|
| 1 | +// @ts-nocheck |
| 2 | +import OpenAI from 'openai'; |
| 3 | + |
| 4 | +import { AgentRuntime } from '../src'; |
| 5 | +import type { Agent, AgentState, RuntimeContext } from '../src'; |
| 6 | + |
| 7 | +// OpenAI 模型运行时 |
| 8 | +async function* openaiRuntime(payload: any) { |
| 9 | + const openai = new OpenAI({ |
| 10 | + apiKey: process.env.OPENAI_API_KEY || '', |
| 11 | + }); |
| 12 | + |
| 13 | + const { messages, tools } = payload; |
| 14 | + |
| 15 | + const stream = await openai.chat.completions.create({ |
| 16 | + messages, |
| 17 | + model: 'gpt-4.1-mini', |
| 18 | + stream: true, |
| 19 | + tools, |
| 20 | + }); |
| 21 | + |
| 22 | + let content = ''; |
| 23 | + let toolCalls: any[] = []; |
| 24 | + |
| 25 | + for await (const chunk of stream) { |
| 26 | + const delta = chunk.choices[0]?.delta; |
| 27 | + |
| 28 | + if (delta?.content) { |
| 29 | + content += delta.content; |
| 30 | + yield { content: delta.content }; |
| 31 | + } |
| 32 | + |
| 33 | + if (delta?.tool_calls) { |
| 34 | + for (const toolCall of delta.tool_calls) { |
| 35 | + if (!toolCalls[toolCall.index]) { |
| 36 | + toolCalls[toolCall.index] = { |
| 37 | + function: { arguments: '', name: '' }, |
| 38 | + id: toolCall.id, |
| 39 | + type: 'function', |
| 40 | + }; |
| 41 | + } |
| 42 | + if (toolCall.function?.name) { |
| 43 | + toolCalls[toolCall.index].function.name += toolCall.function.name; |
| 44 | + } |
| 45 | + if (toolCall.function?.arguments) { |
| 46 | + toolCalls[toolCall.index].function.arguments += toolCall.function.arguments; |
| 47 | + } |
| 48 | + } |
| 49 | + } |
| 50 | + } |
| 51 | + |
| 52 | + if (toolCalls.length > 0) { |
| 53 | + yield { tool_calls: toolCalls.filter(Boolean) }; |
| 54 | + } |
| 55 | +} |
| 56 | + |
| 57 | +// 简单的 Agent 实现 |
| 58 | +class SimpleAgent implements Agent { |
| 59 | + private conversationState: 'waiting_user' | 'processing_llm' | 'executing_tools' | 'done' = |
| 60 | + 'waiting_user'; |
| 61 | + private pendingToolCalls: any[] = []; |
| 62 | + |
| 63 | + // Agent 拥有自己的模型运行时 |
| 64 | + modelRuntime = openaiRuntime; |
| 65 | + |
| 66 | + // 定义可用工具 |
| 67 | + tools = { |
| 68 | + calculate: async ({ expression }: { expression: string }) => { |
| 69 | + try { |
| 70 | + // 注意:实际应用中应使用安全的数学解析器 |
| 71 | + const result = new Function(`"use strict"; return (${expression})`)(); |
| 72 | + return { expression, result }; |
| 73 | + } catch { |
| 74 | + return { error: 'Invalid expression', expression }; |
| 75 | + } |
| 76 | + }, |
| 77 | + |
| 78 | + get_time: async () => { |
| 79 | + return { |
| 80 | + current_time: new Date().toISOString(), |
| 81 | + formatted_time: new Date().toLocaleString(), |
| 82 | + }; |
| 83 | + }, |
| 84 | + }; |
| 85 | + |
| 86 | + // 获取工具定义 |
| 87 | + private getToolDefinitions() { |
| 88 | + return [ |
| 89 | + { |
| 90 | + function: { |
| 91 | + description: 'Get current date and time', |
| 92 | + name: 'get_time', |
| 93 | + parameters: { properties: {}, type: 'object' }, |
| 94 | + }, |
| 95 | + type: 'function' as const, |
| 96 | + }, |
| 97 | + { |
| 98 | + function: { |
| 99 | + description: 'Calculate mathematical expressions', |
| 100 | + name: 'calculate', |
| 101 | + parameters: { |
| 102 | + properties: { |
| 103 | + expression: { description: 'Math expression', type: 'string' }, |
| 104 | + }, |
