|
1 | | -{ |
2 | | - "ServerApp": { |
3 | | - "jpserver_extensions": { |
4 | | - "notebook": true |
5 | | - } |
6 | | - } |
7 | | -} |
| 1 | +import numpy as np |
| 2 | +from matplotlib import pyplot as pl |
| 3 | +from matplotlib import animation |
| 4 | +from scipy.fft import fft, ifft # modern FFT module |
| 5 | + |
| 6 | +class Schrodinger(object): |
| 7 | + def __init__(self, x, psi_x0, V_x, k0=None, hbar=1, m=1, t0=0.0): |
| 8 | + self.x, psi_x0, self.V_x = map(np.asarray, (x, psi_x0, V_x)) |
| 9 | + N = self.x.size |
| 10 | + assert self.x.shape == (N,) |
| 11 | + assert psi_x0.shape == (N,) |
| 12 | + assert self.V_x.shape == (N,) |
| 13 | + |
| 14 | + self.hbar = hbar |
| 15 | + self.m = m |
| 16 | + self.t = t0 |
| 17 | + self.dt_ = None |
| 18 | + self.N = len(x) |
| 19 | + self.dx = self.x[1] - self.x[0] |
| 20 | + self.dk = 2 * np.pi / (self.N * self.dx) |
| 21 | + |
| 22 | + self.k0 = -0.5 * self.N * self.dk if k0 is None else k0 |
| 23 | + self.k = self.k0 + self.dk * np.arange(self.N) |
| 24 | + |
| 25 | + self._set_psi_x(psi_x0) |
| 26 | + self.compute_k_from_x() |
| 27 | + |
| 28 | + self.x_evolve_half = None |
| 29 | + self.x_evolve = None |
| 30 | + self.k_evolve = None |
| 31 | + |
| 32 | + def _set_psi_x(self, psi_x): |
| 33 | + self.psi_mod_x = (psi_x * np.exp(-1j * self.k[0] * self.x) |
| 34 | + * self.dx / np.sqrt(2 * np.pi)) |
| 35 | + |
| 36 | + def _get_psi_x(self): |
| 37 | + return (self.psi_mod_x * np.exp(1j * self.k[0] * self.x) |
| 38 | + * np.sqrt(2 * np.pi) / self.dx) |
| 39 | + |
| 40 | + def _set_psi_k(self, psi_k): |
| 41 | + self.psi_mod_k = psi_k * np.exp(1j * self.x[0] * self.dk * np.arange(self.N)) |
| 42 | + |
| 43 | + def _get_psi_k(self): |
| 44 | + return self.psi_mod_k * np.exp(-1j * self.x[0] * self.dk * np.arange(self.N)) |
| 45 | + |
| 46 | + def _get_dt(self): |
| 47 | + return self.dt_ |
| 48 | + |
| 49 | + def _set_dt(self, dt): |
| 50 | + if dt != self.dt_: |
| 51 | + self.dt_ = dt |
| 52 | + self.x_evolve_half = np.exp(-0.5j * self.V_x / self.hbar * dt) |
| 53 | + self.x_evolve = self.x_evolve_half * self.x_evolve_half |
| 54 | + self.k_evolve = np.exp(-0.5j * self.hbar / self.m * (self.k ** 2) * dt) |
| 55 | + |
| 56 | + psi_x = property(_get_psi_x, _set_psi_x) |
| 57 | + psi_k = property(_get_psi_k, _set_psi_k) |
| 58 | + dt = property(_get_dt, _set_dt) |
| 59 | + |
| 60 | + def compute_k_from_x(self): |
| 61 | + self.psi_mod_k = fft(self.psi_mod_x) |
| 62 | + |
| 63 | + def compute_x_from_k(self): |
| 64 | + self.psi_mod_x = ifft(self.psi_mod_k) |
| 65 | + |
| 66 | + def time_step(self, dt, Nsteps=1): |
| 67 | + self.dt = dt |
| 68 | + if Nsteps > 0: |
| 69 | + self.psi_mod_x *= self.x_evolve_half |
| 70 | + |
| 71 | + for _ in range(Nsteps - 1): |
| 72 | + self.compute_k_from_x() |
| 73 | + self.psi_mod_k *= self.k_evolve |
| 74 | + self.compute_x_from_k() |
| 75 | + self.psi_mod_x *= self.x_evolve |
| 76 | + |
| 77 | + self.compute_k_from_x() |
| 78 | + self.psi_mod_k *= self.k_evolve |
| 79 | + self.compute_x_from_k() |
| 80 | + self.psi_mod_x *= self.x_evolve_half |
| 81 | + self.compute_k_from_x() |
| 82 | + self.t += dt * Nsteps |
| 83 | + |
| 84 | +# Gaussian wave packet |
| 85 | +def gauss_x(x, a, x0, k0): |
| 86 | + return ((a * np.sqrt(np.pi)) ** -0.5) * np.exp(-0.5 * ((x - x0) / a) ** 2 + 1j * x * k0) |
