|
| 1 | +from __future__ import annotations |
| 2 | + |
| 3 | +from typing import Any |
| 4 | +from typing import Callable |
| 5 | + |
| 6 | +import torch |
| 7 | + |
| 8 | +import helion |
| 9 | +from helion._testing import run_example |
| 10 | +import helion.language as hl |
| 11 | + |
| 12 | + |
| 13 | +@helion.kernel(static_shapes=True, use_default_config=True) |
| 14 | +def layer_norm_fwd( |
| 15 | + x: torch.Tensor, weight: torch.Tensor, bias: torch.Tensor |
| 16 | +) -> torch.Tensor: |
| 17 | + m, n = x.size() |
| 18 | + assert weight.size(0) == n, f"weight size mismatch {weight.size(0)} != {m}" |
| 19 | + assert bias.size(0) == n, f"bias size mismatch {bias.size(0)} != {m}" |
| 20 | + out = torch.empty([m, n], dtype=torch.float16, device=x.device) |
| 21 | + |
| 22 | + eps = 1e-5 |
| 23 | + |
| 24 | + for tile_m in hl.tile(m): |
| 25 | + acc = x[tile_m, :].to( |
| 26 | + torch.float32 |
| 27 | + ) # TODO (PaulZhang12): Eliminate this cast, currently necessary |
| 28 | + |
| 29 | + var, mean = torch.var_mean(acc, dim=-1, keepdim=True, correction=0) |
| 30 | + |
| 31 | + normalized = (acc - mean) * torch.rsqrt(var + eps) |
| 32 | + acc = normalized * (weight[:].to(torch.float32)) + (bias[:].to(torch.float32)) |
| 33 | + |
| 34 | + out[tile_m, :] = acc |
| 35 | + return out |
| 36 | + |
| 37 | + |
| 38 | +def layer_norm_torch_callable( |
| 39 | + dims: list[int], |
| 40 | +) -> Callable[[torch.Tensor, torch.Tensor, torch.Tensor, float], Any]: |
| 41 | + return lambda x, weight, bias, eps: torch.nn.functional.layer_norm( |
| 42 | + x, dims, weight, bias, eps |
| 43 | + ) |
| 44 | + |
| 45 | + |
| 46 | +def main() -> None: |
| 47 | + batch_size = 32 |
| 48 | + dim = 64 |
| 49 | + device = "cuda" |
| 50 | + eps = 1e-3 |
| 51 | + |
| 52 | + x = torch.randn([batch_size, dim], device=device, dtype=torch.float16) |
| 53 | + weight = torch.randn([dim], device=device, dtype=torch.float16) |
| 54 | + bias = torch.randn([dim], device=device, dtype=torch.float16) |
| 55 | + |
| 56 | + run_example( |
| 57 | + layer_norm_fwd, |
| 58 | + layer_norm_torch_callable, |
| 59 | + (x, weight, bias, eps), |
| 60 | + kernel_name="helion", |
| 61 | + baseline_name="torch", |
| 62 | + rtol=1e-4, |
| 63 | + atol=1e-4, |
| 64 | + ) |
| 65 | + |
| 66 | + |
| 67 | +if __name__ == "__main__": |
| 68 | + main() |
0 commit comments