diff --git a/docs/source/01-decode.ipynb b/docs/source/01-decode.ipynb index 73c1f71..1683b9f 100644 --- a/docs/source/01-decode.ipynb +++ b/docs/source/01-decode.ipynb @@ -1,464 +1,468 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "\n", - "# GFloat Basics\n", - "\n", - "This notebook shows the use of `decode_float` to explore properties of some float formats.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "# Install packages\n", - "from pandas import DataFrame\n", - "import numpy as np\n", - "\n", - "from gfloat import decode_float\n", - "from gfloat.formats import *" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## List all the values in a format\n", - "\n", - "The first example shows how to list all values in a given format.\n", - "We will choose the [OCP](https://www.opencompute.org/documents/ocp-8-bit-floating-point-specification-ofp8-revision-1-0-2023-12-01-pdf-1) E5M2 format.\n", - "\n", - "The object `format_info_ocp_e5m2` is from the `gfloat.formats` package, and describes the characteristics of that format:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ + "cells": [ { - "data": { - "text/plain": [ - "FormatInfo(name='ocp_e5m2', k=8, precision=3, emax=15, has_nz=True, has_infs=True, num_high_nans=3, has_subnormals=True, is_signed=True, is_twos_complement=False)" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "# GFloat Basics\n", + "\n", + "This notebook shows the use of `decode_float` to explore properties of some float formats.\n" ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "format_info_ocp_e5m2" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We shall use the format to decode all values from 0..255, and gather them in a pandas DataFrame.\n", - "We see that `decode_float` returns a lot more than just the value - it also splits out the exponent, significand, and sign, and returns the `FloatClass`, which allows us to distinguish normal and subnormal numbers, as well as zero, infinity, and nan." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
fvalexpexpvalsignificandfsignificandsignbitfclass
code
00.000000e+000-1400.000FloatClass.ZERO
11.525879e-050-1410.250FloatClass.SUBNORMAL
23.051758e-050-1420.500FloatClass.SUBNORMAL
34.577637e-050-1430.750FloatClass.SUBNORMAL
46.103516e-051-1401.000FloatClass.NORMAL
........................
251-5.734400e+04301531.751FloatClass.NORMAL
252-inf311601.001FloatClass.INFINITE
253NaN311611.251FloatClass.NAN
254NaN311621.501FloatClass.NAN
255NaN311631.751FloatClass.NAN
\n", - "

256 rows × 7 columns

\n", - "
" + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# Install packages\n", + "from pandas import DataFrame\n", + "import numpy as np\n", + "\n", + "from gfloat import decode_float\n", + "from gfloat.formats import *" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## List all the values in a format\n", + "\n", + "The first example shows how to list all values in a given format.\n", + "We will choose the [OCP](https://www.opencompute.org/documents/ocp-8-bit-floating-point-specification-ofp8-revision-1-0-2023-12-01-pdf-1) E5M2 format.\n", + "\n", + "The object `format_info_ocp_e5m2` is from the `gfloat.formats` package, and describes the characteristics of that format:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "FormatInfo(name='ocp_e5m2', k=8, precision=3, bias=15, has_nz=True, domain=, num_high_nans=3, has_subnormals=True, is_signed=True, is_twos_complement=False)" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } ], - "text/plain": [ - " fval exp expval significand fsignificand signbit \\\n", - "code \n", - "0 0.000000e+00 0 -14 0 0.00 0 \n", - "1 1.525879e-05 0 -14 1 0.25 0 \n", - "2 3.051758e-05 0 -14 2 0.50 0 \n", - "3 4.577637e-05 0 -14 3 0.75 0 \n", - "4 6.103516e-05 1 -14 0 1.00 0 \n", - "... ... ... ... ... ... ... \n", - "251 -5.734400e+04 30 15 3 1.75 1 \n", - "252 -inf 31 16 0 1.00 1 \n", - "253 NaN 31 16 1 1.25 1 \n", - "254 NaN 31 16 2 1.50 1 \n", - "255 NaN 31 16 3 1.75 1 \n", - "\n", - " fclass \n", - "code \n", - "0 FloatClass.ZERO \n", - "1 FloatClass.SUBNORMAL \n", - "2 FloatClass.SUBNORMAL \n", - "3 FloatClass.SUBNORMAL \n", - "4 FloatClass.NORMAL \n", - "... ... \n", - "251 FloatClass.NORMAL \n", - "252 FloatClass.INFINITE \n", - "253 FloatClass.NAN \n", - "254 FloatClass.NAN \n", - "255 FloatClass.NAN \n", - "\n", - "[256 rows x 7 columns]" + "source": [ + "format_info_ocp_e5m2" ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "fmt = format_info_ocp_e5m2\n", - "vals = [decode_float(fmt, i) for i in range(256)]\n", - "DataFrame(vals).set_index(\"code\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Plot the values in some 8-bit formats\n", - "\n", - "This is a plot of the positive values in each format, as a function of their integer \n", - "codepoint. Subnormal values are indicated, illustrating the increased dynamic range \n", - "they offer. (More on this below.)" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ + }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+EAAAFfCAYAAAAh5s3KAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAkHNJREFUeJzt3XlcVPX6B/DPDPs2IDuyI4r7HopLaplrmlmWYYpWWpb3Zl5NKZfMa5amWWaamelNvXrvLf1VLmWmuUuillZqCG4oICIg27DM+f0xzsjInANzGGYG+Lxfr17CnFnOoXNvfnie7/NVCIIggIiIiIiIiIjqnNLaJ0BERERERETUWDCEExEREREREVkIQzgRERERERGRhTCEExEREREREVkIQzgRERERERGRhTCEExEREREREVkIQzgRERERERGRhdhb+wTMTaPR4Pr16/Dw8IBCobD26RAREREREVEDJwgC7ty5g6ZNm0KplK51N7gQfv36dYSGhlr7NIiIiIiIiKiRuXr1KkJCQiSf0+BCuIeHBwDtxatUKiufDRERERERETV0+fn5CA0N1edRKQ0uhOta0FUqFUM4ERERERERWUxNlkRzMBsRERERERGRhTCEExEREREREVkIQzgRERERERGRhTS4NeE1VVFRgbKyMmufBlG1HBwcYGdnZ+3TICIiIiIiM2h0IVwQBGRkZCA3N9fap0JUY15eXggMDKzRoAciIiIiIrJdjS6E6wK4v78/XF1dGWrIpgmCgKKiImRlZQEAgoKCrHxGRERERERUG40qhFdUVOgDuI+Pj7VPh6hGXFxcAABZWVnw9/dnazoRERERUT3WqAaz6daAu7q6WvlMiEyju2c5x4CIiIiIqH5rVJVwHbagU33De5aIiIiIbJ66AEhaA+ReBrzCgdhJgJO7tc/K5jTKEE5ERERERERmpC4A1vYHss8DCiUgaIDf/gO88COD+H0YwomIiIiIiKhmxKrdSWu0AVzQaP8BtN8nrQF6T5P1UUVlRdh8bjPSC9IR7B6M+JbxcHWo/0uLGcKJiIiIiIioelLV7tzL9x7TUSi1j8tQVFaEMTvHIDUvFUoooYEGO1J3YNOQTfU+iDeqwWxU927duoWQkBAoFAqz7MX+4osvolmzZnBxcYGfnx8ee+wxnDt3rvYnSkRERERExqkLgIPLgG9f1f6pLtA+XrnarSnX/qmrdnuFGwZwQPu9V7jkRxWVFWHtmbWYf3Q+1p5Zi6KyIgDA5nObkZqXCo2gQblQDo2gQWpeKjaf21wXV2xRrITLVKgux4ajl3A1pxih3i5IiIuAmxN/nM8//zzat2+P9PR0s7xfly5dMGbMGISFhSEnJwdvvfUWBgwYgLS0NG7VRURERERkbnKr3QMWap9X+XW+Mdp2dRFS1e70gnT9YzpKKJFeYJ6cYU2shMtQqC7H458cxvvfn8d/T1zF+9+fx+OfHEahurzOPlOtVuPvf/87/P394ezsjF69euGXX37RH//999/x6KOPQqVSwcPDA71798bFixcBAOPHj8eIESMwf/58+Pn5QaVS4aWXXkJpaWmNPluj0WDRokWIjIyEi4sLOnTogP/9739Vnrdq1Srk5uZi+vTpVY699dZb6NixI9atW4ewsDC4u7vj5ZdfRkVFBRYvXozAwED4+/tj4cKFBq+bNGkSHnzwQURERKBz58745z//iatXr+LSpUsm/PSIiIiIiKhG5Fa7ndy1Qf2hOUCnZ7V/VjOUTaraHewebBDAAUADDYLdg+viqi2KpVsZNhy9hJSsAmgEQCMIAICUrAJsOHoJL/eNrpPPfP311/HVV19hw4YNCA8Px+LFizFw4ECkpKSguLgYDz74IPr27YuffvoJKpUKhw8fRnn5vV8K7N27F87Ozti/fz8uXbqECRMmwMfHp0roNWbRokXYuHEjVq9ejebNm+PAgQN49tln4efnhz59+gAA/vjjD7z99ts4fvw4UlNTjb7PxYsXsWvXLuzevRsXL17Ek08+idTUVLRo0QI///wzjhw5gueeew79+/dHt27dqry+sLAQX3zxBSIjIxEaGirzJ0lERERERKID1mpT7XZyNzqETWzAmlS1e0bXGdiRusOgSh7lGYX4lvF1/ZOpcwzhMlzNKYZSodAHcABQKhS4mlNcJ59XWFiIVatWYf369Rg8eDAA4LPPPsOePXvw+eef4/bt2/D09MSWLVvg4OAAAGjRooXBezg6OmLdunVwdXVFmzZt8Pbbb2PGjBlYsGABlErxhgi1Wo133nkHP/74I+Li4gAAUVFROHToED799FP06dMHarUazzzzDJYsWYKwsDDREK7RaLBu3Tp4eHigdevW6NevH86fP4+dO3dCqVQiJiYG7733Hvbt22cQwj/55BO8/vrrKCwsRExMDPbs2QNHR8da/UyJiIiIiBotqZbzmlS7TdgLXKrlXKra7ergik1DNnE6OmmFersYBHBAWxEP9Xapk8+7ePEiysrK0LNnT/1jDg4OiI2NxZ9//omMjAz07t1bH8CN6dChA1xd792wcXFxKCgowNWrVxEeLj4sISUlBUVFRXjkkUcMHi8tLUWnTp0AAImJiWjVqhWeffZZyeuIiIiAh4eH/vuAgADY2dkZ/BIgICAAWVlZBq8bM2YMHnnkEdy4cQPvv/8+nnrqKRw+fBjOzs6Sn0dERERE1OgZq3hLbScWO0lWtRswXvGu3HKuC9y6lvP4lvGS1W5XB1e80O6FOv8RWRpDuAwJcRHYfiodKVkF+op4tL87EuIirHI+Li51E/4BoKBAOwlxx44dCA42XH/h5OQEAPjpp59w5swZ/Tpx4e4vKHx9ffHmm29i/vz5AFDllwQKhcLoYxqN4W/DPD094enpiebNm6N79+5o0qQJtm3bhmeeecZMV0lERERE1ACJVbyDO4u3nMuodgPiFe+2vm1FW84bcrVbCkO4DG5O9tj2ck+LTUdv1qwZHB0dcfjwYX3VuqysDL/88gumTp2KwsJCbNiwAWVlZaLV8F9//RXFxcX6wH7s2DG4u7tXu7a6devWcHJywpUrV/Trv+/31Vdfobj4Xiv+L7/8gueeew4HDx5Es2bN5FyyKEEQIAgC1Gq1Wd+XiIiIiKjeElvfLVbxVjWV3k7MxGq3q4OraMXb39VfcsBaQ612S2EIl8nNyb7OhrBV+Sw3N0yePBkzZsyAt7c3wsLCsHjxYhQVFeH555+HRqPBihUrMHr0aCQmJsLT0xPHjh1DbGwsYmJiAGjbx59//nnMnj0bly5dwrx58zBlyhTJ9eAA4OHhgenTp+O1116DRqNBr169kJeXh8OHD0OlUiEhIaFK0M7OzgYAtGrVCl5eXrKvOzU1FVu3bsWAAQPg5+eHa9eu4d1334WLiwuGDBki+32JiIiIiBoMOVuKeQRqW8xN2E4MkLelmL+rP6I8oxrkgDW5GMLriXfffRcajQZjx47FnTt30LVrV3z//fdo0qQJAG1L+IwZM9CnTx/Y2dmhY8eOBmvIH374YTRv3hwPPvigfpDaW2+9VaPPXrBgAfz8/LBo0SKkpqbCy8sLnTt3xhtvvFEXl6rn7OyMgwcPYvny5bh9+zYCAgLw4IMP4siRI/D396/TzyYiIiIisimmVrulthTziQYGLxZtOTe12i21pVi4KhyJsYmNruVcikIQ7pswVs/l5+fD09MTeXl5UKlUBsdKSkqQlpaGyMjIRjXUa/z48cjNzcX27dutfSokU2O9d4mIiIgIxqvdvjHaavcPbwKnNmr39NZR2mv36h6wUPx1Imu8jVW7ozyjsGnIJiw5sQTb/9qOcuHeZ9kr7DGi+QjM6DpD9HWNIXBL5dD7sRJORERERERky+RUu2VuKSan2t3QtxQzN4bwRu7KlSto3bq16PE//vgDYWFhFjwjIiIiIqJGSqzlXGxtd+5lbbVbxpZiYi3nYmu70wvSMaPrjEa5pZi5MYQ3AuvXrxc91rRpU5w+fVryOBERERERmZGxsA2ID1irRbXbWNgGIDpgjdXuuscQ3sjZ29sjOtoyU96JiIiIiBo9sWnmbUaIt5zHTpJd7TYWtgeEDxBtOY9vGc9qdx2z2RBeVFSEVq1aYdSoUXj//fetfTpEREREREQ1Z+o08wvfi7ecy6h2S00zP5B+QLTlnNXuumezIXzhwoXo3r27tU+DiIiIiIjINHL27lZAvOUcMLnaLbV3NwDRlnOA1e66ZpMh/K+//sK5c+cwbNgwnD171tqnQ0REREREVJU59+6OHgiUFou2nJtz7+7ewb1RUl4i2nJOdUtp7jc8cOAAhg0bhqZNm0KhUBjdm3rlypWIiIiAs7MzunXrhqSkJIPj06dPx6JFi8x9akREREREROahq3b/tEC7T/dPC7TfqwvuVbsr07WWx07ShmuFUruft0Kp/b7HFG2l/KE52j2+H5qj389bV+1ecWoFtv+1HStOrcCYnWNQVFakr3ZXpmstj28ZjyjPKCgVStgr7KFUKBHlGYXxbcZj05BN+Funv2FE8xH4W6e/NZr9vG2B2SvhhYWF6NChA5577jmMHDmyyvGtW7di2rRpWL16Nbp164bly5dj4MCBOH/+PPz9/fF///d/aNGiBVq0aIEjR46Y+/SIiIiIiIhqr6727jbScl5Xe3ez5dw6zB7CBw8ejMGDB4seX7ZsGSZOnIgJEyYAAFavXo0dO3Zg3bp1mDVrFo4dO4YtW7bgv//9LwoKClBWVgaVSoW5c+cafT+1Wg21Wq3/Pj8/37wXREREREREjRf37iYzs+ia8NLSUiQnJyMxMVH/mFKpRP/+/XH06FEAwKJFi/St6OvXr8fZs2dFA7ju+fPnz6/bE6dqKRSKKo/9+9//xujRo2W/Z05ODubNm4cffvgBV65cgZ+fH0aMGIEFCxbA09OzNqdLRERERFQ9qQFrtal2GyE1YI17dzcsFg3h2dnZqKioQEBAgMHjAQEBOHfunKz3TExMxLRp936LlJ+fj9DQ0FqdZ42I/UasEfviiy8waNAg/fdeXl61er/r16/j+vXreP/999G6dWtcvnwZL730Eq5fv47//e9/tTxbIiIiIqK75AxYk7l3N2C84i3Vcs69uxsWm5yOrjN+/Phqn+Pk5AQnJ6e6P5nKpH4jVkdBXK1WY8aMGdiyZQvy8/PRtWtXfPDBB3jggQcAAL///jtmzpyJAwcOQBAEdOzYEevXr0ezZs0wfvx45ObmolOnTvj444+hVqsRHx+Pjz76CI6OjtV+tkajwXvvvYc1a9YgIyMDLVq0wJw5c/Dkk08aPM/LywuBgYFG3+Ott97C9u3b8fe//x1vvfUWcnJyMG7cOKxYsQJLly7FsmXLoNFo8Oqrr+LNN98EALRt2xZfffWV/j2aNWuGhQsX4tlnn0V5eTns7W369iUiIiKi+kDOdmI12LtbjFjFu61vW+7d3UhYNMX4+vrCzs4OmZmZBo9nZmaKhjebJPUbMZHfdtXW66+/jq+++gobNmxAeHg4Fi9ejIEDByIlJQXFxcV48MEH0bdvX/z0009QqVQ4fPgwysvL9a/fu3cvnJ2dsX//fly6dAkTJkyAj48PFi5cWO1nL1q0CBs3bsTq1avRvHlzHDhwAM8++yz8/PzQp08f/fNeeeUVvPDCC4iKisJLL72ECRMmGLSpX7x4Ebt27cLu3btx8eJFPPnkk0hNTUWLFi3w888/48iRI3juuefQv39/dOvWzei55OXlQaVSMYATERERkemMVbzlDlgDTK52S20p5u/qz727GwmLJhlHR0d06dIFe/fuxYgRIwBoq6x79+7FlClTLHkqtSP1G7E6UFhYiFWrVmH9+vX6oXefffYZ9uzZg88//xy3b9+Gp6cntmzZAgcHBwBAixYtDN7D0dER69atg6urK9q0aYO3334bM2bMwIIFC6BUiu9Up1ar8c477+DHH39EXFwcACAqKgqHDh3Cp59+qg/hb7/9Nh566CG4urrihx9+wMsvv4yCggL8/e9/17+XRqPBunXr4OHhgdatW6Nfv344f/48du7cCaVSiZiYGLz33nvYt2+f0RCenZ2NBQsWYNKkSbX7gRIRERFR4yNW8Q7uLH/Amgip9d1iQ9b8Xf0R5RnFvbsbAbOH8IKCAqSkpOi/T0tLw+nTp+Ht7Y2wsDBMmzYNCQkJ6Nq1K2JjY7F8+XIUFhbqp6XXC9X9RszMLl68iLKyMvTs2VP/mIODA2JjY/Hnn38iIyMDvXv31gdwYzp06ABX13vtKnFxcSgoKMDVq1cRHi5+3ikpKSgqKsIjjzxi8HhpaSk6deqk/37OnDn6rzt16oTCwkIsWbLEIIRHRETAw8ND/31AQADs7OwMfgkQEBCArKysKueRn5+PoUOHonXr1njrrbdEz5eIiIiIGjlT13ermsoesGZqtVtqS7FwVTgSYxPZct4ImD2EnzhxAv369dN/rxualpCQgPXr1+Ppp5/GzZs3MXfuXGRkZKBjx47YvXt3lWFtNq26IQwW5uLiUmfvXVBQAADYsWMHgoODDY5JrcXv1q0bFixYALVarX/e/b8kUCgURh/TaAz/T+nOnTsYNGgQPDw8sG3bNslfNhARERFRIyZnfbdHoPbv8jK2EzO12l3dlmJsOW8czB7C+/btC0EQJJ8zZcqU+tV+fj+ZQxjkatasGRwdHXH48GF91bqsrAy//PILpk6disLCQmzYsAFlZWWiAfXXX39FcXGxPrAfO3YM7u7u1U6Sb926NZycnHDlyhWD9d/VOX36NJo0aVLroXn5+fkYOHAgnJyc8M0338DZ2blW70dEREREDZic9d0+0cDgxSb/3V5OtZtbihFg49PRbZrEEAZzc3Nzw+TJkzFjxgx9W//ixYtRVFSE559/HhqNBitWrMDo0aORmJgIT09PHDt2DLGxsYiJiQGgbR9//vnnMXv2bFy6dAnz5s3DlClTJNeDA4CHhwemT5+O1157DRqNBr169UJeXh4OHz4MlUqFhIQEfPvtt8jMzET37t3h7OyMPXv24J133sH06dNrdd35+fkYMGAAioqKsHHjRuTn5yM/Px8A4OfnBzs7u1q9PxERERHVU2It51Kzm6TWd8sYsCa32g1wyFpjxxBeT7z77rvQaDQYO3Ys7ty5g65du+L7779HkyZNAAA//fQTZsyYgT59+sDOzg4dO3Y0WEP+8MMPo3nz5njwwQehVqvxzDPP1Hht9YIFC+Dn54dFixYhNTUVXl5e6Ny5M9544w0A2jbzlStX4rXXXoMgCIiOjsayZcswceLEWl3zyZMncfz4cQBAdHS0wbG0tDRERETU6v2JiIiIyIaJBW2plnOp2U0S3axiQVuq5ZzVbpJLIVTXO17P5Ofnw9PTU7+VVWUlJSVIS0tDZGRko2pr1u0Tvn37dmufCsnUWO9dIiIiaqSMBW3fmHsh+qcFVavdD83Rhmqx14m0lxsL2lGeUfoQveLUCmgqfZZSocTfOv0N8S3jRV/HsN34SOXQ+7ESTkRERERE1mPq3t1SLecypplLre2WajlntZvkYghv5K5cuYLWrVuLHv/jjz8QFhZmwTMiIiIiokZDzt7d1W0XbOI087a+bUWDtlTLOcC13SQPQ3gjsH79etFjTZs2xenTpyWPExERERHVCTl7d8vcLlis4u3v6i8atONbxksOWCOSgyG8kbO3t68y9IyIiIiIyKxMnWYutXe3jJZzqWnm/q7+iPKMEt23my3nZG4M4UREREREVHfkTDOvbu9uE1vOpaaZh6vCkRibKBq02XJO5sYQTkREREREtSdW7ZYasibVWi5j726pIWtSreUM2mRJDOFERERERFQ7UtXuWkwzN0aq2s1p5lQfMIQTEREREVHNyKl212KauanVbk4zp/qAIZyIiIiIiKont9o9YKHJ08zlVrtndJ3BaeZk8xjCiYiIiIjIkLGKt9xqt4xp5nKr3Ww5p/pAae0TIPN466230LJlS7i5uaFJkybo378/jh8/bvCchQsXokePHnB1dYWXl5fR97ly5QqGDh0KV1dX+Pv7Y8aMGSgvLzd4zsqVK9GqVSu4uLggJiYG//rXv0w61+XLlyMmJgYuLi4IDQ3Fa6+9hpKSErNfLxERERHJoKt4/7QAOLVR++fa/sCtFG0luzJdtTt2kra6rVACSnvtn5Wr3bqW82Efav+sFMDH7ByDFadWYPtf27Hi1AqM2TkGl/MvQ3lfVNFVu+NbxiPKMwpKhRL2CnsoFUqDareu5Xxe3Dy80O4FBnCyOayEyyS2RsVaWrRogY8//hhRUVEoLi7GBx98gAEDBiAlJQV+fn4AgNLSUowaNQpxcXH4/PPPq7xHRUUFhg4disDAQBw5cgQ3btzAuHHj4ODggHfeeQcAsGrVKiQmJuKzzz7DAw88gKSkJEycOBFNmjTBsGHDqj3PzZs3Y9asWVi3bh169OiBCxcuYPz48VAoFFi2bJlZr5eIiIiIJJi6vlvV1KzVbqn13f6u/qx2U4OlEARBsPZJmFN+fj48PT2Rl5cHlUplcKykpARpaWmIjIyEs7Oz7M8wtkYlyjMKm4ZsqrP/8fft2xdt27YFAHz55ZdwcHDA5MmT8fbbb0OhUFR5vu7n8OOPP+Lhhx82OLZ+/XpMnToVubm5Bo/v2rULjz76KK5fv46AgAAAwOrVqzFz5kzcvHkTjo6O6NGjB3r27IklS5boX/ePf/wDx48fx6FDh6q9jilTpuDPP//E3r17RV9v6rVWd70NgbnuXSIiIiIAxtd3+8Zog/QPb2or4JpK3ZBKe6D900D6SeOvMXGaue7vzktOLMH2v7ajXLj3WfYKezza7FGczT5r0b9vE9WGVA69H9vRZaj8G7tyoRwaQaNfo1KXNmzYAHt7eyQlJeHDDz/EsmXLsHbt2irPKy0txZo1a+Dp6YkOHTrU+P2PHj2Kdu3a6QM4AAwcOBD5+fn4/fffAQBqtbpKCHRxcUFSUhLKysqq/YwePXogOTkZSUlJAIDU1FTs3LkTQ4YMkXWttbleIiIiokarcrVbU679s7r13T7R2sD90Byg07PaP6sJ4ID0353F1neHq8Kxacgm/K3T3zCi+Qj8rdPfGMCpwWA7ugxSExnrUmhoKD744AMoFArExMTgzJkz+OCDDzBx4kQAwHfffYfRo0ejqKgIQUFB2LNnD3x9fWv8/hkZGQYBHID++4yMDADaUL527VqMGDECnTt3RnJyMtauXYuysjJkZ2cjKChI8jPi4+ORnZ2NXr16QRAElJeX46WXXsIbb7xh0rWa43qJiIiIGjyxlnO508xFthMDxFvO5U4z53Zi1FAxhMtQ3f6DdaV79+4G7dhxcXFYunQpKioqYGdnh379+uH06dPIzs7GZ599hqeeegrHjx+Hv7+/2c5hzpw5yMjIQPfu3SEIAgICApCQkIDFixdDqay+sWL//v1455138Mknn6Bbt25ISUnBq6++igULFmDOnDk1vlYAFrleIiIiIpsnFrSlthSTOc1cLGhLbSnGaeZEhhjCZYhvGW+T+w+6ubkhOjoa0dHR6N69O5o3b47PP/8ciYmJNXp9YGCgvk1cJzMzU38M0Laer1u3Dp9++ikyMzMRFBSENWvWwMPDo0YD0ebMmYOxY8fihRe0v9Vs164dCgsLMWnSJLz55ps1CvLmul4iIiKiek8qaEttKRY7SXrvbiMVb6mgLbWlWHV/d2bFmxobhnAZrPUbu/u34Dp27BiaN2+urwzfT6PRQK1W1/j94+LisHDhQmRlZemryXv27IFKpULr1q0Nnuvg4ICQkBAAwJYtW/Doo4/WKEAXFRVVeZ7u/CvPCDT1WgHTr5eIiIioXjF1726plnMz790t1XLOajeRIYZwmazxG7srV65g2rRpePHFF3Hy5EmsWLECS5cuRWFhIRYuXIjhw4cjKCgI2dnZWLlyJdLT0zFq1CiD1+fk5ODKlSuoqKjA6dOnAQDR0dFwd3fHgAED0Lp1a4wdOxaLFy9GRkYGZs+ejVdeeQVOTk4AgAsXLiApKQndunXD7du3sWzZMpw9exYbNmyo0TUMGzYMy5YtQ6dOnfTt6HPmzMGwYcMMArbYtQKo8fUSERERNRhiFe/gzuJBW6rlHBBd3y1W8W7r21Y0aFe3XJPVbqJ7GMLrkXHjxqG4uBixsbGws7PDq6++ikmTJkGtVuPcuXPYsGEDsrOz4ePjgwceeAAHDx5EmzZt9K+fO3euQVju1KkTAGDfvn3o27cv7Ozs8N1332Hy5MmIi4uDm5sbEhIS8Pbbb+tfU1FRgaVLl+L8+fNwcHBAv379cOTIEURERNToGmbPng2FQoHZs2cjPT0dfn5+GDZsGBYuXFijawW0lfOaXC8RERFRgyFn7+7qWs5FyNm721aXaxLZIu4TXk/07dsXHTt2xPLly619KnWuMV1rTdXne5eIiIhMIDZk7dtX5e3dLfZ+EJ9mPv/ofFl7d4u9H1FjYMo+4ayEExERERHZAjnTzH2igcGLRYO2qS3nUtPMw1XhSIxNFA3abDknqhmGcDIrd3d30WO7du1C7969LXg2RERERDZIrDotd5q5jL275U4zZ9Amqj2G8Hpi//791j6FGtENezMmOLhm+6jXl2slIiIiMplUtbsW08yNkap2c5o5kfUwhJNZRUdHW/sUiIiIiKxPTrW7FtPMTa12c5o51QeF6nJsOHoJV3OKEertgoS4CLg51f8IW/+vgIiIiIjIlsitdg9YaPI0c7nV7hldZ3CaOdkEsaBdqC7H458cRkpWAZQKBTSCgO2n0rHt5Z71PojX77MnIiIiIrImYxVvudXualrOjVW85Va72XJOliQnaG84egkpWQXQCIDm7oZeKVkF2HD0El7uW7+7bxnCiYiIiIjkEKt4B3eWX+02cZp5W9+2sqvdbDknczMWtgHICtpXc4r1z9dRKhS4mlNsjUszK4ZwIiIiIiIppq7vVjU1a7Vban23v6s/q91kUaZWtYe0C5IVtEO9XQweB7SvD/V2sej11gWGcCIiIiIiMXLWd3sEaqvbZqp2S63v9nf1R5RnFKvdZFbmbB/fdy5LVtBOiIvA9lPpBp8V7e+ur67XZwzhRERERERi5Kzv9okGBi82aTsxALLWd4erwpEYm8hqN5mN3HXaYlVtALKCtpuTvf4zG9p0dKW1T4DM46233kLLli3h5uaGJk2aoH///jh+/LjBcxYuXIgePXrA1dUVXl5eRt/nypUrGDp0KFxdXeHv748ZM2agvLzc4DkrV65Eq1at4OLigpiYGPzrX/8y6VyXL1+OmJgYuLi4IDQ0FK+99hpKSkpMeo/KXnrpJSgUCixfvlz2exAREVEjpy4ADi4Dvn1V+6e6QPu4rtpdmW59d+wkbYVboQSU9to/dRVvXbV72IfaPysF8KKyIqw9sxbzj87H2jNrUVRWBAD6andluvXd8S3jEeUZBaVCCXuFPZQKpb7irat2z4ubhxfavcAATjVSqC7HJ/tTkPj1GXyyPwWFau3f+SsH7XKNAI1QNWhXVl1Vu19Lf0T7u0OpAOyVCigVqBK0pw+MwaiuoZg+MMZg+rmbkz1e7huNRSPb4eW+0Q0igAOshMumKSxEzqbNKLt2DQ4hIfAeEw+lm5vVzqdFixb4+OOPERUVheLiYnzwwQcYMGAAUlJS4OfnBwAoLS3FqFGjEBcXh88//7zKe1RUVGDo0KEIDAzEkSNHcOPGDYwbNw4ODg545513AACrVq1CYmIiPvvsMzzwwANISkrCxIkT0aRJEwwbNqza89y8eTNmzZqFdevWoUePHrhw4QLGjx8PhUKBZcuWmXzd27Ztw7Fjx9C0aVOTX0tEREQEQLrlvBbTzI