| 87 | + |
| 88 | +# Square barrier potential |
| 89 | +def theta(x): |
| 90 | + x = np.asarray(x) |
| 91 | + y = np.zeros(x.shape) |
| 92 | + y[x > 0] = 1.0 |
| 93 | + return y |
| 94 | + |
| 95 | +def square_barrier(x, width, height): |
| 96 | + return height * (theta(x) - theta(x - width)) |
| 97 | + |
| 98 | +# Simulation parameters |
| 99 | +dt = 0.01 |
| 100 | +N_steps = 50 |
| 101 | +t_max = 120 |
| 102 | +frames = int(t_max / float(N_steps * dt)) |
| 103 | + |
| 104 | +hbar = 1.0 |
| 105 | +m = 1.9 |
| 106 | + |
| 107 | +N = 2 ** 11 |
| 108 | +dx = 0.1 |
| 109 | +x = dx * (np.arange(N) - 0.5 * N) |
| 110 | + |
| 111 | +V0 = 1.5 |
| 112 | +L = hbar / np.sqrt(2 * m * V0) |
| 113 | +a = 3 * L |
| 114 | +x0 = -60 * L |
| 115 | +V_x = square_barrier(x, a, V0) |
| 116 | +V_x[x < -98] = 1E6 |
| 117 | +V_x[x > 98] = 1E6 |
| 118 | + |
| 119 | +p0 = np.sqrt(2 * m * 0.2 * V0) |
| 120 | +dp2 = p0 ** 2 / 80 |
| 121 | +d = hbar / np.sqrt(2 * dp2) |
| 122 | + |
| 123 | +k0 = p0 / hbar |
| 124 | +v0 = p0 / m |
| 125 | +psi_x0 = gauss_x(x, d, x0, k0) |
| 126 | + |
| 127 | +S = Schrodinger(x=x, psi_x0=psi_x0, V_x=V_x, hbar=hbar, m=m, k0=-28) |
| 128 | + |
| 129 | +# Plotting setup |
| 130 | +fig = pl.figure() |
| 131 | +xlim = (-100, 100) |
| 132 | +klim = (-5, 5) |
| 133 | + |
| 134 | +ax1 = fig.add_subplot(211, xlim=xlim, ylim=(-0.2 * V0, 1.2 * V0)) |
| 135 | +psi_x_line, = ax1.plot([], [], c='r', label=r'$|\psi(x)|$') |
| 136 | +V_x_line, = ax1.plot([], [], c='k', label=r'$V(x)$') |
| 137 | +center_line = ax1.axvline(0, c='k', ls=':', label=r"$x_0 + v_0t$") |
| 138 | +title = ax1.set_title("") |
| 139 | +ax1.legend(prop=dict(size=12)) |
| 140 | +ax1.set_xlabel('$x$') |
| 141 | +ax1.set_ylabel(r'$|\psi(x)|$') |
| 142 | + |
| 143 | +ymin = abs(S.psi_k).min() |
| 144 | +ymax = abs(S.psi_k).max() |
| 145 | +ax2 = fig.add_subplot(212, xlim=klim, ylim=(ymin - 0.2 * (ymax - ymin), ymax + 0.2 * (ymax - ymin))) |
| 146 | +psi_k_line, = ax2.plot([], [], c='r', label=r'$|\psi(k)|$') |
| 147 | +ax2.axvline(-p0 / hbar, c='k', ls=':', label=r'$\pm p_0$') |
| 148 | +ax2.axvline(p0 / hbar, c='k', ls=':') |
| 149 | +ax2.axvline(np.sqrt(2 * V0) / hbar, c='k', ls='--', label=r'$\sqrt{2mV_0}$') |
| 150 | +ax2.legend(prop=dict(size=12)) |
| 151 | +ax2.set_xlabel('$k$') |
| 152 | +ax2.set_ylabel(r'$|\psi(k)|$') |
| 153 | + |
| 154 | +V_x_line.set_data(S.x, S.V_x) |
| 155 | + |
| 156 | +# Animation functions |
| 157 | +def init(): |
| 158 | + psi_x_line.set_data([], []) |
| 159 | + V_x_line.set_data([], []) |
| 160 | + center_line.set_data([], []) |
| 161 | + psi_k_line.set_data([], []) |
| 162 | + title.set_text("") |
| 163 | + return (psi_x_line, V_x_line, center_line, psi_k_line, title) |
| 164 | + |
| 165 | +def animate(i): |
| 166 | + S.time_step(dt, N_steps) |
| 167 | + psi_x_line.set_data(S.x, 4 * abs(S.psi_x)) |
| 168 | + V_x_line.set_data(S.x, S.V_x) |
| 169 | + center_line.set_data([x0 + S.t * p0 / m] * 2, [0, 1]) |
| 170 | + psi_k_line.set_data(S.k, abs(S.psi_k)) |
| 171 | + title.set_text("t = %.2f" % S.t) |
| 172 | + return (psi_x_line, V_x_line, center_line, psi_k_line, title) |
| 173 | + |
| 174 | +anim = animation.FuncAnimation(fig, animate, init_func=init, |
| 175 | + frames=frames, interval=30, blit=True) |
| 176 | + |
| 177 | +pl.show() |
0 commit comments