|
| 1 | +# This file is part of meas_algorithms. |
| 2 | +# |
| 3 | +# Developed for the LSST Data Management System. |
| 4 | +# This product includes software developed by the LSST Project |
| 5 | +# (https://www.lsst.org). |
| 6 | +# See the COPYRIGHT file at the top-level directory of this distribution |
| 7 | +# for details of code ownership. |
| 8 | +# |
| 9 | +# This program is free software: you can redistribute it and/or modify |
| 10 | +# it under the terms of the GNU General Public License as published by |
| 11 | +# the Free Software Foundation, either version 3 of the License, or |
| 12 | +# (at your option) any later version. |
| 13 | +# |
| 14 | +# This program is distributed in the hope that it will be useful, |
| 15 | +# but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 16 | +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 17 | +# GNU General Public License for more details. |
| 18 | +# |
| 19 | +# You should have received a copy of the GNU General Public License |
| 20 | +# along with this program. If not, see <https://www.gnu.org/licenses/>. |
| 21 | + |
| 22 | +__all__ = ["FindGlintTrailsConfig", "FindGlintTrailsTask", "GlintTrailParameters"] |
| 23 | + |
| 24 | +import collections |
| 25 | +import dataclasses |
| 26 | +import math |
| 27 | + |
| 28 | +import numpy as np |
| 29 | +import scipy.spatial |
| 30 | +import sklearn.linear_model |
| 31 | + |
| 32 | +import lsst.afw.table |
| 33 | +import lsst.pex.config |
| 34 | +import lsst.pipe.base |
| 35 | + |
| 36 | + |
| 37 | +class FindGlintTrailsConfig(lsst.pex.config.Config): |
| 38 | + radius = lsst.pex.config.Field( |
| 39 | + doc="Radius to search for glint trail candidates from each source (pixels).", |
| 40 | + dtype=float, |
| 41 | + default=500, |
| 42 | + ) |
| 43 | + min_points = lsst.pex.config.Field( |
| 44 | + doc="Minimum number of points to be considered a possible glint trail.", |
| 45 | + dtype=int, |
| 46 | + default=5, |
| 47 | + check=lambda x: x >= 3, |
| 48 | + ) |
| 49 | + threshold = lsst.pex.config.Field( |
| 50 | + doc="Maximum root mean squared deviation from a straight line (pixels).", |
| 51 | + dtype=float, |
| 52 | + default=15.0, |
| 53 | + ) |
| 54 | + seed = lsst.pex.config.Field( |
| 55 | + doc="Random seed for RANSAC fitter, to ensure stable fitting.", |
| 56 | + dtype=int, |
| 57 | + default=42, |
| 58 | + ) |
| 59 | + bad_flags = lsst.pex.config.ListField[str]( |
| 60 | + doc="Do not fit sources that have these flags set.", |
| 61 | + default=["ip_diffim_DipoleFit_classification", |
| 62 | + "is_negative", |
| 63 | + ], |
| 64 | + ) |
| 65 | + |
| 66 | + |
| 67 | +@dataclasses.dataclass(frozen=True, kw_only=True) |
| 68 | +class GlintTrailParameters: |
| 69 | + """Holds values from the line fit to a single glint trail.""" |
| 70 | + slope: float |
| 71 | + intercept: float |
| 72 | + stderr: float |
| 73 | + length: float # pixels |
| 74 | + angle: float # radians, from +X axis |
| 75 | + |
| 76 | + |
| 77 | +class FindGlintTrailsTask(lsst.pipe.base.Task): |
| 78 | + """Find glint trails in a catalog by searching for sources that lie in a |
| 79 | + line. |
| 80 | +
|
| 81 | + Notes |
| 82 | + ----- |
| 83 | + For each source ("anchor") in the input catalog that was not included in |
| 84 | + an an earlier iteration as part of a trail: |
| 85 | + * Find all sources within a given radius. |
| 86 | + * For each pair of anchor and match, identify the other sources that |
| 87 | + could lie on the same line(s). |
| 88 | + * Take the longest set of such pairs as a candidate trail. |
