diff --git a/README.md b/README.md
index 0bb61681..63457e9d 100644
--- a/README.md
+++ b/README.md
@@ -24,59 +24,59 @@ Familiarity with Machine Learning and Python development is recommended. For mor
## 🗄️ Table of Content:
-- [QuickStart](https://github.com/logicalclocks/hopsworks-tutorials/blob/master/quickstart.ipynb): Introductory tutorial to get started quickly.
+- [QuickStart](https://github.com/logicalclocks/hopsworks-tutorials/blob/branch-4.5/quickstart.ipynb): Introductory tutorial to get started quickly.
### 🚀 Real-time AI Systems
-- [Fraud Online](https://github.com/logicalclocks/hopsworks-tutorials/tree/master/real-time-ai-systems/fraud_online): Detect Fraud Transactions
-- [AML](https://github.com/logicalclocks/hopsworks-tutorials/tree/master/real-time-ai-systems/aml): Anti-money laundering predictions
-- [TikTok RecSys](https://github.com/logicalclocks/hopsworks-tutorials/tree/master/real-time-ai-systems/tiktok_recsys): TikTok-style recommendation system
-- [TimeSeries](https://github.com/logicalclocks/hopsworks-tutorials/tree/master/real-time-ai-systems/timeseries): Timeseries price prediction
+- [Fraud Online](https://github.com/logicalclocks/hopsworks-tutorials/tree/branch-4.5/real-time-ai-systems/fraud_online): Detect Fraud Transactions
+- [AML](https://github.com/logicalclocks/hopsworks-tutorials/tree/branch-4.5/real-time-ai-systems/aml): Anti-money laundering predictions
+- [TikTok RecSys](https://github.com/logicalclocks/hopsworks-tutorials/tree/branch-4.5/real-time-ai-systems/tiktok_recsys): TikTok-style recommendation system
+- [TimeSeries](https://github.com/logicalclocks/hopsworks-tutorials/tree/branch-4.5/real-time-ai-systems/timeseries): Timeseries price prediction
### ⚙️ Batch AI Systems
-- [Loan Approval](https://github.com/logicalclocks/hopsworks-tutorials/tree/master/batch-ai-systems/loan_approval): Predict loan approvals
-- [Fraud Batch](https://github.com/logicalclocks/hopsworks-tutorials/tree/master/batch-ai-systems/fraud_batch): Detect Fraud Transactions
-- [Churn](https://github.com/logicalclocks/hopsworks-tutorials/tree/master/batch-ai-systems/churn): Predict customers at risk of churning
-- [Credit Scores](https://github.com/logicalclocks/hopsworks-tutorials/tree/master/batch-ai-systems/credit_scores): Predict clients' repayment abilities
-- [Hospital Wait Time](https://github.com/logicalclocks/hopsworks-tutorials/tree/master/batch-ai-systems/hospital_wait_time): Predict waiting time for deceased donor kidneys
-- [NYC Taxi Fares](https://github.com/logicalclocks/hopsworks-tutorials/tree/master/batch-ai-systems/nyc_taxi_fares): Predict NYC taxi fare amounts
+- [Loan Approval](https://github.com/logicalclocks/hopsworks-tutorials/tree/branch-4.5/batch-ai-systems/loan_approval): Predict loan approvals
+- [Fraud Batch](https://github.com/logicalclocks/hopsworks-tutorials/tree/branch-4.5/batch-ai-systems/fraud_batch): Detect Fraud Transactions
+- [Churn](https://github.com/logicalclocks/hopsworks-tutorials/tree/branch-4.5/batch-ai-systems/churn): Predict customers at risk of churning
+- [Credit Scores](https://github.com/logicalclocks/hopsworks-tutorials/tree/branch-4.5/batch-ai-systems/credit_scores): Predict clients' repayment abilities
+- [Hospital Wait Time](https://github.com/logicalclocks/hopsworks-tutorials/tree/branch-4.5/batch-ai-systems/hospital_wait_time): Predict waiting time for deceased donor kidneys
+- [NYC Taxi Fares](https://github.com/logicalclocks/hopsworks-tutorials/tree/branch-4.5/batch-ai-systems/nyc_taxi_fares): Predict NYC taxi fare amounts
### 🔮 LLM AI Systems
-- [Fraud Cheque Detection](https://github.com/logicalclocks/hopsworks-tutorials/tree/master/llm-ai-systems/fraud_cheque_detection): AI assistant for detecting fraudulent scanned cheques
-- [LLM PDF](https://github.com/logicalclocks/hopsworks-tutorials/tree/master/llm-ai-systems/llm_pdfs): RAG-based AI assistant for PDF document Q&A
-- [Recommender System](https://github.com/logicalclocks/hopsworks-tutorials/tree/master/llm-ai-systems/recommender-system): Fashion items recommender system
