You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
reacted with thumbs up emoji reacted with thumbs down emoji reacted with laugh emoji reacted with hooray emoji reacted with confused emoji reacted with heart emoji reacted with rocket emoji reacted with eyes emoji
Uh oh!
There was an error while loading. Please reload this page.
-
(mmrotate) ➜ mmrotate git:(qd) ✗ python tools/analysis_tools/info.py configs/rotated_reppoints/rotated-reppoints-qbox_r50_fpn_1x_dota.py 0 {'inputs': [tensor([[[0, 0, 0, ..., 0, 0, 0], [0, 0, 0, ..., 0, 0, 0], [0, 0, 0, ..., 0, 0, 0], ..., [0, 0, 0, ..., 0, 0, 0], [0, 0, 0, ..., 0, 0, 0], [0, 0, 0, ..., 0, 0, 0]], [[0, 0, 0, ..., 0, 0, 0], [0, 0, 0, ..., 0, 0, 0], [0, 0, 0, ..., 0, 0, 0], ..., [0, 0, 0, ..., 0, 0, 0], [0, 0, 0, ..., 0, 0, 0], [0, 0, 0, ..., 0, 0, 0]], [[0, 0, 0, ..., 0, 0, 0], [0, 0, 0, ..., 0, 0, 0], [0, 0, 0, ..., 0, 0, 0], ..., [0, 0, 0, ..., 0, 0, 0], [0, 0, 0, ..., 0, 0, 0], [0, 0, 0, ..., 0, 0, 0]]], dtype=torch.uint8)], 'data_samples': [<DetDataSample( META INFORMATION img_path: 'data/icdar2019_tracka_modern_qbox/test_change_img/cTDaR_t10000.png' ori_shape: (1588, 1190) img_id: 'cTDaR_t10000' img_shape: (1024, 767) scale_factor: (0.6445378151260505, 0.6448362720403022) DATA FIELDS _gt_instances: <InstanceData( META INFORMATION DATA FIELDS bboxes: QuadriBoxes( tensor([[ 281., 500., 277., 680., 1011., 648., 1012., 463.], [ 222., 1195., 217., 1387., 1004., 1372., 1005., 1174.]])) labels: tensor([0, 0]) ) at 0x7f92afba8520> ignored_instances: <InstanceData( META INFORMATION DATA FIELDS bboxes: QuadriBoxes( tensor([], size=(0, 8))) labels: tensor([], dtype=torch.int64) ) at 0x7f92afba8760> gt_instances: <InstanceData( META INFORMATION DATA FIELDS bboxes: QuadriBoxes( tensor([[ 281., 500., 277., 680., 1011., 648., 1012., 463.], [ 222., 1195., 217., 1387., 1004., 1372., 1005., 1174.]])) labels: tensor([0, 0]) ) at 0x7f92afba8520> _ignored_instances: <InstanceData( META INFORMATION DATA FIELDS bboxes: QuadriBoxes( tensor([], size=(0, 8))) labels: tensor([], dtype=torch.int64) ) at 0x7f92afba8760> ) at 0x7f92afba8550>]} =============================================================================================== Layer (type:depth-idx) Output Shape Param # =============================================================================================== RepPointsDetector [1, 1, 128, 128] -- ├─ResNet: 1-1 [1, 256, 256, 256] -- │ └─Conv2d: 2-1 [1, 64, 512, 512] (9,408) │ └─BatchNorm2d: 2-2 [1, 64, 512, 512] (128) │ └─ReLU: 2-3 [1, 64, 512, 512] -- │ └─MaxPool2d: 2-4 [1, 64, 256, 256] -- │ └─ResLayer: 2-5 [1, 256, 256, 256] -- │ │ └─Bottleneck: 3-1 [1, 256, 256, 256] (75,008) │ │ └─Bottleneck: 3-2 [1, 256, 256, 256] (70,400) │ │ └─Bottleneck: 3-3 [1, 256, 256, 256] (70,400) │ └─ResLayer: 2-6 [1, 512, 128, 128] -- │ │ └─Bottleneck: 3-4 [1, 512, 128, 128] 379,392 │ │ └─Bottleneck: 3-5 [1, 512, 128, 128] 280,064 │ │ └─Bottleneck: 3-6 [1, 512, 128, 128] 280,064 │ │ └─Bottleneck: 3-7 [1, 512, 128, 128] 280,064 │ └─ResLayer: 2-7 [1, 1024, 64, 64] -- │ │ └─Bottleneck: 3-8 [1, 1024, 64, 64] 1,512,448 │ │ └─Bottleneck: 3-9 [1, 1024, 64, 64] 1,117,184 │ │ └─Bottleneck: 3-10 [1, 1024, 64, 64] 1,117,184 │ │ └─Bottleneck: 3-11 [1, 1024, 64, 64] 1,117,184 │ │ └─Bottleneck: 3-12 [1, 1024, 64, 64] 1,117,184 │ │ └─Bottleneck: 3-13 [1, 1024, 64, 64] 1,117,184 │ └─ResLayer: 2-8 [1, 2048, 32, 32] -- │ │ └─Bottleneck: 3-14 [1, 2048, 32, 32] 6,039,552 │ │ └─Bottleneck: 3-15 [1, 2048, 32, 32] 4,462,592 │ │ └─Bottleneck: 3-16 [1, 2048, 32, 32] 4,462,592 ├─FPN: 1-2 [1, 256, 128, 128] -- │ └─ModuleList: 2-9 -- -- │ │ └─ConvModule: 3-17 [1, 256, 128, 128] 131,584 │ │ └─ConvModule: 3-18 [1, 256, 64, 64] 262,656 │ │ └─ConvModule: 3-19 [1, 256, 32, 32] 524,800 │ └─ModuleList: 2-10 -- -- │ │ └─ConvModule: 3-20 [1, 256, 128, 128] 590,336 │ │ └─ConvModule: 3-21 [1, 256, 64, 64] 590,336 │ │ └─ConvModule: 3-22 [1, 256, 32, 32] 590,336 │ │ └─ConvModule: 3-23 [1, 256, 16, 16] 4,719,104 │ │ └─ConvModule: 3-24 [1, 256, 8, 8] 590,336 ├─RotatedRepPointsHead: 1-3 -- -- │ └─ModuleList: 2-55 -- (recursive) │ │ └─ConvModule: 3-25 [1, 256, 128, 128] 590,336 │ │ └─ConvModule: 3-26 [1, 256, 128, 128] 590,336 │ │ └─ConvModule: 3-27 [1, 256, 128, 128] 590,336 │ └─ModuleList: 2-56 -- (recursive) │ │ └─ConvModule: 3-28 [1, 256, 128, 128] 590,336 │ │ └─ConvModule: 3-29 [1, 256, 128, 128] 590,336 │ │ └─ConvModule: 3-30 [1, 256, 128, 128] 590,336 │ └─Conv2d: 2-13 [1, 256, 128, 128] 590,080 │ └─ReLU: 2-14 [1, 256, 128, 128] -- │ └─Conv2d: 2-15 [1, 18, 128, 128] 4,626 │ └─DeformConv2d: 2-16 [1, 256, 128, 128] 589,824 │ └─ReLU: 2-17 [1, 256, 128, 128] -- │ └─Conv2d: 2-18 [1, 1, 128, 128] 257 │ └─DeformConv2d: 2-19 [1, 256, 128, 128] 589,824 │ └─ReLU: 2-20 [1, 256, 128, 128] -- │ └─Conv2d: 2-21 [1, 18, 128, 128] 4,626 │ └─ModuleList: 2-55 -- (recursive) │ │ └─ConvModule: 3-31 [1, 256, 64, 64] (recursive) │ │ └─ConvModule: 3-32 [1, 256, 64, 64] (recursive) │ │ └─ConvModule: 3-33 [1, 256, 64, 64] (recursive) │ └─ModuleList: 2-56 -- (recursive) │ │ └─ConvModule: 3-34 [1, 256, 64, 64] (recursive) │ │ └─ConvModule: 3-35 [1, 256, 64, 64] (recursive) │ │ └─ConvModule: 3-36 [1, 256, 64, 64] (recursive) │ └─Conv2d: 2-24 [1, 256, 64, 64] (recursive) │ └─ReLU: 2-25 [1, 256, 64, 64] -- │ └─Conv2d: 2-26 [1, 18, 64, 64] (recursive) │ └─DeformConv2d: 2-27 [1, 256, 64, 64] (recursive) │ └─ReLU: 2-28 [1, 256, 64, 64] -- │ └─Conv2d: 2-29 [1, 1, 64, 64] (recursive) │ └─DeformConv2d: 2-30 [1, 256, 64, 64] (recursive) │ └─ReLU: 2-31 [1, 256, 64, 64] -- │ └─Conv2d: 2-32 [1, 18, 64, 64] (recursive) │ └─ModuleList: 2-55 -- (recursive) │ │ └─ConvModule: 3-37 [1, 256, 32, 32] (recursive) │ │ └─ConvModule: 3-38 [1, 256, 32, 32] (recursive) │ │ └─ConvModule: 3-39 [1, 256, 32, 32] (recursive) │ └─ModuleList: 2-56 -- (recursive) │ │ └─ConvModule: 3-40 [1, 256, 32, 32] (recursive) │ │ └─ConvModule: 3-41 [1, 256, 32, 32] (recursive) │ │ └─ConvModule: 3-42 [1, 256, 32, 32] (recursive) │ └─Conv2d: 2-35 [1, 256, 32, 32] (recursive) │ └─ReLU: 2-36 [1, 256, 32, 32] -- │ └─Conv2d: 2-37 [1, 18, 32, 32] (recursive) │ └─DeformConv2d: 2-38 [1, 256, 32, 32] (recursive) │ └─ReLU: 2-39 [1, 256, 32, 32] -- │ └─Conv2d: 2-40 [1, 1, 32, 32] (recursive) │ └─DeformConv2d: 2-41 [1, 256, 32, 32] (recursive) │ └─ReLU: 2-42 [1, 256, 32, 32] -- │ └─Conv2d: 2-43 [1, 18, 32, 32] (recursive) │ └─ModuleList: 2-55 -- (recursive) │ │ └─ConvModule: 3-43 [1, 256, 16, 16] (recursive) │ │ └─ConvModule: 3-44 [1, 256, 16, 16] (recursive) │ │ └─ConvModule: 3-45 [1, 256, 16, 16] (recursive) │ └─ModuleList: 2-56 -- (recursive) │ │ └─ConvModule: 3-46 [1, 256, 16, 16] (recursive) │ │ └─ConvModule: 3-47 [1, 256, 16, 16] (recursive) │ │ └─ConvModule: 3-48 [1, 256, 16, 16] (recursive) │ └─Conv2d: 2-46 [1, 256, 16, 16] (recursive) │ └─ReLU: 2-47 [1, 256, 16, 16] -- │ └─Conv2d: 2-48 [1, 18, 16, 16] (recursive) │ └─DeformConv2d: 2-49 [1, 256, 16, 16] (recursive) │ └─ReLU: 2-50 [1, 256, 16, 16] -- │ └─Conv2d: 2-51 [1, 1, 16, 16] (recursive) │ └─DeformConv2d: 2-52 [1, 256, 16, 16] (recursive) │ └─ReLU: 2-53 [1, 256, 16, 16] -- │ └─Conv2d: 2-54 [1, 18, 16, 16] (recursive) │ └─ModuleList: 2-55 -- (recursive) │ │ └─ConvModule: 3-49 [1, 256, 8, 8] (recursive) │ │ └─ConvModule: 3-50 [1, 256, 8, 8] (recursive) │ │ └─ConvModule: 3-51 [1, 256, 8, 8] (recursive) │ └─ModuleList: 2-56 -- (recursive) │ │ └─ConvModule: 3-52 [1, 256, 8, 8] (recursive) │ │ └─ConvModule: 3-53 [1, 256, 8, 8] (recursive) │ │ └─ConvModule: 3-54 [1, 256, 8, 8] (recursive) │ └─Conv2d: 2-57 [1, 256, 8, 8] (recursive) │ └─ReLU: 2-58 [1, 256, 8, 8] -- │ └─Conv2d: 2-59 [1, 18, 8, 8] (recursive) │ └─DeformConv2d: 2-60 [1, 256, 8, 8] (recursive) │ └─ReLU: 2-61 [1, 256, 8, 8] -- │ └─Conv2d: 2-62 [1, 1, 8, 8] (recursive) │ └─DeformConv2d: 2-63 [1, 256, 8, 8] (recursive) │ └─ReLU: 2-64 [1, 256, 8, 8] -- │ └─Conv2d: 2-65 [1, 18, 8, 8] (recursive) =============================================================================================== Total params: 36,828,773 Trainable params: 36,603,429 Non-trainable params: 225,344 Total mult-adds (G): 219.16 =============================================================================================== Input size (MB): 12.58 Forward/backward pass size (MB): 4401.79 Params size (MB): 147.32 Estimated Total Size (MB): 4561.69 ===============================================================================================Beta Was this translation helpful? Give feedback.
All reactions