Skip to content

Commit 4197791

Browse files
authored
Merge pull request #469 from kikumoto/feature/support_for_bedrock_deepseek
Add AWS Bedrock DeepSeek model.
2 parents 99cfc6b + c5af48c commit 4197791

File tree

1 file changed

+187
-0
lines changed

1 file changed

+187
-0
lines changed
Lines changed: 187 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,187 @@
1+
"""
2+
title: AWS Bedrock DeepSeek Pipeline
3+
author: kikumoto
4+
date: 2025-03-17
5+
version: 1.0
6+
license: MIT
7+
description: A pipeline for generating text using the AWS Bedrock API.
8+
requirements: boto3
9+
environment_variables:
10+
"""
11+
12+
import json
13+
import logging
14+
15+
from typing import List, Union, Generator, Iterator, Dict, Optional, Any
16+
17+
import boto3
18+
19+
from pydantic import BaseModel
20+
21+
import os
22+
23+
from utils.pipelines.main import pop_system_message
24+
25+
class Pipeline:
26+
class Valves(BaseModel):
27+
AWS_ACCESS_KEY: Optional[str] = None
28+
AWS_SECRET_KEY: Optional[str] = None
29+
AWS_REGION_NAME: Optional[str] = None
30+
31+
def __init__(self):
32+
self.type = "manifold"
33+
self.name = "Bedrock DeepSeek: "
34+
35+
self.valves = self.Valves(
36+
**{
37+
"AWS_ACCESS_KEY": os.getenv("AWS_ACCESS_KEY", ""),
38+
"AWS_SECRET_KEY": os.getenv("AWS_SECRET_KEY", ""),
39+
"AWS_REGION_NAME": os.getenv(
40+
"AWS_REGION_NAME", os.getenv(
41+
"AWS_REGION", os.getenv("AWS_DEFAULT_REGION", "")
42+
)
43+
),
44+
}
45+
)
46+
47+
self.update_pipelines()
48+
49+
async def on_startup(self):
50+
# This function is called when the server is started.
51+
print(f"on_startup:{__name__}")
52+
self.update_pipelines()
53+
pass
54+
55+
async def on_shutdown(self):
56+
# This function is called when the server is stopped.
57+
print(f"on_shutdown:{__name__}")
58+
pass
59+
60+
async def on_valves_updated(self):
61+
# This function is called when the valves are updated.
62+
print(f"on_valves_updated:{__name__}")
63+
self.update_pipelines()
64+
65+
def update_pipelines(self) -> None:
66+
try:
67+
self.bedrock = boto3.client(service_name="bedrock",
68+
aws_access_key_id=self.valves.AWS_ACCESS_KEY,
69+
aws_secret_access_key=self.valves.AWS_SECRET_KEY,
70+
region_name=self.valves.AWS_REGION_NAME)
71+
self.bedrock_runtime = boto3.client(service_name="bedrock-runtime",
72+
aws_access_key_id=self.valves.AWS_ACCESS_KEY,
73+
aws_secret_access_key=self.valves.AWS_SECRET_KEY,
74+
region_name=self.valves.AWS_REGION_NAME)
75+
self.pipelines = self.get_models()
76+
except Exception as e:
77+
print(f"Error: {e}")
78+
self.pipelines = [
79+
{
80+
"id": "error",
81+
"name": "Could not fetch models from Bedrock, please set up AWS Key/Secret or Instance/Task Role.",
82+
},
83+
]
84+
85+
def pipelines(self) -> List[dict]:
86+
return self.get_models()
87+
88+
def get_models(self):
89+
try:
90+
res = []
91+
response = self.bedrock.list_foundation_models(byProvider='DeepSeek')
92+
for model in response['modelSummaries']:
93+
inference_types = model.get('inferenceTypesSupported', [])
94+
if "ON_DEMAND" in inference_types:
95+
res.append({'id': model['modelId'], 'name': model['modelName']})
96+
elif "INFERENCE_PROFILE" in inference_types:
97+
inferenceProfileId = self.getInferenceProfileId(model['modelArn'])
98+
if inferenceProfileId:
99+
