1
- ## Unified and cross-platform CM interface for DevOps, MLOps and MLPerf
1
+ # Legacy CM4MLOps repository with DevOps, MLOps and MLPerf automations
2
2
3
3
[ ![ License] ( https://img.shields.io/badge/License-Apache%202.0-green )] ( LICENSE.md )
4
4
[ ![ Powered by CM] ( https://img.shields.io/badge/Powered_by-MLCommons%20CM-blue )] ( https://pypi.org/project/cmind ) .
5
5
6
- [ ![ CM script automation features test] ( https://github.com/mlcommons/cm4mlops/actions/workflows/test-cm-script-features.yml/badge.svg )] ( https://github.com/mlcommons/cm4mlops/actions/workflows/test-cm-script-features.yml )
7
- [ ![ MLPerf inference bert (deepsparse, tf, onnxruntime, pytorch)] ( https://github.com/mlcommons/cm4mlops/actions/workflows/test-mlperf-inference-bert-deepsparse-tf-onnxruntime-pytorch.yml/badge.svg )] ( https://github.com/mlcommons/cm4mlops/actions/workflows/test-mlperf-inference-bert-deepsparse-tf-onnxruntime-pytorch.yml )
8
- [ ![ MLPerf inference MLCommons C++ ResNet50] ( https://github.com/mlcommons/cm4mlops/actions/workflows/test-mlperf-inference-mlcommons-cpp-resnet50.yml/badge.svg )] ( https://github.com/mlcommons/cm4mlops/actions/workflows/test-mlperf-inference-mlcommons-cpp-resnet50.yml )
9
- [ ![ MLPerf inference ABTF POC Test] ( https://github.com/mlcommons/cm4mlops/actions/workflows/test-mlperf-inference-abtf-poc.yml/badge.svg )] ( https://github.com/mlcommons/cm4mlops/actions/workflows/test-mlperf-inference-abtf-poc.yml )
10
-
11
- # CM4MLOps repository
12
6
13
7
This repository is powered by the [ Collective Mind workflow automation framework] ( https://github.com/mlcommons/ck/tree/master/cm ) .
14
8
9
+ The latest sources are available in [ this repository] ( https://github.com/mlcommons/ck/tree/master/cm4mlops ) .
10
+
15
11
Two key automations developed using CM are ** Script** and ** Cache** , which streamline machine learning (ML) workflows,
16
- including managing Docker runs. Both Script and Cache automations are part of the ** cmx4mlops ** repository.
12
+ including managing Docker runs. Both Script and Cache automations are part of the ** cm4mlops ** repository.
17
13
18
14
The [ CM scripts] ( https://access.cknowledge.org/playground/?action=scripts ) ,
19
15
also housed in this repository, consist of hundreds of modular Python-wrapped scripts accompanied
20
16
by ` yaml ` metadata, enabling the creation of robust and flexible ML workflows.
21
17
22
- - ** CM Scripts Documentation** : [ https://docs.mlcommons.org/cm4mlops/ ] ( https://docs.mlcommons .org/cm4mlops/ )
23
- - ** CM CLI Documentation** : [ https://docs.mlcommons.org/ck/specs/cm-cli/ ] ( https://docs.mlcommons.org/ck/specs/cm-cli/ )
18
+ - ** CM Scripts Documentation** : [ Browse ] ( https://access.cknowledge .org/playground/?action=scripts )
19
+ - ** CM CLI Documentation** : [ https://docs.mlcommons.org/ck/specs/cm-cli/ ] ( https://docs.mlcommons.org/ck/specs/cm-cli )
24
20
25
21
## License
26
22
@@ -38,31 +34,22 @@ Grigori Fursin, the cTuning foundation and OctoML donated the CK and CM projects
38
34
39
35
## Author
40
36
41
- [ Grigori Fursin] ( https://cKnowledge.org/gfursin )
37
+ [ Grigori Fursin] ( https://cKnowledge.org/gfursin ) .
42
38
43
- We sincerely appreciate all [ contributors] ( https://github.com/mlcommons/ck/blob/master/CONTRIBUTORS.md )
39
+ We thank all [ contributors] ( https://github.com/mlcommons/ck/blob/master/CONTRIBUTORS.md )
44
40
for their invaluable feedback and support!
45
41
46
42
## Concepts
47
43
48
44
Check our [ ACM REP'23 keynote] ( https://doi.org/10.5281/zenodo.8105339 ) and the [ white paper] ( https://arxiv.org/abs/2406.16791 ) .
49
45
50
- ## Test image classification and MLPerf R-GAT inference benchmark via CMX PYPI package
51
-
52
- ``` bash
53
- pip install cmind
54
- pip install cmx4mlops
55
- cmx run script " python app image-classification onnx" --quiet
56
- cmx run script --tags=run,mlperf,inference,generate-run-cmds,_submission,_short --submitter=" MLCommons" --adr.inference-src.tags=_branch.dev --pull_changes=yes --pull_inference_changes=yes --submitter=" MLCommons" --hw_name=ubuntu-latest_x86 --model=rgat --implementation=python --backend=pytorch --device=cpu --scenario=Offline --test_query_count=500 --adr.compiler.tags=gcc --category=datacenter --quiet --v --target_qps=1
57
- ```
58
-
59
46
## Test image classification and MLPerf R-GAT inference benchmark via CMX GitHub repo
60
47
61
48
``` bash
62
- pip uninstall cmx4mlops
63
49
pip install cmind
64
- cmx pull repo mlcommons@ck --dir=cmx4mlops/cmx4mlops
50
+ cmx pull repo mlcommons@ck --dir=cm4mlops/cm4mlops
65
51
cmx run script " python app image-classification onnx" --quiet
52
+ cmx run script " run-mlperf inference _performance-only _short" --model=resnet50 --precision=float32 --backend=onnxruntime --scenario=Offline --device=cpu --env.CM_SUDO_USER=no --quiet
66
53
cmx run script --tags=run,mlperf,inference,generate-run-cmds,_submission,_short --submitter=" MLCommons" --adr.inference-src.tags=_branch.dev --pull_changes=yes --pull_inference_changes=yes --submitter=" MLCommons" --hw_name=ubuntu-latest_x86 --model=rgat --implementation=python --backend=pytorch --device=cpu --scenario=Offline --test_query_count=500 --adr.compiler.tags=gcc --category=datacenter --quiet --v --target_qps=1
67
54
```
68
55
0 commit comments