Skip to content

Commit 249b0a1

Browse files
dnakovawni
andauthored
Add support for ByteDance Seed-OSS-36B-Instruct model (#391)
* Add support for ByteDance Seed-OSS-36B-Instruct model - Add seed_oss.py model implementation with proper attention bias handling - Supports both input projection bias (attention_bias) and output projection bias (attention_out_bias) - Handles tied vs untied word embeddings via lm_head - Fixes mask broadcasting issues for MLX compatibility - Enables conversion and inference for ByteDance-Seed/Seed-OSS-36B-Instruct * nits --------- Co-authored-by: Awni Hannun <[email protected]>
1 parent 6fd60d3 commit 249b0a1

File tree

1 file changed

+184
-0
lines changed

1 file changed

+184
-0
lines changed

mlx_lm/models/seed_oss.py

Lines changed: 184 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,184 @@
1+
# Copyright © 2025 Apple Inc.
2+
3+
from dataclasses import dataclass
4+
from typing import Any, Dict, Optional, Union
5+
6+
import mlx.core as mx
7+
import mlx.nn as nn
8+
9+
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
10+
from .rope_utils import initialize_rope
11+
12+
13+
@dataclass
14+
class ModelArgs(BaseModelArgs):
15+
model_type: str
16+
hidden_size: int
17+
num_hidden_layers: int
18+
intermediate_size: int
19+
num_attention_heads: int
20+
rms_norm_eps: float
21+
vocab_size: int
22+
num_key_value_heads: int
23+
head_dim: int
24+
max_position_embeddings: Optional[int] = None
25+
attention_bias: bool = False
26+
attention_out_bias: bool = False
27+
mlp_bias: bool = False
28+
rope_theta: float = 10000
29+
rope_traditional: bool = False
30+
rope_scaling: Optional[Dict[str, Union[float, str]]] = None
31+
tie_word_embeddings: bool = True
32+
33+
34+
class Attention(nn.Module):
35+
def __init__(self, args: ModelArgs):
36+
super().__init__()
37+
38+
dim = args.hidden_size
39+
self.n_heads = n_heads = args.num_attention_heads
40+
self.n_kv_heads = n_kv_heads = args.num_key_value_heads
41+
self.head_dim = head_dim = args.head_dim
42+
43+
self.scale = head_dim**-0.5
44+
45+
input_bias = args.attention_bias
46+
output_bias = args.attention_out_bias
47+
48+
self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=input_bias)
49+
self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=input_bias)
50+
self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=input_bias)
51+
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=output_bias)
52+
53+
self.rope = initialize_rope(
54+
self.head_dim,
55+
args.rope_theta,
56+
args.rope_traditional,
57+
args.rope_scaling,
58+
args.max_position_embeddings,
59+
)
60+
61+
def __call__(
62+
self,
63+
x: mx.array,
64+
mask: Optional[mx.array] = None,
65+
cache: Optional[Any] = None,
66+
) -> mx.array:
67+
B, L, D = x.shape
68+
69+
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
70+
71+
# Prepare the queries, keys and values for the attention computation
72+
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
73+
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
74+
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
75+
76+
if cache is not None:
77+
queries = self.rope(queries, offset=cache.offset)
78+
keys = self.rope(keys, offset=cache.offset)
79+
keys, values = cache.update_and_fetch(keys, values)
80+
else:
81+
queries = self.rope(queries)
82+
keys = self.rope(keys)
83+
84+
output = scaled_dot_product_attention(
85+
queries, keys, values, cache=cache, scale=self.scale, mask=mask
86+
)
87+
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
88+
return self.o_proj(output)
89+
90+
91+
class MLP(nn.Module):
92+
def __init__(self, dim, hidden_dim, bias=False):
93+
super().__init__()
94+
self.gate_proj = nn.Linear(dim, hidden_dim, bias=bias)
95+
self.down_proj = nn.Linear(hidden_dim, dim, bias=bias)
96+
self.up_proj = nn.Linear(dim, hidden_dim, bias=bias)
97+
98+
def __call__(self, x) -> mx.array:
99+
return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
100+
101+
102+
class TransformerBlock(nn.Module):
103+
def __init__(self, args: ModelArgs):
104+
super().__init__()
105+
self.num_attention_heads = args.num_attention_heads
106+
self.hidden_size = args.hidden_size
107+
self.self_attn = Attention(args)
108+
self.mlp = MLP(args.hidden_size, args.intermediate_size, args.mlp_bias)
109+
self.input_layernorm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
110+
self.post_attention_layernorm = nn.RMSNorm(
111+
args.hidden_size, eps=args.rms_norm_eps
112+
)
113+
114+
def __call__(
115+
self,
116+
x: mx.array,
117+
mask: Optional[mx.array] = None,
118+
cache: Optional[Any] = None,
119+
) -> mx.array:
120+
r = self.self_attn(self.input_layernorm(x), mask, cache)
121+
h = x + r
122+
r = self.mlp(self.post_attention_layernorm(h))
123+
out = h + r
124+
return out
125+
126+
127+
class SeedModel(nn.Module):
128+
def __init__(self, args: ModelArgs):
129+
super().__init__()
130+
self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size)
131+
self.layers = [
132+
TransformerBlock(args=args) for _ in range(args.num_hidden_layers)
133+
]
134+
self.norm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
135+
136+
def __call__(
137+
self,
138+
inputs: mx.array,
139+
mask: mx.array = None,
140+
cache=None,
141+
):
142+
h = self.embed_tokens(inputs)
143+
144+
if mask is None:
145+
mask = create_attention_mask(h, cache)
146+
147+
if cache is None:
148+
cache = [None] * len(self.layers)
149+
150+
for layer, c in zip(self.layers, cache):
151+
h = layer(h, mask, cache=c)
152+
153+
return self.norm(h)
154+
155+
156+
class Model(nn.Module):
157+
def __init__(self, args: ModelArgs):
158+
super().__init__()
159+
self.model = SeedModel(args)
160+
self.tie_word_embeddings = args.tie_word_embeddings
161+
if not args.tie_word_embeddings:
162+
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
163+
164+
def __call__(
165+
self,
166+
inputs: mx.array,
167+
mask: mx.array = None,
168+
cache=None,
169+
):
170+
h = self.model(inputs, mask=mask, cache=cache)
171+
if self.tie_word_embeddings:
172+
return h @ self.model.embed_tokens.weight.T
173+
else:
174+
return self.lm_head(h)
175+
176+
def sanitize(self, weights):
177+
if self.tie_word_embeddings:
178+
weights.pop("lm_head.weight", None)
179+
180+
return weights
181+
182+
@property
183+
def layers(self):
184+
return self.model.layers

0 commit comments

Comments
 (0)