+- [Fraud Cheque Detection](https://github.com/logicalclocks/hopsworks-tutorials/tree/branch-4.5/llm-ai-systems/fraud_cheque_detection): AI assistant for detecting fraudulent scanned cheques
+- [LLM PDF](https://github.com/logicalclocks/hopsworks-tutorials/tree/branch-4.5/llm-ai-systems/llm_pdfs): RAG-based AI assistant for PDF document Q&A
+- [Recommender System](https://github.com/logicalclocks/hopsworks-tutorials/tree/branch-4.5/llm-ai-systems/recommender-system): Fashion items recommender system
### 🧬 API Examples
- Vector Similarity Search:
- - [Feature Group Embeddings API](https://github.com/logicalclocks/hopsworks-tutorials/tree/master/api_examples/vector_similarity_search/1_feature_group_embeddings_api.ipynb)
- - [Feature View Embeddings API](https://github.com/logicalclocks/hopsworks-tutorials/tree/master/api_examples/vector_similarity_search/2_feature_view_embeddings_api.ipynb)
-- [Datasets](https://github.com/logicalclocks/hopsworks-tutorials/tree/master/api_examples/datasets.ipynb)
-- [Feature Group Change Notification CDC](https://github.com/logicalclocks/hopsworks-tutorials/tree/master/api_examples/feature_group_change_notification_cdc.ipynb)
-- [Feature Monitoring](https://github.com/logicalclocks/hopsworks-tutorials/tree/master/api_examples/feature_monitoring.ipynb)
-- [Git Integration](https://github.com/logicalclocks/hopsworks-tutorials/tree/master/api_examples/git.ipynb)
-- [Jobs Management](https://github.com/logicalclocks/hopsworks-tutorials/tree/master/api_examples/jobs.ipynb)
-- [Kafka Integration](https://github.com/logicalclocks/hopsworks-tutorials/tree/master/api_examples/kafka.ipynb)
-- [OpenSearch Integration](https://github.com/logicalclocks/hopsworks-tutorials/tree/master/api_examples/opensearch.ipynb)
-- [Projects Management](https://github.com/logicalclocks/hopsworks-tutorials/tree/master/api_examples/projects.ipynb)
-- [Secrets Management](https://github.com/logicalclocks/hopsworks-tutorials/tree/master/api_examples/secrets.ipynb)
+ - [Feature Group Embeddings API](https://github.com/logicalclocks/hopsworks-tutorials/tree/branch-4.5/api_examples/vector_similarity_search/1_feature_group_embeddings_api.ipynb)
+ - [Feature View Embeddings API](https://github.com/logicalclocks/hopsworks-tutorials/tree/branch-4.5/api_examples/vector_similarity_search/2_feature_view_embeddings_api.ipynb)
+- [Datasets](https://github.com/logicalclocks/hopsworks-tutorials/tree/branch-4.5/api_examples/datasets.ipynb)
+- [Feature Group Change Notification CDC](https://github.com/logicalclocks/hopsworks-tutorials/tree/branch-4.5/api_examples/feature_group_change_notification_cdc.ipynb)
+- [Feature Monitoring](https://github.com/logicalclocks/hopsworks-tutorials/tree/branch-4.5/api_examples/feature_monitoring.ipynb)
+- [Git Integration](https://github.com/logicalclocks/hopsworks-tutorials/tree/branch-4.5/api_examples/git.ipynb)
+- [Jobs Management](https://github.com/logicalclocks/hopsworks-tutorials/tree/branch-4.5/api_examples/jobs.ipynb)
+- [Kafka Integration](https://github.com/logicalclocks/hopsworks-tutorials/tree/branch-4.5/api_examples/kafka.ipynb)
+- [OpenSearch Integration](https://github.com/logicalclocks/hopsworks-tutorials/tree/branch-4.5/api_examples/opensearch.ipynb)
+- [Projects Management](https://github.com/logicalclocks/hopsworks-tutorials/tree/branch-4.5/api_examples/projects.ipynb)
+- [Secrets Management](https://github.com/logicalclocks/hopsworks-tutorials/tree/branch-4.5/api_examples/secrets.ipynb)
### 🔬 Integrations
-- [Airflow GCP](https://github.com/logicalclocks/hopsworks-tutorials/tree/master/integrations/airflow_gcp): Apache Airflow integration with Google Cloud Platform.
-- [AzureSQL](https://github.com/logicalclocks/hopsworks-tutorials/tree/master/integrations/azuresql): Create an External Feature Group using Azure SQL Database.
-- [BigQuery](https://github.com/logicalclocks/hopsworks-tutorials/tree/master/integrations/big_query): Create an External Feature Group using BigQuery Storage Connector.
