diff --git a/.gitignore b/.gitignore index 44886843..c339bf9f 100644 --- a/.gitignore +++ b/.gitignore @@ -45,3 +45,5 @@ bench/timing.pkl config Untitled*.ipynb .venv* +fort.* +.timer.out diff --git a/examples/compare_models.ipynb b/examples/compare_models.ipynb index 6c0bd60c..8020c0a0 100644 --- a/examples/compare_models.ipynb +++ b/examples/compare_models.ipynb @@ -16,6 +16,16 @@ "execution_count": 1, "metadata": {}, "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "import boost_histogram as bh\n", @@ -26,12 +36,13 @@ "\n", "from chromo.constants import GeV\n", "from chromo.kinematics import CenterOfMass\n", - "import chromo.models as im" + "import chromo.models as im\n", + "from chromo.models.fluka import Fluka" ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -51,7 +62,16 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "m = Fluka(ekin)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -59,191 +79,63 @@ "output_type": "stream", "text": [ " ====================================================\n", - " ====================================================\n", - " | |\n", - " | |\n", - " | S I B Y L L 2.1 |\n", - " | QUARK GLUON STRING JET MODEL |\n", " | |\n", + " | S I B Y L L 2.3e |\n", " | |\n", " | HADRONIC INTERACTION MONTE CARLO |\n", - " | HADRONIC INTERACTION MONTE CARLO |\n", - " | BY |\n", " | BY |\n", - " | N.N. KALMYKOV AND S.S. OSTAPCHENKO |\n", - " | Ralph ENGEL |\n", - " | |\n", - " | R.S. FLETCHER, T.K. GAISSER |\n", - " | e-mail: serg@eas.npi.msu.su |\n", - " | P. LIPARI, T. STANEV |\n", - " | |\n", + " | Eun-Joo AHN, Felix RIEHN |\n", + " | R. ENGEL, A. FEDYNITCH, R.S. FLETCHER, |\n", + " | T.K. GAISSER, P. LIPARI, T. STANEV |\n", " | |\n", " | Publication to be cited when using this program: |\n", - " | Publication to be cited when using this program: |\n", - " | N.N. Kalmykov & S.S. Ostapchenko, A.I. Pavlov |\n", - " | R. Engel et al., Proc. 26th ICRC, 1 (1999) 415 |\n", - " | Nucl. Phys. B (Proc. Suppl.) 52B (1997) 17 |\n", - " | |\n", - " | |\n", - " | last modified: 28. Sept. 2001 by R. Engel |\n", - " | last modification: Jan. 30, 2013 by T. Pierog |\n", - " | (version qgsjet01d.f) |\n", - " ====================================================\n", + " | Eun-Joo AHN et al., Phys.Rev. D80 (2009) 094003 |\n", + " | F. RIEHN et al., Phys.Rev. D102 (2020) 063002 |\n", + " | last modifications: F. Riehn (02/04/2025) |\n", " ====================================================\n", "\n", - "\n", " ====================================================\n", " | |\n", - " | QUARK GLUON STRING JET -II MODEL |\n", + " | S I B Y L L 2.1 |\n", " | |\n", " | HADRONIC INTERACTION MONTE CARLO |\n", " | BY |\n", - " | S. OSTAPCHENKO |\n", - " | |\n", - " | e-mail: sergei@tf.phys.ntnu.no |\n", - " | |\n", - " | Version II-04 |\n", + " | Ralph ENGEL |\n", + " | R.S. FLETCHER, T.K. GAISSER |\n", + " | P. LIPARI, T. STANEV |\n", " | |\n", " | Publication to be cited when using this program: |\n", - " | S.Ostapchenko, PRD 83 (2011) 014018 |\n", - " | |\n", - " | last modification: 09.04.2013 |\n", + " | R. Engel et al., Proc. 26th ICRC, 1 (1999) 415 |\n", " | |\n", - " | Any modification has to be approved by the author|\n", + " | last modified: 28. Sept. 2001 by R. Engel |\n", " ====================================================\n", "\n", "\n", " Table: J, sqs, PT_cut, SIG_tot, SIG_inel, B_el, rho, , \n", " ------------------------------------------------------------------------\n", - " ====================================================\n", - " | |\n", - " | S I B Y L L 2.3d |\n", - " | |\n", - " | HADRONIC INTERACTION MONTE CARLO |\n", - " | BY |\n", - " | Eun-Joo AHN, Felix RIEHN |\n", - " | R. ENGEL, A. FEDYNITCH, R.S. FLETCHER, |\n", - " | T.K. GAISSER, P. LIPARI, T. STANEV |\n", - " | |\n", - " | Publication to be cited when using this program: |\n", - " | Eun-Joo AHN et al., Phys.Rev. D80 (2009) 094003 |\n", - " | F. RIEHN et al., hep-ph: 1912.03300 |\n", - " | last modifications: F. Riehn (05/20/2020) |\n", - " ====================================================\n", - "\n", - "1 \n", - " ******************************************************************************\n", - " ******************************************************************************\n", - " ** **\n", - " ** **\n", - " ** *......* Welcome to the Lund Monte Carlo! **\n", - " ** *:::!!:::::::::::* **\n", - " ** *::::::!!::::::::::::::* PPP Y Y TTTTT H H III A **\n", - " ** *::::::::!!::::::::::::::::* P P Y Y T H H I A A **\n", - " ** *:::::::::!!:::::::::::::::::* PPP Y T HHHHH I AAAAA **\n", - " ** *:::::::::!!:::::::::::::::::* P Y T H H I A A **\n", - " ** *::::::::!!::::::::::::::::*! P Y T H H III A A **\n", - " ** *::::::!!::::::::::::::* !! **\n", - " ** !! *:::!!:::::::::::* !! This is PYTHIA version 6.428 **\n", - " ** !! !* -><- * !! Last date of change: 5 Sep 2013 **\n", - " ** !! !! !! **\n", - " ** !! !! !! Now is 0 Jan 2000 at 0:00:00 **\n", - " ** !! !! **\n", - " ** !! lh !! Disclaimer: this program comes **\n", - " ** !! !! without any guarantees. Beware **\n", - " ** !! hh !! of errors and use common sense **\n", - " ** !! ll !! when interpreting results. **\n", - " ** !! !! **\n", - " ** !! Copyright T. Sjostrand (2011) **\n", - " ** **\n", - " ** An archive of program versions and documentation is found on the web: **\n", - " ** http://www.thep.lu.se/~torbjorn/Pythia.html **\n", - " ** **\n", - " ** When you cite this program, the official reference is to the 6.4 manual: **\n", - " ** T. Sjostrand, S. Mrenna and P. Skands, JHEP05 (2006) 026 **\n", - " ** (LU TP 06-13, FERMILAB-PUB-06-052-CD-T) [hep-ph/0603175]. **\n", - " ** **\n", - " ** Also remember that the program, to a large extent, represents original **\n", - " ** physics research. Other publications of special relevance to your **\n", - " ** studies may therefore deserve separate mention. **\n", - " ** **\n", - " ** Main author: Torbjorn Sjostrand; Department of Theoretical Physics, **\n", - " ** Lund University, Solvegatan 14A, S-223 62 Lund, Sweden; **\n", - " ** phone: + 46 - 46 - 222 48 16; e-mail: torbjorn@thep.lu.se **\n", - " ** Author: Stephen Mrenna; Computing Division, GDS Group, **\n", - " ** Fermi National Accelerator Laboratory, MS 234, Batavia, IL 60510, USA; **\n", - " ** phone: + 1 - 630 - 840 - 2556; e-mail: mrenna@fnal.gov **\n", - " ** Author: Peter Skands; CERN/PH-TH, CH-1211 Geneva, Switzerland **\n", - " ** phone: + 41 - 22 - 767 24 47; e-mail: peter.skands@cern.ch **\n", - " ** **\n", - " ** **\n", - " ******************************************************************************\n", - " ******************************************************************************\n", - "1****************** PYINIT: initialization of PYTHIA routines *****************\n", - " DATDIR/Users/anatoli/devel_mac/impy/src/chromo/iamdata/qgsjet/ \n", - " qgaini: cross sections readout from the file: qgsdat-II-04\n", " 1 1.000E+01 1.45 38.33 30.88 10.83 -0.185 1.964 0.003\n", " 1 1.259E+01 1.49 38.27 31.16 11.10 -0.127 1.949 0.006\n", " 1 1.585E+01 1.54 38.44 31.54 11.36 -0.078 1.934 0.012\n", - "###################################################################\n", - "# EPOS LHC K. WERNER, T. PIEROG #\n", - "# Contact: tanguy.pierog@kit.edu #\n", - "###################################################################\n", - "# WARNING: This is a special retuned version !!! #\n", - "# Do not publish results without contacting the authors. #\n", - "###################################################################\n", " 1 1.995E+01 1.59 38.84 32.05 11.63 -0.037 1.918 0.019\n", " 1 2.512E+01 1.64 39.46 32.67 11.89 -0.004 1.901 0.029\n", - "\n", - " ==============================================================================\n", - " I I\n", - " I PYTHIA will be initialized for a p on p collider I\n", - " I at 100.000 GeV center-of-mass energy I\n", - " I I\n", - " ==============================================================================\n", " 1 3.162E+01 1.69 40.29 33.41 12.16 0.022 1.884 0.043\n", " 1 3.981E+01 1.75 41.28 34.24 12.42 0.044 1.864 0.060\n", - "\n", - " ******** PYMAXI: summary of differential cross-section maximum search ********\n", - "\n", - " ==========================================================\n", - " I I I\n", - " I ISUB Subprocess name I Maximum value I\n", - " I I I\n", - " ==========================================================\n", - " I I I\n", - " I 92 Single diffractive (XB) I 4.5788D+00 I\n", - " I 93 Single diffractive (AX) I 4.5788D+00 I\n", - " I 94 Double diffractive I 3.6664D+00 I\n", - " I 95 Low-pT scattering I 2.5469D+01 I\n", - " I 96 Semihard QCD 2 -> 2 I 3.0139D+03 I\n", - " I I I\n", - " ==========================================================\n", " 1 5.012E+01 1.81 42.39 35.13 12.69 0.061 1.844 0.082\n", - "\n", - " ****** PYMULT: initialization of multiple interactions for MSTP(82) = 4 ******\n", " 1 6.310E+01 1.87 43.59 36.05 12.95 0.075 1.821 0.109\n", " 1 7.943E+01 1.93 44.92 37.06 13.22 0.085 1.797 0.141\n", " 1 1.000E+02 2.00 46.35 38.14 13.48 0.094 1.771 0.180\n", " 1 1.259E+02 2.07 47.84 39.28 13.73 0.101 1.742 0.226\n", " 1 1.585E+02 2.14 49.39 40.48 13.98 0.106 1.711 0.279\n", " 1 1.995E+02 2.22 51.05 41.74 14.24 0.110 1.677 0.342\n", - " pT0 = 0.97 GeV gives sigma(parton-parton) = 1.16D+02 mb: accepted\n", " 1 2.512E+02 2.30 52.84 43.09 14.50 0.113 1.641 0.413\n", - "\n", - " ****** PYMIGN: initialization of multiple interactions for MSTP(82) = 4 ******\n", " 1 3.162E+02 2.38 54.79 44.56 14.77 0.116 1.603 0.495\n", " 1 3.981E+02 2.46 56.96 46.16 15.05 0.118 1.563 0.587\n", " 1 5.012E+02 2.55 59.39 47.94 15.33 0.119 1.522 0.691\n", " 1 6.310E+02 2.65 62.15 49.92 15.63 0.120 1.479 0.808\n", " 1 7.943E+02 2.74 65.29 52.14 15.95 0.121 1.435 0.938\n", " 1 1.000E+03 2.84 68.88 54.63 16.28 0.122 1.391 1.081\n", - " pT0 = 0.97 GeV gives sigma(parton-parton) = 1.06D+02 mb: accepted\n", - "\n", - " ********************** PYINIT: initialization completed **********************\n", " 1 1.259E+03 2.95 72.53 57.06 16.61 0.123 1.347 1.240\n", " 1 1.585E+03 3.06 76.46 59.64 16.96 0.123 1.303 1.416\n", - "read from /Users/anatoli/devel_mac/impy/src/chromo/iamdata/epos/epos.iniev ...\n", " 1 1.995E+03 3.17 80.67 62.36 17.32 0.123 1.259 1.609\n", " 1 2.512E+03 3.29 85.17 65.23 17.70 0.124 1.216 1.822\n", " 1 3.162E+03 3.41 89.95 68.24 18.10 0.124 1.175 2.055\n", @@ -276,7 +168,6 @@ " 1 1.585E+06 8.97 294.03 183.68 36.36 0.125 0.307 8.590\n", " 1 1.995E+06 9.28 303.40 188.80 37.27 0.125 0.290 8.663\n", " 1 2.512E+06 9.61 312.87 193.97 38.18 0.125 0.274 8.735\n", - "read from /Users/anatoli/devel_mac/impy/src/chromo/iamdata/epos/epos.initl ...\n", " 1 3.162E+06 9.94 322.42 199.18 39.11 0.125 0.259 8.808\n", " 1 3.981E+06 10.29 332.06 204.43 40.05 0.125 0.246 8.882\n", " 1 5.012E+06 10.64 341.79 209.72 41.00 0.125 0.233 8.957\n", @@ -368,7 +259,6 @@ " 3 3.162E+02 2.38 30.68 26.34 11.51 0.122 1.288 0.690\n", " 3 3.981E+02 2.46 32.25 27.48 11.61 0.123 1.236 0.798\n", " 3 5.012E+02 2.55 34.17 28.86 11.73 0.123 1.184 0.916\n", - "read from /Users/anatoli/devel_mac/impy/src/chromo/iamdata/epos/epos.inirj.lhc ...\n", " 3 6.310E+02 2.65 36.58 30.57 11.90 0.123 1.132 1.044\n", " 3 7.943E+02 2.74 39.60 32.72 12.12 0.124 1.082 1.183\n", " 3 1.000E+03 2.84 43.42 35.40 12.41 0.124 1.033 1.333\n", @@ -412,53 +302,6 @@ " 3 6.310E+06 11.00 267.28 174.01 36.76 0.125 0.140 8.687\n", " 3 7.943E+06 11.38 275.24 178.72 37.64 0.125 0.133 8.756\n", " 3 1.000E+07 11.77 283.28 183.48 38.54 0.125 0.126 8.819\n", - "read from /Users/anatoli/devel_mac/impy/src/chromo/iamdata/epos/epos.inics.lhc ...\n", - " Compute Cross-section (can take a while...)\n", - "\n", - " *------------------------------------------------------------------------------------* \n", - " | | \n", - " | *------------------------------------------------------------------------------* | \n", - " | | | | \n", - " | | | | \n", - " | | PPP Y Y TTTTT H H III A Welcome to the Lund Monte Carlo! | | \n", - " | | P P Y Y T H H I A A This is PYTHIA version 8.308 | | \n", - " | | PPP Y T HHHHH I AAAAA Last date of change: 16 Nov 2022 | | \n", - " | | P Y T H H I A A | | \n", - " | | P Y T H H III A A Now is 16 Jan 2023 at 19:22:29 | | \n", - " | | | | \n", - " | | Program documentation and an archive of historic versions is found on: | | \n", - " | | | | \n", - " | | https://pythia.org/ | | \n", - " | | | | \n", - " | | PYTHIA is authored by a collaboration consisting of: | | \n", - " | | | | \n", - " | | Christian Bierlich, Nishita Desai, Leif Gellersen, Ilkka Helenius, Philip | | \n", - " | | Ilten, Leif Lonnblad, Stephen Mrenna, Stefan Prestel, Christian Preuss, | | \n", - " | | Torbjorn Sjostrand, Peter Skands, Marius Utheim and Rob Verheyen. | | \n", - " | | | | \n", - " | | The complete list of authors, including contact information and | | \n", - " | | affiliations, can be found on https://pythia.org/. | | \n", - " | | Problems or bugs should be reported on email at authors@pythia.org. | | \n", - " | | | | \n", - " | | The main program reference is C. Bierlich et al, | | \n", - " | | 'A comprehensive guide to the physics and usage of Pythia 8.3', | | \n", - " | | SciPost Phys. Codebases 8-r8.3 (2022) [arXiv:2203.11601 [hep-ph]] | | \n", - " | | | | \n", - " | | PYTHIA is released under the GNU General Public Licence version 2 or later.| | \n", - " | | Please respect the MCnet Guidelines for Event Generator Authors and Users. | | \n", - " | | | | \n", - " | | Disclaimer: this program comes without any guarantees. | | \n", - " | | Beware of errors and use common sense when interpreting results. | | \n", - " | | | | \n", - " | | Copyright (C) 2022 Torbjorn Sjostrand | | \n", - " | | | | \n", - " | | | | \n", - " | *------------------------------------------------------------------------------* | \n", - " | | \n", - " *------------------------------------------------------------------------------------* \n", - "\n", - "seedj: 1 0.2000000000000000D+01\n", - " EPOS used with FUSION option\n", " SIG_AIR_INI: initializing target: (i,A) 1 0 air..\n" ] }, @@ -466,9 +309,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/Users/anatoli/devel_mac/impy/src/chromo/models/qgsjet.py:58: RuntimeWarning: stable particles cannot be changed in QGSJet01d\n", - " warnings.warn(\n", - " 65%|██████▌ | 6533/10000 [00:00<00:00, 16427.42it/s]" + " 13%|█▎ | 1292/10000 [00:00<00:01, 6461.04it/s]" ] }, { @@ -483,30 +324,17 @@ "name": "stderr", "output_type": "stream", "text": [ - "100%|██████████| 10000/10000 [00:00<00:00, 16074.28it/s]\n", - "100%|██████████| 10000/10000 [00:00<00:00, 15248.11it/s]\n", - "100%|██████████| 10000/10000 [00:00<00:00, 13373.54it/s]\n", - "100%|██████████| 10000/10000 [00:02<00:00, 3748.47it/s]\n", - " 26%|██▋ | 2649/10000 [00:03<00:08, 827.20it/s] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " done\n", - " qgaini: nuclear cross sections readout from the file sectnu-II-04\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/anatoli/devel_mac/impy/src/chromo/models/qgsjet.py:58: RuntimeWarning: stable particles cannot be changed in QGSJetII04\n", + " 0%| | 0/10000 [00:00" ] @@ -595,12 +424,12 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 7, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABHwAAAKNCAYAAABSlnypAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hUZfbA8e/UZNJ7hZDQi1IsNAuoILKIvWAlItgQF9kfKKiIiqKoiCXCKgoW7AUVRRAUAQURpCi9l5Dey/SZ3x9ZopeZhASSaTmf5/HZnXtuORMyb+ae+xaV0+l0IoQQQgghhBBCCCEChtrbCQghhBBCCCGEEEKIpiUFHyGEEEIIIYQQQogAIwUfIYQQQgghhBBCiAAjBR8hhBBCCCGEEEKIACMFHyGEEEIIIYQQQogAIwUfIYQQQgghhBBCiAAjBR8hhBBCCCGEEEKIACMFHyGEEEIIIYQQQogAIwUf4XcKCgoYNmwYoaGhdOrUiRUrVng7JSGEEEIIIYQQwqdIwUf4nbFjx5KUlERBQQHPP/88N9xwA8XFxd5OSwgRoDIzM1mwYIG30xBCCCGEaDLy/aZlkIKP8CuVlZUsWrSIJ554gpCQEK644grOPPNMvvrqK2+nJoQQQgghhBBC+Awp+Ai/smfPHsLCwmjVqlXttjPPPJNt27Z5MSshhBBCCCGE8LylS5eiUql4//33FdsrKyu5/PLL0Wg0vPLKK17KTnib1tsJCNEYlZWVREREKLZFRERQVFTkpYyEEEIIIYQQwju2bNkCQI8ePWq3ZWdnc/nll7Nnzx6+/PJLrrjiCm+lJ7xMevgIvxIWFkZ5ebliW3l5OWFhYV7KSAgRiC6//HKioqKIiorigw8+4L777qt9/eyzz3o7PSFEgDj//PNRqVRu/3v00Ue9nZ4Qwg9s3boVvV5P586dgZoCUJ8+fcjLy+Pnn39WFHvk+03LIwUf4TPuu+++Or/0HP9Pp9NRWVlJdnZ27XF//fUX3bp182LmQgh/0ZB25uDBgyxevJjS0lJKS0u5+eabef3112tfP/zww95+G0IIH9fQtmbNmjU4nU63/02fPt3bb0MI4Qe2bNlCly5d0Ol0fPfdd5x//vlER0ezbt06zj77bMW+8v2m5ZEhXcJnXHvttWzcuJHDhw/z/PPP125//PHHCQ4O5tFHH+WMM87gyiuv5PHHH+fVV19lxYoVbN26lSuvvNKLmQsh/EVD2pn09HTvJSiECAjS1gghPMFisbBr1y5uuukmXn/9dR544AEuvvhiPvvsM5dpMETLJAUf4TMuueQSLBYLvXr14tZbb63dPm7cOG644QZuuukmAF5//XVGjhxJbGwsrVq14uOPPyYmJsZbaQsh/EhD2xkhhDgd0tYIITxh+/btWK1WfvrpJ959911Gjx7NnDlz0GrlNl/UkN8E4TPsdjs7d+5k8ODBtduOHDlCaWkpZ5xxRu22+Ph4vvvuO2+kKITwcw1tZ/5pwYIFHspOCBEoTqWtEUKIxtq6dSsApaWlGAwGHnvssQYXe+T7Tcsgc/gIn7F3715MJpNiPp4///wTQL4cCSGahLQzQghPkLZGCOEJx1fo+uqrr1CpVFx33XVYLBYvZyV8iRR8hM/466+/AOUXoeNVa/lyJIRoCtLOCCE8QdoaIYQnbN26laSkJC666CLmzJnD77//zr///W9vpyV8iBR8hM/466+/UKvVdOnSpXbbn3/+SUJCAvHx8V7MTAgRKKSdEUJ4grQ1QghP2Lp1K927dwfg9ttvZ8yYMcydO5f33nvPy5kJXyEFH+Ez/vrrLzIyMggJCandtnPnTllyXQjRZKSdEUJ4grQ1QojmlpubS35+fm3BB+CVV16hV69e3HPPPbXDSEXLJgUf4TP++usvly9Cubm5WK1WSktLvZOUECKgSDsjhPAEaWuEEM3t+Pw9/yz4BAcH89lnn6HX67n22mspLy/3VnrCR0jBR/gEi8XC3r17Xca1Dx06lN9//50777zTS5kJIQKFtDNCCE+QtkYI4QnH5wX7Z8EHoG3btixYsIC9e/cycuRIb6QmfIjK6XQ6vZ2EEEIIIYQQQgghhGg60sNHCCGEEEIIIYQQIsBIwUcIIYQQQgghhBAiwPhkwefqq68mOjqa6667ztupCCGEEEIIIYQQQvgdnyz4/Pvf/+bdd9/1dhpCCCGEEEIIIYQQfsknCz4DBw4kPDzc22kIIYQQQgghhBBC+KUmL/isWrWK4cOHk5KSgkqlYtGiRS77ZGVlkZ6eTnBwMH369GH9+vVNnYYQQgghhBBCCCFEi9XkBZ+qqip69OhBVlaW2/jHH3/MhAkTePzxx/njjz/o0aMHQ4YMIT8/v6lTEUIIIYQQQgghhGiRtE19wqFDhzJ06NA647NmzWLMmDHccccdAMydO5dvv/2Wt99+m4cffrjR1zObzZjN5trXDoeD4uJiYmNjUalUjX8DQgiPcTqdVFRUkJKSglrtkyNMa0lbI4T/krZGCOEJ0tYIITyhMW1Nkxd86mOxWNi4cSOTJ0+u3aZWqxk0aBBr1649pXPOmDGDJ554oqlSFEJ4wZEjR2jVqpW306iXtDVC+D9pa4QQniBtjRDCExrS1qicTqezuRJQqVR8+eWXXHXVVQAcO3aM1NRUfv31V/r161e736RJk/j555/57bffABg0aBBbtmyhqqqKmJgYPv30U8X+/3RidbqsrIy0tDSOHDlCREREc701IUQTKC8vp3Xr1pSWlhIZGentdOolbY0Q/kvaGiGEJ0hbI4TwhMa0NR7t4dNQy5cvb/C+QUFBBAUFuWyPiIiQxkoIP+EPXYelrRHC/0lbI4TwBGlrhBCe0JC2xqODS+Pi4tBoNOTl5Sm25+XlkZSUdFrnzsrKomvXrpx77rmndR4hhKiPtDVCCE+QtkYI4QnS1ggR2Dxa8NHr9Zx99tmsWLGidpvD4WDFihV1DtlqqLFjx7J9+3Z+//33001TCCHqJG2NEMITpK0RQniCtDVCBLYmH9JVWVnJ3r17a18fOHCAzZs3ExMTQ1paGhMmTGDkyJGcc8459O7dm9mzZ1NVVVW7apcQQgghhBBCCCGEOD1NXvDZsGEDF110Ue3rCRMmADBy5EgWLFjAjTfeSEFBAVOnTiU3N5eePXvy/fffk5iYeFrXzcrKIisrC7vdflrnEUKI+khbI4TwBGlrhBCeIG2Nd9ntdqxWq7fTED5Gp9Oh0Wia5FzNukqXN5SXlxMZGUlZWZlMOCaEj/Pnz6s/5y5ES+PPn1d/zl2IlsafP6/+nLs/cjqd5ObmUlpa6u1UhI+KiooiKSnJ7cTMjfm8+uQqXUIIIYQQQgghRCA6XuxJSEggJCTEL1Z2E57hdDqprq4mPz8fgOTk5NM6X8AUfKQ7ohDCE6StEUJ4grQ1QghPkLbG8+x2e22xJzY21tvpCB9kMBgAyM/PJyEh4bSGd8mQLiGE1/jz59WfcxeipfHnz6s/5y5ES+PPn1d/zt3fmEwmDhw4QHp6eu2NvRAnMhqNHDx4kIyMDIKDgxWxxnxePbosuxBCCCGEEEII0dLJMC5Rn6b6/ZCCjxBCCCGEEEIIIUSAkYKPEEIIIYQQQgghRIAJmIJPVlYWXbt25dxzz/V2KkKIACZtjRDCE6StEUJ4grQ1ojEyMzNRqVQu/1122WUApKen124LDQ3lrLPO4tNPP1Wco7i4mPHjx9OmTRv0ej0pKSmMGjWKw4cPK/YrKCjg3nvvJS0tjaCgIJKSkhgyZAi//PJLvTmqVCoWLVrkNrZy5UpUKhWlpaUusfT0dGbPnq3YtmnTJq6//noSExMJDg6mQ4cOjBkzht27d9f/g/IhAVPwGTt2LNu3b+f333/3dipCiAAmbY0QwhOkrRFCeIK0NaKxLrvsMnJychT/ffjhh7XxJ598kpycHDZt2sS5557LjTfeyK+//grUFHv69u3L8uXLmTt3Lnv37uWjjz5i7969nHvuuezfv7/2PNdeey2bNm3inXfeYffu3Xz99dcMHDiQoqIij7zPxYsX07dvX8xmMwsXLmTHjh28//77REZG8thjj3kkh6YQMMuyCyGEEEIIIYQQovkc721Tl/DwcJKSkkhKSiIrK4v333+fb775hv79+/PII49w7Ngx9u7dW3uOtLQ0li5dSocOHRg7dixLliyhtLSU1atXs3LlSgYMGABAmzZt6N27t0feY3V1NXfccQf/+te/+PLLL2u3Z2Rk0KdPH7c9hHxVwPTwEUIIIYQQQgghhG/QarXodDosFgsOh4OPPvqIW265xaVgZDAYuO+++1i6dCnFxcWEhYURFhbGokWLMJvNHs976dKlFBYWMmnSJLfxqKgozyZ0GgKmh09WVhZZWVnY7XZvpyKECGDS1gghPEHaGiGEJ0hb4zuMFjv7Cio9ft128WEY9JoG77948WLCwsIU26ZMmcKUKVMU2ywWCy+++CJlZWVcfPHFFBQUUFpaSpcuXdyet0uXLjidTvbu3Uvv3r1ZsGABY8aMYe7cuZx11lkMGDCAESNG0L1798a/yRO0atXKZVt1dXXt/9+zZw8AnTt3Pu1reVvAFHzGjh3L2LFjKS8vJzIy0tvpCCEClLQ1QghPkLZGCOEJ0tb4jn0FlVz+6hqPX3fxuPM5I7Xh//YXXXQRc+bMUWyLiYmp/f8PPfQQjz76KCaTibCwMJ599lmGDRtGXl4eAE6ns0HXufbaaxk2bBirV69m3bp1LFmyhJkzZzJv3jwyMzO55557eP/992v3r6xseLFs9erVhIeHK7YNHDiw9v83NEd/EDAFHyGEEEIIIYQQwh+1iw9j8bjzvXLdxggNDaV9+/Z1xidOnEhmZiZhYWEkJiaiUqkAiI+PJyoqih07drg9bseOHahUKsW5g4ODGTx4MIMHD+axxx5j9OjRPP7442RmZvLkk0/yf//3f43K/biMjAyXYVla7d+lkY4dOwKwc+dO+vXrd0rX8BVS8BFCCCGEEEIIIbzIoNc0qqeNr4qLi3NbEFKr1dxwww0sXLiQJ598UjGPj9Fo5PXXX2fIkCGK3kIn6tq1a+2S6wkJCSQkJDR5/gCXXnopcXFxzJw5UzFp83GlpaV+M4+PFHyEEEIIIYQQQghxUmazmdzcXMU2rVZLXFzcSY995plnWLFiBYMHD2bmzJmcccYZHDhwgEcffRSr1UpWVhYARUVFXH/99YwaNYru3bsTHh7Ohg0bmDlzJldeeeVJr3PgwAE2b96s2NahQ4cGv8fQ0FDmzZvH9ddfzxVXXMEDDzxA+/btKSws5JNPPuHw4cN89NFHDT6fN0nBRwghhBBCCCGEECf1/fffk5ycrNjWqVMndu7cedJjY2NjWbduHU8++SR33303ubm5xMTEMHToUN5//33S0tIACAsLo0+fPrz00kvs27cPq9VK69atGTNmjMvk0O5MmDDBZdvq1asb+A5rXHnllfz666/MmDGDm2++mfLyclq3bs3FF1/M9OnTG3Uub1I5A2RGon/OML97927KysqIiIjwdlpCiHocnyDQnz6v0tYI4X+krRFCeIK0NaIhTCYTBw4cICMjg+DgYG+nI3xUfb8njWlrAqbgc5w/NrRCtFT+/Hn159yFaGn8+fPqz7kL0dL48+fVn3P3N1LwEQ3RVAUfdXMmKYQQQgghhBBCCCE8Two+QgghhBBCCCGEEAFGCj5CCCGEEEIIIYQQAUYKPkIIIYQQQgghhBABRgo+QgghhBBCCCGEEAFGCj5CCCGEEEIIIYQQASZgCj5ZWVl07dqVc88919upCCECmLQ1QghPkLZGCOEJ0tYIEdhUTqfT6e0kmlJj1qQXQniXP39e/Tl3IVoaf/68+nPuQrQ0/vx59efc/Y3JZOLAgQNkZGQQHBzs7XSEj6rv96Qxn9eA6eEjhBBCCCGEEEIIIWpIwUcIIYQQQgghhBAnVVBQwL333ktaWhpBQUEkJSUxZMgQfvnlFwDS09OZPXt27f7p6emoVCpUKhUajYaUlBTuvPNOSkpK2L17NyEhIXzwwQeKazgcDvr37891110HQGZmJldddVWdOZ14zZN58803ueCCC4iOjiY6OppBgwaxfv36eo/Jycnh5ptvpmPHjqjVasaPH9/g63mTFHyEEEIIIYQQQghxUtdeey2bNm3inXfeYffu3Xz99dcMHDiQoqKiOo958sknycnJ4fDhwyxcuJBVq1bxwAMP0LFjR5599lnGjRtHTk5O7f4vvvgi+/fvZ+7cuc3yHlauXMlNN93ETz/9xNq1a2ndujWXXnop2dnZdR5jNpuJj4/n0UcfpUePHs2SV3PQejsBIYQQQgghhBBC+LbS0lJWr17NypUrGTBgAABt2rShd+/e9R4XHh5OUlISAKmpqYwcOZIPP/wQgHHjxrFo0SLGjBnD4sWL2blzJ1OnTuXjjz8mLi6uWd7HwoULFa/nzZvH559/zooVK7j99tvdHpOens7LL78MwNtvv90seTUH6eEjhBBCCCGEEEKIeoWFhREWFsaiRYswm82ndI7s7Gy++eYb+vTpA4BKpWL+/PmsXr2aN998k8zMTEaMGMEVV1zRlKnXq7q6GqvVSkxMjMeu6SnSw0cIIYQQQgghhPAmSzUU7vb8deM6gj6kQbtqtVoWLFjAmDFjmDt3LmeddRYDBgxgxIgRdO/evc7jHnroIR599FHsdjsmk4k+ffowa9as2nibNm2YPXs2o0ePplWrVixbtuy031ZjPPTQQ6SkpDBo0CCPXtcTpOAjhBBCCCGEEEJ4U+FueGOA569718+Q0rPBu1977bUMGzaM1atXs27dOpYsWcLMmTOZN28emZmZbo+ZOHEimZmZOJ1Ojhw5wpQpUxg2bBirVq1Co9EAcMcdd/DYY48xbty4ky413lCHDx+ma9euta+nTJnClClTFPs8++yzfPTRR6xcudJl+fNAIAUfIYQQQgghhBDCm+I61hRfvHHdRgoODmbw4MEMHjyYxx57jNGjR/P444/XWfCJi4ujffv2AHTo0IHZs2fTr18/fvrpJ0WvGq1Wi1bbdCWKlJQUNm/eXPv6xCFbL7zwAs8++yzLly+vt4eSP5OCjxBCCCGEEEII4U36kEb1tPElXbt2ZdGiRQ3e/3ivHqPR2EwZ1dBqtbWFphPNnDmTp59+mqVLl3LOOec0ax7eFDAFn6ysLLKysrDb7d5ORQgRwKStEUJ4grQ1QghPkLZGNEZRURHXX389o0aNonv37oSHh7NhwwZmzpzJlVdeWedxFRUV5Obm1g7pmjRpEvHx8fTv37/B1y4rK1P01gGIjY2ldevWQM1k0CfG27RpQ3R0tMu5nnvuOaZOncoHH3xAeno6ubm5wN+TUgNMnjyZ7Oxs3n333drjjp+/srKSgoICNm/ejF6vVwwb8zUqp9Pp9HYSTam8vJzIyEjKysqabOyfEKJ5+PPn1Z9zF6Kl8efPqz/nLkRL48+fV3/O3d+YTCYOHDhARkaG380ZYzabmTZtGsuWLWPfvn1YrVZat27N9ddfz5QpUzAYDKSnpzN+/HjGjx8P1CxnfujQodpzxMfHc+655/L000/Ts2dPxflPPPa4zMxM3nnnHZd87rzzTubNm+dyjePee+89br31Vpftde3/+OOPM23atNprHjx4kJUrV9bGVSqVyzFt2rTh4MGDLttPV32/J435vErBRwjhNf78efXn3IVoafz58+rPuQvR0vjz59Wfc/c3/lzwEZ7TVAUfdXMmKYQQQgghhBBCCCE8Two+QgghhBBCCCGEEAFGCj5CCCGEEEIIIYQQAUYKPkIIIYQQQgghhBABRgo+QgghhBBCCCGEEAFGCj5CCCGEEEIIIYQQAUYKPkIIIYQQQgghhBABRgo+QgghhBBCCCGEEAFGCj5CCCGEEEIIIYQQAcYnCz6LFy+mU6dOdOjQgXnz5nk7HSGEEEIIIYQQQohGGThwIOPHj/fa9X2u4GOz2ZgwYQI//vgjmzZt4vnnn6eoqMjbaQkhhBBCCCGEEC1aQUEB9957L2lpaQQFBZGUlMSQIUP45ZdfAEhPT2f27Nm1+6enp6NSqVCpVGg0GlJSUrjzzjspKSlh9+7dhISE8MEHHyiu4XA46N+/P9dddx0AmZmZXHXVVXXmdOI1T+bNN9/kggsuIDo6mujoaAYNGsT69evrPWbNmjWcd955xMbGYjAY6Ny5My+99FKDr+ktWm8ncKL169fTrVs3UlNTARg6dCjLli3jpptu8nJmojFspSYcVTZvp3Ha1KFatFHB3k5DCCGEEEIIIbzu2muvxWKx8M4779C2bVvy8vJYsWJFvZ00nnzyScaMGYPdbmf37t3cddddPPDAA7z33ns8++yzjBs3josuuojk5GQAXnzxRfbv38/XX3/dLO9h5cqV3HTTTfTv35/g4GCee+45Lr30UrZt21ZbhzhRaGgo999/P927dyc0NJQ1a9Zw9913Exoayl133dUseTaFJi/4rFq1iueff56NGzeSk5PDl19+6VKNy8rK4vnnnyc3N5cePXrw6quv0rt3bwCOHTum+CGnpqaSnZ3d1GmK01RfQcdRZaXw3b/A/+s9qHRqEv9zthR9hBBCCCGEEC1aaWkpq1evZuXKlQwYMACANm3a1N7L1yU8PJykpCSg5v5+5MiRfPjhhwCMGzeORYsWMWbMGBYvXszOnTuZOnUqH3/8MXFxcc3yPhYuXKh4PW/ePD7//HNWrFjB7bff7vaYXr160atXr9rX6enpfPHFF6xevbq24FNVVcW9997LF198QXh4OP/3f//XLPk3RpMXfKqqqujRowejRo3immuucYl//PHHTJgwgblz59KnTx9mz57NkCFD2LVrFwkJCU2djmgGtlITeS9uxGl11LmPSWXmqdZvUKapdIkFO538p8d9hEe1UWyvMJfz4sYXMdnMbs8ZrA3iP2f/h/CgiNN7A/9UVQQW1xwB1KUaQlaH1xS2oprukkIIz6ivMH2qvfea45xCCCGEEP4gLCyMsLAwFi1aRN++fQkKCmr0ObKzs/nmm2/o06cPACqVivnz59O9e3fefPNN3nrrLUaMGMEVV1zR1OnXqbq6GqvVSkxMTIOP2bRpE7/++ivTp0+v3TZx4kR+/vlnvvrqKxISEpgyZQp//PEHPXv2bIasG6bJCz5Dhw5l6NChdcZnzZrFmDFjuOOOOwCYO3cu3377LW+//TYPP/wwKSkpih492dnZ9VYMzWYzZvPfBYLy8vImeBcC6r6xseVX47Q6qL6gAkeU3SWeXbiDpwsWM6H9ANomna2IlRTu4ME97zNqzxS31zQE6Xmp97+J1iuLOiWWch7c8jKjtt57Gu+ocdoZW/MakynYtY14urnE5eauZZG2xjfV1U45qqwUvbe9zsK0Sqcm9rauqEN1LrG6PtsnK3bXd86TkfZEHCdtjTgZKTyLpiBtje8x2owcKDvg8etmRGZg0BoatK9Wq2XBggWMGTOGuXPnctZZZzFgwABGjBhB9+7d6zzuoYce4tFHH8Vut2MymejTpw+zZs2qjbdp04bZs2czevRoWrVqxbJly077fTXGQw89REpKCoMGDTrpvq1ataKgoACbzca0adMYPXo0AJWVlbz11lu8//77XHLJJQC88847tGrVqllzPxmPzuFjsVjYuHEjkydPrt2mVqsZNGgQa9euBaB379789ddfZGdnExkZyZIlS3jsscfqPOeMGTN44oknmj33luZkNzYmlZmHd71IkbbU/Qm0NqJiBuMI76HYHKfqyJerX6XMaXF7WLTdQfK+cW5jX2k0lGjczzNutOix2Br/66wL0hAyfCoER7vEjhzYhumQmeBlkL9sk0tchnu1LNLWeMfJho+erKgTN+oMlwLM8eMK3/6rzuPcFW6OF7tjbuyENiGkUec8GWlPxHHS1vgmX5mbsCHtnrQloiGkrfE9B8oOcOPiGz1+3Y8v/5iusV0bvP+1117LsGHDWL16NevWrWPJkiXMnDmTefPmkZmZ6faYiRMnkpmZidPp5MiRI0yZMoVhw4axatUqNBoNAHfccQePPfYY48aNIyKiaUZ0HD58mK5d/35vU6ZMYcoUZceDZ599lo8++oiVK1cSHHzytnP16tVUVlaybt06Hn74Ydq3b89NN93Evn37sFgstT2XAGJiYujUqVOTvJdT5dGCT2FhIXa7ncTERMX2xMREdu7cWZOQVsuLL77IRRddhMPhYNKkScTGxtZ5zsmTJzNhwoTa1+Xl5bRu3bp53kAL4qiy1dmL59Dhrez67k/O228A3FeDbSoNU3Zuw6jZ7xKLZxLhqiq3xwVp1Iw6P4Ow4Ib/apaUVLBp0SI0TtfeRidjU2noclYb4uJcu+8ZLUcZn/o0L7S/yaWnkq3YQfEykwz3akGkrfG8hgwfrauoA/U/6U78z9n19gyqrxikz4hwe966znkytvxqij/eJe2JAKSt8ZbTKS57Wl3t3vG2xHKgHEeC9AAS9ZO2xvdkRGbw8eUfe+W6jRUcHMzgwYMZPHgwjz32GKNHj+bxxx+vs+ATFxdH+/btAejQoQOzZ8+mX79+/PTTT4peNVqtFq226UoUKSkpbN68ufb1iUO2XnjhBZ599lmWL19ebw+lf8rIqPl5nXnmmeTl5TFt2jSfXmDK51bpArjiiisaPGYvKCjolMYOivoVFuwAYNKR19hXeEQRiynTc4Ulmd8Sz+SAxrViabAb+Vf+Uq7M+/aUrr3xg18afYxDpaXz7RPcFm7qUlhYzPb3XmHPu7PYU8c+52sM7CidjkNdrdiutrcljBehIhdo3+h8hf+Rtqb5nGz4qLseNccVVu5gv+NnqHATrABy67hocCSEJ7rZDqpREaiMTreHOe1FlOV+7/a8RqMKSx1F8PiYFNq3OaOOZGrY8qvdbpcbtJZF2hrPO93isqfV1SaoQ7WodGqKP95V57HSA0gcJ22N7zFoDY3qaeNLunbtyqJFixq8//FePUajsZkyqqHVamsLTSeaOXMmTz/9NEuXLuWcc845pfM7HI7aoZHt2rVDp9Px22+/kZaWBlC79PzxCa69waMFn7i4ODQaDXl5eYrteXl5tbN2n6qsrCyysrKw2xvfy6NFKz0C1a5L6OUc+p1EzqTr0XZorMr5a0ItRuAgo3ufTUqq+ycBNvtZBIc0bCzoP1U47Vi1Krcxc6UVm8n9v290dBRtWrlfQq8uHZLb0eahF6iqY9Lmvfv+pOCrj5kdEU9xpHIIWjtjHK9VwYG9q+gU4eb4kFiIkqckgUjamqZ10hstLZSXbkRlcS3AFFYcZsJfb2BSu28z6mPW26kyuP83DDVqCLJoGnW+YIuai/6IR2d3P+zUpnFw7r3DSYpPdompKtWEa6PrvEmTG7SWSdoazzneq/mUi8t1FZBPg7G4BEul+97QeowYDO6L0lG3phIf1sVtTHoTCnekrRGNUVRUxPXXX8+oUaPo3r074eHhbNiwgZkzZ3LllVfWeVxFRQW5ubm1Q7omTZpEfHw8/fv3b/C1y8rKFL11AGJjY2t7pmVnZ7vE27RpQ3S069Qdzz33HFOnTuWDDz4gPT2d3NyaJ3nHJ6WGml5w2dnZvPvuu0DNZyUtLY3OnTsDNauTv/DCCzzwwAO1x955551MnDiR2NhYEhISeOSRR1Cr3X839BSPFnz0ej1nn302K1asqF2q3eFwsGLFCu6///7TOvfYsWMZO3Ys5eXlREZGNkG2LUDpEWyvDsVh1buEgp3tgTNpf6iaWIvr5GFqh5Pg196g2k2PYYsujD/PuAuHxv0XlfpodSqG3tMdQ7gyJ2OFhSUL/8RmqevpWzW/cazx19PCxf+KItjg+kEM08byA3BX4n3oT1gSsGR/zc9EtXExlvWvuRyr1lnQjlsiRZ8AJG1N0zp+oxV2XiiaSGWRpargMF9/8T4Vc+tuSy4l5ZSuq1Y56XJxX3SxykKxtbyYHSt/wuFsfBFJrXLQJaYMnVrZTpXYdRwqCeODxQuoDra6PTYoNJynh75AXLzyRk1u0FouaWuaXn29CQG0qiPoVa7F3pySPdz883ScdcwVGGIJR29r/EMui9ZItd61gnSyArJV42DRhcfcFq0NDidf9X6c5OgOrgeq5IZeuJK2RjRGWFgYffr04aWXXmLfvn1YrVZat27NmDFjXObG+aepU6cydepUAOLj4zn33HNZtmxZvVO3nGjlypWKZdEB7rzzTubNmwfUDM964YUXFPH33nuPW2+91eVcc+bMwWKxcN111ym2P/7440ybNg2AnJwcDh8+XBtzOBxMnjyZAwcOoNVqadeuHc899xx333137T7PP/88lZWVDB8+nPDwcP7zn/9QVlbW4PfYHFROp9P9I4JTVFlZyd69e4GatepnzZrFRRddRExMDGlpaXz88ceMHDmS//73v/Tu3ZvZs2fzySefsHPnTpe5fU7F8caqrKysySZ7ClS2XX+QO78IcP/U2OawsClpC2d3Vw5DKN+Xzc/rQ0EX5/Y4ALXdwpl/vYHe6r73jDt/F4pcC1BQUwy6eGik2+JMXRzl5eTNfB7Mrku911xvDA6N++6sTkc55rIFgOuXwxBNOENbjUardp8rmEi6IxZtp7ManGtL5M+fV3/O3ZdUbz5A8UdHyfv1WawVRxWxyiA9W9ok0inPRoibHj5WrYG97a/BoW7cEAun04i18mvcfbZraNGFXYFK5XoDp9Y4adsjCK1eWRCylVWzf7vebbtYX1tSe16Hk7PObk1GO+V8YVQHod6RQcK4XuhTw+p/Y6JO/vx59efcfcnJh22Z0DonoMK11/NOlYHfDnVG42h8IfhUqVVOurQqRadR5ltt0bL7WCQdB/YjJEHZYzCvIof3Cn/gzsrDpNpc2xudM50k+9PEDI9Dm+76QEqGj54+f/68+nPu/sZkMnHgwAEyMjIaNEmwaJnq+z1pzOe1yXv4bNiwgYsuuqj29fHJwEaOHMmCBQu48cYbKSgoYOrUqeTm5tKzZ0++//770y72SHfExsvdfxCIp2jrAmyVygkpqvU6/kow0GlNMbkffK+IVYUkQddMLro6mfgu7peZ01YVE+x4qlH5WPbvJ/TRJ4mc+Ai6VOVTd0d5OSXPTMP2Qw4NLyHViDAYaPXKK2hiXLvzdaqwYzK6//JXckTDqjWZZOz9BINJ+QWwWl/CEuaxP8NMfrTydy7FlsjY0tvYnZtPV+9Oyi6agbQ1p8a06xDWvFKX7WV/bANas6VNEiUWdzdTWg52HI1K7f6PmU1l5jfVYcwOZeE2zGJk9F/fEORwX2Sp0GmxXn4JweHKoo6z2oTm2xUEGz9yOeZ4kXj/VndF4ijUajMbLfso0SsLUHq1hj6Rt6NxuBae4e8C1IZNR9mwSVn0itYncmlqBuV/ricu9WK3x4vAJG1N06pv2FbVvg188t95VNraAG3cHq+prxDssNLvQi0h8ScUZS2VONZmoba79uwzO0P5pSITu9P9gyOV2sC+Std2z+koBxawe+Vat8cNIoxDdOWQm1jNwyoLxd8UAoWu15Thoy2StDVCBLYm7+HjbVKdbri1/32V1gd6six7ASWWPDd7aAmKzHR7o6XVqbj5iX6ExzTdlwLrsWPsG3Y5zjom71LVU7ipjzY6Gl1K44d9VBSb+ODxtdisrh+R+p7Y19ygZbLznAMMuu72Rl+3JfHnz6s/5+5ppl2HKHhzDyqt+950NoeFA8nLCe7RTrH9QE4ZxT+3Q32xisTkBJfjcstM/HdtLk/ecCHtE9z0fsnLhbJSl80VeYUEPzWFYLvF9RjApNHxVO9MyoJCXWJRGj33nN+OML3r8xJdfCTB7VyL4EVVFv5vwUZUdQxJjcPIv8o1bI6dS7U+XxHrWdSGm8MmUBGxhVbnX+B6zcQogju5v0EVf/Pnz6s/5+5LLNmV5L+6CUeXAxCiLL4e2rWJ9X8errM3oTE4lgPtb2C7M4c8jbLgk1RVzOitn2EeO5awDsqJQctMVt74di1BdvePqnTOILS476FYSTClhLtsD7MYuW3HN6jdDM86Wa9Hp70YnXkNndu2pV2HE55IGYNQH0yR3oSnyZ8/r/6cu7+RHj6iIXy2h4/wQXVMzGwuq7mxiGyXRueh4xSxqkITu77KZfCdfYlJdr3pCQ7TNWmxB0CXkkK7bxdjKylxGz/Vws2pCo8J5uYn+mGqdH0yV7DjKD9+nknXv+YQYlT2jrLGaiEVnIXeHa8phK+w5pWi0gYR3KGKoA7KIQiHd69l1Y8/831MKeU7Niti0cZELlH34p3NBeRtLnZ7boMumnMzYkiNcjN/RmrdcxEc6dmFspwCtzFdZBRPJrpfSCA6VO/+WiexaNIASqrcF5iO7i9j38K9HHPcTrFN2d6kardjc1gIL+9B2XflLsc67QXEj0aKPkKcRPmf6wEdy5f/XOdDrvp6E9pxcPXoK0hOVhZDSg4egbveIXLWdJdjYoCHTz91F87gYBzTnoXIKMX2MpOVHxfvAbv74nI7VTGJ1Ub+2LOFP/ZsUcSOP6yS3oRCCBFYpOAT6OqZmDm6vAsEQ2RcLP379FTECg5XsPubamKSQ4lPc33C1Fx0KSkeLeqcTHhMcB2FrVao1Dl0ePo54hKUT9J++/RTMIGuPB+ObXY9VFbwEi1UtTYfe5DyRmS38SDV9goG7b0dtdZ1aK9V5WT6dee73GQdd6oFmNad29K6c9tGH3eqUqMMdebZxhDEQd1+hpW5FpmcjkiW5C8gyM3cZhG6WPomDKd032GSpOAjBFD3xMzVBwtQk0JSXAKRqcqeOLmlFpz5PVBdEMlZXTq7PW9cnIEO6VGugdRIjnz+ZZ0F5AiDjvjwpl36ur4HYOn9zq6zuPzb5t0Yvzqzjt6ENd9lCvceJiLbtUeSzO8jhBD+KWAKPjL+1D1bXgG5lS+ByvWPdGxwzVAKi3QlPGXB7dphOKEgZvvpJzgK+oOH2PnivS7HhAZV0XrSt1L08VPS1jReVcFhIKrmyfp37p+s63o56dHHdSnhOm+yAkh4TDC3PNHXbW/Cn9auIX/FtbSJfo4zTpiVo6CsGzCc6j3bMW6LcTnW070iRdOStqbxbKUmcl/YADbXYVlqUrA5LByr6oV5r+vk6jathb7ntKJvl2SX2Ml4uoBcn/qKyxU5rfhDXUGvrg+RlKb87mf5ZTm2UgthR9uR/+oml2Nlfp/AJW2NEIEtYAo+sqSge/l780EVinHDPBwVyqFHlUFa1reKIPnMyyk4rFwWtDin8UuqixqG1DRshy2kRYxxG3dYzPz1yy+cMWyEhzMTTUHamrpZjx1zOySzaM9uIumNMTSGrQnKCdmDgTMrzqLN2an0O6fxN1qBoq7ehOHH4ihQV/CqYTBVKCe1HmQu4xagYul6rB984XpStY22n78nRR8/JW1N41kO5oDN6fY7T2FkElvjLFg6n0GrAa4PXFITWtO3i5ulzANIXJwBK050v0DuL8r5Eh229iypnke39Lb06tNHEbNXaancGl7TcyrKgwkLj5C2RojAFjAFH+FeXmEO8bTn0zOK+StS2d04siqK9kdUHPlZzSe//O5yrFavJjisccsdtzTuCmMpbc/k+y8fR+90/dkdH4JReNBdLwch/Jf12DH2X3MLuFlxxpzQAbr1JtzZh95Vrj1RrFoLHVNPb6XGQNUmKpb9VKAOO4zNoGw3dugjsJVaiO2e6fZYp82M+WihFHxEi2HPPQDo0LQ5TJB+nyJW7DBRXRpOq/apXDugn3cS9LIO6VEMe/hsCgtdF8f484cdVGyuoPzXjWxbslgR04W3IrH/w9gO7kCfeq6n0hVCCNEEpOAT4Moqy4kHkooSCMpxtyCblgtu7E5qpzSXSHNMzBwogsN0aPVqls/f7jauDr+Oi8a0JyRCefO78aOPoBzsVvdLRQvhr8w7dxJy/iNuV+IKpWb4qK1LEedc7PoEPS46mnatXdsgAa0TUtDoDnHJXtcV/xy2PJZUz6NzspEuWmVB32JsjTpkLM5i16WXhQhUeXk5BJPGSktbSipdF5wALYY415X0WpIO6VFuh8kWFHanYvMP7EqEXYnKHlDR+kQuBY7u+5OO50nBRwgh/EnAFHxk/Kl7xwsLSV0yGDZisiJWklvN8gX7Se2U5tGJmQNBeEwwN09zP+dGcU4Vy+dvJyymtcvPNSjEAK4L7Qg/Im2Ne5V5Bai0KazL/4Zyq5tVAe0WYi68hT7de3ghO/9VM7+P+9UCl65aTd43Rv44auMPohWxaH0ol4ZAVUmBm4WdhT+Qtqbx8sqLaUMaB1JKWJWao4hFVScweP9o2qf5xlw7vqZd684cjsxkcfhBirXKSZ+vrDwCQF55KR29kZxoVtLWCBHYAqbgI+NP6xcUYiCxrXJVCrW2ApVanv6eqrpX8BKBTNoa90oqqwgHdusdLIrvpIjFYeRfJT2IiIv1TnJ+rq62xtA6mqDITMp6Z9MxQ9lrIfS3P6EcLBazp9IUTUzamrrVNV+Ytaim2NwjvA+XD3xcEasqsLHjYBnxIfEeydHfJIQHo1JHMHHwFYTEKSd9zvnuI6gGi5vJsIX/k7ZGiOaRnp7O+PHjGT9+vFfzCJiCT4tXegSqXZ+qayylns9FnJTGUipLtouAUmyqKfiUxO/G2H6pImasbIWq7ALaREnBpyklhEWTqzaysXQRy3cq59w4vzyR7gwgr7oCGSwnAkl984VFJHSAblB9pB0bXnf9TiRzE9bt+FD1nYsOusTCna0hGgy5Viq++tolrktNJvgcGeolREtx5MgRHn/8cb7//nsKCwtJTk7mqquuYurUqcTG/v1db+/evTzzzDMsX76cvLw84uLi6Ny5M6NGjeLGG29Eq60pRfz888888cQTbN68GZPJRGpqKv379+fNN99Er9ezcuVKLrroIkpKSoiKimpQjo0ptqxcuZIJEyawbds2WrduzaOPPkpmZmZtfNWqVTz//PNs3LiRnJwcvvzyS6666qpG/MS8Swo+gaD0CNaZfbBVWlxCYcYeEHspTjfzaojm5W5CZ4u1Zk6BsOw18MYrrgfpQmDsein6CL9jste0P32CzuO6Xk8pYlUFNnb8KU/Wm1rPjHT+0uW4nd8n3FkM0WAs1WHJrnSJq0O1sryy8EsNmS/McKaZoVe4FiBkbsK61TdU/eePP8FWEE2a+jzK1roe67SVEc/vUvQRogXYv38//fr1o2PHjnz44YdkZGSwbds2Jk6cyJIlS1i3bh0xMTGsX7+eQYMG0a1bN7KysujcuTMAGzZsICsrizPOOIMePXqwfft2LrvsMsaNG8crr7yCwWBgz549fP755x4ZZnjgwAGGDRvGPffcw8KFC1mxYgWjR48mOTmZIUOGAFBVVUWPHj0YNWoU11xzTbPn1NSk4BMArAd2sX9ZG9BEuMR0sa0gFkzqOFl63UPqm9A53BkH0XAw/BLoN1YR01ccIX3TDCKqi6TgI3xW4fotVB/Nd9muznGCSp6se1J4TDC31jG/z5oFC7BVRtO2rAv5r25yiat0ahL/c7YUfYTfcVZUotJGUx6zFUvbVEVs+55DlP25jsje18vchKegruGjloxolmyaR2zGmXRISVDE9LklRNIXa3YOwed4KlMhhLeMHTsWvV7PsmXLMBhqhn+mpaXRq1cv2rVrxyOPPMLrr79OZmYmHTt25JdffkGtVtce36FDB2666SaczpohosuWLSMpKYmZM2fW7tOuXTsuu+yyevNYs2YNkydPZsOGDcTFxXH11VczY8YMQkNDGThwIIcOHeLBBx/kwQcfBKi93onmzp1LRkYGL774IgBdunRhzZo1vPTSS7UFn6FDhzJ06NB688nPz+fOO+9k+fLlJCUlMX369Hr396SAKfi05AnH8g+WEjLwqXqfduVuVvPJVll63RPqe0q28bPvIR84Vs7W95e4xNc6LuLSo/lkyCrKPqsltzWF67dQ+VkhWrXrDUEHVR9sDisRHcsYev0Ql7g8WW8edd2gOUIqWbJzHilxaaR1Uq6MprUEE53XBkeVDaI8lKhotJbc1tQnr7SCYKJZ9+cflGx0/TsKWlIjXB+AiVMXFhFBjt1I9d5fObJXGYvWJ3Jpal/ySitkgng/JW2N73AYjZj37/f4dYPatkVtMJx0v+LiYpYuXcrTTz9dW+w5LikpiVtuuYWPP/6Yu+66ix07dvDhhx8qij3/pFKpao/Lyclh1apVXHjhhQ3Kd9++fVx22WVMnz6dt99+m4KCAu6//37uv/9+5s+fzxdffEGPHj246667GDNmTL3nWrt2LYMGDVJsGzJkSKPn3cnMzOTYsWP89NNP6HQ6HnjgAfLzXR+QekPAFHxa8oRj+eUVxGsT+VD7Ln9FKX+xEktjyNhvouO1d9L9XOne7Cl13YS1ahuPLc9J34Thbo+zOSwcOJxNRu/mzlCcqpbc1uRt20GkOpWyorcI1yu/kBxWJ7LLehuthraSJ+s+IDgxiWr7b+zN28bevG2KWM0NWiaHf/+F9qmuxTnhG1pyW1OfikojwUBkuzTCL7hCEcvPycO5KoHEJBk+2pQSk+I5HJmJ6sJ8EpITFTH16s1gqvl3Ef5J2hrfYd6/n4PXXufx66Z//hmGbt1Out+ePXtwOp106dLFbbxLly6UlJSwe/duADp1+nsRj/z8fNq2/XuVxJkzZ3Lfffdx/fXXs3TpUgYMGEBSUhJ9+/blkksu4fbbbyeijuL9jBkzuOWWW2qLMh06dOCVV15hwIABzJkzh5iYGDQaDeHh4SQlJdX7nnJzc0lMVLZriYmJlJeXYzQaXQpb7uzevZslS5awfv16zv3f/fZbb71V58/J0wKm4NOSlVWWEw/EHnLQfc+J1fkCqtHStn07uQnzAbGt01iy9CC9di4gpDpPETPFtiK2eya2wjIvZSdE/SzVNXPBlKd3IOjy0YpY0ZFjmBaHERUrEzP7grgeZxG0OprkjjtIiw5TxCq3HQagIvuIN1IT4rRUO2oKC5tNB1izc50iFm1M5BL17YTr5ftOUwrXh6NSR7AidxElZcrvLuebEunD3/8uQohTF9S2Lemff+aV6zZGXcOj6hMbG8vmzZsBGDhwIBZLzdyPGo2G+fPnM336dH788Ud+++03nnnmGZ577jnWr19PcnKyy7m2bNnC1q1bWbhwoSInh8PBgQMH6iy0hIX9/X3o1ltvZe7cuY1+H+7s2LEDrVbL2WefXbutc+fODZ5gurlJwScA2K02AJK6ZDBsxGRFrCS3muUL9hMWHeeN1MQJtPHxGJ0HiZs6gbgE5VC63z79lFgTqE2uk28L4UuqQ4OxtIpRbLNVSaHS16jUEUT3upT0Dh0V2/eWfAqFXkpKiNNUZap5sNWh5HKSSmNc4hqditYJMi66KbVOSEGjO1TvBPHH/12EEKdObTA0qKeNt7Rv3x6VSsWOHTu4+uqrXeI7duwgPj6eDh1qhpLv2rWLXr16ATWFnfbt2wPUrs71T6mpqdx2223cdtttPPXUU3Ts2JG5c+fyxBNPuOxbWVnJ3XffzQMPPOASS0ure23S4wUnoLb3UFJSEnl5ykJ2Xl4eERERDerd4w+k4BNAgkIMJLZtr9im1lagUss3e18T3K4dhhN6XNl/+B5yvZSQEA1w/Anuytw/WfPRckUs2pjIJciTdV+hC1VjVZvZ8WkZO1DO3xbujKB1NFit7sfVC+HL7Paa39volAKG3iHzhXlCeEwwt9QxQfy6+e+DMRFMRji22fXgkFhZiEKIABEbG8vgwYN5/fXXefDBBxUFkdzcXBYuXMjYsWPp1asXnTt35oUXXuCGG26ocx6fukRHR5OcnExVlfsFhs466yy2b99eW0ByR6/Xu8xL5W7/fv368d133ym2/fDDD/Tr16/B+Xbu3BmbzcbGjRtrh3Tt2rWL0tLSBp+jOUnBRwghRIPIk3X/kZwYx1dnTwCT65/5QQc7AddSaTF7PjEhGsi6cyO23MMu23UlhaACbZBVhqp7UF1zE2pDVGCEkPw/4I1nXQ/UhcDY9VL0ESJAvPbaa/Tv358hQ4Ywffp0xbLsHTt2ZOrUqahUKubPn8/gwYM577zzmDx5Ml26dMFqtbJq1SoKCgrQaDQA/Pe//2Xz5s1cffXVtGvXDpPJxLvvvsu2bdt49dVX3ebw0EMP0bdvX+6//35Gjx5NaGgo27dv54cffuC1114DID09nVWrVjFixAiCgoKIi3M/2uWee+7htddeY9KkSYwaNYoff/yRTz75hG+//bZ2n8rKSvbu/XvG+gMHDrB582ZiYmJIS0ujU6dOXHbZZdx9993MmTMHrVbL+PHjfaaHUMAUfFrEDPOlR6DadbljjaUUAItJJ0uvC9HMWkRbUwd5su4/ksOS+eDGdykxl7jEts/5BirB7HB9Wi98R0tua6w7N7Lv2ltw2lUuMUNabzgLHIYwN0cKT3Noa25oqiPOxjjwZmWw9BDaX55EV10kBR8f1pLbGtF4HTp04Pfff2fatGnccMMN5Ofn43Q6ueaaa3jvvfcICQkBoG/fvmzcuJFnnnmGsWPHkpubS2hoKD169OCll15i1KhRAPTu3Zs1a9Zwzz33cOzYMcLCwujWrRuLFi1iwIABADgcDuDvoWDdu3fn559/5pFHHuGCCy7A6XTSrl07brzxxto8n3zySe6++27atWuH2Wyuc96hjIwMvv32Wx588EFefvllWrVqxbx582qXZAfYsGEDF110Ue3rCRMmADBy5EgWLFgAwPz58xk9ejQDBgwgMTGR6dOn89hjjzXFj/y0BUzBJ+BnmC89Alm9wVrtEgoquhBCL6XgQAqfPCNLr/sDd4U4i0n+jfxBwLc1DSBP1v1DclgyyWGukx0e0i53s7fwNS25rbHlHgZ9LMHXD8WeppyDqmJvCZjAHiVzE/oCZ1AQANHbCji8/CfXHeydaHtzITrp/OmzWnJbI05Nenp6baED4PHHH2fWrFls3bqVvn371m7v2LGjYj93evXqxXvvvVfvPvn5+YSFhSkmXT733HNZtmxZncf07duXLVu21P9G/mfgwIFs2rSp3vjJJqpOSkpi8eLFim233XZbg67f3AKm4BPwqotqij3XvAlxyi8/pe+uonUpRKabGHqLLL3uy4LDdGj1apbP3+4SC3emQDQ4q6plHLzwKtuhAzhKil22h5pdn7YLIURTKy6xE3rJE6jKg9D9pYydQTI2hwW1QdojX2CODMbmsJDc+SrofJVL3GkzY86tQh5pCRG4nnjiCdLT01m3bh29e/du9Jw9dTGbzezbt4/XXnuNSy65pEnO2RJJwceP2JzxHCpKxmJPVGx32GqWQdYG2+Wpu48Ljwnm5ml93U58uPbdj6EykYj8XCxzR7kerLWgf2CJFH1Es7IdOkDenL04cS0St6UnNocFm04m+w0EoWYVls0bXbaro2PQtsnwQkZC1CgprCZKm8i6/G8ot7oOZTfbLXQdPtoLmYkT2SKDWXJ0AUEavUssQhdL34ThVJYWIQPwhAhsd9xxR5Ofc8mSJdx2223079+fV155pcnP31JIwcdP5OWasJrnELQUgtiriPUgDZvDgsr1b63wQXVOfBitw1ZuIcUwgnzLCNcDLSZ0+7NJPEsKPqL5FGbn4iSYJbb17HAq/0SkVBYQWrGPlHaDvJSdaAo2nRqbw0JbY0/yP3IdJqyimMR7kaKP8BqrxQJAbEYrzrjkVkVs75FDHFxhJzgyyguZiRNFxMVSEHYtn0VvoRDlBKVXleXTFyiprCLJO+kJIfzYVVddRUVFxcl3FPWSgo+fOFJYRBIRZEW9xzFtniLWPieauBwz3btf5Z3kRJMIjQ1iyS/1PyUrzC4h8SwvJCdajKKiUiIJQ5O3nVRLnku8Gi1RkaFeyEw0FUeYgSUb52EO70KhQTkPSju1g8H6HhRm55IkBR/hJVZrTS/CI0dT2P5u4QnRUGxaM7pQ6WnoC9pExbJfXYExbR3GsKOKWMneDLBCsUkWEBFCCG+Rgo+fKC2vKfh02GYnznLiLPqFVKMlNiLR7bHCP8REJWEPu5ZfY+eyJ7lAETuzLJ2+VVBc5TqvihBNyWo2A2FkdOzBOZ3aK2KHd+/j4OHWBIfKbAz+LD4+lL12I5SuJ7pUGXPqEyG1BzlHS+WJvPCaSosZgCMRa1ievst1h2AbNya+6+GshDvxIfHAQR7rPJ3QeOVtxZEj34MVTHaLd5ITQggROAWfQF9S0FlYBkCHnCJ0RUcUsWpDEtvPGE1kapo3UhNNJCooCpXawZj+4wjvr3yyvuWbJbATjHaTl7ITxwV6W2MprAJia56sZ5849LAbGqcZXbzB3aHCT0R1Suacg4XYNa49tczxBkgFU74Ul70t0Nua+pgdNfPcdYpM5uoRd7nEo4Oi3a5AJzzv+GIUOz4tc4mFO9tBNNitGi9kJhqqJbc1QrQEAVPwCfQlBdWmmqcj9vN7cs71TytihflWdnxcjDY+3hupiSYWXwbJucql/3JKvZOLcBXobY29subJemzUETqdryzs5FXnM+fo2wzo8F9vpCaaSHSbjkwYaUJfUeoSuyA7iTMBY3W5x/MSSoHe1jREqNZA19iu3k5D1KO+xSjWzX8fjInY7TL8zpdJWyNEYAuYgk9LYY8Kx9Ctm2JbcHgFIE9j/Z02IgIopnD2y5grlb24ohLaQv/eqCpcJ1gVoikZHTUFn3WqLSwqftslbkgyEB0U7em0RBNKDktm/u3fUGIucYltn/MNVP7dw0IIIU6mzsUogqxg9EJCQgghaknBRwgfUdND6yAhU54hLPqEcfDLvyfR/ndPLyGay/Eb/R5hXbjp8kkucRlKERiSw5Ld/jse0i73QjaixSo9AtWuy65rrDLJbyDRWKvg2GbXQEgsRMnKo0II0Zyk4COEjzg+Dv7nZa5DKcKd7ekq4+CFB8lQCiFEsyo9Alm9weraczWk6FIIPR/crFop/Mj//v1C8v+AN551jetCYOx6KfoIIUQzkkG1fsZi0lFwuELxX3GOPAkLBMfHwd8w5VyX/6JTalbtknHwQgghAkJ1EabScCo6zKSi13uK/xzhAwBwaGWCeH92/N+vOuJsjAMXKP/r+QTWUrPbHl5CCN925MgRRo0aRUpKCnq9njZt2vDvf/+boiLl53nv3r2MGjWKtLQ0goKCSE1N5ZJLLmHhwoXYbLba/X7++WcuvvhiYmJiCAkJoUOHDowcORKLpWZkw8qVK1GpVJSWljY4x/T0dGbPnn3S/RYsWEBUVFSdr+vy6aef0rlzZ4KDgznzzDP57rvv6tz3nnvuQaVSNSif5iA9fPzE8Z4dBQdS+OSZ313iWr2a4DBZKtnfyTh4IYQQLYFpfyEFztdR/RnkEmtLNDaHBUuIfE31Z86gmn/b6G0FHF7+k+sO9k60vbkQXYqHExNCnLL9+/fTr18/OnbsyIcffkhGRgbbtm1j4sSJLFmyhHXr1hETE8P69esZNGgQ3bp1Iysri86dOwOwYcMGsrKyOOOMM+jRowfbt2/nsssuY9y4cbzyyisYDAb27NnD559/7rMrx/3666/cdNNNzJgxg8svv5wPPviAq666ij/++IMzzjhDse+XX37JunXrSEnxXkMnf0l9SR1j2QEw1dztR6cUMPSOIS7h4DCd20KBEEIIIYSvsRZVo9JGUxp2GFNauiK258AeSnctJbL39d5JTjQJc2QwNoeF5M5XQeerXOJOmxlzbhXyuFII/zF27Fj0ej3Lli3DYKjpxZeWlkavXr1o164djzzyCK+//jqZmZl07NiRX375BbX67xEKHTp04KabbsLprFmReNmyZSQlJTFz5szafdq1a8dll11Wbx5r1qxh8uTJbNiwgbi4OK6++mpmzJhBaGgoAwcO5NChQzz44IM8+OCDALXXawovv/wyl112GRMnTgTgqaee4ocffuC1115j7ty5tftlZ2czbtw4li5dyrBhw5rs+o0lBR9fUc9Ydvh7PLs2REV8WriHkxNCCCGEaDr5ZXaCgM05yZQdNStiDlsQFnsFKeFSCvBnqjA1S47OY0vrczgYFK+IDanI5/qgPpRVlBPmpfyE8DVWi53SXM+vyBuVFIJOf/J5QouLi1m6dClPP/10bbHnuKSkJG655RY+/vhj7rrrLnbs2MGHH36oKPb8k0qlqj0uJyeHVatWceGFFzYo33379nHZZZcxffp03n77bQoKCrj//vu5//77mT9/Pl988QU9evTgrrvuYsyYMQ06Z2OsXbuWCRMmKLYNGTKERYsW1b52OBzcdtttTJw4kW4nrLDtaVLw8RXVRWCt5shFL2OOau8Szv/qd9KrZTx7S2e02Pkru8xle3SontQo+d0QQjQNm7lmvrgTSW9S0VQqq50EAdFxB0nsrZwg/tixSgqXQ0KC63Av4T+SwyM5YK/Aqf6doBDld5diSyLQh3xjGaneSU8In1OaW+126o7mdsOUcxvUoWDPnj04nU66dOniNt6lSxdKSkrYvXs3AJ06daqN5efn07Zt29rXM2fO5L777uP6669n6dKlDBgwgKSkJPr27csll1zC7bffTkREhNvrzJgxg1tuuYXx48cDNb2GXnnlFQYMGMCcOXOIiYlBo9EQHh5OUlJSQ38MDZabm0tiYqJiW2JiIrm5ubWvn3vuObRaLQ888ECTX7+xpODjI/IrzSQA93xfyTan6w39TeUOekeATiOrNLVEOk1NdTw7L5+3XnvPJW7URvHef66Voo9osL1/5lOa6zrhu7NSnrW2ZBqNAwBbfjJLn3P90mnTqLh2Wj8p+ojTZjHXDFXP2/8LJTu/cIlbNQ70YaGeTks0ofS0tvyKlo77K+mI8vtrtF4DqVBUIguPCHFcVFIIN0w51yvXbYxTGR4VGxvL5s2bARg4cGDthMwajYb58+czffp0fvzxR3777TeeeeYZnnvuOdavX09ycrLLubZs2cLWrVtZuHChIieHw8GBAwfqLEiFhf39HffWW29VDL9y5/Dhw3Tt+vcDiSlTpjBlypSTvteNGzfy8ssv88cff9T2ZPKmgCn4ZGVlkZWV5bOTO51MudGKTZXInWfHEJEU6xK3rIqCcgjRyypNLVFwUE0hp4+2nLt1S13iZkwcyzsLomQZ7ebm720N1BR7tO/vJMnNH6EkOmBzWNAGW72QmfA2bZQKW4GFc8Nd/w4B2JxOsrfupvPA7h7OrOUJhLamPhXmcpKB7AQ7y9vkuMRVBh0jk9u6Hij8RnL71tz89KuU5Ze4xLYv/gEcYDU5vJCZ+KdAb2v8iU6v8empO9q3b49KpWLHjh1cffXVLvEdO3YQHx9Phw4dANi1axe9evUCago77dvXjGLRal1LEKmpqdx2223cdtttPPXUU3Ts2JG5c+fyxBNPuOxbWVnJ3Xff7bb3TFpaWp35Hy84AXX2HvqnlJQUxTExMTFAzTC0vLw8xb55eXm1vYlWr15Nfn6+Ihe73c5//vMfZs+ezcGDB0967aYUMAWfsWPHMnbsWMrLy4mMjPR2Oo1WXFoCptfpvSEIcHej1bHmJkyv93RqwgfYDUHYHBZSDCPIt4xws4cJTZEsbeoJ/t7WAFQcPEq8SkWV8VtCnDsVsUPGIP6sUtOzVx8vZSe8yRAfwZKf5tHmjG6kdFSuNFG9v5S04nZYiku9k1wLEwhtTX3MjprvOl2iu3DtLZNc4tFB0SSHuT7ZFf4luX1rktu3dtl+YNVKKPV4OsKNQG9rRNOJjY1l8ODBvP766zz44IOKeXxyc3NZuHAhY8eOpVevXnTu3JkXXniBG264oc55fOoSHR1NcnIyVVXuewCeddZZbN++vbaA5I5er3cpYta3vztardbtMf369WPFihW1Q8oAfvjhB/r16wfAbbfdxqBBgxTHDBkyhNtuu4077rijUTk0hYAp+Pg7Y7WJYGcUW8/cR9teZ7nEC1f9xZ+rvuG8c27zQnbC27QGHUuOzuNYWhB/pucrYmmWJCYdu4PSynIvZSf8jbo4FwineusxHDm7FDGtQU91x9YQL+vktkT64GDMljJ2bFnHji3rFLFofSJpqe0wGyu9lJ0IRKFaA11jpXeqEEL4g9dee43+/fszZMgQpk+frliWvWPHjkydOhWVSsX8+fMZPHgw5513HpMnT6ZLly5YrVZWrVpFQUEBmv9NU/Lf//6XzZs3c/XVV9OuXTtMJhPvvvsu27Zt49VXX3Wbw0MPPUTfvn25//77GT16NKGhoWzfvr12pSyA9PR0Vq1axYgRIwgKCiIuLq7Jfgb//ve/GTBgAC+++CLDhg3jo48+YsOGDbzxxhtATWEsNlbZU1qn05GUlKSY18hTpODjYyJNRto4XefpqbZZqLa7TqApWoZwfTjV9gp6p/TmX32UM70f3PInHIMqu+dn9Rd+ymgCwjFecDaxF96qCB09/Bcs/RFio7ySmvAuQ0Q4F+46gvmpCbTtfoEitv2b1ZADNrPJS9kJIYQQwps6dOjA77//zrRp07jhhhvIz8/H6XRyzTXX8N577xESUjMfUN++fdm4cSPPPPMMY8eOJTc3l9DQUHr06MFLL73EqFGjAOjduzdr1qzhnnvu4dixY4SFhdGtWzcWLVrEgAEDgJoVr+DvoWDdu3fn559/5pFHHuGCCy7A6XTSrl07brzxxto8n3zySe6++27atWuH2Wxu0mXZ+/fvzwcffMCjjz7KlClT6NChA4sWLeKMM844+cFeIAUfH6Euq3liGvzOYra85jqBVGFkMiRq0YTKBIYtkT44BNCy+5cV7P5lhSIWrU+E1N5Yq4zeSU74neOTpe48sJW1u35wictkqS2bwWqjvOgIRbnK4X4mozx0EEIIIVq69PR0FixYUPv68ccfZ9asWWzdupW+ffvWbu/YsaNiP3d69erFe++5LkjzT/n5+YSFhSkmXT733HNZtmxZncf07duXLVu21P9GgMzMTDIzM+t8XZfrr7+e66+//qT7HefpeXv+SQo+PsJeVDMcZ0ubJEosdc3mrSWkVd0TUYnAFRoeRVBkJhcO0pN4TkdF7Pel38IhcJhlkl3RMDarGYC4dh3pcuWNilh2ZTYvbHuZK2KivZGa8LLIhFYU6CDx+Q+BDxWxiLTecFYvqstdJ2AVQgghRMv0xBNPkJ6ezrp16+jdu3ej5+ypi9lsZt++fbz22mtccsklTXLOlkgKPj7CbrUBNTdg/S/9t0u8vNDI+sU5hEU33fhD4V9U6ggcxSYsh5TzZ2jKvL/cn/AvRkdNwed30w4WbX3fJW4INxAdJAWflii1fU/48kPK8o+6xAq/3kAbwGKSZZSFEE1DY62CY5vdB0NiIcp1wmchhO9pjsmIlyxZwm233Ub//v155ZVXmvz8LYUUfHyE3Vozb09pTjtWvFvodh9dcBTBYTpPpiV8RFhSNGp7Lr9sDobNxYpYuDMFosFRLPNqiIY5vjpOj7Au3HS5rI4jlFLb96wp/Jzg0Kr9sqqOEKJpaGpWnQ3J/wPeeNb9ProQGLteij5CtFBXXXUVFRUynPx0ScHHR9jtNV3folMKGHrHELf7BIfpCI8J9mRawkdEd2nDiAlQmes6lGLr91uARJxVdtcDhaiHrI4jhGhu1p0bseUedtmuKykE6aDaYjm0Ncs5V6ReALc/4rpD4W74YgxUF0nBRwghToMUfHyMNshKfFq4t9MQPii6Sxuiu7Rx2f7Xb6vkqbsQQgifY925kW03349F7fq9Rp3UGc4AhyHMzZGixTCpMZa46b1erENbpUH6tQshxOmRgo8QQgghhGhypfuOsPncx9Fq9S6xUGoWq3DEy9yELZEzKAiAiF9/5+BHWW73UWniaXdzIboUT2YmhBCBRQo+QgghhBCiyZnKNQyMCkGrcjd2Kxabw4IjQsZ1tUSO0BAAzIMuo1XfCS5x644N5M99G1tZhfTyEUKI0yAFHyGEEEII0fRsKrQqFblRR3D26qQI7di7hapffiDOMMJLyQlvsmod2BwWOha3ouy7cjd7dCT0kiewG2VVQCGEOB0+WfC5+uqrWblyJZdccgmfffaZt9MRQgghhBCNVFxeQSyRbN22gpJNH7jErRoH7WIivJCZ8DZVmJolR+dxJLYvBeoEl3hvWwlDw8+krKIcmeVJCCFOnU8WfP79738zatQo3nnnHW+nIoQQfqmi2ISp0uo2ZjNLB3lx6hzVVgo2bnAbC46NITy9rYczEr6q2mgkFkhocyadh49TxLIrD/Hinse5Ii3RO8kJr0pqFc0Bu5HY/B+IdRPX6BMh/Ezy8qtI9Xh2QoiGcNocOB1OtzGVWoVKq27QeTIzMyktLWXRokV17pOens748eMZP378KWTasvlkwWfgwIGsXLnS22kIIYRfqig28cG0ddgsDrfxcGc8RING4z4uhDtqfc1XhqK8NnzyprshGKBV5XPzQ0jRRyhowtREtVdO3FxcpqHqqN1LGQlvi0qP5dvzShiddgeJBtcePmU/7wAHmE3uH1wIIZqfu4LOHaNH8e577wKg0+londKKW6+7iYfu/z+02n+UFlQqdIkhiqLPwYMHycjIYNOmTfTs2bNRufz++++Ehoae8ns5zmw28+STT/L++++Tm5tLcnIyU6dOZdSoUSc9tqioiB49epCdnU1JSQlRUVEAfPHFF8yZM4fNmzdjNpvp1q0b06ZNY8iQIbXH2u12pk2bVnvdlJQUMjMzefTRR1G5neeu6TS64LNq1Sqef/55Nm7cSE5ODl9++SVXXXWVYp+srCyef/55cnNz6dGjB6+++iq9e/duqpz9W+kRqC5y2ayxyhhlIUTTMFVa0VkdXHheGGERGpf4gd+2gyMRjU5utkTDBUeGQT5ka7azNdR12Zx2jiqSq87k2JFcOknBRwBGhxmAX0v/YNLiN13iBq2B6KBoT6clfEB0UDSVsUZmlL0IZa7xqxxn05vetb9DQvgTW6kJR5Wt7rgffP9y2hxY86rBqSz4OI02Lh04iDdfnIPZamHZbz8ybvwDBEWF8PCkh2uPtRebcFjsqP5RMHJY7LXxxoqPjz+Nd/O3G264gby8PN566y3at29PTk4ODkfD8rnzzjvp3r072dnZiu2rVq1i8ODBPPPMM0RFRTF//nyGDx/Ob7/9Rq9evQB47rnnmDNnDu+88w7dunVjw4YN3HHHHURGRvLAAw80yXurS6MLPlVVVfTo0YNRo0ZxzTXXuMQ//vhjJkyYwNy5c+nTpw+zZ89myJAh7Nq1i4SEmgp+z549sdlcPwTLli0jJSWA114sPYLjtXNR24wuoZCiSyH0fNC4Ll0qREMYLXb+ynbzrQmIDtWTGmXwcEbCW6yHcrg4Qot2m/svym3pgc1hwRImq+OIhgsNrvnKcHb31gwf7vr3//C69Rz4AarMdX/JFS2L2VHTO6NHWBduunySSzw6KJrksGRPpyV8QHJYMl9d+RUl5hK38e1HvoHKv3+HhPAXtlITeS9uxGmtu4hgj9bgHBqJw2LHoVYWfxozFKop1DUsy2lzgNOJJiZYkY/KoCU4PIRWZ2SgUqvo0KcrXy3+mk8//4xnZz7H22+/zbVXXYNdpcJebOKr7xeT+cBoDv+xh3Zd2gNw1rlnAzBgwADFqJ4XXniBF198EYvFwogRI5g9ezY6Xc00BCcO6Zo1axbz589n//79xMTEMHz4cGbOnElYWN2zfn3//ff8/PPPtcccP29DzJkzh9LSUqZOncqSJUsUsdmzZyteP/PMM3z11Vd88803tQWfX3/9lSuvvJJhw4bVXvfDDz9k/fr1Dbr+6Wh0wWfo0KEMHTq0zvisWbMYM2YMd9xxBwBz587l22+/5e233+bhh2uqfps3bz61bN0wm82YzX/f1JSXu+9m7gvy84+RYDPyb8t97HUqRySfby8mHdAEydR0onF0mppGODsvn7dee8/tPkZtFO/951op+pwGf2pr8rZvJ14Vy7r8byi3uvYoBKhyVtHlqms9nJkIBIkVDtrsO+iy3V5QQa4qyuP5BBp/amsaKlRroGtsV2+nIXxMclhynQW/Q9rlHs6m5QnEtsYXOKpsOK0ONOcYUYW7Fn2cZhW27aHYKy3Yik3YtH/vY7WYKSnIQROpB7XrQzmVSoVK03QP65x2J7ZiE9Hxyej0Qa47qMCBHZx/F6WcTgdOHNidVtRODRrUGAwG1Go1I0aMYP78+Vx33XXoEkNwOpy899WHXHvttUS3TWTdL2vpe14/lnz4Nd37n0Vw2N/3JT/99BPJycn89NNP7N27lxtvvJGePXsyZswYt7mr1WpeeeUVMjIy2L9/P/fddx+TJk3i9ddfr/P9fv3115xzzjnMnDmT9957j9DQUK644gqeeuopDIa675G2b9/Ok08+yW+//cb+/ftP+nN1OBxUVFTUFpUA+vfvzxtvvMHu3bvp2LEjW7ZsYc2aNcyaNeuk5ztdTTqHj8ViYePGjUyePLl2m1qtZtCgQaxdu7YpL1VrxowZPPHEE81y7qZWbrQSbA3i0p5ncGObbopY/vJfoAJC9J6r6IrAEBxU00D10ZZzt26p233MmDiWdxZEyRfuU+VPbY2pohiIJTwhgvSLXIfTHjXl8kbOPN7u1M31YCHq4IjUY3NYiC3q6HYZ5VjiuTjCSUme3DScDn9qa4QQ/kvamtNT17Ctir92ArDkq48pseS5PTYuPo2zgu9CFaFHFRRcu730wFE+njXZ7THN6cZHniWxXTvFNofdQXlRPvYc5Xs0V1dhMRopOnoEVLBl9z6WLl3KuHHjuP766+nfvz85OTkkxMWRm5fDku+X8P1332F3WomJrRnCGxsdQ2JcAiqtGofFjtPhJDo6mldmvYxWp6Vz584MGzaMFStW1Fnw+efkzenp6UyfPp177rmn3oLP/v37WbNmDcHBwXz55ZcUFhZy3333UVRUxPz5890eYzabuemmm3j++edJS0trUMHnhRdeoLKykhtuuKF228MPP0x5eTmdO3dGo9Fgt9t5+umnueWWW056vtPVpAWfwsJC7HY7iYnKFRcSExPZuXNng88zaNAgtmzZQlVVFa1ateLTTz+lX79+bvedPHkyEyZMqH1dXl5O69atT+0NNLPqsjI+Ongx2sM/ksePiliELhYSuqNxV10Voh52QxA2h4UUwwjyLSPq2MuEpsh9Tw/RMP7U1hwXEZfCOUOuc9keUrSdqsX/9UJGwp/ZUyNYcnQeZ5w/gDZJ7Vzi+ZsOkmTtjLrC4oXsAoc/tjVCCP8jbc2pO9mwLZvDQpdObQlN6u8SKzp2mJ05h6iuslBWUkm15h9/M/UR/Ov+iahx7QCgUqkwaMNRUUcPH5Wq0T2D7GYrjjIrWr2eotyjbo+LiE9Cpf57Pkh9cAjLv/qa9j16YbVYcDidjLjxRh6Z/DChoaF07dqVt958kzG33syb896iVUoKXTPaUHT0CKW5xwBw4sRebKo9p9Noo0u7TjiLzFhVFnSJISQnJ/Pnn3+6f6/A8uXLmTFjBjt37qS8vBybzYbJZKK6upqQkBDF0K5bb72VuXPn4nA4UKlULFy4kMjISKBmdNJ1113H66+/7raXz+TJk+nSpQu33nprnbn80wcffMATTzzBV199VTudDcAnn3zCwoUL+eCDD+jWrRubN29m/PjxpKSkMHLkyAad+1T55Cpdy5c3vBtnUFAQQUFBZGVlkZWVhd3uu5NgVe0q4tLUMWjV7ufpsTkdGNLdLU4pRD3CtSw5uoCgOuZ/itDF0jdhOOaiSg8nFlj8qa0Rojnow0Ipo4z1Py/G3YjzaH0iSamdsZhd56kTDSdtjRDCE6StOXXHh23F3NgJbUKIInZ4xRJ++P4LbCFXoD6a6HKs0xGLRnMUnEac9jKc/F1M0WggOiWViPhEdEE6xXE2i4WKgkIiYuLQ6HQnnBMot4H7FdJBpUIbG+xSDLIZzRBuxxHmRGNQ3kc47E7KCsxUljiBv3v5WM1Ozut3ATOfegGNpoqkhHi0Wi2mkmJMJcXcePWVzH9nAWNuuYnPvviMzBuuIEZXU9wp09T8b6W1FFUkaIJqfnYqgxZ9aDCamGDsxSacDicqlarOyZQPHjzI5Zdfzr333svTTz9NTEwMa9as4c4778RisRASEqKYQiYiIgKA5ORkUlNTa4s9AF26dMHpdHL06FE6dOjgcq0ff/yRP//8k88++6zmZ/2/Sazj4uJ45JFHFL3kPvroI0aPHs2nn37KoEGDFOeZOHEiDz/8MCNG1DycP/PMMzl06BAzZszwr4JPXFwcGo2GvDxl97W8vDySkpKa8lIuxo4dy9ixYykvL1f8I/oSY0kVWrWeFcYV/BV90CVeFF7O072zPJ+Y8GtxrdtjD7uW9L/mEGLMdYlbYzMgAYpzD3shu8DjD22NEM0hJbkt319UjNPofhLVQYfiAKgwy5CupiBtjRDCE6StOXVHc7JxGJWroR4+coRqewXnpuWTcUEXl2McR3LJ+bSYIJuNEIuVoH9M2uxQ6TAZ4rCZbTgcygKc01Ezd05pkfthYhq1lojYBNQa9QnHAeU2bIXuH8Y4cdbsZDvhejYnoCY4woH6HxUDTZCT8MgQuvZqh7HUidOpLMpcd00m0597gXnvfsaOPfu5aej12Kpqhq1pbDW9bqx2K1aLEfQ1havj8wI5nA1b9GHjxo04HA5efPFF1Oqa9/vJJ58o9mnfvr3Lceeddx6ffvoplZWVtT2Adu/ejVqtplWrVm6v9fnnn2M0/v2z+/333xk1ahSrV6+m3T+GwX344YeMGjWKjz76qHZi5n+qrq6uzfU4jUbT4BXCTkeTFnz0ej1nn302K1asqF2q3eFwsGLFCu6///6mvJRfOr7SQGi8gTvuldUqRNNIaN0Jlboc7huPKtK10Sj+5XcyAEuV9PBpaUptlWwv2u6yfX/ZyccfC3Gi5LBkPrzpy7pX1Zkjq+oIIYQIfIVHah6wrvnwtTrm6dGibeOgorub3vfJIYRlH8IREYImIQaN/u/eOk6rHarUmKrdDdtSo1LHEBxmRqNX3sI7HU6qi8spKTjmNl+NWkt0UgpqjfI4a3U1ZcWFOG2RqFSuw8icOMm25eL4R++vKns1RoeJY6ZsUqvUqFAWvMJ0MHzQYJ58dhoDL7iYqHY9qfpfLKR1HIZgAz+tWk1KUhJBQUFEhIfXzgtUlpdHhD4Wh73+wk/79u2xWq28+uqrDB8+nF9++YW5c+fWewzAzTffzFNPPcUdd9zBE088QWFhIRMnTmTUqFG1w7m+/PJLJk+eXDsdTbsT5jYqLCwEanoGRUVFATXDuEaOHMnLL79Mnz59yM2t+f0wGAy1RdThw4fz9NNPk5aWRrdu3di0aROzZs1i1KhRJ837dDW64FNZWcnevXtrXx84cIDNmzcTExNDWloaEyZMYOTIkZxzzjn07t2b2bNnU1VVVbtqV3Pxp+6IslqFaErBYTq0ejU71rif/ynceQZEg92qcRsXjeMPbY3RUbPqxq+lfzBp8Ztu9zFoDUQHRXsyLREAZFUdz/GHtkYI4f+kralbXRMzVx8uJRhI6tSbNq2U37/Nh3YR/fVqZuS+xYHFb7s9b3J6Mg85q1HZi1Hb/lFoUUFQcBkJmijUauX3drvZhtkaSqm5DJObByuaEIjTRaBWK2/vHTYbpvIKrDYzWrVyzJfVZsbhtBMcYkNrUF7P6rBSYCwiRROOXv13USpcHYxdZSbFGYrGUYkt3Opy3pG3DufTb7/hilsvp8SgHH3w+JNTeXX2azw/+2XO7nM27365AIvWgU3rpDrYRoQDrLb6Hxz16NGDWbNm8dxzzzF58mQuvPBCZsyYwe23317vcWFhYfzwww+MGzeOc845h9jYWG644QamT59eu09ZWRm7du2q9zwneuONN7DZbLW95Wp/DiNHsmDBAgBeffVVHnvsMe677z7y8/NJSUnh7rvvZurUqY261qlQOY8PRGuglStXctFFF7ls/+cbeu2113j++efJzc2lZ8+evPLKK/Tp06dJEj6Z490Ry8rKasfr+Yolz77CmaW9+DNqE0MffsDb6YgAUlFswlTpvnFcN/99ehnP8MnfO1/+vJ6ML+d+vK1ZF/YrXe8d7nYf6VEompov/43z5c/ryfh67iU7DlGZ677X19bvf6KH6hyf/J0Qvu14e7Jd8wsX3Oz6d0wbHY0uJcULmdXP1z+v9fHn3JuDrdRE7gsbwOb+VtnmsHD497nE5/zlEjPrwPjyfUT2uMQlll9h5tUv1zKuby8SU1PQaP8u0Ghw0IpignDtsW+16ShxtAZVI5dld9px2IuoZ4IfykMdWLXK+witHVoXOlHVUylwquBInArbCc+Uv/7ka2Y+NpPt+3ZjCFLOcURlFZbqYEKCq9GEBitCFqMFg9mAOcRKcOgJxwFqtcZl/qJAZjKZOHDgABkZGQQHK39Wjfm8NrqHz8CBAzlZjej++++XIVxCeFB4TDDhMcFuY9ogK8gcqi2S9CYUQjSnkh2H+GjWdhyaunqYtoZoUIVKD1PROM7/TVgb+vsODn7+jktcFRxEu+++88mijwgM+TuPgs3JuvxvKLe6rnRrtlto3X4/cWe5FrxjgzVUp16C1ZTqEistqSS3ui3hIWEkR8US9I8beZPNwf5iA6kRevTaEwo7Zgthx46hSUpGpXMdKmZ3WrGrXe/RLRYL1ooY6iv4JOjMBAWdsEKV2QLOfHStWqEOcm3jrXYHB0qrsNpV8L/OYUZjNYV5ebz18jtcd8sdFFTq4IQH0hEOJyGAo8SIqkg5559Go4NQA9byasylrvMBOlVOYlq1alFFn6bgk6t0CSGEEEII31a5fx9B2iDOtX9CVLDrogE5qlRgBCTI8FHROI7wSMgDU8dgwjqGKWLWKg1lf6ixHd4pBR/RbMoOZROOmtCiamIKXJcs19ir+GJAD/ZqXKctKbGHc2z+AeCA23O3jdaj12oI1msJ/sd8PBq1A7tKx8Fy1x4+WgekOx04clxzAUCtJqR9e9R6ZTHIUl2GJe+Yy1w7x6mcdlSVdQznU6lRh4S4nBPAYbFhwUrrqBCCtTXD0qY/9Sozn53B+edfwDPTpiqWRj/OZtZhLLZhMriuTK0GdECY1v3k4U6c2MxWKfg0UsAUfGT8qRDCE6StEUJ4gl+0NeVVXBwRiVZ1i9twCjXDHsyh4Z7NS/g9Z0jNjWK2dTA7VTcqg0Gg7m2mVVE5BjfHisbxi7bGCxxGIxBKeL8ziLnwMkVs655fmVv2NaM6XcCYM65p9LnDdU6qi3Jctuu1ajomhmN3s3KTyebgIJARFUSQTlm8cZjNWI8exVxeCScWZyx2NA47JEbACYUSu9NJXoUdq9N9AcWpVpPqUKG1uM5jZLLV5BisVWP4X9Hq6aee5OmnnqzrbR9/k+g1Rmw213NaqiuwlRpxRIURHHJCoddkQ2tR45Bf00YLmIKPLCkohPAEaWuEEJ7gF22NTYVWpcLZtpLEYRe4hJevX8mhTxcSZxjhheSEP9MYanoMpJxl4Mxzuilixb9vZO2WYExmizdSCzh+0dZ4QbW1mkhCWVq6jkV7NrrEDeFOOsTEckZq439mJpOJA66jxICaok9NX5cT2bCpNZi0ejhh6XWbFjSoUOW6X6XLiQptWBx6g3JoltFio7KqktYxf/fSqT2nw8mhomoOFFZRF7VKhUbtLtf6BYUYcDcQ2G43orYZUVsr0VU6ToiFgyoRHA1bul38LWAKPkIIIYQQwgsMdvSprl33qyLsVNsrvJCQ8HdWnRObw0LnAxFYD+xWxMIJ5+IIJ5gbf6MpREOZjSVAPH2NJm7Kdu2NE2zTYu3f3mP5aNRq1CoVR4qr3cb1kUm0itCjOWFSZ4vdSXaFhQxN3XOp/bOXzj/V1dvonznptU33OVRpanoa5TqjsTmUc5OGO+3EqMBhrzsf4Z4UfIQQQgghhBA+QxetZsnRefzc+nyKVW0VsWuqcrg8tAOV1XLjJ5qRvaYHmS6uB/physWIjhQbeWTpMd4Ic52UubnUN9wL6im+WGzYquz/G4Kl7B1zfFhWfdd039uoeWjVNcWqqCAN6qATlpevdoIDbHYnVrPruC61RoWmCYtPgSRgCj4y/lQI4QnS1gghPMGf2priKgtl2WUu2/PKTV7IRgSC6BAdO+wVXHtpK7p07q+IFX2yFPLAbPX9z4Y/8Ke2pjmUHSzDVOTaVtkqapYF35hj5a4PXds3gy6R6FDXyYyb06kUYE7WM+hUh2U1B41Wj00FwQUlgHL1M7vOAKEhWExOTLmuw8xUKhUxKaFS9HEjYAo+Mv5UCOEJvtTWWI8dw1biuhyopsL9H3UhhP/wpbamLlUWO2HAV9v3siC30CWeYDvA9UBocMB83RQe1irG4DJHyhaD/D41JX9oa5pL2cEySuZsQXvCMCiA9rTF5rDQrpWOxSPPd4lHh+pJjfL9acNPuWeQF+iDQ6BdW+w21/m5bGWV6J2g05oxhCuHe9ntTirK7TjsTjTSPLiQH4kQQvgh67Fj7Bt2OU6j0SUWmtYbzjoPZ5AsWymEaD7FpkrCiMEasp3WMX+6xKMqdUAcbaJcl98VQghvMxWZ0KpUVLXVEZKo/M60Y/0P7Du8hdYZnU5pYmZf4umhWadDHxwChLhst1abwQLaikrsJcoZrx1qPYQm4bTZIKjuuYpaKin4CCGEH7KVlOA0Gkl5fib6tsr5DQ5+swJKwWEIdn+wEM3IZtZRcNh1ot7gMB3hMfI7GUgqjeUAZGRriDqQ7HYfjV5P68S2bmNCCOFN9v/1kq7+8HUcOb8rYhEGPdUdW+MIkb9bzS0zM5PS0lIWLVpU5z5nnHMuD4y6j3vuGYU+VLlIgM1kRV0NtNBhiScjBR8hhPBjR8ISIKqVYlu5IQRKvZOPaLk0mpru4rb8ZJY+97tL3K5Vc83jfaXoE0DsNisAce06Muz2yW73MUREEBGX4Mm0RAA5sP8vl22lpUeJJd4L2YhAczTnKCkEsfxMFZsuVA7PCjHp6HIQYpPdF7NbqszMTN555x0AdDodaWlp3H777UyZMgWttv7SwsGDB8nIyGDTpk307NmzUdf9aflSYlTR6G0G7GXKwo4KNeEawOk86XkWLlzIzJkz2bNnD5GRkQwdOpTnn3+e2Fj3PVGLioq45ZZb2Lp1K0VFRSQkJHDllVfyzDPPEBERUbvfypUrmTBhAtu2baN169Y8+uijZGZm1sbtdjvTpk3j/fffJzc3l5SUFDIzM3n00UdRuRlS2JQCpuDjSxOOHT1USkWx6zALlSnIC9kIUUNjrYJjm10DIbEQ1drj+fgrX2lrCirMmIKimf7xDo6EKbu2DrNXcV4QPjMmW7QMzmAjNoeFc8Pdf2myOZ0Yc6qk4NNAvtLWNIQu2EBiW88tTywCX3xMCjaNk5xPfiSHHxWxaH0iZ6b2orTadQ470Xj+1NY0taKyAlJoRWyJlrPzUlziGpWdM1PbeCEz33bZZZcxf/58zGYz3333HWPHjkWn0zF5svvCf1OISYjFWlxJucaKTq/8HqE2Q5AjGE5S7/nll1+4/fbbeemllxg+fDjZ2dncc889jBkzhi+++MLtMWq1miuvvJLp06cTHx/P3r17GTt2LMXFxXzwwQcAHDhwgGHDhnHPPfewcOFCVqxYwejRo0lOTmbIkCEAPPfcc8yZM4d33nmHbt26sWHDBu644w4iIyN54IEHTv8HVI+AKfj4yoRjRw+VYpyzlXBcK3Vn0BWbw4JK1/IaVOFFmpoVBELy/4A3nnWN60Jg7Hop+jSQr7Q1+YVmfu/9GBcTBJXKWLgzFYIgPFTGMQvPURusLDk6D3NMHDvDeipibR1h3KxOoaiomgRkPpeG8JW2RghvaN/mDK6d8RwFxcdcYoc/Xws2MBcVYNy2zSWujY5Gl+J68y7ca8ltjcNaMzlwXLuODBt6rTJYegjDqseJiI7yfGI+LigoiKSkJADuvfdevvzySz755BNmzJjB22+/zXXXXVe776JFi7jlllvIzc0lIyMDgF69egEwYMAAVq5cWbvvCy+8wIsvvojFYmHEiBHMnj0bna5mbqWePc7hzttv467MTGzVJua+9TYff/4Fh44cIToyissH/4snnniMpKjQOvNeu3Yt6enptQWWjIwM7r77bp577rk6j4mOjubee++tfd2mTRvuu+8+nn/++dptc+fOJSMjgxdffBGALl26sGbNGl566aXags+vv/7KlVdeybBhwwBIT0/nww8/ZP369Sf5aZ++gCn4+IqKYiPhqNjfJ574dGWjeXDppxzcupaObc7xUnaiJXJoa7qoFof0ZE+PqxQxXeURUrfORFddJAUfP2M1O9FrrLRtlU9qhzhFLP9gHpQkojOcvGurEE0lLDSCansF/VW/MT74XUUsz3IhVsckTGUFgLQ1QoiTa9/mDNq3OcNle8nKfZAHob/v4ODn77jEVQYD7b5dLEUfcVJqW82IjJiiDSQuecZ1h5CQmp7wHuKw2LEVuI4SaW7aeANq/ak/JDQYDKjVakaMGMH8+fMVBZ/jr8PDw1m/fj29e/dm+fLldOvWDb3+72Xtf/rpJ5KTk/npp5/Yu3cvN954Iz179mTMmDEAqFRqgsLDCIqtub/Wh4fw3AszaNMmjf079vHwI4/x6BOPM2/Bgjrz7NevH1OmTOG7775j6NCh5Ofn89lnn/Gvf/2rwe/12LFjfPHFFwwYMKB229q1axk0aJBivyFDhjB+/Pja1/379+eNN95g9+7ddOzYkS1btrBmzRpmzZrV4GufKin4NJOUqq2klilnez9WeYBqu+tElkI0J11oTcEndtNubF+9r4jZgL2aBKKuOkZySk/PJydOmSM/m0siYtFWRsMmZSyd7tgcFjRxUV7JTbRQhpovYfndr2X7BecpQnlrC+mwCzTWSndHCiFEgx1fkKD84rM5a/gkRcyyfz/HJk7CVlIiBR9xcvaaHj7VCWfBnY+4xj087YGtwEj+q5tOvmMTSxjXC31q2Ml3PIHT6WTFihUsXbqUcePGcf3119O/f39ycnJITk4mPz+f7777juXLlwMQH18z91ZsbGxtD6HjoqOjee2119BoNHTu3Jlhw4axYsWK2oIPQJDeQHRUzZxwUyY/Vrs9Pb41T0x8jLGTxzPH7DqSRq1RodGqOe+881i4cCE33ngjJpMJm83G8OHDycrKOul7vemmm/jqq68wGo0MHz6cefPm1cZyc3NJTExU7J+YmEh5eTlGoxGDwcDDDz9MeXk5nTt3RqPRYLfbefrpp7nllltOeu3TJQWfJqY5thtQU/HWYv6syFXETBFxEA9EtKzuksK7YhISYT/82TODff2VQw1jKpz8a00BR44dQqak8y/qqgq06iSO6DaTcX4HReyosYBpR99mZpeT/wEToqmE6mq6Ua/Z9DMfH12hiLUzd6cDnSi3ScFHCNE07FHhGLp183YaIgDYdaHgAw8+tfEGEsb18sp1G2Px4sWEhYVhtVpxOBzcfPPNTJs2jdDQULp168Y777zDww8/zPvvv0+bNm248MILT3rObt26odH83csoOTmZP//8s879ly9fzowZM9i5cyflZWXYbHZMZhO5BwoIMYTQpuvfBd/rrr6Rtxa8ya7dO/n3v//N1KlTGTJkCDk5OUycOJF77rmHt956q978XnrpJR5//HF2797N5MmTmTBhAq+//noDflo1PvnkExYuXMgHH3xAt27d2Lx5M+PHjyclJYWRI0c2+DynQgo+TcyaUwAksq1rJidMII7DlgcVC9G2aeX2WCGaQ2x8DDZHPperLwHTCUEd2AY62V/iOgZe+InIUJKGXKbYVFy0nUOLZ3opIdFStUrvgsbhIKkogSTlPOJE6zWQClX5Od5JTgghRIu1a/1uio8Uumw3FlhB5+YAL1HrNafU08bTLrroIubMmYNeryclJUWxOtfo0aPJysri4YcfZv78+dxxxx0NWoXq+Fw9x6lUKhwOh9t9Dx48yOWXX869997L008/jc5hY8OvW7hn4v0E2a2Ea1Ss/35N7f7h4RE4rA5mzJjBeeedx8SJEwHo3r07oaGhXHDBBUyfPp3kelZkS0pKIikpic6dOxMTE8MFF1zAY489RnJyMklJSeTl5Sn2z8vLIyIiAoOhppg2ceJEHn74YUaMGAHAmWeeyaFDh5gxY4YUfBrKV2aYt9lqVsWJT8+hwxDluON9+w+T8yHow2XlHOE5IckGvjg6j0tunURkorJ7885lq2hXlgRmWUGuoXylrRHC18R0O5Pbpz1HZY5rUWfr0rUAOCqrPJ2W3/KltsZ67Bi2EtcVkTQV1V7IRgjRlHyprWkOu9bv5sc39+HQuH7XDXe2gWgIjvChqo8fCA0NpX179ysz3nrrrUyaNIlXXnmF7du3K4oZx+fsOd3ftY0bN+JwOHjxxRdRq9WUFubw6Wc1q2w5KvNwqI20jQupea01oDVE4bRaqa6udlk6/nivImcDlnQ/7nghymw2AzVzA3333XeKfX744Qf69etX+7q6uhq1WlkD0Gg0dRa1mlLAFHx8ZYb5KruRWGBN0Q+sWqmchCmqUseFxBGhj/BOcqLFqrZXENk5nMS2yvGl236tgLKkOo4S7vhKWyOEL4rpdiYx3c502b5tw04o9Xw+/sxX2hrrsWPsG3Y5TqPrRKKhab3hrPNwBsnNkvA8u1FDwWHl3JimfCumoGgvZeSffKWtaS7FRwpxaIJITi0iuWuqIla65xiUJhKe4vu9avxFdHQ011xzDRMnTuTSSy+lVau/R7YkJCRgMBj4/vvvadWqFcHBwaf0O9e+fXusViuvvvoqw4cPZ9myJbz7vyXS9Wmp6KOiave1VlrADDgcDB8+nDFjxjBnzpzaIV3jx4+nd+/epPxvzq8vv/ySyZMns3PnTgC+++478vLyOPfccwkLC2Pbtm1MnDiR8847j/T0dADuueceXnvtNSZNmsSoUaP48ccf+eSTT/j2229r8xg+fDhPP/00aWlpdOvWjU2bNjFr1ixGjRrV6PffWAFT8PEVlcZyADKyNUQdcO0WptHraZ3Y1tNpCSGEEEI0mq2kBKMjmMhHn0KXqrxZ2rtqLW2Mf0+iK4QnqHU1T+LLdobwyTO/u8Z7P0arCjuNm5VEBDKDCtLapNC9b3fF9h2mI/IwohnceeedfPDBBy7FDK1WyyuvvMKTTz7J1KlTueCCCxTLsjdUjx49mDVrFs899xyTJ0+mX/++TP6///DAxElU4EDN371m1Dg5/hcqMzOTiooKXnvtNf7zn/8QFRXFxRdfrFiWvaysjF27dtW+NhgMvPnmmzz44IOYzWZat27NNddcw8MPP1y7T0ZGBt9++y0PPvggL7/8Mq1atWLevHm1S7IDvPrqqzz22GPcd9995Ofnk5KSwt13383UqVMb/f4bSwo+TcxuswIQ164jw26f7BI3REQQEZfg6bSEEAGq1FbJ9qLtim37y/Z7KRshRKCprLCzrvdjONYEAcWKWLgzHqL/vgEXwhO0wTW/bzG9Khj6ryGKWN6GXfy8rByTsfmHSQj/oDE7uThCi3a7g/ztyhWwYknB5rDg0AXmcLbmsKCeZc+Py87OJjY2liuvvNIlNnr0aEaPHn3Sc86ePVvx+uDBg4rXDz74IA8++CAAlWWFVBaWMPi2YVRqSqmsKq3dL8IaQjBxWO129MC4ceMYN25cnblnZmaSmZlZ+/qiiy7i119/rXP/4wYOHMimTXWvsBYeHs7s2bNd3pcnSMGnmeiCDSS2dT+2UQghTpfRUTNu+NfSP5i0+E2XuEFrIFq6tQshTpPJ6MChCWLApREkntNJEfvtu8/gYGLtDbgQnqQPdxCfFq7YZtontzZCSW0DrUrF7pijRJwdp4gd27uR7J+30NNwiZeyCyzV1dXk5OTw7LPPcvfdd9fO2dPcgjQ6KoHEoDhUQaGKmM1eDQ6we2CuHF8lraIQLURx9hGXbeYqWSLZX5kdNb0Je4R14abLJ7nEo4OiSQ6re7UBIYRojEiyiT9hsssQbQEgD7eEd5QarfyVXabYVlEsE4kLpbKqPJKI5+CfyynZmOcSt2kcxEfGeCGzwDNz5kyefvppLrzwQiZPdh3p0tzCtEHoDMqCT3ml1eN5+Bop+AgR4AwREWiDgvjutRddYtH6RM5M7YXtf7PMC/8TqjXQNbart9MQQgSq6mIMKmDlfCybDytCsbaOQD8cWpktRXhOkLZmpZtf9hQyae8aRezs0gIuJo2SagutvZGc8DkmUwUQT2ibNLpc3E8ZrMghfkMW7ZNlftWmMG3aNKZNm+btNMQJpOAjRICLiEvgjllzMJaXu8R+e/dzMP0995TwPRXFJkxunk7YzLIqjhDCA8qruDgiEpXqP+RblKFYwOawYA4Nd3uoEM0hNKjm9uWGtGge6Kpc+fbo5ir27YYqk80bqQkfpLbVrDCYWvYX/VbNct0hOARCYj2clWgONpsVzCbFNofDBmi8k5CPCJiCT1ZWFllZWdjtMumWECeKiEtwO1m4LtgAJjcHiDp5sq2pKDbxwbR12Cyu446PT5aq0bTcMclCBDKf+V5jU6FVqXC2rSRx2AWK0PL1Kzn06ULiDCO8lJxoiRyhwdgcFtoc6Q4njFZvRzJtIpwUVZR6JTd/5DNtTXOx11SqqxPOgjsfcY2HxEKUd/qDOZ0y/1lTUGvUqHBSVlQClChiWpUO9EE4nf73+91Uvx8BU/AZO3YsY8eOpby8nMjISG+nI4QIUJ5sa0yVVmwWB4Pu6EpMsnJM8oYP5kNpIhpZWUKIgORz32sMdvSpYYpNVRF2qu0VXkpItFT2uEiWHJ3HuTf8i+7pyiHN+37YTnhROlqTPM1qKJ9ra5qJXRcKKT29nQYAOl1NL+3q6moMBhkSe7o0Gg1xwdU4IjNAF6SIVRaXgx2w2XEYjXWdALWHJphujOrqmjnJjv++nKqAKfgIIUSgikkOdVmJRB8sw/CE/9FUVGPcts1luzY6Gl1KihcyEkL4o2p7BSVBKkoilAWKUpUVGWDYMlmPHcNWUuKyXVPhexN5azQaoqKiyM/PByAkJASVSuXlrPyYxQx2B1iNcMJqXDa7FZNNg81YTnlhrvvj1Wr0aWk+U/RxOp1UV1eTn59PVFQUGs3pDUmTgo8QQgghmpUzqObpVOjvOzj4+TsucZXBQLtvF0vRx4ftKc1n8471im07Cw8S4qV8RMulDwvFqnGwdcFHbOUjRSxan0jr1A5YzHU8yRcByXrsGPuGXY7TTQ+O0LTecNZ5tX+HfEVSUhJAbdFHnAaHDSqKwFngEjI5DWgJx6q2otW7KX3Y7FBZidbhQHWaPWmaWlRUVO3vyemQgo8QAoMtBEu26xLt6lAt2qhgL2Qk/sm0bx/GCuUfIU2pDKMQ/sNhqGlHis/rS9rkBxUxa3Y2Zc8/ja2kRAo+Pii3uoJkIllStIrv17+kiMWU6bmCZBLDor2UnWiJDDHRLLrwGC/1mUnbSOXqStsXfgdVYC0qlN6ELYitpASn0UjK8zPRt1X+Thz8ZgWU/v13yFeoVCqSk5NJSEjAapVe26etPAxMpS6bf12+njbZHdGodYDFJQ7gtDnh4lKSz+3dvDk2gk6nO+2ePcdJwUeIFsymsmFzWGhf2Yn8Vze5xFU6NYn/OVuKPl5iK6h5UpEzcRKVlcqZKcMT2kL/S3AE+0b3UyHqo9bVTDxYciyerz8uPiFqQN37MVpV2JGZDHxPhcVIMtDL0IMLe9+niJmO5XD4lzfpFC830MKzqgx2ItNakRjbXrF9f3QsVIFz3R8c/GSuy3HSmzCw6du2xdCtm2KbffV6KPVOPg2h0Wia7Ma+RQvOcLtZE7KHZTveoPWFl9L+wrNd4qUbttFqeysqKyoIDg7M+x0p+JwifxonKkRdLBozS47OI717Py65bZQiZsuvpvjjXTiqbBDlnfxaOlt5OQBx4/9Ncq90RezXH74nMRec4TKgQvg+bXBNwSemVwVD/zVEEcvbsIufl5VjMsqKc74s2qnhrKAYxbZifRWHvZSPEG6F1JSN1ZcOIH3oJEXIsn8/xyZOkt6EAcoUFE1hvpXgcGUPaLtRiiktXbW9gvCoUDp37e4S23nwqBcy8iwp+JwCfxwnKkRdqu0VVGurXFZfEb5Dl5rq+sRq8zqoY+45IXyVPtzhMgG5aZ98FfFlNrMZgJxtW3h/8jKXuDYoCENEhKfTEqJ+MVEufzdF4KqssLOu92M4Pi4GlL1Iw50hEP13T1PRMuXm2li7Icdle+UxK128kI8nybesU+CP40SFqE+l2cZf2WWKbZr8alnpQgghWoi6ei5TUvO3Ia5dR4bdPtklbIiIICIuobnTE0KIOpmMDoK0QXTsrie4faoilrflGBT+3dNUtCwR4TXljvy/VBTu3OESj9SE0yUcikpsnk7NY6TgcxqOhCVAVCvFtnJDiE+PExXin/RaNQA7DlvIeukXRawtal7QhpJfYaIV0vvHWwwqoNzuMql2sDHIOwkJcRqCjUGuE8SX22t+z4XXNKTnsjYygsS27d0cLYQQ3lVWbObiCC3aQ044pByik0QbbA4LWoMUfFqilLiaThjdB2nQt3fty3Pkx3VQHEe1MXB/PwKm4JOVlUVWVhZ2u73Zr1VQUdO9+d8fb2ZfVKEidpO1hPN0f99IC+HLIv43/UuqvSsjK5W90iI1QDgUFhhp1dnzufkqT7Y1GB1cHKFFtbaa/LXKSbXb/u8LjE0XuE8kROCw6WomiG+7t43LBPEq4OIILcgcPgqebGtsJSUYHcFEPvoUulTl0/G9q9bSxig9l4UIVB79XtNMTFU2olQq9ifbib+wkyJ2ZPt37Pt2OT2jLvFSdsIXJIRWExNT5bK9WFcOxHk+IQ8KmILP2LFjGTt2LOXl5URGRjbrtcqNVjTA/13aidZ9eiliB7/Jh4MQog+YH60IYPrwml4iXe2v0zHYpIhVqnoBt+EsLQBaez45H+XJtgarE61KhbNtJYm9lUMm1mxYwa4fN5F83nnNm4MQTcASZGXJ0XlE9z6Hdl0GKmKO7bmk5kXgtAbu07VT4cm2pnb+izVBuM5/ES/zXwiftL9sv8u2IksZrYn3Qjb+y6Pfa5pZSLSOLr2SFdtKS5xU2yvqOEIEOkNYCFqVne/e/wz4zCUerU+E1LbYTIG78JJUJU5D62gDZ6QqG8bSEFkiWfiR/y2lG7q5nEqjRREyJZsI7wPqYpkZ2GtMZYAO/vov+mM/KUIGWyTV9u44dKHeyU2IRgiPDGEnZVSv/Ynstcrf5Wh9IqmpmRQUl0hp2UtMRgcOTRADLo0g8Rzl0/HfvvsMDibK/BfCZ0QHRWPQGpi82nVOqQGFZ9OT9lTZTW6OFEK0NBHRUdzRbiPGKxZAfEeX+NoPl0IFOKwW14MDhBR8TkNQ6V44dsI8GsYSIM0r+QjRaLFRADgfH096h96K0K6vf4MywChfmrzGUg1EUtZ2GOaL/k8R2v7XetjzI/YTlkkWwhclJ8Ww6MJjPJw8moSk8xWxvKV/QDVUVQXu0zV/ERmtdVlFTR8uQ+2Eb0kOS+arK7+ixOw6yfjmD1dAJZjsZi9kJrwtr2gvazcph+0cOOraE0y0LBE6MxGtUyDFdR46XcgvEOAdwKTgcwq0xgIwxJC08mUsm5TzZ+jNfUHVAzQyoarwI21cl/1Wrd5VU/ARXlNlsRMGfLujlM8O7VXEYillMBAaLM248A9VBjsdO7Wia+eeiu2rfz8MUusRQjRCclgyyWHJLtv3a3/zQjbC28qq8kginrw/VrFzXZ5L3KZxEB8pD8hatMLdbjerzYF/syN3CqdAW15J0CVPUKYNghN6f6WowOawYA+TYRZCiNNTUVlJGDHEV+9kROnPLnGrxkFiQpTnExPiFO3P3eiyrbLyMBDt+WSEEAHLbtRQcFj52N6Ub8UUJG1NIDKZKoB4DO070eWKG5XBksPE//Qo7ZPbeiU34WUhsaALgS/GuA2HF10Kob1Q21xXqQwUUvA5BaYKC8HaINblf0O5tcglbrZb6Boz2guZCXFqsiuz2V60XbGtyFpKrEx86FU2a02X9IyOPRh2y78Usf3/z96dx8dV1/sff80+k2WSydomTZe0LF2gpYUWEGQrYBEQUS9uCCi4FUWrcEEFRb2gIljFXlH5IaDXK4oCymallJ22tKW0dKNtuqRJszXLZJLZZ35/BHo9OZOu6Wx5Px+PPLTnM2fmk5D55sznfL+fb08DX19+E5eW6eJVsp/PW4cnkeSWnY/DzscNscu6Z3ECJxEOdaQ8V0TkYL3XXLxnUwF/vuMNc3z2rYzpjeNJd2JyxKLNzcS6zMv4AKw9A8U9r7ea0066wBhsXgMv5e+HeTmA0jqYvwL6zZ/ZAfr/3zPQB8TVw0f+TTQy8AtRPmEM0877tCG2tXEnO5bEcZeUZiAzkUPjdXoBuPfNX9LZcI8h9oG9sziWY+iL649kprk9RVTXG9cd790boW9t7m6hKiPL6JpZPHHhQ3T5G02xTTvehCBEY4EMZCYi+eS95uKVU5qYd8Z4Q6x1XQsvLisgFFRfqlwTbW5m2wcvJhlMfU3qHTsbZk4n6VJLDUmhtG7gK4W44yUAbL39BNevN8XtPh+Ompqjmt7RpoLPYYhGrQA07q5hw8OD70gWErOHcRRa05+YyCGq8FQA8KMz76Rk7BhD7J2Hn4MQhBJqfCgiR250zSxG18wyHd/p2gWqK4vIMEjYB+buVLb9lcp/3GaIhTqOBX4M/Z0ZyEyORKyri2QwSM1dP8FZb16a1bB4JeNaIVFYkIHsJJclXQ4ACt/YyI6/PmSKWzweJj71ZE4XfVTwOQzxd/s019X1Me0zFxpiDd0NfG3ZV7ig9L4MZCZyeOpL6qkuN84gabEvy1A2I89Q05ST/oEpyt2xgGnJXUOPdp0QERH5d4l3Zy53TrkKzhlUYP7XcngdCOf5ljx5zFlfb9pkBCC+chu0gjW4d2AJ178bolmvCEDC4wbAf+4sZl5ykyEWaWig+cabiHV1qeAzUrndcdP2pe2FDgKu1OtLRUQG29805eTY2TBzJs/3rebZJ39rinvsHnxqQCkiImIQK6iGmhnGg8U7M5KLHH3WaADwUbr9KfjN18wPcBQMNO8VGUK8tDhlMTEfqOBzBHTXXfJFZ5O5r0a4T/000mF/05R3/GMJdMNJ1bO45uKbTOf6XL6U29KKiByO3Z399DQZt6jtDkYzlI2IyEGKDbQf6K05Ez72HXO8oHzIHi4i+U4Fn8MQfLenyWvdq7lJd90lh3m8XuwuF0//8m5TzOes5oTak4iF1cMnHVJNU46/vAK6wWsvYkr5lMwkJiJ5r6t/YDOKP/3rVbauXG2IzU7u4nSm4rKrN6HkjkhHgo1v7jEea4vjsWQoITliFk8Zsb0xIk3mG5IFkYFmzXGX1zyzS+QgWAIO05jBLj8WT1lmEhpGWVfwaWxs5Morr6StrQ273c6tt97Kxz72sYzk0tsZIhQw39nqe3flxfSiyXxCd90lh3krqrjmnl8R9PtNseUP/xVCEI/p7q6ISD4L9bQDHr5p/zN1LmO/i5XR6RC/hMIib2aSEzkEjiIrsUSEk7f5YNvWQdFKzvUmCfRql65cE++LU3je7fQ87QfeNMWPpY5YIkLUrt1L5dBY3QliiQjTO8bBI4PHDEiedzvtrUHG5vBqr6wr+NjtdhYuXMiMGTNoaWlh1qxZXHTRRRQWFqY1j97OEH/83jJiEfMfheJkJfjA63LprrvkPG9FFd6KKtNxh9sDoQwkJCIiaWWLBgAPnVOvpO5D7zcGV6yDZYBbBR/JfkUVdp7ZfT/jPvYpJow3Nm3u+dcyxnRWEAkmM5SdHK5kKInF7qLofYUUzDzWFF/8j7/Q+NJiyqa+P8XZIkPzlXp4Zvf9rJ/iYndFmyE2q62aa/o/y57ODsZmKL/hkHUFn9GjRzN69MDsmFGjRlFRUUFnZ2faCz6hQJRYJMHca6ZQNtr42iv/+DvorsbmUBVZRERE8kPqRrftGclF5HD1x3vxjXcy+STjbPu3lidBO7LnNFuJDWdtkel4nydEf7yX3F98I+nmKxpFf7yXD/fuYLR1iyHW0Xc8WCDS35Kh7IbHIRd8XnrpJe666y5WrVrFnj17eOyxx7jssssMj1m0aBF33XUXLS0tTJ8+nXvvvZfZs2cfcnKrVq0iHo9TV5e5JltlowtNO3E53VriIiLDJ+Ty0dEWxV1s3Co2HrRlKCMRERGR7LLsnR34k/2m47vbtNGIHKaCCgCKT/xPKo8fYwi1L30FOsASNe+km0sOueDT19fH9OnT+exnP8vll19uij/yyCMsWLCA++67jzlz5rBw4UIuvPBCNm/eTFXVwLKRGTNmEIvFTOcuXryYmnf3uO/s7OQzn/kMv/2tuSmyiEi+CPTGWTb7VhKPdDL41mNxsgB8YHVo+rmIiIiMTFv2tFOFi9Y3i+lZaf7w7YyNIQJUlhSkPznJaa6CgXLI8qVB3njZ2NO0xHYiE4shFsm6RVGH5JCznzdvHvPmzRsyfs8993DddddxzTXXAHDffffx1FNP8cADD3DzzTcDsGbNmv2+Rjgc5rLLLuPmm2/m9NNPP+Bjw/+2i5A/RfNZEZEjdbTGmlAwQcLm4qwLvFSffJwhtvzpR2FHNXa3Cj4iI4Wua0QkHXJprNnb20cVLuIVm/GdUG2KJ5p30voqTB1dmYHsJJcVeJ0AnP/ZqZSPmWCIrX7k77B3LPFYbs+4H9ZyVSQSYdWqVdxyyy37jlmtVubOncvrr79+UM+RTCa5+uqrOffcc7nyyisP+Pg777yT22+//bBzFhE5GEd7rOlNRsBmbBLfbw8P8WgRyVeZuq5xE6BtTysrl/zLcLx7WxOjmJj2fESORKCljdYG4447/YFuylFB4D259BkqFuoHyog3rKRjU2vKx9gtcTxFmuEjh8c3qsDUxsXhzo/r8GEt+HR0dBCPx6muNlZeq6ur2bRp00E9x6uvvsojjzzCiSeeyOOPPw7A73//e0444YSUj7/llltYsGDBvn/7/f7h7fnTvhnsxh+TLdI9fM8vIjnhaI01Xf0RAH76r3dY9UaXIfahZAenW8Bltx7x64hku1jYQfuuXtNxd5GD4jJ3BjLKjKN+XZNCT1c353krsXefBMZ6D6OYSCwRobTafFddJNs4iwqJ2hKsffBPrOVPhpjPWU1d7TFEwrndj2O4ZGKsOVyJ6MC1UtnxM/ngJy40P6D9HTx/vxqvrzS9iYnkgKxbkHbGGWeQSJi3Qh+Ky+XC5XINfyK973bj/tt14GgwhIq6ZoLnApL2o/C6IlkmGInzdlOP6biv0EltqScDGWXG0Rpr+kID/cyuPHUct58/0xBrfqEF1kGhK+uGapFhY3t3ZlvXbhd/+v6T5rijgCv/68IRU/Q5atc1+xEOhbFbHbxle4Pqc8032Eqrq5k07cS05iRyODxlPh5/fzPfnHoDtUW1hlj7E29CCGLR/Lhrf6QyMdYcKUdBEdX1k8wBdwAc+u8qksqwfoqoqKjAZrPR2mqcatfa2sqoUaOG86VMFi1axKJFi4jHh2mr9NDAB9zQsV8kOK7KEAq88BaEIGFP71bxIunksA3MKtnc0suCe18xxT0OG89946wRVfSBozDWvKu62MW02hLDsVChc1hfQyQbFY3ywF6IhV4lEkk1Vd/Oxtcrmf3B/ff0yzdHa6zZH2uxnZPPOz9trycy3HwuH4liJ7c33GOKXRaaxUxOJ9TdSXD9elPc7vPheHfzmJEkE2ONiKTPsBZ8nE4ns2bNYsmSJfu2ak8kEixZsoTrr79+OF/KZP78+cyfPx+/309JScmBTziA2N5uwMqee/9KINBoiBVX1cPp55EoGFkfdGVkcdsHGpTNrhzL+WdMMcRa/SHuXr6Drr7IiCv4DPdYA5BM+Al0dZv6DQS7zctbRPJNWX0NrIfjTjwZZ6VxS9Q9GxtoalxGz56WDGWXOUdjrBHJd6OLRvPEh56gK9xlir3d9gzsBeeKdex49P+Z4haPh4lPPTniij4aa0Ty2yEXfAKBAFu3/t+Hku3bt7NmzRrKysoYO3YsCxYs4KqrruLkk09m9uzZLFy4kL6+vn27duWKWKAPKKbis//B6LNOM8RefnkF1TsgUVyUkdxE0sHiChFLRDguPBGW7DbERgEPWArpbOqDWl0cHIlwXw/hngdZ+68Yawf1zvA5q5lQewIOd25NuRY5FElXkpAlzLi902CvMTbaMpMTx0xje1TFTxE5OKOLRjO6aLTpeEPxctgL/nNnMfOSmwyxSEMDzTfeRKyra8QVfEQkvx1ywWflypWcc845+/79XrOvq666igcffJArrriC9vZ2brvtNlpaWpgxYwbPPvusqZHzcDsa0xGTCT+7YhFaAlHD8ZZ4kilDnCOSL6xFQZ7ZfT8nHDeTcTPONcT27AhSswcSPSNvvfRwjzWJQCsQY05xD8eUbzPEGu2TIA6ucu0qIvkrWZTg8xO/z39PvpH68ecYYm/++UVqW73Y4yOvcbmWWYgcHfHSYjxTp2Y6jayRTWNN18adBFrMs7OSHaEMZCMjSWdTo+lYuC+QgUyG3yEXfM4++2ySyeR+H3P99dcf9SVcgw33dMS2rm7CPY+x6tUYvPq0IeZzVkPtMRR51cNH8lihh/54L6Fn/kzT438whOKVM2DmteDvzkhqmTTcY4011g9A8tgLqf70xYZY1/ZG+AdQWH7EryOSzdodXSTK4zhrjTNnI47MfwDJlKOxzCK0eSfR1m7T8UL/yCuoiciAbFnS1bVxJ3+6ZwMJm3lWc3GyHHxgKdKMZxleHq8Xu8vF07+82xTzOas5ofYkYuHcvsGtrV+G0NvXR4HNQ139HKrPPNMQC7S3wdtQNVofwiR/OWsriVkTvDXOPDvP57QzDoh2tKU/sTwVd5dBzQzjwW4rYN4hTUTkUIU276T9t1uwpNhhtJ7pxBIRoh5LBjITSa940Eb7LuMy0VBblJDLl6GMBGD3zu0kbC4a3Q/RWGZs4F/fP4pz+RyeUVVDnC1yeLwVVVxzz68I+v2m2PKH/wohiMeiKc7MHXlT8Bnu6Yj2mIN5Y67FHnPC0v5B0SJCljBJXRhJHvOUFvHYWc387NjrqR9/tiG29i+vQdfI3No0m6Y+i0j+Gu6xJtrajcXuIjamH1tdhSG2Zs0Kdm9+ibKp7x+W1xLJRlbHwAqFnk0F/PmON8zx2bcypjfOyNqKInuua/qjfYCH0087m0lz5xhiO15qgOVQ5FTfSBl+3ooqvBXmYqLD7YE8WE2YNwWf4Z6OaEvYsFudtJQ2cuKVlxpiDT0NfPm16/ml974jfh2RbNbniVNSU0F1/STDcXfhBjAvsR4RjsbU5wJbMa6Im0iTca2wda+KSiIj1XCPNf39CQBe2eig523jzMFErJRIvJdKZ+KIX0ckW9ndAwWfspN6mXfRhYZY68rNvLjYTyg48t4D2bKk6z3VBVVMKTd2S+0rCAL9OHobodlmPqnjnfQkJ5KD8qbgc7RE7SFTT4GE2067Y4R+2pWRp3snNK8xHLKHOgBNfR4O+2YTdjhpu/dNQ6wANJtQRoyGllWmY4HALjTWDI9IOIEFmHVqERVnTTbEnl/6B3Y/DfaC/fdoFMkHzuIElWOLDcdC2/SRKJvZQ52Am1Fv3AVvv536QY4CKFC7DRl+fbEgG/ZuMB33uXwpdwTMNhrdRCQ197t3eZ7/AURuM4S8beeD9wassfzoXp9Jmk0oI53PW4cnkeSWnY/DzscNscu6Z3ECJxEOdWQkt3xU5LWZPuy6SjWbUESylyXaB7jZO+UzjDp/TuoHFZRDaV1a85L85rI6ANjetoGH7/+9KR4pdvO7z/wj64s+eVPwyZb1pyJ5o/jdZs2X3w/e8YZQ4MEXKPGDNZYHC1sP0dEaazSbUEaq0TWzeOLCh+jym7dE3bTjTQhCdAQWl3VdIyLpkEtjTbSw2rzBhchR4inwQiecvgkuXmx+f4QcfXSd9Q6jp6rgkxbZtv5UJG9UHguD1lInnKszlEzmaawRGX6ja2YxumaW6fhO1y4IZiChLKCxRuTo6A5GebvJ2Meqt3PwBi0jRzaNNR4LOAJWU09De1/efGSVXFIw0MLdesFZjJ93kyG0/a2XcX//5yR7elOdmVX07hERyQLdsYBpfXBDT0OGshGRfNXaE6Jn0IfdvYFIhrIRSR+X3QrA6g1N3LX+MUNscm8Xs60T6OovQouCMsMWtnCu1479LQdtbxl7GpZSQiwRIeEYeU21JfNCrlICxWMNx3qL63C6fLgylNOhUMHnAPQhTESGQ1N3kK4+84eq9lA/dcBr3au56cnfmuIeuwefS01rZWSLhR207zLfRXMXOSguc2cgo9zjD0UpAf65fA2vbTR+mBqX3MBEwONIsfuNSJ4oLSkE4Nj2Ziojb5riYex07v1CutOSd1mjFuwWC53H9HP8B95niG14/Tle/9sjnOL+SIayk5HI7hjYNKXx7QQb1r8xKOrBOvtW5gSyvwipgs8QgokwoA9hInLkmrqDzL37RYJR8/rfL/g7memFmaWT+cTFN5niubIDgMjRYLMNXEh1NVfy5zsGX2yB3Wnlk987VUWfgxDp7QKK+IztX3zbtdQQez1WwmuciLdE1zWSv1zFA8szTvzI2dSdeJohtvzx59my/O9EIyN0DWkWiRUkTD0NY8Ux+uPZv3RG8ovj3V1yj5ljZdLcUwyxdS+9wsZXXETD2T9m5E3BZ7gbjoUTUQCmF+lDmMhQkv5eguvXm47bfT4cNTUZyOjoO5yxpqsvQjAaZ+EVM5hUZbyIafz9NuiGSpeXKYN6JYmMdDbHwPusckIz8z55oSHWuaeP5363gVAgmpcFn+G+rrHGgkARPfUfpO4/vmcMbloJWx6HgrJheS2RbFZUWUp1/STDMY93bYayybxcatoskgker9W0u2VhSfbP7HlP3hR8jlbDsUK7Rx/CZERLtYSxyxamDkguW82OP5u3DLd4PEx86sm8LPocyVgzqaqIabXGc7pdjuFMTyQvOd1R08VWvjta1zVxd7l5l5vWtmF7fpGs17sHmtcYDjn6WzKTSxbIpqbNItloT3MH/cvXGI7t3rWbZKIayP7r+Lwp+IjI8PK5fHjsHm55+RZT7Ky+WZzINMJzT2X8B40z4CINDTTfeBOxrq68LPiIiIhIDnIOzLC1Ln+WyGvGm1WVHfUU2IqxRfyZyExEslBJ8UDfr74177DnjddNcVs8QvveD6Q7rUM24gs+0eZmYl1dpuO23pG7PaMIwOii0TzxoSfoCpvfH2v+dwkEoN/rxjN1agayyz2V/V3wziaC3cYlXfgDqU8QkX1s3eblo6G2aIayEZFclKyoIGRppSD4dQbPaSvxwryiCLtD2pgl0/b2RXh70E6CrT3hDGUjI1nd+HJa2MupVZekjMcSEdb07EhvUodhRBd8os3NbPvgxSSD5mZLhWNnw8z3kdRyCxnBRheNTtmrqsG+PAPZ5LDWFn6z5CfYFkfZMShkGTsbZp4Kbo01IoMl3E4Aip9/gx1/esQQ6y2qg5NvJtbeDiNsuZeIHLqk18bnJ36f/z79l9SX1Btia3//d0Z112FLaKe6TAmE41QBT63dw+NbXzHE5kR2MBsodI3oj66SZvZiK6NcXyLx4Ueg8jhD7JX/+QfHdo7Bkcj+38nsz/AoinV1kQwGSd52A4wfY4jteX494wKQ8ORfI0iR4dIXjpvuwtAWQJdLg/R0445HsV3/OeqmTTSE9i57B7qBQk9GUhPJZsniAgC6Lz+XKef/xBDb8+YOeAVifi3BOBT9gW5aG7YajgVa1MNHRoZ2Rxdb3btIuI0fgdrpYBR1GcpKAMKxgabRZ0yq4NqPnGGIhd4O8uIDr1PmcWYiNRnB7JZ2qLJBjXGGftARyVBGhy5vCj6H02G+I9gBwM2Nv2R71GKIncUsTuV03DbXsOYpkg+cdisADY27efiXvzfEarvb+TrQ3htmbAZyO9oOZ6yxB9vBU8boLX/G1hYzxJzhU8FyOmisERlSvLLUtHzU0RYFOjOTUBoM9845kXe3jt341qu89sbfTPGoLYGzqHBYXkskG+2vN+Fl3bM4gZMIJkbe0qFs26WrpMBh2uCidXdBhrIRyX15U/A5nA7zvZFeLMD1J13PmFnvN8Qa/rIcAlBo0wwfkcEKPAMfCs60vc0trn8ZYkGHgx1U0t/ZDMzMQHZH1+GMNXZ/ANd5t9Njd8GgGwI1loE1wHF90BKRfzPcO+f0hv2MBpqq4jw3bo8pbvE4uGp0vflEkTyxv96EGxr/AQEIJ0ZebzDt0iWS3/Km4HMkxhSNMW293uPclKFsRHKA691pjVM/DHO/Ywi1LnkWFj+ELdyT4sQRKmbFYncRmdjBmIvON4RWvP4K6/72EMe6r8xQciIyErz3QXaybzIf+dRNprjP5UvZs00knwzVm3Cn/TlgYNOWwQ3iAew+n3YeHSZDbZhj39sNlKU9H5EjYe0xbyoB2TVmqOAjIoevoBxqZhgORYvMg54M2N7XQGvba4Zj2/wb6Y/3ZigjEck73Y3Qv9d02BbtA6DQ7jHd5BIZ6d7bpKXwjY3s+OtDprjF42HiU09mzQe4XLW/DXNKR58Cc+oJR4KmPmOdbeozJtkl6RpoxeB97Q12/GmRKZ5NY4YKPiIiR1lHoJMxjGbnqg10vb40xSPslJZUpT0vEckz3Y2waDZE+02hgr0XQOEZYFPTU5HB3tukxX/uLGZeYpwBF2looPnGm4h1dWXFh7dc9t6GOTV3/QRnvXEJ6QtL11K5G9pe/xd/ePEPpnPtljieIvXykeyQKHx3U4l55zLzguweM0Z8wae7sJz+dzqwstZw3N/WA1RmJikRySt9oXfvrI8by7gzP2KIBbvj7FgSZ2zNcalOFREg1mVj45vGvjN9jX14LEOcMFL176U3VEDo7F9C6ThDqOvJNxgfhIRdOwKKDCVeWmxqEC/Dz1lfb/o5R1duA6B0zll88KLTjSe0v4Pn71fj9ZWmKUORg9NVZGH7qEEXIz0WsunyZEQXfLpbArw+qQKeeZQ1zzxqiPmc1UytnYS7SBdGInJk4tGBjerD7VPZ9Ji5EbzDbcVd5Eh3WiJZz+5JEktEOHH3RHjEOMW/GKjw2unpDGsz5Xf19sT5Y8e9xP7iBozb1RcnK8EH1hF95Sci2c5eXEp1/STjQXcAHCNvBzXJXk77wPX8stbn+fGTdxliE1qS/JiBHcGz4fpkRP/ZD/pDFNg8jJtyNpNmzjbEenc0wi7wVhZlKDuR7BfuTdC+y9h/xu+3Y3X50Dvn/8TjA9vY+2ramXfNhaa4u8hBcZl2BBQZzFMKz+y+n4kfnEvdlIsMsfaXNlO/x0aoL5aZ5LJQqD9JLOlm7ocLKZts7NOz4q9/g1awORIZyk5EBCIlE+jYGsIZajUcd3UOXCtZg3uheY3xpI530pSdyMEptBcDMS6ou5wvX2xc0rV71Uvwu5/TG8mOHp15U/BZtGgRixYtIh6PH/Q59qideWOuxR5wwksBQ6wAHxZCJF36ECYymM018Ee5aVk/m5a/MShaiXX2rbwv2J32vNLhcMaa99hdUSrHFh+FrETyV3+8l+LRSSafZNxZp29dA+zJ3+LFkYw1ZRU201jj8OTvz0pEDt+RjDWHqrc1SsnZN2N5vZ8oxiLOVEqIJSL4djwIv/ma+WRHwcBmISJZxOeuNG+EUNSQmWSGkDcFn/nz5zN//nz8fj8lJSUHdY4tbsVuddI8upUZH/2AIdb4zpuMe+FL7Ch88ChkK5LbHAUDK1Przy/iuNmnGGIb/7GYdet8RKPWTKR21B3OWCMicqiOZKwJ7Wwi6DYuSben2AZZRIziQZtp5nKoLUrI5ctQRkdfOq9rwr1x7BYLffUOSmdNMMTeeONpGl9azNiL3w9n/9x8ckE5lGbDAhmR3JI3BZ8jEXFFcNYaF6AkOyzYLe0ZykgkN7h95rvIu4q0vEJEJBNie7sBK3vuWEQg0GiIlVTVw+mnkChQb0KRwayOJAA9mwr48x2DZy6DdfatjOmNo3fP8CiodlA9q9pwLLa7j/54L9HCaqiZkZnERPKQCj5ATzDK2009hmPtnUEmDfF4ERng8FuJNBmXQ9qDDu2cIyKSAbFAH1BMxWf/g9FnnWaIvfzyCqp3QKJYHdZEBrO7Bwo+ZSf1Mu8iY6+91pWbeXGxn1BQyyJFJPeM6IJPf2Rg4H5lSwfz733FEJtq2c45LvB6tHOOyGAJF8QSEcqXO2lb/qYhVk4l53qTdL27M5WIiKSXY1Slacvj2DvbYUdm8hHJFc7ihGnmcmjbiP64JCI5bkSPYNF3m5PNGOvjU1eeYYi5O0rgMagqcmUiNZGsFi9M8szu+xn3yUuor59miO195m3GtddhjeVnDx8RSb+mYBsb9m4wHOuKdDCKsgxlJCL5qDvFrP/ezv4MZSMi2c7ZnzStdrB2W8FTRjJDOQ02ogs+7yly2ZhWO6hJmUVTnkWG4nV66Y/38uOGu+ncGzHEPtA7ixv4HH3xYIayE5F84bUXAHDvtr/S2fG/htgHds9iMp+jPx5IdaqIyEFz2QduUr26pYObthpn/c/qbudcxtLVH0Etg0UEIGYfWO1Qu9lJ22bjaociikmedzuB/nCGsjNSwUdEDlmFpwKAH515JyVjxxhi7zz8HIQglMiOQU5EcleFqxSAH037EiXTTzfENv3pDWiEcDyUgcxEJJ8UugY+En3wxNFcd7Zx1v/Wf62maVmSvpA2pRCRATG3hWd238+0D32VOWecYIjtePVVClYXYIlEhjg7vVTwEZHDVhpwUNbjNBxzqc4jIsOsvrCG6vIphmNNri0ZykZE8lUZfqZZthuOhS1tNFGZoYxEJOM63jEdcvbuoj/eS6jIYtrtO1EUT1dmB0UFHxE5ZB6vF7vLxdO/vNsU8zmrOaH2JGJhVX5EREQkBzgGlo+y4THY8j1DqKrjWODH2MJdaU9LRDKooHxgbPjbdaZQde9xQBW2UGf68zpEKviIyCHzVlRxzT2/Iuj3m2LLH/4rhCAei2YgMxEREZFD5PYO/O8p18Fs4/KMzidegrfAFlW/MJERpbQO5q+A/r2m0N5nXobd/8yJcSFvCj6LFi1i0aJFxOPZNYVKJF95K6rwVlSZjjvcHsjjlhoaa0TSr3PbWtOxWMdOyONdug53rPFYgD6badcQT59tGLMTyU+OZA2R5CTjQUvDwPsqT+m6RmQ/SusGvgaJFQ4s8+r3Q/uuXkOsv8dCEUBzG8H1603n2n0+HDU1RyPblPKm4DN//nzmz5+P3++npKTkwCeIiBwGjTUi6eOprMVuifP0E68Axp1z3ls+mgyY77zlg8Maa8JWzvXasawvoW29cdeQYygilogQdWTLRrEi2SPhGthxp3y5k7blxvdOOZWc603SFc3Poqmua0QOnd05UAXeuiJOw+o3DLESm4uqYog+9CQ7fvpj07kWj4eJTz2ZtqJP3hR8REREJL9466dzzR0/ItjeZIq98fcVEId4KPunU6dNzILdYiFZH6D6g2caQs+teIGdf/kfKjwfz1ByItkrXpjkmd33c8rnPsuJx59miG356/OUNPuwxqwZyk5Eso2rcKDgc+JcG1NOP8UQe2fVJlgeIvrlzzHpxLGGWKShgeYbbyLW1aWCTzpZwz3QvMZ4MEU3bhEREUkvb/10vPXTTcdtS7dCd/rzyQXt1r30uncZjm137iYU7x3iDBHpj/cSLUuadtyJObUd+3Db0dhE43LjjKm2pvycrSn5LWCN0mpLGI75be/2MR1djWfq1AxkZTSiCz7WWBCA4qaX4Te3mh/gKBjozi0iIiKS5Xpj/Xgp4X93P8ezTxqnkZf1OLmU0RQ6ioY4W0Tk6Grv7KIKF1uWP0HXy62meNSWoLikIAOZiRyaQtdAGeXhZTtYvtq45Pw0q5+7GENPKDs2sBnRBR/iEQD6q2bC575tjheUp2zSJCIiIpJtQvEIXuCCqlO45uKbDLH1a7aw69XfUurSjSwRyYy+vn7Ahe+Y93H8hTMNsbaWV/jRnvu5dFT+NuOX/FHmcQJw44XH4Z52hiG25sXVsBZCkexohD6yCz7vijsKoWZGptMQEREROWIxf5zurRHDsdCe7LjwFMlmgZY2Whu2Go71B7oppzJDGeWmaHMzsa4uc6C7C/BRUVbB6XNmGEIbNu2gr1vjlOSWwkiAsnC74Zg32gv4MpNQCir4iIiIiOSBnkAfVcCe9W+x4c3FpnjUYqeiUnfPRQZzFhUStSVY++CfWMufDDGfs5q62mOIhIMZyi63RJub2fbBi0kGzT8v69jZMLMe3O4MZCYyfDxFBQO7iP7hUeBRQ8znrIbaq4n3Z8emEir4iIiIiOSBUCgMQNHYiRx/6VdM8YrKMo6tH2s6LjLSecp8PP7+Zn425yfUl9QbYhv+52nog1g0nKHsckusq4tkMEjNXT/BWW/8WXYs3Qa7geLizCQnMky8vlKumbiK4KUPQuWxhtirT78GuyERDmUmuUFU8BERERHJI8XFRablEiKyf32eOCVjx1BdPslwvMFTBH0ZSiqHOevrzTsUve2H3dr1TPKD1xHGW1cDNcYxw168IUMZpaaCj4iIiIiIiKRFV6idDXuNH4ob+poylI1IflPBR0RERERERI6qvlgv4GFx49/49pOrTHFPIoHPUZT+xETyWNYVfLq7u5k7dy6xWIxYLMYNN9zAddddl+m0RERERERE5DBFYiHAw6nV5/Lli28yBtvfwfeXzzLaU5GR3ETyVdYVfIqLi3nppZcoKCigr6+PadOmcfnll1NeXp7p1EREREREROQIeJ2lTCmfYjwYjkBc27KLDDdrphMYzGazUVBQAEA4HCaZTJJMJjOclYiIiIiIiIhI7jjkgs9LL73EJZdcQk1NDRaLhccff9z0mEWLFjF+/Hjcbjdz5sxhxYoVh/Qa3d3dTJ8+nTFjxnDjjTdSUaGpfSIiIiIiIiKS/ZKd3bSvWmn46ti8lZDLl9Y8DnlJV19fH9OnT+ezn/0sl19+uSn+yCOPsGDBAu677z7mzJnDwoULufDCC9m8eTNVVVUAzJgxg1jMvCXf4sWLqampobS0lLfeeovW1lYuv/xyPvrRj1JdXX0Y356IiIiIiIiIyNFntwQAHz2bCvjzZv+gaDHW2bcyZk8rnqlT05PPoZ4wb9485s2bN2T8nnvu4brrruOaa64B4L777uOpp57igQce4OabbwZgzZo1B/Va1dXVTJ8+nZdffpmPfvSjKR8TDocJh8P7/t3T0wOA3z/4h2vWHwrRG+6jPxQ6qMeLyIEdyvvqvXguLNvUWCOSXTTWmGmsETk8gd4A8WCcQG8Av8P43ukLBekN99EXCmqsOQjBQIBAPI4/ECA66Ln6g/30hp30B/vNr9MbgHBy4H81fkm228/vazjcSW+4jML6bZxxqnGlUtvKjbyyfgztLd24juD3/JDGmuQRAJKPPfbYvn+Hw+GkzWYzHEsmk8nPfOYzyUsvvfSgnrOlpSXp9/uTyWQy2d3dnZw6dWpy7dq1Qz7+u9/9bhLQl770lcNfjY2Nhzz+pJvGGn3pK/e/NNboS1/6SseXxhp96Utf6fg6mLHGkkwefgnaYrHw2GOPcdlllwHQ3NxMbW0tr732Gqeddtq+x9100028+OKLLF++/IDPuWLFCj7/+c/va9Y8f/58vvCFLwz5+MHV6UQiQWdnJ+Xl5VgslsP91o4qv99PXV0djY2NeL3eTKeTE/QzO3S58DNLJpP09vZSU1OD1Zp1PeQNNNaMDPqZHbpc+JlprDm6cuF3INvoZ3bocuFnprHm6MuF34Nsop/XocuFn9mhjDVZty377NmzD3rJF4DL5cLlchmOlZaWDm9SR4nX683aX6JspZ/Zocv2n1lJSUmmUzgoGmtGFv3MDl22/8w01hx92f47kI30Mzt02f4z01iTHtn+e5Bt9PM6dNn+MzvYsWZYS88VFRXYbDZaW1sNx1tbWxk1atRwvpSIiIiIiIiIiAxhWAs+TqeTWbNmsWTJkn3HEokES5YsMSzxEhERERERERGRo+eQl3QFAgG2bt2679/bt29nzZo1lJWVMXbsWBYsWMBVV13FySefzOzZs1m4cCF9fX37du2SgSmU3/3ud03TKGVo+pkdOv3MRL8Dh04/s0Onn5nod+DQ6Wd26PQzE9DvwaHSz+vQ5dvP7JCbNr/wwgucc845puNXXXUVDz74IAC//OUvueuuu2hpaWHGjBn84he/YM6cOcOSsIiIiIiIiIiI7N8R7dIlIiIiIiIiIiLZJ7v3CxQRERERERERkUOmgo+IiIiIiIiISJ5RwUdEREREREREJM+o4CMiIiIiIiIikmdU8BERERERERERyTMq+IiIiIiIiIiI5BkVfERERERERERE8owKPiIiIiIiIiIieUYFHxERERERERGRPKOCj4iIiIiIiIhInlHBR0REREREREQkz6jgIyIiIiIiIiKSZ1TwERERERERERHJMyr4iIiIiIiIiIjkGRV8RERERERERETyjAo+IiIiIiIiIiJ5RgUfEREREREREZE8o4KPiIiIiIiIiEieUcFHRERERERERCTPqOAjIiIiIiIikgfGjx/PxRdfnOk0JEuo4CNZ45///CcWi4U//OEPhuOBQICLL74Ym83GL37xiwxlJyIiInJ4LBbLIX2JiOzPhg0b+N73vseOHTsynYpkORV8JGu89dZbAEyfPn3fsaamJs4880xeeOEFHnvsMb761a9mKj0RERGRw5JMJg/pS0RkfzZs2MDtt9+ugo8ckAo+kjXWrl2L0+nk+OOPBwYKQHPmzKG1tZUXX3yRSy+9dN9jzzjjjCHvin3nO9/J1LcgIiIiIiKS12KxGJFIJNNpyEFQwUeyxltvvcXkyZNxOBw8/fTTnHHGGfh8PpYtW8asWbMMj33llVeGvCv2wx/+MEPfgYjkqksvvZRZs2bxxz/+kRkzZuDxeBg/fjw/+9nPMp2aiOQRjTUicjDefPNN5s2bh9frpaioiPPOO49ly5YB8OCDD/Kxj30MgHPOOWffTe8XXnjB8ByvvPIKs2fPxu12U19fz8MPP2x6ne7ubr72ta9RV1eHy+Vi0qRJ/PjHPyaRSOx7zI4dO7BYLPz0pz9l4cKFTJw4EZfLxYYNG47eD0CGjSWpeaOSBSKRCEVFRXziE59gzpw5fPWrX+Xcc8/l0Ucfxev1Zjo9EclzEyZMoK+vj1gsxvXXX091dTX3338/a9as4cknn+SDH/xgplMUkTygsUZEDmT9+vXMmTMHr9fLl7/8ZRwOB7/+9a9pbm7mxRdfpLKykp///Of84he/4Fvf+haTJ08G4Pzzz6e6uprx48fjdrvp7u7mc5/7HDU1NTzwwAO8+eabrFu3jqlTpwLQ39/PaaedRlNTE1/4whcYO3Ysr732Gr///e/56le/ysKFC4GBgs+ECROYMmUKoVCIz3/+87hcLi6//HLGjh2bqR+THCQVfCQrrFmzhpNOOom6ujoaGxu59tpr+dWvfoXdbs90aiKS53p7eykpKaG4uJjly5fvW1ba3t7OuHHjuOyyy/jjH/+Y4SxFJNdprBGRg/HhD3+Yp59+mo0bN1JfXw/Anj17OO644zjppJN48cUXefTRR/nYxz7G0qVLOfvssw3njx8/np07d/LSSy9x5plnAgPjTF1dHddffz0//elPAfjhD3/Ij370I958802OOeaYfeffcsst3HXXXWzfvp26urp9BR+v18vWrVuprKxMzw9ChoWWdElWWLt2LTAwrdDj8XDrrbeq2CMiabF+/XqSySQ333zzvg9gAJWVlUyePJnGxsYMZici+UJjjYgcSDweZ/HixVx22WX7ij0Ao0eP5pOf/CSvvPIKfr//gM8zZcqUfcUeGBhnjjvuOBoaGvYd+8tf/sKZZ56Jz+ejo6Nj39fcuXOJx+O89NJLhuf8yEc+omJPDtInaskK7+3Q9cQTT3DxxRfz0Y9+lFdeeQWn05nhzEQk361btw6AK6+8MmW8sLAwnemISJ7SWCMiB9Le3k5/fz/HHXecKTZ58mQSicRBFYdTLbXy+Xx0dXXt+/eWLVtYu3btkEWctrY2w78nTJhwwNeV7KOCj2SFtWvXMmrUKM455xx+9atfcdVVV3HDDTfwq1/9KtOpiUiee/vttykrK2PMmDGG46FQiA0bNvCVr3wlQ5mJSD7RWCMi6WKz2VIe//duLolEgvPPP5+bbrop5WOPPfZYw789Hs/wJShpo4KPZIW1a9cyY8YMAD7zmc/wyiuvcN9993H66acPeSdMRGQ4rFu3LuWF0e9+9ztCoRAf+chHMpCViOQbjTUiciCVlZUUFBSwefNmU2zTpk1YrVbq6urYtGnTEb/WxIkTCQQCzJ0794ifS7KXevhIxrW0tNDW1saJJ56479gvfvELTjrpJL74xS/umwItInI0vP3227S3t7Nly5Z9x9rb27nzzju58MILmTNnTgazE5F8obFGRA7EZrNxwQUX8MQTT7Bjx459x1tbW/njH//IGWecgdfr3bcEtLu7+7Bf6z/+4z94/fXX+ec//2mKdXd3E4vFDvu5JXtoho9k3Hv9e/694ON2u3n00UeZNWsWH/nIR1i5cqW2ZxeRYdfa2kp7ezsnnngiF198MfPnzycYDLJo0SLi8TgPPPBAplMUkTygsUZEDtYPf/hD/vWvf3HGGWfw5S9/Gbvdzq9//WvC4TA/+clPAJgxYwY2m40f//jH9PT04HK5OPfcc6mqqjro17nxxhv5+9//zsUXX8zVV1/NrFmz6OvrY926dTz66KPs2LGDioqKo/VtSppoho9k3Hs7dP17wQegvr6eBx98kK1bt3LVVVdlIjURyXPvzSC8//77ef/7389tt93GHXfcwemnn86yZcuoqanJcIYikg801ojIwZo6dSovv/wy06ZN48477+T2229n3LhxLF26dN9MwFGjRnHffffR1tbG5z73OT7xiU+wYcOGQ3qdgoICXnzxRW688UZeeOEFbrjhBn70ox+xZcsWbr/9dkpKSo7GtydpZkn+e+cmERGREWThwoV885vfpK+vD5fLlel0RCRPaawREZFM0AwfEREZsdatW0d9fb0+gInIUaWxRkREMiErCz4f/vCH8fl8fPSjH810KiIiksfefvttJk+enOk0RCTPaawREZFMyMqCzw033MDDDz+c6TRERCSPJZNJ1q9frw9hInJUaawREZFMycpdus4++2xeeOGFTKchIiJ5zGKxEAgEMp2GiOQ5jTUiIpIpwz7D56WXXuKSSy6hpqYGi8XC448/bnrMokWLGD9+PG63mzlz5rBixYrhTkNEREREREREZMQa9oJPX18f06dPZ9GiRSnjjzzyCAsWLOC73/0uq1evZvr06Vx44YW0tbUNdyoiIiIiIiIiIiPSsC/pmjdvHvPmzRsyfs8993DddddxzTXXAHDffffx1FNP8cADD3DzzTcf8uuFw2HC4fC+fycSCTo7OykvL8disRz6NyAiaZNMJunt7aWmpgarNStbiu2jsUYkd2msEZF00FgjIulwKGNNWnv4RCIRVq1axS233LLvmNVqZe7cubz++uuH9Zx33nknt99++3ClKCIZ0NjYyJgxYzKdxn5prBHJfRprRCQdNNaISDoczFhjSSaTyaOVgMVi4bHHHuOyyy4DoLm5mdraWl577TVOO+20fY+76aabePHFF1m+fDkAc+fO5a233qKvr4+ysjL+8pe/GB7/7wZXp3t6ehg7diyNjY14vd6j9a2JyDDw+/3U1dXR3d1NSUlJptPZL401IrlLY42IpIPGGhFJh0MZa7Jyl67nnnvuoB/rcrlwuVym416vV4OVSI7IhanDGmtEcp/GGhFJB401IpIOBzPWpHVxaUVFBTabjdbWVsPx1tZWRo0adUTPvWjRIqZMmcIpp5xyRM8jIrI/GmtEJB001ohIOmisEclvaS34OJ1OZs2axZIlS/YdSyQSLFmyZMglWwdr/vz5bNiwgTfeeONI0xQRGZLGGhFJB401IpIOGmtE8tuwL+kKBAJs3bp137+3b9/OmjVrKCsrY+zYsSxYsICrrrqKk08+mdmzZ7Nw4UL6+vr27dolIiIiIiIiIiJHZtgLPitXruScc87Z9+8FCxYAcNVVV/Hggw9yxRVX0N7ezm233UZLSwszZszg2Wefpbq6+ohed9GiRSxatIh4PH5EzyMisj8aa0QkHTTWiEg6aKwRyW9HdZeuTPD7/ZSUlNDT06OGYyJZLpffr7mcu8hIk8vv11zOXWSkyeX3ay7nLjLSHMr7Na09fERERERERERE5OjLm4KPOsyLSDporBGRdNBYIyLpoLFGJL9pSZeIZEwuv19zOXeRkSaX36+5nLvISJPL79dczl1kpNGSLhERERERERGREUwFHxERERERERGRPKOCj4iIiIiIiIhInsmbgo8ajolIOmisEZF00FgjIumgsUYkv6lps4hkTC6/X3M5d5GRJpffr7mcu8hIk8vv11zOXWSkUdNmEREREREREZERTAUfEREREREREZE8kzcFH60/FZF00FgjIumgsUZE0kFjjUh+Uw8fEcmYXH6/5nLuIiNNLr9fczl3kZEml9+vuZy7yEijHj4iIiIiIiIiIiOYCj4iIiIiIiIiInlGBR8RERERERERkTyjgo+IiIiIiIiISJ7Jm4KPOsyLSDporBGRdNBYIyLpoLFGJL9ply4RyZhcfr/mcu4iI00uv19zOXeRkSaX36+5nLvISKNdukRERERERERERjAVfERERERERERE8owKPiIiIiIiIiIieUYFHxERERERERGRPKOCj4iIiIiIiIhInlHBR0REREREREQkz+RNwWfRokVMmTKFU045JdOpiEge01gjIumgsUZE0kFjjUh+sySTyWSmkxhOh7InvYhkVi6/X3M5d5GRJpffr7mcu8hIk8vv11zOXWSkOZT3a97M8BERERERERERkQEq+IiIiIiIiIiI5BkVfERERERERERE8owKPiIiIiIiIiIieUYFHxERERERERGRPKOCj4iIiIiIiIhInlHBR0REREREREQkz6jgIyIiIiIiIiKSZ1TwERERERERERHJM3lT8Fm0aBFTpkzhlFNOyXQqIpLHNNaISDporBGRdNBYI5LfLMlkMpnpJIaT3++npKSEnp4evF5vptMRkf3I5fdrLucuMtLk8vs1l3MXGWly+f2ay7mLjDSH8n7Nmxk+IiIiIiIiIiIyQAUfEREREREREZE8o4KPiIiIiIiIiEieUcFHRERERERERCTPqOAjIiIiIiIiIpJnVPAREREREREREckzKviIiIiIiIiIiOQZFXxERERERERERPKMCj4iIiIiIiIiInlGBR8RERERERERkTyTlQWfJ598kuOOO45jjjmG+++/P9PpiIiIiIiIiIjkFHumExgsFouxYMECli5dSklJCbNmzeLDH/4w5eXlmU5NRERERERERCQnZN0MnxUrVjB16lRqa2spKipi3rx5LF68ONNpiYiIiIiIiIjkjGEv+Lz00ktccskl1NTUYLFYePzxx02PWbRoEePHj8ftdjNnzhxWrFixL9bc3Extbe2+f9fW1tLU1DTcaYqIiIiIiIiI5K1hL/j09fUxffp0Fi1alDL+yCOPsGDBAr773e+yevVqpk+fzoUXXkhbW9twpyIiIiIiIiIiMiINew+fefPmMW/evCHj99xzD9dddx3XXHMNAPfddx9PPfUUDzzwADfffDM1NTWGGT1NTU3Mnj17yOcLh8OEw+F9//b7/cPwXYiIGGmsEZF00FgjIumgsUZkZEhrD59IJMKqVauYO3fu/yVgtTJ37lxef/11AGbPns3bb79NU1MTgUCAZ555hgsvvHDI57zzzjspKSnZ91VXV3fUvw8RGXk01ohIOmisEZF00FgjMjKkteDT0dFBPB6nurracLy6upqWlhYA7HY7d999N+eccw4zZszgG9/4xn536Lrlllvo6enZ99XY2HhUvwcRGZk01ohIOmisEZF00FgjMjJk3bbsAJdeeimXXnrpQT3W5XLhcrmOckYiMtJprBGRdNBYIyLpoLFGZGRI6wyfiooKbDYbra2thuOtra2MGjXqiJ570aJFTJkyhVNOOeWInkdEZH801ohIOmisEZF00Fgjkt/SWvBxOp3MmjWLJUuW7DuWSCRYsmQJp5122hE99/z589mwYQNvvPHGkaYpIjIkjTUikg4aa0QkHTTWiOS3YV/SFQgE2Lp1675/b9++nTVr1lBWVsbYsWNZsGABV111FSeffDKzZ89m4cKF9PX17du1S0REREREREREjsywF3xWrlzJOeecs+/fCxYsAOCqq67iwQcf5IorrqC9vZ3bbruNlpYWZsyYwbPPPmtq5HyoFi1axKJFi4jH40f0PCIi+6OxRkTSQWONiKSDxhqR/GZJJpPJTCcxnPx+PyUlJfT09OD1ejOdjojsRy6/X3M5d5GRJpffr7mcu8hIk8vv11zOXWSkOZT3a1p7+IiIiIiIiIiIyNGngo+IiIiIiIiISJ7Jm4KPthQUkXTQWCMi6aCxRkTSQWONSH5TDx8RyZhcfr/mcu4iI00uv19zOXeRkSaX36+5nLvISKMePiIiIiIiIiIiI5gKPiIiIiIiIiIieSZvCj5afyoi6aCxRkTSQWONiKSDxhqR/KYePiKSMbn8fs3l3EVGmlx+v+Zy7iIjTS6/X3M591wT6w6R6IuljFkL7dhL3WnOSHLNobxf7WnKSURERERERGTEinWHaL17FcloImXc4rBQ/ekC7MXmhTh7iNPl8qQ8z+fyMbpo9CHnsyewh65w1yGfdySvKemlgo+IiIiIiIjIUZboi5GMJii7wI29zFjUibX00PmCg4Y//ZCEdbch1mu18t1KB42u7pTP67G5+Nk5P8fn9h10Ll2hLr6+9AaC8XDKeGXUhzdWNOT5EVeMb1/w3ZSvqWJQ9lDBR0RERERERGQYNG9+A39HS8qYtT1EAaPY9ep8ErYGQ8xvqabC8nMKgl83nVcE/CIQpsN7A95kqyHWZbPx9apKvvjcFw8517pwKbe32ylOGGccWZJeCvr/EwtDLy8LWcL8oP/n9NgCppjb5uQbJ3+TYpd5uZG3pJSa2rGHnKscnrwp+CxatIhFixYRj8cznYqI5DGNNSKSDhprRCQdNNYMr+bNb9D/YA9FydIhHxOyhPnyaDftDvMMmLrqH3H7Sd8zFUqse+MUPAUnznnQNDOIUDePP3cb/mT0kHK1JL0U9v8nDFHUsRCi3HEbVkuPKZZIltAR/Rb/1fiVoV9gWxIwn9tvaaP5elT0SRM1bRaRjMnl92su5y4y0uTy+zWXcxcZaXL5/ZrLuWdCbOd2El2dpuM7tqynYNUEdp64lvJxqQsawSSECl0pY5VlNUwaN838egfo/XO4LA4L5VdOxVroMMWssXbsDnPB5j3du7sJdYXMgXAvXSvuoy9FAarXWscx0S/Sf2oL48fXm1/TV4Z93IRD+yZGIDVtFhERERERERlmsZ3baf3VVpIpZsYUMIGQJYyjsgrf6MmmeNDfwz/vuYNYOHXfHLvLxTX3/ApvRZXxeKmb6m/MGnJ3r8O1v13B/B39BP2pZ34F/T088ct7h/w+wPPul1GBLcGEMREKlo2ibVl/ivM6GfUlVPQZRir4iIiIiIiIiByERFcnSdzsnbSBaEWBIdbS08b2f71B5P4AL/NQyvPtDgcXf/KzeAqNDZG7Otp47rE/0bRxPcFav+k8j9eLt7bKdPxI+DvaCDbsNh0P+nt4Yj+FKRgoTn3kltvxeEsO+vU2Na3j77/5LUUUmmJeRzmnVl1C786d+FTwGTYq+IiIiIiIiIj8G3/DWwTbm0zHWzZtoZyZrHpxBV2RVlPcmkhwyo4WnLHUs2OS1mJ6fnCfqbtNyA7WOgdP//LulOfZXS4+tOBbKQssHq/XNCvoQPwdbfxuwZf2O9tofwUdRzCIBysEhy4KDVbvKeNnJzXQZTf/bE7oGc+pfdDe1E1hk7kR9P5mI8nQVPAREREREREReZe/4S3+dOsd2K3mbcm9jnLKq2YypakduhpN8aS7nJrvLMSaordKKJjg+ae7iQ2xMssZ7WDWCUEKaioNx8OhPl5b/L/89c7vpjxvf8WgoXQ2NRILh7no+m9QVltniu+voBPv7GLrN28jEk9dTnBEA7jDXSljd7rdJO/4JpQac92xZgWx3ggFb5XT9tab5hPtMOqbp6joc4jypuCjDvMikg4aa0QkHTTWiEg6jPSxxt/RRtBvXj7VtXodF9R+HrvVmfK8ZCxMyWc+xPhTTjUcD/TG+dv/7GX1MzHA3NQZwOawcsIn63EUGBslR5vaWP9kmFWbKmDT4LPc2F2f4KJrRuGdYNzd673lV0MVg/bH7nTh9o7Haq8wHI+1t7P1q9+CIWb/RBxFrDvxRhK21M2nrTaY+j4XDpfFGAj04l70I9wLfmg6Z5TDzrPT3sFp389yr3c24Js98yC/OwHt0iUiGZTL79dczl1kpMnl92su5y4y0uTy+zWXcz9c+1vS5HNWc0Ht1fze9SC7nc2GWFV3kiue66Xwt3dQd/JZhlj7rl7+fMcbHH/ZeAoqzE2Le4JRbn1mA+2J1AW248IBvjl7NEVO47yM4PY2Nm71Mu+MIKNPGm86L0iCqMf8evvT74/w7G+3koibZzEdjBhJHiuM0G8xlhMKkhY+1OfEiWXI8y78aAnjRhvz3f7Wy4TuXETjVz9A1cTjjOdsbmPCzjPpm95I6ZzZpuc8nCVtuUy7dImIiIiIiIgMIej344w5+cCV11NSNcoQa12zAhrg8md3k+jZZTo34XbRYx1FT5OxE8/unQP/vuW5TbTZU8+r8DhsPHT1bMoLjbOH9vZF+OLvV3HdW72mc44LhLkU2PmbR+jobzE/qdNJ9X/elHIZmd3rxV5ZaToeCfeRiBcx95oplI02zqrZs24joe9+hx+f/Ekai1IXUpJOKz+9+mTT9wEQ6okQ7TevW9ve0E3X83tYm/ARKzXOKuouH0t5NMb/63yG7c5nDbFpkXHcxZms+9ca/E8vMT1vzB7n43f9ZEQVfQ6WCj4iIiIiIiIyoiQDceaNuRb7K3ZidBhi5dSTjIVJfOYsxp/9IUOsvTfMdY9soeuP24BtxvMSVi7Gyfc/NI0x9an76fgKndSWpp6N89w3zqKrL2I6vmdPgA33b2LDlKuH/oaGXEbWCexIeYrVBr3t24n2Ww3H2xs2UxNo5NoLxlM356RD/j6oTX3Y67HzwvN7+N2zW9i7eLMhVhdo4zsuH9+q/ATeY4y7dLVsX0t4T5hTqy5J+byxRIT+5i4VfFJQwUdERERERERGllACu9XJ3hOacY03bq/e9vYKSh5Yxe5jL6Y7WGaI7Wzr5QPBiiGXLNkcVt43tYriskNvLlxb6klZRJlWW8L4ikI6OoKmWGNnP//v7yv50slVVBcbe+r0d3bj/O0iXIloytdzRAO4l5ibK9cAIZuTaVPGUld78I2gD2Ts6GJsDisX96fqjTSWZbNv5dSf/wDLoIbPo4FA8VM0fgBGOY3fSzhYTznzobMdMC4FExV8REREREREZITp6tpOMcX8YdP/sHl3gyE2vq2UySd+m8RqFztWbzSdawFO++xk6kaZ+9+4ixyHVew5kGPGl3LM+FLT8bHdQb77cglf29QP9JvidWd+mh/NraPE7TDFAIZq110xupK64+sPP+EUisvcfOr2UwkFzAWobdu6WPXIVn5+2vX0YpzlNCrYxLVrnuKeIj/bRxkLbTPbg/xXB3T17sG4ME9ABR8RERERERHJU90NTYQ6zDtx+Tc0UswUPv5inII2Y9mjt6iAN052UX5KAeOmjzOdW1HhSVl8yYTaUs+QS8HgAEuvMqC4zJ2yIOYucrDmbw2cEk1RtvGMZdnsmVzvaWDMMcb/Hrt71wAQ8SeINAVMp1oL7SN6K/e8KfiM9C0FRSQ9NNaISDporBGRdMj3saa7oYnu+zZjt5pnt9QyhVgiwuKJdTw35VJDrBQX5wInnDqRqVPNDY+zzVBLwXLJ/mb/rH19K5uWdlH68BNY/rvREPP5qomdeRrl62poW/em6dykHUZ/85QRW/TRtuwikjG5/H7N5dxFRppcfr/mcu4iI00uv19zOff92f3P12BpnOYNf8DWvdsUj0d7afjqR5j2/qsNx3v39LP6/o38x7dOoXJscZqylaGsX9/OC/eu43l20U3YEDutbzl10X4cjkLTeV5HOadWXUL4o8VMPHlGmrI9+rQtu4iIiIiIiIwI0eZmYl3m5sORTetwMgVr9VY8x6w3xHbb7dxRW8p/HjeRaYMaE7fHraw+qhnLoagqHpid881rL6R49KAG2y+WUXrn9wmfHISihCG2l+OBS+hq3QbMSE+yWUYFHxEREREREclJ0eZmtn3wYpJB8w5W/VX1VJ8+hQfHFvLiWPPSrKJgBYTG0b6r13C8c0/fUctXDl9Z3EJZ3LiFfG/F8UQdPkpfj5ke76yywOnA3o40ZZh9VPARERERERGRnBTr6iIZDFJz109w1ht3lVq59J+wGwhPpW/7xYZYcdzOFR3jaFjTTgPtpue1O624i1LvbCXp5S5yYHdaee53G1LGo7Nv44yLC5k6wbi8af0/HoNuIBg6+klmKRV8RETy0J7AHrrC5qnN7/G5fIwuGp3GjGQkGGpKPYDd58NRU5PmjEREZCSweMrYY7OBxdh8uts+sPzn/ePH8cV5Vxhi7/XpmXvNFMpGm/u/HK3t1eXQFZe5+eT3hmjovKGdTY/voMFZhbu0whDrcXsYBURa+tn09NMpn7uoZhRjZsw8GmlnBRV8RETyzJ7AHj70xIcIxsxTm9/jsXt44kNPqOgjw2Z/U+oBLB4PE596UkUfEREZVh17Oyg873YsL7ngpR5D7CSmEktEqCwtGLJPT9noQjVmzgFDbec+qjfEJuCnizfT9vwmQ+yy/r1MdEcYGzwDXkr9vMlYJ7tZnbdFHxV8RERy1FCzeBp6GgjGgtx55p3Ul9SnjN/y8i107V7OaO948xMXlENp3VHIWHJCdyP0700d28/vxv6m1EcaGmi+8SZiXV0q+IiIyLDqC/RRZC9me907eI4fa4i1vLOBxpeXMWXmh9WnJ0+919D55x8/ydTQeeer3Tzz+P2MmzaVqnHma+LIzg7G+k8i0NyStz2dVfAREclBB5rF47K5KUoeQyI0yhSzdTcA0PCPL0HUPDXWZ3Ux+ovLVPQZibobYdFsiPanDG+zj6Nj7sKBws9gO3fjdPloKrfAKIsx1mPBYj5DRETkoOxvyXC4oZEiprBl2Wt0vfRYikfYWfe8k7dfeMMcUZ+evJGqobPfWcLWRA8b31rGxreWmc7xOasZW3sS4b7U1z35QAUfEZEc1BXuGnIWT1tvmDt/uYp7X3k95bmjbbuYNMHLLVWpn7u8z8KitS