2RajnnNHOqC6YOS5O7Tlusqj2xdxQm9o4SrWjrgnZjohCE+36K9Vx+fj48PT2Rl5cHlUplcKykpARpaWmIjIyEs7Oz7M/QFBYibfRolF5MBZRKQKOBY7MoRG7ZUmdBvG/fvmjbti0A4Msvv4SDgwMmT56Mt99+G4r7fhsF3Ps5/Pjjj3j44YcNjq1fvx5Tp05Fbm6uweO7du3Co48+iuvXryMgIAAAsHr1asycORM3b96Eo6MjevTogZ49e2LJkiX61/3jH//A8ePHcejQoWqvY8qUKfjzzz+xd+9e0dfX9FrT09PRrVs3fP/99xg6dCimTp2KqVOnVnsO9ZG57l0iIqJGTWzA2sFlwE8Lqq7tfmiO9jn3B3TfGG34riZsGwvMa8+sxYpTK6Cp9FlKhRJ/6/Q3xLeMrxLQozyjsGnIJoZtEl2nLXXMWGt5tL87hrQLwkd7/4KmUhJUKoDpA2MAAO9/f97osYS4CKPvp6teS52jGKnipq0VPqVI5dD7sRIuQ86mzdoArtFo/wFQejEVOZs2w3fSxDr73A0bNuD5559HUlISTpw4gUmTJiEsLAwTJxp+ZmlpKdasWQNPT0906NChxu9/9OhRtGvXTh/AAWDgwIGYPHkyfv/9d3Tq1AlqtbpKCHRxcUFSUhLKysrg4OAg+Rk9evTAxo0bkZSUhNjYWKSmpmLnzp0YO3asSdeq0WgwduxYzJgxA23atKnxNRIREVEDJxa05QxYy70sa5o5AJMHrKUXpLPaTbIGogGmbwEmNSxt9tBWstdpi1W1xcK0seJm3rffIHLLFgAQPWarQbymGMJlKLt2TX8j6CmV2sfrUGhoKD744AMoFArExMTgzJkz+OCDD/TB9LvvvsPo0aNRVFSEoKAg7NmzB76+vjV+/4yMDIMADkD/fUZGBgBtKF+7di1GjBiBzp07Izk5GWvXrkVZWRmys7MRFBQk+Rnx8fHIzs5Gr169IAgCysvL8dJLL+GNN94w6Vrfe+892Nvb4+9//3uNr4+IiIgaOKmgLWfAmle49msTp5kPCB9g8oC1YPdgAJxm3pjJHYim+9pcw9LkBm0xUkFbqrip+9rShU9L4GA2GRxCQgwDOABoNNrH61D37t0N2rHj4uLw119/oaKiAgDQr18/nD59GkeOHMGgQYPw1FNPISsry6znMGfOHAwePBjdu3eHg4MDHnvsMSQkJAAAlMrqb6f9+/fjnXfewSeffIKTJ0/i66+/xo4dO7BgwQKD50lda3JyMj788EOsX7/eaCs+ERERNVKVg7amXPunLmjLHbAmofI083KhHBpBg9S8VBxIPyBrwBo1HsaGoskdiGbuYWmA/IFomsJCZK/5DDfmzkP2ms/0FXB9mC4vBzQafZjWFzcNTl5b3JQ6Vt+xEi6D95h45H37TZU14d5jrPt/nm5uboiOjkZ0dDS6d++O5s2b4/PPP0diYmKNXh8YGIikpCSDxzIzM/XHAG3r+bp16/Dpp58iMzMTQUFBWLNmDTw8PPQD4KTMmTMHY8eOxQsvaH/D265dOxQWFmLSpEl48803axTkDx48iKysLISFhekfq6iowD/+8Q8sX74cly5dqtH1EhERUT1mrO1cqq28FgPWxNZ3i7WWA+CANTK5tbxDiJesgWi6r40dkzssTYqpreUu7dqJdhFXW9y0QuHTEhjCZVC6uenbJyw5JOD+LceOHTuG5s2bw87OzujzNRoN1Gp1jd8/Li4OCxcuRFZWFvz9/QEAe/bsgUqlQuvWrQ2e6+DggJC7/wPYsmULHn300RoF6KKioirP051/5RmBUtc6duxY9O/f3+D4wIEDMXbsWEyYMKGGV0tERET1lljbeZsR4kE7dpL2OfcPWNNVu01sOZeaZt47uDdKykuqDFjTVbvZct5wyFnDLdZaHujpLGs/bQCy13CLtZXLWcMt1lruEBAoGqarK27aYuHTHBjCZVK6uVl8LcKVK1cwbdo0vPjiizh58iRWrFiBpUuXorCwEAsXLsTw4cMRFBSE7OxsrFy5Eunp6Rg1apTB63NycnDlyhVUVFTg9OnTAIDo6Gi4u7tjwIABaN26NcaOHYvFixcjIyMDs2fPxiuvvAInJycAwIULF5CUlIRu3brh9u3bWLZsGc6ePYsNGzbU6BqGDRuGZcuWoVOnTujWrRtSUlIwZ84cDBs2zOCXCWLXCgA+Pj7w8fExeF8HBwcEBgYiJiamNj9iIiIisiViQ9bE1ncL0AZrY0FbZrW7csv5/eu741vGY0fqjiphe3yb8RjfZjyr3Q2EOYO21Dptfw9nRPu7ywrTlhqWJrWGW2xulr2fHxybRRkN09UVN61R+LQEmwvhV69exdixY5GVlQV7e3vMmTPHIEg2ZuPGjUNxcTFiY2NhZ2eHV199FZMmTYJarca5c+ewYcMGZGdnw8fHBw888AAOHjxoMDl87ty5BmG5U6dOAIB9+/ahb9++sLOzw3fffYfJkycjLi4Obm5uSEhIwNtvv61/TUVFBZYuXYrz58/DwcEB/fr1w5EjRxAREVGja5g9ezYUCgVmz56N9PR0+Pn5YdiwYVi4cGGNrpWIiIgaCTnTzAtuSO/bLaPaXZtp5qx21x+WCtpSreVRfm6YP7yNrIFoUseMhW1AfPK4nKAt1VruGBmJwNlvioZpqeKmNQqflmBzIdze3h7Lly9Hx44dkZGRgS5dumDIkCFwawC/8agtBwcHLF++HKtWrTJ43NnZGV9//XW1r1+/fj3Wr18v+Zzw8HDs3LlT9HirVq1w6tSpGp2vMfb29pg3bx7mzZsn+TyxaxXDdeBERET1lKnV7uqmmYsEbUBetZvTzBsWY2EbMH2LL7lBu7rWclMnj+vf28SqtmrgILMG7epayxtqmJbL5kJ4UFCQfpurwMBA+Pr6IicnhyGciIiIqKGRu3f3gIXS67uNkFvtntF1htGWc04zt12mVrWHtAuyeNCWah8XY8728YKff66ToN1Q28fNzewh/MCBA1iyZAmSk5Nx48YNbNu2DSNGjDB4zsqVK7FkyRJkZGSgQ4cOWLFiBWJjY6u8V3JyMioqKhAaGmru06Q64u7uLnps165d6N27twXPhoiIiGxCXVS7RdrOzV3t5jRz22TO9vF957IsHrStvU5b+2HmD9qseNeM2UN4YWEhOnTogOeeew4jR46scnzr1q2YNm0aVq9ejW7dumH58uUYOHAgzp8/r5/IDQA5OTkYN24cPvvsM8nPU6vVBhPA8/PzzXcxNmT//v3WPoUa0Q17MyY4OLhG71FfrpWIiIhqoK6q3Ubazuuq2s2Wc+uw1DptwPQtvmoTtAHrr9N279MHmpJiBm0rMXsIHzx4MAYPHix6fNmyZZg4caJ+K6nVq1djx44dWLduHWbNmgVAG6xHjBiBWbNmoUePHpKft2jRIsyfP998F0C1Eh1t+hoWIiIiaiCMVbzroNoNGF/fzWp3/WTtddr9WvqjuKzCIkHbVtZp+0wYD58J4xm0rcSia8JLS0uRnJyMxMRE/WNKpRL9+/fH0aNHAWj3ih4/fjweeughjB07ttr3TExMxLRp934Lmp+fz/Z1IiIiIksTq3gHdzZrtRsQr3i39W3Lanc9YwvrtCf2jsLE3lGygraY+rJOm0HbOiwawrOzs1FRUYGAgACDxwMCAnDu3DkAwOHDh7F161a0b98e27dvBwB8+eWXaNeundH3dHJy0u9hTURERERWIlbxVjWVXe0WI1bx9nf1Z7XbRom1ltvSOm1zTiXnOm2SYnPT0Xv16gXN/TcfEREREdkGsSFrYuu7PQK11W0Tq92A+JZiYuu7/V39EeUZxWq3lchZw21L67TFyBmWxnXaJMWiIdzX1xd2dnbIzMw0eDwzMxOBgYGWPBUiIiIiMpXUkDWx9d0+0cDgxSZXu6WGrImt7w5XhSMxNpHV7jpk7mFpll6nLcbcU8m5TpukWDSEOzo6okuXLti7d69+2zKNRoO9e/diypQpljwVIiIiIhIjZ0ux2Eni67tlVLulhqzFt4wXXd/Nard5WGpY2uyhrSy2Thuw3FTygJmvc502iTJ7CC8oKEBKSor++7S0NJw+fRre3t4ICwvDtGnTkJCQgK5duyI2NhbLly9HYWGhflo6EREREVmR3C3FZKzvlrulGNd3m4epVe26GJZmyXXalpxKzvZxkmL2EH7ixAn069dP/71ucnlCQgLWr1+Pp59+Gjdv3sTcuXORkZGBjh07Yvfu3VWGtZFp3nrrLWzZsgVXr17VdxwsXLgQ3bp10z9n4cKF2LFjB06fPg1HR0fk5uZWeZ8rV65g8uTJ2LdvH9zd3ZGQkIBFixbB3v7erbJy5Up8/PHHuHTpEsLCwvDmm29i3LhxNT7X5cuXY9WqVbhy5Qp8fX3x5JNPYtGiRXB2dq7xe4wfPx4bNmwweGzgwIHYvXt3jd+DiIioUZNT7ZbaUgyQnGZuarVbaksxgOu7a8qc7eN1MSwNsH77eF1MJQcYtEmc2UN43759Idz3P8D7TZkypd63n5eWlOPM/mvIv1UClY8z2vUNgaOz9ebctWjRAh9//DGioqJQXFyMDz74AAMGDEBKSgr8/Py051xailGjRiEuLg6ff/55lfeoqKjA0KFDERgYiCNHjuDGjRsYN24cHBwc8M477wAAVq1ahcTERHz22Wd44IEHkJSUhIkTJ6JJkyYYNmxYtee5efNmzJo1C+vWrUOPHj1w4cIFjB8/HgqFAsuWLTPpmgcNGoQvvvhC/z2n5BMREdWQ3Gp3dVuKGSG32l3dlmJ0j7nXaVt6WJoYc6/TtvRUciIxNjcdvT4oLSnHV+8l43ZGIRQKBQRBwIXjmXhiZpc6C+J9+/ZF27ZtAWi3bHNwcMDkyZPx9ttvQ6FQID7e8D9Iy5Ytw+eff47ffvsNDz/8MABg/vz5AID169cb/YwffvgBf/zxB3788UcEBASgY8eOWLBgAWbOnIm33noLjo6O+PLLL/Hiiy/i6aefBgBERUXhl19+wXvvvVejEH7kyBH07NlTf74RERF45plncPz48Rpfq46TkxMH+hEREVXHWMVbbrW7mpZzYxVvudVutpxXZal12pYelmapddqcSk62giFchjP7r+F2RiEEAfqq/+2MQpzZfw1dBkXU2edu2LABzz//PJKSknDixAlMmjQJYWFhmDjR8H/4paWlWLNmDTw9PdGhQ4cav//Ro0fRrl07g6UBAwcOxOTJk/H777+jU6dOUKvVVdrGXVxckJSUhLKyMjg4OEh+Ro8ePbBx40YkJSUhNjYWqamp2LlzJ8aOHWvyte7fvx/+/v5o0qQJHnroIfzzn/+Ej49Pja+XiIiowROreAd3ll/tlmg5N1bxbuvbVna1uzG2nNvCOm2xqnZthqXZwjptTiUnW8EQLkP+rRJ9BVxHoVAg/1ZJnX5uaGgoPvjgAygUCsTExODMmTP44IMP9MH0u+++w+jRo1FUVISgoCDs2bMHvr6+NX7/jIyMKmvzdd9nZGQA0IbytWvXYsSIEejcuTOSk5Oxdu1alJWVITs7G0FBQZKfER8fj+zsbPTq1QuCIKC8vBwvvfQS3njjDZOuddCgQRg5ciQiIyNx8eJFvPHGGxg8eDCOHj0KOzu7Gl8zERFRgyZW8VY1lV3tFiNW8fZ39We1u4ZsZZ22uYel2co6bU4lJ1vBEC6Dyse5yrp3QRCg8qn5YDE5unfvbtCOHRcXh6VLl6KiogJ2dnbo168fTp8+jezsbHz22Wd46qmncPz4cfj7+5vtHObMmYOMjAx0794dgiAgICAACQkJWLx4MZS6NTUS9u/fj3feeQeffPIJunXrhpSUFLz66qtYsGAB5syZU+NrHT16tP5Yu3bt0L59ezRr1gz79+/Xt98TERE1GmJD1sTWd3sEaqvbJla7AfEha2Lru/1d/RHlGdXoqt1iFW2pY7a0Tlusqi1W0ZY6ZkvrtFnVJlvAEC5Du74huHA802BNeJNAN7TrG2LV83Jzc0N0dDSio6PRvXt3NG/eHJ9//jkSExNr9PrAwEAkJSUZPJaZmak/Bmhbz9etW4dPP/0UmZmZCAoKwpo1a+Dh4aEfACdlzpw5GDt2LF54Qfsf23bt2qGwsBCTJk3Cm2++WaMgb0xUVBR8fX2RkpLCEE5ERA2TWNCWGrImtr7bJxoYvNiktd2uDq6SQ9bE1neHq8KRGJvYYKvdpq7TljpWn9dpSx3jOm0iQwzhMjg62+OJmV0sPh298vAyADh27BiaN28u2n6t0WigVqtr/P5xcXFYuHAhsrKy9NXzPXv2QKVSoXXr1gbPdXBwQEiI9pcOW7ZswaOPPlqjAF1UVFTlebrzr9xdYOq1Xrt2Dbdu3aq2HZ6IiKhekgraUkPWYieJr+82cW23rm1cbMhafMt40fXd9b3abc512rqvjR2rz+u0dV8bO8Z12kSGGMJlcnS2r9MhbMZcuXIF06ZNw4svvoiTJ09ixYoVWLp0KQoLC7Fw4UIMHz4cQUFByM7OxsqVK5Geno5Ro0YZvD4nJwdXrlxBRUUFTp8+DQCIjo6Gu7s7BgwYgNatW2Ps2LFYvHgxMjIyMHv2bLzyyiv67b8uXLiApKQkdOvWDbdv38ayZctw9uzZKnt2ixk2bBiWLVuGTp066dvR58yZg2HDhhkEbLFrBYCCggLMnz8fTzzxBAIDA3Hx4kW8/vrriI6OxsCBA8300yYiIrICOXt3S20pJrG+W87e3VJbitX39d2W2k9b97WxY7OHtjL7Om1L7aet+9rYsYCZr3OdNlElDOH1yLhx41BcXIzY2FjY2dnh1VdfxaRJk6BWq3Hu3Dls2LAB2dnZ8PHxwQMPPICDBw+iTZs2+tfPnTvXICx36tQJALBv3z707dsXdnZ2+O677zB58mTExcXBzc0NCQkJePvtt/WvqaiowNKlS3H+/Hk4ODigX79+OHLkCCIiImp0DbNnz4ZCocDs2bORnp4OPz8/DBs2DAsXLqzRtQLayvlvv/2GDRs2IDc3F02bNsWAAQOwYMEC7hVORET1l9y9u6W2FAOMVrzl7t0ttaUYYPvru21hP22pY+Zep23J/bSljrF9nMgQQ3g94uDggOXLl2PVqlUGjzs7O+Prr7+u9vXr168X3SNcJzw8HDt37hQ93qpVK5w6dapG52uMvb095s2bh3nz5kk+T+xaAe269O+//172ORAREVmdOffulmo5h3n37pZqObcVlgractdpAxCtdgP1dz9tAKLVboBBm6gyhnAiIiIiSzL33t3VtJybc+9uW285t2TQrs06balqt5j6sJ+2VLWbiO5hCCezcncX30N0165d6N27twXPhoiIyAbVxd7dIkPW6mLvbltpOTdW8bZk0K7NOm05w9Lqw37arHYT1QxDeD2xf/9+a59CjeiGvRkTHBxco/eoL9dKREQkiXt315qpreUdQrwsHrSlArUYOWu4uZ82UcPBEE5mFR1t2n+EiIiIGqQ62LtbTH3fu9uca7gDPZ3rddCWWsPN/bSpoSotKRfd+lnqWH1W/6+AiIiIyFrkbCkmY+9uQLzaXR/27rbUsDR/D2dE+7tbLGgDlhuWJrbNF/fTJlsiFpqlHv/qvWTcziiEQqGAIAi4cDwTT8zsAgCix+p7EK/fZ09ERERkLXK3FKtufbcRcrcUs/QgNWNhG4DFhqVF+blh/vA2FgnaUlXtuhiWxv20yZLkVKfFAvXwqR3xzfLTRsP0mf3XcDujEIIACHf/N307oxBn9l/Tf23sWJdBEVb5uZgLQzgRERGRFDnVbhl7dwPyqt2W3rvb1Kr2kHZBFh+WZomgLVXVrothaQCr2iSPparTYoF674Y/RcN0/q0S/fvoKBQK5N8q0X8tdqw+YwgnIiIiEiO32i21pZgIudVuqS3F5DJn+/i+c1kWH5YmxtzrtC09LI0aN1uvTosF6js54kFb5eNs8DigfV+Vj7P+a7Fj9RlDOBEREZG5q93VtJwbq3jLrXbLbTm31DptAHUStMUq3pYK2lJVbQ5Lo+o0xOq0WKD28HZGXmZRlcd113fheKbBuTcJdEO7viEAIHmsPmMIb0T279+Pfv364fbt2/Dy8rL26ZjNW2+9he3bt0tuj1Zb69evx9SpU5Gbm1tnn0FERFZSV9VuiZZzYxXvtr5tZVe7pVrOrb1Ou19LfxSXVZh9WJqlBqLJaR/nsDQCGl91WixQP5zQqsp16cK0o7O9/vqMVfiljtVn9f8KGombN29i7ty52LFjBzIzM9GkSRN06NABc+fORc+ePa19ekRERPVXHVW7xYhVvP1d/euk2m3tddoTe0dhYu8os2//ZamBaLVpH2fQbvjkVK4banVaKlBLhWlHZ3vRQWtSx+ozhnCZCgoK8PHHHyMtLQ2RkZGYMmUK3N2l/6NbG0888QRKS0uxYcMGREVFITMzE3v37sWtW7fq7DPNqaysDA4ODtY+DSIiauyMtZ3XQbUbEB+yJra+29/VH1GeUaLVbkHjiNJbfVGSU4xSbxcIGkf968Vay21pnbYpFW1diBU7ZsmBaGwfb1hMbQOv7jWmBu2GXp0WC80NNUzLxRAuQ0FBAXr16oULFy6gVatW+PLLL7FlyxYcOnSoToJ4bm4uDh48iP3796NPnz4AgPDwcMTGxuqfc+nSJURGRuLUqVPo2LGj/nVNmjTBvn370LdvX/1zDx8+jMTERFy4cAEdO3bE2rVr0bZtWwD32q63bt2KqVOn4urVq+jVqxe++OILBAUFAQA0Gg3++c9/Ys2aNbh58yZatWqFd999F4MGDTI4ly1btuCTTz7B8ePHsXr1auzfvx+5ubmIjY3Fhx9+CLVajWnTpuGNN95AYmIiPv/8c7i6umLBggWYMGGC/nxnzpyJbdu24dq1awgMDMSYMWMwd+7cGoV6jUaDsLAwvPnmm5g8ebL+8VOnTqFLly5IS0tDeHg4li1bhi+++AKpqanw9vbGsGHDsHjxYtF/n+PHj0dubi62b9+uf2zq1Kk4ffo09u/fr//s9957D2vWrEFGRgZatGiBOXPm4MknnwQA3L59G1OmTMEPP/yAgoIChISE4I033jC4diIikkFsfbdY23mbEWZd2+3q4Co5ZE1sfXe4Khx/7zADiXtX4UbhdQS5NcWihyfD1cFVcp02IN5aXp/XaQPireWWHojGoG17LDWkDDB9vXV1lWtWp4khXIaPP/4YFy5cwLFjx9C+fXv89ttv6N69Oz7++GPMmjXL7J/n7u4Od3d3bN++Hd27d4eTk1Ot3m/GjBn48MMPERgYiDfeeAPDhg3DhQsX9KG2qKgI77//Pr788ksolUo8++yzmD59OjZt2gQA+PDDD7F06VJ8+umn6NSpE9atW4fhw4fj999/R/PmzfWfM2vWLCxduhSdOnWCs7Mz9u/fj59++gkhISE4cOAADh8+jOeffx5HjhzBgw8+iOPHj2Pr1q148cUX8cgjjyAkRPt/Kh4eHli/fj2aNm2KM2fOYOLEifDw8MDrr79e7bUqlUo888wz2Lx5s0EI37RpE3r27Inw8HD98z766CNERkYiNTUVL7/8Ml5//XV88sknsn/OixYtwsaNG7F69Wo0b94cBw4cwLPPPgs/Pz/06dMHc+bMwR9//IFdu3bB19cXKSkpKC4ulv15REQE6fXdYm3nArTVbTOt7da1jYsNWYtvGY9vU75DWn4aAAUAAREekXgs8imM+ewUUrLaQqlohz8FAWNST1W7Tlv3tbFj9Xmdtu5rY8c4EK1hseUhZbqvzRW0WZ0mgCFclrS0NLRq1Qrt27cHALRv3x4tW7ZEWlpanXyevb091q9fj4kTJ2L16tXo3Lkz+vTpg9GjR+vPwRTz5s3DI488AgDYsGEDQkJCsG3bNjz11FMAtK3jq1evRrNmzQAAU6ZMwdtvv61//fvvv4+ZM2di9OjRAID33nsP+/btw/Lly7Fy5Ur986ZOnYqRI0cafLa3tzc++ugjKJVKxMTEYPHixSgqKsIbb7wBAEhMTMS7776LQ4cO6d9/9uzZ+tdHRERg+vTp2LJlS41COACMGTMGS5cuxZUrVxAWFgaNRoMtW7YYvO/UqVMNPuOf//wnXnrpJdkhXK1W45133sGPP/6IuLg4AEBUVBQOHTqETz/9FH369MGVK1fQqVMndO3aVf+5RERUQ3KmmYu1nRfckFXtlgraUluKCRpHFF56GeryPVA65kBT6o3CnEew6ViGrHXauq+NHZs9tJXZ12mbWtWWu05b97WxYwEzX+dANBvUELfQ0n1trqDN6jQBDOGyREZG4ssvv8Rvv/2mr4SfO3dOH2LrwhNPPIGhQ4fi4MGDOHbsGHbt2oXFixdj7dq1GD9+vEnvpQuFgDYUx8TE4M8//9Q/5urqqg/gABAUFISsrCwAQH5+Pq5fv15lGFzPnj3x66+/GjymC5eVtWnTBkpduxiAgIAAfSs8ANjZ2cHHx0f/eQCwdetWfPTRR7h48SIKCgpQXl4OlUpV4+vt2LEjWrVqhc2bN2PWrFn4+eefkZWVhVGjRumf8+OPP2LRokU4d+4c8vPzUV5ejpKSEhQVFcHVVXrojTEpKSkoKirS/7JDp7S0FJ06dQIATJ48GU888QROnjyJAQMGYMSIEejRo4fJn0VE1OjInWZe3ZA1E6vdUkHb3zkI5ZoKbaH7rnJNBfydg7Dh6CWkZpVBI/TVH0tVlMlep6372tgxc6/TlrPNl9x12rqvjR3jQLS6Z8vVaUsOKdN9beyY3KANsDrd2DGEyzBlyhRs2bIF3bt3R8uWLXHu3Dm0aNECU6ZMqdPPdXZ2xiOPPIJHHnkEc+bMwQsvvIB58+Zh/Pjx+mBb+f8kysrKZH3O/Wut7/8/sppyu/sfwure29hjmrv/0T169CjGjBmD+fPnY+DAgfD09MSWLVuwdOlSk85lzJgx+hC+efNmDBo0CD4+PgC0a9gfffRRTJ48GQsXLoS3tzcOHTqE559/HqWlpUZDuFKprPIzqfzzLigoAADs2LEDwcHBBs/TLScYPHgwLl++jJ07d2LPnj14+OGH8corr+D999836dqIiBosc+/dHTtJdMianGq3VNAuvR2HitL/QOmYBV3LuabUH6W345CRa9512gAkj1l7P23th5m+ThuA5DFWtWumIVanLTmkDJC33hpgoCZxDOEyuLu749ChQ/rp6E899VSdT0c3pnXr1vrBYH5+fgCAGzdu6CutYvtmHzt2DGFhYQC0w8F0A+ZqQqVSoWnTpjh8+LB+SBygHfZWeVCcuRw5cgTh4eF488039Y9dvnzZ5PeJj4/H7NmzkZycjP/9739YvXq1/lhycjI0Gg2WLl2q/2XGf/7zH8n38/Pzw9mzZw0eO336tP4XCq1bt4aTkxOuXLli8HMy9j4JCQlISEhA7969MWPGDIZwIiKgbvbuFhmyVqRUila7L+dd0+bHSkFbowEu512Db+kTEkEbKL38CpReR6BwyIFQ5g1Nbg9k+KJO1mlLHTPG3EFbqqpdm3XaUsfonsZWnbb0kDIGbTI3hnCZ3N3d62QImzG3bt3CqFGj8Nxzz6F9+/bw8PDAiRMnsHjxYjz22GMAABcXF3Tv3h3vvvsuIiMjkZWVZbDmubK3334bPj4+CAgIwJtvvglfX1+MGDGixuczY8YMzJs3D82aNUPHjh3xxRdf4PTp0/rBbebUvHlzXLlyBVu2bMEDDzyAHTt2YNu2bSa/T0REBHr06IHnn38eFRUVGD58uP5YdHQ0ysrKsGLFCgwbNgyHDx82COnGPPTQQ1iyZAn+9a9/IS4uDhs3bsTZs2f1vwDx8PDA9OnT8dprr0Gj0aBXr17Iy8vD4cOHoVKpkJCQgLlz56JLly5o06YN1Go1vvvuuxr/MoSIqMGrq727jbSdbz6zVrTafeOWCwQIlTM4BAi4ccsF5RXVBG2NI8pv9dW/TqlAne2nbeoabnMHbamqdm3WaTfGareplWtA3vRu3df1sTpt6SFlDNpkbgzh9YC7uzu6deuGDz74ABcvXkRZWRlCQ0MxceJE/UAzAFi3bh2ef/55dOnSRT/0bMCAAVXe791338Wrr76Kv/76Cx07dsS3334LR0fHKs8T8/e//x15eXn4xz/+gaysLLRu3RrffPONwWR0cxk+fDhee+01TJkyBWq1GkOHDsWcOXPw1ltvmfxeY8aMwcsvv4xx48bBxcVF/3iHDh2wbNkyvPfee0hMTMSDDz6IRYsWYdy4caLvNXDgQMyZMwevv/46SkpK8Nxzz2HcuHE4c+aM/jkLFiyAn58fFi1ahNTUVHh5eaFz5876f2eOjo5ITEzEpUuX4OLigt69e2PL3S1ZiIgaFQvu3X2zIL/KFmBS1e4m5UMhlO4BKlW7hVJ/NCl/CKE+pgft2uynLcXU1nKXdu0svp92YwvTUsxZuW7Wxa9RVqcZmqk+UwhyFvvasPz8fHh6eiIvL6/K8K6SkhKkpaUhMjISzs7OVjpDItPx3iWiBstY27lvjHbv7p/fqxrCH5qjDdhi68UBFKrLjQbcmwX5GLD1SZTZZUAXqB0qAtGuSW+czP8vFIp7fyUSBAW6NxmDzp5P4P0ffoN9k6P6anf57ThMH9AeCXERVfbnjvZ3x7aXe8LNyV70POQyJWg7NovSB+Kby5dXCdtuPXqg8MiRKo/7TZ0K7zHxou+n+7zG1iIud111TYN2k0A3feA8/n+pqPy3c4UC6PZYFAAYPeYX7oHsKwXQaCrNGFAq0LJnEFQ+zia/X7fHotCub4jRczS2Jlx37lLXXN3PkKghkMqh9+OdT0RERHXP1CFr1ezdXQhnbKgYjqtlxQitcEECnOEGbQB/7JOfcFW3/ddFb3x96hH838sPIXHvKpTZZdwN29rkUWaXgUvZRRDgb7Tafa+i3des+2mLsdSwNHs/Pzg2i2p0+2mbc0iZVHVa7gAzOZVrQN70boDVaSJrYQgnIiKiuiVnyFrBDRSO243fvl4CZd4VaDzD0H7kDLg5uaNQXV6lAr39VDq2vdwTaw//ietui+FwN1DbQcD10lNYezgINwqvQxeyK30YyhW5KE57uUq1O7JFkzoJ2oDxsA3AYsPSHCMjETj7zXodtK29hZbUumq5A8zkrKsOb+uDcrXGJtZOE1HNMIQTERGRecjcUkwQNIaDzwQNyjxC8fjaX5GS1QNKRU9obgiIXvurPhCn3LwFe29taFaWeSPlZhw2HL2EQ5nfQOmYZVDtVjpm4VDmNwhya4rLpfevwhMQ4xsO9wIfo9VuwLxBW6qqrRo4yGLD0nTnYgtBu75uoSVVnZY7wExO5bpj/zB07B/G6jRRPcIQTkRERLVXTbVbUCihqFTtFhRKKHIvo7DvfNzc9wVCNVehubtB2FVlCHao+yMlKx0a4d7e2SlZBdhw9BLSbt2GS8QnUFRqH3fwPIW0W4ugdMwB1FWr3UrHHCx6eB4GbN1bZU344kdehquDq6z12+ZsHy/4+WeLD0szN2tXpy25hZZUdVruALPaVK4Zponqj0YZwhvYLDpqBHjPEpHNkKh2C9nntUH7btgWss9DkbQGpR6hsNNoYFfpbTQaDSo8QrEhORufFL+FscofEKrIwlXBH1+WDkCzvwqgVJbC/r7tv67mFOO2/U9Q3FfthmMWbtv/hL5hMfjj1z0Gp6yAgL5RMfBzV+GHp/9XZTq6n7t2gI4pW3zVxTrtuz+Y+z689kHb3BVvW65OW3ILLanqdG2212Llmqjha1Qh3MHBAQBQVFRksEUVka0rKtL+Nl13DxMRWYW6ABWfPQxF9gUIUEABAcKvW2E3cS/Kbl2CQlAY/MWiQlBAuHUJ691fQB/NF4hWpOur3SlCU/xcPgBX84tRonDBqorh+tfZKxXQoASO4SuhrFTt1nieQqDXB7B3LIbitmG1WwEFgnyKkdD2b9h9aSfS8tP0r4v0jERC22cBAH7uKqx9bGaVS7NU0Jaqarv36QNNSbHFgra5h5TZQnXa0ltoAeLVablBm4gavkYVwu3s7ODl5YWsrCwAgKurq36qJJEtEgQBRUVFyMrKgpeXF+zs7Kp/ERFRHSk9uhp22RegxL0AWZF9AaVHVyM5zwOxgsZgr22FoMEveR5I0yjwcfkCjFF8r692bxIGYmi+AqHeLvp2cx2NIMA3+AQu5WUBlarddo5ZcGxyFOH2IdqMWullSiUQ7hkCVwdX/PvRzdh8bjPSC9IR7B6M+JbxcHVwFb0uSwZtqaq2z4Tx8Jkw3uwVbWOBGhBv9ZY6JmeytyWr07WpQJu7Os2gTURiGlUIB4DAwEAA0AdxovrAy8tLf+8SEZmL1D7WhXdyq0wmv3T+d7QQFLCrFLQ1ggJ/nf8du71fgo+wHc1wr9p9UQjGbtfhCPV2QYHghFWae9VupQL6z/z6VOq9LcVKvRFq/whC/Epw+o4dyoVy/WvslXbIKrmBGV1nYEfqDqTmpd79JA2iPKMQ31I7Ydy5VMCIowLKrmngECLAOUoA7jYSGat4WzJoV1fVLi0px+WwR5Dvpg2CKjsnON59a3NWrpt18TP7kDJbqU6z1ZuIbF2jC+EKhQJBQUHw9/dHWVmZtU+HqFoODg6sgBORbGJBu1BdjmdW/oheOdvQXnETVwU/PHPycfz7lf5AaQFuftAbsRV3h6Xd0uDqB9/gms/DaAnD0KmEBlcFPwT4+WBk2duGa7s1A/Cyn49o0E6Ii4BCWQq3iE/gVKl93E31F5q6D4Tmvs/SQINg92C4Orjiy76f4eCHiahIvwG74CD0fnURXB1cJavagPEtwFzatauToB2yYROSPv4e+TlqqLydEDtloL6qXW7nVCVsQ+aQMqljYpXry2eVZh9SZivVaYZpIrJ1jS6E69jZ2THYEBFRgyAVtMX209508A8syf0Hou3uVa4fyz2ETQf/jXbpWxFbcRV2CgF2qAAAhFZcxUl1OVKEYESj8truYFyJfhYJcRHYfiodn2YNr7LNl1jQVih7YfO5zbh0Jw1CpcCt/V5AS+cItPjpIgJygUwv4MJDEYhvGQ9NYSEyn52ACH34TUPmLxPgWk37uO7r+485BARKBu1b3+1CqjoMJc4+cC65hSinK9UG7dKScny94k/czvDRBs8bAq6t+FMyNMutTksdE6tcA+Kt3lLH5E72ZnWaiOieRhvCiYiI6htjYRuAaNDecPQSrmdl48XK1emsAdhw9BKiUjYiWpFuELSjkY60lI1Qlt6ABkr94wCggRJBdrmY4bUUvXK2IfRu9fyQ9+P4d+/WcHOyx6aJnapMHndzssfaM+uNBm3dum2XUgX6n9DAP1dAlpcCP3a1w+3b17HwXxUovaiBoAQUGsDxWgWchwqy28cBoNzeGdcCe6LE2RfOJdkIyTgMez8/KKNjjAbtcjsnJHeegdyMImjXpitwO9AVkXcr12JBW87Ub7nVaaljYpXr8LY+KFdrzD6kjNVpIqLqMYQTERHZEFOr2kPaBSElq8DoftqZN2/ha4e5aFZpKvnjwiFsurkOfRQ3jQbtUMVN5HuGQXmrats5vMLx79H9seFoNH67e37/vnt+RWVFmLQ3Qb9O+1qeBpP2HsOmIZtEg3Z6QTpC7fzw9no1gm8BGgWgFAQ8eFYNTb/rKEtNg0IQoLh7imWpafqgbSxM69rHy2GPa2H97h27fhAOISEoq1AgucNrKHQNhELQQFAokRkQi4eD1Uh2GmY0aJ/Zfw25mcUQoIBu6lxuZnGt1k7rvjZXdVrqmFjlumP/MHTsH2b2IWVERFQ9hnAiIiILk9M+vuHoJaNhe9+5LLgr1BijNJw8fjWnGMOLvkGz+6rdzZCOQUXfoHlMGyhvbDc4L6VCQPOYNijr8gKufvANQnVrwqHBVbtQtB85AwplKRx99sPZKR2O7sFQKOMB2Gur2jcvYtiJCn3Q/qHrRWw+t1k0aF9b5ofByQKybjvhSuiD+tDcNP0A3P/MR5FI0EZQqNEwPTCoBB5PPoUdxz1RYO+tP5YV2gujnxyEM4cyUeh6GVAoISi0+3IXugbiVFkT5GbmGQ3a5t5CSyo0y61OSx2rrnLNNnAiIsuzyRD+3Xff4R//+Ac0Gg1mzpyJF154wdqnREREZBZygrYusOuer6NUKOAsFOO/9nMM9uAeIRzCz6p/o6vyzt2wea/aLSiU6Op5Bw5xiag4+19oKu35Dd8WcIx7CY5O7sBrB5F033R0hbMjxuwcYzCVfEfqDmwasgmZ2Zfwz/XlCL4lVAraAn5pdgnPnQsyGrTbJQsoT8/Gqc7TqwTqbiU/iAbt9OA+RsN0enA4rifloNDRFxBw75ijL84m5eDOnQoo7ZSGnep2StzJK7PYFlpSobk21WlWromI6g+bC+Hl5eWYNm0a9u3bB09PT3Tp0gWPP/44fHx8rH1qRERENSZW7ZYTtHXvYWw/7b+570P0reuwQ6W13YrriLT/AQ4+ERAUgm6bbQCAnUKAwicCcHKH3cS9QNIaIPcy4BUOxE4CnNwBAG4eXohLWGjweWvPrEVmxlWMPtUP7mpvFDjl4NtOh7D53GZ0PpiJgNuOVYJ254OZKC91MBq0H06/iEuOrVHo2qRKoP494EkU3nE1GrRFw/SdCgAV1QRqw39PggCLb6EFSIdmOdVpBm0iovrD5kJ4UlIS2rRpg+DgYADA4MGD8cMPP+CZZ56x8pkREREZktNWLido695798mUKkPRujUpgPKq4SAypVIJuztXgQELofjtP0D2eUChBAQNFL4x2rANaAN372lGr+12ViZ2L9mE0nwlHFUaDJoxBpk3rmLC0akodQqEwkEDlaDEhKNdkRn5Fx5WB2F/5+koqhS0MwJi0Vd9AZecjAftS45OKA9rBUX6jcq/J4ACAtSuvlAWlRgN2mJhWm512tJbaFV3jIiIGjazh/ADBw5gyZIlSE5Oxo0bN7Bt2zaMGDHC4DkrV67EkiVLkJGRgQ4dOmDFihWIjY0FAFy/fl0fwAEgODgY6enp5j5NIiKiGpMzlVys2l1d0N5+Kt3gPXXbfLmhBNsc50Fhf699/B+Op2Hn9ThKKxxxpnA48iv8obLLQju33XD0Cgec3FE69nuc2fwt8nNKofJ2RLv4Ydp2cwDqnPwq22s5eatwOysTX73+I9RO7aEQNCjIV+Kr139EhLcncp0CDcJ0qVMgovZk4ZpHKIruC9pFroG45iQetMvDWkEV6A4o7Qyq9VDawcPXFXk3Swx+TrqgXRfVaYZpIiKyFLOH8MLCQnTo0AHPPfccRo4cWeX41q1bMW3aNKxevRrdunXD8uXLMXDgQJw/fx7+/v4mf55arYZardZ/n5+fX6vzJyKixsmcU8mlqt2zh7YSD9pO9vjP2LbYt+YrlOZXwFFlh35jn4Cbkz1wcA0qbl7BmcIR98K2sBsVpUp8lbsMt9W+UECAAAUulA3AEx2GACXl+N+yP5CbEQRAAK4ocD7jDzw56wEIRUXYMmP3vQFmxUqkztiN0UsGYfeSTVA7tTcI1GqnANjdroDCQaN/DAAUggYeZX6ygrYq0N1mqtMM00REZClmD+GDBw/G4MGDRY8vW7YMEydOxIQJEwAAq1evxo4dO7Bu3TrMmjULTZs2Nah8p6en66vkxixatAjz58833wUQEVGDZe6p5FJt5XYaAZ1L7OGlUSBXKeBX53KEertog/bz3bFp41kU5Kjh7u2EMc+2hZuTPUrz87BrwQ+4rY7UBupcBXYt+AFPLBgCZF/DV7cW4XZ58L2wXdIHzc4U4nZpAATcy7i3SwNw5shtCKVZuH2jUNuKfnfq9+0bhfjthzQUnExGgb2vQdAusPfG0Y92ojRfqW8p11EIGggQDB4DtMPPPL2d4SojaLM6TUREjZFF14SXlpYiOTkZiYmJ+seUSiX69++Po0ePAgBiY2Nx9uxZpKenw9PTE7t27cKcOXNE3zMxMRHTpt1bz5afn4/Q0NC6uwgiIrJp5gzauvdxggLtSuz0gfqMi3YAmljQju8ciryvr8C9VLi76zTQSeOA+M6hKC0px65lJ6HILIIKAoT0YuxadhJPzHoAZzZ/i9vqAAiwuxeo1b44s/lbAJ1xu/y+Y+XBuJxdDGgqAIXdvR+CpgL5GQUoSfkLCsGtSpi+mXQWObeyoRC8qxxLz8yGo0rbgl6ZoFDCuUkO7PJcDLb/ci/PQeyUQVC4usoeUsbqNBERNSYWDeHZ2dmoqKhAQECAweMBAQE4d+6c9oTs7bF06VL069cPGo0Gr7/+uuRkdCcnJzg5OdXpeRMRke2Rs077cmYBulYOzZnSQftqTjFCPJwwOs8R3hqFPlC3KbWDZ09vdL9QajRoXzxyA55luLvvtJZnGXDxyA2gvBS3MwohQKk/fjujEGd+TEV+TundKvc9CgjIzykFAjsBwk1UektAEFBerDD4HED7ufZX/oRT0W0ICg/DYwolnIpuotTlDoTCqkG71OUORsx47u6a8AB92HZSZ2Lwgni42rvct458EJy8VQC4TRYREVFN2Nx0dAAYPnw4hg8fbu3TICIiK5OzTlssaF/LKkJ8vlOVMH0tqwghTZyNBm1fDyd0VtsjWaM0iLk+GgWCU0pwQyRo598qgUIBgwneCgWQf6sEuPEbFPCCgEoVaGiQf+40PFR20AhKg6CtEZTwUNmh+FoKBDQx+PkIUMLn1u9QI8Rg+y+3ogxElF7Eb6oMuN50NZhY7lqUgeKgU9A80h6On2VoJ53fPeaozoBmnBea+AfgicX9q0xHb+Kv/SV677mjjP77YtAmIiKqnkVDuK+vL+zs7JCZmWnweGZmJgIDAy15KkREZCOkgvaTHx+C5zU1PDUKpCkFfJt8Df+b0ku0qn1AmSkatIOzy6DRKFA5TntrAGV2GTq7uhsN2p3V9ijJK4VSqYCgqbT2W6lAUW6p+H7UnkoIGg1QKWgLGo328Rs3oBG8qwZt3ECwYA+3oowqgTpYKEB56SVcLGpW5Vh48WkE/LkF14MN9+e27zERp1uWoctP70Pj/CCKXXzhUpwNZckBJD/3KF6LTcDzl8ehw4EQuJf6oMDpFn4dcA2fx/4LANDEPwDPLDG+fRkRERHJZ9EQ7ujoiC5dumDv3r36bcs0Gg327t2LKVOmWPJUiIjIBkgF7fUHUtH9Yjm8Nfb6QJ1zsRzrD6Qi/XaJ0bCd61ABb5Gg3cLdBeeQd98ZKNDC3UU0aJfklWr3njayKbWHtzPyMovue1i7H3Vb4b84WxyIAuege4G55Aba2p1Czq0/4VbkUzVo3/oVcAhFl1/X4VpgT32gDsk4DEQ+CpewEHTZvhTXmva+d+z6QaQ93gnKDDXCru6BRgEoBSDdB0juokCASwTmjtNgwIm98M8VkBWkwA9d7TDJNwKuDq74fNS/sLndZqQXpCPYvS0+b/kOXB1czfmvmIiIiO5j9hBeUFCAlJQU/fdpaWk4ffo0vL29ERYWhmnTpiEhIQFdu3ZFbGwsli9fjsLCQv20dCIiqr9KS8qNrgnOzVdXmQbupXKSDNp5v902GqjzfruNYBd7o1Vt73I7AJr7zkobtL39XWF3X4u4nQLw9r8bOo0Ebak9qR9OaIX/W3oCuVnF2tcqFPDyc0G7viHITzyIzicu41pwn3uBOf1n3PEOB1zbosup93Gt6YOVwvQBIGwIHEJCYF9egogre+6dh1IJh5AQeI+JR+43/4fwiz9CUAIKDeDYLArJDzXFt+FO6H+iTBu0vRT4sasDBlfcxIyWM7AjdQe+7ZEKJZTQQIMozyjEt4wHALg6uOKFdi/U+t87ERER1ZzZQ/iJEyfQr18//fe6yeUJCQlYv349nn76ady8eRNz585FRkYGOnbsiN27d1cZ1kZERHVLLDBXd0wsUJeWlOO/755AbmaRPlCfO5aBAa+0x9oFx+BeKsAFgOZaMVbNPozJ/+wpGbQ9NQpU3HfOAgBPjUK0qu3v4YRbuWVGg7bUNlkAcP7YDeRmFN39FAW8Alz11z3yxTAkvbcR+XeUUHloEPvis3DQ5KHLT1OQ6tobJc4+cC65haizB2H/2vcoK7SDvUZtGKYVAsoK7eDQKhL2mrKqQTs8Uh+0Sy+m3gvaUdrHSxwVeHOcHVr8pERALpDpBVx4yA59mwSj2FHA/8Xda31XKgQEuwfD1cEVm4ZswuZzump3MOJbxrPaTUREZEUKQbj/V//1W35+Pjw9PZGXlweVSmXt0yEisghTAzUAfPVecpVA+sTMLgBQJUx7Bbhi1KyuKCqtwKrZhw0mghc4KjD5nz3x54F0JH93yXB4NwAhwAnILDEI2hoIULb3AgorUHHxDuwqHauAALtmHujcytfo+3V5NAKO9koc/7/UKoPPug6NwMXkm0avy9HZHuqc/Psmew+Ek7cKmsJC/PXMWKSqw+4FaqcraP7vL4HSQqQN7YfS2/d+JeDYxA6qHu2QveM0IFQ6Q4UAv8djgZBY3FyxEveNOYff316Bd8IEpI0ejdKLqYBSCWg0cGwWhcgtW1DiqMCEbc+gxU8XKwXtZvji8X9j87nNWHFqBTTCvUq/UqHEi+1fxJ7Le5CaZ1jt3jRkE8M2ERGRhZiSQ21yOjoRUWMlpzpdWlJeJVBfOJ6pD9TGjjXr4qfdJkuAfrDY7YxCnNl/DaXlGtzOKIIC92aH3c4oQvKPV3Dyym24lwoGgdq9VMCmjWeBwgpoIBgEag0EFN9Ww+W+6xQAFOSo8WDHQCRfLDA4poQCnVv5okv/MKSeyDL4ZUCTAFd06R8GAEar2h37h6FDD9/7gnZXODrbQ1NYiGsJY+B7MRW+d8PvtV/+hcgtW5CzaTM0KecRofnz3rkrlcjZtBm4dFAbwCuF7dLbFSg48bvRf4dl6TcQ8OYE5O3YhdLUNO2JC3cr2gkToHRzQ8DGL3Dww0RUpN+AXXAQer+6CEo3N2w+sxbnSi7hj7h7n6UsuaSvZOtC9r2flRI3i2+y2k1ERFSPMIQTEdURc1SnqwvTun2ZxQK17uv7j6X9pkCFUHl2N1AhADlZRbiQWWA0TJ/8MxsF6nLRQF3hYgeP+44pABQ7KuBaKlR53N3bSTJoOzrbY9SsrqI/w5F/a1UlbNtXqJEmEbRLL6YCGo32HwClF1ORs2kzyi6noepaco328fQb1f/LrsQhOAhKNzdE/uc/2ve+dk2/plvp5oaisiKM3T8RqRGpUEYoocFVRO2fiE1DNokGbV241tx3jhpo9G3nXNtNRERUPzCEExHVgqWq07qvjR3T7kltfKus8gqN0bCddUcN6GOvjoALBcXIUwpGw3SeUoCntxM014qrHHP3dgKaeyD74h14a+69c45SgFffABT8kFG1hf3ZttUGbbF9p8Wq2qqBg8SD9rVr+vZvPaVSG5KFa3cHs1X6eQiC9vHgIABXq5yDe9c20Bw5U6VN3XvG+9q3dnOD76SJVV63+dxmpOalQiNo9KE6NS8Vm89tlgza8S3jsSN1R5W2c92QNSIiIqofGMKJiGD+NnA51enLZ5WiYVr3tdE9qX2ccf94D91WWcdSb8FY2L5oX4EmSqFKYFb7OiC4ifEw7du+CcZ0Cze+JvzZtnBwssOTv13XbzeWpxSQF+KE/z3SAmUPNjMY5jb57jA3QDxoA9qwbayaLFbVLvj5Z/GgHRJi+DgAaDTa9/XORt7eCpTm2+kPOaoq4N3ZA3h4HvL2V10T7vPmR/ABkLNkOsrSb8AhOAjeM96Hsok/AKCorMhoi7hUtXtG1xmiQZtD1oiIiBoGhnAialQs1QYuVZ3WfX3/MQCiYVrqWLMeQfhhZ6phMHZQoFmPIHyVnw8nI2H7iq8ddpUVokOJPbw0CuQqBfzqXI5X/V2REBdhPEw/GAU3J3tM/mdP0UD9vym9sOHoJVzNKUYHbxckxEXAzckecLLHKy93MfrvRCxoawoLqwwwy/v2G0Ru2SJa1da+oUjQHvUY8tYvR+ntez9HRy/Ae9RjUJ69g8hHbiHngot2grlbBbxbFEMZ0Axo4o/IHftEw7bvO/+qck1FZUUYs3OMQZjekboDm4ZsqratXCpos+2ciIio/mMIJ6J6yZyV67poA5eqTuu+vv9YeFsflJZUGKyP9ry7TVZRaYVo0N588irWuxajg9IwUHuevIoQf1d8qFJXCduT24ShQKPBiawCKBUKaAQB0f7u+tAsGqYBeKmcRAO1m5M9Xu4bXeVxOUFbag23WFXbvU8faIoKDQeiRUZoP+/kp4h86EbVoH12IxA7Ccrf/gNfh/OAQgkIGsA3BoidBABQNvEXDdvGArNUy3l1beUM2kRERA0bQzgRWYTc0Gyu9dZSleu6aAOvbk/qc8cyqoTtFg8GY975K/DMK7tXgfYowQgFJIP21ZxiVCgVSHIu15+HvVKBqznFmD20FbafSq8Stif2jsLE3lH6oB16X9AWC9PVMRa2AcgK2lJruANmvo68b7+pss2Xz5hR8Cn7F3KO5aOs0B4ObuXw7p4Npb0A5F6G0lEB39aVprEr7YHcy4CTO/DCj0DSGu33XuHaAO7kLnqtUtVuqZZztpUTERE1bgzhRGQSS22hNXxqR3yz/LTZ1ltLVa4BeW3gUkHb0dkeg1/riE0bz+LO3bbtwXcHkRWqy7HRo6RK2L6ZdBnnswuhcbr3Wcrscn1QFgvaod4u0Nx3jhpBQKi3C9yc7LHt5Z6iYdtcQVuqqi17WJrEGm6lmxsi//V51RbxsxuB/AvwbVXpdfkXtOHaK1xb4Tb4l6nRPg5oA3fvaUav2VjFW+6ANYDVbiIiosaMIZyoEbPlLbT2bvjTrOutpSrX4W19UK7WiFat5Qbtpz4/hhRdBbpQwP99XqAPxMbCtuO5LH21Wv+4ovqgnRAXge2n0u99VqXWckBeVduc7eOyh6WNiTda7fYeEw+oC6DcPBy+TueBZnfbxzdfAII732sn198ASm11e8BC4Lf/ANnGW87FiFW82/q2lTVgjYiIiBo3hnCiBsBS1em6WDut+/r+Y3dyzLveWqpy3bF/GDr2DxP9GcoN2ilZBdAI0IfnlKwCfUXaWNgGICtoV1ftFmPuddqyhqVJBG3RarebG3BwmTZMC5p7gTv7PKBqKl7trqbl3NT13f6u/rIHrBEREVHjxRBOZGNsuTpdF2undV/ff8zD2xl5mUVGX1PdemupyrXu2u//+Raqy3HcuRxXXcoQ6myPlgrAETB70Jaqavdr6Y/isgpZQVuq2m2pddqSw9JKisWD9t3PvP+XAaLV7hd+1IZoYxVvj0BtdVus2i3Sci5nfbe/qz+iPKM4YI2IiIhMwhBOZAX1tToNmH/tNGA8ND+c0KrKmvCahGkAksfKFKgStsvU5Xj8k8MG4Xf7qfQ6CdpSVe3aDEuzhXXaYlVtnwnj4TNhvPGgDUBpL8C31R0gKBfw8gTs7/7cktYYr3ZLre/2iQYGLzZbtVtqfXe4KhyJsYmsdhMREZFJGMKJasHcbeC2Xp2uzdppOaFZ6jWOzvboMijC6L8XY0FbV9U2FraHtAuyWNCuSVXbXEHb0uu0JavaAHwnTax6UeoCYG1/w8r1b/+RrnZXt77bjNXu6tZ3s9pNREREpmIIJ6oBS7WB23p1urq103JDs9gxqdeIEQvaUlXtfXUwEK027ePG2NQ6bYmgrXRzMx62xcipdtdgfbcxcqeZc303ERERmRNDONFdplau66INvD5UpwGYHKbrQqG63GjAtaWBaOacSm4z67QhI2gD2oq3scAst9oNSFa8jQVmudVugOu7iYiIyHwYwqnBsVSLeF20gdeH6nRdEAvUUo+LVbttfSCaLsiaOizN4uu05QRtwHjYBsRbzmtR7TYWtgGItpyz2k1ERES2gCGc6i2xFvGv3z+JvMwiNAlyw4VjGfjrRBZGTu8seUxOizhg/jbw+l6dlmJqoN74fDc8+/lxk4el2fpAtMgtWwAYD9tSw9Isuk5bLrH13W1GiLecx06SXe02FrYHhA8QbTmPbxnPajcRERFZHUM42TSpyrWxQB3V0Rd5mUV4YmZX+Ia4I/taAb5674S+RVzsmJwW8bpqA7eV6rQccirXYoF6+v9+lTUsbfbQVjY9EC1n02b916YMSwuY+brl1mlXR6y1XGx994XvxVvOzbx394H0A6It56x2ExERkS1gCCerMzVo6yrXxgL15bO30CTIDb4h2r/A+4a4wyvQVd8iLnZMTot4XbWB2zpzBm2pQJ1+u0TWsDS57ePmDtpS7eO6r00ZlmbxoC1GzjRzBcRbzgGzTjMHINpyDrDaTURERNbHEE5WJSdo64KtsUANALdvFCL7WoH+NbkZRYju4g8AuHAsw+ix2rSI19eqtRzmDtpSgTq4iTPSsguqPF7dsDTA+pPHq1unrfv6/mNSw9IACwZtKXKmmUcPBEqLxVvORciZZt47uDdKyktEW86JiIiIrI0hnCxCrNotJ2jr3sNYoO40MAwV5QK+eu8EvAJdkZtRBM8AV32L+F8nsoweq02LeENlrOJt7qAtFajff7JDlTXhNW0rl2Ks4l0XQVtqnTYAWcPSLMqc08x7TNH+Y2LLuZxp5uPbjMf4NuPZck5EREQ2iyGczMrUYWlygraucm0sUN/fIq57ri5M6yrsxo4xaFffWt4hxMui+2mbeyq5WMXbpV07swft6trHLTYsTQ6plvPa7N1tYst5baaZs+WciIiIbJVCuH8hbD2Xn58PT09P5OXlQaVSWft0GqSaruG+faMQngGuiOroi1PfX6lS7e46NAIAcGLHJaPH2vUN0b9f5aA9cnpn/eeJVa7pHlOCdrS/uz74vv/9eWgq/b+DUgH0au6LQ39lV3l8+sAYJMRFiL6f1HZjcpkStB2bRelD783ly6uEbbcePVB45EiVx/2mToX3mHjR99N9nk1UruUQq3YfXAb8tKBqtfuhOdrn3B/QfWO04VsXto0Qq3avPbMWK06tgKbSZykVSvyt098Q3zK+SkCP8ozCpiGbWNkmIiIim2JKDmViIZOYe1hazyeiJVvEWbmuGUsNS/P3cEa0v7vZ99MWY6lhafZ+fnBsFmUbk8ctRc6AtRpMMzdGzoA1TjMnIiKihoohnIwy5xpuQHxYGoO2aYyFbQAWG5YW5eeG+cPbmDVoA8bDNmB8L+26GJbmGBmJwNlvNrygrWOs4i1nwFo108wB4xVvOQPWOM2ciIiIGiqGcKpCqtpdF8PSGLQNmVrVHtIuyGLD0nTnYq6gLVXVVg0cZNFhafU+aIsRq3gHdzZ9wFo108zFKt5tfduaPGCN08yJiIiooWIIb8TkVLvrYlhaY2TO9vF957IsOixNijnbxwt+/tniw9LqNbH13WIVb1VT2QPWxNZ3i1W8/V39ZQ9YIyIiImpoGm8KauTkVrtrs4a7sVW7LbVOG0CdBG2xirel1mlrP8z8QbtBVrzlrO/2CNRWt8Wq3SIt53LWd/u7+iPKM0q02s2WcyIiImpMGMIbAWMVb7nVbq7hNmSpoC1V1e7X0h/FZRVmH5Zm7XXa7n36QFNSzKBdmanVbqn13T7RwODFZqt2S63vDleFIzE2kdVuIiIiIjCEN3hiFW+/UHdZ1W6g8QVtwPoD0aSq2hN7R2Fi7yiL7KdtyXXaPhPGw2fC+MYXtMXInWYutb7bjNXu6tZ3s9pNREREpMUQ3sCJVbxdVY6yJ5Y3NrY0EE2qqi1n+6/6sE67UQVtKXKnmcvYUkzuNHOu7yYiIiKqXuNMVQ2Q2JA1sfXdbl6O8AxwZbW7ErHWclsaiGbOvba5TttGibWcy612A5IVb2OBWW61G+D6biIiIqLqMIQ3AFJD1qTWd/d+qkWjq3bLWcNtKwPRpMgZlsZ12jZIquXczNVuqZZzVruJiIiI6k7DTlyNhNSQNbFtw3SBuz5Xu6UCtTmHpdnCQDRdkDXnsDSu07YyYxVvqZbz2Emyqt2A8Yq3VMt5fMt4VruJiIiI6ghDeD1iast5/q2Ser++29RAvfH5bnj28+NmHZY2e2grqw9Ei9yyBYDxsC13WFrAzNe5TruuibWWi1W8gzuLt5zL3LtbrOLd1retaMs5q91EREREdad+JDGS3XIO2P76bnNWrqf/71ezD0uTOxDN3Ptp674217A0to/XManWcrGKt6qpeMs5IGuauVjF29/VX7TlHGC1m4iIiKiuMITXE3Jbzm2duffTTr9dYvZhaYDp67TlBm2pyrXua3MNSwMYtOuUVGu52JA1j0Bti7lYy7kIqdZysSFr/q7+iPKMEm05JyIiIqK6wRBeT9T3lnNTJ4/LrVwHN3FGWnZBlcdrOyxNjDknj1dXudZ9ff+x2gxLIzOQM81cbMiaTzQweLHJLedS08zFhqyFq8KRGJvIlnMiIiIiC7OdlEaS6kvLubGwDcDkyeNyK9fvP9mhyprwuhqWBogPRJMbtKurXHNYmo2RO81casiajJZzqWnmUkPW2HJOREREZHkM4TZGbPiaLbWcm7qGe0i7IJMnj9emcm3uqeRireVSA9HkBu3qKtcclmYlYtVuudPMJYasiVW75U4z55A1IiIiItuiEIT7ElA9l5+fD09PT+Tl5UGlUln7dExy//C12zcK4RngipHTO8PR2V40oFuSsaAd7e+uD77vf38emkp3lFIBtAv2xO/X81Fe6YC9UoFRXUMxe2gr0feT2m5MLlOCtmOzKH3ovbl8eZWqtnObNij580+gvPze4/b28Bo5EgEzXxd9P93nsUW8njBW7faN0YboH94ETm0ENJXuAaU90OlZYNiH4uFdhLFqd5RnFDYN2YQlJ5Zg+1/bUS7c+yx7hT1GNB+BeXHzRMM7EREREdU9U3IoK+E2RGr4WpdBERZtOTfnGm4AotXu2lSuxZh7KrlYa7n2wzh5vMGQU+2WajkHzLp3t1TLOcBp5kRERET1hc2F8KtXr2Ls2LHIysqCvb095syZg1GjRln7tCxCaviaJRWqy/Hk6qNIyy7QVqVPXcO3v97A/16Kk7WGu19LfxSXVZht8rj+vU1cp23uYWlSA9EABu16RWptt9SAtQELxVvOJcjZu3tG1xmiLedEREREVH/YXAi3t7fH8uXL0bFjR2RkZKBLly4YMmQI3BpBq251w9fMTaranZZdgG0v90SrIBX+vJGPxz85LHsN98TeUZjYO0pWW7k512mbe1hadQPRyEYZq3jLrXZLrO0GxKeZy9m7m2u7iYiIiBoGmwvhQUFBCAoKAgAEBgbC19cXOTk5jSKEW3L4WnXV7mh/d7QK0q5laBWkQjM/d1zNKcbsoa1kb/NlroFoUlXtgp9/NvtU8upay1ntrkfEKt7BneVXu2VMM5e7dzdbzomIiIjqP5ND+IEDB7BkyRIkJyfjxo0b2LZtG0aMGGHwnJUrV2LJkiXIyMhAhw4dsGLFCsTGxpp8csnJyaioqEBoaKjJr62P6mq/b2MV7+qq3dtOXcOfN/L1xy7eLMDQ9kGy13Dbwjrt2gRttpbXM6au71Y1tVi1W2p9N/fuJiIiImr4TE53hYWF6NChA5577jmMHDmyyvGtW7di2rRpWL16Nbp164bly5dj4MCBOH/+PPz9tW3VHTt2RHnlidJ3/fDDD2jatCkAICcnB+PGjcNnn31m6inWa+YeviZW8W7bVCVZ7f721xt4/JPDaObnjos3CxDpW7M13La8TptBu5GQs77bI1Bb3bZAtbu69d2sdhMRERE1bCaH8MGDB2Pw4MGix5ctW4aJEydiwoQJAIDVq1djx44dWLduHWbNmgUAOH36tORnqNVqjBgxArNmzUKPHj2qfa5ardZ/n5+fX8MraRzEKt5+Ho5IySoQrXb/76U4fbV7aPugGq3hrg/rtBm0GwE567t9ooHBi03aTgyA7GnmXN9NRERE1HiZdU14aWkpkpOTkZiYqH9MqVSif//+OHr0aI3eQxAEjB8/Hg899BDGjh1b7fMXLVqE+fPnyz5na6iL/b7FhqyJre/293BGpK+72ardSjc3rtMmyxJrOZc7zdzE7cRcHVxlV7sBru8mIiIiaqzMGsKzs7NRUVGBgIAAg8cDAgJw7ty5Gr3H4cOHsXXrVrRv3x7bt28HAHz55Zdo166d0ecnJiZi2rR7f3HOz8+36TXkpSXl+Pr9k8jLLEKTIDdcOJaBv05kYeT0zrKDuNSQNan13fOHtzFbtTtyyxau0ybLkWo5r8U0c2OkWs5Z7SYiIiIiU9ncdPRevXpBc39gk+Dk5AQnJ6c6PCPzOrP/GvIyi/DEzK76bci+eu8Ezuy/JnstuNSQtYS4CNH13easduds2sx12mR+pg5YS1qjfY7MaeamDliLbxnPajcRERERmcSsIdzX1xd2dnbIzMw0eDwzMxOBgYHm/Kh6K/9WCZoEucE3RFt58w1xh1egK/JvlVT7WlNbzq/mFEuu75aaWH5pzLMovXQJTlFRyPvmG+Tv3ImITRsl13AHzHyd67RJHmNhGzB9wFruZVnTzAHIGrDGajcRERERmcqsIdzR0RFdunTB3r179duWaTQa7N27F1OmTDHnR9VbKh9nXDiWgexrBfpKeG5GEaK7+Eu+Tm7LOWB8fbdU0M7ZtBmlly4hYusWOMfEoOT8eVx6erRktdshJITrtEkesdbyNiNMH7DmFa792sRp5gPCB8gasAaw2k1EREREpjE5hBcUFCAlJUX/fVpaGk6fPg1vb2+EhYVh2rRpSEhIQNeuXREbG4vly5ejsLBQPy29sWvXNwR/ncjCV++dgFegK3IziuAZ4Ip2fUMkXye35VyMVNAuu3YNTlFRcI6JAQA4x8TAMSpSstqt24qMVW0ymVhr+YXv5Q1YkyDWWn4g/YDsAWtERERERKYwOYSfOHEC/fr103+vG4qWkJCA9evX4+mnn8bNmzcxd+5cZGRkoGPHjti9e3eVYW2NlaOzPUZO76yfjh7dxb9G09HltpwDxtd3SwVth5AQ5H3zDUrOn9cH9NLUNKgGDa622k0kytRp5grIHrBm6jRzABywRkREREQWYXII79u3LwRBkHzOlClT2H4uwdHZ3uQhbHJazgHxtnOP/v2hTk01GrS9x8Qjf+dOXHp6NByjIlGamgbHiAhWu0k+OdPMowcCpcWyBqyZOs28d3BvlJSXcMAaEREREdU5m5uO3tiJDV+rruVccpq5kbZzAHCMiDAatJVubvq14WXXrumDOavdVC1zTjPvMUX7j4nVbjnTzMe3GY/xbcaz2k1EREREdY4h3IZIDV+rbsq51DRzY23n5VlZkkGb1W4ymVS1uxbTzE2tdtdmmjmr3URERERU1xjCbYjU8LWX+0aLtpxXN81can03gzaZTE61uxbTzE2tdnOaORERERHZMoZwGyI1fE1KddPMpdZ3E5lEbrVbxjRzudVuTjMnIiIiIlvGEG5Dqhu+Jrbuu7pqN9d3kyzGKt5yq90yppnLrXZzmjkRERER2TKFUN2o83omPz8fnp6eyMvLg0qlsvbpmKTymvDKw9f+91IcXMrVBuu+1ampcIyIQMSmjQCgP1a52h2xaSPDNsljrOLtGwMEdwZ+2wpoyu89V2kPdHpWW+029poXfry3vtsIYxXvKM8otPVti+8ufody4d5n2SvsMaL5CMzoOsPoazYN2cSwTUREREQWZ0oOZSXchkgNX8ve8IXoum/fSRNZ7SZ5TF3frWpq9r27xSre/q7+rHYTERERUYPDEG5jxIavSa37BjjNnGSQs77bI1Bb3Tbj3t1i67v9Xf0R5RnFvbuJiIiIqEFhCK8npNZ9E8kiZ323TzQweLH4dmIi5KzvDleFIzE2kdVuIiIiImpQGMKtoFBdrm85D/V20becA+LD17zHxHPKOckj1nIud5q5SLUbEG85lzvNnNVuIiIiImpoGMItrPLwtWh/d2w7dQ3f/nrD6PC1vG++Qf7OnfoBa1z3TSaTajmvxTRzY6RazjnNnIiIiIhIiyHcwjYcvYS07AJse7mnfhuyxz85jA1HL+GpC/skh69x3TeJMnXAWtIa7XOk9u6WWN9tyoC1zec2I75lvOTe3ax4ExEREVFjwRBuYVdzihHt745WQdqx9a2CVGjm546rOcXVDl8jMkrOgLXcy2avdku1nLPaTURERESkxRBuYaHeLth26hr+vJGvr4RfvFmAoe2DOHyNqmes4i1nwJpXuPZrE9d3yxmwFuweDIDVbiIiIiIigCHc4hLiIvDtrzfw+CeH0czPHRdvFiDS1x0JcRFweYDD10iCWMU7uLO8AWsSxCrebX3byhqwRkREREREWgzhFubmZI//vRSnn44+tH3QvenoTvYcvkamr+9WNZU9YM3U9d3+rv4csEZEREREVAsM4Vbg5mSPl/tGGz3G4WuNnJz13R6B2uq2jAFrpq7v9nf1R5RnFAesERERERHJxBBOZEvkrO/2iQYGLzZpwBoAWeu7w1XhSIxNZLWbiIiIiEgmhnAr0BQW6lvOHUJC2HLeGIm1nEtNM5da323igDVXB1fJaeZS67tZ7SYiIiIiko8h3MI0hYW4NOZZlF66BKeoKOR98w3yd+5ExKaNDOINjVjQlmo5l5pmLrG+WyxoS7WcS00z5/puIiIiIqK6wRBuYTmbNqP00iVEbN2i34bs0tOjkbNpM9eCNyRSQVuq5Tx2kvQ0cyMVb6mgLdVyHt8yXnKaOSveRERERETmxxBuYWXXrsEpKgrOMTEAAOeYGDhGRaLs2jUrnxnJYuokc91zxVrOZUwzlwraUi3nrHYTEREREVkeQ7iFOYSEIO+bb1By/ry+El6amgbVoMHWPjUylZxJ5rpgLdZyDpg8zVxq726plnOA1W4iIiIiIktjCLcw7zHxyN+5E5eeHg3HqEiUpqbBMSIC3mPirX1qJMVYxVvOJHPdayVazs25d3d1LedERERERGRZDOEWpnRzQ8Smjfrp6KpBgzkd3daJVbyDO8ufZC4xYM2ce3ez5ZyIiIiIyLYwhFuB0s2NQ9jqE7GKt6qprEnmAERbzuti7262nBMRERER2Q6GcCIdU/fu9gjUVrdNmGSuw727iYiIiIgaJ4ZwIkDe3t0+0cDgxeLVbhHcu5uIiIiIqPFiCKfGRc6WYlKD1GRUu7l3NxERERFR48UQTo2H3C3FqlvfbYScAWvcu5uIiIiIqOFjCKeGR061uxZ7d5ta7ebe3UREREREjRdDODUscqvdUluKiZBb7ZYasEZERERERA0bQzjVX8Yq3nKr3dW0nBureMutdrPlnIiIiIio8WIIp/pJrOId3Fl+tVui5dxYxbutb1vZ1W62nBMRERERNU4M4VQ/iVW8VU1lV7vFiFW8/V39We0mIiIiIiKTMISTbRMbsia2vtsjUFvdNrHaDYgPWRNb3+3v6o8ozyhWu4mIiIiIqMYYwsn6xIK21JA1sfXdPtHA4MUmre12dXCVHLImtr47XBWOxNhEVruJiIiIiKjGGMLJuqSCttSQtdhJ4uu7TVzbrWsbFxuyFt8yXnR9N6vdRERERERkCoZwsgw5e3dLbSkmsb5bzt7dUluKcX03ERERERGZC0M41T25e3dLbSkGGK14y927W2pLMYDru4mIiIiIyDwYwsm8zLl3t1TLOcy7d7dUyzkREREREZG5MIST+Zh77+5qWs7NuXc3W86JiIiIiMgSGMLJfOpi726RIWt1sXc3W86JiIiIiKiu2WwILyoqQqtWrTBq1Ci8//771j4dqox7dxMREREREclisyF84cKF6N69u7VPg+5XB3t3i+He3URERERE1NDYZAj/66+/cO7cOQwbNgxnz5619uk0TnK2FJOxdzcgXu3m3t1ERERERNTQmBzCDxw4gCVLliA5ORk3btzAtm3bMGLECIPnrFy5EkuWLEFGRgY6dOiAFStWIDY2tsafMX36dCxZsgRHjhwx9fTIHORuKVbd+m4j5G4pxkFqRERERERUH5kcwgsLC9GhQwc899xzGDlyZJXjW7duxbRp07B69Wp069YNy5cvx8CBA3H+/Hn4+/sDADp27Ijy8vIqr/3hhx/wyy+/oEWLFmjRogVDeF2TU+2WsXc3IK/azb27iYiIiIiooTE5hA8ePBiDBw8WPb5s2TJMnDgREyZMAACsXr0aO3bswLp16zBr1iwAwOnTp0Vff+zYMWzZsgX//e9/UVBQgLKyMqhUKsydO9fo89VqNdRqtf77/Px8Uy+pcZJb7ZbaUkyE3Gq31JZiRERERERE9ZFZ14SXlpYiOTkZiYmJ+seUSiX69++Po0eP1ug9Fi1ahEWLFgEA1q9fj7Nnz4oGcN3z58+fX7sTb+iMVbzlVruraTk3VvGWW+1myzkRERERETU0Zg3h2dnZqKioQEBAgMHjAQEBOHfunDk/Si8xMRHTpt1rf87Pz0doaGidfFa9JFbxDu4sv9ot0XJurOLd1ret7Go3W86JiIiIiKghscnp6Drjx4+v9jlOTk5wcnKq+5Opr8Qq3qqmsqvdYsQq3v6u/qx2ExERERERwcwh3NfXF3Z2dsjMzDR4PDMzE4GBgeb8KLqf2JA1sfXdHoHa6raJ1W5AfMia2Ppuf1d/RHlGsdpNRERERESNnllDuKOjI7p06YK9e/fqty3TaDTYu3cvpkyZYs6PosqkhqyJre/2iQYGLzZpbberg6vkkDWx9d3hqnAkxiay2k1ERERERI2eySG8oKAAKSkp+u/T0tJw+vRpeHt7IywsDNOmTUNCQgK6du2K2NhYLF++HIWFhfpp6VQHpIasxU4SX99t4tpuXdu42JC1+Jbxouu7We0mIiIiIiKSEcJPnDiBfv366b/XDUVLSEjA+vXr8fTTT+PmzZuYO3cuMjIy0LFjR+zevbvKsDaSwdSW89zLkuu75ezdLbWlGNd3ExERERERSTM5hPft2xeCIEg+Z8qUKWw/Nzd1AbBuEHArBfBrAfy6FTj7NfDcbuktxQCjFW+5e3dLbSkGcH03ERERERGRFJuejk6VJK3RBvAXfgQC2wIZZ7XrwKtrOYd59+6WajknIiIiIiIiaQzh9UXuZW0FPLCt9vvAtoBv8xq1nJtz7262nBMREREREcnHEF5feIVrW9Azzt6rhGf/BbR5XHtcZMhaXezdzZZzIiIiIiIieRjCbY3Y8LXYSdo14Gv7ayvg2X9ptxmTaDnn3t1ERERERES2hSHclkgNX3Ny1/6pC+htHq+25Zx7dxMREREREdkWhnBbIjV8rfc0k1vOuXc3ERERERGRbWEItyVSw9ckcO9uIiIiIiKi+oEh3JZUM3xNbN039+4mIiIiIiKqHxSCIAjWPglzys/Ph6enJ/Ly8qBSqax9OqapvCa88vC153ajSKnEuF3jcDn/MiI9I5GWl4ZwVTj+NfhfAFBlTXiUZxQ2DdnEijcREREREVEdMyWHshJuSySGr20+sxaX8y9j45CNiPGOwfmc83h257PYfG4zXmj3AlvOiYiIiIiI6gGGcFsjMnwtvSAdkZ6RiPGOAQDEeMcg0jMS6QXpANhyTkREREREVB8orX0CVDPB7sFIy0vD+ZzzAIDzOeeRlpemX/dNREREREREto+VcGtQF9xrOfcK17ecA+LD1+JbxmN32m48u/NZgzXh8S3jrXwxREREREREVFMczGZplYev+bUAbl6o0fA1VwdX0YBORERERERE1sPBbLYsaY02gL/w471tyNb2B5LWYLOXSnL4Gtd9ExERERER1W8M4ZaWe1lbAQ9sq/0+sK12O7Lcy0i395YcvkZERERERET1GwezWZpXuLYFPeOs9vuMs9r9wL3COXyNiIiIiIiogWMl3NJiJwFnv9a2oPs21wZwn2ggdhLilUoOXyMiIiIiImrAOJjNGmRMRyciIiIiIiLbZEoOZQgnIiIiIiIiqgVOR7dxrHYTERERERE1TgzhFlZUVmSwF/h3F7/D7rTd+r3AiYiIiIiIqOHidHQL23xus34v8P8M+w82DtmIy/mXsfncZmufGhEREREREdUxhnALSy9I517gREREREREjRRDuIVxL3AiIiIiIqLGi2vCLSy+ZTz3AiciIiIiImqkuEWZFXA6OhERERERUcPBLcpsnKuDK15o94K1T4OIiIiIiIgsjGvCiYiIiIiIiCyEIZyIiIiIiIjIQhjCiYiIiIiIiCyEIZyIiIiIiIjIQhjCiYiIiIiIiCyEIZyIiIiIiIjIQhjCiYiIiIiIiCyEIZyIiIiIiIjIQuytfQLmJggCACA/P9/KZ0JERERERESNgS5/6vKolAYXwu/cuQMACA0NtfKZEBERERERUWNy584deHp6Sj5HIdQkqtcjGo0G169fh4eHBxQKhbVPB/n5+QgNDcXVq1ehUqmsfTpkQ3hvkBjeGySF9weJ4b1BYnhvkBjeG+YjCALu3LmDpk2bQqmUXvXd4CrhSqUSISEh1j6NKlQqFW9sMor3BonhvUFSeH+QGN4bJIb3BonhvWEe1VXAdTiYjYiIiIiIiMhCGMKJiIiIiIiILIQhvI45OTlh3rx5cHJysvapkI3hvUFieG+QFN4fJIb3BonhvUFieG9YR4MbzEZERERERERkq1gJJyIiIiIiIrIQhnAiIiIiIiIiC2EIJyIiIiIiIrIQhnAiIiIiIiIiC2EIJyIiIiIiIrIQhvA6tHLlSkRERMDZ2RndunVDUlKStU+JLGzRokV44IEH4OHhAX9/f4wYMQLnz583eE5JSQleeeUV+Pj4wN3dHU888QQyMzOtdMZkLe+++y4UCgWmTp2qf4z3RuOWnp6OZ599Fj4+PnBxcUG7du1w4sQJ/XFBEDB37lwEBQXBxcUF/fv3x19//WXFMyZLqKiowJw5cxAZGQkXFxc0a9YMCxYsQOXNbnhvNA4HDhzAsGHD0LRpUygUCmzfvt3geE3ug5ycHIwZMwYqlQpeXl54/vnnUVBQYMGroLoidX+UlZVh5syZaNeuHdzc3NC0aVOMGzcO169fN3gP3h91hyG8jmzduhXTpk3DvHnzcPLkSXTo0AEDBw5EVlaWtU+NLOjnn3/GK6+8gmPHjmHPnj0oKyvDgAEDUFhYqH/Oa6+9hm+//Rb//e9/8fPPP+P69esYOXKkFc+aLO2XX37Bp59+ivbt2xs8znuj8bp9+zZ69uwJBwcH7Nq1C3/88QeWLl2KJk2a6J+zePFifPTRR1i9ejWOHz8ONzc3DBw4ECUlJVY8c6pr7733HlatWoWPP/4Yf/75J9577z0sXrwYK1as0D+H90bjUFhYiA4dOmDlypVGj9fkPhgzZgx+//137NmzB9999x0OHDiASZMmWeoSqA5J3R9FRUU4efIk5syZg5MnT+Lrr7/G+fPnMXz4cIPn8f6oQwLVidjYWOGVV17Rf19RUSE0bdpUWLRokRXPiqwtKytLACD8/PPPgiAIQm5uruDg4CD897//1T/nzz//FAAIR48etdZpkgXduXNHaN68ubBnzx6hT58+wquvvioIAu+Nxm7mzJlCr169RI9rNBohMDBQWLJkif6x3NxcwcnJSfj3v/9tiVMkKxk6dKjw3HPPGTw2cuRIYcyYMYIg8N5orAAI27Zt039fk/vgjz/+EAAIv/zyi/45u3btEhQKhZCenm6xc6e6d//9YUxSUpIAQLh8+bIgCLw/6hor4XWgtLQUycnJ6N+/v/4xpVKJ/v374+jRo1Y8M7K2vLw8AIC3tzcAIDk5GWVlZQb3SsuWLREWFsZ7pZF45ZVXMHToUIN7AOC90dh988036Nq1K0aNGgV/f3906tQJn332mf54WloaMjIyDO4PT09PdOvWjfdHA9ejRw/s3bsXFy5cAAD8+uuvOHToEAYPHgyA9wZp1eQ+OHr0KLy8vNC1a1f9c/r37w+lUonjx49b/JzJuvLy8qBQKODl5QWA90dds7f2CTRE2dnZqKioQEBAgMHjAQEBOHfunJXOiqxNo9Fg6tSp6NmzJ9q2bQsAyMjIgKOjo/7/8HQCAgKQkZFhhbMkS9qyZQtOnjyJX375pcox3huNW2pqKlatWoVp06bhjTfewC+//IK///3vcHR0REJCgv4eMPbfGd4fDdusWbOQn5+Pli1bws7ODhUVFVi4cCHGjBkDALw3CEDN7oOMjAz4+/sbHLe3t4e3tzfvlUampKQEM2fOxDPPPAOVSgWA90ddYwgnspBXXnkFZ8+exaFDh6x9KmQDrl69ildffRV79uyBs7OztU+HbIxGo0HXrl3xzjvvAAA6deqEs2fPYvXq1UhISLDy2ZE1/ec//8GmTZuwefNmtGnTBqdPn8bUqVPRtGlT3htEZLKysjI89dRTEAQBq1atsvbpNBpsR68Dvr6+sLOzqzLFODMzE4GBgVY6K7KmKVOm4LvvvsO+ffsQEhKifzwwMBClpaXIzc01eD7vlYYvOTkZWVlZ6Ny5M+zt7WFvb4+ff/4ZH330Eezt7REQEMB7oxELCgpC69atDR5r1aoVrly5AgD6e4D/nWl8ZsyYgVmzZmH06NFo164dxo4di9deew2LFi0CwHuDtGpyHwQGBlYZGFxeXo6cnBzeK42ELoBfvnwZe/bs0VfBAd4fdY0hvA44OjqiS5cu2Lt3r/4xjUaDvXv3Ii4uzopnRpYmCAKmTJmCbdu24aeffkJkZKTB8S5dusDBwcHgXjl//jyuXLnCe6WBe/jhh3HmzBmcPn1a/0/Xrl0xZswY/de8Nxqvnj17VtnO8MKFCwgPDwcAREZGIjAw0OD+yM/Px/Hjx3l/NHBFRUVQKg3/+mZnZweNRgOA9wZp1eQ+iIuLQ25uLpKTk/XP+emnn6DRaNCtWzeLnzNZli6A//XXX/jxxx/h4+NjcJz3Rx2z9mS4hmrLli2Ck5OTsH79euGPP/4QJk2aJHh5eQkZGRnWPjWyoMmTJwuenp7C/v37hRs3buj/KSoq0j/npZdeEsLCwoSffvpJOHHihBAXFyfExcVZ8azJWipPRxcE3huNWVJSkmBvby8sXLhQ+Ouvv4RNmzYJrq6uwsaNG/XPeffddwUvLy/h//7v/4TffvtNeOyxx4TIyEihuLjYimdOdS0hIUEIDg4WvvvuOyEtLU34+uuvBV9fX+H111/XP4f3RuNw584d4dSpU8KpU6cEAMKyZcuEU6dO6adb1+Q+GDRokNCpUyfh+PHjwqFDh4TmzZsLzzzzjLUuicxI6v4oLS0Vhg8fLoSEhAinT582+DuqWq3Wvwfvj7rDEF6HVqxYIYSFhQmOjo5CbGyscOzYMWufElkYAKP/fPHFF/rnFBcXCy+//LLQpEkTwdXVVXj88ceFGzduWO+kyWruD+G8Nxq3b7/9Vmjbtq3g5OQktGzZUlizZo3BcY1GI8yZM0cICAgQnJychIcfflg4f/68lc6WLCU/P1949dVXhbCwMMHZ2VmIiooS3nzzTYO/OPPeaBz27dtn9O8YCQkJgiDU7D64deuW8Mwzzwju7u6CSqUSJkyYINy5c8cKV0PmJnV/pKWlif4ddd++ffr34P1RdxSCIAiWq7sTERERERERNV5cE05ERERERERkIQzhRERERERERBbCEE5ERERERERkIQzhRERERERERBbCEE5ERERERERkIQzhRERERERERBbCEE5ERERERERkIQzhRERERERERBbCEE5ERERERERkIQzhRERERERERBbCEE5ERERERERkIf8PJf6H1rRvNzwAAAAASUVORK5CYII=", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We shall use the format to decode all values from 0..255, and gather them in a pandas DataFrame.\n", + "We see that `decode_float` returns a lot more than just the value - it also splits out the exponent, significand, and sign, and returns the `FloatClass`, which allows us to distinguish normal and subnormal numbers, as well as zero, infinity, and nan." ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "from matplotlib import pyplot as plt\n", - "from gfloat import decode_ndarray\n", - "\n", - "plt.figure(figsize=(12, 4))\n", - "code = np.arange(0, 256)\n", - "for fi in (\n", - " format_info_ocp_e4m3,\n", - " format_info_ocp_e5m2,\n", - " *(format_info_p3109(8, p) for p in (3, 4, 5)),\n", - "):\n", - " val = decode_ndarray(fi, code)\n", - " valid = (val > 0) & np.isfinite(val)\n", - " subnormal = val < fi.smallest_normal\n", - " nsty = dict(marker=\"o\", markersize=3.5, linestyle=\"None\")\n", - " (p,) = plt.plot(\n", - " code[valid & ~subnormal], val[valid & ~subnormal], label=fi.name, **nsty\n", - " )\n", - " snsty = dict(marker=\"o\", markersize=3.5, linestyle=\"None\", markerfacecolor=\"none\")\n", - " (hsub,) = plt.plot(\n", - " code[valid & subnormal],\n", - " val[valid & subnormal],\n", - " label=None,\n", - " color=p.get_color(),\n", - " **snsty,\n", - " )\n", - "\n", - "plt.plot(np.nan, np.nan, label=\"Subnormal values\", color=\"k\", **snsty)\n", - "plt.yscale(\"log\")\n", - "plt.legend()\n", - "None # suppress output" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Additional format info: special values, min, max, dynamic range\n", - "\n", - "In addition, `FormatInfo` can tell us about other characteristics of each format.\n", - "To reproduce some of the OCP spec's tables 1 and 2:" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "Format ocp_e4m3 ocp_e5m2 p3109_8p3\n", - "Max exponent (emax) 8 15 15\n", - "Exponent bias 7 15 16\n", - "Infinities 0 2 2\n", - "Number of NaNs 2 6 1\n", - "Number of zeros 2 2 1\n", - "Max normal number 448.0 57344.0 49152.0\n", - "Min normal number 0.015625 6.103515625e-05 3.0517578125e-05\n", - "Min subnormal number 0.001953125 1.52587890625e-05 7.62939453125e-06\n", - "Dynamic range (binades) 18 32 33\n" - ] - } - ], - "source": [ - "def compute_dynamic_range(fi):\n", - " return np.log2(fi.max / fi.smallest)\n", - "\n", - "\n", - "for prop, probe in (\n", - " (\"Format \", lambda fi: fi.name.replace(\"format_info_\", \"\")),\n", - " (\"Max exponent (emax) \", lambda fi: fi.emax),\n", - " (\"Exponent bias \", lambda fi: fi.expBias),\n", - " (\"Infinities \", lambda fi: 2 * int(fi.has_infs)),\n", - " (\"Number of NaNs \", lambda fi: fi.num_nans),\n", - " (\"Number of zeros \", lambda fi: int(fi.has_zero) + int(fi.has_nz)),\n", - " (\"Max normal number \", lambda fi: fi.max),\n", - " (\"Min normal number \", lambda fi: fi.smallest_normal),\n", - " (\"Min subnormal number \", lambda fi: fi.smallest_subnormal),\n", - " (\"Dynamic range (binades)\", lambda x: round(compute_dynamic_range(x))),\n", - "):\n", - " print(\n", - " prop,\n", - " f\"{probe(format_info_ocp_e4m3):<20}\",\n", - " f\"{probe(format_info_ocp_e5m2):<20}\",\n", - " f\"{probe(format_info_p3109(8, 3))}\",\n", - " )" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## How do subnormals affect dynamic range?\n", - "\n", - "Most, if not all, low-precision formats include subnormal numbers, as they increase the number of values near zero, and increase dynamic range.\n", - "A natural question is \"by how much?\". To answer this, we can create a mythical new format, a copy of `e4m3`, but with `has_subnormals` set to true." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "import copy\n", - "\n", - "e4m3_no_subnormals = copy.copy(format_info_ocp_e4m3)\n", - "e4m3_no_subnormals.has_subnormals = False" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "And now compute the dynamic range with and without:" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
fvalexpexpvalsignificandfsignificandsignbitfclass
code
00.000000e+000-1400.000FloatClass.ZERO
11.525879e-050-1410.250FloatClass.SUBNORMAL
23.051758e-050-1420.500FloatClass.SUBNORMAL
34.577637e-050-1430.750FloatClass.SUBNORMAL
46.103516e-051-1401.000FloatClass.NORMAL
........................
