diff --git a/assignment/assignment1.ipynb b/assignment/assignment1.ipynb index fddf1e4..120fff0 100644 --- a/assignment/assignment1.ipynb +++ b/assignment/assignment1.ipynb @@ -206,7 +206,7 @@ "\n", "def emit_te_example():\n", " bb = relax.BlockBuilder()\n", - " x = relax.Var(\"x\", (128, 128), relax.DynTensorType(2, \"float32\"))\n", + " x = relax.Var(\"x\", relax.TensorStructInfo((128, 128), \"float32\"))\n", " with bb.function(\"main\", [x]):\n", " with bb.dataflow():\n", " lv0 = bb.emit_te(relu, x)\n", @@ -253,7 +253,7 @@ "source": [ "def create_model_via_emit_te():\n", " bb = relax.BlockBuilder()\n", - " x = relax.Var(\"x\", input_shape, relax.DynTensorType(batch_size, \"float32\"))\n", + " x = relax.Var(\"x\", relax.TensorStructInfo(input_shape, \"float32\"))\n", "\n", " conv2d_weight = relax.const(weight_map[\"conv2d_weight\"], \"float32\")\n", " conv2d_bias = relax.const(weight_map[\"conv2d_bias\"].reshape(1, 32, 1, 1), \"float32\")\n", @@ -272,7 +272,7 @@ "\n", "\n", "def build_mod(mod):\n", - " exec = relax.vm.build(mod, \"llvm\")\n", + " exec = relax.build(mod, \"llvm\")\n", " dev = tvm.cpu()\n", " vm = relax.VirtualMachine(exec, dev)\n", " return vm\n", @@ -362,7 +362,7 @@ "def create_model_with_torch_func():\n", " bb = relax.BlockBuilder()\n", "\n", - " x = relax.Var(\"x\", input_shape, relax.DynTensorType(4, \"float32\"))\n", + " x = relax.Var(\"x\", relax.TensorStructInfo(input_shape, \"float32\"))\n", "\n", " conv2d_weight = relax.const(weight_map[\"conv2d_weight\"], \"float32\")\n", " conv2d_bias = relax.const(weight_map[\"conv2d_bias\"].reshape(1, 32, 1, 1), \"float32\")\n", diff --git a/assignment/assignment1_zh.ipynb b/assignment/assignment1_zh.ipynb index d0b022d..4324de5 100644 --- a/assignment/assignment1_zh.ipynb +++ b/assignment/assignment1_zh.ipynb @@ -205,7 +205,7 @@ "\n", "def emit_te_example():\n", " bb = relax.BlockBuilder()\n", - " x = relax.Var(\"x\", (128, 128), relax.DynTensorType(2, \"float32\"))\n", + " x = relax.Var(\"x\", relax.TensorStructInfo((128, 128), \"float32\"))\n", " with bb.function(\"main\", [x]):\n", " with bb.dataflow():\n", " lv0 = bb.emit_te(relu, x)\n", @@ -252,7 +252,7 @@ "source": [ "def create_model_via_emit_te():\n", " bb = relax.BlockBuilder()\n", - " x = relax.Var(\"x\", input_shape, relax.DynTensorType(batch_size, \"float32\"))\n", + " x = relax.Var(\"x\", relax.TensorStructInfo(input_shape, \"float32\"))\n", "\n", " conv2d_weight = relax.const(weight_map[\"conv2d_weight\"], \"float32\")\n", " conv2d_bias = relax.const(weight_map[\"conv2d_bias\"].reshape(1, 32, 1, 1), \"float32\")\n", @@ -271,7 +271,7 @@ "\n", "\n", "def build_mod(mod):\n", - " exec = relax.vm.build(mod, \"llvm\")\n", + " exec = relax.build(mod, \"llvm\")\n", " dev = tvm.cpu()\n", " vm = relax.VirtualMachine(exec, dev)\n", " return vm\n", @@ -362,7 +362,7 @@ "def create_model_with_torch_func():\n", " bb = relax.BlockBuilder()\n", "\n", - " x = relax.Var(\"x\", input_shape, relax.DynTensorType(4, \"float32\"))\n", + " x = relax.Var(\"x\", relax.TensorStructInfo(input_shape, \"float32\"))\n", "\n", " conv2d_weight = relax.const(weight_map[\"conv2d_weight\"], \"float32\")\n", " conv2d_bias = relax.const(weight_map[\"conv2d_bias\"].reshape(1, 32, 1, 1), \"float32\")\n",