Skip to content

Determining the optimal number of clusters #46

@eugeniahrho

Description

@eugeniahrho

Hi I've been using kmodes (https://www.rdocumentation.org/packages/klaR/versions/0.6-12/topics/kmodes) from the KlaR, an R package to cluster my data set. I wanted to try using kmodes in python to see if I get similar results. However, I don't see how I can determine the optimal number of clusters in the python version of kmodes.

In the klaR package, I can use the $withindiff function to get the within-cluster simple-matching distance for each cluster. This allows me to calculate the sum of error for for k= 2, 3, 4...., etc. and select the optimal number of clusters based on the largest sum of error difference between each iteration of clustering with varying k values.

In the kmodes for python, how do you determine the optimal k?

Metadata

Metadata

Assignees

No one assigned

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions