Skip to content

Faster matmul for case sparse.coo * np.ndarray #653

Open
@HatPdotS

Description

@HatPdotS

I am using this module quite heavily in a recent project and found that sparse.matmul could work faster.
I have implemented a faster version for the case matmul(sparse.coo, np.ndarray) using numba for the case of 2D arrays (cut be generalized). I also implemented a parallellized Version. The single threaded version is roughly 3 times faster than sparse.matmul in this case and scales linearly with the number of entries in the sparse matrix. The multi-threaded Version has some overhead but scales well for very large matrices (10000000+ entries).

Here is the code:

@numba.njit()
def matmul_fast(dim1:np.ndarray,dim2:np.ndarray,V:np.ndarray,Arr: np.ndarray,out: np.ndarray):
    for i in range(V.shape[0]):
        out[dim1[i]] += V[i] * Arr[dim2[i]]
    return out
@numba.njit(parallel=True,fastmath=True,boundscheck=False)
def matmul_fast_parallel(dim1:np.ndarray,dim2:np.ndarray,V:np.ndarray,Arr: np.ndarray,out: np.ndarray,n: np.int64 = 100000):
    f = V.shape[0]
    s = out.shape
    out_loc = np.zeros(s,dtype=np.float64)
    g = 0
    i = 0
    for i_0 in numba.prange(0,f//n+1):
        i = i_0 * n
        out_loc = np.zeros(s,dtype=np.float64)
        for g in range(i,i+n):
            if g>=f:
                break
            out_loc[dim1[g]] += V[g] * Arr[dim2[g]]
        out += out_loc
    return out

These functions can be driven by a non numba function that unpacks the sparse array object into coordinates, data and shape.

def matmul_sparse(Arr_sparse, Arr):
    out = np.zeros((Arr_sparse.shape[0],Arr.shape[1]))
    return matmul_fast_parallel(Arr_sparse.coords[0],Arr_sparse.coords[1],Arr_sparse.data,Arr,out)

Are there any optimizations planned that improve the performance of sparse.matmul?
If not would there be interest in introducing specific solutions like this as an option in the current implementation?

Metadata

Metadata

Assignees

No one assigned

    Labels

    enhancementIndicates new feature requests

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions