-
-
Notifications
You must be signed in to change notification settings - Fork 9
Open
Copy link
Labels
enhancementNew feature or requestNew feature or requestquestionFurther information is requestedFurther information is requested
Description
Here’s the full breakdown of features reorganized into implementable modules following the structure and modular philosophy of multimind-sdk
. Each item is scoped as a module, agent, or utility you can track as a GitHub issue or add to a /multimind/
subfolder.
✅ MultiMindSDK Modules
1. multimind/memory/graph_memory.py
Feature | Description |
---|---|
GraphMemoryAgent | Handles (subject, predicate, object) symbolic memory graph with CRUD operations |
MemoryTripleStore | Underlying class using networkx or pyDatalog, optionally Neo4j |
MemoryDeduplicator | Prevents insertion of redundant or contradictory triples |
MemoryScorer | Assigns relevance scores to memory entries for injection or decay |
TemporalMemoryMixin | Adds timestamps to memory entries for timeline tracking |
🧬 Example Modular Tree for MultiMind Genetic AI
multimind/
├── memory/
│ ├── vector_memory.py
│ ├── summary_memory.py
│ ├── graph_memory.py ✅
│ ├── triple_store.py ✅
│ ├── scorer.py ✅
│ └── deduplicator.py ✅
│
├── agents/
│ ├── judge_agent.py
│ ├── rewriter_agent.py
│ ├── planner_agent.py
│ ├── thinker_agent.py ✅
│ ├── self_reflect_agent.py ✅
│ ├── fact_extractor_agent.py ✅
│
├── core/
│ ├── pipeline/
│ │ ├── agent_workflow_runner.py ✅
│ │ ├── context_scorer_agent.py ✅
│ │ └── memory_manager_plus.py ✅
│ └── evolution/
│ ├── meta_controller_agent.py ✅
│ ├── agent_mutator.py ✅
│ ├── agent_arena.py ✅
│ ├── multi_objective_judge.py ✅
│ └── evolution_memory.py ✅
│
├── utils/
│ ├── trace_logger.py
│ ├── agent_loader.py
│ ├── unified_memory.py
│ └── inspector_api.py
✅ Want These As:
-
GitHub issue template batch?
-
Markdown roadmap in
/docs/genetic-ai-roadmap.md
? -
Scaffolded boilerplate folders?
Just say the word — and I’ll generate and format them instantly.
Here’s the full breakdown of features reorganized into **implementable modules** following the structure and modular philosophy of [`[multimind-sdk](https://github.com/multimindlab/multimind-sdk)`](https://github.com/multimindlab/multimind-sdk). Each item is scoped as a module, agent, or utility you can track as a GitHub issue or add to a `/multimind/` subfolder.✅ MultiMindSDK Modules
1. multimind/memory/graph_memory.py
Feature | Description |
---|---|
GraphMemoryAgent |
Handles (subject, predicate, object) symbolic memory graph with CRUD operations |
MemoryTripleStore |
Underlying class using networkx or pyDatalog , optionally Neo4j |
MemoryDeduplicator |
Prevents insertion of redundant or contradictory triples |
MemoryScorer |
Assigns relevance scores to memory entries for injection or decay |
TemporalMemoryMixin |
Adds timestamps to memory entries for timeline tracking |
2. multimind/agents/reflexive/
Agent | Description |
---|---|
JudgeAgent ✅ (exists) |
Evaluates outputs for accuracy, quality, or fitness |
RewriterAgent ✅ (exists) |
Refines or rewrites outputs based on Judge feedback |
PlannerAgent ✅ (exists) |
Breaks high-level prompts into sub-tasks |
ThinkerAgent |
Performs strategic planning and reflection |
SelfReflectAgent |
Loops through past plans/memories and updates them |
FactExtractorAgent |
Parses LLM outputs into structured (s, p, o) for GraphMemoryAgent |
3. multimind/core/evolution/
Module | Description |
---|---|
MetaControllerAgent |
Modifies agent pipeline (DAG rewiring) at runtime based on task performance |
AgentMutator |
Randomly mutates agent sequences (like mutation in genes) |
AgentArena |
Runs multiple agents in parallel, compares outcomes using JudgeAgent |
MultiObjectiveJudge |
Assigns fitness score (accuracy, token usage, novelty, etc.) |
EvolutionMemory |
Stores performance history of each agent-chain for learning over time |
4. multimind/core/pipeline/
Feature | Description |
---|---|
AgentWorkflowRunner |
Executes agent graphs defined in JSON/YAML |
ContextScorerAgent |
Selects best memory chunks to inject based on fit, recency, and token limit |
MemoryManagerAgent++ |
Routes between vector, graph, summary, and temporal memory backends |
MemoryUpdateAgent |
Decides whether to add, merge, or reject new memory entry using LLMs |
5. multimind/utils/infra/
Feature | Description |
---|---|
AgentTraceLogger |
Logs inputs/outputs at every agent hop with timestamps |
ConfigurableAgentLoader |
Load agents/memory via YAML ( configs) |
UnifiedMemoryStore |
Abstracts access to graph, vector, and key-value stores |
MemoryInspectorAPI |
REST/Socket API to visualize memory from browser extension (ContextHop) |
6. (Optional) multimind/frontend/streamlit/
Feature | Description |
---|---|
Memory Viewer |
Visual graph of knowledge (triples), semantic clusters, summaries |
Agent Arena Dashboard |
Shows performance of multiple agent flows in real-time |
Context Timeline |
Plot of injected vs evolved memory over time |
7. LLM & Performance
Integration | Purpose |
---|---|
llm_router.py |
Switch between GPT-4, Claude, Mistral, Ollama |
model_metrics.py |
Capture latency, token usage, and success/failure rate |
feedback_loop.py |
Add feedback loops to improve chain performance over time |
🧬 Example Modular Tree for MultiMind Genetic AI
multimind/
├── memory/
│ ├── vector_memory.py
│ ├── summary_memory.py
│ ├── graph_memory.py ✅
│ ├── triple_store.py ✅
│ ├── scorer.py ✅
│ └── deduplicator.py ✅
│
├── agents/
│ ├── judge_agent.py
│ ├── rewriter_agent.py
│ ├── planner_agent.py
│ ├── thinker_agent.py ✅
│ ├── self_reflect_agent.py ✅
│ ├── fact_extractor_agent.py ✅
│
├── core/
│ ├── pipeline/
│ │ ├── agent_workflow_runner.py ✅
│ │ ├── context_scorer_agent.py ✅
│ │ └── memory_manager_plus.py ✅
│ └── evolution/
│ ├── meta_controller_agent.py ✅
│ ├── agent_mutator.py ✅
│ ├── agent_arena.py ✅
│ ├── multi_objective_judge.py ✅
│ └── evolution_memory.py ✅
│
├── utils/
│ ├── trace_logger.py
│ ├── agent_loader.py
│ ├── unified_memory.py
│ └── inspector_api.py
Sub-issues
Metadata
Metadata
Assignees
Labels
enhancementNew feature or requestNew feature or requestquestionFurther information is requestedFurther information is requested