| 89 | + * Fit a line to the identified pairs with the RANSAC algorithm. |
| 90 | + * Find all sources in the catalog that could lie on that line. |
| 91 | + * Refit a line to all of the matched sources. |
| 92 | + * If the error is below the threshold and the number of sources on the |
| 93 | + line is greater than the minimum, return the sources that were |
| 94 | + considered inliers during the fit, and the fit parameters. |
| 95 | + """ |
| 96 | + |
| 97 | + ConfigClass = FindGlintTrailsConfig |
| 98 | + _DefaultName = "findGlintTrails" |
| 99 | + |
| 100 | + def run(self, catalog): |
| 101 | + """Find glint trails in a catalog. |
| 102 | +
|
| 103 | + Parameters |
| 104 | + ---------- |
| 105 | + catalog : `lsst.afw.table.SourceCatalog` |
| 106 | + Catalog to search for glint trails. |
| 107 | +
|
| 108 | + Returns |
| 109 | + ------- |
| 110 | + result : `lsst.pipe.base.Struct` |
| 111 | + Results as a struct with attributes: |
| 112 | +
|
| 113 | + ``trails`` |
| 114 | + Catalog subsets containing sources in each trail that was found. |
| 115 | + (`list` [`lsst.afw.table.SourceCatalog`]) |
| 116 | + ``trailed_ids`` |
| 117 | + Ids of all the sources that were included in any fit trail. |
| 118 | + (`set` [`int`]) |
| 119 | + ``parameters`` |
| 120 | + Parameters of all the trails that were found. |
| 121 | + (`list` [`GlintTrailParameters`]) |
| 122 | + """ |
| 123 | + good_catalog = self._select_good_sources(catalog) |
| 124 | + |
| 125 | + matches = lsst.afw.table.matchXy(good_catalog, self.config.radius) |
| 126 | + per_id = collections.defaultdict(list) |
| 127 | + for match in matches: |
| 128 | + per_id[match.first["id"]].append(match) |
| 129 | + counts = {id: len(value) for id, value in per_id.items()} |
| 130 | + |
| 131 | + trails = [] |
| 132 | + parameters = [] |
| 133 | + trailed_ids = set() |
| 134 | + # Search starting with the source with the largest number of matches. |
| 135 | + for id in dict(sorted(counts.items(), key=lambda item: item[1], reverse=True)): |
| 136 | + # Don't search this point if it was already included in a trail. |
| 137 | + if counts[id] < self.config.min_points or id in trailed_ids: |
| 138 | + continue |
| 139 | + |
| 140 | + self.log.debug("id=%d at %.1f,%.1f has %d matches within %d pixels.", |
| 141 | + id, |
| 142 | + per_id[id][0].first.getX(), |
| 143 | + per_id[id][0].first.getY(), |
| 144 | + counts[id], |
| 145 | + self.config.radius) |
| 146 | + if (trail := self._search_one(per_id[id], good_catalog)) is not None: |
| 147 | + trail, result = trail |
| 148 | + # Check that we didn't already find this trail. |
| 149 | + n_new = len(set(trail["id"]).difference(trailed_ids)) |
| 150 | + if n_new > 0: |
| 151 | + self.log.info("Found %.1f pixel length trail with %d points, " |
| 152 | + "%d not in any other trail (slope=%.4f, intercept=%.2f)", |
| 153 | + result.length, len(trail), n_new, result.slope, result.intercept) |
| 154 | + trails.append(trail) |
| 155 | + trailed_ids.update(trail["id"]) |
| 156 | + parameters.append(result) |
| 157 | + |
| 158 | + self.log.info("Found %d glint trails containing %d total sources.", |
| 159 | + len(trails), len(trailed_ids)) |
| 160 | + return lsst.pipe.base.Struct(trails=trails, |
| 161 | + trailed_ids=trailed_ids, |
| 162 | + parameters=parameters) |
| 163 | + |
| 164 | + def _select_good_sources(self, catalog): |
| 165 | + """Return sources that could possibly be in a glint trail, i.e. ones |
| 166 | + that do not have bad flags set. |
| 167 | +
|
| 168 | + Parameters |
| 169 | + ---------- |