-- [Bytewax](https://github.com/logicalclocks/hopsworks-tutorials/tree/master/integrations/bytewax): Real-time feature computation using Bytewax.
-- [DBT with BigQuery](https://github.com/logicalclocks/hopsworks-tutorials/tree/master/integrations/dbt_bq): Perform feature engineering in DBT on BigQuery.
-- [Federated Offline Query](https://github.com/logicalclocks/hopsworks-tutorials/tree/master/integrations/federated-offline-query): Execute federated queries across offline data sources.
-- [Google Cloud Storage](https://github.com/logicalclocks/hopsworks-tutorials/tree/master/integrations/gcs): Create an External Feature Group using GCS Storage Connector.
-- [Great Expectations](https://github.com/logicalclocks/hopsworks-tutorials/tree/master/integrations/great_expectations): Introduction to Great Expectations concepts for Hopsworks MLOps platform.
-- [Java](https://github.com/logicalclocks/hopsworks-tutorials/tree/master/integrations/java): Java-based integrations including Apache Beam and Apache Flink.
-- [LangChain](https://github.com/logicalclocks/hopsworks-tutorials/tree/master/integrations/langchain): Integration with LangChain for LLM applications.
-- [MageAI](https://github.com/logicalclocks/hopsworks-tutorials/tree/master/integrations/mage_ai): Build and operate ML systems with Mage and Hopsworks.
-- [Neo4j](https://github.com/logicalclocks/hopsworks-tutorials/tree/master/integrations/neo4j): Perform Anti-money laundering predictions using Neo4j Graph.
-- [Polars](https://github.com/logicalclocks/hopsworks-tutorials/tree/master/integrations/polars): Introductory tutorial on using Polars with Hopsworks.
-- [PySpark Streaming](https://github.com/logicalclocks/hopsworks-tutorials/tree/master/integrations/pyspark_streaming): Real-time feature computation using PySpark.
-- [Redshift](https://github.com/logicalclocks/hopsworks-tutorials/tree/master/integrations/redshift): Create an External Feature Group using Redshift Storage Connector.
-- [Snowflake](https://github.com/logicalclocks/hopsworks-tutorials/tree/master/integrations/snowflake): Create an External Feature Group using Snowflake Storage Connector.
-- [Weights & Biases](https://github.com/logicalclocks/hopsworks-tutorials/tree/master/integrations/wandb): Build machine learning models with Weights & Biases.
+- [Airflow GCP](https://github.com/logicalclocks/hopsworks-tutorials/tree/branch-4.5/integrations/airflow_gcp): Apache Airflow integration with Google Cloud Platform.
+- [AzureSQL](https://github.com/logicalclocks/hopsworks-tutorials/tree/branch-4.5/integrations/azuresql): Create an External Feature Group using Azure SQL Database.
+- [BigQuery](https://github.com/logicalclocks/hopsworks-tutorials/tree/branch-4.5/integrations/big_query): Create an External Feature Group using BigQuery Storage Connector.
+- [Bytewax](https://github.com/logicalclocks/hopsworks-tutorials/tree/branch-4.5/integrations/bytewax): Real-time feature computation using Bytewax.
+- [DBT with BigQuery](https://github.com/logicalclocks/hopsworks-tutorials/tree/branch-4.5/integrations/dbt_bq): Perform feature engineering in DBT on BigQuery.
+- [Federated Offline Query](https://github.com/logicalclocks/hopsworks-tutorials/tree/branch-4.5/integrations/federated-offline-query): Execute federated queries across offline data sources.
+- [Google Cloud Storage](https://github.com/logicalclocks/hopsworks-tutorials/tree/branch-4.5/integrations/gcs): Create an External Feature Group using GCS Storage Connector.
+- [Great Expectations](https://github.com/logicalclocks/hopsworks-tutorials/tree/branch-4.5/integrations/great_expectations): Introduction to Great Expectations concepts for Hopsworks MLOps platform.
+- [Java](https://github.com/logicalclocks/hopsworks-tutorials/tree/branch-4.5/integrations/java): Java-based integrations including Apache Beam and Apache Flink.
+- [LangChain](https://github.com/logicalclocks/hopsworks-tutorials/tree/branch-4.5/integrations/langchain): Integration with LangChain for LLM applications.
+- [MageAI](https://github.com/logicalclocks/hopsworks-tutorials/tree/branch-4.5/integrations/mage_ai): Build and operate ML systems with Mage and Hopsworks.
+- [Neo4j](https://github.com/logicalclocks/hopsworks-tutorials/tree/branch-4.5/integrations/neo4j): Perform Anti-money laundering predictions using Neo4j Graph.
+- [Polars](https://github.com/logicalclocks/hopsworks-tutorials/tree/branch-4.5/integrations/polars): Introductory tutorial on using Polars with Hopsworks.
