@@ -186,7 +186,7 @@ def __call__(
186186
187187 # corner case: every signal is too short
188188 if max_len < self .min_num_samples :
189- return np .NAN * np .zeros ((batch_size , self .dimension ))
189+ return np .nan * np .zeros ((batch_size , self .dimension ))
190190
191191 too_short = wav_lens < self .min_num_samples
192192 wav_lens [too_short ] = max_len
@@ -197,7 +197,7 @@ def __call__(
197197 )
198198
199199 embeddings = embeddings .cpu ().numpy ()
200- embeddings [too_short .cpu ().numpy ()] = np .NAN
200+ embeddings [too_short .cpu ().numpy ()] = np .nan
201201
202202 return embeddings
203203
@@ -364,7 +364,7 @@ def __call__(
364364
365365 # corner case: every signal is too short
366366 if max_len < self .min_num_samples :
367- return np .NAN * np .zeros ((batch_size , self .dimension ))
367+ return np .nan * np .zeros ((batch_size , self .dimension ))
368368
369369 too_short = wav_lens < self .min_num_samples
370370 wav_lens = wav_lens / max_len
@@ -377,7 +377,7 @@ def __call__(
377377 .numpy ()
378378 )
379379
380- embeddings [too_short .cpu ().numpy ()] = np .NAN
380+ embeddings [too_short .cpu ().numpy ()] = np .nan
381381
382382 return embeddings
383383
@@ -594,7 +594,7 @@ def __call__(
594594
595595 imasks = imasks > 0.5
596596
597- embeddings = np .NAN * np .zeros ((batch_size , self .dimension ))
597+ embeddings = np .nan * np .zeros ((batch_size , self .dimension ))
598598
599599 for f , (feature , imask ) in enumerate (zip (features , imasks )):
600600 masked_feature = feature [imask ]
0 commit comments