| 170 | + catalog : `lsst.afw.table.SourceCatalog` |
| 171 | + Original catalog to be selected from. |
| 172 | +
|
| 173 | + Returns |
| 174 | + ------- |
| 175 | + good_catalog : `lsst.afw.table.SourceCatalog` |
| 176 | + Catalog that has had bad sources removed. |
| 177 | + """ |
| 178 | + bad = np.zeros(len(catalog), dtype=bool) |
| 179 | + for flag in self.config.bad_flags: |
| 180 | + bad |= catalog[flag] |
| 181 | + return catalog[~bad] |
| 182 | + |
| 183 | + def _search_one(self, matches, catalog): |
| 184 | + """Search one set of matches for a possible trail. |
| 185 | +
|
| 186 | + Parameters |
| 187 | + ---------- |
| 188 | + matches : `list` [`lsst.afw.table.Match`] |
| 189 | + Matches for one anchor source to search for lines. |
| 190 | + catalog : `lsst.afw.SourceCatalog` |
| 191 | + Catalog of all sources, to refit lines to. |
| 192 | +
|
| 193 | + Returns |
| 194 | + ------- |
| 195 | + trail, result : `tuple` or None |
| 196 | + If the no trails matching the criteria are found, return None, |
| 197 | + otherwise return a tuple of the sources in the trail and the |
| 198 | + trail parameters. |
| 199 | + """ |
| 200 | + components = collections.defaultdict(list) |
| 201 | + # Normalized distances from the first record to all the others. |
| 202 | + xy_deltas = {pair.second["id"]: (pair.second.getX() - pair.first.getX(), |
| 203 | + pair.second.getY() - pair.first.getY()) for pair in matches} |
| 204 | + |
| 205 | + # Find all sets of pairs from this anchor that could lie on a line. |
| 206 | + for i, (id1, pair1) in enumerate(xy_deltas.items()): |
| 207 | + distance = math.sqrt(pair1[0]**2 + pair1[1]**2) |
| 208 | + for j, (id2, pair2) in enumerate(xy_deltas.items()): |
| 209 | + if i == j: |
| 210 | + continue |
| 211 | + delta = abs(pair1[0] * pair2[1] - pair1[1] * pair2[0]) |
| 212 | + # 2x threshold to search more broadly; will be refined later. |
| 213 | + if delta / distance < 2 * self.config.threshold: |
| 214 | + components[i].append(j) |
| 215 | + |
| 216 | + # There are no lines with at least 3 components. |
| 217 | + if len(components) == 0: |
| 218 | + return None |
| 219 | + |
| 220 | + longest, value = max(components.items(), key=lambda x: len(x[1])) |
| 221 | + n_points = len(value) |
| 222 | + n_points += 2 # to account for the base source and the first pair |
| 223 | + if n_points < self.config.min_points: |
| 224 | + return None |
| 225 | + |
| 226 | + candidate = [longest] + components[longest] |
| 227 | + trail, result = self._other_points(n_points, candidate, matches, catalog) |
| 228 | + |
| 229 | + if trail is None or len(trail) < self.config.min_points: |
| 230 | + return None |
| 231 | + if result.stderr > self.config.threshold: |
| 232 | + self.log.info("Candidate trail with %d sources rejected with stderr %.6f > %.3f", |
| 233 | + len(trail), result.stderr, self.config.threshold) |
| 234 | + return None |
| 235 | + else: |
| 236 | + return trail, result |
| 237 | + |
| 238 | + def _other_points(self, n_points, indexes, matches, catalog): |
| 239 | + """Find all catalog records that could lie on this line. |
| 240 | +
|
| 241 | + Parameters |
| 242 | + ---------- |
| 243 | + n_points : `int` |
| 244 | + Number of sources in this candidate trail. |
| 245 | + indexes : `list` [`int`] |
| 246 | + Indexes into matches on this candidate trail. |
| 247 | + matches : `list` [`lsst.afw.table.Match`] |
| 248 | + Matches for one anchor sources to search for lines. |
| 249 | + catalog : `lsst.afw.SourceCatalog` |
| 250 | + Catalog of all sources, to refit lines to. |