+- [PySpark Streaming](https://github.com/logicalclocks/hopsworks-tutorials/tree/branch-4.5/integrations/pyspark_streaming): Real-time feature computation using PySpark.
+- [Redshift](https://github.com/logicalclocks/hopsworks-tutorials/tree/branch-4.5/integrations/redshift): Create an External Feature Group using Redshift Storage Connector.
+- [Snowflake](https://github.com/logicalclocks/hopsworks-tutorials/tree/branch-4.5/integrations/snowflake): Create an External Feature Group using Snowflake Storage Connector.
+- [Weights & Biases](https://github.com/logicalclocks/hopsworks-tutorials/tree/branch-4.5/integrations/wandb): Build machine learning models with Weights & Biases.
## 📝 Feedback & Comments:
We welcome your input through:
diff --git a/api_examples/vector_similarity_search/1_feature_group_embeddings_api.ipynb b/api_examples/vector_similarity_search/1_feature_group_embeddings_api.ipynb
index 47188f4f..b255003f 100644
--- a/api_examples/vector_similarity_search/1_feature_group_embeddings_api.ipynb
+++ b/api_examples/vector_similarity_search/1_feature_group_embeddings_api.ipynb
@@ -324,7 +324,7 @@
"\n",
"## ➡️ Next step\n",
"\n",
- "Now you are able to search articles using natural language. You can learn how to rank the result in [this tutorial](https://github.com/logicalclocks/hopsworks-tutorials/tree/master/api_examples/vector_similarity_search/2_feature_view_embeddings_api.ipynb)."
+ "Now you are able to search articles using natural language. You can learn how to rank the result in [this tutorial](https://github.com/logicalclocks/hopsworks-tutorials/tree/branch-4.5/api_examples/vector_similarity_search/2_feature_view_embeddings_api.ipynb)."
]
}
],
diff --git a/api_examples/vector_similarity_search/2_feature_view_embeddings_api.ipynb b/api_examples/vector_similarity_search/2_feature_view_embeddings_api.ipynb
index d5e53768..19358273 100644
--- a/api_examples/vector_similarity_search/2_feature_view_embeddings_api.ipynb
+++ b/api_examples/vector_similarity_search/2_feature_view_embeddings_api.ipynb
@@ -13,7 +13,7 @@
"id": "8988ff65",
"metadata": {},
"source": [
- "In the [previous tutorial](https://github.com/logicalclocks/hopsworks-tutorials/tree/master/api_examples/vector_similarity_search/1_feature_group_embeddings_api.ipynb), you learned how to search news articles using natural language queries. In this tutorial, we will focus on ranking the search results to make them more useful and relevant.\n",
+ "In the [previous tutorial](https://github.com/logicalclocks/hopsworks-tutorials/tree/branch-4.5/api_examples/vector_similarity_search/1_feature_group_embeddings_api.ipynb), you learned how to search news articles using natural language queries. In this tutorial, we will focus on ranking the search results to make them more useful and relevant.\n",
"\n",
"To achieve this, we will use the number of views as a scoring metric for news articles, as it reflects their popularity. The steps are as follows:\n",
"\n",
diff --git a/batch-ai-systems/churn/1_churn_feature_pipeline.ipynb b/batch-ai-systems/churn/1_churn_feature_pipeline.ipynb
index e6d39c6a..bb087d18 100644
--- a/batch-ai-systems/churn/1_churn_feature_pipeline.ipynb
+++ b/batch-ai-systems/churn/1_churn_feature_pipeline.ipynb
@@ -7,7 +7,7 @@
"source": [
"# **Hopsworks Feature Store** - Part 01: Feature Pipeline\n",
"\n",
- "[](https://colab.research.google.com/github/logicalclocks/hopsworks-tutorials/blob/master/churn/1_churn_feature_pipeline.ipynb)\n",
+ "[](https://colab.research.google.com/github/logicalclocks/hopsworks-tutorials/blob/branch-4.5/churn/1_churn_feature_pipeline.ipynb)\n",
"\n",
"\n",
"## 🗒️ This notebook is divided into the following sections:\n",
@@ -367,7 +367,7 @@
"\n",
"In the following notebook you will use your feature groups to create a train dataset, train a model and add a trained model to model registry.\n",
"\n",
- "[](https://colab.research.google.com/github/logicalclocks/hopsworks-tutorials/blob/master/churn/2_churn_training_pipeline.ipynb)"
+ "[](https://colab.research.google.com/github/logicalclocks/hopsworks-tutorials/blob/branch-4.5/churn/2_churn_training_pipeline.ipynb)"
