@@ -269,7 +269,7 @@ def compute_impact_scores(
269
269
df_contrib_analysis_results_constr ['LCA' ])
270
270
df_contrib_analysis_results_constr ['amount' ] = (df_contrib_analysis_results_constr ['amount' ] /
271
271
df_contrib_analysis_results_constr ['LCA' ])
272
- df_contrib_analysis_results_constr .drop (columns = ['LCA' ], inplace = True )
272
+ df_contrib_analysis_results_constr .drop (columns = ['Name' , ' LCA' ], inplace = True )
273
273
274
274
# Reading the list of subcomponents as a list (and not as a string)
275
275
try :
@@ -281,7 +281,8 @@ def compute_impact_scores(
281
281
N_subcomp_max = max (len (i ) for i in self .technology_compositions .Components )
282
282
283
283
self .technology_compositions ['Type' ] = len (self .technology_compositions ) * ['Construction' ]
284
- # Associate new code to composition of technologies
284
+ # Associate new code to composition of technologies (this code does not correspond to any activity in the database,
285
+ # it is only used as an identifier for the user)
285
286
self .technology_compositions ['New_code' ] = self .technology_compositions .apply (lambda row : random_code (), axis = 1 )
286
287
287
288
for i in range (len (self .technology_compositions )):
@@ -362,7 +363,7 @@ def compute_impact_scores(
362
363
df_contrib_analysis_results_constr ['amount' ] = (df_contrib_analysis_results_constr ['amount' ]
363
364
* df_contrib_analysis_results_constr ['Value' ])
364
365
365
- df_contrib_analysis_results_constr .drop (columns = ['Value' ], inplace = True )
366
+ df_contrib_analysis_results_constr .drop (columns = ['Value' , 'Name' , 'Type' ], inplace = True )
366
367
367
368
if lifetime is None :
368
369
pass
@@ -390,6 +391,8 @@ def compute_impact_scores(
390
391
df_contrib_analysis_results_constr ['amount' ] = (df_contrib_analysis_results_constr ['amount' ] *
391
392
df_contrib_analysis_results_constr ['ESM' ])
392
393
394
+ df_contrib_analysis_results_constr .drop (columns = ['Name' , 'ESM' ], inplace = True )
395
+
393
396
name_to_new_code = pd .concat ([mapping [['Name' , 'Type' , 'New_code' ]],
394
397
self .technology_compositions [['Name' , 'Type' , 'New_code' ]]])
395
398
@@ -643,13 +646,18 @@ def __init__(self, cs_name, limit, limit_type, log_config=None):
643
646
i [2 ].as_dict ()['database' ]] for i in top_contributors ],
644
647
columns = ['score' , 'amount' , 'ef_name' , 'ef_categories' , 'ef_code' , 'ef_database' ]
645
648
)
646
- df_res ['impact_category' ] = len (df_res ) * [self .methods [col ]]
647
649
648
- act = list (fu_all .keys ())[row ]
649
- df_res ['act_database' ] = len (df_res ) * [act [0 ]]
650
- df_res ['act_code' ] = len (df_res ) * [act [1 ]]
650
+ # Drop rows where the score is zero
651
+ df_res .drop (df_res [df_res ['score' ] == 0 ].index , inplace = True )
652
+
653
+ if len (df_res ) > 0 :
654
+ df_res ['impact_category' ] = len (df_res ) * [self .methods [col ]]
655
+
656
+ act = list (fu_all .keys ())[row ]
657
+ df_res ['act_database' ] = len (df_res ) * [act [0 ]]
658
+ df_res ['act_code' ] = len (df_res ) * [act [1 ]]
651
659
652
- df_res_list .append (df_res )
660
+ df_res_list .append (df_res )
653
661
654
662
self .df_res_concat = pd .concat (df_res_list , ignore_index = True )
655
663
0 commit comments