@@ -1438,8 +1438,8 @@ def segmentation_regular(
14381438
14391439
14401440def fill_segmentation (
1441- df_segm : pd .DataFrame ,
1442- df_feat : pd .DataFrame ,
1441+ df_segmentation : pd .DataFrame ,
1442+ df_features : pd .DataFrame ,
14431443 id_discrete : list [str ],
14441444 id_continuous : list [str ],
14451445 dict_agg : dict [str , list [str ]] | None = None
@@ -1449,9 +1449,9 @@ def fill_segmentation(
14491449
14501450 Parameters
14511451 ----------
1452- df_segm : pd.DataFrame
1452+ df_segmentation : pd.DataFrame
14531453 the dataframe containing the segmentation. Should contain only columns id_discrete and id_continuous
1454- df_feat : pd.DataFrame
1454+ df_features : pd.DataFrame
14551455 the dataframe containing the features to fit to the segmentation. Should contain the columns
14561456 id_discrete and id_continuous as well as other columns for the features of interest.
14571457 id_discrete
@@ -1465,14 +1465,14 @@ def fill_segmentation(
14651465 """
14661466 # verification of requirements
14671467 for col in id_continuous + id_discrete :
1468- if col not in df_segm .columns or col not in df_feat .columns :
1468+ if col not in df_segmentation .columns or col not in df_features .columns :
14691469 raise Exception (f"Error: { col } is not present in both dataframes df_segm and df_feat." )
14701470
14711471 is_df_segm_admissible = tools .admissible_dataframe (
1472- data = df_segm , id_discrete = id_discrete , id_continuous = id_continuous
1472+ data = df_segmentation , id_discrete = id_discrete , id_continuous = id_continuous
14731473 )
14741474 is_df_feat_admissible = tools .admissible_dataframe (
1475- data = df_feat , id_discrete = id_discrete , id_continuous = id_continuous
1475+ data = df_features , id_discrete = id_discrete , id_continuous = id_continuous
14761476 )
14771477 if not is_df_segm_admissible or not is_df_feat_admissible :
14781478 raise Exception ("Error: Both dataframes should be admissible:"
@@ -1481,9 +1481,9 @@ def fill_segmentation(
14811481
14821482 # homogenize_between() reduces the difference in segment size between df_feat and df_segm. More precisely, it
14831483 # adjusts df_feat to df_segm. This may reduce the risk of error when using merge().
1484- df_segm , df_feat = homogenize_between (
1485- df1 = df_segm ,
1486- df2 = df_feat ,
1484+ df_segmentation , df_features = homogenize_between (
1485+ df1 = df_segmentation ,
1486+ df2 = df_features ,
14871487 id_discrete = id_discrete ,
14881488 id_continuous = id_continuous ,
14891489 dict_agg_df1 = None ,
@@ -1492,13 +1492,13 @@ def fill_segmentation(
14921492 verbose = False
14931493 )
14941494
1495- df_segm ["__id__" ] = 1
1496- df_segm ["__id__" ] = df_segm ["__id__" ].cumsum ()
1495+ df_segmentation ["__id__" ] = 1
1496+ df_segmentation ["__id__" ] = df_segmentation ["__id__" ].cumsum ()
14971497
14981498 # merging the segmentations in both df
14991499 df_merge = merge (
1500- data_left = df_segm ,
1501- data_right = df_feat ,
1500+ data_left = df_segmentation ,
1501+ data_right = df_features ,
15021502 id_continuous = id_continuous ,
15031503 id_discrete = id_discrete ,
15041504 how = "left" ,
0 commit comments