]
}
],
diff --git a/batch-ai-systems/churn/2_churn_training_pipeline.ipynb b/batch-ai-systems/churn/2_churn_training_pipeline.ipynb
index a922bd33..f0be6d79 100644
--- a/batch-ai-systems/churn/2_churn_training_pipeline.ipynb
+++ b/batch-ai-systems/churn/2_churn_training_pipeline.ipynb
@@ -6,7 +6,7 @@
"source": [
"# **Hopsworks Feature Store** - Part 02: Training Pipeline\n",
"\n",
- "[](https://colab.research.google.com/github/logicalclocks/hopsworks-tutorials/blob/master/churn/2_churn_training_pipeline.ipynb)\n",
+ "[](https://colab.research.google.com/github/logicalclocks/hopsworks-tutorials/blob/branch-4.5/churn/2_churn_training_pipeline.ipynb)\n",
"\n",
"This is the second part of the quick start series of tutorials about predicting customers that are at risk of churning with the Hopsworks Feature Store.\n",
"\n",
@@ -455,7 +455,7 @@
"\n",
"In the following notebook you will use your model for batch inference.\n",
"\n",
- "[](https://colab.research.google.com/github/logicalclocks/hopsworks-tutorials/blob/master/churn/3_churn_batch_inference.ipynb)\n",
+ "[](https://colab.research.google.com/github/logicalclocks/hopsworks-tutorials/blob/branch-4.5/churn/3_churn_batch_inference.ipynb)\n",
"\n",
"---"
]
diff --git a/batch-ai-systems/churn/3_churn_batch_inference.ipynb b/batch-ai-systems/churn/3_churn_batch_inference.ipynb
index b6ac1d78..643d74cd 100644
--- a/batch-ai-systems/churn/3_churn_batch_inference.ipynb
+++ b/batch-ai-systems/churn/3_churn_batch_inference.ipynb
@@ -7,7 +7,7 @@
"source": [
"# **Hopsworks Feature Store** - Part 03: Batch Inference\n",
"\n",
- "[](https://colab.research.google.com/github/logicalclocks/hopsworks-tutorials/blob/master/churn/3_churn_batch_inference.ipynb)"
+ "[](https://colab.research.google.com/github/logicalclocks/hopsworks-tutorials/blob/branch-4.5/churn/3_churn_batch_inference.ipynb)"
]
},
{
@@ -451,7 +451,7 @@
"> `conda activate ./miniconda/envs/hopsworks` \n",
"> `python -m streamlit run churn/streamlit_app.py`\n",
"\n",
- "**⚠️** If you are running on Colab, you will need to follow a different procedure. As highlighted in this [notebook](https://colab.research.google.com/github/mrm8488/shared_colab_notebooks/blob/master/Create_streamlit_app.ipynb). "
+ "**⚠️** If you are running on Colab, you will need to follow a different procedure. As highlighted in this [notebook](https://colab.research.google.com/github/mrm8488/shared_colab_notebooks/blob/branch-4.5/Create_streamlit_app.ipynb). "
]
},
{
diff --git a/batch-ai-systems/nyc_taxi_fares/README.md b/batch-ai-systems/nyc_taxi_fares/README.md
index 4f157005..a19fc8e1 100644
--- a/batch-ai-systems/nyc_taxi_fares/README.md
+++ b/batch-ai-systems/nyc_taxi_fares/README.md
@@ -30,7 +30,7 @@ Also, you obviously need to have [streamlit](https://docs.streamlit.io/library/g
## Data
-You will generate random data for this tutorial. See corresponding functions in the [functions.py](https://github.com/logicalclocks/hopsworks-tutorials/blob/master/advanced_tutorials/nyc_taxi_fares/functions.py).
+You will generate random data for this tutorial. See corresponding functions in the [functions.py](https://github.com/logicalclocks/hopsworks-tutorials/blob/branch-4.5/advanced_tutorials/nyc_taxi_fares/functions.py).
## Streamlit run
diff --git a/benchmarks/online-inference-pipeline/README.md b/benchmarks/online-inference-pipeline/README.md
index 6eed969c..b94b5d0c 100644
--- a/benchmarks/online-inference-pipeline/README.md
+++ b/benchmarks/online-inference-pipeline/README.md
@@ -8,26 +8,26 @@ This repository benchmarks a deployment running inside **Hopsworks** using [Locu
- Run all the provided notebooks to set up your deployment inside Hopsworks.
2. **Configure Target Host**
- - Add the **host name** and **IP address** of your deployment in [`locustfile.py`](https://github.com/logicalclocks/hopsworks-tutorials/blob/master/benchmarks/online-inference-pipeline/locust/locustfile.py#L12).
+ - Add the **host name** and **IP address** of your deployment in [`locustfile.py`](https://github.com/logicalclocks/hopsworks-tutorials/blob/branch-4.5/benchmarks/online-inference-pipeline/locust/locustfile.py#L12).