| 105 | + required: ['expression'], |
| 106 | + type: 'object', |
| 107 | + }, |
| 108 | + }, |
| 109 | + type: 'function' as const, |
| 110 | + }, |
| 111 | + ]; |
| 112 | + } |
| 113 | + |
| 114 | + // Agent 决策逻辑 - 基于执行阶段和上下文 |
| 115 | + async runner(context: RuntimeContext, state: AgentState) { |
| 116 | + console.log(`[${context.phase}] 对话状态: ${this.conversationState}`); |
| 117 | + |
| 118 | + switch (context.phase) { |
| 119 | + case 'init': { |
| 120 | + // 初始化阶段 |
| 121 | + this.conversationState = 'waiting_user'; |
| 122 | + return { reason: 'No action needed', type: 'finish' as const }; |
| 123 | + } |
| 124 | + |
| 125 | + case 'user_input': { |
| 126 | + // 用户输入阶段 |
| 127 | + const userPayload = context.payload as { isFirstMessage: boolean; message: any }; |
| 128 | + console.log(`👤 用户消息: ${userPayload.message.content}`); |
| 129 | + |
| 130 | + // 只有在等待用户输入状态时才处理 |
| 131 | + if (this.conversationState === 'waiting_user') { |
| 132 | + this.conversationState = 'processing_llm'; |
| 133 | + return { |
| 134 | + payload: { |
| 135 | + messages: state.messages, |
| 136 | + tools: this.getToolDefinitions(), |
| 137 | + }, |
| 138 | + type: 'call_llm' as const, |
| 139 | + }; |
| 140 | + } |
| 141 | + |
| 142 | + // 其他状态下不处理用户输入,结束对话 |
| 143 | + console.log(`⚠️ 忽略用户输入,当前状态: ${this.conversationState}`); |
| 144 | + return { |
| 145 | + reason: `Not in waiting_user state: ${this.conversationState}`, |
| 146 | + type: 'finish' as const, |
| 147 | + }; |
| 148 | + } |
| 149 | + |
| 150 | + case 'llm_result': { |
| 151 | + // LLM 结果阶段,检查是否需要工具调用 |
| 152 | + const llmPayload = context.payload as { hasToolCalls: boolean; result: any }; |
| 153 | + |
| 154 | + // 手动添加 assistant 消息到状态中(修复 Runtime 的问题) |
| 155 | + const assistantMessage: any = { |
| 156 | + content: llmPayload.result.content || null, |
| 157 | + role: 'assistant', |
| 158 | + }; |
| 159 | + |
| 160 | + if (llmPayload.hasToolCalls) { |
| 161 | + const toolCalls = llmPayload.result.tool_calls; |
| 162 | + assistantMessage.tool_calls = toolCalls; |
| 163 | + this.pendingToolCalls = toolCalls; |
| 164 | + this.conversationState = 'executing_tools'; |
| 165 | + |
| 166 | + console.log( |
| 167 | + '🔧 需要执行工具:', |
| 168 | + toolCalls.map((call: any) => call.function.name), |
| 169 | + ); |
| 170 | + |
| 171 | + // 添加包含 tool_calls 的 assistant 消息 |
| 172 | + state.messages.push(assistantMessage); |
| 173 | + |
| 174 | + // 执行第一个工具调用 |
| 175 | + return { |
| 176 | + toolCall: toolCalls[0], |
| 177 | + type: 'call_tool' as const, |
| 178 | + }; |
| 179 | + } |
| 180 | + |
| 181 | + // 没有工具调用,添加普通 assistant 消息 |
| 182 | + state.messages.push(assistantMessage); |
| 183 | + this.conversationState = 'done'; |
| 184 | + return { reason: 'LLM response completed', type: 'finish' as const }; |
| 185 | + } |
| 186 | + |
| 187 | + case 'tool_result': { |
| 188 | + // 工具执行结果阶段 |
| 189 | + const toolPayload = context.payload as { result: any; toolMessage: any }; |
| 190 | + console.log(`🛠️ 工具执行完成: ${JSON.stringify(toolPayload.result)}`); |
| 191 | + |
| 192 | + // 移除已执行的工具 |
| 193 | + this.pendingToolCalls = this.pendingToolCalls.slice(1); |
| 194 | + |
| 195 | + // 如果还有未执行的工具,继续执行 |
| 196 | + if (this.pendingToolCalls.length > 0) { |
| 197 | + return { |
| 198 | + toolCall: this.pendingToolCalls[0], |
| 199 | + type: 'call_tool' as const, |
| 200 | + }; |
| 201 | + } |
| 202 | + |
| 203 | + // 所有工具执行完成,调用 LLM 处理结果 |
| 204 | + this.conversationState = 'processing_llm'; |
| 205 | + return { |
| 206 | + payload: { |
| 207 | + messages: state.messages, |
| 208 | + tools: this.getToolDefinitions(), |
| 209 | + }, |
| 210 | + type: 'call_llm' as const, |
| 211 | + }; |
| 212 | + } |
| 213 | + |
| 214 | + case 'human_response': { |
| 215 | + // 人机交互响应阶段(简化示例中不使用) |
| 216 | + return { reason: 'Human interaction not supported', type: 'finish' as const }; |
| 217 | + } |
| 218 | + |
| 219 | + case 'error': { |
| 220 | + // 错误阶段 |
| 221 | + const errorPayload = context.payload as { error: any }; |
| 222 | + console.error('❌ 错误状态:', errorPayload.error); |
| 223 | + return { reason: 'Error occurred', type: 'finish' as const }; |
| 224 | + } |
| 225 | + |
| 226 | + default: { |
| 227 | + return { reason: 'Unknown phase', type: 'finish' as const }; |
| 228 | + } |
| 229 | + } |
| 230 | + } |
| 231 | +} |
| 232 | + |
| 233 | +// 主函数 |
| 234 | +async function main() { |
| 235 | + console.log('🚀 简单的 OpenAI Tools Agent 示例\n'); |
| 236 | + |
| 237 | + if (!process.env.OPENAI_API_KEY) { |
| 238 | + console.error('❌ 请设置 OPENAI_API_KEY 环境变量'); |
| 239 | + return; |
| 240 | + } |
| 241 | + |
| 242 | + // 创建 Agent 和 Runtime |
| 243 | + const agent = new SimpleAgent(); |
| 244 | + const runtime = new AgentRuntime(agent); // modelRuntime 现在在 Agent 中 |
| 245 | + |
| 246 | + // 测试消息 |
| 247 | + const testMessage = process.argv[2] || 'What time is it? Also calculate 15 * 8 + 7'; |
| 248 | + console.log(`💬 用户: ${testMessage}\n`); |
| 249 | + |
| 250 | + // 创建初始状态 |
| 251 | + let state = AgentRuntime.createInitialState({ |
| 252 | + maxSteps: 10, |
| 253 | + messages: [{ content: testMessage, role: 'user' }], |
| 254 | + sessionId: 'simple-test', |
| 255 | + }); |
| 256 | + |
| 257 | + console.log('🤖 AI: '); |
| 258 | + |
| 259 | + // 执行对话循环 |
| 260 | + let nextContext: RuntimeContext | undefined = undefined; |
| 261 | + |
| 262 | + while (state.status !== 'done' && state.status !== 'error') { |
| 263 | + const result = await runtime.step(state, nextContext); |
| 264 | + |
| 265 | + // 处理事件 |
| 266 | + for (const event of result.events) { |
| 267 | + switch (event.type) { |
| 268 | + case 'llm_stream': { |
| 269 | + if ((event as any).chunk.content) { |
| 270 | + process.stdout.write((event as any).chunk.content); |
| 271 | + } |
| 272 | + break; |
| 273 | + } |
| 274 | + case 'llm_result': { |
| 275 | + if ((event as any).result.tool_calls) { |
| 276 | + console.log('\n\n🔧 需要调用工具...'); |
| 277 | + } |
| 278 | + break; |
| 279 | + } |
| 280 | + case 'tool_result': { |
| 281 | + console.log(`\n🛠️ 工具执行结果:`, event.result); |
| 282 | + console.log('\n🤖 AI: '); |
| 283 | + break; |
| 284 | + } |
| 285 | + case 'done': { |
| 286 | + console.log('\n\n✅ 对话完成'); |
| 287 | + break; |
| 288 | + } |
| 289 | + case 'error': { |
| 290 | + console.error('\n❌ 错误:', event.error); |
| 291 | + break; |
| 292 | + } |
| 293 | + } |
| 294 | + } |
| 295 | + |
| 296 | + state = result.newState; |
| 297 | + nextContext = result.nextContext; // 使用返回的 nextContext |
| 298 | + } |
| 299 | + |
| 300 | + console.log(`\n📊 总共执行了 ${state.stepCount} 个步骤`); |
| 301 | +} |
| 302 | + |
| 303 | +main().catch(console.error); |
0 commit comments