9TMWa2KebxevFWDHGi5L7+vexJhOn6wPehdJwh1LpzG2sfn4L9QYBUM4A8WGffytKld7BxS7chMqElyY+BjmAHKiOKiMihONCS4VhVPZw+hWPOOYNjzz7TENu0YjXrnndy4vk+Js8xL9lRn57ct/+GzgU4vVdx8gesTJpxkin6zrPPwS6IRiJHP9EMUcFHRCRHlfckqW+BCcGk4Xj/2jYu66klYXOlPjE+lqmbT+HDnmYKp00xhDp2vk7ktTdY/voSYInp1Jg9zsfv+omKPjnO39FG0O83He/YvYH55WPYu/l+U2xiSy3nJ09iyoYHKexvMcX7CkaxYcrVXFm7gKqTjEXI1o2rCbl+SzLSazpPRERkf/a3ZBhg/Zq3YB0EXQl6ewf9fYr2YbFWUOSzqE9PntpfQ+eNy1ezbkklXsseqt0BU7zRFh74P+2dBNevN8XzYcOJvCn4LFq0iEWLFhGPxw/8YBGRw5Q1Y01LOz96yEvg4V+wblCor2AUiSlXM23SHurri0yntq9/h+W7ptG7bgK964x3y1yJMVxSMx271ZnyZWOJCM2r1xOcZC4WaPZPdhmqqBP09/DEPXcQC4dTnjfPWsf4j36A8ce833C88bUdtAKJuTPxnVBpOi++czf2TSF2LSth17LBM4DG0TT7VuYEEof77Yw4WTPWiEhey6Wxxllfj2fqVNPxwOaBK6GyDQ8xactbhlhJtJ63uRuPN8VSZMkbQzV03rGjFNjLqJU/hbcazCf2zgDHTCx/e4Yd9y0yhfNhw4m8KfjMnz+f+fPn4/f7KSkpOfAJIiKHIVvGmrb1DWyceeuQs3jshJjZcxvFaztMsYpOB5YVxxL9z28TP9Y4vXnHkmexd41ma8UmTp9rjPU2Bgi+6uS13z9IV6TV/JouF9fc8ysVfbKAv6ON3y340pBFnSJPGSd++CIcbmNhr3HbNrrWNBJ+tpDNi7eYzvMkOimZOYdjLj7NFCt5ZznT9n6SH4Q/R2PS+DtQ099JPSfT0a0ZPgcrW8YaEclv+TDWRIIDzZebRn+A0jPvMMT87Ql4NEbFqLGpTpU8V1BeA+zlW8GvE0ixbOtEy26uBPr/4zymnPMTQyxfNpzIm4KPiMhI0tcdJGFzUV67mmNPM/faKSv1UVzz19Qnv7Od5NLbGFXlwFVm3KGixTXwx9De/k+cj3/TECtOTCTIz7noc9dgGWtsBt3Z1MjTv7yboN+vgk8WCPr9xMJhLrr+G5TVGrvm7N25CediN+415mLhKMZD7dDPG0tECCdS91Coqqoh4erjJ7Yfm2LLo5NZGT+ZaF/nIX0fIiIycgzVmDnSMDAzY3vPdthr3gJgb7QbAJt9NCW+6YZYPNQHpOrtIiPB2NHF2BxWZvSPSRkvTpaCD3o9pSlnj+UDFXxERHJYcXUBM+e+/8AP/De9OwK8MXUqjoceMcW8jnKomkJj/Vw2nPVpQ8y6o42iF6Cs1IOzftKRpC1pUlZbR/Wg/1ZdezbiTrrYeeJayscZ73juaozS+qKD4lnF1NYZex3E397KmPYarLFQ6hcrrcN6/Rspt3TvfvRJ2AD2PXvydo28iIgcvgM1Zg474Gsrb2bvFnPB5/SWaZzJbDrfLObPa7QTl/yf4jI3n7o9dX8fgNf++hi0QiKav3uJquAjIjLChDqDXDj2uqH79CST/DW0lDuWG++ITQzW8Usm0xHuRh/Nc1/5uLEc/75LDMe6Vu5hywsbmeRzMm2McS38nu0xaD/Ak5bWDXwNEi1fDYDvby+w4+Hfm+L5sEZeREQO3/4aM2/v2c7XVt7MNy/+kWlnUoCGvyyHbqibZmXah04xxbUT18g2VH8fAJtnoHeVPxZgw95BM8F6tmPh/2aYDZYrN6tU8BERyVEeC3jCbiJN5l0HrIV27KWp/7hZHYVYrXH2rn0Q997dhlh/QTVvHn81/zHls4w7adCyrXfWwQ4IdIRNr5nsiFJg0+4XuaS/00r7LmNPnf5tA7ub2O78HjsCjcZYVT3Vp9+MNVGQ8ncOhv69i5cMNA9/55pzmHnSCcbgjt3w/Z/n/Bp5ERE5cikbM++1sHeLhfqSeqaUTzGd0+PcBIC7EO3EJYfE/W4vzIbOnfz5L8ZWBqWBJAuKy2i+8aaU5+bKzSoVfEREstiewB66wub17P3BEOd67dibjqHt3jdNcYvDSvmVU7AWmqcw2ygmTje+az9O5XHGP1IbXt1A+I0wwdddtL9uXJrjsdQw2Zuk4OVi2l42v+a8MdeSDGT/Lh8jRYGtmGRHlIjLWJyJ7xn407/hWQ+vP2We+m6Nh7F9/jrGv894Ud2+vZnYSxHsK520rTT/9wfAbmHUN082FX2KbAUA/D9e4sdb/miITWhJ8mOgI9iBeW6QiIgIVPaUsWbpJpo85t0nA7u7qMO8e6TIgXhcTmKJCFf3f4ird3zIFA/NDRM9L8z40eMNx3OpobMKPiIiWWpPYA8feuJDBGPm9ewf6JrFaZZTaKlu4cT/mGeIJfqi7P39BjoeeHvI544lIrgnjcUz9TjDcVdbgFMXfZ2dX/8vqqcdb4g1bX6d518pZcZFQabNPMsQ2/v2dljaDSFtu50NkoE488ZcS+xvHbRh3KmthCJiySQri7byWtzYxLAu0MZ3VvyG8s/90nSHtbS6kj/99SbsMVvK1/Q6yjm16hJ61u6meKJxdlhl0MtOS4zPVHyaihOPMcR63n4duI/eiHbwEhERs4b1e/jYsrGEbE/RmCI+0H/wWHxlRWnPTXKbo9DKM7vvp71sFuudxsJNnSPE1ziG9pLcbuisgo+ISJbqCndRsLefHx5/PWOKjB/M23dtA8DhseGsNV/gFF4znlCH+S4YQE9bC8//8X4uL/qBKeb1OOgLd3HvsnfYtqnfEDvZto1zkrPocIVMr2lp0p+TrBJKYLc6sZ1TSvm0CYbQCy8vZveLpUw/u5Brz3if8bx3NmF7oYvKYvMOXt6KKj5+108I+lP/XnVtbST2XITg03sIsscQK8PCuV47P14Z5Zk3jY2Ajun3Mwvo7DNvlyoiIhJu7GXemKuH7D347qOYNLkibTlJfqgs89IfD1LY/gKD97z1Oauh9hh6Orozkdqw0RW6iEi2amnnRw95sVr+xuCOKY7KqTB9Jv2xIK0NWw2xoL+HJ+65g1g4PORT210uPF6v6XhlsYs+4OdXzIBjjTN83nilm/6lEOtqhuY1xhO7WoDCg/7WJD0sPrupOBcsihFMwphCB9NqS4yx7iJ27Of5vBVVeCuqhoz/7cFbOfeTn6ekyjjDJ7B+J+7NhVw1bQKfmXqsIbZplZ/Qiz76w7GD+p5ERGRkccSs2K1ONk3w8/6LzzI/oH0z1seuwV78aPqTk5xW5C3FVXI1s88C7wRjQ/ANq9fAbkiEhtidNEeo4CMikqVCTQHenHkrCVuK2RaWPsYCG5c/z2sv/68pbne5+Mgtt+PxlphiAB6vd78f3OsCbTi7jYWCnf0RdgDlGx+Gjd8xnhCcBpYf0bPrHSwV5r5BB3o9OTz+jraUM2562looxA5dO6HZWPhz9LUCw38X1OP1ErFHePL3d5tiPmc1F9RezZZlfvyvbxwUrWbZ7FsZG+wb9pxERCR/9LvjKWc1Y7GB5UDbSIqYuQssOGxO3njZDS8bl8AXJwvAB/FgbrcrUMFHRCRLdbZ1kLDVMdm1iBOKjFtCdoXGAws48QMXUXfadNO5h1tgsft8WDyelDsSVBbVsePkm2k/5ktwzkxDzLV6PbFX4NUn/k7XX35rfl6Xi2vu+ZWKPsPI39HG7xZ8KeVMrvcKLK4XvwuvbzLEyjmW7fyYpHN4Z2R5K6q45p5fpSxAda9eDythTsED+Nw7DLF1gXo2hudDoGVY8xERERHZn+ISG5+s+Aqhs38CpeMMsdde2g2tkIxmKLlhooKPiEiWCvcPzHjoqj2Bngu/boj1b+mgYCWMOWYK1fWThu01HTU1THzqSWJd5p3Blv7zFXgHQr3ltMcmGmIJdwQIc9GnP4blGGM+nU2NPP3Luwn6/Sr4DKOg308sHOai679BWa1xf6vklq3ElsL26V/mndE+Q+ytbXuhBaztIYLr1xtikQZjYfFQDbXkK9kRJbayA+8FX6DyBONyr+ijT8IGIGpuTi4iIiJy1BSUU+zup/jlz5pC5cHzwXID1ujgxgq5JSsLPh/+8Id54YUXOO+883j0Ua3FFJGRy2MBn2csYytmGI7vbdlOnO6j8pqOmpqUW0wmN2zEujFM65pi/rzGuJ13iQ3OLnbgLiyndBgLUHJgZbV1pqJfw/adOIENL9XREx98RhHWeJi6n9zNjrC5sGfxeLD7fKbjwyFJLZGksYm0w1KDx3JUXk5ERLJMtLk55U2lI73hIHJYSutg/gro32sK9f7lRdgDxIbuiZkLsrLgc8MNN/DZz36Whx56KNOpiIhkjCPm4FyvHXvTMbTd+6YpHktEsLut6cvHk+DUFT/gpc9/kjHTZhlini3tsNVHqC1OpMl4JyTZEaXAVpy2PEeSAlsxyY4oEZfxZx5oi1KGE/u0FkZNMRZY/Jt2MOO/78W54AbGnzzN9Jx2ny9lwe+IuK3EEhFY2k3bUuPv8rEcQ703yTsxc+8nERHJH9HmZrZ98GKSwdQzOg90w8Ea3GveNAKg451hylBGpNK6ga9B4q6B65W+cJy3m3qMwbYAtnTkNgyysuBz9tln88ILL2Q6DRGRzOqPYbdYWNb2D/xR852HmD3Ox2t+krZ0qop8uMJdLAncx/YdxikZx/VN4afJ+bAiStsKc3Fq3phrSQZMU03kCCQDceaNuZbY3zpow9hosIxCYskkzzW289xOY+Puid1+Tg13UXjcMXimTk1LrpYiG8/svj/lDl6bFr/KpMBx2OO5cukkIiKHI9bVRTIYpOaun+CsrzfFO2weNicLYdCH60BvN+CjdPtT8JuvpX5yRwEUlA97zjJyOe0DN1U37ejj7p+9aojVBdr4jstHe2+YsZlI7hAccsHnpZde4q677mLVqlXs2bOHxx57jMsuu8zwmEWLFnHXXXfR0tLC9OnTuffee5k9e/DO9iIisj/x2ECXOOfYcj74mc+b4une+eq4yhp2ANdPvY3wxPGG2ObVy3h+U4wxZ3Vz9pkXGGJ7394OS7shlNu7HGSdUAK71YntnFLKpxln8bzw8mJ2v1jK+86u4GtnnGE8751N8AJUFpt3fztaDrSD16Ta41I2nxYRkfzjrK833XBo6g5y+U9exBIxXyt8MN7F+10TCNedCZd/xxQHBoo9KWZpiByu4sKBG1ET+mu5yuIeFB3Lstm3MnvttpTXU0dltvRhOuSCT19fH9OnT+ezn/0sl19+uSn+yCOPsGDBAu677z7mzJnDwoULufDCC9m8eTNVVQMfTGbMmEEsFjOdu3jxYmqy5AcjIpItHG7PsDZmPlJnTpiKZ7LxQi2xbQe7kxCzNOG0bDXELLQAw7sjlPwfi89u2qY2WBQjmIQxhQ6m1Rpn+AS7i9iRxvxg/zt4LX/4rxD6vwKniIiMPHuaA3yq044D81L14mQtuKCgvBxqZqQ/ORmRSosGCjkr6p5kva/VEKvrrGZO02eI/+Zn7Lin0XSuxeNh4lNPZkXR55ALPvPmzWPevHlDxu+55x6uu+46rrnmGgDuu+8+nnrqKR544AFuvvlmANasWXN42aYQDocJ/9tdQX+Ki0mRocS6QyT6zMXH91gL7dhLB1d0ZSTSWLN/723x7V67hPa1Dxhi/tB4ChwLUjbEkwPzd7SlLJT0tLVQmJ0rs1Maagcvh9sDoQwklKU01ohIOmTbWNPe3YIDK0smPUyXx/jhempXNecGPrfvA7hIOvicxcSAq6edR8GZxt6VL76xiUQTtHz9C5ww43hDLNLQQPONNxHr6srNgs/+RCIRVq1axS233LLvmNVqZe7cubz++uvD+VL73Hnnndx+++1H5bllaJkolOzvNff3ekOdl+iLsvf3G0hGh15mYnFYqf7GLBV9RGPNASRLyolau9i496tsHBQrTnZyrg+CXfrgeqj8HW38bsGXUi538jmruaD2aoJ9Vtp39Rpi0Z6BP+/25o5h33r9aIl29fL20uWm4yWjK6k73tzrIV9prBGRdMi2sab/3a2vz592KWedYvwA3f/yKlg28AFcJN3GeCoZVT7FcGyjp4cWgkTH1KStH+LhGtaCT0dHB/F4nOrqasPx6upqNm3adNDPM3fuXN566y36+voYM2YMf/nLXzjttNNSPvaWW25hwYIF+/7t9/upq9P6zeFwtAolh1O4iXWHaL171ZCvaXFYKb9yCtZC4y4vB8rV4rBS8dlppvMAYm39dD6ymch2P4kqc76a/TOyaKz5P6kKBoXtu/jnxHu59uSf8P4Jxp2fdi9+AbZCV1sXBQ1bTeemuxdRLgn6/ThjTj5w5fWmZseh5hAsC/Dqo030xJsGnVmKNR6mZtEf2HHPvabnPZpbrx8qu8cF3VD+5jvYnviDKd5hc8JfHxsxRR+NNSKSDtk61lR5RjNl0IfrFs8uhr7NLCL7k5VzwZ977rmDfqzL5cLlcrFo0SIWLVpEPK5dYIbDgQos2C3Y5pVh8ZjX2Sa7YsSXdqcslBxMASZVoSjRFyMZTVB2xXHYqwpSPmfHA28P+ZxDFXX6wz30sBdS9ApN2uJgt9D5yOYhnzdVkQlUDMpHR3OsaeoO0tUXMR0PRrJrPLP7fFg8HppvvMkUqwPucEDLKd1UjjXegQtUFsBWWPPK8yx9/n/Nz+tycc09v1LRJ4X3duKyv2InNmgnLjsQSyaZXXQ/PrtxXlVDnwvnUiu9n/sAx5/3EdPzZlMzQY+vCPaA/9xZlMz5siHW+vZmahbdSc+e9hFT8NF1jYikg8YakZFhWAs+FRUV2Gw2WluN6y5bW1sZNWrUEGcNj/nz5zN//nz8fj8lJSUHPkGAoWfbxNr6SUYT2M4pxeIz/pqEAgEW/34Rvf/dYToPoMBWzLwx1w1ZKMFuSVmA2d+Mmlhb/8CpVQWm5qQA1d+YdcizhvwdbTx48/XEI0M3Ci1yl3H6pdfh8hhf0xJJ4FkZ3G+RSUvB8tNwjzVN3UHm3v0iwaj5QusL/l5me8FhMxdWM8FRU8PEp54k1tVlii17+V+MWvhrbP5eU6ygsJgoYd5/7scomjrOEOtpa+H5P/6GoN+vgk8q+9mJq2vjBhb/NcAlH/0IlZMnGmLrXlyC99n7aa8/PuunGr8nWuHAeqKxWBjvG7ljqK5rRCQdNNaI5LdhLfg4nU5mzZrFkiVL9m3VnkgkWLJkCddff/1wvpQMgwPN4oklovzjoTvoj5s/wNkdTs772KdxewpMsVCwn8X/eAh7IvWvV8we54L+r+CxG/+oHMyMGmth6ue0l7qhNGVoSI3blhOPRHnzuAS9BUlTvCjkYeZGP4v//OOU5xfYfHzoq9+los5YzHyvcJXoix1yTjLydPVFmNz7Nh+b4MDrMRZBw5ssALjttkyklpKjpiblzJDo9vUpHj3A4hqYieLeXEhss7FQXIideWOuJRkY2XcWhyq+J7sGjqXaicvaYiWYhAaHg3aX0xBrttsZffTSHVZu20DurzZu5md/+rshVrM3yTddPvoiavgtIiIi6ZfstRJpChiOFfQk8VgylNAhOuSCTyAQYOvW/+vBsH37dtasWUNZWRljx45lwYIFXHXVVZx88snMnj2bhQsX0tfXt2/XrqNF0xEP3f6WSXU2NfKPhd/nhLMuxOsz3nUP+3tYucLKq89VDvHMRVhdF3HS7AQur7GoEw718eri/+Wvd3435ZnFngo+duP3KSwtM8X2t0xqW+MuOlLMOgCId2/HEjPPRtq6fmB2zpzmK7Haq01xgGhJB6+Ne4Swrd9wfFRPCcc2dLGzv4ma2uzZLluOvuEeazpWv8D5fVPp3Oiic1CsONkJTigsN78fstXGjp2EN64wHIsH2+n0e/ig72f47MZeM3vDk8D6FehsB45LY6bZ48DF9wh2t3mWV3u4G7By87pf0bF9tyE2oSXJLKDAYZ4RmW3KCwZ2eJvacgZjWy81xZfNDjPW35futDJO1zUikg7ZNNa4CeDYEaDFY1ym3Ls7gIfCDGUlI5YzSSwRgZUe2la+aQidAEz22lkXNE8ayDaHXPBZuXIl55xzzr5/v9fs66qrruLBBx/kiiuuoL29ndtuu42WlhZmzJjBs88+a2rkPNw0HfHwpVom1bupg/54L2++4cJqH1xkcWNNhpk7eSMFdWNMz9ffuJvn365nxcpUWye6sRd8BlsiaIok45309j9DdzSAr3bsQee/rXEX/7hzA46E0xRLJvyEex6EIVu92Tl265P4Au0po45ELxdc+QWYMttwfM3LK9jT8Cj90ZH3IWSkG+6xpm9PEwnb8ZSXvsCEE4zLnaJtEWitZvTxJx7x6xxtVUUDDYCXtD7E/SseNsQqAmP4aPJG1s2cz/QJFYZY79r1FGyGZEe/6e4JjIx+WAdTfL88eCU0G8fNlpbNwGRK2k9hZ/uHDbFgZyvwR8aWHN3l1MPBU2AlBpx6rgffaacYYi8+/Tyta4qJR/pTn5zHdF0jIumQLWONtd3Ped4i7BsdxDYab9R6qCaWiFDky+/rAckuBVUe/t70K+xW880zr6OcU6suId7oN+2UGmqLEnJlx8YYcBgFn7PPPptkcv+VrOuvv15LuHJIZ1MjlrBxKUnr1m0ATB/bxoRpg5okt2yn8/5HSLzcjfnj2YA5haVEv/ApGG3sORHctZOC3z3Ozy+10lxunAc3pqOcGRugZccaJlSZG9hSUA6l5t0DOrq6sMdCFJ/eRu1o44dJ/9qNNKyM4SiYh8WWYtZQ0sb0a0ZTUmeORVYtpfmORYzf240nbMxnTzzBHqB/bzutg3YdSnYM3RNIZCjF9aOY86nPGY61rNhI7G+pe2Vlm+Mqa9gBfL3kWqLlxiVfG0PNxCxhNj/nYjPGrdldCQ9zS1PfPYGR1Q8rVfHdsreT/ngvXX/+Hlb34LFlHDCZD047iR+edq4x9M4mWPxHKotTFd6zk7fUZmr47SzWviwiIvkk5PLR0RbFXWz8kJxsDWG3FvB2VTMzzhh0o6trJ0UvLqB0zB/TmKmMdF5fKR8fv5TgpQ9C5bGG2KuLX4Md4F8Z4M+r3jCda519K2N643jSk+p+ZeUuXZIefd0DC0ievvendEVaUzzCTrL9EXo3vWM42mWz8YOrKnCGhu4r4vf0stf1awavUZkQSPLjQJyvlV9C4XjjbIa3g7tppJum5//EppdbTM/pcjko+tSDUGy8Y921vYNwz4O0PxMj1TwdayLJuSfEKTlpsilWNMqHb/K4FGcBvQM/k8jjP4Lnf2gI2ZPHAlW888RfeOeJvxhiPmc1F9ReTV93Z8oG0yKDeSzgCbtNM1ze69+SC97bwWvUwl+bYnVAT6GPlltv430z32eIbX95Cc88dT9zzrqYmpNmGmLv7fg3kvth9bcPDKL/6vk61j7zTNmoNUxN3Wim1Rrvyga7i9iRjgSHU+8eaF5jOGTrawWy5y6ZiIgcvkBvnGWzbyXxSCeDPyQUJ6Pgg+goD6NmD7pmbw7D68Yl4SLp4HWE8dbVQI2xhYe7ehPsgNLTncw7xzg7uXXlZl5c7CcUHGK36zTLm4JPNq0/zRXhvoHlSO+74tOUTjHOnNm6+BneXF3HbyrvY21titafCQf9/itJxs3raSvp5lexhbgDKWbpBKxgK6Po3n+YQnWF5TROqmBna4ydpNqtx47r5+uxWBuNqcTagBiTS9uYZjUWiqJ9dnreLMR+TT09xxpnGwFYC51DfpToKB1P2OageZn5EZ6iIlwzr2bszB3MueBiQ6x7QyO88n8/X8kvwz3WOGIOzvXasTcdQ9u95hkuQ/VvyTYHs4OX3+43b9leU0R/PDiwXfugLdtVPIVwaGBG7ZxzPEw403hB8dL2t7l/5Xf5evtXCK43/lwjDQ1py/GIuYqAJLxxP7xt3PmwonsyO7gDW8Sf+tw8pusaEUmHdI41oWCChM3FWRd4qT7Z2Lfv9aVLYSO4ku2m4j8dxpvPImmV4vfP3t8KlGD3Wk3XtqFt2VViya5sjkC2rD/NRgfa/aXXEyNeYizO7HWGsFi9XDHmPL598QcNsW1tAb76P1v42UfOZlKV+UPY1rYA1z9SzcOfmMikSnM8+rEOYj3mnb/atm7i9F89xWOnFdJZbFzu5Q5bmNAEa8rvIzhoblx5T5JxvQ7KVoTpC5oLUFabhSuf7ab9pVdMMY/Dxn1XzqK80Nz/Z2vQxX+ddxPfP3sMdT7jiza+8E8srV7iIa+p4bPF2gtDLnaTXDfcY409bsNusbCzspFTPm5sWLuvf0vRD474ddLhcHbwKvKW4iq5mrkfsuKbPMUQG2nF01TLa3v2Dizp85aaLygKdnRzx4MduKPfTTmbx+LxYPflwOyYgnKgg54Z87HUlxpCe5a8THKHH6Lmvm/5Ttc1IpIOmRhrSnx28xJedwDwUbbhIdiywHySo+DdvxciaVJQPvB797frTKGy6HTgv7DmwA2pvCn4SGoHs/vLHW/9iC272wzHT9xdy+nMYkJhDVPKjR/CEqEekrF2JlUVmZYRvKeZCkIVJ0CNOe6oAUeKc2qObab/l3/mmufM2+/2eJy8emwdH1+6l6JB/XQCLidvjasm8ZVvEp9gXF/Z2BXkthd28+1rzjEVp/b2Rfji71dx1QPGHYX+naekghPPnUNtqbHg07RjOdbmMM2bxvPnO4zrNouTnZzrq2bvxuaUz+mu8FJaXzvka8rI5I920BU2zlDrCrfQHzcXR/ONxeqlfJSXynrjdNlkR5QYHSS7YikbOkPuNHUeqvAO0Ltt4L/7/pbXugoKTEdt/l7cUWj52hc49czzzWf5fCkLcNnGVVhIjA5efXrJEN//RqKhM9Oel4iIHJ5oc3PKGb/RpiYYoquJNTZQ2PdPuBgu+oX5AUP08hQ5akrrYP4K6Dd/NvU/vZhRW//v9zabqeCT5/a3+8ura15m0/88TNx1DKP8Zxhi9Xt7ALAlDv+D1Na21B/QfIVOUwEFBmYHTHr6qZR/IHp7ulj+33fz1rjUu73FLDY+v8FB4B1zg1tPSQWnTChL+ZrPfeMsuvpSLD07QK62Sgcnrf4BVot5BlOgbAKxkiso2eg07TIA0J3YA19ERR8BIBYOA7Bn/Vv84ZbFprjd5cLj9aY7rfTr3gnNg/4k9e0hlnDC0m7alpqXu0FuNHU+UOEdBorvJ5btochuHDP88SpW9F9NUdUQvcaA6JgaPFOnDlu+6VZYWkYfO5n36a9h8Rl/B1Y8/Xea3llDPDL0OC0iItkj2tzMtg9eTDJo/iDcW1QHJ9+MfT/XNTFPOdTMOIoZihyC0rqUhcaYZ1UGkjk8eVPw0Vr3/Uu1+0vXWwOzB77auYtjLcZf2r39Y3nVCYHkoX+I8hU68ThsfO2RNSnj+1tGBYVQal6WRekY5n3/55Rgvujf1h7g83/ZxA8/dWbKJWZDFW0Aaks9Q8b2p7C6lu99phtnyDyNb2KrhWn+ACfOilE33dh0rrehFc8aB6EOP6jgk5OGe6yJxwZ2XqqYeCwf/MwtprjH68VbkaqnVe4JbFvLhteMhefe3X5g1EBj9JeNfWcswUKe2X0WH/78fMqOmWF6vlhbP52PbM76ps7vFd5t55SaChoAbevf5NV//YNYwZWmJaIAdhc0ukO0791gPC+4h3y412kttGNxWIkv7TbFZnI6J445mXXxt9KfWIbpukZE0mG4x5pYVxfJYJCau36Cs77eEOtoi8IjndgrK4fltUQyrTsY5e2mHsOx3s7+DGWTWt4UfLTW/TDsHriTvCF8PZsGf8hwgjUexjpm/CE/bW2pZ8iZMwezjGooQxWK2pweAvam/S4xG24Tqifz3z2dhOzmJRpbrSU0UkSPp5FTBu8yAMTW5MY225La0RprHG4P1YOWNOULd3kNIQdM/tVf4Vd/NcQs797tazvtO1TOnGg8cd3r9D/wFBaPP6ebNr+3I+Izf1g4xJIlADvnzSun9hRjY+b2/na+9cx1PP2o+bzajiSzgAJH7v5sAOylbqq/MSvlkrfXfvcnJgWOw57Mm8uVg6brGhFJh6M11jjr602zTwe2Yu9MfYJIDnHZBzZUeXVLBzdtNfaJndXdzrmMpas/khU35kbeFdQIlaoZaKilG4Dq8q2c9gFjYWJ3Zz+3vNDK6OITcQ+qWg61VOvf7W/mzIGWUaVyoEKRx2HDl3LG0NExauwxtFz9Moku84ew6D+fgwCE+0dGo1mRA5k4eRYfn3cD7lC7KXZcfw+TgYZWJ1UxY8GnK7broJ4/1pb6Tkq29PcJtw98H++r3EGpY6Mp3hUbw3O936L2+AmmJpYbVyzjuw80446mfu6QzcG4cccPe87pZi91p5ylFbRn110yERERkULXQBnlgyeO5rqzja1Rtv5rNU3LkvTvaCS43rxyJd09FlXwyXPv3VneXzNQZ20BdefMMBy1dgdpXePf77Kswy2wHO4yqv0Viva3bOtoGTX2GBh7jOn45uVrAYg3R2lcusYQ8+9soYQUS9Yk7zV1B1P+/gYj+b9co7bUw5++dVXK73/lP58k+HqYXW8UsusNYwP0RGygaNqyO4p1tLl5dbI3Ag4rnY9sTvm66e7vM+SOiB39gIeS0z9N9eknmeLWPTEsv/VD8ShTLNTWRWUUNlx3DcfNPMsUrxhdSd3x9abjIiIi2WprW4BWm7GvXXdwiDsbIlmsrNBpWmHSW1NBE+1Yf/drdtzbaDrH4vEw8akn01b0UcEnz723nfG0aSfjLjcWaLZs3Mqe3jk43ObdpPa3LAsyU2A53EJRull9DqzxMI0tJ9D4iHHaanEywLm+QgJNWtY1kjR1B5l794sEo+bizhf8vcz2gsNmzUBm6TPU+7e5ykHlih/QeNM3OO3MC4yxN57nuT/Di0/uxvLMkymft8hh5+yPHYenyDiDMdkVI760O239fWLdIVp+uhJiyRRRD7FEBHv5qNSNKGO9wBvm4/+m+LjxTDtnznCkKiIikhFtvSEAvv7YYtocYUPsothOTmfqvqUyIrmgLdzJhkE9FptdA6th4rd8j/HHG4tBkYYGmm+8iVhXlwo+h0rNDVMLbGvAjZdNDZX0bi8bFJ2ALRmGqtKU5+ZKgSXbFE8s4e/H38HY3bPZGzU2Zj4tmACq6WzrSX2yZL3DGWu6+iIEo3EWXjHD1Fi88ffboBvcdtswZ5o73OEu3CVx03ImV2w89r8kiPY/M+S5ncDffm0+7nNWc0Ht1fR1d6al/09vUxvEkixr+wf+qHn7zlgiwMervrTf52h46yXadxsLRoFta4c1T8kduq4RkXRI51izq6cFAE/Nnygs2m2I9bbXQ8dFVBXkdl86GRkKbQOzxx9pfJ7VT95viFUExvBRbqR7dHFW7KKaNwUfNTdMrbu1g1F4icXXscFtnDoZc/Sza8wK/nPGLzKUXX6aWFLG3rJOdleYt9ievHEWMIfu0IH7IEl2OpKxJlVj8W6XY4hHjyypdvACmPfFz1LiMR8H6NrRyL/+5eX88/34xhvb4nU3dMNbENrdQ6TU/H4b7v4+782mPOHyeZROGdSir/0dEo99nXCoiPZd5qVp29YM3Bmy3P5zLAHj1N/JQMgx0Ph6JAtG4qZdMCAzs03TRdc1IpIO6Rxr+qMBPBa4rupLzJw63hALv7kROsDnLE59skgW8TmLiQFfmfRRCs6cZYi9+MYmEusGft+zQd4UfEa6aHMzsa4u0/HejnZGUc/2ip28NHmVKe6yuTmuwtw3Qg7faE8FT+zeQ9f534XScYbYhsbNEIBoIjzE2SIjy/528ALod0DhY/9L7aQZppi1aAvWpY2Ur/0JlRuNW7ong2MJJRfC0m7alr5pOvdo9fcpcYSpdhv/wPfG+vljz8+I/dbPUEu3rPEwD8w4jm0FZ5piIXclf5o8K8VZ+e+9pY6bW3pZcO8rprjHYeO5b5yVt0UfGV5D9dmCgZ6H7xVuU3FXeCmtrx0yni329z0C9Id7CBNMGUsG4hBKpIzlyvcv2c0ZTHKu1459lQ9WGYv4RdQMLH92ploaLZKdxngqGVU+xXBso6eHliHG2UxQwScPRJub2fbBi0kGzb9YzrGzYeYcTig/gU9cfJMp7nP5GF00Oh1pjhwF5Yy2uhj97G2mUOfeC6DwdFw9QVpWmHfr0QWVjDT728FrbP8OvvnKa2zf3pCy4DPQ5LgRLv8tjDb+ObOse51nHrqfD191FWXTjLsnxNr66XxkM5HtfhJV5g9GhzX7p//dZVzP/wBef9sQCkXriSXvZu4V1ZRNHGs69fWXF1P3k7sp/M8vcv1ZHzLF83kWy4G8t9Rxls/Jk3MrDLHGriC3vbCbrr7IiP35yMHbf5+tA+tO7CHxsQhFNZWmWLp3BByqqJPoi7L39xtIRlMXbQBiiSivtj1GOG7cAc9lK+B9VZdht6bekKM7sQe+iK5R5IjYI2C3WNh6opXTz5puiHW+/Qr/eOghLi+4MkPZieQnFXzyQKyri2QwSM1dP8FZb9ytZcc/lkA3FBSXMWVQ9VGOktI6mL/i/z4A/pvAw08R64xyfGgqsb+ZGzfrgkpGmv3t4LX6xSfgldfoDw99txog5LcTdBuXxoX9dvrjvVhKE6YePtZCO5YD7O5VfuUUrIXm5XZD3R3v2bOLQurYfeJH6Zx1oyHW22aFP0LZxLGmPkUA7pI47nAXo7xu05K/Ee/d/66Fb2zE9teHDKHxwG9sDrj6FNDPTQ7gQH22bE4HZ33qc7iLzP1D/LtbcS5L0v/X3fSz2xRP546Ase4QrXevGrKok7RDx/vDxF3mwlakpYeat3ycNeo/Uj+53YLtfB8Wj7Fpbm9DK541DkIdftD1iQyDYJHF9LfZsjtBf9y87FkkmyV7rUSajDO7C3qSeCwZSigFFXzyRNBhp8fjwuVxGY6H7Vn02zaSlNYNfA0SL3uNJTsCVI1u4rhTTjXEQs0dlG1164IqTxUnLPTu6ac9bryQDodHbrPm9wy5g5d34MNTW3CPaQcEgN5tbQDsufEmAoN63/R4nHBsHbHObtN59lI31d+Ytd875B0PvG2KwdB3x72Ock6tquPujiW8vXynIfZe876WDaso6jXPDnDsNu+UKO8qHPi9SM47lfEXGGepNqx8G/ed3yPe052BxCRb+TvaCPr9puPd2xspxJ66zxbg8XrxVlSlfE5LhYO/PXorH/7abZTVGs99b8ZgunYETPTFSEYT2M4pxeIzXsa3djbx0v/8PyJbhv7Q7HQWc9EN/0nd6Emm2P5mKsXWaHdREZF9nEliiQis9NC20tg64ARgstfOumB2LE/Mm4LPSN7NorenixXTpuF86BFTzOsoh6oZWF2pp+hKetkdMSJxB7v2HMeuvxt7LhUnezjX5yYYiGYoOzkYhzPWhHoifM7vZPX9G1k9KFacLOM4H9jsI2/sOpACx8Ddv1dX/IY/N/zWFJ/YWssk/pO9H/84yeOqDbG+t5bDutV0NDZhb9hqOtfj9eKtTf3hbqhi0N6tO4k91TLk3fEwYa6eeSl1U4xLyLYsW8vudRD8zh3sGFSYAhjFQGPmuFeNKocSdpUQKDYuh/MX9eB2+cjXtucj+brmcPk72vjdgi8RC5v75L23c1/VhIn46s1LKw+kP97LdkcjnW7jBbzVFeNo7Ck01LKt3m0Duxw984eFdEVaTfGoLcGEay5hbPVEU6wp0MRP1/+c8yY4cZZrJyQZoLFG5NBZyr08s/uXfLhuF2Uu48zvTclTKIt+GldfduzKnDcFn5G8m0XX7gAfqLt2yHXXsWQCW4UKPtnA4Y5y6oof0HbFxUw57SJDrGV9EHZDNKQ/uNnscMaa6O4WHFiZsuFBCvtbjLGy0eC7FkdJvn5sPXyllRMJ2Rx89R+pi6AhVy/LZodp2DqewTWdZGImsJbnlrwIS140nWt3OrnmZ/elvKNveetq6gAAUWhJREFUL3WnvFOf2O3nmd33M3u3n6IUy8z8dhul9RdRHDMuTyt+Z+A9vfczF1J08nGm81Y3beP+Pb/lG5XlKb/PkczmGPhw3fSWk01rzQ2vrbNv5ZS+ofuV5LKRfF1zIEPN4ulsaiQWDnPR9d8wzcRJdkSJ/a2DwtKylM/Z2xkiNMQNl4YdTQDc/PItdJYY398Tg3X8klvo6G+nZphKPwdathVLRDj9yk/jm2T8Hht6Gvj68pt44JSzUi7j37B3A30NusYQo6Mx1oRcPjraoriLjbPNYv6B3+loVwetg/5wd7a1Dctri6RFUfVA64DLv42zzriT6t5/rqRsMxDNjsbNeVPwGcli/VBodbKjpAf3yVMNsR273+Ch4O+5vuITGcpO/l2iuAASXYx9+PcEHv69IRYZOxtmXku813wRKzmud+CCx3PFhzjh7OMNofWvPAfbAW/qrcdHtOpRfP68m/j+2WOo85mXfDmAk2wJLKXmn13jKw20rLma8faHmORpMsR6onZeaS0juP45vMeYPxT5u7oJBvpNxzveWk9/vJfIx99PfIZxrN21dgXbV51GYrULVncOOnM01niYX0QfZ/eW7pTfarLYSbFTH+oHc3gGCj717wtz3NmnGGJrl6xl03KIhrNjyrSkx/5m8QDYXS5qJ081FXMjrgBtdNDQ00DCbbz8DXXHWb6wg0Q09e9SIjYwk+bask8zaarxvd/V1AE7oHnXVmw2czFlf0vFhrK/ZVs9bS08/8f7mVF5DYlBxae9RPD1FdP72nYai8x90XoDTYzpKD2kXAznN5hnFIE2nBCjQG+cZbNvJfFIJ2D8e+i19EFJKR3PPcEfnv6N6Vy7JY6nSNdDkkMqj4Ua4xLZqKdhiAdnhgo+eaAvHKMEeKpxM4+Ejb0gxrrWs7dmB4Uu/afOBvHyEr5+nY0fFF7EyRNPM8Sir+6BXkik2G1N8kNbKWwfZTEdG5WRbLKfr9BJoKSCL63oA1JvlzywLfcMUw8gR8tu2t+0sjPxFXYOOnXgw9v/0PS3u8Bt/AATjDt4YvcUYsnUvZVs8QT37P0jm7YY77xXxMfwUdvZzDy5gzETjzWd12QLMqby7pTP2djZz13PNFFxgX4ThuL2JkwNrwu86lE3EgX9/iFn8QC48OAOF5iaaLbvGrg+uvmlm9nmMS6trAiM4aPRG1lb+TABh3EWJkBpfyX1vXba/rGEtn8sMcR8zmpOrL2aHf/zL9amaAYdtcX4xE/vOqSiT1/3wIfkoZZtxa0J7nnyRsJOY4GporeUS1u/zcotLgZ/0B7g4dL4twhtaYND2MjDXeGlO7EHzxpHyl4+2nBC/l0omCBhc3HWBV6qB81qfX3pUtgI5eeewwfPMvaypP0dPH+/Gq+vNH3JihyhzibzUv1Idw9QSSxgp32XcZZbqC1KyOVLU3YDVAXIA92hADWUYPeuo3DCKkNsL+BJJJhYknoKs6RXwuVlb4mF8qYH8DT+2hCztZ0P3hMgHBjibMlVvbEewMUj237L2ieNs01mttdzIjMptKVvS99cUVvq4blvnJVyBy+ArW0BvvbImpTbcrtrizhp9S1YLeYlFl1FlbxdbWdpSy1g/oBidzg477IrcHuMdxmbNq2g4I8vMOXSMxkze64h1rutlZXrYNJJ9VTOmmE8rzvINXe/SDA69FIKj6McX6GW3g6lrWc7GzY9bjjWubcZOD7l4yW/FdiK8blG4XMZi6TvNV0PDLEUKmQJ86XT51NXO8FwvHdtGyvXJfjcM80Up+iz1VuUYMXMLzPrrEJ8E4z9wvxdXYRfjnBq1SUpXzOWiLDnza24p5hnLQzVJDncN1Clft8VnzY1mG5oWE3k27/g7C3VpvP6CkaxYYqLM0+34aszzxjcsmY9GzePJvrWdoLF5gbydp8PR02N6XhpfS18kYFNJQbRDl4ylBKf3VSot3sHNq7wOMNUuwdd73oC4Eg9c08k23i8XuwuF0//0nwzz+eshtpJ7F1l4c8rUy9HH9Mbxzx3/ehQwScPRBMDg+MJZSfziYuNu5jQ/g6+v3yW0Z6KDGQmg8U8A3f4Xj/tWzC63hDrenwzJd1ANJT+xOSoCsX6ARcX1H6Yb198piHW//Iq6ACfUw17UxlqB68DGlXJzVf5+e+Tv8WEEuOHuz1v7mDLS1HeP9dJ9cnG2Tj9/gjP/mYLrz6X6r/HuVhnvo85b36TKQ3GJZnt0XpWcje4zR+yuvoiBKNxFl4xg0lVqXt8+Aqdh/d95rlCz0Bfo0faV7F6+V8MsRNbajmd4+lP8QFd8lcyEGfemGuJ/a2DNlLsHGW3UHxeEVaXcUfEpkAT3950Jz+o/bWpv00jEaCTiq/dwOiTxpuesmv9dlb9y8bql23wsvk1C51WZn6qCGexcWZg46aNHLOsgsIlcdqWvGk6L2mH/suKSRYM2r2xqZ1ynJRUjaK63rhUoGnrZtac+G0SNuOurPu+fYeFCRfPobjMXEhqphs2J+j/n6Ws++3/ms+1RnD/7nYYZS4G+ap8jK6fnPI1tYOXHCxrxA+UULbhIdiywPwARwEUqJ+dZD9vRRXX3POrlP3k3vjnU7ATfNM7+MBFZxtirSs38+JiP6Fg+voPquCTR4oTCaaEB90Jj0RAXfezRrGzhGTCwcJdv2PhLmPssu5ZfIHT6Y+r4JOvfO4K0weNFs8uzO1/ZTjsLbHAcfV4Bv3MHW1RLNZOEp0hIjuNdxh7G3tIJIpTNtgeuHt+NdGzvwWnGPt4sCcGv/VD8dDLsiZVFTGtVn16DoXPN4EYHXxl0kcpON5YhHurcxmdQChsXkYjeSyUwG51YjunlPJpxmJurL2dxi9dS++jzSlP/Y4DuLAdhvg86aitxTOoR897Tv2v66hY+N+4Jxp3v+rc08dzv9uAi9GUFRUaYq2VXfyj+T4KLebZPS5bAe+ruozCR81bqBfhJJaI4KfbtOQ3GoaEzcXkM8Kc8P4zTOe6ixwpiz0AFZPqiVk2sGHK1Snj1niYpY9/h41juk0xj93DEx96gtFFo1OeK3IwrLGBtgX+CRfDRb8wP6CgHErNSzVFspG3oirlcl2nd+DmnrPYvBw9tC395RcVfPLAe4NncdPL8JtbzQ9QtTxrHFM+lviuGwknzRd47r5dUAg9ERV88pWtrxWa1xgP9u4BJqV6uAyDhh5z47yQpxtrPMyra9ywxtznwhoPU/LVebhrjH+kWxrbYSkwYRrUTDeeFOsFzNN2ZXiMqTmZUccbZxdsf6k5ZZcSGRksPjvOWuOMuXj3ThJdzSRvuwHGjzHE2jaupuQXz9L7SgONbcbC697NzcD+l9W6w11UVDnwDLp4dxc5sDutPPe7DSnPixV+mImf8nL8GOM4v3bzMp75/f2M++Ql1NdPM8QaGt5m5x//QWX4AthrzLW1vw0YR2GJ+YPEgUysG8vF34KOri5TrG9tMxtfcfGNE2+m+HRjIa2hp4FbXr6FrnCXCj4yLGKecqiZkek0RDIm2tREcL15h96hltYeibwp+CxatIhFixYRH4mzWeIDs3r6q2bC575tjqtanjVqSz08d8NlKXuSvPP/HoB+iMbzc4vhfHE4Y40t4gd8VGx4GJpvMQaD08DyI3ANz3a+MsDn8uGxe7jl5VtSxsccX0pZX2HKWGdhH//d1w1bjMcrAmP4KDeyZ2eC1yN7DLH+DjVbl+E1oq9rDlNHcGBp0c2Nv2R71NjUe0x3KZfOvpXEmy54c3Cp0I01HqFo1P4baUYazAVkO/AfX5pArNDcK3HdlnfY+Bdw9wTxlht7kxSFo/THe3HYEvjcxhlApW4PG+O9/P7VP+Nf+2dD7NiWak7kMxQ4Uo9fBzKxbiwT68aajjfuTbKRTgqj1VT2Ga8ZewNRisLpbTIq6XO0xprdnf30NPUYjnUHo8P6GiK5xu71Ap10LPw54RRL0i0eDxOfenJYiz55U/CZP38+8+fPx+/3U1IyMqfMxx2FqpbngKF6kjQ6bWDeCVqyzGGNNdGBYkB3/cXw0fuMsXUtA7NGNAtvWI0uGs0TH3qCrrD5Tvbh2r07yIa3u2l6qosmzM8bJUl3Io65+4UcqWRXzLTrkifsxpPHG3XpuubQ9UZ6sQDXn3Q9Y2a93xhrirJyy17OusBLic98+Vs0yodv8riUz2v3+bB4PDTfeFPK+FAX6IXbBmbzWm7/OTsGXdi7HHasx9ex9sE/sZY/pXpVzm+4FovVa4pY42FGlQ5vg2S3x4o1HubFxX5YbJ6t+HHLLYTOiw+5HE5y1+GONdHmZmIpZot1bt0BePnpv95h1RvG+IeSHZxuAZfdajpPZCSwV1YCOxh910+oqDLO8Ik0NNB8403EurpU8BmpYt0hEn3mbh+emHltuIhkF48FHJYaIknjtP4kNqA7Iznlu9FFo4d1+UEi1MM3il/l1rn/v707D4+yPNvHf84+k3Um+0IghH0RImBQqiKIUMQitVbcEGhB+opWhdaK/Vag9qe2vEVebZS6Qd1a1IpWVFZRVJBN9iUQwpJ9ncns+/P7I5L65JkEApPZcn6OY46W+5pncmVMrsxccy8DkJcirrvlTXY8tbkEE1Qx3IEIB60cXr8b2GpC3Vbxprf90Q8FSQJOeKVToin2VVgq0NQoiMesFcgD0COhh2S/tHqbBXvQiMxRAzq9FEqVk4M+n6wL+Oa2oxfocd9P6vnn9TKcyhRv6Jzb4Mfc9eWQPzQHKW02QzY1ebFtsxs3/LiHpDnlqaxE87L/DwmPvNKp7+FC9D3TcM3BR+D2Sd8atO5fdq4R6BPgYup2PFVVODXlFggO6exWV0IeMOpx3D1+MJb+SHwse9UXNcAhIF7Dt6AU+xo9JhxtFC/3tZhaZrlp+/SRLBHuKvxtixJekxO1f90LIcBRo30xAF6/G14Zt36NBR6nA7VlpZJxXVJSwI3BKPKpvCqMT1JCWdkPdS9IT2rx+t1QavlpVzSwyAUMHpIm2Xw5sbIZls+Phymr2CVLUOCzilfx00eeREqueJnJ7n/9B73q86D0Kdq5mmKR0WlCIoAX9v0N31WIl1j1rhHwZwCJl3DqYaXJEXC59XmGeANyO/jENdByr/gGGwAd7hz3a8m+OKiph2zTI8DylbC1uc6ZkAfZqMdhf/oJKAJM+dfpdFAagrvESpWTgyFr3wrY1Dr49S5gHwBr20z/q7muBrIyafOVr11ik9dohOBwIGfZX6AuEJ86u/94M7DJiZyCPMnfSme8OpRpEoWFTtGyJ9z6hm14et1qUez89gD19nqkgw0f+gG/zQvB40fK9AFQZog/Wd7y5us4c3AHMjKGhSk7CgaFsuWFUsOpE3hr0SOSuFKtweznXuILpyik9CmglMlwNr0cV905VRRrqizHxyv+iNsSngpTdtGvtM4acLyjo84v9OauM1/nQve5mOuofXafBbI0lWSDXpeaG9zHMlNZJZwN0uNuzWU1SEQapg+cjt9dUygOlpTB+c7TSLAko/6c+HCEpur2mxWVJgdm/PXf0HlN7d7HodTjzYU/k9SUjpZ7Wb6f6dAzZxCyU8VvipEKGP/5Iaw10gaLz+gFNprhW7QEvhRpQzM5O73d6f6XUtvOa7epVXampeETgCY+Hl404NAHn8G8Rnpinlfpw53L/sLXLjFKXVAgPdnOUQ3gWFjyIYoEGbqWpbj6+qtgs04RxRK/b/GfNTViMAok13YFNnyijMUvQO4TT2Fu9rZs/EfRTROvBBoAQ9JPoPS2ma3lN8Nm24TGiga+aIpiLrVT8qZV5lLx9/cSGeLV0KkUeGTN/oBxnUqBzQvHSt6gVZocmPDXL+HwdH6DSp1KAUOATygvJpdA1xGRlKmsEqaVJVDKpTNGcpEGr9+N7Nye0mVbci/eL/oD/GuagABnuCnVcmgTpI9prT2NdfIFiNO4JLHz7IIG5bUjAL34a3a03KuhzgOsaYLZGwdlmwaUw+LGZ38/Da878EENHgi4f6cJFrkgielURmxemB3U2tbyuIFrZkcSczNgU57D1Rk/CRj3+t2wVxn52oWIuo1krQpeALOvGoq514wTxb7c+x3wqQC7K3Qrc9jwiRL25pYXIZteP4LmNn/H/d6WT2MUSp7kEc10yW4IXjeuSgy0I2ImvIZeqK2wondhqDOjYHHZrJLlek2V0un6dHFy9TpsXjg24KfZpXVWPLJmP4w2t+TNi9HmhsPjw4rpheib0bnT0dqbNdRRLh1dRxcn0O+Jy8aZU7HK2WCGUq6Co9CHxIJMUazCUoElx57GX3oWS69z+OFXaDBwtAZxV0g/OU1L0yExRXr8usLZhDiZC+Xj/g95/Qol8fKT+5G39WHE1ewCEqW/46q4VKhyhkjG9dlOKNd+2+6R7Uq1HD95aDh0ieJmcGmdFfe/uw9P3TVcUqO6qradf9zdp5tgbHNtrdkJQIdae51kPwoA0P9PT6RBekpZ4+HTwFYT4OTpo0TU/WQlapHVZlljSakWNQjtya5s+EQJe1U9ACDn7IfIaSoRx9QylGQqIQ9w6gRFj4RkwLblSTTfeQuSBt4gilUfq0N/UwrcNjb1opHX1dKwrT5yAG8t2iiJKzUa6JKkJ7HQhbV36t3F6JuRINlfIFy5UGC6pCQoNRp8+re/SmIGdSauyL2y9feLYk9iQSayisQbGjc1Cjhb0RDw/kZ7SzPmxZ0nsbfEJIlfaAaLS9834GmndosadkGDvK0Pt5yq2IZfqcPJn38OT4L05KzxCwqhlwfeZ0qboArYgKpV+GGRCx3WqI6Wj15KbetoluJIcw3Gw4DtO77AmpI1krg9yYsX57wp2SRfVsnXpd1Zle0MjjaKZ77VuZqQhfzwJETUTbESRwlrXQ3ioMAZgw3GeOl0ZK/cD1kWz8qMaknxcHibkLTqDQBviEKankXAiDmAhUt/opHP27Ijf1qf/phy3yJJnJtaEgWWlJaB2ctfgsMs3ctl5xv/Bpz//f0isjlbpsjPuLoXlt40QhTraGbMhXgScjHBtQxv3NUHfdPFs1+azh1Gyvr5WLD6cxwRekuu7ajJVGly4Gxls2S8o32/LrR8tEBlRIbtOFClCfwAcamAPk8y3OGMyT2ZqF5XjzznTORVSR9SXu5C9eESZF8dvFMRKXqZ3C0N2b8d/iMazlSIYiPqCzAMIxCvkDY6iahrsOETJZqbahGHHAyNs6JXzneiWJlKiUd7pGBMD+kfcIoi6Xo8OleBF/v8D3rn3yAKNazdA1gBOLlJaTRTaXXILOh74TtS0HAT5eiXlJYRsCGq0uoAlsRuqUeDHpbtp1GeIG5OOE7XAUhCZqIm4AyXHDRA23AIkImbNhqT9GTMtqqQBmfaFUCO+HGb6q1IAfCbiQOQ3r9IFOuoyXSh/Xba2/ero8aMylqJfu/9EvJ3OlguoIoDpr8JxKVJHxtArkx6iTbfibe0Z7DwhuHokSI+OOTk/iM4VpINT337m2JT92L3tPyNvaPPXIy9aqA49tXelv0qL+EkPSK6NDHT8CkuLkZxcTF8vthc8uJ1tvwhtWUVwXLbQ6KY2X4OthPPIDWrZzhSoyBqTJahLAtAlvgVlzkeLQ0fCrtYrzWxgpsoU7RjrQnMebIOU48/gT0nNZBuzJwEuc8FVXqm5DqVtRKbNb9F3FrpEsA8tGzK7NNK96G5WHkpOvTtxDKqC+2309G+X+0uH606DXgdwG2vAGn9pXF7A7BmBvDWzy46TwDoC+CNFA3Kh36BvAHiTaurrJVASeDrKDp0Ra3RyYBsdxb6OsXvTRq9FWBFIwqtmGn4zJ8/H/Pnz4fZbEZycvD2ZIg02kQD+g6/VjTmbjwKnAhTQhQ0BlUCdH4/Fh1eCRxeKYpNqx2J4SiAw2cPU3Z0XnepNdGOmyhTtGOtCcxTb4NfocOgAdXoVyjeKLmiyY5FX9Tiuj5jJNcZZBbEyVx42P0ASgXpXjsOpR5vZkqXZP1QoNmB9U0OXM68zWDvJQagpdkTYC8iAMD8XYBdenx6R85vWq1wSk8+o+gX7FqjdggYn6SEcrsPddv3tYnq4PW7oVRLT58joq4RMw0fomiXrUvDRxXVMP78dSBd/Mnc4drPgSbA4+fmpEQXi5soE8Wu+L565I0rFI01VzbDvftkwGVbGc6zAICHpk9pWZrVRkdN4I5mDA6RncY4DZCkk+6veF5ELS3V5wXcw6cjrvqWXDWmUqCqzWwkcw2Ajhtl1L0o3YBSJkPpMDnGjB0uijUd/hof/+MfuC1uRpiyIwodwSKHu1Jc6+OaBegCLJ3tSmz4RBBPVRW8RmPAmGBu2azX5LVKjsQsay7r8twoNLJ9PmS73YBLPCvhrJ9HmhIRUWwxN9QF3JC7ua4G8VDCXVEBR3ybv39VdQB6tTQaqvaLQgnl59pdtgUAUMWhb69egL5zsxg6mjGobUgG1gIZCdJNkrtsaampPPAsnYaume7t06a0f0qZaRCApwGHdPNpim1OjQENdR5oE8UHinjNLb+zjgQZ1LniBqGswg+7jweQUIxTC/D63cAeHer2iGe5XQFgUJIShxyhm+XGhk+E8FRV4dSUWyA4Am+0J/QsAkaMwOe277B+3SuSuE6pg0Fj6Oo0qSvFpbZspvjBXEkosXEiEH8lfDYP6s9J/1C2d7QrERFRJDI31GHVgv+B1yVtzhjUmZiYOwtVL76JGlONKGaPywIGzwIO/B04Kd48Jh+AHRqc+fGbyO8ZYF/Ddk6ouhjtzhiUSfff+eE1QV9aaioHiosATztLvFVxLd9nEHV0Shk+WQ/sBZpOH8PR7etEIftpM7LAA0VikdXiw7dFf4B/TRPa7qWVrACQqIJcE+JpDEQRQhYn4LOKV/HTmTORMlS8Fcv2Lw+g70E/lIH/LHQJNnwihNdohOBwIGfZX6AuKJDEz3y8BTABV2aOxOxbHpPEDRoDshN4HGZU0+e1u7beuepjwAKYyvV49+ndkrhSLcfdS65m04eIiKKCw2yG1+XCzQ8uREquuCnQvOMUcAgoHTALzQF2ePXKXGgecxdKe18lGi9vcuD3G6rwct5YyWla4RL0paX2xpZmT3sbM19GU6sj7Z1SlpB9CgCQ+t5OyFa9L4rJMgqAMY+jqeYssjAo6DlR+DgdfvgVGoydmITMUQNEsT37DwHbfVDEs+FD3ZfdZ4FM75fMcnMkhP73gg2fCKMuKIBuyBDJuO+rXYAJSFImYHDqYOmFFBvaWVsvi98CWID03lWYfPckUayp2obNq47CafWw4UNERFElJTcPmQXibY/dh5oB2DHyCifSrsoQxQ6d3YnfN6xBwv5xOPmtdBmRTpUZWSfwtbf8Cri85kxHGzOHUEZ2LwBmCI9Oh9BbfDqa+esDyGwC7BZu9hyrkg1KpPcUH7GuOicHeBYXUcRgwyeCyHQp8DZ6JZs7AUCcW7o2nLoftdYj+cNKREQUU5zNAFRwlLyG+qYvRSG7SgVrRhrmXHcFRg+8VnJpRJ3AdzHLr+bv6pIZOaFWMHA40keOEo3ZT5vbrvYhIiK07HXVdpsOZ50Hzi7YooUNnwjhs/kQf+NSNH9qBtD2CEOgP/Lg9bvhUbJjTkRERLHLYm9AErLxz+RErM8NsFzdr0Sf/CuCf5z55Qi0YXLDifaXXzWcaNmzz94YEw0fIiK6sPN7WzXvcOPdr6XbdMiL/oAeFh+C+bEFGz4RQnAKkCk1SPhRPOJGSNdkb/z4PZRv24iUIdeHITsiIiKi4IpTJEJo8MCtEc9s9tpa/ndixlWSfQtP1Vnx67dPIm1iVqjS7FgHBy4AaIn1vKbzTZ0Qn8R1MQIdJe82fj97yXQWqGrztsJaDyAPjmYzastKJdfqkpKQlJYhGafY4K5vkPx3b6qrC1M2RKHXVFcHtPkdULsdAFTY3PcNnFXXimL9azIxrP4+1JiakB7EPNjwiTCKZIVkcycAsOmcsPssSAlDTkRERETBJFh9mNxjDrwfNKAODaJYCrLhFQQYdNJ9C/3OZgje+lCm2rEODlwAcGn79IThJK6OdHS8/BBvM25GFvD5n4CvykQxlWk4oB2Bkzt2Y9eX6yTXKjUazF7+Eps+McZrsQLQoOaDtXjrX7WSuFLmgy4hLvSJEYWILiEOSpkPn771PgDxZvYGdSb65c7CnQPvRc+iHFGsdPNOlG8F7B5bUPNhw4coilhdXhyuFG9Saalr5wUhERFRpHL6oZSroRinR+rQ3qLQ4c8+xP69ORii9oYpuU5q58CFSxamk7ja09Hx8kePNKD+g7MoH/d/SB+cJIpp1m8ATgAji65G5mjxfkvNdTX4/J2X4TCb2fCJNeY6AHnol3UO/eVHJGGdVomk3D6hz4soRJIMeszusxeOqauBdHENL/m2FDgIpMoNkg80LHGnUd4F+bDhE2mMZ4EqQTKsdHDXu+5MrWxZ72kqc2D50x+KYolQYbgsC3UWJ9LBDZ2JiCh6yAxKycxmj84Fh/SlUPcTISdxAe0fL2+ptqMeQKk/F2ohTRRrUsQh3utCauVAeD8Qz+KKhxKTe8yBYOXelLFG7nUAADwDbkLmzcukdwhxw5IoHJJULiTprIBWvBS2Wu0EEB/SXCKu4VNeXo4ZM2agrq4OSqUSf/jDH/Dzn/883Gl1PXsjAFXLlNh9JZKw3jEYQCqgipCTJyikNCkaeM+5caPhRtwYIO4VBNSdqgKGBHPFJxEREXWp9jZ7jhJJupa3Ev+7sQR1nx8XxcbZT+J3X/0L1kfvw7Ab7xHFGg+fBraaAKc/VKlSiHl1qRHTsCQKqQ72dstyDIVX9iyUztBN5oi4ho9SqcSKFStQWFiImpoajBw5EjfffDPi40PbCQs5lxWAASj6JTButCTcsGkHcOYT+NRJ0msp5vmyNPis4lVcNfZqDBh0gyhW9m05UpuSITdJN1MkIiKiCHQxmz2HcJ+eS5WRqAUAPDNhIOLSxB9KnvmmFI4v98CsskpmcckqI+4tCF2CiiY7mttsNWByeMKUDVGE6GBvt8ZNO5F8DDAajZJtOmrNTiCo53O1iLhqm52djezsliM4s7KykJaWhqampthv+HyvUqmCX6OWjDcoFGHIhiKJ3WeB0eCBvYf4d8Ec50cqV/wRERFFj67Y7DkMtAkqKNVyHP/wTIDoFfi2qD8KnCdDnRZ1MaO9ZT+n/910Ant3G0WxW4UGjJEBGqU8HKkRRYZ29nZT6lt26Vl3qBofHP9aFBtlPYtxMKDZEdz96zrd8Nm2bRuWLVuGvXv3orq6GmvXrsW0adNE9ykuLsayZctQU1OD4cOH44UXXkBRUVGnk9u7dy98Ph/y8iL/D97lMnmskMGAF0rfwzbnc5J4QXUPXA8FtEruat8dqeO08Cj8OPjvL3Dw31+IYgZ1JnrnzoLHwRk+REQUXcwNTijOWURjNqv0g6+YFOzNnsMgMUWLu5dcDadVOqvj6w/eQ9XxfHg9Eff5Ml0mm9MLnQyYN7wX8kYPFMXq9xqBUiBew//uRG0la1XwArjvml74xTXizex3rzPDvg9wesLc8LHZbBg+fDh+8Ytf4LbbbpPE16xZgwULFmDlypUYPXo0VqxYgUmTJqGkpAQZGS278BcWFsLrlX4jGzduRE5Oy/FkTU1NuO+++/DKK690NsWoZPM5kQDgZvV43JY1RBI/21QOIz5Gokof8two/HT6BHx4fRWe6/8gCvJvEMUOvrcdMAJejys8yREREXWSw+qBCsC3H52C5T/GNtFcyH0uqKLllK5uLjFFi8QUrWRcHecMQzYUCgqXgPFJSijPyIAzpaJYInrB63fDr+KG3ETtyUrUIis3WTRWlqBGV5y93OmGz+TJkzF58uR248uXL8fcuXMxe/ZsAMDKlSvxySef4PXXX8fjjz8OANi/f3+HX8PlcmHatGl4/PHHMWbMmAve1+X67xtds9l8kd9JZLEYPUgAUHvwOIx7vmznXkroUvQhzIoiiU3nQ3JOGjIL+orGtfFHgbavlSnoYqXWEFFk6y61xuP0QQVg0BU6ZA1JEcWq9m+CevVaaKbdE/hiIrpsl1Nr5F5AKZOhsUCGQVMKRbGDu9di97ufolAX6JgRIgq1oM61c7vd2Lt3LxYtWtQ6JpfLMWHCBOzYseOiHkMQBMyaNQvjx4/HjBkzLnj/Z555BkuXLr3knCOFy9FySkFWwVCMmfSwJF5utOMPW85iUs/sUKdGRIidWkNEka271BqfxQxADvd/3oX1b7tEsSQAThWApO6xfyNROASj1ni0MsmG3J4SF+w+SztXEFGoBXU3rYaGBvh8PmRmZorGMzMzUVNTc1GP8c0332DNmjX48MMPUVhYiMLCQhw6dKjd+y9atAjNzc2tt/Ly8sv6HsItSa/FwDHDJLfswkGoUSdc+AGIqEvEWq0hosjUXWqN3+EAACT+eBLy//2+6Cb89UE8OlcBpOvDmyRRDOsutYaou4u43bSuvfZa+P3+i76/RqOBRqPpwoxCy+LySI5oA4DSOm7ISwBMZ4Gq/aIhpbMBgCEs6XQnsVZriCgydbdaY5Y147RCfIpTWXwNGpNlKDfa4W/zmoivh6JPg9mLnQcPiMY856qRD87gCqdg1BqjuwFHG4+KxioddZf1mEQUXEFt+KSlpUGhUKC2tlY0Xltbi6ysrGB+KYni4mIUFxfD54vsDcIsTc6AJxlYbC2TrfafM+F/XvhaEgcAnUoBQ3w3ObmCxLTfb+r1+VOA+0lRKKnuJiDpYci9fBEcCtFSa4gousV6rbFb65CM3thQuxMf7twriWv9AhZ/0ogar/Q1EV8PRYcknQpynwvW0qHYUyo+fj5RsCLfEI/axgZ07TsEupBLqTV2nxVAHDZWrMX6deLf35RmNaYiG0k8WZgoIgS14aNWqzFy5Ehs2bKl9ah2v9+PLVu24MEHHwzml5KYP38+5s+fD7PZjOTk5AtfEAaWJifeWbwDXo8giSUKqYABGJgTj3Wzrw1wNWCIVyNXr+vqNCkSJbYskyybtBSIzxWFKt87hmQbIPfyNIxQiIZaQ0TRL9ZrjctjAwBcndgbd42eJoqVG+1Y/EkjHv/ZbeibIV3OztdD0SErIQ4Ju55C1fx7kXb1j0Sxyu11wBnAVeeAuzLwB1byeCWUeunpXxRcl1JrXD4ngDhckz4Os295TBRrPrAd27/5EGkaffCTJYoRgkUuqX06hxI6WfC/VqcbPlarFaWl/z1+7/Tp09i/fz9SUlLQs2dPLFiwADNnzsSoUaNQVFSEFStWwGaztZ7a1Z1ZT1fB6xEw+OhqxNvFexp5UrIBwxwkpKkxNDf2XtjR5TFoDNApdVh0eKUkNs02EoNxLRx+HstORETRJTkuA4MHThON+SubUeP9Gn0zEviaKMppXUb0T09Gv2HDReNfnq6Ct8yNnGM61B3bF/BamUqOzIUj2fSJYIkaPQanDhaN1cafwfYw5UMU8dQCvH43sEeHuj3i2jcIKeiXJOCYO6jbLHe+4bNnzx6MGzeu9d8LFiwAAMycOROrV6/G9OnTUV9fjyeffBI1NTUoLCzE+vXrJRs5B1s0TH32fn/cYa/7pyP7ynxRbPum9UANICRy+iNJZSdk46NbP4LRJT1//Wj5x4AVcPmlSwUp+KKh1hBR9GOtoVihOLkfji/Er2+9FWX4rGIP+o2fiqHDCiXXCEYvfFtN8Nu8gD40eXZXrDVEoSOLE/BZxav46cyZSBkqXtWzc+0X6F2RDKUvzA2fG264AYIgXZL0Qw8++GCXL+FqK5qmPqtyc6EbMkQ05tv/LXBxB5lRN5WdkI3shGzJ+Fnl5jBk031FU60houjFWkPRzpfeAzKFANfr63Dm9XWimEqfB3uvOBzY9DYObHpbcq1BnYmJubNgMzVJjv2m4LqcWuO2mFBbVioaa6rjps1EHbH7LJDp/ZLa5tR2TdM14k7pIqJL43WpUH/OEjCmTVAhMYVToomIKMRM5YC9UTruMoc+Fwopb+9CPH7jA3huXCp6GMQzfMzb90Bz5ioMGn4KQyffKrnWdLQc+Bpw2WyhSpc6weu0A0hB7Xfb8Na370niSpkPugSuWiCKBDHT8OF0ROquFAo/AMBYlY53n94d8D5KtRx3L7maTZ8gYK0holCIiVpjKgeKiwCPXRprnAjEjwEUPG0rlh2O6wNX0bXQtd2LqbIJsnNJSNDrkVnQV3Kd0OCBFw0hyrJ7u5Ra4/e4AQApA0dgyl2TxMH6E9D9ZxaSDPogZklElypmGj6c+kzdlULV8gc6vXcVJt89SRJvqrZh86qjcFo9bPgEAWsNEYVCTNQae2NLs+e2V4C0/uLYmh1ALQA1T9siCqfLqTWquARpw05rBVQ8SIQoUsRMwyeaVDTZ0VzZLBozObjhLl0etdaD9J6J4U6DiIiolcmdC2d1EuDUiAMuLvfoLkrrpMeuN9i+bwjY64Gq/dKLjDUA4rs0LyKicGmqqwPa7H/ltpgApAT9a7HhE0JGe8v0x//ddAJ7d4tPW7pVaMAYGaBRBndXbiIiIqJwMFWYYPK+AOVWNdBmeU4+CuD1eyCLU4UnOepyhng1dCoFHlmzXxIbb23CSAA48iFQ+Yz0YsdQQPZs4P2fiIiilC4hDkqZD5++9T6A90UxgzoTyC34fo+s4ImZhk80rHW3Ob0Q/GbcMUSLhVfnimJN35UCZ4F4Tcz8J6EQc9kdkpMSAMBYY4fg5+aYwRINtYaIol8s1Bqn0QmlPB6OfrVIvEJ8Omnpd/tQsj8BQw2c6ROrcvU6bF44FkabWxLbvc4M+z6gYfB9wC1jpBdv3wfsAeCSzg6i4IqFWkMULZIMeszusxeOqauBdPFS5x3/3ABY/rtHVrDETHchGta6u2zNcDWvRsV2Lyq2i2MtHb0RUGk1gS8maodC1fJrXHPsNN5a9Eg791LCahzOJV9BEA21hoiiXyzVmsQeCcgqGiQaO1tbBud+HQBHeJKikMjV65Crl+7TVJaghh2ALz4TyCmUXphY0+W5UYtYqjVE0SBJ5UKSztqy39UPaBQ8lj3qedwOAF70Gz0Vo6eNF8XKD+4AvgU0idy8kDpHkZoElAMjGwGvVZDETQnpOKF3wV5xDhjeOwwZEhFRd1ZjcaKhzd6FtWYnAB1qzU4cbhMLtOcLERFR1ItLBVRxwAdzJaHExolA/JWQe4P7QQgbPmHg1AhoTBZP1WpO8CArTPlQdPOkx8EpcyF12KyA8UwAffxuWI3BXQ9KRETUkWanB/EA1m0+jK2ba0Wxga5qDNZcjzd2nMWeQ19LrtWpFDDE88h2IiKKIfo8YP6ugPuT2V/7DLAB8HFJV9Sye1s+sdpYsRZPrfubKNbHkYe/YRGSlFzLTp3jifPh/j5/xOLch3DNsMmSeNnH25FwRgeZlyfBERFR6NibmhEPPSYf3YGf1ZWJYpaEPOwedT3unTAYS666RnKtIV4dcCkQERFRVNPntdza8Km2dcmXi5mGTzRsOObytUzPuiZjHBbc8hNRTH78FHAGSNPoQ58YRb16lRFOvQfq3ARJzKf1hyGj2BUNtYaIol9M1Bq7EwDgumEiMsaNFYWqK6uBr4HsgmwMzeW+IUThEhO1hojaFTMNn2jacCxRrcfg1MGiMXe8A3Xgkhu6dBXOGhxtPCoZNzqbkIz4MGQUm6Kp1hBR9IqFWuPxyAEApbW52LemqU1UA4/cBVW8PPSJUcRwW5SoP2eRjJtNPnDOe2jEQq0hovbFTMOHqLtKUiZA5/djxblVWHFulSQ+7cxIzMMvYfewoUhERKHj87b8b16eDUPvmySKlZnK8Mi3D2GifmUYMqNwU6gFyH0u1O5PxLv7d0viiYID4w1JcNg5S5mI6HKw4UMU5dLVKfioohqbiv4KQ88hkrijdhfQBLh8zjBkR0REscxcdgCO+sqAMZe5FkA/OJXNqI8vF8XqveWwaowhyJAikUrnx9W7nkLJHXej18ARkrjzmA2wAh639PRRIiK6eGz4EEW5JJ0KGT4f1nxhwxGhXhK/y+zCmCTA7uanZEREFDzmsgNY9cTj8AqKgHGDOhN9c6/FNst3WLfuFUlcp9TBoDF0dZoUgbQZBsBvxPA3iwPGm3oWASMKYDZKl3sREdHFY8OHKMplJGgAAP93ZyGcaVdI4kferAVMgIeb8RERURA56ivhFRS4+dZrkdJnmCT+3dZSwARclTMOM255TBI3aAzITsgOQaYUadL65OKBuQo8UfAkcuJ7SeKODd8AADxWLkcnIrocMdPwiZYd5uMUiYh3a+GutIrGvU2cfUGXp296ApAj3WzvrCbwJ690aaKl1hBRdIumWpPSZxgyR98sGVce+ggwAYka6WEVRI3JMvS4ZmjAnw3L3iNAQxiS6oaiqdYQUefFTMMnGnaYV3uVmNxjDpS1atS9sE8Sl8EJuY6nKRFFsmioNUQU/VhriCgUWGuIYlvMNHwiiaeqCl6jdCNCjdEBpVyN0oQSjLnlSnHQdBbyrY9Bmfh+iLKkmNNwIuCw3NUc4kSIiKi7iFMkQjDJJTOXAUDr5AxTujwqr3RWPADI45VQ6rVhyIh+SO5qBqr2iwfbeT1KROHBhk+QeaqqcGrKLRAcDkksqWcRMGI4lA3rof5wofRidRwQlxqCLCmmxKUCqjjgg7kBw4mNE4H4KyH3Sn8miYiILpVgl2FyjznwblWjbqt05nJvJMMrCPAquGydOscn98HrdyPLlBd4VrxKjsyFI9n0CZPzrykTK78CXv6D9A4qvqchihRs+ASZ12iE4HAgZ9lfoC4oEMXOfLwFMAGW3tcBP/9/0ovjUgF9XmgSpdihzwPm7wLsjQHD9tc+A2wAfO7Q5kVERLHNLYNSroZilAOp14yRhL/8bAvK9yYiTc2GD3WOV+nBZxWvonDETRh51x3iWJ0dTWtK4Ld5AX148uv2vn9Nac8YAfzy99I439MQRQw2fLqIuqAAuiFDRGO+r3YBJsCnSQJyCsOSF8UofV67f1h9qm0AAK9Lhfpz0uNNtQkqJKbwEzIiIro0HlsNfKaz0nFzDRxCYhgyolhg91ngUjuhzk0IdyrUDp8qnu9piCIcGz5EMU7x/VR6Y1U63n16tySuVMtx95Kr2fQhIqJO8TZbAMSj/rU1sD3zjCSelpCH06Mehz+eB1IQERGFAxs+RDFOoWo5ZjMl6QgKr7pKFLOavfhulx9Oq4cNHyIi6hS/wwE5AMOtE5H94wmS+Kb9x4GvAJ+BJ/9QYGXNZQHHG908cIKIKBhipuFTXFyM4uJi+Hy+cKdCFFHkyfFADVBXcw4l/5bO8AGUaD7VA+k9R4U8t2jEWkNEoRBNtUaZZpAsYwcAT4MZAA8MICmDxgCdUodFXy0KGB/dmItBUMLm489PV4umWkNEnRczDZ/58+dj/vz5MJvNSE7mJ0lE58mzUoESoNfIwZgwdLoodnrPEezZtwX2+rowZRd9WGuIKBSiqdbUOY2wNh6VjjuqwV11KZDshGx8dOtHMLqMAeM7q99GEw7A2liO2p2fimKCSQ6AywSDJZpqDRF1Xsw0fIioY8oBPdFzwkTRmKnJC+zbEqaMiIgomlk8diQDWFOxBevXvSqJp1l74Hb8FnEqbrpLUtkJ2chOyA4YO5GUgyYcQcXJUry1vFQUM6gzMTF3FmyVJ6DOHRGKVImIohYbPkRERETUaQ6fC8kAbsoswuxbnpXEjx1uRs0hB/TqtNAnR1FNnpwFTfIspPU8hcIr+4li9tJyoBpwGTk7mYjoQtjwISIiIqJLlqJKxODUwZLx5vhq1OBYGDKiaKdQC1AIGjRWXIktFeJYopCJ8QbAYfeHJzkioijChk8XcKiUqK+uhEanEY17rdYwZURERETUNZx2NerPWSTj9gZuuEuXRqXz4+pdT6F65kxcceVoUaxmbw3QAHjcQpiyIyKKHmz4BJml2YhtA/Lge+V5ScygzgRyCyHXqMOQGREREVHweNwKAEDZ8XQceDrQKZCAGwJUcXy5SZ3jS0oE/Eb0fnkF2n5c6u5ZBIyYA5/FHpbciIiiCf8CB5nTbodPIceEn96JrKKrRbHdG78CzgBKnS48yREREREFic/b0vDJ7d2EYXdPksRL66y4/919uCmZH3RR53jTU/HoXAWeKHgS1/UeIop5PvwSsAB+pytM2RERRQ82fLqITJ4CuTJTNCZXpoYpGyKg0ebB4cpm0Vit2RmmbIiIKFZoND6k90yUjNcq/LDIueyGLk1jsgyuPvnQDRI3fBRb9wEWQOFRw10p3S5BHq+EUq8NVZpERBGNDZ8gs9t8AIAvNzZD/rl4enOyIgFIBBQqvvih0NGpWz6B/fRgFRbs+VoUu77hLIYDMDs9YciMiIiIqHMEhQ9evxsJtdmoe2GfJC5TyZG5cCSbPkREYMMn6NyulmbOyKvj0W/iVaLYvu2bgP3pUMbxVAEKnSStCgAw45peeGTYtaLYkfctqNgOONy+cKRGRERE1Cl+lRefVbyK68dMQb+fThPFvHV2NK0pgd/mBfRhSY+IKKLETMOnuLgYxcXF8PlC88bVU1UFr9EoGffW1SFOkQijxYgD546IYia7EUB6SPIjakvpcEPZfFY0luB3IU4hnYZP7Qt1rSGi7om1hqh9dp8FPq0L6tyEcKcS9VhriGJbzDR85s+fj/nz58NsNiM5OblLv5anqgqnptwCwSE9btSaPRSTr/oVlLVqYF3bZTL94ZS5kGrgHycKnaQEHewyF3rt6gnsEu/hMxwFGNJjDo46a8KUXfQJZa0hou6LtYaIQoG1hii2xUzDJ5S8RiMEhwM5y/4CdUGBKFa2cQ+UtWpsyzyHjKv6iGIqSzn67fo9+vZ8N5TpUjeXk56GKu0dME/4K2DoJYqVfbgbw8z9IXi8YcqOiIiIiIiIugIbPpdBXVAA3RDxyQG+PaeAWiAhJRETrhUfy44qLbCzNoQZErXIEWqR0zsPyBkmGj+1YR9gDlNSREQUFZwlZ+GpNUnG1SYeQkFdq9J2FkcbxTPj612m8CRDRBSF2PAhIiIiooCcJWdR/8pJyJQaSSwHV8Drd8MXLwtDZhTLEtXJEPwqFB/5I4rFW2JidEUuBkEJi9cenuSIiKIIGz5EREREFJCn1gSZUgNtPxs0/bJFsQN7t+PQ7m3oP/qmMGVHsSpNmwXbqYV4/p5+6JMhnuFz2PgvlJd9B6fPHabsiIiiBxs+HWjvJC53WVkYsiHqOl6nAvXnLJJxbYIKiSnaMGRERESRxK6sg0/jF40ZlVWw+6R/O4iCQfDq0TtpAAanijcSrlYloxyAscGO49sPimJykw9xIcyRiCjSseHTjo5O4gIAmU4HpcEQ4qyIgkv+fQVoPqPFu0/vlsSVajnuXnI1mz5ERN2Urf4cAD02b/4Sxk8D7UOohDIxJdRpUTemS5ADUOLs0Z04e3SnKGZQZ2Ji7iw0lNcgJ7dveBIkIoogbPi0o6OTuABAaTBAlZMThsyIgkehavm0NnWgDZN/NkkUa6q2YfOqo3BaPWz4EBF1U26rEXLoUTSsAOnX/0wUO1xRg2MbUqDN6h2m7Kg70qepMaa0AfZf/BS5V4qXEzYcPAucAaxNnHlGRASw4XNBgU7iIoo1Kp0f6T0Tw50GERFFqKSMPGSOvlk0dkZ3ALJNjWHKiLozva0RyflaDBwjPn30hMkHnLGGKSsiosjDhk8XkTsagar94sGGE2HJhehCqqwN+PjYLtGYu84XpmyIiCiaVBjtiK9sloyX1vGNN3UhS7X0tbalCkASPHW1cBw5IrmEM/SJqLthwyfI5B4rAAP0pz8BXn5EegdVHBCXGuq0iAJK0sUDAI40f4X1u94QxdKsPXA7fovj9ZVI7zkwHOkREVEEa7K3nJK0bOMJ1HzWFPA+OpUChnh1KNOiWKf+/tSu3a8Cx18QhXxNNwJxj8L0zj9x5tldkktlOh36fLKOTR8i6jYiruFjMpkwYcIEeL1eeL1ePPzww5g7d26407p4XhcAwJJzHfDz/yeNx6UC+rwQJ0UUWE5iy8bjN+X+FNcXiZcuHjhaBhwC6qzSk+qIiIjsLi8AYMbonhg7ckTA+xji1cjV60KZFsW6+O8/OB3/B+DKH4lC/ne+BhqAxLGjkT/tMVHMXVaGqt8+Bq/RyIYPEXUbEdfwSUxMxLZt2xAXFwebzYahQ4fitttuQ2pqdM2K8WmSgJzCcKdBdFEGZvRAz0FFojF3nQ81CHxKHRER0XlZyVoMzU2+8B2JgsnQS/paW3sYAKBITuIenEREAOThTqAthUKBuLg4AIDL5YIgCBAEIcxZERERERERERFFj07P8Nm2bRuWLVuGvXv3orq6GmvXrsW0adNE9ykuLsayZctQU1OD4cOH44UXXkBRUVHgBwzAZDJh7NixOHnyJJYtW4a0tLTOptnlLE1OOK0eybjPoQhDNkQXIdCm4ZZqAL3hrauTbG6oqqgCYAhJakREFF6eqip4jdIlvN4GI9TgsetERETRqNMNH5vNhuHDh+MXv/gFbrvtNkl8zZo1WLBgAVauXInRo0djxYoVmDRpEkpKSpCRkQEAKCwshNfrlVy7ceNG5OTkQK/X48CBA6itrcVtt92G22+/HZmZmZfw7XUNS5MT7yz5Fl63XxJLFOIAAyBXcVYSRYi41JbNwj+Q7oUlNw0DtE/D+M47cK34kyiWlZCH8lGPQ2GUnrxCRESxw1NVhVNTboHgkC7jtWcUIHPMCMh13IeHiIgo2nS64TN58mRMnjy53fjy5csxd+5czJ49GwCwcuVKfPLJJ3j99dfx+OOPAwD2799/UV8rMzMTw4cPx1dffYXbb7894H1cLhdcLlfrv5ubW96cms3mi/oa7XFYrbD6fDBbrfC0eayGagssVgvG3TsQhsw4UWzPxo9gOZcAl99+2TkQBYU8GZixBXBIT1Bx7DwI7z4btHdPRcqVhaLYkS074Ci1wVlv6rKf5fOPGw3LNi+n1tidTlhcNtidTtYFoiDpzO9Vd6k1l8pRXg6L1YqsPz0FdX6+KObftx+WEhuUSrkkB7vNBofbAbvNz9pGQWW1mOF32WG1mGE2y8Qxmx0ynw+CTfpa2+pwQO6ywepwSGIdvbYPlu5Sa/i6hij4uux1jXAZAAhr165t/bfL5RIUCoVoTBAE4b777hOmTp16UY9ZU1MjmM1mQRAEwWQyCUOGDBEOHjzY7v0XL14sAOCNN96i+FZeXt7p+hNqrDW88Rb9N9Ya3njjLRQ31hreeOMtFLeLqTUyQbj0FrRMJhPt4VNVVYXc3Fxs374d11xzTev9HnvsMXz55ZfYuXPnBR9z165duP/++1s3a54/fz7mzZvX7v3bdqf9fj+ampqQmpoKmUzW7nXhZDabkZeXh/LyciQlJYU7najA56zzouE5EwQBFosFOTk5kMsjbg95Edaa7oHPWedFw3PGWtO1ouFnINLwOeu8aHjOWGu6XjT8HEQSPl+dFw3PWWdqTcQdy15UVHTRS74AQKPRQKPRiMb0en1wk+oiSUlJEftDFKn4nHVepD9nycnJ4U7horDWdC98zjov0p8z1pquF+k/A5GIz1nnRfpzxloTGpH+cxBp+Hx1XqQ/Zxdba4Laek5LS4NCoUBtba1ovLa2FllZWcH8UkRERERERERE1I6gNnzUajVGjhyJLVu2tI75/X5s2bJFtMSLiIiIiIiIiIi6TqeXdFmtVpSWlrb++/Tp09i/fz9SUlLQs2dPLFiwADNnzsSoUaNQVFSEFStWwGaztZ7aRS1TKBcvXiyZRknt43PWeXzOiD8DncfnrPP4nBF/BjqPz1nn8TkjgD8HncXnq/Ni7Tnr9KbNX3zxBcaNGycZnzlzJlavXg0A+Nvf/oZly5ahpqYGhYWFeP755zF69OigJExERERERERERB27rFO6iIiIiIiIiIgo8kT2eYFERERERERERNRpbPgQEREREREREcUYNnyIiIiIiIiIiGIMGz4RID8/HzKZTHR79tlnw51WxCguLkZ+fj60Wi1Gjx6NXbt2hTuliLVkyRLJz9LAgQPDnRZFCNaaC2O9uTisNdQR1poLY625OKw11BHWmgtjrbk4sVxrOn0sO3WNP/7xj5g7d27rvxMTE8OYTeRYs2YNFixYgJUrV2L06NFYsWIFJk2ahJKSEmRkZIQ7vYg0ZMgQbN68ufXfSiV/zem/WGvax3rTOaw11BHWmvax1nQOaw11hLWmfaw1nROrtYYzfCJEYmIisrKyWm/x8fHhTikiLF++HHPnzsXs2bMxePBgrFy5EnFxcXj99dfDnVrEUiqVop+ltLS0cKdEEYS1pn2sN53DWkMdYa1pH2tN57DWUEdYa9rHWtM5sVpr2PCJEM8++yxSU1Nx5ZVXYtmyZfB6veFOKezcbjf27t2LCRMmtI7J5XJMmDABO3bsCGNmke3kyZPIyclBQUEB7rnnHpw7dy7cKVEEYa0JjPWm81hrqCOsNYGx1nQeaw11hLUmMNaazovVWhMb85Si3K9//WuMGDECKSkp2L59OxYtWoTq6mosX7483KmFVUNDA3w+HzIzM0XjmZmZOH78eJiyimyjR4/G6tWrMWDAAFRXV2Pp0qW47rrrcPjwYU5xJdaaDrDedA5rDXWEtaZ9rDWdw1pDHWGtaR9rTefEdK0RqEv87ne/EwB0eDt27FjAa1977TVBqVQKTqczxFlHlsrKSgGAsH37dtH4b3/7W6GoqChMWUUXo9EoJCUlCa+++mq4U6EuwloTHKw3l4e1Jvax1gQHa83lYa2Jfaw1wcFac3liqdZwhk8XWbhwIWbNmtXhfQoKCgKOjx49Gl6vF2fOnMGAAQO6ILvokJaWBoVCgdraWtF4bW0tsrKywpRVdNHr9ejfvz9KS0vDnQp1Edaa4GC9uTysNbGPtSY4WGsuD2tN7GOtCQ7WmssTS7WGDZ8ukp6ejvT09Eu6dv/+/ZDL5d1+93S1Wo2RI0diy5YtmDZtGgDA7/djy5YtePDBB8ObXJSwWq04deoUZsyYEe5UqIuw1gQH683lYa2Jfaw1wcFac3lYa2Ifa01wsNZcnliqNWz4hNmOHTuwc+dOjBs3DomJidixYwceffRR3HvvvTAYDOFOL+wWLFiAmTNnYtSoUSgqKsKKFStgs9kwe/bscKcWkX7zm9/gJz/5CXr16oWqqiosXrwYCoUCd911V7hTozBjrbkw1puLx1pD7WGtuTDWmovHWkPtYa25MNaaixfLtYYNnzDTaDT417/+hSVLlsDlcqF379549NFHsWDBgnCnFhGmT5+O+vp6PPnkk6ipqUFhYSHWr18v2YCMWlRUVOCuu+5CY2Mj0tPTce211+Lbb7+95E9KKHaw1lwY683FY62h9rDWXBhrzcVjraH2sNZcGGvNxYvlWiMTBEEIdxJERERERERERBQ88nAnQEREREREREREwcWGDxERERERERFRjGHDh4iIiIiIiIgoxrDhQ0REREREREQUY9jwISIiIiIiIiKKMWz4EBERERERERHFGDZ8iIiIiIiIiIhiDBs+REREREREREQxhg0fIiIiIiIiIqIYw4YPEREREREREVGMYcOHiIiIiIiIiCjGsOFDRERERERERBRj2PAhIiIiIiIiIooxbPgQEREREREREcUYNnyIiIiIiIiIiGIMGz5ERERERERERDGGDR8iIiIiIiIiohjDhg8RERERERERUYxhw4eIiIiIiIiIKMaw4UNEREREREREFGPY8CEiIiIiIiIiijFs+BARERERERERxRg2fIiIiIiIiIiIYgwbPkREREREREREMYYNHyIiIiIiIiKiGMOGDxERERERERFRjGHDh4iIiIiIiIgoxrDhQ0REREREREQUY9jwISIiIiIiIiKKMWz4EBERERERERHFGDZ8iIiIKGotWbIEMpks3Glc0BdffAGZTIYvvvjigve94YYbcMMNN7T++8yZM5DJZFi9enWX5UdERESxhw0fIiIioijz6aefYsmSJeFOg4iIiCKYMtwJEBEREcW666+/Hg6HA2q1utPX9urVCw6HAyqVqnXs008/RXFxMZs+RERE1C7O8CEiIiICIAgCHA5Hlzy2XC6HVquFXN75l14ymQxarRYKhaILMiMiIqJYxYYPERERAfjvfjjHjx/HHXfcgaSkJKSmpuLhhx+G0+lsvd+mTZtw7bXXQq/XIyEhAQMGDMATTzwheiyXy4XFixejb9++0Gg0yMvLw2OPPQaXy9V6n472ppHJZJLZK19//TWuuuoqaLVa9OnTB3//+98Dfh9erxdPPfUU+vTpA41Gg/z8fDzxxBOirw0A+fn5uOWWW7BhwwaMGjUKOp2u9TFXrVqF8ePHIyMjAxqNBoMHD8ZLL70k+VrnH2Pjxo0oLCyEVqvF4MGD8cEHH4ju194ePi+//DL69OkDnU6HoqIifPXVV5Kv0fZ5mjVrFoqLi1ufp/M3QRCQn5+PW2+9VfIYTqcTycnJmDdvXsDnjIiIiGIPl3QRERGRyB133IH8/Hw888wz+Pbbb/H888/DaDTijTfewJEjR3DLLbdg2LBh+OMf/wiNRoPS0lJ88803rdf7/X5MnToVX3/9Ne6//34MGjQIhw4dwnPPPYcTJ07gww8/7HROhw4dwsSJE5Geno4lS5bA6/Vi8eLFyMzMlNx3zpw5+Mc//oHbb78dCxcuxM6dO/HMM8/g2LFjWLt2rei+JSUluOuuuzBv3jzMnTsXAwYMAAC89NJLGDJkCKZOnQqlUomPP/4YDzzwAPx+P+bPny96jJMnT2L69On41a9+hZkzZ2LVqlX4+c9/jvXr1+Omm25q93t67bXXMG/ePIwZMwaPPPIIysrKMHXqVKSkpCAvL6/d6+bNm4eqqips2rQJb775Zuu4TCbDvffei7/85S9oampCSkpKa+zjjz+G2WzGvffe2/ETTURERLFDICIiIhIEYfHixQIAYerUqaLxBx54QAAgHDhwQHjuuecEAEJ9fX27j/Pmm28Kcrlc+Oqrr0TjK1euFAAI33zzjSAIgnD69GkBgLBq1SrJYwAQFi9e3PrvadOmCVqtVjh79mzr2NGjRwWFQiH88OXM/v37BQDCnDlzRI/3m9/8RgAgfP75561jvXr1EgAI69evl3x9u90uGZs0aZJQUFAgGjv/GP/+979bx5qbm4Xs7GzhyiuvbB3bunWrAEDYunWrIAiC4Ha7hYyMDKGwsFBwuVyt93v55ZcFAMLYsWNbxwI9T/PnzxcCvYwrKSkRAAgvvfSSaHzq1KlCfn6+4Pf7JdcQERFRbOKSLiIiIhJpO4PloYceAtCyUbBerwcAfPTRR/D7/QGvf++99zBo0CAMHDgQDQ0Nrbfx48cDALZu3dqpfHw+HzZs2IBp06ahZ8+ereODBg3CpEmTRPf99NNPAQALFiwQjS9cuBAA8Mknn4jGe/fuLXkMANDpdK3/v7m5GQ0NDRg7dizKysrQ3Nwsum9OTg5++tOftv47KSkJ9913H/bt24eampqA39OePXtQV1eHX/3qV6KNnGfNmoXk5OSA11yM/v37Y/To0Xj77bdbx5qamvDZZ5/hnnvuiYoj7ImIiCg42PAhIiIikX79+on+3adPH8jlcpw5cwbTp0/Hj370I8yZMweZmZm488478e6774qaPydPnsSRI0eQnp4uuvXv3x8AUFdX16l86uvr4XA4JHkBaF2Cdd7Zs2chl8vRt29f0XhWVhb0ej3Onj0rGu/du3fAr/nNN99gwoQJiI+Ph16vR3p6eus+RW0bPn379pU0Us5/r2fOnAn4+OfzaPs9qVQqFBQUBLzmYt1333345ptvWr/Ge++9B4/HgxkzZlzW4xIREVF04R4+RERE1KEfNjN0Oh22bduGrVu34pNPPsH69euxZs0ajB8/Hhs3boRCoYDf78cVV1yB5cuXB3y88/vTtDfbxOfzBTXnjvxwJs95p06dwo033oiBAwdi+fLlyMvLg1qtxqeffornnnuu3ZlNkeLOO+/Eo48+irfffhtPPPEE3nrrLYwaNUrSHCMiIqLYxoYPERERiZw8eVI086W0tBR+vx/5+fkAWo4Yv/HGG3HjjTdi+fLlePrpp/H73/8eW7duxYQJE9CnTx8cOHAAN954Y4eNF4PBAAAwmUyi8bazcNLT06HT6XDy5EnJY5SUlIj+3atXL/j9fpw8eRKDBg1qHa+trYXJZEKvXr0u+P1//PHHcLlc+M9//iNaQtbeUrTS0lIIgiD6Xk+cOAEArc9ZW+fzOHnyZOtSNwDweDw4ffo0hg8f3mGOHT2vKSkpmDJlCt5++23cc889+Oabb7BixYoOH4+IiIhiD5d0ERERkcj5I7/Pe+GFFwAAkydPRlNTk+T+hYWFANB67Pkdd9yByspKvPLKK5L7OhwO2Gw2AC173aSlpWHbtm2i+7z44ouifysUCkyaNAkffvghzp071zp+7NgxbNiwQXTfm2++GQAkDY7zs42mTJki/YbbUCgUAABBEFrHmpubsWrVqoD3r6qqEp3+ZTab8cYbb6CwsBBZWVkBrxk1ahTS09OxcuVKuN3u1vHVq1dLGmCBxMfHA5A2y86bMWMGjh49it/+9rdQKBS48847L/iYREREFFs4w4eIiIhETp8+jalTp+LHP/4xduzYgbfeegt33303hg8fjkceeQTbtm3DlClT0KtXL9TV1eHFF19Ejx49cO211wJoaTa8++67+NWvfoWtW7fiRz/6EXw+H44fP453330XGzZswKhRowC0HKH+7LPPYs6cORg1ahS2bdvWOjvmh5YuXYr169fjuuuuwwMPPACv14sXXngBQ4YMwcGDB1vvN3z4cMycORMvv/wyTCYTxo4di127duEf//gHpk2bhnHjxl3w+584cSLUajV+8pOfYN68ebBarXjllVeQkZGB6upqyf379++PX/7yl9i9ezcyMzPx+uuvo7a2tt0GEdCyV8+f/vQnzJs3D+PHj8f06dNx+vRprFq16qL28Bk5ciQA4Ne//jUmTZokaepMmTIFqampeO+99zB58mRkZGRc8DGJiIgoxoT7mDAiIiKKDOePZT969Khw++23C4mJiYLBYBAefPBBweFwCIIgCFu2bBFuvfVWIScnR1Cr1UJOTo5w1113CSdOnBA9ltvtFv785z8LQ4YMETQajWAwGISRI0cKS5cuFZqbm1vvZ7fbhV/+8pdCcnKykJiYKNxxxx1CXV2d5Fh2QRCEL7/8Uhg5cqSgVquFgoICYeXKla05/5DH4xGWLl0q9O7dW1CpVEJeXp6waNEiwel0iu7Xq1cvYcqUKQGfi//85z/CsGHDBK1WK+Tn5wt//vOfhddff10AIJw+fVryGBs2bBCGDRsmaDQaYeDAgcJ7770nery2x7Kf9+KLLwq9e/cWNBqNMGrUKGHbtm3C2LFjL3gsu9frFR566CEhPT1dkMlkAY9of+CBBwQAwjvvvBPweyQiIqLYJhOEH8xXJiIiom5ryZIlWLp0Kerr65GWlhbudKJCfn4+hg4dinXr1oU7FYlHH30Ur732GmpqahAXFxfudIiIiCjEuIcPERERUYxxOp1466238LOf/YzNHiIiom6Ke/gQERERxYi6ujps3rwZ77//PhobG/Hwww+HOyUiIiIKEzZ8iIiIiGLE0aNHcc899yAjIwPPP/986wlqRERE1P1wDx8iIiIiIiIiohjDPXyIiIiIiIiIiGIMGz5ERERERERERDGGDR8iIiIiIiIiohjDhg8RERERERERUYxhw4eIiIiIiIiIKMaw4UNEREREREREFGPY8CEiIiIiIiIiijFs+BARERERERERxRg2fIiIiIiIiIiIYsz/D6CsTF77A4AFAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABHwAAAKNCAYAAABSlnypAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAzTdJREFUeJzs3Xl4VPXZ//FP1skkIXsCSQhLRNCAEAShWK1gsZRqBcVW7VPFDbsEN1wqVrH6a4uKS1xSaaVKxdqHRyvQaisIZbMuKIoIUTCyJIRsQBayTZKZ+f0REx1mEhKYzMw5835dVy6vOd9zztwzzrmZuc93CXE6nU4BAAAAAADANEL9HQAAAAAAAAC8i4IPAAAAAACAyVDwAQAAAAAAMBkKPgAAAAAAACZDwQcAAAAAAMBkKPgAAAAAAACYDAUfAAAAAAAAk6HgAwAAAAAAYDIUfGA4VVVVuvDCCxUTE6MRI0Zo3bp1/g4JAAAAAICAQsEHhpOXl6cBAwaoqqpKixYt0o9//GMdOXLE32EBMKlrrrlGS5cu9XcYAAAAXsP3m+BAwQeGUl9fr5UrV+qBBx5QdHS0Lr74Yp1xxhlatWqVv0MDAAAAACBgUPCBoXzxxReKjY3VwIEDO7edccYZ2rlzpx+jAgAAAADfW716tUJCQvTSSy+5bK+vr9dFF12ksLAwPfXUU36KDv4W7u8AgN6or69XXFycy7a4uDgdPnzYTxEBAAAAgH988sknkqQxY8Z0bistLdVFF12kL774QitWrNDFF1/sr/DgZ/TwgaHExsaqrq7OZVtdXZ1iY2P9FBEAM7rooouUkJCghIQEvfzyy/rlL3/Z+fihhx7yd3gATOKcc85RSEiIx797773X3+EBMIDt27crMjJSp512mqT2AtDEiRNVUVGhjRs3uhR7+H4TfCj4IGD88pe/7PJLT8dfRESE6uvrVVpa2nncjh07NHLkSD9GDsAoepJn9u3bp9dff101NTWqqanRT37yE/3hD3/ofHz33Xf7+2UACHA9zTVvv/22nE6nx7/f/va3/n4ZAAzgk08+0emnn66IiAj961//0jnnnKPExES99957GjdunMu+fL8JPgzpQsCYNWuWtm7dquLiYi1atKhz+/3336+oqCjde++9GjVqlGbMmKH7779fTz/9tNatW6ft27drxowZfowcgFH0JM8MGTLEfwECMAVyDQBfaGlp0a5du3TllVfqD3/4g26++Wadf/75evXVV92mwUBwouCDgPHd735XLS0tGjt2rH760592br/pppv04x//WFdeeaUk6Q9/+INmz56t5ORkDRw4UMuXL1dSUpK/wgZgID3NMwBwMsg1AHyhsLBQra2tWr9+vV588UXdcMMNevbZZxUezs98tOOTgIBht9v1+eef64ILLujcVlJSopqaGo0aNapzW2pqqv71r3/5I0QABtfTPPNNS5cu9VF0AMziRHINAPTW9u3bJUk1NTWyWq267777elzs4ftNcGAOHwSMoqIiNTc3u8zH8+mnn0oSX44AeAV5BoAvkGsA+ELHCl2rVq1SSEiILrvsMrW0tPg5KgQSCj4IGDt27JDk+kWoo2rNlyMA3kCeAeAL5BoAvrB9+3YNGDBAU6ZM0bPPPqsPPvhAt9xyi7/DQgCh4IOAsWPHDoWGhur000/v3Pbpp58qLS1NqampfowMgFmQZwD4ArkGgC9s375do0ePliRdffXVmjNnjhYvXqxly5b5OTIECgo+CBg7duzQ0KFDFR0d3bnt888/Z8l1AF5DngHgC+QaAH2tvLxclZWVnQUfSXrqqac0duxY/fznP+8cRorgRsEHAWPHjh1uX4TKy8vV2tqqmpoa/wQFwFTIMwB8gVwDoK91zN/zzYJPVFSUXn31VUVGRmrWrFmqq6vzV3gIEBR8EBBaWlpUVFTkNq59+vTp+uCDD3T99df7KTIAZkGeAeAL5BoAvtAxL9g3Cz6SlJ2draVLl6qoqEizZ8/2R2gIICFOp9Pp7yAAAAAAAADgPfTwAQAAAAAAMBkKPgAAAAAAACYTkAWfSy65RImJibrsssv8HQoAAAAAAIDhBGTB55ZbbtGLL77o7zAAAAAAAAAMKSALPpMnT1a/fv38HQYAAAAAAIAheb3gs2nTJv3whz9URkaGQkJCtHLlSrd9CgoKNGTIEEVFRWnixInasmWLt8MAAAAAAAAIWl4v+DQ0NGjMmDEqKCjw2L58+XLNmzdP999/vz766CONGTNG06ZNU2VlpbdDAQAAAAAACErh3j7h9OnTNX369C7bH3/8cc2ZM0fXXnutJGnx4sV644039Pzzz+vuu+/u9fPZbDbZbLbOxw6HQ0eOHFFycrJCQkJ6/wIA+IzT6dTRo0eVkZGh0NCAHGHaiVwDGBe5BoAvkGsA+EJvco3XCz7daWlp0datWzV//vzObaGhoZo6darefffdEzrnwoUL9cADD3grRAB+UFJSooEDB/o7jG6RawDjI9cA8AVyDQBf6EmuCXE6nc6+CiAkJEQrVqzQzJkzJUkHDx5UZmam3nnnHU2aNKlzv7vuuksbN27U+++/L0maOnWqPvnkEzU0NCgpKUmvvPKKy/7fdGx1ura2VoMGDVJJSYni4uL66qUB8IK6ujplZWWppqZG8fHx/g6nW+QawLjINQB8gVwDwBd6k2t82sOnp9auXdvjfS0WiywWi9v2uLg4khVgEEboOkyuAYyPXAPAF8g1AHyhJ7nGp4NLU1JSFBYWpoqKCpftFRUVGjBgwEmdu6CgQDk5OTrrrLNO6jwA0B1yDQBfINcA8AVyDWBuPi34REZGaty4cVq3bl3nNofDoXXr1nU5ZKun8vLyVFhYqA8++OBkwwSALpFrAPgCuQaAL5BrAHPz+pCu+vp6FRUVdT7eu3evtm3bpqSkJA0aNEjz5s3T7NmzNX78eE2YMEH5+flqaGjoXLULAAAAAAAAJ8frBZ8PP/xQU6ZM6Xw8b948SdLs2bO1dOlSXX755aqqqtKCBQtUXl6u3Nxcvfnmm+rfv/9JPW9BQYEKCgpkt9tP6jwA0B1yDQBfINcA8AVyTd+y2+1qbW31dxgwmIiICIWFhXnlXH26Spc/1NXVKT4+XrW1tUw4BgQ4I1+vRo4dCDZGvl6NHDsQbIx8vRo59kDkdDpVXl6umpoaf4cCg0pISNCAAQM8Tszcm+s1IFfpAgAAAADAiDqKPWlpaYqOjjbEym0IDE6nU42NjaqsrJQkpaenn9T5TFPwoTsiAF8g1wDwBXINAF8g13if3W7vLPYkJyf7OxwYkNVqlSRVVlYqLS3tpIZ3MaQLgN8Y+Xo1cuxAsDHy9Wrk2IFgY+Tr1cixB5rm5mbt3btXQ4YM6fzhDvRWU1OT9u3bp6FDhyoqKsqlrTfXq0+XZQcAAAAAwOwYxoWT4a3PDwUfAAAAAAAAk6HgAwAAAAAAYDKmKfgUFBQoJydHZ511lr9DAWBi5BoAvkCuAeAL5Bp8U1VVlX7xi19o0KBBslgsGjBggKZNm6b//ve/kqQhQ4YoPz+/c/8hQ4YoJCREISEhCgsLU0ZGhq6//npVV1dr9+7dio6O1ssvv+zyHA6HQ2effbYuu+wySdI111yjmTNndhnTsc95PM8995zOPfdcJSYmKjExUVOnTtWWLVu6PaasrEw/+clPNHz4cIWGhurWW2/t8fMFOtMUfPLy8lRYWKgPPvjA36EAMDFyDQBfINcA8AVyDb5p1qxZ+vjjj/WXv/xFu3fv1j/+8Q9NnjxZhw8f7vKYBx98UGVlZSouLtZf//pXbdq0STfffLOGDx+uhx56SDfddJPKyso693/ssce0Z88eLV68uE9ew4YNG3TllVdq/fr1evfdd5WVlaXvfe97Ki0t7fIYm82m1NRU3XvvvRozZkyfxOUvplmWHQAAAAAA9F5NTY02b96sDRs26LzzzpMkDR48WBMmTOj2uH79+mnAgAGSpMzMTM2ePVt/+9vfJEk33XSTVq5cqTlz5uj111/X559/rgULFmj58uVKSUnpk9fx17/+1eXxkiVL9Pe//13r1q3T1Vdf7fGYIUOG6Mknn5QkPf/8830Sl7+YpocPAAAAAADovdjYWMXGxmrlypWy2WwndI7S0lL985//1MSJEyW1rzT1wgsvaPPmzXruued0zTXX6IorrtDFF1/szdC71djYqNbWViUlJfnsOQOJaXr4FBQUqKCgQHa73d+hADAxcg0AXyDXAPAFco3vNLXY9WVVvU+f85TUWFkjw3q0b3h4uJYuXao5c+Zo8eLFOvPMM3Xeeefpiiuu0OjRo7s87le/+pXuvfde2e12NTc3a+LEiXr88cc72wcPHqz8/HzdcMMNGjhwoNasWXPSr6s3fvWrXykjI0NTp0716fMGCtMUfPLy8pSXl6e6ujrFx8f7OxwAJkWuAeAL5BoAvkCu8Z0vq+p10dNv+/Q5X7/pHI3K7Pn/11mzZunCCy/U5s2b9d577+nf//63HnnkES1ZskTXXHONx2PuvPNOXXPNNXI6nSopKdE999yjCy+8UJs2bVJYWHux6dprr9V9992nm266SXFxcd54aSouLlZOTk7n43vuuUf33HOPyz4PPfSQ/vd//1cbNmxQVFSUV57XaExT8AEAAAAAIBCdkhqr1286x+fP2VtRUVG64IILdMEFF+i+++7TDTfcoPvvv7/Lgk9KSoqGDRsmSTr11FOVn5+vSZMmaf369S69asLDwxUe7r3yQ0ZGhrZt29b5+NghW48++qgeeughrV27ttseSmZHwQcAAAAAgD5kjQzrVW+bQJGTk6OVK1f2eP+OXj1NTU19FFG78PDwzkLTsR555BH97ne/0+rVqzV+/Pg+jSPQUfABAAAAACCIHT58WD/60Y903XXXafTo0erXr58+/PBDPfLII5oxY0aXxx09elTl5eWdQ7ruuusupaam6uyzz+7xc9fW1rr01pGk5ORkZWVlSWqfDPrY9sGDBysxMdHtXA8//LAWLFigl19+WUOGDFF5ebmkryellqT58+ertLRUL774YudxHeevr69XVVWVtm3bpsjISJdhY0ZEwQcAAAAAgCAWGxuriRMn6oknntCXX36p1tZWZWVlac6cOW5z43zTggULtGDBAklSamqqzjrrLK1Zs0bJyck9fu4NGzZo7NixLtuuv/56LVmyRFL78KxHH33UpX3ZsmX66U9/6nauZ599Vi0tLbrssstctt9///36zW9+I0kqKytTcXGxS/s3n3/r1q16+eWXNXjwYO3bt6/HryMQhTidTqe/g/CGb84wv3v3btXW1nptQigAfaNjgkAjXa/kGsB4yDUAfIFcA0lqbm7W3r17NXTo0KCdKBgnr7vPUW9yjWkKPh2MmGiBYGXk69XIsQPBxsjXq5FjB4KNka9XI8ceaCj4wBu8VfAJ7csgAQAAAAAA4HsUfAAAAAAAAEyGgg8AAAAAAIDJUPABAAAAAAAwGQo+AAAAAAAAJkPBBwAAAAAAwGRMU/ApKChQTk6OzjrrLH+HAsDEyDUAfIFcA8AXyDWAuYU4nU6nv4Pwpt6sSQ/Av4x8vRo5diDYGPl6NXLsQLAx8vVq5NgDTXNzs/bu3auhQ4cqKirK3+HAoLr7HPXmejVNDx8AAAAAAAC0o+ADAAAAAECQq6qq0i9+8QsNGjRIFotFAwYM0LRp0/Tf//5XkjRkyBDl5+d37j9kyBCFhIQoJCREYWFhysjI0PXXX6/q6mrt3r1b0dHRevnll12ew+Fw6Oyzz9Zll10mSbrmmms0c+bMLmM69jmP57nnntO5556rxMREJSYmaurUqdqyZUu3x7z99tv69re/reTkZFmtVp122ml64oknevycgSzc3wEAAAAAAAD/mjVrllpaWvSXv/xF2dnZqqio0Lp163T48OEuj3nwwQc1Z84c2e127d69WzfeeKNuvvlmLVu2TA899JBuuukmTZkyRenp6ZKkxx57THv27NE//vGPPnkNGzZs0JVXXqmzzz5bUVFRevjhh/W9731PO3fuVGZmpsdjYmJiNHfuXI0ePVoxMTF6++239bOf/UwxMTG68cYb+yROX6HgAwAAAABAEKupqdHmzZu1YcMGnXfeeZKkwYMHa8KECd0e169fPw0YMECSlJmZqdmzZ+tvf/ubJOmmm27SypUrNWfOHL3++uv6/PPPtWDBAi1fvlwpKSl98jr++te/ujxesmSJ/v73v2vdunW6+uqrPR4zduxYjR07tvPxkCFD9Nprr2nz5s2dBR+Hw6GHH35Yf/rTn1ReXq7hw4frvvvu6+ypFKgY0gUAAAAAQBCLjY1VbGysVq5cKZvNdkLnKC0t1T//+U9NnDhRkhQSEqIXXnhBmzdv1nPPPadrrrlGV1xxhS6++GJvht6txsZGtba2KikpqcfHfPzxx3rnnXc6C1+StHDhQr344otavHixdu7cqdtuu00//elPtXHjxr4I22vo4QMAAAAAQF9qaZQO7fbtc6YMlyKje7RreHi4li5dqjlz5mjx4sU688wzdd555+mKK67Q6NGjuzzuV7/6le69917Z7XY1Nzdr4sSJevzxxzvbBw8erPz8fN1www0aOHCg1qxZc9Ivqzd+9atfKSMjQ1OnTj3uvgMHDlRVVZXa2tr0m9/8RjfccIMkyWaz6fe//73Wrl2rSZMmSZKys7P19ttv649//KNLYSjQUPABAAAAAKAvHdot/cnHhYEbN0oZuT3efdasWbrwwgu1efNmvffee/r3v/+tRx55REuWLNE111zj8Zg777xT11xzjZxOp0pKSnTPPffowgsv1KZNmxQWFiZJuvbaa3XffffppptuOu4y4j1VXFysnJyczsf33HOP7rnnHpd9HnroIf3v//6vNmzY4La0uSebN29WfX293nvvPd19990aNmyYrrzyShUVFamxsVEXXHCBy/4tLS0uQ8ECEQUfAAAAAAD6Usrw9gKMr5+zl6KionTBBRfoggsu0H333acbbrhB999/f5cFn5SUFA0bNkySdOqppyo/P1+TJk3S+vXrXXrVhIeHKzzce+WHjIwMbdu2rfPxsUO2Hn30UT300ENau3Zttz2Uvmno0KGSpDPOOEMVFRX6zW9+oyuvvFL19fWSpDfeeMNt4meLxXISr6LvUfABAAAAAKAvRUb3qrdNoMjJydHKlSt7vH9Hr56mpqY+iqhdeHh4Z6HpWI888oh+97vfafXq1Ro/fvwJnd/hcHTOZZSTkyOLxaLi4uKAHr7liWkKPgUFBSooKJDdbvd3KABMjFwDwBfINQB8gVyDDocPH9aPfvQjXXfddRo9erT69eunDz/8UI888ohmzJjR5XFHjx5VeXl555Cuu+66S6mpqTr77LN7/Ny1tbUuvXUkKTk5WVlZWZLaJ4M+tn3w4MFKTEx0O9fDDz+sBQsW6OWXX9aQIUNUXl4u6etJqSVp/vz5Ki0t1Ysvviip/ToYNGiQTjvtNEnSpk2b9Oijj+rmm2+W1L4S2R133KHbbrtNDodD55xzjmpra/Xf//5XcXFxmj17do9fq885Taa2ttYpyVlbW+vvUAAch5GvVyPHDgQbI1+vRo4dCDZGvl6NHHugaWpqchYWFjqbmpr8HUqvNDc3O++++27nmWee6YyPj3dGR0c7R4wY4bz33nudjY2NTqfT6Rw8eLDziSee6Dxm8ODBTkmdf6mpqc4f/OAHzo8//tjt/Mce22H27Nku5+j4u/766z0+R8ffsmXLPL6Orva///77XZ7zvPPO63z81FNPOUeOHOmMjo52xsXFOceOHev8wx/+4LTb7Z37OBwOZ35+vnPEiBHOiIgIZ2pqqnPatGnOjRs39vxN7oXuPke9uV5DnE6n01fFJV+oq6tTfHy8amtrvTYhFIC+YeTr1cixA8HGyNerkWMHgo2Rr1cjxx5ompubtXfvXg0dOrRHEwUDnnT3OerN9Rral0ECAAAAAADA9yj4AAAAAAAAmAwFHwAAAAAAAJOh4AMAAAAAAGAyFHwAAAAAAABMhoIPAAAAAACAyVDwAQAAAAAAMBkKPgAAAAAAACZDwQcAAAAAAMBkArLg8/rrr2vEiBE69dRTtWTJEn+HAwAAAAAAYCgBV/Bpa2vTvHnz9J///Ecff/yxFi1apMOHD/s7LAAAAAAATOuaa65RSEiI219RUZGuueYazZw50+NxkydP1q233uq2fenSpUpISOh8/Jvf/Ea5ubku+2zevFkJCQm69dZb5XQ6O7f/7W9/U1hYmPLy8noU+8KFC3XWWWepX79+SktL08yZM7Vr1y6XfZqbm5WXl6fk5GTFxsZq1qxZqqio6Gz/5JNPdOWVVyorK0tWq1Wnn366nnzySZdzbNiwweN7VF5e3mVsu3bt0pQpU9S/f39FRUUpOztb9957r1pbW3v02k5GwBV8tmzZopEjRyozM1OxsbGaPn261qxZ4++wAAAAAAAwte9///sqKytz+Rs6dGifPNcbb7yhadOmad68ecrPz1dISEhn25///Gfddddd+tvf/qbm5ubjnmvjxo3Ky8vTe++9p7feekutra363ve+p4aGhs59brvtNv3zn//UK6+8oo0bN+rgwYO69NJLO9u3bt2qtLQ0vfTSS9q5c6d+/etfa/78+XrmmWfcnm/Xrl0u71FaWlqXsUVEROjqq6/WmjVrtGvXLuXn5+u5557T/fff39O36oSFe/uEmzZt0qJFi7R161aVlZVpxYoVbpXAgoICLVq0SOXl5RozZoyefvppTZgwQZJ08OBBZWZmdu6bmZmp0tJSb4cJf6opkRpPoNdWdLKUkOW7cwIAAABAELFYLBowYECfP8/LL7+sa6+9Vo899pjmzp3r0rZ371698847+vvf/67169frtdde009+8pNuz/fmm2+6PF66dKnS0tK0detWfec731Ftba3+/Oc/6+WXX9b5558vSXrhhRd0+umn67333tO3vvUtXXfddS7nyM7O1rvvvqvXXnvNLca0tDSX3kvdyc7OVnZ2dufjwYMHa8OGDdq8eXOPjj8ZXi/4NDQ0aMyYMbruuutcqmUdli9frnnz5mnx4sWaOHGi8vPzNW3aNO3atavbqhgMpqsCTOMhaflVUmtj788ZES1dvkyKTvHaOR3hVoXO/YCiDwAAAAD4QEFBgebNm6fnn39e//M//+PW/sILL+jCCy9UfHy8fvrTn+rPf/7zcQs+x6qtrZUkJSUlSWrvvdPa2qqpU6d27nPaaadp0KBBevfdd/Wtb32ry/N0nOObcnNzZbPZNGrUKP3mN7/Rt7/97R7HVlRUpDfffNNjvcTbvF7wmT59uqZPn95l++OPP645c+bo2muvlSQtXrxYb7zxhp5//nndfffdysjIcOnRU1pa2tn7xxObzSabzdb5uK6uzguvAsdTXvyF6qsrPLaFNx3RoLU3KrStyWO7I9yq4u8vU5vV/cLpSuc5X5rVq3PWNrXq9298puY2h9sxw0JK9aT+oCOfb1TSoFGen5geQPgKuQaAL5BrAPgCucb3mtqatLd2r0+fc2j8UFnDrb065vXXX1dsbGzn4+nTp+uVV17xWkyfffaZ5s6dqz//+c8eiz0Oh0NLly7V008/LUm64oordPvtt2vv3r09HlrmcDh066236tvf/rZGjWr/nVdeXq7IyEi3Xjn9+/fvcv6dd955R8uXL9cbb7zRuS09PV2LFy/W+PHjZbPZtGTJEk2ePFnvv/++zjzzzG7jOvvss/XRRx/JZrPpxhtv1IMPPtij13MyvF7w6U5LS4u2bt2q+fPnd24LDQ3V1KlT9e6770qSJkyYoB07dqi0tFTx8fH697//rfvuu6/Lcy5cuFAPPPBAn8eOr5UXf6G4P39bA0JsXe6zJ9Squ0LmqNYZ49Z2tDlF5SvDJNX24lnDlB3xqBZdmKl4a4RLS21Tq+58o1R7ujinNSJbi68dp+SYSJftpft2a8+6F9T8n1vV1RRb8SGRyvzF+xR9QK4B4BPkGgC+QK7xvb21e3X565f79DmXX7RcOck5vTpmypQpevbZZzsfx8S4/547GQMHDlRCQoIWLVqk6dOnKz093aX9rbfeUkNDg37wgx9IklJSUnTBBRfo+eef1//7f/9Pmzdvdulg8sc//tGtcJSXl6cdO3bo7bffPuE4d+zYoRkzZuj+++/X9773vc7tI0aM0IgRIzofn3322fryyy/1xBNPaNmyZd2ec/ny5Tp69Kg++eQT3XnnnXr00Ud11113nXCMPeHTgs+hQ4dkt9vVv39/l+39+/fX559/3h5QeLgee+wxTZkyRQ6HQ3fddZeSk5O7POf8+fM1b968zsd1dXXKyuLHuTd8fHCvDtRWuW2vLt6p8RaHCk+7Q/3ST3Frr2ur18P7/iSbY7XH81pCo7T07JeUEtXzsaGHG1r082VbNWul52Fb1ogU/eU696KOJCXGRCozwb2y3RqSohlZGVJo17OjWx0O3bbpT0pKPd2tLT15iEYPP7vHrwHGRq4B4AvkGgC+QK7xvaHxQ7X8ouU+f87eiomJ0bBhw3p1TFxcXOcQqm+qqalRfHy8y7Z+/fpp7dq1uuCCCzRlyhStX7/epejz5z//WUeOHJHV+vXvN4fDoe3bt+uBBx7Q+PHjtW3bts62Y2sLc+fO1euvv65NmzZp4MCBndsHDBiglpYW1dTUuPTyqaiocJuzqLCwUN/97nd144036t577z3u658wYUKPiksd11hOTo7sdrtuvPFG3X777QoLCzvusSfKpwWfnrr44ot18cUX92hfi8Uii8XSxxEFn48P7tXVq2d1XQzJTJeO/p901HOzNdyqxecvVmJUosv2PbV7NH/zfNWHfKG0KHuP40mNkl7+xQhFOD0PA+uqqCNJZfVlKjzs3n2ytHmPFNqqvJELlBkz2K29omqX/vjlw/p99UqpeqVbe5TDqT/rTxR9ggS5xj9Ka5pU3dDSZXuKvVIDwhu6bA8YDA9FD5FrgggLTsCPyDW+Zw239rq3jVGMGDHC48raH330kYYPH+62PTExUWvXrtX3vvc9TZ48WevXr1dGRoYOHz6sVatW6X//9381cuTIzv3tdrvOOeccrVmzRt///vc9FqScTqduuukmrVixQhs2bHAb/jVu3DhFRERo3bp1mjWrfZqQXbt2qbi4WJMmTercb+fOnTr//PM1e/Zs/e53v+vR69+2bZtbT6XjcTgcam1tlcPhME/BJyUlRWFhYS5r3Uueq2q9VVBQoIKCAtntPS8ioL0YUm2rdtv+4d7NUmirFlYeUnare9HHGRalkMuXSf36u7VJUqIlUemx7h/6REuirOFWzd8838NR3bOGW/XE5CfcikiSVGuXaj18Z6purtZtG25TUxfzCVnDrZpx2jkeY9XpEzRhwCkqO7zPrWn3gQ/0p8a1Kju8T6NFwSeYkGt8p7SmSVOfXCmb03NlOVU1+lvo45LD8/UdSJggHr1Frgkw3i7O1JRIBRNOfBGLvC3kE3gFuQa9UVtb69K7RpKSk5P1i1/8Qs8884xuvvlm3XDDDbJYLHrjjTf0t7/9Tf/85z89nishIUFvvfWWpk2bpsmTJ2vDhg36v//7PyUnJ+vHP/6xyxLtkvSDH/xAf/7zn/X973/f4/ny8vL08ssva9WqVerXr1/nvDzx8fGyWq2Kj4/X9ddfr3nz5ikpKUlxcXG66aabNGnSpM4Jm3fs2KHzzz+/c6n4jnOEhYUpNTVVkpSfn6+hQ4dq5MiRam5u1pIlS/Sf//zHpeD1zDPPaMWKFVq3bp0k6a9//asiIiJ0xhlnyGKx6MMPP9T8+fN1+eWXKyLCdboSb/NpwScyMlLjxo3TunXrOpdqdzgcWrdundsyZ72Vl5envLw81dXVuXUbg2dl9WX64cqLZbM3e2y3OhxKP3O+ck7/jnvjCd5dSo9N16oZqzwWmbrTUbj5+dqf9/o5reFWLZ7q3ttI6row1WH08LM9F3TelbR7rT45XKyWz7a4NQ+MT9XYjN53oUTgI9d4X1fDRz+vKlP4oEcUHtrm8bhGSVc4kjW89FuqaBvo1h5qj1J4Wz9vh9ultvCjcoS559OskCrdEfp/2vv2MoUnD/F4bHdDRLsqzEvHz2EwLnKNb3WVhyQpvKlSo1ffqExb73sTOsKtKp76J7dFJSw1RcpqbVTJlCdlS+j50AlLTZGy1t+iov371dwQ1+t4uusRjeBErkFvbNiwQWPHjnXZdv3112vJkiXatGmTfv3rX2vq1KlqaWnRaaedpldeeaXLAo3UXozp6LVz3nnnSZIuueQSt2KPJM2aNUtXXXWVDh06pJSUFLf2jnmHJk+e7LL9hRde0DXXXCNJeuKJJxQaGqpZs2bJZrNp2rRp+sMf/tC576uvvqqqqiq99NJLeumllzq3Dx48WPv27ZPUPi/x7bffrtLSUkVHR2v06NFau3atpkyZ0rn/oUOH9OWXX3Y+Dg8P18MPP6zdu3fL6XRq8ODBmjt3rm677bYu3xtvCXE6nU5vnrC+vl5FRUWSpLFjx+rxxx/XlClTlJSUpEGDBmn58uWaPXu2/vjHP2rChAnKz8/X//3f/+nzzz93G393IjqSVW1treLiev8PYTDZsO9j3bTxajWVXi5HS5pL2ykq1YthTyvs8n8rbfhEP0XoqrsfPd3pix9En376L13/4Z1qCg31vIMjQi9O+ztFn+Mw8vVq5NgDyccH9+qq1bMU0sXw0SiHU/mVVUr0cOexOixMt6alqjnU/UuB1D5f2G1jfqe4iARvhuxRXWuNnvjk17I5PBfQjyfK4dTPTvmV+qeOcNle11qjJ7b/uuvCfLhVq2asouhzHEa+Xo0cu1Ecdxi72m+C9ba4nBxSp8UR+YruYpGLRqdFU22LdFDuP1y6MjJkr5ZEL9CvHVeoxJnq1l6nGFUpocvjLeGhevan45TWz30oDwXkk2fk69XIsQea5ubmzhWloqKi/B0ODKq7z1Fvrlev9/D58MMPXapbHZOBzZ49W0uXLtXll1+uqqoqLViwQOXl5crNzdWbb7550sUeuiP23tGm9i82C8Zl6uwBp7q0WWoilb7eLsUGztje9Nj0gPkickbWGVrxerVqne5zi+yJiND8tBSVl++UKPiYDrnGuw7UVikktFWXZd2lM9Ndix2RNUUavXau0mcsllLcx39L0j9kV7XF/W51R6/Ahz6+vU/i9qSrucsk6XB5sRrrjng87kjVZ3ri8Gt6cu8jkqfVWh0R+u23n9Spya5DnzvmRKu2VQdMboT3kGu8r6tePDv2v9ftMPaO4vInWVskuffq7a64/FHrORrg9HxzyB6VpD/FZvbqNdQc7qeLt2aoOXRzl/scbz2dmzZ63k4BOTiRawBz83rBZ/LkyTpep6G5c+ee9BCuY9EdsWtd9YwpP/KxJGn81js1rMXDXa2I6PahW3CXkKXMX7yvTA/j+St2rJbKXtLB2t0qPFzo1s4dNGMj15yYrvJQacN+SdK3rGGaFn/MKnut4ZLd3l7sycj1eN70r/48OZHhoyej22u7u0kaa0r0nWf/7LGALElRbeFqdQ7QCJNO9AjPyDXedbzehFaHQ6d86z6dfornoZUnWlzubv5BSQpVaQ9fQbua2Do1h4Zo4aifKzvmmGJRc7W05j6preuehs3OSH38raeUljHIZXtpw34V7HyQAnIQItcA5haQq3TBe8rqyzRj1YyuJy12ONQ0cYHkxXl6gkZClsf3J6q0WNZSh/KLX1B+8Qtu7dxBQ7A5Xh6Kcjg1eu3c9uLOsU6i8BxIvQK71U0BueSLbe3zdTR77h0EwFVXxeX3D+5USGirrkr+H41Jdi12RB4t0WnvP6z0aWd7tbh8MvMPdscabtW4EZd6zm9DpnY5ufSR4h1KejNPf1m3VUXOcpe2FkuVNFSqPGpTDvf6AMA0KPiYXLWtWk1tTR6XHq8u3qkLttyuhjPP7PILDnovNTJJqw6U6a0Jjylx0EiXNu6gwcy6+qG1p3