- You can find this information in the Hopsworks **Deployment UI**.
3. **Add Hopsworks API Key**
- - Insert your Hopsworks API key into the same [`locustfile.py`](https://github.com/logicalclocks/hopsworks-tutorials/blob/master/benchmarks/online-inference-pipeline/locust/locustfile.py#L12).
+ - Insert your Hopsworks API key into the same [`locustfile.py`](https://github.com/logicalclocks/hopsworks-tutorials/blob/branch-4.5/benchmarks/online-inference-pipeline/locust/locustfile.py#L12).
- Generate the API key by following [this guide](https://docs.hopsworks.ai/latest/user_guides/projects/api_key/create_api_key/).
4. **Create the 'HOPSWORKS_API_KEY' secret**
- Create a secret with the name `HOPSWORKS_API_KEY` which contains the API key by following [this guide](https://docs.hopsworks.ai/latest/user_guides/projects/secrets/create_secret/).
5. **Build the Locust Docker Image**
- - Use the provided [Dockerfile](https://github.com/logicalclocks/hopsworks-tutorials/blob/master/benchmarks/online-inference-pipeline/locust/Dockerfile) to build a Locust image.
+ - Use the provided [Dockerfile](https://github.com/logicalclocks/hopsworks-tutorials/blob/branch-4.5/benchmarks/online-inference-pipeline/locust/Dockerfile) to build a Locust image.
- Push the image to your preferred container registry.
6. **Update Kubernetes Manifests**
- Update the image URL in both:
- - [`master-deployment.yaml`](https://github.com/logicalclocks/hopsworks-tutorials/blob/master/benchmarks/online-inference-pipeline/locust/kubernetes-locust/master-deployment.yaml#L28)
- - [`slave-deployment.yaml`](https://github.com/logicalclocks/hopsworks-tutorials/blob/master/benchmarks/online-inference-pipeline/locust/kubernetes-locust/slave-deployment.yaml#L28)
+ - [`master-deployment.yaml`](https://github.com/logicalclocks/hopsworks-tutorials/blob/branch-4.5/benchmarks/online-inference-pipeline/locust/kubernetes-locust/master-deployment.yaml#L28)
+ - [`slave-deployment.yaml`](https://github.com/logicalclocks/hopsworks-tutorials/blob/branch-4.5/benchmarks/online-inference-pipeline/locust/kubernetes-locust/slave-deployment.yaml#L28)
7. **Deploy Locust**
- - Run the [deployment script](https://github.com/logicalclocks/hopsworks-tutorials/blob/master/benchmarks/online-inference-pipeline/locust/kubernetes-locust/deploy.sh) to deploy Locust master and worker nodes.
+ - Run the [deployment script](https://github.com/logicalclocks/hopsworks-tutorials/blob/branch-4.5/benchmarks/online-inference-pipeline/locust/kubernetes-locust/deploy.sh) to deploy Locust master and worker nodes.
- This will deploy into a Kubernetes namespace named `locust`.
- **Note:** Ensure you have `kubectl` access to the cluster.
@@ -57,4 +57,4 @@ One benchmark that has been performed targets **5000 RPS** with a **P99 latency
The high number of replicas for predictors is necessary to mitigate the effects of Python's [Global Interpreter Lock (GIL)](https://wiki.python.org/moin/GlobalInterpreterLock). This allows for greater parallelism and lower latency, especially at high RPS.
-You can view the full benchmark report generated by Locust [here](https://github.com/logicalclocks/hopsworks-tutorials/blob/master/locust_reports/locust_report_5k_rps_25_batch_size.pdf).
+You can view the full benchmark report generated by Locust [here](https://github.com/logicalclocks/hopsworks-tutorials/blob/branch-4.5/locust_reports/locust_report_5k_rps_25_batch_size.pdf).
