Skip to content

Commit bda9c53

Browse files
committed
rm dup code
1 parent 0d6f412 commit bda9c53

File tree

1 file changed

+7
-66
lines changed

1 file changed

+7
-66
lines changed

theories/sampling.v

Lines changed: 7 additions & 66 deletions
Original file line numberDiff line numberDiff line change
@@ -74,20 +74,6 @@ Reserved Notation "\X_ n P" (at level 10, n, P at next level,
7474
Lemma norm_expR {R : realType} : normr \o expR = (expR : R -> R).
7575
Proof. by apply/funext => x /=; rewrite ger0_norm ?expR_ge0. Qed.
7676

77-
Local Open Scope ereal_scope.
78-
Lemma abse_prod {R : realDomainType} [I : Type] (r : seq I) (Q : pred I) (F : I -> \bar R) :
79-
`|\prod_(i <- r | Q i) F i| = (\prod_(i <- r | Q i) `|F i|).
80-
Proof.
81-
elim/big_ind2 : _ => //.
82-
by rewrite abse1.
83-
move=> x1 x2 ? ? <- <-.
84-
by rewrite abseM.
85-
Qed.
86-
Local Close Scope ereal_scope.
87-
88-
(* TODO: put back in probability.v *)
89-
Notation "'M_ X t" := (mmt_gen_fun X t).
90-
9177
Lemma preimage_set1 T {U : eqType} (X : T -> U) r :
9278
X @^-1` [set r] = [set i | X i == r].
9379
Proof. by apply/seteqP; split => [x /eqP H//|x /eqP]. Qed.
@@ -142,34 +128,6 @@ Lemma integral_prod_meas1E {d1} {T1 : measurableType d1}
142128
(\int[m1 \x^ m2]_x f x = \int[(m1 \x m2)%E]_z f z)%E.
143129
Proof. by move=> intf; rewrite -fubini1// integral12_prod_meas2. Qed.
144130

145-
Section PR_to_hoelder.
146-
Context d {T : measurableType d} {R : realType}.
147-
Variable mu : {measure set T -> \bar R}.
148-
Local Open Scope ereal_scope.
149-
Implicit Types (p : \bar R) (f g : T -> \bar R) (r : R).
150-
151-
Lemma Lnorm_abse f p : 'N[mu]_p[abse \o f] = 'N[mu]_p[f].
152-
Proof.
153-
rewrite unlock/=.
154-
have -> : (abse \o (abse \o f)) = abse \o f.
155-
by apply: funext => x/=; rewrite abse_id.
156-
case: p => [r|//|//].
157-
by under eq_integral => x _ do rewrite abse_id.
158-
Qed.
159-
160-
Lemma Lfun_norm (f : T -> R) :
161-
f \in Lfun mu 1 -> normr \o f \in Lfun mu 1.
162-
Proof.
163-
move=> /andP[].
164-
rewrite !inE/= => mf finf; apply/andP; split.
165-
by rewrite inE/=; exact: measurableT_comp.
166-
rewrite inE/=/finite_norm.
167-
under [X in 'N[_]__[X]]eq_fun => x do rewrite -abse_EFin.
168-
by rewrite Lnorm_abse.
169-
Qed.
170-
171-
End PR_to_hoelder.
172-
173131
Section PR_to_hoelder.
174132
Context d (T : measurableType d) (R : realType).
175133
Variable mu : {finite_measure set T -> \bar R}.
@@ -637,26 +595,6 @@ Section properties_of_independence.
637595
Context d (T : measurableType d) (R : realType) (P : probability T R).
638596
Local Open Scope ereal_scope.
639597

640-
(* TODO: delete? *)
641-
Lemma boundedM U (f g : U -> R) (A : set U) :
642-
[bounded f x | x in A] ->
643-
[bounded g x | x in A] ->
644-
[bounded (f x * g x)%R | x in A].
645-
Proof.
646-
move=> bF bG.
647-
rewrite/bounded_near.
648-
case: bF => M1 [M1real M1f].
649-
case: bG => M2 [M2real M2g].
650-
near=> M.
651-
rewrite/globally/= => x xA.
652-
rewrite normrM.
653-
rewrite (@le_trans _ _ (`|M1 + 1| * `|M2 + 1|)%R)//.
654-
rewrite ler_pM//.
655-
by rewrite M1f// (lt_le_trans _ (ler_norm _))// ltrDl.
656-
by rewrite M2g// (lt_le_trans _ (ler_norm _))// ltrDl.
657-
Unshelve. all: by end_near.
658-
Qed.
659-
660598
Lemma expectation_ipro_prod n (X : n.-tuple {RV P >-> R}) :
661599
[set` X] `<=` Lfun P 1 ->
662600
'E_(\X_n P)[ \prod_(i < n) Tnth X i] = \prod_(i < n) 'E_P[ (tnth X i) ].
@@ -718,10 +656,12 @@ under eq_fun.
718656
have /Lfun1_integrable/integrableP/=[mXi iXi] := lfunX _ (mem_tnth ord0 X).
719657
have ? : \int[\X_n P]_x0 (\prod_(i < n) tnth X (lift ord0 i) (tnth x0 i))%:E < +oo.
720658
under eq_integral => x _.
721-
rewrite [X in X%:E](_ : _ = \prod_(i < n) tnth (behead_tuple X) i (tnth x i))%R; last first.
659+
rewrite [X in X%:E](_ : _ =
660+
\prod_(i < n) tnth (behead_tuple X) i (tnth x i))%R; last first.
722661
by apply: eq_bigr => i _; rewrite (tuple_eta X) tnthS -tuple_eta.
723662
over.
724-
rewrite /= -(_ : 'E_(\X_n P)[\prod_(i < n) Tnth (behead_tuple X) i]%R = \int[\X_n P]_x _); last first.
663+
rewrite /= -(_ : 'E_(\X_n P)[\prod_(i < n) Tnth (behead_tuple X) i]%R
664+
= \int[\X_n P]_x _); last first.
725665
rewrite unlock.
726666
apply: eq_integral => /=x _.
727667
by rewrite /Tnth fct_prodE.
@@ -736,7 +676,7 @@ have ? : measurable_fun [set: n.-tuple T]
736676
apply: measurableT_comp => //.
737677
exact: measurable_tnth.
738678
rewrite /=.
739-
have ? : \int[\X_n P]_x `|\prod_(i < n) tnth X (lift ord0 i) (tnth x i)|%:E < +oo.
679+
have ? : \int[\X_n P]_x `|\prod_(i < n) tnth X (lift ord0 i) (tnth x i)|%:E < +oo.
740680
move: h2 => /Lfun1_integrable/integrableP[?].
741681
apply: le_lt_trans.
742682
rewrite le_eqVlt; apply/orP; left; apply/eqP.
@@ -775,7 +715,8 @@ rewrite /= integralZr//; last exact/Lfun1_integrable/lfunX/mem_tnth.
775715
rewrite fineK; last first.
776716
rewrite fin_num_abs. apply/abse_integralP => //.
777717
exact/measurable_EFinP.
778-
rewrite [X in _ * X](_ : _ = 'E_(\X_n P)[\prod_(i < n) Tnth (behead X) i])%R; last first.
718+
rewrite [X in _ * X](_ : _ =
719+
'E_(\X_n P)[\prod_(i < n) Tnth (behead X) i])%R; last first.
779720
rewrite [in RHS]unlock /Tnth.
780721
apply: eq_integral => x _.
781722
rewrite fct_prodE; congr (_%:E).

0 commit comments

Comments
 (0)