| 251 | +
|
| 252 | + Returns |
| 253 | + ------- |
| 254 | + trail : `lsst.afw.table.SourceCatalog` |
| 255 | + Sources that are in the fitted trail. |
| 256 | + result : `GlintTrailParameters` |
| 257 | + Parameters of the fitted trail. |
| 258 | + """ |
| 259 | + |
| 260 | + def extract(fitter, x, y, prefix=""): |
| 261 | + """Extract values from the fit and log and return them.""" |
| 262 | + x = x[fitter.inlier_mask_] |
| 263 | + y = y[fitter.inlier_mask_] |
| 264 | + predicted = fitter.predict(x).flatten() |
| 265 | + stderr = math.sqrt(((predicted - y.flatten())**2).sum()) |
| 266 | + m, b = fitter.estimator_.coef_[0][0], fitter.estimator_.intercept_[0] |
| 267 | + self.log.debug("%s fit: score=%.6f, stderr=%.6f, inliers/total=%d/%d", |
| 268 | + prefix, fitter.score(x, y), stderr, sum(fitter.inlier_mask_), len(x)) |
| 269 | + # Simple O(N^2) search for longest distance; there will never be |
| 270 | + # enough points in a trail a for "faster" approach to be worth it. |
| 271 | + length = max(scipy.spatial.distance.pdist(np.hstack((x, y)))) |
| 272 | + angle = math.atan(m) |
| 273 | + return GlintTrailParameters(slope=m, intercept=b, stderr=stderr, length=length, angle=angle) |
| 274 | + |
| 275 | + # min_samples=2 is necessary here for some sets of only 5 matches, |
| 276 | + # otherwise we sometimes get "UndefinedMetricWarning: R^2 score is not |
| 277 | + # well-defined with less than two samples" from RANSAC. |
| 278 | + fitter = sklearn.linear_model.RANSACRegressor(residual_threshold=self.config.threshold, |
| 279 | + loss="squared_error", |
| 280 | + random_state=self.config.seed, |
| 281 | + min_samples=2) |
| 282 | + |
| 283 | + # The (-1,1) shape is to keep sklearn happy. |
| 284 | + x = np.empty(n_points).reshape(-1, 1) |
| 285 | + x[0] = matches[0].first.getX() |
| 286 | + x[1:, 0] = [matches[i].second.getX() for i in indexes] |
| 287 | + y = np.empty(n_points).reshape(-1, 1) |
| 288 | + y[0] = matches[0].first.getY() |
| 289 | + y[1:, 0] = [matches[i].second.getY() for i in indexes] |
| 290 | + |
| 291 | + fitter.fit(x, y) |
| 292 | + result = extract(fitter, x, y, prefix="preliminary") |
| 293 | + # Reject trails that have too many outliers after the first fit. |
| 294 | + if (n_inliers := sum(fitter.inlier_mask_)) < self.config.min_points: |
| 295 | + self.log.debug("Candidate trail rejected with %d < %d points.", n_inliers, self.config.min_points) |
| 296 | + return None, None |
| 297 | + |
| 298 | + # Find all points that are close to this line and refit with them. |
| 299 | + x = catalog["slot_Centroid_x"] |
| 300 | + y = catalog["slot_Centroid_y"] |
| 301 | + dist = abs(result.intercept + result.slope * x - y) / math.sqrt(1 + result.slope**2) |
| 302 | + # 2x threshold to search more broadly: outlier rejection may change |
| 303 | + # the line parameters some and we want to grab all candidates here. |
| 304 | + candidates = (dist < 2 * self.config.threshold).flatten() |
| 305 | + # min_samples>2 should make the fit more stable. |
| 306 | + fitter = sklearn.linear_model.RANSACRegressor(residual_threshold=self.config.threshold, |
| 307 | + loss="squared_error", |
| 308 | + random_state=self.config.seed, |
| 309 | + min_samples=3) |
| 310 | + # The (-1,1) shape is to keep sklearn happy. |
| 311 | + x = x[candidates].reshape(-1, 1) |
| 312 | + y = y[candidates].reshape(-1, 1) |
| 313 | + fitter.fit(x, y) |
| 314 | + result = extract(fitter, x, y, prefix="final") |
| 315 | + |
| 316 | + return catalog[candidates][fitter.inlier_mask_], result |
0 commit comments