diff --git a/integrations/great_expectations/Great_Expectations_Hopsworks_Concepts.ipynb b/integrations/great_expectations/Great_Expectations_Hopsworks_Concepts.ipynb
index 66c44762..498eeebd 100644
--- a/integrations/great_expectations/Great_Expectations_Hopsworks_Concepts.ipynb
+++ b/integrations/great_expectations/Great_Expectations_Hopsworks_Concepts.ipynb
@@ -9,7 +9,7 @@
"# Short Introduction to Great Expectations Concepts on Hopsworks\n",
"\n",
"\n",
- "[](https://colab.research.google.com/github/logicalclocks/hopsworks-tutorials/blob/master/integrations/great_expectations/Great_Expectations_Hopsworks_Concepts.ipynb)"
+ "[](https://colab.research.google.com/github/logicalclocks/hopsworks-tutorials/blob/branch-4.5/integrations/great_expectations/Great_Expectations_Hopsworks_Concepts.ipynb)"
]
},
{
@@ -348,7 +348,7 @@
"source": [
"### Next Step : Data Validation with Great Expectation applied to the Fraud tutorial\n",
"\n",
- "Check it out here : [](https://colab.research.google.com/github/logicalclocks/hopsworks-tutorials/blob/master/integrations/great_expectations/fraud_batch_data_validation.ipynb)"
+ "Check it out here : [](https://colab.research.google.com/github/logicalclocks/hopsworks-tutorials/blob/branch-4.5/integrations/great_expectations/fraud_batch_data_validation.ipynb)"
]
},
{
diff --git a/integrations/great_expectations/fraud_batch_data_validation.ipynb b/integrations/great_expectations/fraud_batch_data_validation.ipynb
index dc987d80..9858efe1 100644
--- a/integrations/great_expectations/fraud_batch_data_validation.ipynb
+++ b/integrations/great_expectations/fraud_batch_data_validation.ipynb
@@ -19,7 +19,7 @@
"source": [
"# Data Validation using Hopsworks integration with Great Expectations \n",
"\n",
- "[](https://colab.research.google.com/github/logicalclocks/hopsworks-tutorials/blob/master/integrations/great_expectations/fraud_batch_data_validation.ipynb)\n",
+ "[](https://colab.research.google.com/github/logicalclocks/hopsworks-tutorials/blob/branch-4.5/integrations/great_expectations/fraud_batch_data_validation.ipynb)\n",
"\n",
"**Note**: you may get an error when installing hopsworks on Colab, and it is safe to ignore it.\n",
"\n",
@@ -47,7 +47,7 @@
"source": [
"\n",
"Check the step 1 in the fraud batch tutorial to learn more about Feature Group : \n",
- "[](https://colab.research.google.com/github/logicalclocks/hopsworks-tutorials/blob/master/fraud_batch/1_feature_groups.ipynb)\n",
+ "[](https://colab.research.google.com/github/logicalclocks/hopsworks-tutorials/blob/branch-4.5/fraud_batch/1_feature_groups.ipynb)\n",
"\n",
"\n",
"## 🗒️ This notebook is divided in 5 sections:\n",
diff --git a/integrations/langchain/news-search-langchain.ipynb b/integrations/langchain/news-search-langchain.ipynb
index 0e8440a3..8f9a2890 100644
--- a/integrations/langchain/news-search-langchain.ipynb
+++ b/integrations/langchain/news-search-langchain.ipynb
@@ -15,7 +15,7 @@
"source": [
"In this tutorial, you will learn how to create a news search bot which can answer users' question about news using Opensearch in Hopsworks with Langchain. Concretely, you will create a RAG (Retrieval-Augmented Generation) application which searches news matching users' questions, and answers the question using a LLM with the retrieved news as the context.\n",
"The steps include:\n",
- "1. [Ingest news data to Hopsworks](https://github.com/logicalclocks/hopsworks-tutorials/blob/master/api_examples/hsfs/knn_search/news-search-knn.ipynb)\n",
+ "1. [Ingest news data to Hopsworks](https://github.com/logicalclocks/hopsworks-tutorials/blob/branch-4.5/api_examples/hsfs/knn_search/news-search-knn.ipynb)\n",
"2. Setup a `vectorstores` in Langchain using Opensearch in Hopsworks\n",
"3. Create a LLM using model from huggingface\n",
"4. Create a RAG application using `RetrievalQA` chain in Langchain"
@@ -34,7 +34,7 @@
"id": "ba83a905-3944-4bf1-b4d7-43d4336f0beb",
"metadata": {},
"source": [
- "You need to run this [notebook](https://github.com/logicalclocks/hopsworks-tutorials/blob/master/api_examples/hsfs/knn_search/news-search-knn.ipynb) to ingest news data to Hopsworks."
+ "You need to run this [notebook](https://github.com/logicalclocks/hopsworks-tutorials/blob/branch-4.5/api_examples/hsfs/knn_search/news-search-knn.ipynb) to ingest news data to Hopsworks."