bPcfNQ23cel07NdT9psBSeuygg26rqJUklR5rUXFrr0ra3rr1tT+0ej6ekNyGCTU+Ky1d9/IjSfVhc7oueht1e213kEklKik6WY61VT+oPbm2FkRG6XOn6onQL8/sAgImYpuDD+FPPKo+2TxT4yOvVcjRHu7SNDGnQ1Ra7Kq19uxRcsImzRijNbtfyDQ3a6XSdKyA0qlox3EEzNHKNZ8f7oeV0ROjhlS1ytrleE515KP10Cs8exH2Vn1e+9R8Vrdnl0tYWflTKjtD8zfM9HktvQmMj1/ReT25y+bq4HFA9DROyFDr3A489gJo+2yRr8R/1VNEzeqroGbd28ol5kWv6jpfXRkKQ8dbnxzQFH8afetYxMfNvJkXo7AGu74ulJlZaL6UF0MTMZtDxfi7+fqxsCa7v+TvllVpU/vX/FxgPucazjh9aC89dqOz4bJe2Lyvr9bu/vq+nv5umrCTXOTDIQ91LS8uQI9zzHXlJ2lNi1a6LlmjwYNf3nAmdjY9c03s9uskV7MXlLnoAxVfVa9U79E4ORuQa74uIaL9Z09jYKKvVfe4voCcaGxslff15OlGmKfjAs/CmSklMzOxT0clSRLSy1t/i1tQSGSFlpnf+fwHMxmlLk6PZdSLRyCO79Z+w/6fojZ6XJiYPdaObO/IlX2xT9vpb5AhL0DAmdAY6b6bcccFwfWfIWJe2qEPx0gqKy13p6J28deNuFTkbXNqY3wfonbCwMCUkJKiysv37fnR0tEJCQvwcFYzC6XSqsbFRlZWVSkhIUFhY2Emdj4KPSXQ1d8bB2t2SpIrxdypn1DT3A4NlfgxfSsiS8rZ4/IHGCl4wq44767cs3yZH87HDtvZqmsWmI98vUNKgUe4Hk4e6dxLz+wDBKCspWqMyj+mpEBLrn2AMorvehMzvA/TegAEDJKmz6AP0VkJCQufn6GSYpuATzONPe7ISV1RikHdh9jVW8DKtYM41UtfF5c8PFUnq/s560qBR5CEv6pjf59E1u7RzteuS7qFRpcwXZnDBnmu601UeKm3YL0mKrCmSDka6Nh7a7YvQjIv5fYIWuaZvhISEKD09XWlpaWptZSoH9E5ERMRJ9+zpYJqCTzCPP+3ZSlxJfooO39Sxgtf2qc8oa3iuSxtzbhhDMOea4xWX5QjX2Mg6jQrZ67o95GDfBxeEejJf2OeHirgjb1DBnGu605OVuEavnSt5eSWuoHCc+X347mJO5Jq+FRYW5rUf7sCJME3BJ5ixEpexpNvt+rw51W2eE6eNIRgIbN1NzLx//x6NeP0GZe+/yvPB/NDyvm7mC4sJC9PTAzNUsPNBFex0P5Q78jCqQFyJKxjw3QUAjImCjwmwEpdxMAQDZpAdn62cYyYJjjxwRNmOJpVMeVJZ/NDyjW7mC2v7Ypv+sWked+RhOqzE5Xt8dwEA46LgYwKsxGUcLNkOs7MlDOOHli91M6Fzlt2uhuhBrOAFU2ElLt/reD+fvCJXzSlnuLRt2vexni3iuwsABCrTFHyCecKxUFudJFbiMgSWbDe8YM41Hb6srJej2XVVqKojTRrmp3jQNVbwMi5yTfdOCT2oUSEJrhuZL6xPDUuNlTJcb1btrYvuYm8YBbkGMDfTFHyYcExq6ZfFnfVA14Ml2zsKeAhMwZxrjrf0+hTL113/4V8MwTC+YM413em4KZK1/maJXs2+5WGls8iaIj8EAm8i1wDmZpqCD2AYXQzBaNlfKJX5IR6ghxhKYRwMwYDRdbX0+sHa9qIDvZp96KveyXptjltT1le9k8uPfKzCw7Fu7awICAD+RcEHANArWUnRGpV5zF3AEPcv+vC/YSEH3f7flIYy7AWB7XhLr1sdDkUlMjGzz3TTO7nps02yFv9RTxU9o6eKnnFrZ0VAAPAvCj5AgDnQXK7Cw4Vu27lLhkARWVMkHYx03eihqz/8qAd35JkvDIGqY+n1hecuVHZ8tktbye5tGr12rhrOTPJTdEGqi97J8VX1WvVOGSsCAkCAouBjIF11bz7QXO6HaOBtceGxsjocyi9+QfnFL7i1c5cMvtJVrik/8rEk5s4whB7MF3awdjfFZQS07Phs5Ryzylxk9BGl2+1i5pjAkW636/PmVDmaM122O21MEA8A/maago/ZZ5jvSffmuHCGVBhZamSSVh3gLlmgI9c41DRxgXT6d9wbmTsjsHRxRz6qtFjWUorLgc7suaYnWBEw8DFBvPGRawBzM03Bx+wzzNO9OTik2+1qiB6kYcfc0UTgINfMVcOZZzJ3hoFRXDYGs+ea7rAioHEwQbzxBXOuAYKBaQo+wcJpS3PrMhvZXEr3ZhMpOdKk5lLXO5p76+gWDd9iKIW5UVxGIGNFQOMZlhorZbgWC/bWRfspGgBABwo+BsHdLvOjWzQCCUMpAPgbKwIaiIeJ+yNruD0AAP5GwccgOu52/WZShM4e4Prlx1ITK63nbpfRdfz/W/z9WNkSXP8fv1NeqUXldItG36O4HDzoTYhAx4qABsCKgAAQ0Cj4GETHP5bjt96pYayOY05ffWnKWn+LW1MLX5rgIwylMD96EyLQdfxbx4qABtCDFQFDbXV+CAwAIFHwMYyOfywrxt+pnFHT3HdgdRzj40sTAghDKcyLSVYR6PjOYzBdrAjYsr9QKvNDPACATqYp+ATLkoIt/bJYHcfM+NIU8IIl1zCUwvyGhRx0K+KVhh70UzQ4VrDkmu7wnQfoe+QawNxMU/BhSUEAvmD2XMNQiiDAnBuGYPZcg+BxoLlchYcL3bYnWhKVHpvuh4jwTeQawNxMU/ABAJw8hlIEAYaPIkCU1Zep2lbttv1Ac7kfooG3xYXHyupwKL/4BeUXv+DWbg23atWMVRR9AKAPUfABALhhKIXJMXwUflZWX6YfrrxYNnuzx3arw6G4cOYNM7LUyCStOlCmtyY8psRBI13aShv2q2Dng6q2VVPwAYA+RMEHAAAAPrXrULls9mY1lV4uR0uaS9spKtWLYU8r7Nv9/RQdvCHOGqE0u13LNzRop7PKpS00qpoVAQHAByj4AAAAwKc6VoKbd945+s6QsS5tUYc+VfqKfOmrFeVgTKwICAD+R8EngHQ1ll1iPDvaMfEhvIW5MwAEgqykaI3KPGai2BCGcpnJsNRYKcP1//Heumg/RQMAwYWCT4Aoqy/TjFUz1NTW1OU+jGcPXkx8CG86Xr4h1wAAAADGR8EnQFTbqtXU1qSF5y5Udny2W3vJ7m0avXauGs5M8kN08LeOiQ+3T31GWcNzXdr21O7R/M3zmfgQPdZdviHXQKI3IQAAgBlQ8AkwTluaHM2Zbtsjm0uVbreryA8xITCk2+36vDnV7fPhtNX7KSIYnad8Q64JbsfrTWgJi9I/Z/6Dog+Anju0221TZA3/ygCAL1DwCRCVR22SpFuWb5OjucqtfWTIXk2xtK94gODT8f/90TW7tHN1i0tbaFQpK12gV7rLN+Sa4HZKfH+tOlCmq+036Uu5FgNDIyulzOXadaicgg+8JrKmSDoY6brRQ4EABhSdLEVES6/NcWvKioyQMtMV3lTph8AAIHiYpuBTUFCggoIC2e12f4dyQjpWKbjjguFuq1VIUtSheGnF1yseILiw0kXgMHqukbrPN+Sa4JYWa5Hsdj17yQVd5Jrl5BofMUOu6U7HD/2s9TdLLR4+UxHR7QUDGFdClpS3RWo87NZUsWO1VPaSQm11fggM32T2XAMEO9MUfPLy8pSXl6e6ujrFx8cf/4AA5XG1CokVKyBJGhZy0O2zUBp60E/RBCez5BqJ1XHQNVbV8T8z5RpPOn7oV4y/UzmjprnvEJ3cXjCAsSVkefz/2LK/UCrzQzxwY/ZcAwQ70xR8zMJj12aJ7s3Bjm7RAHyJOTfgIy39sqSMXH+HAQCAKVHwCRDH7dos0b05mNEtGn2AuTPghuIyAACAaVDwCRDH7dos0b052NEtGl7C3BnoEsVlAAAA06DgE2Do2gygrzF3BrpFcRkAAMAUKPgAQJCiwAwAAACYFwUfAAAA9InSmiZVN7S4ba+os/khGgSaTw4Xq+WzLR7bBsanamzGUB9HBADmQsEHAAAAXlda06Spj21UU6vdre3UqH3SUCnGwlfRYJQRmyCrw6Flh/8qHf6rx32cjggtm/Z3ij4AcBL4VxYAAABeV93QombnYd31w0xlJUW7tFWWxyu/WEqKjuziaJjZGckZWnWgTNunPqOWhGFu7R+V7dKrJY/oQG0VBR8AOAkUfAAAAOB1h5rLFXPKY3q2yMNqgJKsDocSI2J9HBUCRbrdrvTBOV3OJfdqiW/jAQAzouADAAAArzvaUquQ0FbljVyg7wwd6dpYtVuJr1yndGuKf4IDACAIUPABAABAn8mMGayc5BzXjbYWye4+tw8AAPCegCz4XHLJJdqwYYO++93v6tVXX/V3OF5VVl+malu12/YDzeV+iAZmcqC5XIWHCz22JVoSlR6b7uOIAAAAAAD+EpAFn1tuuUXXXXed/vKXv/g7FK8qqy/TjFUz1NTW5LHd6nAoLpyx7OiduPBYWR0O5Re/oPziFzzuYw23atWMVRR9AJw0isvorciaIungMZMzH9rtn2AAAAgiAVnwmTx5sjZs2ODvMLyu2latprYmLTx3obLjs13aSnZv0+i1c9VwZpKfooNRpUYmadWBMr014TElDhrp1l7asF8FOx9Uta2aH2IAThjFZfRWeFOlJClr/c1Si4eJmyOipehkH0cFAEDw6HXBZ9OmTVq0aJG2bt2qsrIyrVixQjNnznTZp6CgQIsWLVJ5ebnGjBmjp59+WhMmTPBWzIbntKXJ0Zzpsi2yuVTpdruK/BQTjCvOGqE0u13LNzRop7PKrT00qloxQ6XKozbl8L06aHx8cK8O1Lp/HiTps8PFPo4GZtBRXN4+9RllDc91a99Tu0fzN8+nuIxOobY6SVLF+DuVM2qa+w7RyVJClo+jQkDpoqdXZA3fiAHAG3pd8GloaNCYMWN03XXX6dJLL3VrX758uebNm6fFixdr4sSJys/P17Rp07Rr1y6lpaVJknJzc9XW1uZ27Jo1a5SRkXECL8MYKo/aJEm3LN8mR7PrD7GRIXs1xdL+4x3ojbRYiyTpySty1Zxyhlv7pn0f69ki6WiT52VxYT4fH9yrq1bPUkho1//PrQ6HMmITfBcUTCHdbtfnzaluNy0kyWmr90NEMIKWflldLr2NIBWd3N7D67U5HpuzIiOkzPTOXmIAgBPT64LP9OnTNX369C7bH3/8cc2ZM0fXXnutJGnx4sV644039Pzzz+vuu++WJG3btu3EovXAZrPJZrN1Pq6rq/Paub2t4wf3HRcM13eGjHVpizoUL634+sc70FvDUmOljHi37Xvrov0QjfkYKdccqK1SSGirLsu6S2emj3Brj6wp0ui1c5U+zbwFdnhfxw2JR9fs0s7VLW7toVGl9Cb0AiPlGuCEJWRJeVukxsMemyt2rJbKXursJQbvI9cAwcGrc/i0tLRo69atmj9/fue20NBQTZ06Ve+++643n6rTwoUL9cADD/TJuftKVlK0RmUe88M8hMmagUBmxFzzLWuYpsVHuje0hrMcMnqN3oS+YcRcA5yQhKwuh/S17C+UynwcT5Ah1wDBwasFn0OHDslut6t///4u2/v376/PP/+8x+eZOnWqPvnkEzU0NGjgwIF65ZVXNGnSJI/7zp8/X/Pmzet8XFdXp6wsxoMD8C4j5ZrjTpQqMVkqThi9CfuWkXINAOMi1wDBISBX6Vq7dm2P97VYLLJYLCooKFBBQYHsBrhrzfKkgPEYKdccd6JUiclSgQBlpFwDwLjINf5TWtOk6gb3odHHkxgTqcwEax9EBDPzasEnJSVFYWFhqqiocNleUVGhAQMGePOp3OTl5SkvL091dXWKj3e/8xgIWJ4UfYqVLnzCCLmmAxOlok+Qa3zCSLkGgHGRa3yrtKZJUx/bqKZWzwW2DB1SYshRj21N4QladvssnxV9you/UH11xfF39HRsiEPVEVEe2wbGp2psxtCTCQ294NWCT2RkpMaNG6d169Z1LtXucDi0bt06zZ0715tPZUgsT4o+wUoXAHyBXAMAgKTue+kcai7X0ZZaj20lRxplCyvWXd8frqwk16HQ4U2VGr16vjJtDR6PbXRatHnnCFUPGe7W5u3eP+XFX6hx6blqCXdfWbvzOe0OpXvoGVYWFqbbBmaoOTTE84GOCL047e8UfXyk1wWf+vp6FRV9fRdv79692rZtm5KSkjRo0CDNmzdPs2fP1vjx4zVhwgTl5+eroaGhc9WuvmKk7ojcdYdXsdKFTxkp1wBeRa7xKXINAF8g1/ReaU2Trnrs77K21bi1tYUfVVn2/8kZ2nWhJGao9GwXnWKtAxK16owHlJ5xlsv2I8U7lPRmnv71xmsqcma6HXeivX+6Klzt2vWxHs5KVlNoaJfHWkIj9ashP1NcuOviQ2VHi9Rc9ooWVh5SdqvrqJY9ERGan5aijz7bqghnkts5Gbbmfb0u+Hz44YeaMmVK5+OOyb5mz56tpUuX6vLLL1dVVZUWLFig8vJy5ebm6s0333SbyNnb6I6IoMZKFz5DrkFQI9f4jFFyTXd3uSvqbB63AwgcRsk1gaS+Yq9eD52naIt7jiuMjNDloekeix3H01EMqU4ZpvRjOgckRSfLsdaqJ/UHj8c2Oi0qqThTSsjp8fN1N7zs1KidahoaqvnDblDuaRe4tVc3V+u2DbfpwT1Pezy3NcyicZcuU7o1xWV73e610v6/6L9v/0evrS13O87Xw9aCQa8LPpMnT5bT6ex2n7lz5zKECwAAwMSONxfFqVH7pKFSjCUg1wiBAVTU2bSj1H1oDL0A4E9hzUdUG96m9yfeo/6DRri07WkolXYsVvYPn1VO3JDenbhun/T+fVI/Dx0lErJUcd0bqq4rcWuqKN6l095/WGHNRzyetqvCfFFlvZpa7cq/PFfD0lx76ZQW1+qO3VJu8mDlJHsuIq2asUrVtmqPbYmWRKXHprttj2uplvb/RZdGr1B2xP+5tUe1hau+l4UrdI9/gQEAANBr1Q0tanYe1l0/zHSbi0KSKsvjlV8sJUVHejga6FpHkXDZu/u0YP3bbu3WiDCtvf08ij7wi6qWI/rJwHQ1lb3ksWerNdyqxIETJQ8Fj25Z2nPlnto9bk0dPWqa2po8HmodmK5fVR5U8zEF0sMNLfr5sq1dFuazI6p1dswBpYVYXLaHhlQdN9z02HSPRZ3uJKacJmuYRfPTUjy2Wx0OPVlXJImCj7eYpuDD+FMAvkCuAeALRsg1h5rLFXPKY3q2qOthC1aHQ4kRsV22A550FAmvOC9eaQNSXdpKjjRq0b9LVd3QQsHHC4yQa/ympsTjvHXN1Z+pKTRUtw66VpNGf9+tvaveLceTaEmUNdyq+Zvne2y3hlu1eOpiJUYlumzf9vlbWli0RG+8s0HP/8d94YRToxo0+7vpij2mt2WYrVbp7/9Oh15t1qFjjtkTESGlpUhR3h3mlx6brlUz/+mxZ9C7299UfvELKqwvUvzhQrf2E31fg51pCj6MPwXgC+QaAL5ghFxztKVWIaGtyhu5QN8ZOtJ9h6rdSnzlOrc5HIDjSYyIldXhUH7xC1LxC27tMadE6FDzeEmBeW0YiRFyjV/UlKhs8bdU7XCfp6fhq2JIRvzwLoc7nYj02PQTGialzAqpSB6HSVWHhem2tBT9Zn8Xky8PSPS8Xe3z8CSmnNbj+Huqq55BtbFFndd9vofr3hpm0aqZ/6To00umKfgAAADA9zJjupjjwdYi0WsAJyDdmqJVB8pU/aPnpVTXJag37d2pgp0PdrnsNeANZYd3aUb/hK5XqXKEyxp/qteft0+GSYVGavGYW5QYGefeGBXvec4g+b5HTVLcMP1vyWE1e1gKvnNC60OfU/DpJQo+AAAAAAJKut2u9Lgh0jHFxC8r6/0TEILKl7VH1BQaquSD56vY5t6D0RLST6cmD/JDZO66GyYlGWcoVGz/obqq9VFZm2rc2vpHFUrarCNHqqQhvo7M2ExT8GH8KQBfINcA8AVyDQBfINd41mBr72Vy3Zm5OnPUpW7tgbZS3In0DAo0mQlWLbt9lscVxT7a8Zo+KN/c+f8FPWeagg/jTwH4ArkGgC8YKddE1hRJBz2sxHVot++Dgbl4+AxF1hT5IRDzMlKu8Yf+cRaNyuR98ZXMBKvHQlppsUUq90NAJmCagg8AAAB8J7ypfTWYrPU3Sy1drNQVES1FJ/swKphCdHL7Z+e1OW5NWZERUmZ65+cPQPA40FyuQlbw6hUKPn2grL7M4xjKA82UJeE/JEgAgDeF2uokSRXj71TOqGmed4pOlhKyfBgVTCEhS8rb4nFJ7Iodq6Wylzo/f8DJ4HebMcSFx7KC1wmi4ONlZfVlmrFqhpramjy2Wx0OxYXH+jgqBLPjJUhLWJT+OfMfJEgAwAlp6ZclZeT6OwyYTUKWx2Jhy/5CqcwP8cB0+N1mHKzgdeJMU/AJlAnHqm3Vampr0sJzFyo7PtulrWT3No1eO1cNZyb5KToEo1Pi+2vVgTJdbb9JXyrTpS00slLKXK5dh8pJkD0UKLlG4q4UAtMnh4vV8tkWt+0D41M1NmOoHyIypkDKNQDMK5hzTefvtlE/V3aM63fkiuJdOu39h/ndFiBaYzN1bePDevHKUzQs9ZgiXPFGadcSqbnWP8EFONMUfAJtwrHs+GzlHLOMZGT0EaXb7WKqOfhSWqxFstv17CUXqDnlDJe2Tfs+1rNFy3W0qYu5F+AmUHINd6UQaDJiE2R1OLTs8F+lw391a3c6IrRs2t8p+vRQoOQaAOYW1LnmaIUkKXv1/co5Zh6yHEmNTovqoij4BIqDSmn/LZNxzOe0bp9f4jEK0xR8As2XlfVyHFNlrDrSpGF+igcYlhrrliD31kX7KRqcLHoTItCckZyhVQfKtH3qM2pJcP3X7qOyXXq15BEdqK2i4AMACAxf/VarGH+nIvt/26Wp5EiTfr36oP4Um+npSASgPQ2lEvOVuqHg42WVR22SpFuWb5OjucqlbWTIXk2xSHHWCH+EBsCEnLY0OZpdv4xENpfSmxB+kW63K31wjsf5XF4t8X08AAB05UhjiyTp9+806gsPw4GsEf2VGBPp67DQjaLKerdtR4+GyupwaP6OxdKOxW7t1nCrVs1YFbRFHwo+XtYxNOaOC4brO0PGurRFHYqXVnw1xAYATgLFZQAAgBPXYGufAPiqSUN05qhz3NoTYyKVmWD1dVjwIDEmUtaIMN26fJtb28iQYq2KLtOXFy5W0uBRLm17avdo/ub5qrZVU/CBd50SelCjQhJcN4Yc9EssgCTp0G63TZE19AExKorLAAAAJ69/nEWjMoNs/iKDyUywau3t56m6ocWtrWp3pNI32tUQlqFhx8yhCxMVfAJlhvnwpkpJUtb6m6UWDxPhRkRL0ck+jgpBLTq5/XP32hy3pqzICCkzvfNzi+MLlFzTISsp2v1LSgiTNQNGF2i5BoA5kWtgFJkJVo89rooO0QurO6Yp+ATKDPOhtjpJ7ZN/5Yya5r5DdLKUkOXjqBDUErKkvC1S42G3poodq6Wylzo/tzi+QMk1QMCiN6FXkGsA+EIw5Jqy+jJV26rdth9oLvdDNIBvmabgE2ha+mV5nLQS8IuELI+Fxpb9hVKZH+IBYD70JgQABJiy+jLNWDVDTW1NHtutDofiwukZDfOi4AMABhZZUyQdPGYFCQ89LIA+R29CAECAqbZVq6mtSQvPXajs+GyXtpLd2zR67Vw1nJnkp+iAvkfBBwAMiPnCEJDoTQgACEDZLW3KsblO+NuvpUXpdrsYdGwOlpoi6eAxvbXq9vkllkBCwQcADIj5wgAAwayizqYdpbVu21lKGy6OVrT/97Ub3G6QZUlqdFpkj6KHj5HZo5LU6LQoa/0t0vpjGr8aUq6jFVKQruBFwQcADIz5wgAAwSTG0v7zZdm7+7Rg/dtu7daIMK29/TyKPmjX/FVR8Pz7pEHnuTQVVdXr6r99qT/FZvohMHhLbP+husjxuKxtNW5t/UMKJW3WkSNV0hBfRxYYKPgAAACgSx8f3KsDtVVu2z87XOyHaBDskqLb56274rx4pQ1IdWkrOdKoRf8uVXVDCwUfuChxpsrhHOqyrchRr4Ny7yUGY8lMsGrZ7bNU3dDi1vbRjtf0QflmNdja/BBZYDBNwaegoEAFBQWy2+3+DgWAiZFrAPhCoOSajw/u1VWrZykk1MNcYWpf4SYjNsG3QSGoJUbEyupwKL/4Ban4Bbf2mFMidKh5vCRzLjHubYGSa/rKkcb2IsCjq3fpi2b3z4Q1IkyJMZFu22EsmQlWj0Xe0mKLVO6HgAKIaQo+eXl5ysvLU11dneLjSfAA+ga5BoAvBEquOVBbpZDQVl2WdZfOTB/h0hZZU6TRa+cqfVqGn6JDMEq3pmjVgTJV/+h5KXW4S9umvTtVsPNBHW2h10ZPBUqu6SsdPTuumjREZ446x62dOZ9gdqYp+AAAAKBvfMsapmnxx9wFbw2XTNorAIEt3W5XetwQt0lYv6ys909ACHj94ywalWm+ghZwPBR8AAAA4FF4U6UkKWv9zW4r3EiSIqLbVwUEAD8qqy9Tta3abfuB5iAfz4OgR8EHAAAAHoXa6iRJFePvVM6oae47RCdLCVk+jgoAvlZWX6YZq2aoqa3JY7vV4VBceKyPo0IgOdBcrsLDhR7bEi2JSo9N93FEvkPBBwAAAN1q6ZclZeT6Owzga4d2u22KrCnyQyDwt2pbtZramrTw3IXKjs92aSvZvU2j185Vw5lJfooO/hQX/vUk7/keJnmXJGu4VatmrDJt0YeCDwAA8ImKOpt2lLpPpsqkmQB6LDq5fSjha3PcmrIiI6TM9M6hiAgu2fHZyjlmXqfI6CNKt9tFKTA4pUYmadWBMm2f+oyyhue6te+p3aP5m+er2lZNwQeAeX1yuFgtn21x2z4wPlVjM4b6ISIAZhJjaf+6sezdfVqw/m23dmtEmNbefh5FHwDHl5Al5W2RGg+7NVXsWC2VvdQ5FBEA0u12NUQP0rBjioHBgoIPEMQyYhNkdTi07PBfpcN/dWt3OiK0bNrfKfoAOClJ0e2rO11xXrzSBqS6tJUcadSif5equqGFgg+AnknI8jh3VMv+QqnMD/EAQICi4HOCmAkeZnBGckZnN8eWhGEubR+V7dKrJY/oQG0VBR8AJyUx4usx9PIwhj7mlAgdah4viSVzAQAAvMU0BZ+CggIVFBTIbrf3+XMxEzzMJN1uV/rgHI+Tcb5a4vt4Ap0vcw1gFunWFK06UKbqHz0vpQ53adu0d6cKdj6ooy3uc/sEM3INAF8g1yAYWGqKpIMefp/X7fN5LL5mmoJPXl6e8vLyVFdXp/j4vr1D2DETfN7IBcqMGezaVrxTF2y5nZngAZPyZa4BzCTdbld63BDpmDH0X1bW+yegAEeuAeAL5BqYmT0qSY1Oi7LW3yKt97DDVxO962iF2/cTszBNwceXKo/aJEl/f32HIm0VLm3DQkp1daRdldYIf4QGwGQYPgpTYRllAEBfqdot2VpcNln4NyaotcZmaqptkV688hQNS/XQw6d4o7RridRs3l7GFHxOQNORUknSk5EFylGrW7sj3Kq0tAxfhwWcOH6EBSSGj8I0WEYZANBXjn51A/61G6QW199mWZIanRbZoxh9EawOKkXNKWdIGR56sDGkC550LPVYMf5O5Yya5t4enexx5QAg4PAjLKB1DB9dOOrnyo7JdGmrKN6l095/mOGjMAaWUQYA9JWO3hnn3ycNOs+lqaiqXlf/7Uv9KTbTw4GA+VHwOQkt/bI8TnQLGAY/wgLbV3esslffr5xj7ljlqP2OVR13rGAULKMMAOhLCYPdfps1O2t1UOYdrgMcDwUfINjxIyxgHTlSJUl6tPXHqrC5TyTXFJ6gZf2H+josAAACWkWdTTtK3X/kJ8ZEKjPB6oeIAMA/KPgAQIBqsLVJkiZ/6yydOepSt3a+uAIA8LUYS/tPm2Xv7tOC9W+7tVsjwrT29vP4t9OkSqob5Tim0FfESpAIchR8ACDA9Y+zaFQmS6UCANCdpOhISdId00Yoc9A5Lm1FlfW6dfk2VTe0UPAxmSON7StzPbp6l75odv++ZI0IU2JMpK/DAgICBR8AAIAgV1rTpOqGFrftFXU2P0QDnJysxGjlcKMkaHT0iL5q0hCdOeoct3Z6RCOYUfABAAAIYqU1TZr62EY1tdrd2k6N2icN/XqoDAAEKnpEA+741xsAACCIVTe0qKnVrvzLczUsLdalrbS4Vnfs/nqoDAAARtPVXE6l1Y0+jsT3KPgAAABAw9Ji3e6Ohx6N9lM0APC1svoyVduqPbYdaC73cTQwisSYSFkjwnTr8m0e20+N2iUNlbYd3i8dLnQ/3pKo9Nj0Po6ybwVcwaekpERXXXWVKisrFR4ervvuu08/+tGP/B0WAAAAAAPY01Dq9uNtb129QsJr/BMQTkpZfZlmrJqhpramLvexOhyKC4/tsh3BKTPBqrW3n+dxjjpJ2lXYoIcPvKqFRUukoiVu7dZwq1bNWGXook/AFXzCw8OVn5+v3NxclZeXa9y4cfrBD36gmJgYf4cGBKUDzeUqNGnFGwDQLiS8Rnvrdik0yvUH056GUj9FBPReYkSsrA6H5u9YLO1Y7NYec0qEDjWPl8Q8L0ZSbatWU1uTFp67UNnx2W7tJbu3afTauWo4M8kP0SHQZSZYu5y0O+pQhla9V6btU59R1vBcl7Y9tXs0f/N8VduqDf2bJ+AKPunp6UpPb39DBwwYoJSUFB05coSCD+BjceHtX5ryi19QfvELbu1mqHgDAKRDzeWKOeUx3bOl1WO71eFQYgR3zhH40q0pWnWgTNU/el5KHe7StmnvThXsfFBHW2r9FB1OVnZ8tnKSc9y2R0YfUbrdriI/xATjS7fb1dbSoizbMb2AWtr8E5CX9brgs2nTJi1atEhbt25VWVmZVqxYoZkzZ7rsU1BQoEWLFqm8vFxjxozR008/rQkTJvQ6uK1bt8putysrK6vXxwI4OamRSVp1wNwVbwCAdLSlViGhrcobuUDfGTrStbFqtxJfuU7p1hT/BAf0UrrdrvS4IdIxhYEvu5i0FUDwskclqdFpUdb6W6T1xzRGRkiZ6dLRCrd8YiS9Lvg0NDRozJgxuu6663TppZe6tS9fvlzz5s3T4sWLNXHiROXn52vatGnatWuX0tLSJEm5ublqa3OvmK1Zs0YZGRmSpCNHjujqq6/Wc88919sQAXhJut2uhuhBGmbgJAcA6JnMmMHud89tLZLdfbl2AACMrjU2U1Nti/TiladoWOoxPVmLN0q7lkjNxu4V2OuCz/Tp0zV9+vQu2x9//HHNmTNH1157rSRp8eLFeuONN/T888/r7rvvliRt27at2+ew2WyaOXOm7r77bp199tnH3ddms3U+rqur6+ErAYCeI9cA8AVyDQBfINcA7Q4qRc0pZ0gZx8ztVbfPL/F4m1fn8GlpadHWrVs1f/78zm2hoaGaOnWq3n333R6dw+l06pprrtH555+vq6666rj7L1y4UA888MAJx9ydjw/u1YHaKrftnx0u7pPnAxC4+jLXAEAHcg0AXyDXAMHBqwWfQ4cOyW63q3///i7b+/fvr88//7xH5/jvf/+r5cuXa/To0Vq5cqUkadmyZTrjjDM87j9//nzNmzev83FdXZ1X5vz5+OBeXb16lhTa9QSGGbEJJ/08AIyhr3INAHwTuQaAL5BrgOAQcKt0nXPOOXI4HD3e32KxyGKxeD2O8vKdUmirFlYeUnare9EnPiRSmVmei1AAzKevco0kqaZEajzstjnyaEnfPB+AgNWnuQYAvmLIXFO1u31esWNYalifC+iKVws+KSkpCgsLU0VFhcv2iooKDRgwwJtP5aagoEAFBQWye2liwVBb+zjWmDG3KmfUNPcdopOlBKrgQLDxdq5RTYlUMEFqbXRr6v/V6gAOS5x3ngsIYBV1Nu0odZ8YMTEmUpkJVj9E5F9ezzUA4IEhcs3Rr35bvnaD1OJ+Iz5LUqPTIntUkm/jAgzAqwWfyMhIjRs3TuvWretcqt3hcGjdunWaO3euN5/KTV5envLy8lRXV6f4+PjjH9BDLf2ypIxcr50PgLF5Pdc0HpZaG1Uy5UnZEoa5NH1Y/oVU/rjarGkn/zxAgIqxtH8VWfbuPi1Y/7ZbuzUiTGtvPy/oij599b2mO5E1RdLBSNeNh3b75LkBr/LwuY38qhdIacN+FR6OdWtPtCQqPTa9z0MLNP7INb3WsUrS+fdJg85zay6qqtfVf/tSf4rN9HFgMIuiynq3baXV7jdjjajXBZ/6+noVFX3dbW7v3r3atm2bkpKSNGjQIM2bN0+zZ8/W+PHjNWHCBOXn56uhoaFz1S4AwNcq621Kk/TzN+u10+nauyE0qlUxQ6V+1gj/BAf4QFJ0e4HhjmkjlDnoHJe2osp63bp8m6obWoKu4ONL4U2VkqSs9Td7vHuuiOj2ns1AoItObv+8vjbHrWl0WJiiBmaoYOeDKtjpfqg13KpVM1YFZdHHMBIGe7wR3+ys1UEZe+ls+EdiTKSsEWG6dfk2t7ZTo3ZJQ6Ujje7DCI2k1wWfDz/8UFOmTOl83DHZ1+zZs7V06VJdfvnlqqqq0oIFC1ReXq7c3Fy9+eabbhM5e5shuiMCMDxv55q6plalSbrjeyOUOnyCS9veul26Z4uU1s9gY+yBE5CVGK2czAC9u+wHvvxe0zGMvWL8nQxjh7ElZEl5WzzOi9f2xTb9Y9M8bZ/6jLKG57q07ando/mb56vaVh10BZ+A+g3VxZyGqtkvSSqpbpTDw9BfT70zgJ7ITLBq7e3nqbrBvajz0Y5KLSqXGmxtfojMe3pd8Jk8ebKcTme3+8ydO7fPh3AdyxDdEQEYXl/lmqwkq4Yd82M3NMq9yzmA4OCP7zUMY4cpJGR5LFDaquqVZberIXqQhiXn+CGwwBQwv6G6mdNQX81puGD1AVU0uw/9ldqH/ybGRHpsA7qTmWD12Iu4tNgilfshIC8LuFW6AAAAAABB5Ks5DXXpc1LKcJemkv2F0u6Fmn3BBH1nyFiPhwfrBP/A8Zim4BNQ3REBmBa5BoAvkGsA+ELA5ZqU4W49DVtq24fbZCVFaxRDf4FeCfV3AN6Sl5enwsJCffDBB/4OBTCVkiNN2lFa6/L3ZRCPlSbXAPAFcg0AXyDXAOZmmh4+ALwr7quVoVa+9R8Vrdnl0tZiqZKGSpVHbcph4RYAXrCnfKvbttLqRg0IPyzpHPcDAOAEWGqKpIPHzJFXt88vsQBAX6PgA8CjtLQMOcKtelJ/cGsrjIzQ5UpX05FSqYux1ADQE4lxWbI6nJq/f6W0f6Vbe9QpTtUcHiNlfsfnsZlNaU2Tx5VIKupsfogG8C17VJIanRZlrb9FWn9M41eTAutohcSEzgC+4UBzuQoPF7ptT7QkGmJVP9MUfAJu/ClgdAlZCp37gcflMSt2rJbKXtLB2t2GToAnoi9yTVlYmL5sLFbLMe/lnto9XnsOIFClZ4zTqml/UXVdiVvbh1++q0WH/qWGhgN+iMy/vJ1rSmuaNPWxjWpqdT/fqVH7pKFSjMU0XwsBN7H9h+oix+OyttW4tfUPKZS0WUeOVElDfB2Zf/EbCvAsLjxWVodD+cUvKL/4Bbd2a7hVq2asCvjfPKb5lz1glhQEzKSLpU2jSotlLTV+AjwR3s41VS1H9JOB6WravVDa7d5uDbcq0ZJ40s8DBLL0jHFKzxjntr2kulE69C8/ROR/3s411Q0tamq1K//yXA1Lcx3OUlpcqzt2S0nRLGkM88pMsGrZ7bM89nL7aMdr+qB8sxpsbX6IzL8C6TdUWViYquv2SRbXXFTasN8/ASGopUYmadWBMm2f+oyyhue6tO2p3aP5m+er2lYd8L93TFPwAeA7ZkmAgaCurV5NoaG6ddC1mjT6+27tZu4tBcD3hqXFuq1yE3o02k/RAL6VmWD1uHR3abFFKvdDQOhU1nRIMwamq+n9+zy2Ox0R6hfJTX34VrrdroboQRpm4KGeFHwAnBAzJMBAMjBqgHJ4LwH0oZDwGu2t26XQKNcePnsaSv0UEQC0q25tvwG2cNTPlT1kikvbl5X1uvmvXyjlewP8FB1gXBR8AAAATO5Qc7liTnlM92xp9dhudTiUGBHrsQ0AfCU7JtPtBpijuVbOtio/RQQYm2kKPkw4BsAXyDUAfMHbueZoS61CQluVN3KBvjN0pGtj1W4lvnKd0q0pXnkuAMbB9xrA3EL9HYC35OXlqbCwUB988IG/QwFgYuQaAL7QV7kmM2awcpJzXP/ihiidH3tAUOJ7DWBupunhc6JKa5o8ztZfUWfzQzQAAAAAEJxKqhvlKK112VZUWe+naADJUlMkHTxmyHPdPr/EciKCuuBTWtOkqY9tVFOr+12tU6P2SUOlGEtQv0UAAAAA0KeONLbfgH909S590ey+Gpc1IkyJMZFu24G+Yo9KUqPToqz1t0jrj2mMjJAy06WjFVKAL7oS1NWM6oYWNbXalX95roaluVbtSotrdcduKSmaxAIAAAAAfaXB1iZJumrSEJ056hy39sSYSGUmWH0dFoJYbP+husjxuKxtNW5t/UMKJW3WkSNV0hBfR9Y7QV3w6TAsLVajMl0ryaFHo/0UDQAAAAAEn/5xFrffZYA/ZCZYtez2WR6nf/lox2v6oHxzZ6EykJmm4MMM8wB8gVwDwBf6KtdE1hRJB4/pvXxot1efA4Bx8L0G6FpmgtVjz7LSYotU7oeAToBpCj55eXnKy8tTXV2d4uOpCgPoG+QaAL7g7VwT3lQpScpaf7PU0uq+Q0S0FJ180s8DwFj4XgOYm2kKPgB8r+RIk5qPWUlhbx0rKQBAoAm11UmSKsbfqZxR09x3iE6WErJ8HBUAAOhLFHwA9FqcNUKS9OiaXdq52nVca2hUqWKGSpVHbcrhZjEABJSWfllSRq6/wwAAAD5AwQdAr6XFWiRJT16Rq+aUM1zaNu37WM8WSUebPAwZAAAAAAD4RNAXfELCa7S3bpdCo1yXZd/TUOqniADjGJYaK2W4jvfeW8cKdwAAAADgb0Fd8DnUXK6YUx7TPVs890SwOhxKjIj12AYAAAAAABCogrrgc7SlViGhrcobuUDfGTrStbFqtxJfuU7p1hT/BAfAVEprmlTd0OK2vaLO5odoAGM50FyuwsOFbtsTLYlKj033Q0QAAACBzzQFn4KCAhUUFMhut/f62MyYwcpJznHdaGuRTuBcAMztRHJNaU2Tpj62UU2t7secGrVPGirFWEyTjgGviQuPldXhUH7xC8ovfsGt3Rpu1aoZq0xZ9DmZ7zUA0FPkGsDcTPMLIy8vT3l5eaqrq1N8fPzxD/iGyJoi6WCk68ZDu70YHWBSHq6TyJoiPwTiOyeSa6obWtTUalf+5bkaluY6TLS0uFZ37JaSoiO7OBoIXqmRSVp1oEzbpz6jrOG5Lm17avdo/ub5qrZVm7LgczLfawCgp8g1gLmZpuBzIsKbKiVJWetvllo8zOMTES1Fs6404CY6uf36eG2OW1NWZISUmd55feFrw9JiNSrT9ctU6FEmuQa6k263qyF6kIYd2xMXAAAA3Qrqgk+orU6SVDH+TuWMmua+Q3SylJDl46gAA0jIkvK2SI2H3ZoqdqyWyl7qvL4AAACMgPnCAPSGEXJGUBd8OrT0y5Iycv0dBmAsCVkeC6It+wulMj/EAwAAcAKCeb4wAL1npJxBwQcAfCAkvEZ763YpNMp1Dp89DaV+iggwDktNkXTQ9dpR3T6/xBLoWBEQ6L1gni8MQO8ZKWdQ8AGAPnaouVwxpzyme7Z4mCtMktXhUGJErMc2IJjZo5LU6LQoa/0t0vpjGr+aL0xHKyTm95HEioDAyWC+MAC9YZScwb/6ANDHjrbUKiS0VXkjF+g7Q0e6NlbtVuIr1yndmuKf4IAA1hqbqam2RXrxylM0LPWYomjxRmnXEqm51j/BBSBWBAQAAN9EwQcAfCQzZrByjr0LYGuR7O534wG0O6gU7XAMVbPzmAKG032SRLRjRUDgxJQcaVJzqWsReW9dvZ+iMamaEo+LfkQeLfFDMMDJMcKQcwo+AAAgICXGRMoaEaZbl29zazs1apc0VDrS6D5fDQD0Rpw1QpL06Jpd2rnaNaeERpUqZqhUedSmnGR/RGciNSVSwQSptdGtqf9Xw3Qdljg/BAb0jpGGnFPwAQAAASkzwaq1t5/ncRLij3ZUalG51GBr80NkAMwkLdYiSXryilw1p5zh0rZp38d6tkg62uR5Hj70QuPh9mLPpc9JKcNdmkr2F0q7F6rNmuan4ICeM9KQc9MUfAoKClRQUCA7QyMA9CFyDeBbmQlWZSZY3baXFlukcj8E5CPkGsD3hqXGShmuwyH31pl7OKSvc01ZWJi2N7SpJcK1kP9RE7kOxmKUIeemKfjk5eUpLy9PdXV1io+PP/4BAHACyDUAfIFcA8AXfJlrPj18UNcPTFfT7oUe252OCA2MT+3TGABvMNKQc9MUfAAAAAAAgelgfY2aQkN1VfL/6PRTzndrHxifqrEZQ/0QGdA7RhpyTsEHAHwksqZIOnjMksiHdvsnGAAA4MrDv8mRNUV+CMTcxiQP0rTTJ/g7DOCkGGXIOQUfAOhj4U2VkqSs9TdLLR4mfYyIlqJZ+gMAAL+ITm7/t/i1OW5NWV+tuNPxbzkAGAkFHwDoY6G2OklSxfg7lTNqmvsO0clSQpaPowIAAJLa/w3O29K+itQxKnaslspe6vy3HACMhIIPAPhIS78sKSPX32EAMLEB4XtUWlyr0KOuKwvtKd/qp4gAg0jI8njzpWV/oVTmh3gAwAso+AAAAJhAzeFPZD/lj7pjd4jHdqvDqcQ4ehMCABAsKPgAAACYQEPDATWHhujOlB9o/CmT3NoT47KUnjHOD5EBAAB/oOADAABgIv2TxijntJn+DgMAAPhZqL8DAAAAAAAAgHdR8AEAAAAAADCZgCv41NTUaPz48crNzdWoUaP03HPP+TskAAAAAAAAQwm4OXz69eunTZs2KTo6Wg0NDRo1apQuvfRSJScn+zs0AAAAAAAAQwi4Hj5hYWGKjo6WJNlsNjmdTjmdTj9HBQAAAAAAYBy9Lvhs2rRJP/zhD5WRkaGQkBCtXLnSbZ+CggINGTJEUVFRmjhxorZs2dKr56ipqdGYMWM0cOBA3XnnnUpJSeltmAAAAAAAAD4XebREOrjN/a+mxKdx9HpIV0NDg8aMGaPrrrtOl156qVv78uXLNW/ePC1evFgTJ05Ufn6+pk2bpl27diktLU2SlJubq7a2Nrdj16xZo4yMDCUkJOiTTz5RRUWFLr30Ul122WXq37//Cbw8AAAAAACAvuewxEmS+n+4SHrn9+47RERLeVukhCyfxNPrgs/06dM1ffr0Ltsff/xxzZkzR9dee60kafHixXrjjTf0/PPP6+6775Ykbdu2rUfP1b9/f40ZM0abN2/WZZdd5nEfm80mm83W+bi2tlaSVFdXd9zzNzQ0yt5kV0NDY4/2B3B8vbmuOtqNMGyTXAMEFnKNO3IN4H3kGu8hRyEY1NmjZW+y6/MJD2lg1mmujYeLpH/eLFXsl0LjT/w5epNrnCdBknPFihWdj202mzMsLMxlm9PpdF599dXOiy++uEfnLC8vd9bV1TmdTqezpqbGOXLkSOf27du73P/+++93SuKPP/4M/FdSUtLr/ONr5Br++DP+H7mGP/7488UfuYY//vjzxV9Pck2I03niJeiQkBCtWLFCM2fOlCQdPHhQmZmZeueddzRp0qTO/e666y5t3LhR77///nHPuWXLFt14442dkzXn5eXpZz/7WZf7H1uddjgcOnLkiJKTkxUSEnKiL61P1dXVKSsrSyUlJYqLi/N3OIbAe9Z7RnjPnE6njh49qoyMDIWGBtwc8i7INcGB96z3jPCekWv6lhE+A4GG96z3jPCekWv6nhE+B4GE96v3jPCe9SbXBNyy7BMmTOjxkC9JslgsslgsLtsSEhK8G1QfiYuLC9gPUaDiPeu9QH/P4uPj/R1Cj5BrggvvWe8F+ntGrul7gf4ZCES8Z70X6O8ZucY3Av1zEGh4v3ov0N+znuYar5aeU1JSFBYWpoqKCpftFRUVGjBggDefCgAAAAAAAF3wasEnMjJS48aN07p16zq3ORwOrVu3zmWIFwAAAAAAAPpOr4d01dfXq6ioqPPx3r17tW3bNiUlJWnQoEGaN2+eZs+erfHjx2vChAnKz89XQ0ND56pdaO9Cef/997t1o0TXeM96j/cMfAZ6j/es93jPwGeg93jPeo/3DBKfg97i/eo9s71nvZ60ecOGDZoyZYrb9tmzZ2vp0qWSpGeeeUaLFi1SeXm5cnNz9dRTT2nixIleCRgAAAAAAADdO6lVugAAAAAAABB4Anu9QAAAAAAAAPQaBR8AAAAAAACToeADAAAAAABgMhR8AAAAAAAATIaCDwAAAAAAgMlQ8AEAAAAAADAZCj4AAAAAAAAmQ8EHAAAAAADAZCj4AAAAAAAAmAwFHwAAAAAAAJOh4AMAAAAAAGAyFHwAAAAAAABMhoIPAAAAAACAyVDwAQAAAAAAMBkKPgAAAAAAACZDwQcAAAAAAMBkKPgAAAAAAACYDAUfAAAAAAAAk6HgAwAAAAAAYDIUfAAAAAAAMIEhQ4booosu8ncYCBAUfBAwVq9erZCQEL300ksu2+vr63XRRRcpLCxMTz31lJ+iAwAAODEhISG9+gOA7hQWFuo3v/mN9u3b5+9QEOAo+CBgfPLJJ5KkMWPGdG4rLS3Vueeeqw0bNmjFihW6+eab/RUeAADACXE6nb36A4DuFBYW6oEHHqDgg+Oi4IOAsX37dkVGRuq0006T1F4AmjhxoioqKrRx40ZdfPHFnfuec845Xd4Vu/fee/31EgAAAADA1Nra2tTS0uLvMNADFHwQMD755BOdfvrpioiI0L/+9S+dc845SkxM1Hvvvadx48a57Pv22293eVfst7/9rZ9eAQCjuvjiizVu3Di9/PLLys3NldVq1ZAhQ/TEE0/4OzQAJkKuAdATH3/8saZPn664uDjFxsbqu9/9rt577z1J0tKlS/WjH/1IkjRlypTOm94bNmxwOcfbb7+tCRMmKCoqStnZ2XrxxRfdnqempka33nqrsrKyZLFYNGzYMD388MNyOByd++zbt08hISF69NFHlZ+fr1NOOUUWi0WFhYV99wbAa0Kc9BtFAGhpaVFsbKyuvPJKTZw4UTfffLPOP/98vfrqq4qLi/N3eABMbujQoWpoaFBbW5vmzp2r/v37a8mSJdq2bZtef/11XXjhhf4OEYAJkGsAHM/OnTs1ceJExcXF6Ze//KUiIiL0xz/+UQcPHtTGjRuVmpqqJ598Uk899ZTuuecenX766ZKkCy64QP3799eQIUMUFRWlmpoaXX/99crIyNDzzz+vjz/+WJ9++qlGjhwpSWpsbNSkSZNUWlqqn/3sZxo0aJDeeecdLVu2TDfffLPy8/MltRd8hg4dqpycHDU3N+vGG2+UxWLRpZdeqkGDBvnrbUIPUfBBQNi2bZvGjh2rrKwslZSU6IYbbtCzzz6r8PBwf4cGwOSOHj2q+Ph49evXT++//37nsNKqqioNHjxYM2fO1Msvv+znKAEYHbkGQE9ccskl+te//qXPPvtM2dnZkqSysjKNGDFCY8eO1caNG/Xqq6/qRz/6kdavX6/Jkye7HD9kyBDt379fmzZt0rnnniupPc9kZWVp7ty5evTRRyVJv/3tb/XQQw/p448/1qmnntp5/Pz587Vo0SLt3btXWVlZnQWfuLg4FRUVKTU11TdvBLyCIV0ICNu3b5fU3q3QarXqvvvuo9gDwCd27twpp9Opu+++u/MHmCSlpqbq9NNPV0lJiR+jA2AW5BoAx2O327VmzRrNnDmzs9gjSenp6frJT36it99+W3V1dcc9T05OTmexR2rPMyNGjNCePXs6t73yyis699xzlZiYqEOHDnX+TZ06VXa7XZs2bXI556xZsyj2GBC/qBEQOlboWrVqlS666CJddtllevvttxUZGennyACY3aeffipJuuqqqzy2x8TE+DIcACZFrgFwPFVVVWpsbNSIESPc2k4//XQ5HI4eFYc9DbVKTExUdXV15+MvvvhC27dv77KIU1lZ6fJ46NChx31eBB4KPggI27dv14ABAzRlyhQ9++yzmj17tm655RY9++yz/g4NgMnt2LFDSUlJGjhwoMv25uZmFRYW6qabbvJTZADMhFwDwFfCwsI8bv/mbC4Oh0MXXHCB7rrrLo/7Dh8+3OWx1Wr1XoDwGQo+CAjbt29Xbm6uJOnqq6/W22+/rcWLF+vss8/u8k4YAHjDp59+6vGL0QsvvKDm5mbNmjXLD1EBMBtyDYDjSU1NVXR0tHbt2uXW9vnnnys0NFRZWVn6/PPPT/q5TjnlFNXX12vq1KknfS4ELubwgd+Vl5ersrJSo0eP7tz21FNPaezYsfr5z3/e2QUaAPrCjh07VFVVpS+++KJzW1VVlRYuXKhp06Zp4sSJfowOgFmQawAcT1hYmL73ve9p1apV2rdvX+f2iooKvfzyyzrnnHMUFxfXOQS0pqbmhJ/rxz/+sd59912tXr3ara2mpkZtbW0nfG4EDnr4wO865u/5ZsEnKipKr776qsaNG6dZs2bpww8/ZHl2AF5XUVGhqqoqjR49WhdddJHy8vLU1NSkgoIC2e12Pf/88/4OEYAJkGsA9NRvf/tbvfXWWzrnnHP0y1/+UuHh4frjH/8om82mRx55RJKUm5ursLAwPfzww6qtrZXFYtH555+vtLS0Hj/PnXfeqX/84x+66KKLdM0112jcuHFqaGjQp59+qldffVX79u1TSkpKX71M+Ag9fOB3HSt0fbPgI0nZ2dlaunSpioqKNHv2bH+EBsDkOnoQLlmyRN/5zne0YMEC/f73v9fZZ5+t9957TxkZGX6OEIAZkGsA9NTIkSO1efNmjRo1SgsXLtQDDzygwYMHa/369Z09AQcMGKDFixersrJS119/va688koVFhb26nmio6O1ceNG3XnnndqwYYNuueUWPfTQQ/riiy/0wAMPKD4+vi9eHnwsxPnNmZsAAAgi+fn5uuOOO9TQ0CCLxeLvcACYFLkGAOAP9PABAAStTz/9VNnZ2fwAA9CnyDUAAH8IyILPJZdcosTERF122WX+DgUAYGI7duzQ6aef7u8wAJgcuQYA4A8BWfC55ZZb9OKLL/o7DACAiTmdTu3cuZMfYQD6FLkGAOAvAblK1+TJk7VhwwZ/hwEAMLGQkBDV19f7OwwAJkeuAQD4i9d7+GzatEk//OEPlZGRoZCQEK1cudJtn4KCAg0ZMkRRUVGaOHGitmzZ4u0wAAAAAAAAgpbXCz4NDQ0aM2aMCgoKPLYvX75c8+bN0/3336+PPvpIY8aM0bRp01RZWentUAAAAAAAAIKS14d0TZ8+XdOnT++y/fHHH9ecOXN07bXXSpIWL16sN954Q88//7zuvvvuXj+fzWaTzWbrfOxwOHTkyBElJycrJCSk9y8AgM84nU4dPXpUGRkZCg0NyCnFOpFrAOMi1wDwBXINAF/oTa7x6Rw+LS0t2rp1q+bPn9+5LTQ0VFOnTtW77757QudcuHChHnjgAW+FCMAPSkpKNHDgQH+H0S1yDWB85BoAvkCuAeALPck1IU6n09lXAYSEhGjFihWaOXOmJOngwYPKzMzUO++8o0mTJnXud9ddd2njxo16//33JUlTp07VJ598ooaGBiUlJemVV15x2f+bjq1O19bWatCgQSopKVFcXFxfvTQAXlBXV6esrCzV1NQoPj7e3+F0i1wDGBe5BoAvkGsA+EJvck1ArtK1du3aHu9rsVhksVjctsfFxZGsAIMwQtdhcg1gfOQaAL5ArgHgCz3JNT4dXJqSkqKwsDBVVFS4bK+oqNCAAQNO6twFBQXKycnRWWeddVLnAYDukGsA+AK5BoAvkGsAc/NpwScyMlLjxo3TunXrOrc5HA6tW7euyyFbPZWXl6fCwkJ98MEHJxsmAHSJXAPAF8g1AHyBXAOYm9eHdNXX16uoqKjz8d69e7Vt2zYlJSVp0KBBmjdvnmbPnq3x48drwoQJys/PV0NDQ+eqXQAAAAAAADg5Xi/4fPjhh5oyZUrn43nz5kmSZs+eraVLl+ryyy9XVVWVFixYoPLycuXm5urNN99U//79T+p5CwoKVFBQILvdflLnAYDukGsA+AK5BoAvkGsAc+vTVbr8oa6uTvHx8aqtrWXCMSDAGfl6NXLsQLAx8vVq5NiBYGPk69XIsQPBpjfXq0/n8AEAAAAAAEDfM03BhxnmAfgCuQaAL5BrAPgCuQYwN4Z0AfAbI1+vRo4dCDZGvl6NHDsQbIx8vRo5diDYMKQLAAAAAAAgiFHwAQAAAAAAMBkKPgAAAAAAACZjmoIPE44B8AVyDQBfINcA8AVyDWBuTNoMwG+MfL0aOXYg2Bj5ejVy7ECwMfL1auTYgWDDpM0AAAAAAABBjIIPAAAAAACAyZim4MP4UwC+QK4B4AvkGgC+QK4BzI05fAD4jZGvVyPHDgQbI1+vRo4dCDZGvl6NHDsQbJjDBwAAAAAAIIhR8AEAAAAAADAZCj4AAAAAAAAmQ8EHAAAAAADAZExT8GGGeQC+QK4B4AvkGgC+QK4BzI1VugD4jZGvVyPHDgQbI1+vRo4dCDZGvl6NHDsQbFilCwAAAAAAIIhR8AEAAAAAADAZCj4AAAAAAAAmQ8EHAAAAAADAZCj4AAAAAAAAmAwFHwAAAAAAAJMxTcGnoKBAOTk5Ouuss/wdCgATI9cA8AVyDQBfINcA5hbidDqd/g7Cm3qzJj0A/zLy9Wrk2IFgY+Tr1cixA8HGyNerkWMHgk1vrlfT9PABAAAAAABAOwo+AAAAAAAAJkPBBwAAAAAAwGQo+AAAAAAAAJgMBR8AAAAAAACToeADAAAAAABgMhR8AAAAAAAATIaCDwAAAAAAgMlQ8AEAAAAAADAZ0xR8CgoKlJOTo7POOsvfoQAwMXINAF8g1wDwBXINYG4hTqfT6e8gvKmurk7x8fGqra1VXFycv8MB0A0jX69Gjh0INka+Xo0cOxBsjHy9Gjl2INj05no1TQ8fAAAAAAAAtKPgAwAAAAAAYDIUfAAAAAAAAEyGgg8AAAAAAIDJUPABAAAAAAAwGQo+AAAAAAAAJkPBBwAAAAAAwGQo+AAAAAAAAJgMBR8AAAAAAACToeADAAAAAABgMgFZ8Hn99dc1YsQInXrqqVqyZIm/wwEAAAAAADCUcH8HcKy2tjbNmzdP69evV3x8vMaNG6dLLrlEycnJ/g4NAAAAAADAEAKuh8+WLVs0cuRIZWZmKjY2VtOnT9eaNWv8HRYAAAAAAIBheL3gs2nTJv3whz9URkaGQkJCtHLlSrd9CgoKNGTIEEVFRWnixInasmVLZ9vBgweVmZnZ+TgzM1OlpaXeDhMAAAAAAMC0vF7waWho0JgxY1RQUOCxffny5Zo3b57uv/9+ffTRRxozZoymTZumyspKb4cCAAAAAAAQlLw+h8/06dM1ffr0Ltsff/xxzZkzR9dee60kafHixXrjjTf0/PPP6+6771ZGRoZLj57S0lJNmDChy/PZbDbZbLbOx3V1dV54FQDgilwDwBfINQB8gVwDBAefzuHT0tKirVu3aurUqV8HEBqqqVOn6t1335UkTZgwQTt27FBpaanq6+v173//W9OmTevynAsXLlR8fHznX1ZWVp+/DgDBh1wDwBfINQB8gVwDBAefFnwOHToku92u/v37u2zv37+/ysvLJUnh4eF67LHHNGXKFOXm5ur222/vdoWu+fPnq7a2tvOvpKSkT18DgOBErgHgC+QaAL5ArgGCQ8Atyy5JF198sS6++OIe7WuxWGSxWPo4IgDBjlwDwBfINQB8gVwDBAef9vBJSUlRWFiYKioqXLZXVFRowIABJ3XugoIC5eTk6Kyzzjqp8wBAd8g1AHyBXAPAF8g1gLn5tOATGRmpcePGad26dZ3bHA6H1q1bp0mTJp3UufPy8lRYWKgPPvjgZMMEgC6RawD4ArkGgC+QawBz8/qQrvr6ehUVFXU+3rt3r7Zt26akpCQNGjRI8+bN0+zZszV+/HhNmDBB+fn5amho6Fy1CwAAAAAAACfH6wWfDz/8UFOmTOl8PG/ePEnS7NmztXTpUl1++eWqqqrSggULVF5ertzcXL355ptuEzn3VkFBgQoKCmS320/qPADQHXINAF8g1wDwBXINYG4hTqfT6e8gvKmurk7x8fGqra1VXFycv8MB0A0jX69Gjh0INka+Xo0cOxBsjHy9Gjl2INj05nr16Rw+AAAAAAAA6HsUfAAAAAAAAEzGNAUflhQE4AvkGgC+QK4B4AvkGsDcmMMHgN8Y+Xo1cuxAsDHy9Wrk2IFgY+Tr1cixA8GGOXwAAAAAAACCGAUfAAAAAAAAkzFNwYfxpwB8gVwDwBfINQB8gVwDmBtz+ADwGyNfr0aOHQg2Rr5ejRw7EGyMfL0aOXbDqSmRGg97botOlhKyfPd83emLWOAVvblew30UEwAAAAAAwaumRCqYILU2emx2hFtVPPVParMmubXFWSOUFmvp3fM1HpKWX9Xl83Wnu1gkKTaxvwYMOrXX54VvUfABAAAAAKCvNR6WWhtVMuVJ2RKGuTZVV2jY+l9oyJtXefUpHeFWFX9/Wa+KSIcqDyp6xTXdxtLotGj7lGcVndi/x+eVRM8hH6PgAwAAAACAF5QXf6H66gqPba3ln+t0ST9/s147nbXHtEYpO+JxLbowU/HWCJeW2qZW/f6Nz9Tc5uh1PNXN/XRwZZikY59PskaEafFV45QcE+myvciZqkdsi/S7aRnKSrK6HddRnBq94bpex6OIaClvC0UfHzFNwaegoEAFBQWy2+3+DgWAiZFrAPgCuQaAL5BrvKu8+AvF/fnbGhBi63KfRqdF9/34XMWmDXFrS4yJVGaCe4FFkp467VuqbmjxVqg63NCiny/bqtnPb/HYbo3or+Fjz+kynvLs0TroobBVcqRJj67ZpTu+N8KtWGSpKVLW+lvaezpR8PEJJm0G4DdGvl6NHDsQbIx8vRo5diDYGPl6NXLs/lBa0+Sx+FK1e4umbLxMH575sBIGj/J4bCDNfdPV65C6Lz4d75xTH9uoplb3IuLIkL16w/JrVf5kjdKGT+z1udGOSZsBAAAAAPCy4xU0plikQaeNNURBIzPBekJFneOdc+3t53VREIuUNko7S+tUGeM+xOxEi0zoGgUfAAAAAAB6oLqhRYmtFfqDh/ltLDWx0nr1fjUtk+mqkFTZ0N4bZeVb/1HRml1u7U3hCVp2+yyKPl5EwQcAAAAAgG/oarhT6b7dWmu5U9Ebu5inJyK6fSUquElLy5Aj3Kon9QeP7Y1Oi0oqzpQScnwcmXlR8AEAAAAA4CvHG7Y1zWLTke8XKGmQh3l6WHa8awlZCp37Qfukzcco+WKbstbfoqO7Nqmo+YhbeyDNfWQkpin4MMM8AF8g1wDwBXINAF8g13hW3dCipla78i/P1bC0WJe2qEPx0gq1F3sycv0ToJElZHksiEW0xajxPxaN/+hX0kfuhzU6LSq//r8UfXqJVboA+I2Rr1cjxw4EGyNfr0aOHQg2Rr5ejRx7X9hRWqsbn16pF688RcNSXQs+OrRbem2OdONGjwWfsvoyVduqT+h5Ey2JSo9NP6FjA0l370F3r7G8+AvVe1jqvWb/Do3/6FcquuQNDRtzjldjNSJW6QIAAAAA4ARE1Je2z9Ozonfz9JTVl2nGqhlqams6oee1hlu1asaqgCj6nGjhqrq5WrdtuK3L96C71zhg0KmShx48RZLHXj84Pgo+AAAAAICg09XEzFUHSzUixKaSKU8q69Rct/Yy2VVtPyodLnTZvqd2j5ramrTw3IXKjs/uVSx7avdo/ub52lq5Vdk292N92fvHG4WrxVMXKzEq0WX7yb7GkiNNai5lOffeoOADAAAAAAgqx5uYeYpFsqSf7jZs63jFEGu4VePSxvW6OJNoSZQ13Kr5m+d3ed4nJj/hVkTpOPZEikFd9eI5mcJVd/Gc6Gs8Yj+omLAwPbpml3audi/QWSPCtPb28yj6eEDBBwAAAAAQVKobWpTYWqE/TMtQVpJrocBSE6uyTWGqdpTpUC978Zxo8SU9Nl2rZqzyWIDpGCb187U/93hsd8WgrvRk6NWJFK66c1KvcWC6nh3kUHxKvMv2kiNN+vXqg6puaKHg4wEFHwAAAABAUImoL9VL0b9S87ttOrbPSEVYmG4bmKGm9+/zeGxfFEOk9oJIV+c80UJJd7oaeiX13RCyE3mNew5+qPkfLVLZRwtlbW11aesv6aXocLXWnyUp3u3YYGeagg9LCgLwBXINAF8g1wDwhWDONUfqinRLVrKaQkM9tlvDLFo85UmfFkO6cyKFkuMJtFXBunqNiZZEWT95SvPTUjweZ3U4dGfl27J7aA601+hrLMsOwG+MfL0aOXYg2Bj5ejVy7ECwMfL1auTYj6erpb63fbleDxz9P9066FpNGv19t/ZgLxQEmq7mG9pZ+LYWFT3ZbeFu1cx/mur/JcuyAwAAAACCWnnxF2pceq5awtvc2qIiIqS0FA1Py1FOco4fokNvdNX7JyxN+t/1C9Ts4f/xnogIzU9LUfWhz01V8OkNCj4AAAAAANPZW/FZt8O2okItGjZ4jI+jgje1xmbq2saH9TsPk2/HVPxXKntJanZfyj1YUPABAAAAABhXTYnUeNhtc3P1Z2oKDWXYloklxkSqOqK/