Skip to content

[ISSUE] Memory System (Hybrid & Symbolic) + Agents & Reasoning Modules + Reflexive Loop & Learning + Retrieval & Search #32

@DarshanKumar89

Description

@DarshanKumar89

Here’s the full breakdown of features reorganized into implementable modules following the structure and modular philosophy of multimind-sdk. Each item is scoped as a module, agent, or utility you can track as a GitHub issue or add to a /multimind/ subfolder.


✅ MultiMindSDK Modules


1. multimind/memory/graph_memory.py

Feature Description
GraphMemoryAgent Handles (subject, predicate, object) symbolic memory graph with CRUD operations
MemoryTripleStore Underlying class using networkx or pyDatalog, optionally Neo4j
MemoryDeduplicator Prevents insertion of redundant or contradictory triples
MemoryScorer Assigns relevance scores to memory entries for injection or decay
TemporalMemoryMixin Adds timestamps to memory entries for timeline tracking

🧬 Example Modular Tree for MultiMind Genetic AI

multimind/
├── memory/
│   ├── vector_memory.py
│   ├── summary_memory.py
│   ├── graph_memory.py  ✅
│   ├── triple_store.py   ✅
│   ├── scorer.py         ✅
│   └── deduplicator.py   ✅
│
├── agents/
│   ├── judge_agent.py
│   ├── rewriter_agent.py
│   ├── planner_agent.py
│   ├── thinker_agent.py         ✅
│   ├── self_reflect_agent.py    ✅
│   ├── fact_extractor_agent.py  ✅
│
├── core/
│   ├── pipeline/
│   │   ├── agent_workflow_runner.py ✅
│   │   ├── context_scorer_agent.py ✅
│   │   └── memory_manager_plus.py  ✅
│   └── evolution/
│       ├── meta_controller_agent.py ✅
│       ├── agent_mutator.py         ✅
│       ├── agent_arena.py           ✅
│       ├── multi_objective_judge.py ✅
│       └── evolution_memory.py      ✅
│
├── utils/
│   ├── trace_logger.py
│   ├── agent_loader.py
│   ├── unified_memory.py
│   └── inspector_api.py

✅ Want These As:

  • GitHub issue template batch?

  • Markdown roadmap in /docs/genetic-ai-roadmap.md?

  • Scaffolded boilerplate folders?

Just say the word — and I’ll generate and format them instantly.

Here’s the full breakdown of features reorganized into **implementable modules** following the structure and modular philosophy of [`[multimind-sdk](https://github.com/multimindlab/multimind-sdk)`](https://github.com/multimindlab/multimind-sdk). Each item is scoped as a module, agent, or utility you can track as a GitHub issue or add to a `/multimind/` subfolder.

✅ MultiMindSDK Modules


1. multimind/memory/graph_memory.py

Feature Description
GraphMemoryAgent Handles (subject, predicate, object) symbolic memory graph with CRUD operations
MemoryTripleStore Underlying class using networkx or pyDatalog, optionally Neo4j
MemoryDeduplicator Prevents insertion of redundant or contradictory triples
MemoryScorer Assigns relevance scores to memory entries for injection or decay
TemporalMemoryMixin Adds timestamps to memory entries for timeline tracking

2. multimind/agents/reflexive/

Agent Description
JudgeAgent ✅ (exists) Evaluates outputs for accuracy, quality, or fitness
RewriterAgent ✅ (exists) Refines or rewrites outputs based on Judge feedback
PlannerAgent ✅ (exists) Breaks high-level prompts into sub-tasks
ThinkerAgent Performs strategic planning and reflection
SelfReflectAgent Loops through past plans/memories and updates them
FactExtractorAgent Parses LLM outputs into structured (s, p, o) for GraphMemoryAgent

3. multimind/core/evolution/

Module Description
MetaControllerAgent Modifies agent pipeline (DAG rewiring) at runtime based on task performance
AgentMutator Randomly mutates agent sequences (like mutation in genes)
AgentArena Runs multiple agents in parallel, compares outcomes using JudgeAgent
MultiObjectiveJudge Assigns fitness score (accuracy, token usage, novelty, etc.)
EvolutionMemory Stores performance history of each agent-chain for learning over time

4. multimind/core/pipeline/

Feature Description
AgentWorkflowRunner Executes agent graphs defined in JSON/YAML
ContextScorerAgent Selects best memory chunks to inject based on fit, recency, and token limit
MemoryManagerAgent++ Routes between vector, graph, summary, and temporal memory backends
MemoryUpdateAgent Decides whether to add, merge, or reject new memory entry using LLMs

5. multimind/utils/infra/

Feature Description
AgentTraceLogger Logs inputs/outputs at every agent hop with timestamps
ConfigurableAgentLoader Load agents/memory via YAML ( configs)
UnifiedMemoryStore Abstracts access to graph, vector, and key-value stores
MemoryInspectorAPI REST/Socket API to visualize memory from browser extension (ContextHop)

6. (Optional) multimind/frontend/streamlit/

Feature Description
Memory Viewer Visual graph of knowledge (triples), semantic clusters, summaries
Agent Arena Dashboard Shows performance of multiple agent flows in real-time
Context Timeline Plot of injected vs evolved memory over time

7. LLM & Performance

Integration Purpose
llm_router.py Switch between GPT-4, Claude, Mistral, Ollama
model_metrics.py Capture latency, token usage, and success/failure rate
feedback_loop.py Add feedback loops to improve chain performance over time

🧬 Example Modular Tree for MultiMind Genetic AI

multimind/
├── memory/
│   ├── vector_memory.py
│   ├── summary_memory.py
│   ├── graph_memory.py  ✅
│   ├── triple_store.py   ✅
│   ├── scorer.py         ✅
│   └── deduplicator.py   ✅
│
├── agents/
│   ├── judge_agent.py
│   ├── rewriter_agent.py
│   ├── planner_agent.py
│   ├── thinker_agent.py         ✅
│   ├── self_reflect_agent.py    ✅
│   ├── fact_extractor_agent.py  ✅
│
├── core/
│   ├── pipeline/
│   │   ├── agent_workflow_runner.py ✅
│   │   ├── context_scorer_agent.py ✅
│   │   └── memory_manager_plus.py  ✅
│   └── evolution/
│       ├── meta_controller_agent.py ✅
│       ├── agent_mutator.py         ✅
│       ├── agent_arena.py           ✅
│       ├── multi_objective_judge.py ✅
│       └── evolution_memory.py      ✅
│
├── utils/
│   ├── trace_logger.py
│   ├── agent_loader.py
│   ├── unified_memory.py
│   └── inspector_api.py

Sub-issues

Metadata

Metadata

Labels

enhancementNew feature or requestquestionFurther information is requested

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions