๐ [Paper Link (IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 2025)]
๐ [Paper Link (The IEEE/CVF Winter Conference on Applications of Computer Vision 2025)]
Authors:
Hongcheng Jiang
Zhiqiang Chen
The goal is to reconstruct a high-resolution hyperspectral image (HR-HSI) by fusing a low-resolution hyperspectral image (LR-HSI) and a high-resolution panchromatic image (HR-PCI). Unlike conventional methods that rely on paired HR-HSI ground truth, uTDSP is entirely unsupervised, leveraging spectral priors and a transformer-based diffusion model to guide the reconstruction process.
- ๐ฏ Unsupervised Learning: Learns directly from LR-HSI and HR-PCI without requiring any ground-truth HR-HSI.
- ๐ Spectral Diffusion Process: Incorporates a transformer-based denoiser within a diffusion framework.
- ๐งฉ Spectral Prior Integration: Enforces spectral consistency using priors extracted from the LR-HSI.
- โ๏ธ Adaptive Loss Balancing: Combines spectral fidelity loss and diffusion consistency for robust reconstruction.
- ๐ SOTA Results: Achieves superior performance across multiple benchmark datasets.
uTDSP achieves consistent PSNR improvements across diverse airborne and satellite datasets, outperforming both supervised and unsupervised baselines.
-
Chikusei
- uTDSP: 26.86 dB
- Best prior method (DDLPS*): 26.85 dB
- ๐บ +0.01 dB (+0.04%)
-
Indian Pines
- uTDSP: 25.79 dB
- Best prior method (DIP-HyperKite): 25.15 dB
- ๐บ +0.64 dB (+2.54%)
-
PaviaC
- uTDSP: 28.53 dB
- Best prior method (DDLPS*): 27.52 dB
- ๐บ +1.01 dB (+3.67%)
-
PaviaU
- uTDSP: 30.68 dB
- Best prior method (GPPNN): 29.86 dB
- ๐บ +0.82 dB (+2.75%)
-
Botswana
- uTDSP: 31.61 dB
- Best prior method (DIP-HyperKite): 30.24 dB
- ๐บ +1.37 dB (+4.53%)
-
ZY1-02D
- uTDSP: 31.22 dB
- Best prior method (SFIM*): 28.23 dB
- ๐บ +2.99 dB (+10.59%)
uTDSP consistently improves PSNR by:
- +0.01โ1.01 dB (up to +3.7%) on airborne datasets
- +1.37โ2.99 dB (up to +10.6%) on satellite datasets
These results confirm uTDSPโs strong generalization and superior reconstruction quality across sensing platformsโall achieved without supervision.
The following plots illustrate the PSNR values for each spectral band across six benchmark datasets, highlighting the spectral fidelity of uTDSP compared to existing methods.
Metrics: PSNR โ (higher is better), SAM โ, ERGAS โ
( denotes an unsupervised method)*
| Method | PSNR | SAM | ERGAS |
|---|---|---|---|
| DBDENet | 25.02 | 6.5243 | 4.2316 |
| DHP-DARN | 25.24 | 6.0044 | 3.9208 |
| DIP-HyperKite | 25.63 | 5.4180 | 3.7059 |
| DMLD-Net | 25.28 | 6.9856 | 4.1170 |
| GPPNN | 25.17 | 6.5704 | 4.1423 |
| HyperPNN | 25.34 | 5.7174 | 3.8096 |
| DDLPS* | 26.85 | 5.3557 | 3.7616 |
| GSA* | 24.21 | 6.2670 | 5.3903 |
| Indusion* | 22.29 | 5.4171 | 5.0367 |
| PLRDiff* | 26.18 | 6.3831 | 3.5699 |
| SFIM* | 25.54 | 5.4171 | 4.0868 |
| uTDSP* | 26.86 | 5.9152 | 3.3178 |
| Method | PSNR | SAM | ERGAS |
|---|---|---|---|
| DBDENet | 23.66 | 3.4962 | 1.6389 |
| DHP-DARN | 23.97 | 3.6511 | 2.1060 |
| DIP-HyperKite | 25.15 | 3.6619 | 1.4592 |
| DMLD-Net | 24.03 | 3.9927 | 1.7721 |
| GPPNN | 24.80 | 4.4834 | 1.5553 |
| HyperPNN | 24.60 | 3.8811 | 1.5532 |
| DDLPS* | 17.72 | 4.5282 | 10.0461 |
| GSA* | 20.44 | 4.0885 | 5.0318 |
| Indusion* | 4.83 | 3.8504 | 14.8366 |
| PLRDiff* | 8.10 | 10.6969 | 19.8362 |
| SFIM* | 24.42 | 3.8504 | 1.5483 |
| uTDSP* | 25.79 | 3.5621 | 1.2763 |
| Method | PSNR | SAM | ERGAS |
|---|---|---|---|
| DBDENet | 23.63 | 18.5981 | 6.7944 |
| DHP-DARN | 26.70 | 12.4018 | 4.7917 |
| DIP-HyperKite | 26.48 | 12.5846 | 4.9198 |
| DMLD-Net | 26.03 | 16.8061 | 5.1832 |
| GPPNN | 27.37 | 11.2643 | 4.4916 |
| HyperPNN | 26.10 | 17.5919 | 5.1762 |
| DDLPS* | 27.52 | 10.1478 | 4.3781 |
| GSA* | 25.30 | 10.4678 | 5.6518 |
| Indusion* | 25.84 | 10.4645 | 5.8683 |
| PLRDiff* | 27.39 | 11.6904 | 4.6245 |
| SFIM* | 24.99 | 10.4488 | 5.9011 |
| uTDSP* | 28.53 | 10.4176 | 4.2664 |
| Method | PSNR | SAM | ERGAS |
|---|---|---|---|
| DBDENet | 28.84 | 6.5032 | 2.7593 |
| DHP-DARN | 29.27 | 6.8826 | 2.5350 |
| DIP-HyperKite | 29.30 | 6.0972 | 2.5114 |
| DMLD-Net | 28.66 | 6.8624 | 2.7985 |
| GPPNN | 29.86 | 6.0788 | 2.4812 |
| HyperPNN | 28.96 | 6.7555 | 2.6472 |
| DDLPS* | 27.81 | 7.1405 | 4.3781 |
| GSA* | 26.47 | 7.2522 | 2.9323 |
| Indusion* | 25.82 | 7.8229 | 4.1539 |
| PLRDiff* | 28.57 | 7.5217 | 2.9453 |
| SFIM* | 25.66 | 7.8229 | 3.8125 |
| uTDSP* | 30.68 | 6.8019 | 2.4660 |
Metrics: PSNR โ (higher is better), SAM โ, ERGAS โ
( denotes an unsupervised method)*
| Method | PSNR | SAM | ERGAS |
|---|---|---|---|
| DBDENet | 22.84 | 8.5207 | 11.3979 |
| DHP-DARN | 28.85 | 4.9084 | 2.8164 |
| DIP-HyperKite | 30.24 | 4.8305 | 2.1305 |
| DMLD-Net | 26.87 | 6.5379 | 3.7552 |
| GPPNN | 26.44 | 8.6439 | 3.8965 |
| HyperPNN | 29.83 | 4.9803 | 2.2254 |
| DDLPS* | 22.27 | 6.9539 | 17.5198 |
| GSA* | 23.80 | 6.2035 | 11.6626 |
| Indusion* | 15.30 | 5.4225 | 9.7633 |
| PLRDiff* | 17.84 | 15.1475 | 9.0164 |
| SFIM* | 26.81 | 5.4225 | 2.7995 |
| uTDSP* | 31.61 | 3.7777 | 1.9155 |
| Method | PSNR | SAM | ERGAS |
|---|---|---|---|
| DBDENet | 11.39 | 22.3445 | 29.8753 |
| DHP-DARN | 14.71 | 7.9514 | 24.0358 |
| DIP-HyperKite | 19.73 | 2.1563 | 3.8904 |
| DMLD-Net | 13.41 | 13.4045 | 11.3059 |
| GPPNN | 14.35 | 12.1717 | 10.6018 |
| HyperPNN | 19.42 | 2.7872 | 5.5515 |
| DDLPS* | 26.03 | 1.8212 | 5.0919 |
| GSA* | 16.60 | 4.5868 | 20.0515 |
| Indusion* | 14.53 | 1.7358 | 6.7524 |
| PLRDiff* | 26.77 | 2.5636 | 2.7032 |
| SFIM* | 28.23 | 1.7358 | 1.6604 |
| uTDSP* | 31.22 | 1.7466 | 1.6917 |
If you find this work helpful in your research, please cite:
@ARTICLE{11085108,
author={Jiang, Hongcheng and Chen, ZhiQiang},
journal={IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing},
title={Transformer-based Diffusion and Spectral Priors Model For Hyperspectral Pansharpening},
year={2025},
volume={},
number={},
pages={1-17},
keywords={Hyperspectral imaging;Pansharpening;Diffusion models;Transformers;Estimation;Bayes methods;Noise reduction;Image reconstruction;Earth;Degradation;Hyperspectral imaging;pansharpening;spectral priors;diffusion model;transformer;remote sensing},
doi={10.1109/JSTARS.2025.3590685}}
@inproceedings{jiang2025hyperspectral,
title={Hyperspectral Pansharpening with Transformer-Based Spectral Diffusion Priors},
author={Jiang, Hongcheng and Chen, ZhiQiang},
booktitle={Proceedings of the Winter Conference on Applications of Computer Vision},
pages={581--590},
year={2025}
}If you have any questions, feedback, or collaboration ideas, feel free to reach out:
- ๐ป Website: jianghongcheng.github.io
- ๐ง Email: [email protected]
- ๐ซ Affiliation: University of MissouriโKansas City (UMKC)









