor(yin+s);
+ var k = Math.floor(zin+s);
+
+ var t = (i+j+k)*G3;
+ var x0 = xin-i+t; // The x,y distances from the cell origin, unskewed.
+ var y0 = yin-j+t;
+ var z0 = zin-k+t;
+
+ // For the 3D case, the simplex shape is a slightly irregular tetrahedron.
+ // Determine which simplex we are in.
+ var i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
+ var i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
+ if(x0 >= y0) {
+ if(y0 >= z0) { i1=1; j1=0; k1=0; i2=1; j2=1; k2=0; }
+ else if(x0 >= z0) { i1=1; j1=0; k1=0; i2=1; j2=0; k2=1; }
+ else { i1=0; j1=0; k1=1; i2=1; j2=0; k2=1; }
+ } else {
+ if(y0 < z0) { i1=0; j1=0; k1=1; i2=0; j2=1; k2=1; }
+ else if(x0 < z0) { i1=0; j1=1; k1=0; i2=0; j2=1; k2=1; }
+ else { i1=0; j1=1; k1=0; i2=1; j2=1; k2=0; }
+ }
+ // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
+ // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
+ // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
+ // c = 1/6.
+ var x1 = x0 - i1 + G3; // Offsets for second corner
+ var y1 = y0 - j1 + G3;
+ var z1 = z0 - k1 + G3;
+
+ var x2 = x0 - i2 + 2 * G3; // Offsets for third corner
+ var y2 = y0 - j2 + 2 * G3;
+ var z2 = z0 - k2 + 2 * G3;
+
+ var x3 = x0 - 1 + 3 * G3; // Offsets for fourth corner
+ var y3 = y0 - 1 + 3 * G3;
+ var z3 = z0 - 1 + 3 * G3;
+
+ // Work out the hashed gradient indices of the four simplex corners
+ i &= 255;
+ j &= 255;
+ k &= 255;
+ var gi0 = gradP[i+ perm[j+ perm[k ]]];
+ var gi1 = gradP[i+i1+perm[j+j1+perm[k+k1]]];
+ var gi2 = gradP[i+i2+perm[j+j2+perm[k+k2]]];
+ var gi3 = gradP[i+ 1+perm[j+ 1+perm[k+ 1]]];
+
+ // Calculate the contribution from the four corners
+ var t0 = 0.6 - x0*x0 - y0*y0 - z0*z0;
+ if(t0<0) {
+ n0 = 0;
+ } else {
+ t0 *= t0;
+ n0 = t0 * t0 * gi0.dot3(x0, y0, z0); // (x,y) of grad3 used for 2D gradient
+ }
+ var t1 = 0.6 - x1*x1 - y1*y1 - z1*z1;
+ if(t1<0) {
+ n1 = 0;
+ } else {
+ t1 *= t1;
+ n1 = t1 * t1 * gi1.dot3(x1, y1, z1);
+ }
+ var t2 = 0.6 - x2*x2 - y2*y2 - z2*z2;
+ if(t2<0) {
+ n2 = 0;
+ } else {
+ t2 *= t2;
+ n2 = t2 * t2 * gi2.dot3(x2, y2, z2);
+ }
+ var t3 = 0.6 - x3*x3 - y3*y3 - z3*z3;
+ if(t3<0) {
+ n3 = 0;
+ } else {
+ t3 *= t3;
+ n3 = t3 * t3 * gi3.dot3(x3, y3, z3);
+ }
+ // Add contributions from each corner to get the final noise value.
+ // The result is scaled to return values in the interval [-1,1].
+ return 32 * (n0 + n1 + n2 + n3);
+
+ };
+
+ // ##### Perlin noise stuff
+
+ function fade(t) {
+ return t*t*t*(t*(t*6-15)+10);
+ // return t*t*(3-2*t);
+ }
+
+ function lerp(a, b, t) {
+ return (1-t)*a + t*b;
+ }
+
+ // 2D Perlin Noise
+ module.perlin2 = function(x, y) {
+ // Find unit grid cell containing point
+ var X = Math.floor(x), Y = Math.floor(y);
+ // Get relative xy coordinates of point within that cell
+ x = x - X; y = y - Y;
+ // Wrap the integer cells at 255 (smaller integer period can be introduced here)
+ X = X & 255; Y = Y & 255;
+
+ // Calculate noise contributions from each of the four corners
+ var n00 = gradP[X+perm[Y]].dot2(x, y);
+ var n01 = gradP[X+perm[Y+1]].dot2(x, y-1);
+ var n10 = gradP[X+1+perm[Y]].dot2(x-1, y);
+ var n11 = gradP[X+1+perm[Y+1]].dot2(x-1, y-1);
+
+ // Compute the fade curve value for x
+ var u = fade(x);
+
+ // Interpolate the four results
+ return lerp(
+ lerp(n00, n10, u),
+ lerp(n01, n11, u),
+ fade(y));
+ };
+
+ // 3D Perlin Noise
+ module.perlin3 = function(x, y, z) {
+ // Find unit grid cell containing point
+ var X = Math.floor(x), Y = Math.floor(y), Z = Math.floor(z);
+ // Get relative xyz coordinates of point within that cell
+ x = x - X; y = y - Y; z = z - Z;
+ // Wrap the integer cells at 255 (smaller integer period can be introduced here)
+ X = X & 255; Y = Y & 255; Z = Z & 255;
+
+ // Calculate noise contributions from each of the eight corners
+ var n000 = gradP[X+ perm[Y+ perm[Z ]]].dot3(x, y, z);
+ var n001 = gradP[X+ perm[Y+ perm[Z+1]]].dot3(x, y, z-1);
+ var n010 = gradP[X+ perm[Y+1+perm[Z ]]].dot3(x, y-1, z);
+ var n011 = gradP[X+ perm[Y+1+perm[Z+1]]].dot3(x, y-1, z-1);
+ var n100 = gradP[X+1+perm[Y+ perm[Z ]]].dot3(x-1, y, z);
+ var n101 = gradP[X+1+perm[Y+ perm[Z+1]]].dot3(x-1, y, z-1);
+ var n110 = gradP[X+1+perm[Y+1+perm[Z ]]].dot3(x-1, y-1, z);
+ var n111 = gradP[X+1+perm[Y+1+perm[Z+1]]].dot3(x-1, y-1, z-1);
+
+ // Compute the fade curve value for x, y, z
+ var u = fade(x);
+ var v = fade(y);
+ var w = fade(z);
+
+ // Interpolate
+ return lerp(
+ lerp(
+ lerp(n000, n100, u),
+ lerp(n001, n101, u), w),
+ lerp(
+ lerp(n010, n110, u),
+ lerp(n011, n111, u), w),
+ v);
+ };
+
+})(this);