]
},
{
diff --git a/integrations/polars/quickstart_polars.ipynb b/integrations/polars/quickstart_polars.ipynb
index 0ce839b5..cf1ff0b1 100644
--- a/integrations/polars/quickstart_polars.ipynb
+++ b/integrations/polars/quickstart_polars.ipynb
@@ -13,7 +13,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "[](https://colab.research.google.com/github/logicalclocks/hopsworks-tutorials/blob/master/quickstart.ipynb)"
+ "[](https://colab.research.google.com/github/logicalclocks/hopsworks-tutorials/blob/branch-4.5/quickstart.ipynb)"
]
},
{
diff --git a/integrations/wandb/1_feature_groups.ipynb b/integrations/wandb/1_feature_groups.ipynb
index 48d07b0d..0a4b75bc 100755
--- a/integrations/wandb/1_feature_groups.ipynb
+++ b/integrations/wandb/1_feature_groups.ipynb
@@ -15,7 +15,7 @@
"source": [
"# Part 01: Load, Engineer & Connect\n",
"\n",
- "[](https://colab.research.google.com/github/logicalclocks/hopsworks-tutorials/blob/master/integrations/wandb/1_feature_groups.ipynb)\n",
+ "[](https://colab.research.google.com/github/logicalclocks/hopsworks-tutorials/blob/branch-4.5/integrations/wandb/1_feature_groups.ipynb)\n",
"\n",
"**Note**: you may get an error when installing hopsworks on Colab, and it is safe to ignore it.\n",
"\n",
@@ -433,7 +433,7 @@
"\n",
"In the following notebook you will use your feature groups to create a dataset you can train a model on.\n",
"\n",
- "[](https://colab.research.google.com/github/logicalclocks/hopsworks-tutorials/blob/master/integrations/wandb/2_feature_view_creation.ipynb)\n"
+ "[](https://colab.research.google.com/github/logicalclocks/hopsworks-tutorials/blob/branch-4.5/integrations/wandb/2_feature_view_creation.ipynb)\n"
]
}
],
diff --git a/integrations/wandb/2_feature_view_creation.ipynb b/integrations/wandb/2_feature_view_creation.ipynb
index 97e00e5b..c37ccc71 100755
--- a/integrations/wandb/2_feature_view_creation.ipynb
+++ b/integrations/wandb/2_feature_view_creation.ipynb
@@ -13,7 +13,7 @@
"source": [
"# Part 02: Training Data & Feature views\n",
"\n",
- "[](https://colab.research.google.com/github/logicalclocks/hopsworks-tutorials/blob/master/integrations/wandb/2_feature_view_creation.ipynb)\n",
+ "[](https://colab.research.google.com/github/logicalclocks/hopsworks-tutorials/blob/branch-4.5/integrations/wandb/2_feature_view_creation.ipynb)\n",
"\n",
"**Note**: you may get an error when installing hopsworks on Colab, and it is safe to ignore it.\n",
"\n",
@@ -195,7 +195,7 @@
"\n",
"In the following notebook, you will train a model on the dataset you created in this notebook.\n",
"\n",
- "[](https://colab.research.google.com/github/logicalclocks/hopsworks-tutorials/blob/master/integrations/wandb/3_model_training.ipynb)\n"
+ "[](https://colab.research.google.com/github/logicalclocks/hopsworks-tutorials/blob/branch-4.5/integrations/wandb/3_model_training.ipynb)\n"
]
}
],
diff --git a/integrations/wandb/3_model_training.ipynb b/integrations/wandb/3_model_training.ipynb
index f37d2481..6803c822 100644
--- a/integrations/wandb/3_model_training.ipynb
+++ b/integrations/wandb/3_model_training.ipynb
@@ -15,7 +15,7 @@
"source": [
"# Part 03: Model training with Weights & Biases & UI Exploration\n",
"\n",
- "[](https://colab.research.google.com/github/logicalclocks/hopsworks-tutorials/blob/master/integrations/wandb/3_model_training.ipynb)\n",
+ "[](https://colab.research.google.com/github/logicalclocks/hopsworks-tutorials/blob/branch-4.5/integrations/wandb/3_model_training.ipynb)\n",
"\n",
"**Note**: you may get an error when installing hopsworks on Colab, and it is safe to ignore it.\n",
"\n",
diff --git a/quickstart.ipynb b/quickstart.ipynb
index f8113b6b..06048aae 100644
--- a/quickstart.ipynb
+++ b/quickstart.ipynb
@@ -1102,7 +1102,7 @@
"provenance": []
},
"kernelspec": {
- "display_name": "Python 3 (ipykernel)",
+ "display_name": "tutorial",
"language": "python",
"name": "python3"
},
@@ -1116,7 +1116,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.12.5"
+ "version": "3.11.13"
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
diff --git a/real-time-ai-systems/fraud_online/1_fraud_online_feature_pipeline.ipynb b/real-time-ai-systems/fraud_online/1_fraud_online_feature_pipeline.ipynb
index c82af3e0..ef906efb 100644
--- a/real-time-ai-systems/fraud_online/1_fraud_online_feature_pipeline.ipynb
+++ b/real-time-ai-systems/fraud_online/1_fraud_online_feature_pipeline.ipynb
@@ -45,7 +45,7 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 1,
"id": "49806257",
"metadata": {},
"outputs": [],
@@ -89,10 +89,67 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 2,
"id": "27f2b52e",
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.