rl3dIh0z/fapUY3SUKmuvEiK2+b5BNHJUkJWn8fpLxR8AAAAAADGVFMiFUyQWhvdmvpHRkiZ6cqIH86wLZPKTLBq7e3nqbrh2LXWpPc/b1L+gdd06IPHVPjOQx6PTwy1KP3n75m26EPBBwCCUFcT30nc7QIAAAbSeFhlDpuqv/+glDDYpendsj1S8Qtqs6b5KTj4QmaCVZkJVrfth5rPkIrDu1zdS2pf4WvV4V1Kp+ADAAgoXXRfPp6ypkOa8e7darLbPLZbw61aNWMVRZ8gdVLFwO4+kybvMg0A8I+ypkOaMTBdTbuWeGx3OiLULzLex1EhEKREDVD9l3foqf85Vaekxbq179m3XvN3LFZ1a73M+q2Xgg8AGFE33ZclqSwsTNVhnico3BMRoaa0FC089afKThrh2tZQ2v4Pn62ago+JdVXUqW6u1i3rb5XN3uzxOEuoRU+ftkCpkUlubeFNRzRo7Y0KbWvy/KQR0VLeFoo+AACvqm6tV1NoqBaO+rmyh0xxafuysl43//ULpXxvgJ+ig7852xI0NG6EcpI9FP2qdvs+IB+j4AMARtR4uL3Yc+lzUspwl6aypkOa8c6v1ORwH8vcwepwaty6h5Vut7s2fDXWXUcrJMa6m1JZfZlmrJqhpq4KM44IpZb+QGFtUS6bLZYy7c94V4c3/Ezxra1uh7VI2ucIV9zMvyklLcO18dBu6bU57Z9bCj4AgD6QHZPpNk+Po7lWzrYqP0UE+B8FHwAwspThUkauy6bqw4VqcrQob+QCZcYM9nhYYmuzGs4MVdEx2yu+Wr5yz+FCqV9/9+OY38fwqm3Vampr0sJzFyo7Ptulbf/+PRrx+g3Kdix2O66sLUwXOzK6HQcvR7ie7neKJmeM6HofAAAA+IRpCj4FBQUqKCiQ/di71QDgRUbINZVH2+fmeeT1ajmao3t17IgIh6zZDs3fsVja4f6jn/l9zMNpS5OjOdNlW1RtqbIdTSqZ8qSyTs11aUuX9A/ZVW1xnxRRkjbt3amCnQ+qsLxMKVGuXeejDtVrmDeDDwJGyDUAjM8wuaa7OeJq9kuSSqob5SitdWkqqqzv68iAgGaagk9eXp7y8vJUV1en+Hgm5QLQNwIp15SFhWn7/kK11LoO3fqobJck6Y4Lhus7Q8b26pxVuyN12tuL9NaEx5Q4aKRLW2nDfhXsfJD5fQyuoyB4y/JtcjS7dnMfGbJXUyySJf10t55jUnvRp6v/8x3nffSt3XqkucHtvG9YpMp6m1gnpWcCKdcAMC9D5JrjzFvYMRx9weoDqmh+263ZGhGmxJjIPg4Sgayrwl9pdftnak9DqXS40K3dDD3bTVPwAYBg8unhg7p+YLqadi/02O50RGjS0MEaldG7L2+VDXFKs9u1fEODdjpdiwGhUdWKGdr+wz4n+YRDh58dbWqff8dTQTDqULy0QkqLtfT6vGn92o+566JEZcakurRVF1eqbEuYGppaKfgAAHqnm2XXpa+XXp99wQSPN7oSYyI9LtkN80uMiZQ1Iky3Lt/msX1ExP7ue7aHWbRq5j8NXfSh4AMABnSwvkZNoaG6Kvl/dPop57u1D4xP1diMob0+b8cP/cXfj5UtwbVY9E55pRaVf10wgLFlJUVrVOYxBcEQ9yVLeyrRkihruFUFOx/02P7MwHQ92XKEoV0AgF453rLrUvuNrpwB6e7/riGoZSZYtfb281Td4Hkhk9J9aTp13ZNqDm9za9sTEaH5aSmqPvQ5BR8AgH+MSR6kaadP8N4Jo5OliGhlrb/Franlqy7T4U2V3ns++E1kTZF08Jgu7odOfHnS9Nh0rZqxyuNy7+9uf1P5xS+oufoz6eAg94Ojk1m9CwDgUXfLrkssvY7uZSZYu+nhNVw/bXxYL155ioalHnPTq3ijtGuJ1Fzr+VCDoOADAPhaQpaUt8XjxIgVO1ZLZS8p1Fbnh8DgLR0Fu6z1N0stHnprRUS3F2BOQHpsuse7YPvj90iS+n+4SHrn956fM28LRR8AQJc8LbsusfQ6Ts5Bpag55Qzp2GkQ6vb5JR5vo+ADAIGsi1UpIo+W9N1zJmR5/OHdsr9QKuu7p4VvdBTsKsbfqZxR09x36IPeNm3W9pl7SqY8pZzBx3xZP7Rbem1O++ecgg8AAIDXUPABgEDVzaoU/b8aXuWwxPkhMJhBS78sjytx9elzJgzz+XMCAAAEKwo+ABCoGg+3F3sufU5KGe7SVLK/UNq9sLPnhC8daC5XoUmXrgQAAADMgoIPAAS6lOFuvSJaaj2vNtCX4sJjZXU4lF/8gvKLX3Brt4RF6Z8z/0HRJ0CU1Zd5nED5QHO5H6JpV3KkUTtKXSc/jDpUz8pdAAAAfYCCDwCgR06J769VB8p0tf0mfalMl7bQyEopc7l2HSqn4BMAyurL9MOVF8tmb/bYbnU4FBd+4kuw91Y/a4Qk6dG3duuR5gaXtpEhe/WGRaqst8n3/dUAAADMi4IPAAS4oqp6NTtde0WUHHGf16evpcVaJLtdz15yQftqBt+wad/HerZouY42eVj1CT6361C5bPZmNZVeLkeLaxnlFJXqxbCnFfbt/j6LJ62fRZL05OW5Gho3wqWtanektFGqa2ql4AMAAOBFFHwAIEBV1ttkDwvTL1a8pS/lOmdOaGSlrJlf95zwpWGpsW5LV+6ti/Z5HOhaR+FtwbhMnT3gVJc2S02k0tfbpViLz+M6JS1WOcmun52iQ1afxwEAMJ6S6kY5jhkWLElFlfV+iAYwhoAs+FxyySXasGGDvvvd7+rVV1/1dzgA4Bdf1lboloHpagp9TTEe2i1hURqRMsDncenQbrdNkTVFvo8DXQpvqpQkjd96p4a1eOh1FRHdvvy6j+2p3eO2raSxWDFhYT6PBQBgDEca2+ctfHT1Ln3RHO9xH2tEmBJjIn0ZFkzEU9GwtNr3ven7QkAWfG655RZdd911+stf/uLvUADAb+ra6tUUGqpbB12rSaO/79bu81WxopPbCwWvzXFryvpqmfiOQgP8K9RWJ0mqGH+nckZNc98hOllKyPJZPImWRFnDrZq/eb7HduvAdD3ZcoTJmwEAbhpsbZKkqyYN0ZmjzvG4T2JMpDIT6DGK3kmMiZQ1Iky3Lt/m1nZq1C5p6NcFR6MKyILP5MmTtWHDBn+HAQABYWDUAOUk5/g7jPYCQd6W9uXij1GxY7VU9lJnoQGBoaVfltsKb/6QHpuuVTNWeVw17N3tbyq/+AXVtdElHwDQtf5xFo3K9NzDBzgRmQlWrb39PFU3uBd1PtpRqUXlUuuhvdLBbe4H+/jm2YnqdcFn06ZNWrRokbZu3aqysjKtWLFCM2fOdNmnoKBAixYtUnl5ucaMGaOnn35aEyZM8FbMAAB/Scjy+I9by/5CqcwP8cAw0mPTPfZIK4na5vtgAACBp6bE402lyKMlfggGwSIzweqxd1hJRapULvX/cJH0zu/dD4yIbr8RGuBFn14XfBoaGjRmzBhdd911uvTSS93aly9frnnz5mnx4sWaOHGi8vPzNW3aNO3atUtpae3rb+Tm5qqtrc3t2DVr1igjI+MEXgYAIBBU1Nm0w8OEinS17hulNU0e70pV1Nn8EA0AACeopkRli7+laof7v18NERFSWoocljg/BIZg1WZtr128O+keKT3btbFmvxLfekDpjYfNV/CZPn26pk+f3mX7448/rjlz5ujaa6+VJC1evFhvvPGGnn/+ed19992SpG3btp1YtB7YbDbZbF8nhro6hhMA8D5yTfdiLO3/nCx7d58WrH/brd0aEaa1t59H0ceLSmuaNPWxjWpqtbu1/f/27j4+qvrM//87mSSTSULuSZiEQAiIClSiUPja2ioWi9ZWXLdWXavUVqpf43oDutvYX0Xc/ZW2tIp2o1ltRat2S91VaasLLRTFGyqKjS1QgZBAYsgtmRCSTCY3c75/xMROzkxCwmRmcvJ6Ph7zaHM+Z2aujMOVmet8PtfnjPgj0oxP/rtg/CDXAAiFSMs1tccPaHl2qtzR0f5P8MbIkXKG/zFgDEyKS5HhjdWGqo3aUGUed0x1arO7SSHspjkqQf0k2NXVpT179qi4+JOmjNHR0Vq6dKl27doVzKcasG7dOq1du3ZMHhsA+pFrhpae0Lczxj3LzlTuNN+GiuUNbbprU5lc7V0UfILI1d4ld3evNlxTqFlZST5jNVUndM/BT/67YPwg1wAIhUjLNa7uvo0q1s27VQX5S3zGDje06Y7nDynzi2HYmRQTVmb8FLUfXq1Hrz9DMwd9zqo4skPFe0vl6m6bWAWfpqYm9fb2Kjs72+d4dna2Pvzww1N+nKVLl+qDDz5Qe3u7pk6dqhdeeEHnn3++33OLi4u1atWqgZ9bW1uVlxfZ06oAjD/kmlPTHedSdHyNzzFbfJuiYlrCE9AEMCsrydTEMvpkQpiiweki1wAIhUjNNQWJuaaNKrydJ2T0NIYpIkxkRk+qZiSfqTkZg5qFNx4MT0CjEJFzvbdt23bK59rtdtntdpWUlKikpES9veap7QBwusg1Q0uLTZLD61Xx3lJpb6lpPHFmrJo6F0pid41gmhJToZqqE6YCT0XdnjBFhNNFrgEQCuQaYGIIasEnMzNTNptN9fX1Psfr6+s1ZcrYTsErKipSUVGRWltblZLCFwoAY4Nc45/TkanNH9XKdfVT0uTZPmM7K/epZN+DOtllbuaM0Ws5/oF6Z/6n7jkY5Xfc4TWUlhz+q7UYHXINgFAg1wDWFtSCT1xcnBYsWKDt27cPbNXu9Xq1fft23X777cF8KkS6ANsqSpISMiK+mzkQUhbZhtTZ2ytnV5fk8d01qrq7O0wRWVt7+0fqjI7SvZlf0sKZ5mXPacl5cuYsCENkoxN3slo6VmYe4G8GAADAqIy44NPW1qby8vKBnysrK1VWVqb09HRNmzZNq1at0ooVK7Rw4UItWrRIGzZsUHt7+8CuXWOF6YhjYLRFm5Zqef/j04rucfsd9sY4dOjqP6o7Kdc0xtbNiHRBzzUt1VLJIqm7wzSUHRcr5TrHxzakCRlSbIL04krTUN7Hv0eMuyEMgY1/w229np0+X3POujLEUQVP//s7+7310tvfN58QmyAV7Z5wRR8+1wAIBXINYG0jLvi89957WrLkk87p/c2+VqxYoaefflrXXHONGhsbdf/996uurk6FhYXasmWLqZFzsDEdMciG+BIq9RVtqpY+oR5Hummsu+5Dnd3j1p1dt6nc8C3qzIqq0SN6TKue/qP2GTNM9x311s1DFKfqehLVZMvyO5bZ26ApMe0je65+XHWekIKeazqO9/07u+pJKdN3KVT10f3SwXXqcfh//0aU1Ly+L+V+/h3W790q1T6nxsZG7a0xL+ui0BvYRNh6vf/9/d6C9Yqb4rvlrr2lXHk77ux7X02wfMvnGgChQK4BrG3EnxIvuugiGYYx5Dm33347S7jGu47jqvV65Lr0QSl1us9QS3Ojpmz7ngq23BD47oZd1119rZKy8n2Oxzf9VXrpMZVemiRPqu8flepmt7679ZjerWyWa9DWd5IU21YjW2ez6XiMu1nTtn074IyiZMOuqzzrdUyZPsdz1KRt9nulKE/A36PWZpPLFu13LCUqTrn/950J9yUEY6PcyFHnoCLoYW9LeIIZrdQ8v/8eYusOSrXSs7uO6P4db5rGR13onQAmwtbrkxyxkqQHdnXL2+lbEJwb1aZX7FJDm0fjoOwJAAAQUcb3ZUGMmVp3k5ZPdcp94Gf+T8hz6v9mf1Mz0zL8Djsz8vV/Zs83DyROl2IT+q7YDjJL0ja7Xbe+cJeOG75LWDKiWlUau0EJAYozHYZdHf/wX8rMyvE5Xn2oTDE7V2nV/CpNcsb6jJ2srdKRD73af9Y9muScaXrM2o4WPVT1pIzoHr/P6fB69fPqv+pTFHxwGvq/yN75qzLtM3y/7EbH1yhxxidfiMer/oLEPcvOVO60C3zGyhvadNemMrnauyj4DMHKW69nTbJLkh65plAzks/0GWs8GCe9LrW6uyn4AAAAjJBlCj6sPx2d2rZauTwu0/GKlgNyR0frrmk3KWuK7xe0Dxtr9czhtXq88Qmp0f/jOmIcejjxYaXFp5nG0m76nZyyme/U0aT4X31dv4j6od/H9MY4dGTps6ZlZP0zg56Y/Fll5vh+ITra1Kq7p+ao8+SvpZN+HjTXKQUak2QoVkVn/1BTJ/nODvrb4T/q2ePP61hbiz7l/66wqGDnmv4vsvd88UxNnr3IZ6yy9YDu2/3JF+LxLi8tQXNymS4O/6LsDYqO953F1BXfqFqbn78XEwCfawCEArkGsDbLFHxYfzpytW21Wr55udwBlkI5vF79+o8eHegeXNWJkcNxrx5fcZbfL6KuTpfufu1u3brtVv+PG+PQ5uWb5Uxymsaib383YC+e6IQM5fuZTdNZc0LHtr6p8oY209hfTnrVGR2lu6bdpPOdBabx473xaok29yHqNzVlss7NMfcaimsp17PHpY8667T/+H7TeJo9ze/vh/FvrHJNXrpDswbP4Ig3L20czyraa6RB/14qW9sUFdMSnoAQEdLsaXLEOFT8RrHfccdUpx7patasEMcVbnyuARAKkZZrql0d8g7q9+fvMz4QKv7efzUu/31uI5FlCj4YOZfHJXePW0Vz71duom+fHlfVPl2ye7U+vHihadaBNHyT1c3LN/ufOXSiQsVvFGtPwx4VeMwFmDR7mpw5hX4fs7atVi4/xZWmbo8cjlbdtanMNNa/JGbmjCWak39uwHhHKjkmSQ6vVxuqNmpD1UbTuMNm1+Yrf0vRB5CUFtv376V4b6m0t9Q0njgzVu99NEeSn5xAQ2flqKmv/1nUoAJgy9HwBBRkziRnwL8Zu/6yRRuqNqq1hw/7AGBlzR19u1H+eOsBHeo0F54csTalJY7vnnUYX9IS4+SItfn9jnlG/AFpxifv20hGwWcCCLRsa8+xA5KkH/3OJW+nby+IuVHtutHeK1tusrJGsQTDmeT0W+wY9kpujEMPX2ReCtY/ayjQbKTEmfH6/875/5Ucm+pzvKa9QyX7gr8kJj15ln5VfVydMeb+PhWxsSrOypSr6UMKPjgltTabDndUqWtQQbPiREWYIgoupyNTmz+qlevqp6TJvjuR7Tl2QD96/349+L/vytt5zHTfid7QObatRs8l/Ks6X+nR4HJ3RWyslJUpxYf/iuzpCvQ3ozq+LPTBAABCrt3T95n6hvPzdd68C0zjXABCqOWmOrRt9YVytZuLOu/vbdD6uk/et5HMMgUf1p/6N9yyLXljtP6zqZqf5fuFwd6SJO2QspKCWygZ6kruqSwFK11aGrAY9IM/rw54vzS7uZfQ6ehOytVNHT/UL66bqVmTB111r3pdOvAzVRzfL03KNt2X5V7jW7BzTWNXs/5pqlPug+ukg+bxsXj/hoOzt1fO5HwpY4558H3/DXsnUkPnmha33w8UB6r26od5GXJH+98t0GGzKy3zrLEOD2HA5xoAoRDyXNNS7bd9Q9zJaklSdrLdtEkBEC65qQ6/n0FrquxSXRgCGgXLFHwibf1ppOhftrXuc+tUkOK7XOLo0Qqd+bubVXB0pf87xyZICf534Todga7kSoGXgklDF0pGe7/TcUyZ6sz8lDSoUXSau0mOvwVevjJUDyNEvmDnmtaetoEG6eefc6lp3FIFwiY/Fa3WI5KkmVlJmpMxMXN3TYtbS3/yutzd5g/bZ8Tvk3tGtIpn3azCsy4xjVvq/QEffK4BEAohzTUt1aot/T9yec277rZ/PGvVa0/2c0cgMsWdrJaOlZkHEjKkCNnJ2TIFHwytIKVAcwZdWY/7qFkFXreqlzyivDMKzXcKwxt1qGLQWNzvdPlr4hXfFh9w+Up/DyOXx8WXNPiYGj/F9G/UMhIy+grIL/opLsfFfrxbXr3/2T8aulmjFaZ4u9q75O7u1YZrCjUry3fGYE3VCd1zUCrMmG7d9wcAYEKoPX5Ay7NTA85alTdGjpQzQhsUMAr9hcns99ZLb3/ffEJsglS0OyKKPhR8IE/qLClAo2T4N1QTr7lRlXrF3itbtFNZfEED+v7YFe32vwPfx0sg1XnCNDTUv7N+VurxMysryTSNPfpkQoCzAQAYX1zdfbOa1827VQX5S3zGDje06Y7nDynzi1PCFB1w6nocWZKkXeffJw3eCbrlqNL+sFbOjuMUfIDxaqgmXo0H46TXpVZ3t7IC3D9QM16WZ8CyUvP8/9H7eElXRd0ev3fbdEOWohPn+h2zUo8fq+/EBQBAv4LEXNOsVW/nCRk9jWGKCBiZSXEpMryxH+/YbB53THVqs7tJkfCtzjIFH5obDu1wQ5u8g66gNza7NStM8VhBoCZe5U19x6qb3eqs8X3Nmzptstvih9yljP4+kY1cE1xpyXlyeA0VH31ZOvqyadzhNbR52TNy5iwIeWyhMlF24sLIkGsAhAK5Bhi5zPgpaj+8Wo9ef4ZmDlqOX3Fkh4r3lsrV3UbBJ5hobuhfw8m+pmh3biqTt9O3aj43qlJL7FKyIzYcoVlW/+v5498f0L6t5hlADscqPb7iLNNW8fT3GR/INcHlzFmgzcuekau12jRWUbdHxUdflqu1etwXfALtwiWxExf8I9cACAVyDTA6Rk+qZiSfad50pNHPJiVhZJmCD/w76e6WJD1wfqw+MyU0W69PdP2vZ+mlSfKk+r7m1c1ufXdrlzJjCybsjkTAYM6cBYELOn5m/fy9qJgWVbYeUHR8kmks1EskAxV1jrd36dZn9/jdhUtiJy4AQRRgy+sBEbRzDABg7FHwsbgYd4MkaeGeezWrq9t8whhtvT6hfbwjUd6OO01DsyRts9tV3fZpSRR8gFNR0V4jHR+82En64PhHSpz5E923209uU2iXSA61tbokFcS6tP7KXKX4mVFZXZ+gO2rZiQvAaWqplkoWSd0dgc+JoJ1jAABjj4KPxUV7WiVJ9Qvv1Zx5y8wncKUn+IbYkaj6UJnydtwpW2dzGAIDxpe02CQ5vF4V7y2V9pb6PSdKMfrOuT/RublTfY6HeonkUFurx7bV6IwXvqXoLW6/9+3q35qePj0ATkfH8b5iz1VPSpmzzeNNB6UXV/adx2c/AJgQKPhMEF2T8th6PZQC7EjkaWwLQzDA+OTMOFOb61vk8noCnhPfE6NDs9Pk7cz1OW54Qv9vLUdNmhddqVmDd9ryHJR63IG/hLUekd75njQpOyRxArC4zNl85gMASLJQwWeid5ivbauVy+MyHf+osy4M0QDWNdFzTUil5sl565/kDNCPorlqr9K3FOmRV15UueFb8OmyN0oz+hrXz/GzanWoJsppiXEBt3kPdL+aIwe1zX6vEl7yX5yqjU+SK3myZI8zjVXEWeZPMYKIXIMx0xSgoSizvickcg1gbZb5lDmRO8zXttVq+eblcvf4Xy7g8HqVHGNuaApg5EabawIVCupbA89egQLOlpOk9IQMebc59IgeM43tj4vVNXLq8OHDyowt8BkbromyI9ambasvNBV9hurTMzeqUsvsHjVfWqL0afN8xmrdTVq+6ztyv35HwF/TEeNQmj0t4PhEd7L2sMo/eNN0PCktW1OmnRGGiMbeRP5cg2EEaswcqJDT7+Meg3pxpf9x+vtMSOQawNosU/CZyFwel9w9bhXNvV+5idN9x6r26ZLdq9V+XnqYogNQ0+LWDT/5Hzl6Wkxj2fH7pXwp0U46HrHUPEXf/q7fLz6tB7dJR5/Rr974q/7tD+bZOo5Ym5755iJlJPrOuClvaNNdm8rkau8yFXyG6tMT35Si2t/Y5EpNUt2gWTwVnZ1y93q07nPrVJDiW3zqx05c/iUk9/3tmvPhI5r1lx+bxjsMu+q+9ZZliz4IrkCzoaVx9G9wmMbMtfFJcnW5/Da6l6S0m34np2zmAfr7AIAl8Q3DAhpO9s0Q+NHvXPJ2JviMzY1q1432XjX42RkGQGi01Vfqd9GrlGA3z+bZH9s3EyU9fXIYIrOAADOAkluPSEele5adqdxpF5jGh1q2NZxZWUmal+t7FbS2s1PLpzrlfud7fu/jiHFoQdaC8fGFMoJkTJkmSape8qjiEqb5jLUc3auF7/+rjrnqJQo+GEZtW62Wv/wVuXv9z6p0RMfp4fl3Ki0u2e94WnKenDkLxjJEHwGLU40Hleb1yOmnJ9ipziZ8+KKHlRY/aEZhXJzSbDaRoRAK1a4OeWtO+Bwrb6DPJTAWKPhYwEl335bE91wyW5/PP9dnLL4pRXpJykqyhyM0AJJsnc1KiPKoeskjyjuj0HeQhr1jKi8tQXNyx36Kuqu7Te7oaK2bd6sK8peYxsfN7IEIlTe7ULMGbVlfLknvhyUcRLBAhZKKY+/1zbRraFJBd7fPmMtm091Zmbr1z+sDPq7Da2jzsmdCUvQZdqn+VKc2J6bLOagxs+v4/iFnE7o6Xbr7tbt167ZbAz7uw01/UZqfXmPkMARDc0ff0vYfbz2gQ53mv82OWJvSEs3vPwCjR8HHQvLSE0xXnTV4txgAYeNJnWXeOcXPB2uEQIAeGPFNbcpRk98rjeUNfWPxTX8159aWo5KkgsRczRlUmAAQGsPO4vF6tWDJg3LmfNo0ttndJFe3/xkGFXV7VHz0Ze2p/ZMK7OaZgcEuhvQv1fdXuKk4skPFe0vl6m4LOBunIKUgYB7avHyz34KYq+Y93b3nh31Frz+b7+eIcWjz8s0UfXBa2j09kqQbzs/XefOCO/sWgH8UfAAgBGptNh3uqFLXoL4KFScqwhTRBDZED4xZkrbZ7Vq6ab2OKdNnLEdNgXfiiouVcp1SPA0vx4K/fyfVHVVKtPnpRYIJy9X0YcBZPJKUFm2X8x8u9bsM1PnxzZ+02CQ5Kl9U8d5SaW+padxhs2vz+T+Q05FpGqtVr1x+ikTS8IUiv4WbxmEaMw/DmeT0/5yeLm3+qFauS9ZIqb79ICvaa/qKTB4XBR8ERXay3XyRGhiH/F0grHH577EWLhR8xpFA05Rr2vuuLMe1lEvHBs0WGG7HBkScQAUAplOPX41dzfqnqU65D66T/PyTZIemsVPRXmNuXjpEDww1HVTCiyu16TJDnlTfD6P2lkad2NmjI5c86PcLkfaWsjQvyNLsaXLEOFT8RrHfccdUpx7patasEMeFCNXZ1xOk4HPf0ZxpF5rHR7ntuNOR2VcMufopabJvzqg49p6K31+vPS/eEGCp2GS5o6P8Pu7pzJrxl9tO6wJCQoac0XY5t9xvHusvaJ+sl5jBCABKS4yTI9amuzaVmcbOiD8gzfhkCWO4WabgU1JSopKSEvX2+t9md7wbbj13vNfQOdtul/z9/rEJfR9yEDFaju7t6z/xd050NSs+2h74iw3TqSPCaHJNa09ff5e7pt2k88+51DROMS/40mKT5PB6A1+Rn+rUw+o096pIniwlTJLeusd0n3qbTXdPzZH7wM/8PieFu+BzJjkDLkHZ9Zct2lC1Ua091mz0afXPNWMqdbp5+expcvb2ytnVJXl8P8CneTx9uSbLPLtH6ltGVjrzeqVlnu1z/JRmzTQeND9fW+PQuW20eSg1r29Ldn/bvVe9Lh342UBBDdZCrgFGLjfVoW2rL5Sr3VzUeX9vg9bXfbKEMdwsU/ApKipSUVGRWltblZJivSmCQ63nrj5YpnO23a6ezz8kDW4IK436ihaCLyktWx2GXQvf/1dTs9FZkjZFO1Tzj08P7EzTr+JEhYrfKGY6dQQ4nVwzNX4K/V1CxJlxpjbXt8jlNS+/6r/qHqhXhbIDf1ly2OwqXfKIeYcbUbgbK4GWoFTHl4U+mBCy+ueacSUho+/i2YsrTUNOSZvjk+S69jnzDL+T9Ur71dflPPoD82N+PGum4sBvpXTfqZ8VzQf6/s+LN0tdvrOGhnw+nWYeCrDroVqPjO7xMC6Qa4DRyU11+O05VVNll+rCEFAAlin4TBT+1nPHJTTL2durcn8NYRFRpkw7Q3XfeqtvG+FB+rcY9vYkmXajATBCqXly3vonOf1drZa0eYi+GkOhqANEgABN1/ubpwfdULNfJDkTMuT0VyjJmCPd+ie/90tzHZJj91oVH3rO72M6vIbSlj8upZ1x6s831lqOSsfKzMe5sAgAEYuCDxBiU6adIU0zf4Bji2EgyAJdrdbQDVoBRLAhmq6PafP0IfLJaO7nzCnU5rQCuVqr/d4tLTkvJFvAn5L+1/OP/yZ1+enxE5vQVxCj6AMAEYeCDwAAAMaHjuOq9XrkunT8N0935iyInKLOUD5+PSuWrZUSc33HWo4q7Q9r+2ZTUvABgIhDwQcAAADjQq27ScunOmmePgZqWtx+G5A2ddpkt8X3NYr2wzHVqc3uJmZN4hMBll3GnfQ/ow3A2KHgAwAAgHHB1d236+G6ebeqIH+JaZw+W6NT0+LW0p+8Lne3/52aHI5VenzFWcqaZPc5XnFkR99uY91tFHzQZ4hll9kfL7v02pPDEBgQWvXNH2j/hwmm46FeskvBZ5w53NAm76BtMRub3ZoVpngAAABCrSAxl10Pg8jV3iV3d682XFOoWVlJPmPlDW26a1OZMmMLNCdjUH+kRt8dxoChll3uqq2Qqjaqx5EVpuCAsZeYOFXxXkPrm16Vml41jTu8hjYveyZkRR8KPuNEw8m+rYXv3FQmb2ejz9jcqEotsUvJjthwhAYAAAALmJWVpHm5bM2N0Rtu2aXhjdWkON5jsK7UjPmyHb5FP748Q3lpvjN8Kur2qPjoy3K1VlPwga+T7m5J0j2XzNbn88/1GYtvSpFekrKS7P7uCgAAAABjbqhll4cb2nTH84eU+cUpYYoOCI26ngLlTrtAc/wV0I++HNJYLFPwKSkpUUlJiXp7/a89toq89ATzlZeoJP8nAwi6iZJrAITXhM81AZq+quVo6GMZRwI1Xh5OeUPbGESD8WCsco2/ZZfezhMyehoD3APAWLBMwaeoqEhFRUVqbW1VSgrTBAGMDXINgFCY0LlmiKav+rjpq+JH/poMVQxJS4xTbqpjTO4bKsM1Xh6OI9amtMS4gOP+ikI1Lj//jTCuTOhcA0wAlin4TBRxLeXSsUF/jJtomAcAACyi43hfseeqJ6XM2b5jrUekd74nTcr2e9dAhZnj7V269dk9gXehirVp2+oL/RZuht3Baoj7htJQjZdPRaDCVVpinByxNt21qcw0dkb8AWmG1Nwx8llFAICxR8EngtS21crlcfkdq2v+syQpb8cdUle3+YTYBCkhYyzDAwAACJ3M2VJOoe8xe99FL3+7lp5KUeeZby5SxqBZLP27UL1b2SyXn0JJeUPbsDtYudq7glrwOZ0ZRcFuvJyb6tC21Rf6jef9vQ1aXye1e3qC9nwAgOCh4BMhattqtXzzcrl73AHPcXi9ci++Xzr78+bBhAwpNW8MI0So2FvKpWODPnC2HglLLAAAhEOtzSZX65GBAk+/PccOSPK/a6kUuKgjjW4Gy98/7qdnpIdkFk8kzijKTXX4n/1UZZfqpPpWj/bWnDCNR8pyNwCYqCj4RAiXxyV3j1vrPrdOBSkFpvHqg2U6Z9vtaj/vPPPVLlhCb3y6Ogy78nbcKe0YNNjfs+BkvTSoAR4AAFYysK3zO9/zO254Y3X/ZZ/Wwqnmz0ujKTAMNYPldB53tIZamjXUbKRwNF5OtPd9lXh21xHdv+NN03ikLHcDgImKgk+EKUgpMHW0l6S4hGY5e3tVHoaYEBpJ2TP0Ze9DcvS0mMayo/ZLekPNzY1SfqgjAwAgdE5lW+eFXywI+rKlSCtK+FuaNdxspOEaLwdbekLfc933mQTlZfvGWt3s1ne3Hgv6cjcAwKmj4ANEiNxUh55d/Y8B1si/qHfr3mCNPABgwojtSpO3M9fnWG9n27ja1jnYu3sNNxsp5EuoPt4tLfu99ZrV9X2foVmSttntqm77tCR2fwIwsUTKzoYUfIAIMtwaeQAArK5/x6cfbz2gQ53mQkGoZ7GM1lj14omo2Uj9u6Vd9TMpOd9nqPpQmfJ23ClbZ3Po4wKAMIm0nQ0p+AAAACBi9M9mveH8fJ037wLT+HhpBHwqvXgss9xp8mxTj0FPY+h7CgFAuEXazoYUfIBx5KPOOu0/vt90PM2eJmeSMwwRAQAwNrKT7UHt0xMuwd4mHRgPql0d8g7auS0cjcWBcIikVRsUfIBxIDkmSQ6vVxuqNmpD1UbTuCPGoc3LN1P0AQAAQNhYZUkmYBUUfIBxYHJcujZ/VKu/LP0P5c0u9BmrOFGh4jeK5fK4KPgAABAG/mYuTKTZDBUnKkzHqjuqlGizhSEahJNVlmQCVhFxBZ/q6mrdcMMNamhoUExMjL73ve/p6quvDndYQNg5e3vVnjBNswatkQcAAOERadukh1qaPU2OGIeK3yj2O+6Y6tS9rfvVdTzd7325UGVdVlmSCYx3EVfwiYmJ0YYNG1RYWKi6ujotWLBAX/rSl5SYmBju0EKj8aDkMTd4sreUhyEYAAAABBJx26SHmDPJqc3LN8vlcZnG9u1/U+vLH9GDFT+VKn5qGmc5OgCMvYgr+DidTjmdfYl/ypQpyszMVHNzs/ULPifr+/73xZulrm7TcJ6kDsOu3njzFRIAAACER0Rtkx4GziSn36JNXHIzy9EBwI+4k9XSsTLzQEKGlJoX1OcaccFn586dWr9+vfbs2aPa2lq99NJLuvLKK33OKSkp0fr161VXV6f58+frpz/9qRYtWjTi4Pbs2aPe3l7l5QX3l45InR93sb/4e9K0C03D5Y1tuvG/DuuJpNwQBwYAABB8dVWH1OaqNx0/WXs4DNFgLLAcHQA+4bUnS5Ky31svvf198wmxCVLR7qAWfUZc8Glvb9f8+fP1zW9+U1dddZVpfNOmTVq1apVKS0u1ePFibdiwQcuWLdOBAweUlZUlSSosLFRPj3nv+d///vfKycmRJDU3N+vGG2/Uk08+OdIQx7fU6VJOoelwp3FCx3TCfD4AAMA4U1d1SMk//6ymRHlMY11xsVKuUwnJzGoGAFhHj6OvHlK95FHNmT6oEN50UHpxpdRxPLwFn8suu0yXXXZZwPGHHnpIK1eu1E033SRJKi0t1SuvvKKnnnpK3/nOdyRJZWVlQz6Hx+PRlVdeqe985zv6zGc+M+y5Hs8nHxZaW1tP8TcBgFNHrgEQChMl17S56jUlyqP3zvuhUqfP8xmr7qiSDq5TxpRpYYoudCbC7l7VzW511vhetKxstdbvOB5NlFwDRKKu1Fl+J3mMhaD28Onq6tKePXtUXPxJp/7o6GgtXbpUu3btOqXHMAxD3/jGN3TxxRfrhhtuGPb8devWae3ataOOGQBOBbkGQChMtFyTOn2eZs333bq56/h+6WCYAgqRibC7V7IjVpL0498f0L6tvk2to+NrlDhDajjp0ZyMcESHiZZrgIkqqAWfpqYm9fb2Kjs72+d4dna2Pvzww1N6jLfeekubNm3SOeeco5dfflmS9Oyzz+pTn/qU3/OLi4u1atWqgZ9bW1snRs8fACFFrgEQCuSaiWEi7O6VlWSXJD1ybaE6M30/x+888mc9Xi6ddJs3KkFokGuAiSHidum64IIL5PV6T/l8u90uu90+hhGFVrWrQ94ac68eq03vBcYbq+UaAJGJXDNxTJTdvWZNTpJyUnyOVbYmhCka9CPXABNDUAs+mZmZstlsqq/33XGhvr5eU6ZMCeZTmZSUlKikpES9vb1j+jxjpbmj7wrPj7ce0KHOFL/nWGF6LzDejfdcA2B8INcACIVR55qW6r7msoPEnawOUmQAgiGoBZ+4uDgtWLBA27dvH9iq3ev1avv27br99tuD+VQmRUVFKioqUmtrq1JS/BdMIlm7p2/XshvOz9d58y7we44VpvcC4914zzUAxoeJkGtqbTYd7qjq69nzdypOVIQpImDiGVWuaamWShZJ3R2moeyPd9nr334aQHiNuODT1tam8vLygZ8rKytVVlam9PR0TZs2TatWrdKKFSu0cOFCLVq0SBs2bFB7e/vArl0YWnayXfNyrfnBDgAAQJIau5r1T1Odch9c57dBsyPGoTR7WugDAzC8juN9xZ6rnpQyZ/sMVR/dLx1cN7D9NIDwGnHB57333tOSJUsGfu5v9rVixQo9/fTTuuaaa9TY2Kj7779fdXV1Kiws1JYtW0yNnIONqc+YCIba2nSoK6Jp9jQ5k5xjGttEQa4BEApWzzWtPW1yR0frrmk36fxzLjWN83fLQprMFb24lnI/JyIcRptram02ueLiJLtvu4nK2NhghgfgNI244HPRRRfJMIwhz7n99tvHfAnXYBNh6jMmrqG2No2KaVHizFgVv1Ec8P6OGIc2L9/Mh+cgINcACIWJkmumxk/RnIw54Q4DYyEhQ4pNkF5caRrK+3jZT4y7IQyB4e+NJtfUupu0fKpT7ne+53fc8MZqUpx18xZwumraj2r/8STfg61HlGazKdjf1iJuly4AZv1bm5ZemiRPqu8f0OrmOBVvv0nfvX6xZmYlme5bcaJCxW8Uy+VxUfABAAChkZonFe3229i3fu9WqfY5RXtawxAYTtfhE81yR0cr49jFqvLMNY3boybpjIxpYYgMiGyT4lJkeGNVsu9BlewzjzumOrXZ3RTUoo9lCj5Wn/qMCe7jq2R5O+40Dc2S9EebXdXRr+lMrpKOOXINgFAg18ASUvP6boN0Hd0v1YYhHpiMJtf0bzbzzfMKdd68q0zjbDQD+JcZP0Xth1fr3stylZee4DPWUPemNlRtlKu7jYKPPxNl6jMmqCGuklUfKlPejjtl62wOQ2ATD7kGQCiQawCEwunkGjabAUYmLTFO8VEZ+tFv2yW1+4ydEX9CmiE1d3T5v/MoWabgA1hegKtknsa2MAQDAAAAADhVuakObVt9oVzt5qLO+3sbtL7ukxl0wULBBwAAAAAAYIzlpjr8LnmsqbJLdcF/vujgP2R4lJSUaM6cOfr0pz8d7lAAWBi5BkAokGsAhAK5BrA2yxR8ioqKtH//fr377rvhDgWAhZFrAIQCuQYTwUedddp/fL/fW20bXZ1DgVwDWBtLugAAAACETHJMkhxerzZUbdSGqo1+z3HEOLR5+WY5k4K5Xw0ATCwUfAAAAACEzOS4dG3+qFZ/WPQTpU2baxqvaT+qkn0PyuVxUfABgNNAwQcAAABAyCQ7YpXV26tNr7Vrn9FoGo+OdylxhtRw0qM5GWEIEAAswjIFn5KSEpWUlKi3tzfcoQyptq1WLo/LdPyjzjFoyQ0g6MZLrgEwvlkl19S0uP1uP1vf6glDNIgUWUl2SdIj1xaqM/NTpvGdR/6sx8ulk+7uUIc24Vgl1wDwzzIFn6KiIhUVFam1tVUpKSnhDsev2rZaLd+8XO4et99xh9er5JikEEcFYCTGQ64BMP5ZIdfUtLi19JGX5TFOmsam2fdJOVKi3TIfRTEKsyYnSTnm93dla0IYopmYrJBrAATGX9kQcnlccve4VTT3fuUmTvcdq9qnS3avVvt56WGKDgAAIHgOHa+Sbdp6JUabZ2kcV9+FrpkpfO4BAGCsUPAJoYaTfdOXf/Q7l7ydvlcu5ka160Z7rxocseEIDQAAIKhOdp1QVHS3iuber8/PGNSYt/Gg0l74ppyOzPAEBwDABEDBJ4T61yHfc8lsfT7/XJ+x+KYU6aVP1jQDAABYQW7idM3JmON70NMl0TMEAIAxRcEnDPLSEzQvd9Aa2Sh69wAAAAAAgOCwTMGHDvOY6Kqb3eqsOWE6XtnaFoZorItcAyAUyDUAQoFcA1ibZQo+dJjHRJX8cd+nH//+gPZtNW99Gx1fo8QZfT2k5mSEOjrrIdcACAVyDYBQINcA1maZgg8wUfX3fXrk2kJ1Zn7KNL7zyJ/1ePknPaQAAAAAANZHwScM4lrKpWNxvgebDoYnGFjGrMlJUo75ykxla4KfswEAAMIswOffuJbyEAcCANZEwSeEYtwNkqS8HXdIXX5mW8QmSAmsuQEAAICFJWT0fe59caXf4by4WCnXOfDZGQAwOhR8Qija0ypJql94r+bMW2Y+ISFDSs0LcVSwDK6SAQCA8SA1TyraLXUc9ztcv3erVPucGhsbtdfPhhRpiXHKTXWMdZQAMO5R8AmDrkl5Uk5huMOAVXCVDAAAjDepeQEvdMbWHZRqpWd3HdH9O940jTtibdq2+kKKPgAwDAo+wHh3ilfJ+meYAQAARLL0hL5el/csO1O50y7wGStvaNNdm8rkau+i4AMAw7BMwaekpEQlJSXq7e0NdyhA6A1xlazr6H6pNsTxWBi5BkAokGsAKS8tQXNy2Sp8LJFrAGuzTMGnqKhIRUVFam1tVUoKfxgAjA1yDYBQGC+5pratVi6Py+9YTfvREEcDYKTGS64BMDqWKfgAAAAgdGrbarV883K5e9wBzzG8sZoUx5dIAADCgYIPMEHEnayWjpWZB9gdDgAwCi6PS+4et+6adpOmxk8xjde3evTYG23K/KJ5DAAAjD0KPoDFee3JkqTs99ZLb3/ffEJsQl/TZ4o+AIAROF5XJUk6f9f3Naer2+85X7XZ1dp7qSRm+QAAEGoUfMZAoPXsH3XWhSEaTHQ9jixJ0q7z75OcBb6DLUeV9oe1cnYcp+ADABiRjtZmSdL+s+5U3MwlpnF7S7nydtyphJY/SzHtvoNNB0MRIgAAExoFnyAbbj27w+tVckxSiKPCRDYpLkWGN1YbqjZqQ5V53DHVqc3uJjlDHxoAwAImOWdq1vwLzAMt06U3E6QXV/q/Y2xC37JiAAAwJij4BFn/evZ1n1unghTf2RTVB8t0zrbb1X5eepiiw0SUGT9F7YdX69Hrz9DMLN9iY8WRHSreWypXdxsFHwBAcKXm9S0Z7jjuf5wecgAAjCkKPqMUaNlWxYkKSVJBSoHmZMzxGYtLaJazt1flIYkQ+ITRk6rezlx5O30LPrFdaWGKCAAwXtS0uOVq7zIdr2/1DH/n1DyKOhi1ivYa6fh+n2OVrW2KimkJT0AAMM5Q8BmFYZdtxTiUZueLNCJDWmKcHLE23bWpzDR2RvwBaYbU3GH+IA8AQE2LW0t/8rrc3b2msTPij0gzpEQ7HycRXGmxSXJ4vSreWyrtLTWNJ86MVVPnQtEMHACGxl/oURhq2ZYkpdnT5ExigQwiQ26qQ9tWX+j36uz7exu0vk5q9/SEITIAQKRztXfJ3d2rDdcUatagZcE1VSd0z0EpPSEuTNHBqpyOTG3+qFauq5+SJs/2GdtZuU8l+x7Uya4TYYoOAMYPyxR8SkpKVFJSot5e8xWoseJv2RYQiXJTHcpNdZiO11TZJTaPG5Fw5BoAE0+k5ZpZWUmal+s7myL6ZEKYosFE4OztlTM5Xxr0WftwQ1t4ArKoSMs1AIIrOtwBBEtRUZH279+vd999N9yhALAwcg2AUCDXAAgFcg1gbZYp+AAAAAAAAKCPZZZ0RZSWar9bkNpb2J8LAAAAAACMPQo+wdZSLZUskro7TEN5kjoMu3rj00MfFwAAAAAAmDAo+ARbx/G+Ys9VT0qZvrsKlDe26cb/OqwnknLDFBwAAAAAAJgIKPiMlczZUk6hz6FO44SOiS0kAQAAgGE1HTQdivu4RUJ1c4f21pg/V6clxvndmRQAJiIKPgAAAAAiR0KGFJsgvbjSNJQXFyvlOvXMH3brR53tpnFHrE3bVl9I0QcARMEHAAAAQCRJzZOKdvvdBEVVr0sHfqYHl01V7rQLfIbKG9p016Yyudq7KPgAgCj4AAAAAIg0qXl9t8Faj0iS8tISNCc3JbQxAcA4Q8HnNBxuaJO303ftcHxTm2apr0Fzp+E7Vt7QFsLoAAAAAGuqaK+Rju/3OVbZ2qaomJbwBAQAEYiCzyg0nPRIku7cVCZvZ6PP2NyoSr1il+78VZn2GeZGco5Ym9IS40ISJwAAAGAlabFJcni9Kt5bKu0tNY0nzoxVU+dCScz+AYCIK/i0tLRo6dKl6unpUU9Pj+68806tXGlu2BZOJ93dkqR7Lpmtz+ef6zMW35QivSQ9cm2hOjM/ZbovOwcAAAAAo+N0ZGrzR7VyXf2UNHm2z9jOyn0q2fegTnaxKy4ASBFY8Jk0aZJ27typhIQEtbe3a968ebrqqquUkZER7tBM8tITNG/w2uGoJEnSrMlJUg5XFgAAAIBgcvb2ypmcL2XM8Tl+mPYJAOAjOtwBDGaz2ZSQkCBJ8ng8MgxDhmGEOSoAAAAAAIDxY8QFn507d+orX/mKcnJyFBUVpZdfftl0TklJifLz8xUfH6/Fixdr9+7dI3qOlpYWzZ8/X1OnTtW9996rzMzMkYYJAAAAAAAwYY244NPe3q758+erpKTE7/imTZu0atUqrVmzRu+//77mz5+vZcuWqaGhYeCcwsJCzZs3z3Q7duyYJCk1NVUffPCBKisr9ctf/lL19fWj/PUAAAAAAAAmnhH38Lnssst02WWXBRx/6KGHtHLlSt10002SpNLSUr3yyit66qmn9J3vfEeSVFZWdkrPlZ2drfnz5+uNN97QV7/6Vb/neDweeTyegZ9PnOhr0tba2npKzzEaHW1t6nX3qqOtzfw8J9skj9H3v2MYAxAM7e0d6nX3qr29Y0z/zQTS/5zjYdnm6eSacL/OgBWN5N/VRMk1Y6HtZKu8ng61nWxVa2uU71hb33+DtjZyG0JoiM/aQ35GD4GJkmv4XAME35h9rjFOgyTjpZdeGvjZ4/EYNpvN55hhGMaNN95oXHHFFaf0mHV1dUZra6thGIbR0tJizJ071/jLX/4S8Pw1a9YYkrhx4zaOb9XV1SPOP6FGruHGbfzfyDXcuHELxY1cw40bt1DcTiXXRBnG6EvQUVFReumll3TllVdKko4dO6bc3Fy9/fbbOv/88wfO+5d/+Re9/vrreuedd4Z9zN27d+vb3/72QLPmoqIi3XLLLQHPH1yd9nq9am5uVkZGhqKiogLeL5xaW1uVl5en6upqJScnhzuccYHXbOTGw2tmGIZOnjypnJwcRUdHXA95H+SaiYHXbOTGw2tGrhlb4+E9EGl4zUZuPLxm5JqxNx7eB5GE12vkxsNrNpJcE3Hbsi9atOiUl3xJkt1ul91u9zmWmpoa3KDGSHJycsS+iSIVr9nIRfprlpKSEu4QTgm5ZmLhNRu5SH/NyDVjL9LfA5GI12zkIv01I9eERqS/DyINr9fIRfprdqq5Jqil58zMTNlsNlOT5fr6ek2ZMiWYTwUAAAAAAIAAglrwiYuL04IFC7R9+/aBY16vV9u3b/dZ4gUAAAAAAICxM+IlXW1tbSovLx/4ubKyUmVlZUpPT9e0adO0atUqrVixQgsXLtSiRYu0YcMGtbe3D+zahb4plGvWrDFNo0RgvGYjx2sG3gMjx2s2crxm4D0wcrxmI8drBon3wUjxeo2c1V6zETdtfu2117RkyRLT8RUrVujpp5+WJP3Hf/yH1q9fr7q6OhUWFurRRx/V4sWLgxIwAAAAAAAAhnZau3QBAAAAAAAg8kT2foEAAAAAAAAYMQo+AAAAAAAAFkPBBwAAAAAAwGIo+ESA/Px8RUVF+dx+8IMfhDusiFFSUqL8/HzFx8dr8eLF2r17d7hDilgPPPCA6b101llnhTssRAhyzfDIN6eGXIOhkGuGR645NeQaDIVcMzxyzamxcq4Z8bbsGBsPPvigVq5cOfDzpEmTwhhN5Ni0aZNWrVql0tJSLV68WBs2bNCyZct04MABZWVlhTu8iDR37lxt27Zt4OeYGP6Z4xPkmsDINyNDrsFQyDWBkWtGhlyDoZBrAiPXjIxVcw0zfCLEpEmTNGXKlIFbYmJiuEOKCA899JBWrlypm266SXPmzFFpaakSEhL01FNPhTu0iBUTE+PzXsrMzAx3SIgg5JrAyDcjQ67BUMg1gZFrRoZcg6GQawIj14yMVXMNBZ8I8YMf/EAZGRk699xztX79evX09IQ7pLDr6urSnj17tHTp0oFj0dHRWrp0qXbt2hXGyCLboUOHlJOTo4KCAl1//fWqqqoKd0iIIOQa/8g3I0euwVDINf6Ra0aOXIOhkGv8I9eMnFVzjTXmKY1zd9xxh8477zylp6fr7bffVnFxsWpra/XQQw+FO7SwampqUm9vr7Kzs32OZ2dn68MPPwxTVJFt8eLFevrpp3XmmWeqtrZWa9eu1ec+9znt3buXKa4g1wyBfDMy5BoMhVwTGLlmZMg1GAq5JjByzchYOtcYGBP/+q//akga8va3v/3N731//vOfGzExMUZnZ2eIo44sNTU1hiTj7bff9jl+7733GosWLQpTVOOLy+UykpOTjZ/97GfhDgVjhFwTHOSb00OusT5yTXCQa04Pucb6yDXBQa45PVbKNczwGSOrV6/WN77xjSHPKSgo8Ht88eLF6unp0ZEjR3TmmWeOQXTjQ2Zmpmw2m+rr632O19fXa8qUKWGKanxJTU3V7NmzVV5eHu5QMEbINcFBvjk95BrrI9cEB7nm9JBrrI9cExzkmtNjpVxDwWeMTJ48WZMnTx7VfcvKyhQdHT3hu6fHxcVpwYIF2r59u6688kpJktfr1fbt23X77beHN7hxoq2tTYcPH9YNN9wQ7lAwRsg1wUG+OT3kGusj1wQHueb0kGusj1wTHOSa02OlXEPBJ8x27dqld955R0uWLNGkSZO0a9cu3X333fr617+utLS0cIcXdqtWrdKKFSu0cOFCLVq0SBs2bFB7e7tuuummcIcWke655x595Stf0fTp03Xs2DGtWbNGNptN1113XbhDQ5iRa4ZHvjl15BoEQq4ZHrnm1JFrEAi5ZnjkmlNn5VxDwSfM7Ha7fvWrX+mBBx6Qx+PRjBkzdPfdd2vVqlXhDi0iXHPNNWpsbNT999+vuro6FRYWasuWLaYGZOjz0Ucf6brrrtPx48c1efJkXXDBBfrTn/406islsA5yzfDIN6eOXINAyDXDI9ecOnINAiHXDI9cc+qsnGuiDMMwwh0EAAAAAAAAgic63AEAAAAAAAAguCj4AAAAAAAAWAwFHwAAAAAAAIuh4AMAAAAAAGAxFHwAAAAAAAAshoIPAAAAAACAxVDwAQAAAAAAsBgKPgAAAAAAABZDwQcAAAAAAMBiKPgAAAAAAABYDAUfAAAAAAAAi6HgAwAAAAAAYDEUfAAAAAAAACyGgg8AAAAAAIDFUPABAAAAAACwGAo+AAAAAAAAFkPBBwAAAAAAwGIo+AAAAAAAAFgMBR8AAAAAAACLoeADAAAAAABgMRR8AAAAAAAALIaCDwAAAAAAgMVQ8AEAAAAAALAYCj4AAAAAAAAWQ8EHAAAAAADAYij4AAAAAAAAWAwFHwAAAAAAAIuh4AMAAAAAAGAxFHwAAAAAAAAshoIPAAAAAACAxVDwAQAA49YDDzygqKiocIcxrNdee01RUVF67bXXhj33oosu0kUXXTTw85EjRxQVFaWnn356zOIDAADWQ8EHAABgnHn11Vf1wAMPhDsMAAAQwWLCHQAAAIDVff7zn5fb7VZcXNyI7zt9+nS53W7FxsYOHHv11VdVUlJC0QcAAATEDB8AAABJhmHI7XaPyWNHR0crPj5e0dEj/+gVFRWl+Ph42Wy2MYgMAABYFQUfAAAg6ZN+OB9++KG+9rWvKTk5WRkZGbrzzjvV2dk5cN4f/vAHXXDBBUpNTVVSUpLOPPNM3XfffT6P5fF4tGbNGs2aNUt2u115eXn6l3/5F3k8noFzhupNExUVZZq98uabb+rTn/604uPjNXPmTP3nf/6n39+jp6dH//Zv/6aZM2fKbrcrPz9f9913n89zS1J+fr6+/OUva+vWrVq4cKEcDsfAY27cuFEXX3yxsrKyZLfbNWfOHD3++OOm5+p/jN///vcqLCxUfHy85syZoxdffNHnvEA9fJ544gnNnDlTDodDixYt0htvvGF6jsGv0ze+8Q2VlJQMvE79N8MwlJ+fr+XLl5seo7OzUykpKbrlllv8vmYAAMB6WNIFAAB8fO1rX1N+fr7WrVunP/3pT3r00Uflcrn0i1/8Qvv27dOXv/xlnXPOOXrwwQdlt9tVXl6ut956a+D+Xq9XV1xxhd588019+9vf1tlnn62//vWvevjhh3Xw4EG9/PLLI47pr3/9q774xS9q8uTJeuCBB9TT06M1a9YoOzvbdO7NN9+sZ555Rl/96le1evVqvfPOO1q3bp3+9re/6aWXXvI598CBA7ruuut0yy23aOXKlTrzzDMlSY8//rjmzp2rK664QjExMfrtb3+r2267TV6vV0VFRT6PcejQIV1zzTW69dZbtWLFCm3cuFFXX321tmzZoksuuSTg7/Tzn/9ct9xyiz7zmc/orrvuUkVFha644gqlp6crLy8v4P1uueUWHTt2TH/4wx/07LPPDhyPiorS17/+df3oRz9Sc3Oz0tPTB8Z++9vfqrW1VV//+teHfqEBAIB1GAAAAIZhrFmzxpBkXHHFFT7Hb7vtNkOS8cEHHxgPP/ywIclobGwM+DjPPvusER0dbbzxxhs+x0tLSw1JxltvvWUYhmFUVlYakoyNGzeaHkOSsWbNmoGfr7zySiM+Pt44evTowLH9+/cbNpvN+PuPM2VlZYYk4+abb/Z5vHvuuceQZPzxj38cODZ9+nRDkrFlyxbT83d0dJiOLVu2zCgoKPA51v8Y//M//zNw7MSJE4bT6TTOPffcgWM7duwwJBk7duwwDMMwurq6jKysLKOwsNDweDwD5z3xxBOGJOPCCy8cOObvdSoqKjL8fYw7cOCAIcl4/PHHfY5fccUVRn5+vuH1ek33AQAA1sSSLgAA4GPwDJZ//ud/ltTXKDg1NVWStHnzZnm9Xr/3f+GFF3T22WfrrLPOUlNT08Dt4osvliTt2LFjRPH09vZq69atuvLKKzVt2rSB42effbaWLVvmc+6rr74qSVq1apXP8dWrV0uSXnnlFZ/jM2bMMD2GJDkcjoH/f+LECTU1NenCCy9URUWFTpw44XNuTk6O/uEf/mHg5+TkZN14443685//rLq6Or+/03vvvaeGhgbdeuutPo2cv/GNbyglJcXvfU7F7NmztXjxYj3//PMDx5qbm/W///u/uv7668fFFvYAACA4KPgAAAAfZ5xxhs/PM2fOVHR0tI4cOaJrrrlGn/3sZ3XzzTcrOztb1157rX7961/7FH8OHTqkffv2afLkyT632bNnS5IaGhpGFE9jY6PcbrcpLkkDS7D6HT16VNHR0Zo1a5bP8SlTpig1NVVHjx71OT5jxgy/z/nWW29p6dKlSkxMVGpqqiZPnjzQp2hwwWfWrFmmQkr/73rkyBG/j98fx+DfKTY2VgUFBX7vc6puvPFGvfXWWwPP8cILL6i7u1s33HDDaT0uAAAYX+jhAwAAhvT3xQyHw6GdO3dqx44deuWVV7RlyxZt2rRJF198sX7/+9/LZrPJ6/XqU5/6lB566CG/j9ffnybQbJPe3t6gxjyUv5/J0+/w4cP6whe+oLPOOksPPfSQ8vLyFBcXp1dffVUPP/xwwJlNkeLaa6/V3Xffreeff1733XefnnvuOS1cuNBUHAMAANZGwQcAAPg4dOiQz8yX8vJyeb1e5efnS+rbYvwLX/iCvvCFL+ihhx7S97//fX33u9/Vjh07tHTpUs2cOVMffPCBvvCFLwxZeElLS5MktbS0+BwfPAtn8uTJcjgcOnTokOkxDhw44PPz9OnT5fV6dejQIZ199tkDx+vr69XS0qLp06cP+/v/9re/lcfj0W9+8xufJWSBlqKVl5fLMAyf3/XgwYOSNPCaDdYfx6FDhwaWuklSd3e3KisrNX/+/CFjHOp1TU9P1+WXX67nn39e119/vd566y1t2LBhyMcDAADWw5IuAADgo3/L734//elPJUmXXXaZmpubTecXFhZK0sC251/72tdUU1OjJ5980nSu2+1We3u7pL5eN5mZmdq5c6fPOY899pjPzzabTcuWLdPLL7+sqqqqgeN/+9vftHXrVp9zv/SlL0mSqcDRP9vo8ssvN//Cg9hsNkmSYRgDx06cOKGNGzf6Pf/YsWM+u3+1trbqF7/4hQoLCzVlyhS/91m4cKEmT56s0tJSdXV1DRx/+umnTQUwfxITEyWZi2X9brjhBu3fv1/33nuvbDabrr322mEfEwAAWAszfAAAgI/KykpdccUVuvTSS7Vr1y4999xz+qd/+ifNnz9fd911l3bu3KnLL79c06dPV0NDgx577DFNnTpVF1xwgaS+YsOvf/1r3XrrrdqxY4c++9nPqre3Vx9++KF+/etfa+vWrVq4cKGkvi3Uf/CDH+jmm2/WwoULtXPnzoHZMX9v7dq12rJliz73uc/ptttuU09Pj376059q7ty5+stf/jJw3vz587VixQo98cQTamlp0YUXXqjdu3frmWee0ZVXXqklS5YM+/t/8YtfVFxcnL7yla/olltuUVtbm5588kllZWWptrbWdP7s2bP1rW99S++++66ys7P11FNPqb6+PmCBSOrr1fPv//7vuuWWW3TxxRfrmmuuUWVlpTZu3HhKPXwWLFggSbrjjju0bNkyU1Hn8ssvV0ZGhl544QVddtllysrKGvYxAQCAxYR7mzAAABAZ+rdl379/v/HVr37VmDRpkpGWlmbcfvvthtvtNgzDMLZv324sX77cyMnJMeLi4oycnBzjuuuuMw4ePOjzWF1dXcYPf/hDY+7cuYbdbjfS0tKMBQsWGGvXrjVOnDgxcF5HR4fxrW99y0hJSTEmTZpkfO1rXzMaGhpM27IbhmG8/vrrxoIFC4y4uDijoKDAKC0tHYj573V3dxtr1641ZsyYYcTGxhp5eXlGcXGx0dnZ6XPe9OnTjcsvv9zva/Gb3/zGOOecc4z4+HgjPz/f+OEPf2g89dRThiSjsrLS9Bhbt241zjnnHMNutxtnnXWW8cILL/g83uBt2fs99thjxowZMwy73W4sXLjQ2Llzp3HhhRcOuy17T0+P8c///M/G5MmTjaioKL9btN92222GJOOXv/yl398RAABYW5Rh/N18ZQAAMGE98MADWrt2rRobG5WZmRnucMaF/Px8zZs3T7/73e/CHYrJ3XffrZ///Oeqq6tTQkJCuMMBAAAhRg8fAAAAi+ns7NRzzz2nf/zHf6TYAwDABEUPHwAAAItoaGjQtm3b9N///d86fvy47rzzznCHBAAAwoSCDwAAgEXs379f119/vbKysvToo48O7KAGAAAmHnr4AAAAAAAAWAw9fAAAAAAAACyGgg8AAAAAAIDFUPABAAAAAACwGAo+AAAAAAAAFkPBBwAAAAAAwGIo+AAAAAAAAFgMBR8AAAAAAACLoeADAAAAAABgMRR8AAAAAAAALOb/Afx/TzL80/RkAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -635,7 +464,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "venv312wsl", "language": "python", "name": "python3" }, @@ -649,12 +478,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.1" - }, - "vscode": { - "interpreter": { - "hash": "5c7b89af1651d0b8571dde13640ecdccf7d5a6204171d6ab33e7c296e100e08a" - } + "version": "3.12.3" } }, "nbformat": 4, diff --git a/meson.build b/meson.build index d2e0bfb6..035ca51b 100644 --- a/meson.build +++ b/meson.build @@ -330,6 +330,109 @@ foreach ver, cfg : dpm_cfg endforeach endforeach +# ── FLUKA block -------------------------------------------------------- +if 'fluka' in enabled_models + # assign environment variable from $FLUPRO, check that the directory it is pointing to exists + fluprod = run_command('sh', '-c', 'echo ${FLUPRO:-}', check: true).stdout().strip() + if fluprod == '' + error('FLUKA: Environment variable FLUPRO not set.') + endif + # Check if directory exists using shell command + dir_check = run_command('sh', '-c', 'test -d "' + fluprod + '" && echo "exists" || echo "missing"', check: true).stdout().strip() + if dir_check != 'exists' + error('Directory set by FLUPRO does not exist: ' + fluprod) + endif + fluprod_inc = fluprod + '/flukapro' + fluprod_aamod = fluprod + '/aamodmvax' + + # Read DPMVERS from the file + dpm_version = run_command('sh', '-c', 'grep "DPMVERS=" ' + + meson.project_source_root() + + '/../FLUKA/interface/dpmvers | cut -d= -f2', check: true).stdout().strip() + message('FLUKA DPM Version: ' + dpm_version) + + flka_src = [ + f/'fluka/chromo_fluka.f', + logging_src + ] + common_inc += [fluprod_inc, fluprod_aamod] + + # Find FLUKA library directories + fluka_lib_dir = fluprod + + # Extract all object files from all FLUKA archives and create a combined static library + # Only rebuild when input libraries change + + # Inputs + tmp_dir = meson.current_build_dir() / 'fluka_temp_objects' + lib_dpm = fluka_lib_dir / 'interface' / ('libdpmjet' + dpm_version + '.a') + lib_rqmd = fluka_lib_dir / 'latestRQMD' / 'librqmd.a' + lib_hp = fluka_lib_dir / 'libflukahp.a' + lib_dpmx = fluka_lib_dir / 'libdpmmvax.a' + lib_rqmx = fluka_lib_dir / 'librqmdmvax.a' + + cmd_script = ''' + tmp="@0@" + rm -rf "$tmp"; mkdir -p "$tmp" + cd "$tmp" + ar x "@1@" + ar x "@2@" + ar x "@3@" + ar x "@4@" + ar x "@5@" + ar crs "@OUTPUT@" $(find . -name '*.o' -print) + '''.format(tmp_dir, lib_dpm, lib_rqmd, lib_hp, lib_dpmx, lib_rqmx) + + fluka_all = custom_target('fluka_all', + input : [lib_dpm, lib_rqmd, lib_hp, lib_dpmx, lib_rqmx], + output : ['fluka_all.a'], + command: ['sh', '-ceu', cmd_script], + depend_files: [lib_dpm, lib_rqmd, lib_hp, lib_dpmx, lib_rqmx], + build_by_default: false + ) + fluka_all_dep = declare_dependency(link_args: [tmp_dir / 'fluka_all.a']) + + # Prepare include flags for F2PY wrapper generation + inc_flags = [] + foreach d : common_inc + if not d.startswith(meson.project_source_root()) + d = meson.project_source_root() / d + endif + inc_flags += '-I' + d + endforeach + inc_str = ' '.join(inc_flags) + + # Symbols + fluka_syms = [ + 'chromo_evtxyz', 'chromo_stpxyz', 'chromo_sgmxyz', 'chromo_fllhep', + 'fluka_key', 'random_direction', + 'icode_from_pdg', 'pdg_from_icode', + 'init_rng_state', 'load_rng_state', 'save_rng_state', + 'fluka_rand', 'icode_from_pdg_arr', 'charge_from_pdg_arr', + 'fluka_particle_scheme' + ] + + wrap = custom_target('_fluka'+'_wrap', + output : ['_fluka'+'module.c', '_fluka'+'-f2pywrappers.f', '_fluka'+'.pyf'], + input : flka_src, + command: [py,scripts_dir + 'generate_f2py.py', '_fluka', ','.join(fluka_syms+common_syms), + meson.global_build_root()/'meson-logs', inc_str, ' '.join(common_fargs), + '@OUTDIR@','@INPUT@'], + build_by_default:true) + + py.extension_module('_fluka', + sources : [wrap, f2py_obj, files(flka_src + rangen_src + [normal_src])], + include_directories: include_directories(common_inc), + dependencies : [py_dep, numpy_dep, fluka_all_dep], + c_args : common_cargs, + fortran_args : common_fargs + ['-DCHROMO', '-DDPMVER=' + dpm_version], + subdir : 'chromo/models', + install : true, + install_rpath : rpath_tok, + build_rpath : rpath_tok, + ) +endif + # ── PYTHIA 8 block (unchanged) ---------------------------------------- cpp_dir = 'src/cpp' if 'pythia8' in enabled_models diff --git a/pyproject.toml b/pyproject.toml index 1de0be5c..0d67770d 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -71,6 +71,13 @@ examples = [ [tool.chromo] # Enabled models enabled-models = [ + "sib21", + "sib23c01", + "sib23d", + "sib23d_star", + "sib23e", + "sib23e_star", + "sib23c01", "eposlhc", "eposlhcr", "dpmjet_phojet191", @@ -81,18 +88,12 @@ enabled-models = [ "qgs2_03", "qgs2_04", "qgs3", - "sib21", - "sib23c01", - "sib23d", - "sib23d_star", - "sib23e", - "sib23e_star", - "sib23c01", "sophia", "pythia6", "urqmd34", ] disabled-models = [ + "fluka", ] [tool.mypy] diff --git a/src/chromo/common.py b/src/chromo/common.py index fde92a0e..af11185d 100644 --- a/src/chromo/common.py +++ b/src/chromo/common.py @@ -423,6 +423,14 @@ def fw(self): """Quantity needed for invariant cross section histograms.""" return self.en / self.kin.pcm + @property + def name(self): + """Name of the particle according scikit-hep/pythia naming. + + Note that this is a slow convenience function for developing/debugging. + """ + return [Particle.from_pdgid(pid) for pid in self.pid] + def _prepare_for_hepmc(self): """ Override this method in classes that need to modify event @@ -768,8 +776,8 @@ def _check_kinematics(self, kin): raise ValueError(msg) if kin.ecm < self._ecm_min: msg = ( - f"center-of-mass energy {kin.ecm/GeV} GeV < " - f"minimum energy {self._ecm_min/GeV} GeV" + f"center-of-mass energy {kin.ecm / GeV} GeV < " + f"minimum energy {self._ecm_min / GeV} GeV" ) raise ValueError(msg) diff --git a/src/chromo/models/_extra_models.py b/src/chromo/models/_extra_models.py index f6dde03d..149ce1f5 100644 --- a/src/chromo/models/_extra_models.py +++ b/src/chromo/models/_extra_models.py @@ -1,4 +1,5 @@ from chromo.models.dpmjetIII import DpmjetIII193_DEV +from chromo.models.fluka import Fluka from chromo.models.sibyll import ( Sibyll23c00, Sibyll23c01, @@ -17,6 +18,7 @@ __all__ = ( "DpmjetIII193_DEV", "DpmjetIII193_DEV", + "Fluka", "Sibyll23c00", "Sibyll23c01", "Sibyll23c02", diff --git a/src/chromo/models/fluka.py b/src/chromo/models/fluka.py new file mode 100644 index 00000000..6173425e --- /dev/null +++ b/src/chromo/models/fluka.py @@ -0,0 +1,327 @@ +""" +FLUKA event generator interface. + +This module contains the implementation of the FLUKA event generator interface, +including FlukaEvent and FlukaRun classes. FLUKA uses PEANUT at low energies +for hh and hA interactions, and DPMJET-III at higher energies and for AA +interactions respectively. +""" + +import os +import pathlib +from enum import Enum + +import numpy as np +from particle import literals as lp + +from chromo.common import CrossSectionData, MCEvent, MCRun +from chromo.constants import GeV, TeV, standard_projectiles +from chromo.kinematics import EventFrame +from chromo.util import CompositeTarget, Nuclei, info, process_particle + +# ============================================================================= +# Constants and Enums +# ============================================================================= + + +class InteractionType(Enum): + """FLUKA interaction types for stpxyz, smgxyz, evtxyx.""" + + INELASTIC = 1 + ELASTIC = 10 + INELA_ELA = 11 + EMD = 100 + ENELA_EMD = 101 + ELA_EMD = 110 + INELA_ELA_EMD = 111 + + +# Default material components for FLUKA +_DEFAULT_MATERIALS = [ + 2212, # proton + "N14", + "O16", + "Ar40", + "Fe56", # common nuclei +] + + +# ============================================================================= +# Event and Run Classes +# ============================================================================= + + +class FlukaEvent(MCEvent): + """Wrapper class around FLUKA HEPEVT-style particle stack.""" + + def _get_charge(self, npart): + return self._lib.charge_from_pdg_arr(self._lib.hepevt.idhep[:npart]) + + def _history_zero_indexing(self): + pass + + def _prepend_initial_beam(self): + pass + + def _repair_initial_beam(self): + pass + + +class Fluka(MCRun): + """FLUKA event generator implementation.""" + + _name = "FLUKA" + _event_class = FlukaEvent + _frame = EventFrame.FIXED_TARGET + _projectiles = ( + standard_projectiles + | Nuclei() + | {lp.photon.pdgid, lp.e_plus.pdgid, lp.e_minus.pdgid} + ) + _targets = Nuclei() + _ecm_min = 0.1 * GeV + _ekin_max = 20 * TeV + _version = "2025.1" + _library_name = "_fluka" + + def __init__( + self, + evt_kin, + *, + seed=None, + interaction_type=InteractionType.INELASTIC, + max_momentum_p=1e11, + fluka_dpmjet_transition=-1.0, + transition_smearing=-1.0, + material_print=True, + enable_quasielastic=False, + rng_state_file=None, + ): + super().__init__(seed) + + # Validate FLUKA environment + if ( + "FLUPRO" not in os.environ + or not pathlib.Path(os.environ["FLUPRO"]).exists() + ): + raise RuntimeError( + "FLUPRO environment variable is not set or points to a " + "non-existing directory" + ) + + # Store configuration + self._interaction_type = interaction_type.value + self._max_momentum_p = max_momentum_p + self._fluka_dpmjet_transition = fluka_dpmjet_transition + self._transition_smearing = transition_smearing + self._material_print = material_print + + # Setup RNG + self._init_rng(rng_state_file, seed) + + # Configure quasielastic interactions + self._set_quasielastic(enable_quasielastic) + + if evt_kin.ekin >= self._ekin_max and not (self._fluka_dpmjet_transition > 0.0): + msg = ( + f"The maximal energy kinetic energy {evt_kin.ekin} GeV exceeds " + "FLUKA's maximal range without DPMJET" + ) + raise RuntimeError(msg) + + # Initialize materials and FLUKA + self._init_fluka_materials(evt_kin) + + self.kinematics = evt_kin + self._set_final_state_particles() + self._activate_decay_handler(on=True) + + def _init_rng(self, rng_state_file, seed): + """Initialize FLUKA random number generator.""" + if rng_state_file is None: + rng_state_file = pathlib.Path(__file__).parent / "fluka_rng_state.dat" + + self._rng_state_file = rng_state_file + self._logical_unit = 888 + + # Load existing state or create new one + pfile = pathlib.Path(self._rng_state_file) + if pfile.exists() and pfile.stat().st_size > 0: + self._lib.load_rng_state(self._rng_state_file, self._logical_unit) + else: + seed = 0 if seed is None else seed + self._lib.init_rng_state( + self._rng_state_file, self._logical_unit, seed, 0, 0 + ) + self._lib.save_rng_state(self._rng_state_file, self._logical_unit) + + def _set_quasielastic(self, enable): + """Configure quasielastic interactions.""" + self._lib.qelcmm.lxsqel = 0 # default 0 + self._lib.qelcmm.lpqels = 1 if enable else 0 # default 1 + self._lib.nucflg.lqecmp = 1 if enable else 0 # default 1 + + def _init_fluka_materials(self, evt_kin): + """Initialize FLUKA materials and setup.""" + # Prepare material lists + materials = [] + for mat in _DEFAULT_MATERIALS: + p = process_particle(mat) + if p not in materials: + materials.append(p) + + # Add target from kinematics + target = process_particle(evt_kin.p2) + if isinstance(target, CompositeTarget): + for comp in target.components: + if comp not in materials: + materials.append(comp) + elif target not in materials: + materials.append(target) + + # Build arrays for FLUKA initialization + nelements = np.array([1] * len(materials)) + charges = np.array([p.Z for p in materials]) + weights = np.array([1.0] * len(materials)) + + # Setup arguments + setup_args = [ + self._max_momentum_p, + self._fluka_dpmjet_transition, + self._transition_smearing, + self._interaction_type, + self._material_print, + ] + + # Initialize FLUKA + fluka_material_idcs = self._lib.chromo_stpxyz( + nelements, charges, weights, *setup_args + ) + + # Store material mapping + self._materials = materials + self._material_idcs = fluka_material_idcs + + def _get_material_index(self, particle): + """Get FLUKA material index for a particle.""" + p = process_particle(particle) + try: + idx = self._materials.index(p) + return self._material_idcs[idx] + except ValueError: + msg = f"{p} is not among initialized target materials" + raise KeyError(msg) + + def _cross_section(self, kin=None, max_info=False): + """Calculate cross sections for given kinematics.""" + kin = self.kinematics if kin is None else kin + projectile = self._fluka_pid(kin.p1) + target = self._get_material_index(kin.p2) + p_momentum = 0 # not used + + inel = self._lib.chromo_sgmxyz( + projectile, target, kin.ekin, p_momentum, InteractionType.INELASTIC.value + ) + el = self._lib.chromo_sgmxyz( + projectile, target, kin.ekin, p_momentum, InteractionType.ELASTIC.value + ) + + return CrossSectionData(inelastic=float(inel), elastic=float(el)) + + def _set_kinematics(self, kin): + """Set kinematics for the simulation.""" + # Validate that target material is available + self._get_material_index(kin.p2) + + def _set_stable(self, pdgid, stable): + """Set particle stability (not implemented for FLUKA).""" + info(2, f"Set_stable method no effect can't set {pdgid} stable to {stable}.") + + def _generate(self): + """Generate a single event.""" + k = self.kinematics + projectile = self._fluka_pid(k.p1) + target = self._get_material_index(k.p2) + + self._lib.chromo_evtxyz( + projectile, + target, + k.ekin, + 0, # p_momentum = 0 means only kinetic energy will be used + 0, + 0, + 1, # direction should be by default +z (not random) + self._interaction_type, + ) + + return True + + def _cleanup_fort(self): + import pathlib + + # Remove fort.* files created during fluka runs + for fort_file in pathlib.Path(".").glob("fort.*"): + fort_file.unlink() + + this_parent = pathlib.Path(__file__).parent + lib_parent = pathlib.Path(self._lib.__file__).parent + other_files = [ + this_parent / "fluka_rng_state.dat", + lib_parent / "fluka_rng_state.dat", + pathlib.Path(".") / ".timer.out", + ] + for f in other_files: + f.unlink(missing_ok=True) + + def __del__(self): + """Cleanup when the Fluka object is destroyed.""" + try: + self._cleanup_fort() + except Exception: + # Silently ignore cleanup errors during destruction + pass + + def _fluka_pid(self, pdg_id): + """Convert PDG ID to FLUKA particle ID.""" + return self._lib.icode_from_pdg(pdg_id) + + def _index6(self, pdg_id): + """Convert PDG ID to internal FLUKA array indices.""" + return self._lib.part.kptoip[self._lib.icode_from_pdg(pdg_id) + 6] + 6 + + # Particle property methods + def particle_name(self, pdg_id): + """Get particle name from PDG ID.""" + return str(self._lib.chpprp.prname[self._index6(pdg_id)], encoding="utf-8") + + def particle_short_name(self, pdg_id): + """Get particle short name from PDG ID.""" + return str( + self._lib.chpart.aname[self._index6(pdg_id)], encoding="utf-8" + ).strip() + + def particle_mass(self, pdg_id): + """Get particle mass from PDG ID in GeV/c^2.""" + return self._lib.part.aam[self._index6(pdg_id)] + + def particle_tau(self, pdg_id): + """Get particle lifetime from PDG ID in seconds.""" + return self._lib.part.tau[self._index6(pdg_id)] + + def particle_charge(self, pdg_id): + """Get particle charge from PDG ID.""" + return self._lib.part.iich[self._index6(pdg_id)] + + def save_rng_state(self, file=None): + """Save RNG state to file.""" + state_file = self._rng_state_file if file is None else file + self._lib.save_rng_state(state_file, self._logical_unit) + + def load_rng_state(self, file=None): + """Load RNG state from file.""" + state_file = self._rng_state_file if file is None else file + self._lib.load_rng_state(state_file, self._logical_unit) + + def fluka_rand(self): + """Generate a random number using the FLUKA RNG.""" + return self._lib.fluka_rand() diff --git a/src/cpp/pythia83 b/src/cpp/pythia83 index 914a33d0..fdaf4ffd 160000 --- a/src/cpp/pythia83 +++ b/src/cpp/pythia83 @@ -1 +1 @@ -Subproject commit 914a33d041b8e60b9ce0b28f9eff0fadf47b55dd +Subproject commit fdaf4ffdf8c6abc22fe12b5f4c0d22bc4d0a32ef diff --git a/src/fortran/fluka/chromo_fluka.f b/src/fortran/fluka/chromo_fluka.f new file mode 100644 index 00000000..9abd0998 --- /dev/null +++ b/src/fortran/fluka/chromo_fluka.f @@ -0,0 +1,450 @@ +!----------------------------------------------------------------------! +! Wrappers for Fluka's functions +!----------------------------------------------------------------------! + + + subroutine icode_from_pdg(pdg_id, icode_id) +!----------------------------------------------------------------------! +! get internal fluka code of particle type from pdg id +!----------------------------------------------------------------------! + integer pdg_id, icode_id +Cf2py intent(out) icode_id + icode_id = MCIHAD(pdg_id) + end subroutine icode_from_pdg + + subroutine icode_from_pdg_arr(npart, pdg_id, icode_id) +!----------------------------------------------------------------------! +! get internal fluka code of particle type from pdg id +!----------------------------------------------------------------------! + integer :: npart + integer :: pdg_id(npart), icode_id(npart) + integer :: i +Cf2py intent(out) icode_id +Cf2py integer intent(hide),depend(pdg_id) :: npart=len(pdg_id) + do i=1,npart + icode_id(i) = MCIHAD(pdg_id(i)) + end do + end subroutine icode_from_pdg_arr + + subroutine charge_from_pdg_arr(npart, pdg_id, charge) +!----------------------------------------------------------------------! +! get internal fluka code of particle type from pdg id +!----------------------------------------------------------------------! + INCLUDE '(DBLPRC)' + INCLUDE '(DIMPAR)' + INCLUDE '(PAPROP)' + INCLUDE '(PART2)' + INCLUDE '(NUCFLG)' + + integer :: npart + integer :: pdg_id(npart), charge(npart) + integer :: i +Cf2py intent(out) charge +Cf2py integer intent(hide),depend(pdg_id) :: npart=len(pdg_id) + do i=1,npart + charge(i) = IICH(MCIHAD(pdg_id(i))) + end do + end subroutine charge_from_pdg_arr + + + subroutine pdg_from_icode(icode_id, pdg_id) +!----------------------------------------------------------------------! +! pdg id from internal particle code +!----------------------------------------------------------------------! + integer icode_id, pdg_id +Cf2py intent(out) pdg_id + pdg_id = -777 + if ((icode_id.ge.1).and.(icode_id.le.390)) then + pdg_id = MPDGHA(icode_id) + end if + end subroutine pdg_from_icode + + subroutine random_direction(dir_cos) +!----------------------------------------------------------------------! +! Wrapper for fluka function SPRNCS +! returning cosines of direction +!----------------------------------------------------------------------! + double precision dir_cos(3) +Cf2py intent(out) dir_cos + CALL SPRNCS (dir_cos(1), dir_cos(2), dir_cos(3)) + end subroutine random_direction + + INTEGER FUNCTION ICRVRCK() +!----------------------------------------------------------------------! +! Returns a key for correct Fluka version +! The key is required by some functions +!----------------------------------------------------------------------! + INCLUDE '(DBLPRC)' + ICRVRCK = NINT(AMPRMU * 1.D+12 - 1.0072D+12) + end function ICRVRCK + + + subroutine init_rng_state(file_name, logical_unit, + & seed, ntot, ntot2) +!----------------------------------------------------------------------! +! Initiate and write a state for "Ranmar" generator. +! Wrapper for RNINIT +! +! +! Fluka uses "Ranmar" by Marsaglia and Zaman +! of Florida State University. Probably it is the same as +! "rmmard". +! +! 0 <= seed < 2e9 defines a sequence +! ntot and ntot2 skeeps (ntot2*m+ntot) numbers +! In "rmmard" m=1e9, Fluka probably uses the same number +! +! BE CAREFULL when setting ntot and ntot2, as the generator +! just calculates all numbers in a sequence to reach required +! state. It can take significant TIME +!----------------------------------------------------------------------! + integer logical_unit, seed, ntot, ntot2 + character(300) file_name + + open(unit=logical_unit, file=trim(file_name)) + call RNINIT(logical_unit, seed, ntot, ntot2) + close(unit=logical_unit) + + end subroutine init_rng_state + + + subroutine load_rng_state(file_name, logical_unit) +!----------------------------------------------------------------------! +! Loads state of fluka's random number generator +!----------------------------------------------------------------------! + integer logical_unit, seed + character(300) file_name + logical success_flag + ! seed = -1: reads seed from file + seed = -1 + open(unit=logical_unit, file=trim(file_name)) + call RNREAD(logical_unit, seed, success_flag) + close(unit=logical_unit) + end subroutine load_rng_state + + + subroutine save_rng_state(file_name, logical_unit) +!----------------------------------------------------------------------! +! Saves state of fluka's random number generator +!----------------------------------------------------------------------! + integer logical_unit + character(300) file_name + + open(unit=logical_unit, file=trim(file_name)) + call RNWRIT(logical_unit) + close(unit=logical_unit) + end subroutine save_rng_state + + + subroutine fluka_rand(random_number) +!----------------------------------------------------------------------! +! Wrapper for fluka's random number generator +!----------------------------------------------------------------------! + double precision random_number, FLRNDM +Cf2py intent(out) random_number + random_number = FLRNDM(0d0) + end subroutine fluka_rand + + + subroutine fluka_particle_scheme +!----------------------------------------------------------------------! +! Prints particle scheme used by FLUKA +! Also required to expose some common blocks from FLUKA +! +! Inspired by PDGFLK program: +! Copyright (C) 2023-2023 by Alfredo Ferrari & Paola Sala +!----------------------------------------------------------------------! + INCLUDE '(DBLPRC)' + INCLUDE '(DIMPAR)' + INCLUDE '(PAPROP)' + INCLUDE '(PART2)' + + WRITE(*, 2500) "Internal", "External", "PDG", + & "NAME", "SHORT", "MASS", "CHARGE", "BARYON" +2500 FORMAT (2A10, A12, A15, 4A10) +2600 FORMAT (I10, I10, I12, A15, A10, F10.4, I10, I10) + DO I = -6, 390 + !icode_id = IPTOKP(extcode_id) + !extcode_id = KPTOIP(icode_id) + KPFLK = I + IPDG = MPDGHA (KPFLK) + IPFLK = KPTOIP (KPFLK) + WRITE (*,2600) KPFLK, IPFLK, IPDG, PRNAME(IPFLK), + & ANAME(KPFLK), AAM(KPFLK), IICH(KPFLK), IIBAR(KPFLK) + END DO + end subroutine fluka_particle_scheme + + DOUBLE PRECISION FUNCTION CHROMO_SGMXYZ ( KPROJ0, MMAT , EKIN0 , + & PPROJ0, IFLXYZ ) + +*----------------------------------------------------------------------* +* * +* Copyright (C) 2022-2023 by Alfredo Ferrari & Paola Sala * +* All Rights Reserved. * +* * +* SiGMa (mb) for X/Y/Z interaction types: * +* * +* Authors: Alfredo Ferrari & Paola Sala * +* * +* * +* Created on 24 October 2022 by Alfredo Ferrari & Paola Sala * +* Private Private * +* * +* Last change on 11-May-23 by Alfredo Ferrari * +* Private * +* * +* Input variables: * +* * +* Kproj0 = Particle id (Fluka external "Paprop" numbering) * +* A heavy ion projectile can be input using the * +* following (pdg) coding: * +* Kproj0 = M + A x 10 + Z x 10000 * +* + H x 10000000 + 1000000000 * +* Mmat = Material number * +* Ekin0 = Particle kinetic energy (GeV) if > 0, if =< 0 the * +* kinetic energy is reconstructed out of Kproj/Pproj* +* Pproj0 = Particle momentum (GeV/c) if > 0, if =< 0 the * +* momentum is reconstructed out of Kproj/Ekin * +* In case both Ekin0/Pproj0 are > 0, the momentum * +* takes precedence and the kinetic energy is re- * +* constructed from the momentum using the Fluka mass* +* Iflxyz = Flag defining which processes the cross section * +* is asked for * +* Iflxyz = 1 -> only inelastic * +* Iflxyz = 10 -> only elastic * +* Iflxyz = 11 -> inelastic + elastic * +* Iflxyz =100 -> only emd * +* Iflxyz =101 -> inelastic + emd * +* Iflxyz =110 -> elastic + emd * +* Iflxyz =111 -> inelastic + elastic + emd * +* * +* Output variable: * +* * +* Sgmxyz = Total cross section (mb) for the requested pro- * +* cesses * +* * +*----------------------------------------------------------------------* + INCLUDE '(DBLPRC)' + INCLUDE '(DIMPAR)' + INCLUDE '(IOUNIT)' + INCLUDE '(PAPROP)' + + CHROMO_SGMXY = SGMXYZ( KPROJ0, MMAT , EKIN0 , PPROJ0, IFLXYZ ) + RETURN + END FUNCTION CHROMO_SGMXYZ + + SUBROUTINE CHROMO_EVTXYZ ( KPROJ0, MMAT , EKIN0 , PPROJ0, TXX, + & TYY, TZZ, IFLXYZ, CUMSGI, CUMSGE, CUMSGM ) + + INCLUDE '(DBLPRC)' + INCLUDE '(DIMPAR)' + INCLUDE '(IOUNIT)' +* +*----------------------------------------------------------------------* +* * +* Copyright (C) 2022-2023 by Alfredo Ferrari & Paola Sala * +* All Rights Reserved. * +* * +* * +* EVenT for X/Y/Z interaction types: * +* * +* Authors: Alfredo Ferrari & Paola Sala * +* * +* * +* Created on 24 October 2022 by Alfredo Ferrari & Paola Sala * +* Private Private * +* * +* Last change on 18-Jul-23 by Alfredo Ferrari * +* Private * +* * +* Kproj0 = Particle id (Fluka external "Paprop" numbering) * +* A heavy ion projectile can be input using the * +* following (pdg) coding: * +* Kproj0 = M + A x 10 + Z x 10000 * +* + H x 10000000 + 1000000000 * +* Mmat = Material number of the target * +* Ekin0 = Particle kinetic energy (GeV) if > 0, if =< 0 the * +* kinetic energy is reconstructed out of Kproj/Pproj* +* Pproj0 = Particle momentum (GeV/c) if > 0, if =< 0 the * +* momentum is reconstructed out of Kproj/Ekin * +* In case both Ekin0/Pproj0 are > 0, the momentum * +* takes precedence and the kinetic energy is re- * +* constructed from the momentum using the Fluka mass* +* Txx/yy/zz = Particle direction cosines * +* Iflxyz = Flag defining which processes the cross section * +* is asked for * +* Iflxyz = 1 -> only inelastic * +* Iflxyz = 10 -> only elastic * +* Iflxyz = 11 -> inelastic + elastic * +* Iflxyz =100 -> only emd * +* Iflxyz =101 -> inelastic + emd * +* Iflxyz =110 -> elastic + emd * +* Iflxyz =111 -> inelastic + elastic + emd * +* * +* Output variables: * +* * +* Cumsgi(i) = cumulative macroscopic inelastic cross section * +* (cm^2/g x rho) for the i_th element of the mmat* +* material * +* Cumsge(i) = cumulative macroscopic elastic cross section * +* (cm^2/g x rho) for the i_th element of the mmat* +* material * +* Cumsgm(i) = cumulative macroscopic emd cross section * +* (cm^2/g x rho) for the i_th element of the mmat* +* material * +* * +* * +*----------------------------------------------------------------------* +* + + PARAMETER ( AVOGMB = AVOGAD * 1.D-27 ) +* + INCLUDE '(BALANC)' + INCLUDE '(CMELDS)' + INCLUDE '(CRSKCM)' + INCLUDE '(EVTFLG)' + INCLUDE '(FHEAVY)' + INCLUDE '(FLKCMP)' + INCLUDE '(FLKMAT)' + INCLUDE '(GENSTK)' + INCLUDE '(PAPROP)' + INCLUDE '(PAREVT)' + INCLUDE '(RESNUC)' + INCLUDE '(THRSCM)' + DIMENSION CUMSGI (0:NELEMX), CUMSGE (0:NELEMX), CUMSGM (0:NELEMX) +Cf2py intent(out) CUMSGI, CUMSGE, CUMSGM + CALL EVTXYZ ( KPROJ0, MMAT , EKIN0 , PPROJ0, TXX, TYY, TZZ, + & IFLXYZ, CUMSGI, CUMSGE, CUMSGM ) + + RETURN + END SUBROUTINE CHROMO_EVTXYZ + + SUBROUTINE CHROMO_FLLHEP + + INCLUDE '(DBLPRC)' + INCLUDE '(DIMPAR)' + INCLUDE '(IOUNIT)' +* +*----------------------------------------------------------------------* +* * +* Copyright (C) 2023-2023 by Alfredo Ferrari & Paola Sala * +* All Rights Reserved. * +* * +* FiLL HEP common: * +* * +* Authors: Alfredo Ferrari & Paola Sala * +* * +* * +* Created on 06 February 2023 by Alfredo Ferrari & Paola Sala * +* Private Private * +* * +* Last change on 09-Mar-23 by Alfredo Ferrari * +* Private * +* * +*----------------------------------------------------------------------* +* + INCLUDE '(BALANC)' + INCLUDE '(FHEAVY)' + INCLUDE '(GENSTK)' + INCLUDE '(HEPCMM)' + INCLUDE '(PAPROP)' + INCLUDE '(PART2)' + INCLUDE '(RESNUC)' + INCLUDE '(THRSCM)' + + CALL FLLHEP + RETURN + END SUBROUTINE + + SUBROUTINE CHROMO_STPXYZ ( NMATFL, NELMFL, IZELFL, WFELFL, MXELFL, + & PPTMAX, EF2DP3, DF2DP3, IFLXYZ, LPRINT, + & MTFLKA ) + + INCLUDE '(DBLPRC)' + INCLUDE '(DIMPAR)' + INCLUDE '(IOUNIT)' +* +*----------------------------------------------------------------------* +* * +* Copyright (C) 2022-2023 by Alfredo Ferrari & Paola Sala * +* All Rights Reserved. * +* * +* * +* SeTuP for X/Y/Z interaction types: * +* * +* Authors: Alfredo Ferrari & Paola Sala * +* * +* * +* Created on 24 October 2022 by Alfredo Ferrari & Paola Sala * +* Private Private * +* * +* Last change on 29-Mar-23 by Alfredo Ferrari * +* Private * +* * +* Input variables: * +* * +* Nmatfl = Number of requested Fluka materials * +* Nelmfl(m) = Number of elements in the m_th requested Fluka * +* material, Nelmfl(m)=1 means simple element, no * +* compound * +* Izelfl(n) = Cumulative array of the Z of the elements con- * +* stituting the requested Fluka materials * +* (the Z for the elements of the m_th materials * +* start at n = Sum_i=1^m-1 [Nelmfl(i)] + 1) * +* Wfelml(n) = Cumulative array of the weight fractions of the* +* elements constituting the requested Fluka * +* materials (the weight fractions for the elem- * +* ents of the m_th materials start at * +* n = Sum_i=1^m-1 [Nelmfl(i)] + 1) * +* Mxelfl = Dimension of the Iz/Wfelml arrays, it must be * +* Mxelfl >= Sum_i=1^nmatfl [Nelmfl(i)] * +* Pptmax = Maximum momentum (GeV/c) to be used in initia- * +* lization (optional) * +* Ef2dp3 = Transition energy (GeV) from Fluka (Peanut) to * +* Dpmjet3 for hA interactions (optional) * +* Df2dp3 = Smearing (+/-Df2dp3) (GeV) of the transition * +* energy from Fluka (Peanut) to Dpmjet3 for hA * +* interactions (optional) * +* Lprint = Material printout flag * +* * +* Output variables: * +* * +* Mtflka(m) = Fluka material number corresponding to the m_th* +* requested material * +* * +*----------------------------------------------------------------------* +* + + INCLUDE '(BEAMCM)' + INCLUDE '(CLSCCM)' + INCLUDE '(CTITLE)' + INCLUDE '(CMELDS)' + INCLUDE '(CRSKCM)' + INCLUDE '(EVAFLG)' + INCLUDE '(FLKCMP)' + INCLUDE '(FLKMAT)' + INCLUDE '(GENFLG)' + INCLUDE '(INFLEX)' + INCLUDE '(NUCDAT)' + INCLUDE '(NUCGEO)' + INCLUDE '(PAPROP)' + INCLUDE '(PAREVT)' + INCLUDE '(PHNCCM)' + INCLUDE '(QELCMM)' + INCLUDE '(RESNUC)' + INCLUDE '(STNHCM)' + INCLUDE '(THRSCM)' + DIMENSION NELMFL (NMATFL), MTFLKA (NMATFL), IZELFL (MXELFL), + & WFELFL (MXELFL) +Cf2py intent(out) MTFLKA + CHARACTER*8 CRVRCK + INTEGER IKEY + + IKEY = ICRVRCK() + WRITE (CRVRCK,'(I8)') IKEY + CALL STPXYZ ( NMATFL, NELMFL, IZELFL, WFELFL, MXELFL, + & PPTMAX, EF2DP3, DF2DP3, IFLXYZ, LPRINT, + & MTFLKA, CRVRCK ) + RETURN + + END SUBROUTINE \ No newline at end of file