res.append({'id': inferenceProfileId, 'name': model['modelName']})
100+
101+
return res
102+
except Exception as e:
103+
print(f"Error: {e}")
104+
return [
105+
{
106+
"id": "error",
107+
"name": "Could not fetch models from Bedrock, please check permissoin.",
108+
},
109+
]
110+
111+
def getInferenceProfileId(self, modelArn: str) -> str:
112+
response = self.bedrock.list_inference_profiles()
113+
for profile in response.get('inferenceProfileSummaries', []):
114+
for model in profile.get('models', []):
115+
if model.get('modelArn') == modelArn:
116+
return profile['inferenceProfileId']
117+
return None
118+
119+
def pipe(
120+
self, user_message: str, model_id: str, messages: List[dict], body: dict
121+
) -> Union[str, Generator, Iterator]:
122+
# This is where you can add your custom pipelines like RAG.
123+
print(f"pipe:{__name__}")
124+
125+
try:
126+
# Remove unnecessary keys
127+
for key in ['user', 'chat_id', 'title']:
128+
body.pop(key, None)
129+
130+
system_message, messages = pop_system_message(messages)
131+
132+
logging.info(f"pop_system_message: {json.dumps(messages)}")
133+
134+
processed_messages = []
135+
for message in messages:
136+
processed_content = []
137+
if isinstance(message.get("content"), list):
138+
for item in message["content"]:
139+
# DeepSeek currently doesn't support multi-modal inputs
140+
if item["type"] == "text":
141+
processed_content.append({"text": item["text"]})
142+
else:
143+
processed_content = [{"text": message.get("content", "")}]
144+
145+
processed_messages.append({"role": message["role"], "content": processed_content})
146+
147+
payload = {"modelId": model_id,
148+
"system": [{'text': system_message["content"] if system_message else 'you are an intelligent ai assistant'}],
149+
"messages": processed_messages,
150+
"inferenceConfig": {
151+
"temperature": body.get("temperature", 0.5),
152+
"topP": body.get("top_p", 0.9),
153+
"maxTokens": body.get("max_tokens", 8192),
154+
"stopSequences": body.get("stop", []),
155+
},
156+
}
157+
158+
if body.get("stream", False):
159+
return self.stream_response(model_id, payload)
160+
else:
161+
return self.get_completion(model_id, payload)
162+
163+
except Exception as e:
164+
return f"Error: {e}"
165+
166+
def stream_response(self, model_id: str, payload: dict) -> Generator:
167+
streaming_response = self.bedrock_runtime.converse_stream(**payload)
168+
169+
in_resasoning_context = False
170+
for chunk in streaming_response["stream"]:
171+
if in_resasoning_context and "contentBlockStop" in chunk:
172+
in_resasoning_context = False
173+
yield "\n </think> \n\n"
174+
elif "contentBlockDelta" in chunk and "delta" in chunk["contentBlockDelta"]:
175+
if "reasoningContent" in chunk["contentBlockDelta"]["delta"]:
176+
if not in_resasoning_context:
177+
yield "<think>"
178+
179+
in_resasoning_context = True
180+
if "text" in chunk["contentBlockDelta"]["delta"]["reasoningContent"]:
181+
yield chunk["contentBlockDelta"]["delta"]["reasoningContent"]["text"]
182+
elif "text" in chunk["contentBlockDelta"]["delta"]:
183+
yield chunk["contentBlockDelta"]["delta"]["text"]
184+
185+
def get_completion(self, model_id: str, payload: dict) -> str:
186+
response = self.bedrock_runtime.converse(**payload)
187+
return response['output']['message']['content'][0]['text']

0 commit comments

Comments
 (0)