251-5.734400e+04301531.751FloatClass.NORMAL
252-inf311601.001FloatClass.INFINITE
253NaN311611.251FloatClass.NAN
254NaN311621.501FloatClass.NAN
255NaN311631.751FloatClass.NAN
\n", + "

256 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + " fval exp expval significand fsignificand signbit \\\n", + "code \n", + "0 0.000000e+00 0 -14 0 0.00 0 \n", + "1 1.525879e-05 0 -14 1 0.25 0 \n", + "2 3.051758e-05 0 -14 2 0.50 0 \n", + "3 4.577637e-05 0 -14 3 0.75 0 \n", + "4 6.103516e-05 1 -14 0 1.00 0 \n", + "... ... ... ... ... ... ... \n", + "251 -5.734400e+04 30 15 3 1.75 1 \n", + "252 -inf 31 16 0 1.00 1 \n", + "253 NaN 31 16 1 1.25 1 \n", + "254 NaN 31 16 2 1.50 1 \n", + "255 NaN 31 16 3 1.75 1 \n", + "\n", + " fclass \n", + "code \n", + "0 FloatClass.ZERO \n", + "1 FloatClass.SUBNORMAL \n", + "2 FloatClass.SUBNORMAL \n", + "3 FloatClass.SUBNORMAL \n", + "4 FloatClass.NORMAL \n", + "... ... \n", + "251 FloatClass.NORMAL \n", + "252 FloatClass.INFINITE \n", + "253 FloatClass.NAN \n", + "254 FloatClass.NAN \n", + "255 FloatClass.NAN \n", + "\n", + "[256 rows x 7 columns]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "fmt = format_info_ocp_e5m2\n", + "vals = [decode_float(fmt, i) for i in range(256)]\n", + "DataFrame(vals).set_index(\"code\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Plot the values in some 6-bit formats\n", + "\n", + "This is a plot of the positive values in each format, as a function of their integer \n", + "codepoint. Subnormal values are indicated, illustrating the increased dynamic range \n", + "they offer. (More on this below.)" + ] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "Dynamic range with subnormals = 17.807354922057606\n", - "Dynamic range without subnormals = 15.637429920615292\n", - "Ratio = 4.5\n" - ] + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+EAAAH5CAYAAADuoz85AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAnutJREFUeJzs3XlclOXaB/DfzDAzDPuwg4C4K2agAkKWYW5pWLSAW4rLqx1Fq8ORzE6aS2ZauSWlpQhppZ1Kj1HaMcncRS1MM80djEVRFtlmYGbeP4jRkSXQmWdg+H0/n3l553meee77QTx5cV/3dYl0Op0ORERERERERGRyYnNPgIiIiIiIiKi1YBBOREREREREJBAG4UREREREREQCYRBOREREREREJBAG4UREREREREQCYRBOREREREREJBAG4UREREREREQCsTL3BIxNq9UiOzsb9vb2EIlE5p4OERERERERWTidTodbt27B29sbYnHDa90WF4RnZ2fD19fX3NMgIiIiIiKiViYrKws+Pj4NXmMxQXhiYiISExNRVVUFoPrhHRwczDwrIiIiIiIisnTFxcXw9fWFvb39314r0ul0OgHmJJji4mI4OjqiqKiIQTgRERERERGZXFPiUIspzJaYmIiAgACEhISYeypEREREREREdeJKOBEREREREdF9aJUr4URERERERETNncUVZtNoNI26XqPRoLKy0sSzIrp/UqkUEonE3NMgIiIiIiIjaHXp6DqdDrm5uSgsLBR+ckT3yMnJCZ6enhCJROaeChERERER3aUp6egWsxLeWDUBuLu7O2xsbBjUULOm0+lQVlaGa9euAQC8vLzMPCMiIiIiIrofFhOENyYdXaPR6ANwFxcXAWdHdO8UCgUA4Nq1a3B3d2dqOhERERFRC2Yxhdni4uJw+vRpHD16tN5ravaA29jYCDUtIqOo+ZllHQMiIiIiopbNYoLwpmAKOrU0/JklIiIiIrIMrTIIJyIiIiIiIjIHiwnCExMTERAQgJCQEHNPhYiIiIiIiKhOFhOEN2ZPOBEREREREZE5WUwQLrRL+aVYsvMMZnz+C5bsPINL+aXmnpLZ3LhxA48//ji8vb0hl8vh6+uL6dOno7i4+L7ue/PmTcyYMQNdunSBQqGAn58fXnzxRRQVFRlp5kRERERERMKymBZlQvriWBZe/epXiEQi6HQ6iEQirP3pApY8+yCig33NPT3BicViPPXUU3jzzTfh5uaG8+fPIy4uDjdv3sRnn312z/fNzs5GdnY23n33XQQEBODKlSv4xz/+gezsbHz55ZdGfAIiIiIiIiJhWMxKuFB7wi/ll+LVr36FVgdotDqDr7O++hWXTbQirlKp8OKLL8Ld3R3W1tZ4+OGHDVLvf/vtN0RGRsLBwQH29vZ45JFHcOHCBQDA+PHjERUVhfnz58PNzQ0ODg74xz/+AbVa3aixtVotFi9ejHbt2kGhUCAwMNAgCFYqlZg6dSqCg4PRtm1bDBgwANOmTcO+ffv018ybNw9BQUFISkqCn58f7OzsMG3aNGg0GixduhSenp5wd3fHokWL9J954IEH8NVXX2H48OHo0KEDHnvsMSxatAjffPMNqqqq7vdbSkREREREJDiLWQmPi4tDXFwciouL4ejoaLJxvjiWVd0uSqerdU4kEmHLsSzMeryr0cd95ZVX8NVXXyElJQVt27bF0qVLMWTIEJw/fx7l5eXo168fIiIikJaWBgcHBxw4cMAgUN29ezesra2xZ88eXL58GRMmTICLi4tB0FufxYsXY9OmTVizZg06deqEvXv34vnnn4ebmxseffTRWtdnZ2fj66+/rnXuwoUL2LFjB3bu3IkLFy7gueeew8WLF9G5c2f89NNPOHjwICZOnIiBAweiT58+dc6lqKgIDg4OsLKymB9dIiIiIiKqQ05JDgpUBfr3SrkSXnZeZpyRcTCSaaKrBeXQ1RGAA4BOp8PVgnKjj1laWooPP/wQycnJGDp0KADg448/xq5du7B+/XoUFBTA0dERmzdvhlQqBQB07tzZ4B4ymQxJSUmwsbFB9+7dsWDBAiQkJGDhwoUQi+tPiFCpVHjrrbfwww8/IDw8HADQvn177N+/H2vXrjUItEeNGoX//ve/KC8vx/Dhw7Fu3TqDe2m1WiQlJcHe3h4BAQHo378/zp49i++++w5isRhdunTBkiVL8OOPP9YZhOfn52PhwoWYMmXKvX0jiYiIiIioRcgpyUHktkioNbezd2USGVKjUlt8IG4x6ehC8VEqqlfC6yASieCjVBh9zAsXLqCyshJ9+/bVH5NKpQgNDcXvv/+OjIwMPPLII/oAvC6BgYGwsbHRvw8PD0dJSQmysrIaHPv8+fMoKyvDoEGDYGdnp3998skn+nT3GsuXL8fPP/+M//73v7hw4QLi4+MNzvv7+8Pe3l7/3sPDAwEBAQa/BPDw8MC1a9dqzaO4uBhPPPEEAgICMG/evAbnTERERERELVuBqsAgAAcAtUZtsDLeUnElvIlign2x9qcLdZ7T6XQYYYbCbAqF8QP/GiUlJQCAb7/9Fm3atDE4J5fLDd57enrC09MTXbt2hbOzMx555BHMmTMHXl7Vv6m6+5cEIpGozmNardbg2K1bt/D444/D3t4eW7dubfCXDURERERERM0ZV8KbqJ2rLZY8+yDEIkAiFhl8XfLsg/B3tTX6mB06dIBMJsOBAwf0xyorK3H06FEEBATgwQcfxL59+1BZWVnvPU6cOIHy8tup8ocPH4adnR18fRv+pUFAQADkcjkyMzPRsWNHg1dDn60JpFUqVWMfs07FxcUYPHgwZDIZtm/fDmtr6/u6HxERERERkTlZzEp4YmIiEhMTodFoTD5WdLAvQvydseVYFq4WlMNHqcCIYF+TBOAAYGtri6lTpyIhIQHOzs7w8/PD0qVLUVZWhkmTJkGr1eL999/HyJEjMXv2bDg6OuLw4cMIDQ1Fly5dAABqtRqTJk3C66+/jsuXL+ONN97A9OnTG9wPDgD29vaYOXMm/vnPf0Kr1eLhhx9GUVERDhw4AAcHB8TGxuK7775DXl4eQkJCYGdnh99++w0JCQno27cv/P397/m5awLwsrIybNq0CcXFxfre425ubpBIJPd8byIiIiIiar6UciVkElmtPeFKudKMszIOiwnChaqOXsPf1dYkVdDr8/bbb0Or1WLs2LG4desWgoOD8f3330OprP4hTEtLQ0JCAh599FFIJBIEBQUZ7CEfMGAAOnXqhH79+kGlUmHUqFGN3lu9cOFCuLm5YfHixbh48SKcnJzQq1cvvPbaawCq0+E//vhj/POf/4RKpYKvry+eeeYZvPrqq/f1zD///DOOHDkCAOjYsaPBuUuXLt1XgE9ERERERM2Xl50XUqNSLbI6ukhXX6nvFqomCK9pZXWniooKXLp0Ce3atWtVac3jx49HYWEhtm3bZu6p0D1qrT+7REREREQtQUNx6N24J5yIiIiIiIhIIAzCW7nMzEyD1mN3vzIzM809RSIiIiIiIothMXvCqX7Jycn1nvP29kZGRkaD54mIiIiIiMg4GIS3clZWVrWKnhEREREREZFpMB2diIiIiIiISCAWE4QnJiYiICAAISEh5p4KERERERERUZ0sJh1d6D7hRERERERErUlOSY5F9u0WmsUE4URERERERGQaOSU5iNwWCbVGrT8mk8iQGpXKQLyJLCYdnYiIiIiIiEyjQFVgEIADgFqjNlgZp8ZhEE5EREREREQkEAbh9+rGBeCHecCXE6u/3rhg7hmZzYkTJzBq1Cj4+vpCoVCgW7duWLlypVHu/cILL6BDhw5QKBRwc3PDU089hTNnzhjl3kRERERERELjnvB78csmYPsMACIAuuqvB1YCT64Geo4x8+SEd/z4cbi7u2PTpk3w9fXFwYMHMWXKFEgkEkyfPv2+7t27d2+MGTMGfn5+uHnzJubNm4fBgwfj0qVLkEgkRnoCIiIiIiJqiFKuhEwiq7UnXClXmnFWLRNXwpvqxoXqAFynBXQaw6/bp5tsRVylUuHFF1+Eu7s7rK2t8fDDD+Po0aP687/99hsiIyPh4OAAe3t7PPLII7hwoXou48ePR1RUFObPnw83Nzc4ODjgH//4B9RqdX3DGdBqtVi8eDHatWsHhUKBwMBAfPnll/rzEydOxMqVK/Hoo4+iffv2eP755zFhwgR8/fXX+mvmzZuHoKAgJCUlwc/PD3Z2dpg2bRo0Gg2WLl0KT09PuLu7Y9GiRQZjT5kyBf369YO/vz969eqFN998E1lZWbh8+fJ9fDeJiIiIiKgpvOy8kBqVii2RW/QvFmW7N1wJb6pfNqJ6BbwuourzA+cZfdhXXnkFX331FVJSUtC2bVssXboUQ4YMwfnz51FeXo5+/fohIiICaWlpcHBwwIEDB1BVVaX//O7du2FtbY09e/bg8uXLmDBhAlxcXGoFvXVZvHgxNm3ahDVr1qBTp07Yu3cvnn/+ebi5ueHRRx+t8zNFRUVwdnY2OHbhwgXs2LEDO3fuxIULF/Dcc8/h4sWL6Ny5M3766SccPHgQEydOxMCBA9GnT59a9ywtLcWGDRvQrl07+Pr6NvE7SERERERE98PLzotBtxE02yC8rKwM3bp1Q3R0NN59911zT+e2wkxUp6DXRffXeeMqLS3Fhx9+iOTkZAwdOhQA8PHHH2PXrl1Yv349CgoK4OjoiM2bN0MqlQIAOnfubHAPmUyGpKQk2NjYoHv37liwYAESEhKwcOFCiMX1J0SoVCq89dZb+OGHHxAeHg4AaN++Pfbv34+1a9fWGYQfPHgQW7ZswbfffmtwXKvVIikpCfb29ggICED//v1x9uxZfPfddxCLxejSpQuWLFmCH3/80SAI/+CDD/DKK6+gtLQUXbp0wa5duyCTye7tm0lERERERGRGzTYIX7RoEcLCwsw9jdqc/NDgSriTn9GHvHDhAiorK9G3b1/9MalUitDQUPz+++/Izc3FI488og/A6xIYGAgbGxv9+/DwcJSUlCArKwtt27at93Pnz59HWVkZBg0aZHBcrVajZ8+eta4/deoUnnrqKbzxxhsYPHiwwTl/f3/Y29vr33t4eEAikRj8EsDDwwPXrl0z+NyYMWMwaNAg5OTk4N1330VMTAwOHDgAa2vreudNRERERETUHDXLIPzcuXM4c+YMhg8fjlOnTpl7OoZ6jq0uwlYnXfV5gSkUCpPdu6SkBADw7bffok2bNgbn5HK5wfvTp09jwIABmDJlCl5//fVa97r7lwQikajOY1qt1uCYo6MjHB0d0alTJ4SFhUGpVGLr1q0YNWrUPT8XERERERGRORi9MNvevXsxfPhweHt7QyQSYdu2bbWuSUxMhL+/P6ytrdGnTx+kp6cbnJ85cyYWL15s7KkZh0uH6iroIjEgkhh+fXJ19Xkj69ChA2QyGQ4cOKA/VllZiaNHjyIgIAAPPvgg9u3bh8rKynrvceLECZSXl+vfHz58GHZ2dn+7tzogIAByuRyZmZno2LGjwevOz/7222/o378/YmNjG7XP/F7pdDrodDqoVCqTjUFERERERGQqRl8JLy0tRWBgICZOnIhnnnmm1vktW7YgPj4ea9asQZ8+fbBixQoMGTIEZ8+ehbu7O/773/+ic+fO6Ny5Mw4ePPi346lUKoOArLi42KjPU6eeYwC/sOoibIWZ1SnoPceaJAAHAFtbW0ydOhUJCQlwdnaGn58fli5dirKyMkyaNAlarRbvv/8+Ro4cidmzZ8PR0RGHDx9GaGgounTpAqA6fXzSpEl4/fXXcfnyZbzxxhuYPn16g/vBAcDe3h4zZ87EP//5T2i1Wjz88MMoKirCgQMH4ODggNjYWJw6dQqPPfYYhgwZgvj4eOTm5gIAJBIJ3Nzc7vm5L168iC1btmDw4MFwc3PD1atX8fbbb0OhUGDYsGH3fF8iIiIiIiJzMXoQPnToUH3xsLosW7YMkydPxoQJEwAAa9aswbfffoukpCS8+uqrOHz4MDZv3oz//Oc/KCkpQWVlJRwcHDB37tw677d48WLMnz/f2I/x91w6mKQKen3efvttaLVajB07Frdu3UJwcDC+//57KJXVffnS0tKQkJCARx99FBKJBEFBQQZ7yAcMGIBOnTqhX79+UKlUGDVqFObNa9z8Fy5cCDc3NyxevBgXL16Ek5MTevXqhddeew0A8OWXX+L69evYtGkTNm3apP9c27Zt76uVmLW1Nfbt24cVK1agoKAAHh4e6NevHw4ePAh3d/d7vi8REREREZG5iHQ6XX2lvu//5iIRtm7diqioKADVq7E2Njb48ssv9ccAIDY2FoWFhfjvf/9r8Pnk5GScOnWqweroda2E+/r6oqioCA4ODgbXVlRU4NKlS2jXrl2rKuo1fvx4FBYW1rk1gFqG1vqzS0RERET1yynJQYGqQP9eKVeyhZiZFBcXw9HRsc449G6CFmbLz8+HRqOBh4eHwXEPDw+cOXPmnu4pl8shl8uRmJiIxMREaDQaY0yViIiIiIio2copyUHktkioNWr9MZlEhtSoVAbizVyzrI5eY/z48Y2+Ni4uDnFxcfrfQFDjZGZmIiAgoN7zp0+fhp+f8duuERERERHRvStQFRgE4ACg1qhRoCpgEN7MCRqEu7q6QiKRIC8vz+B4Xl4ePD09hZxKq5KcnFzvOW9vb2RkZDR4noiIiIiIiIxD0CBcJpOhd+/e2L17t35PuFarxe7duzF9+vT7ujfT0e+NlZUVOnbsaO5pEBERERERtQpGD8JLSkpw/vx5/ftLly4hIyND31orPj4esbGxCA4ORmhoKFasWIHS0lJ9tfR7xXR0IiIiIiJqLZRyJWQSWa094Uq50oyzosYwehB+7Ngx9O/fX/8+Pj4eQHUF9OTkZIwYMQLXr1/H3LlzkZubi6CgIOzcubNWsbam4ko4ERERERG1Fl52XkiNSmV19BbIpC3KzKGh0vBs80QtFX92iYiIiIiar6a0KBMLNCciIiIiIiKiVo9BOBEREREREZFALCYIT0xMREBAAEJCQsw9FWrA+PHj9ZXxza2srAzPPvssHBwcIBKJUFhYaO4pERERERGRhbOYIDwuLg6nT5/G0aNHzT0Vs5g3bx66du0KW1tbKJVKDBw4EEeOHDG4ZtGiRXjooYdgY2MDJyenOu+TmZmJJ554AjY2NnB3d0dCQgKqqqoMrklMTES3bt2gUCjQpUsXfPLJJ0Z9FpVKhX//+99o27Yt5HI5/P39kZSU1KR77N27F8OHD4e3tzdEIhG2bdtW65qUlBTs27cPBw8eRE5ODqvqExERERGRyQnaJ9yS5JTkNKtKhJ07d8bq1avRvn17lJeXY/ny5Rg8eDDOnz8PNzc3AIBarUZ0dDTCw8Oxfv36WvfQaDR44okn4OnpqQ9Mx40bB6lUirfeegsA8OGHH2L27Nn4+OOPERISgvT0dEyePBlKpRLDhw83yrPExMQgLy8P69evR8eOHZGTkwOtVtuke5SWliIwMBATJ07EM888U+c1Fy5cQLdu3fDAAw8YY9pERERERER/y2Kqo9/ZouyPP/4waXX0nJIcRG6LrNWTLzUq1WSBeEREhD5Y3LhxI6RSKaZOnYoFCxZAJBLVur6mOt8PP/yAAQMGGJxLTk7Gyy+/XCv9eseOHYiMjER2dra+ZdyaNWswa9YsXL9+HTKZDA899BD69u2Ld955R/+5f/3rXzhy5Aj279//t88xfvx4FBYW6lemjx49imHDhmHmzJmYNWsWdu7ciZEjR+LixYtwdnZu8B49e/bE6tWroVKpMHr0aKxatQoymazW9SKRCFu3bjVIg4+IiMBPP/2kf//oo49iz549+OCDD7B8+XJkZWXB0dERjzzyCL788su/fS5TY3V0IiIiIqLmq1VWRxcyHb1AVWAQgAOAWqM2WBk3hZSUFFhZWSE9PR0rV67EsmXLsG7dulrXqdVqfPTRR3B0dERgYGCj73/o0CH06NHDoGf7kCFDUFxcjN9++w1Adar43UGgQqFAeno6Kisrm/Q8aWlpGDRoEBYtWoRZs2YBALZv347g4GAsXboUbdq0QefOnTFz5kyUl5cbfHb37t34/fffsWfPHnz++ef4+uuvMX/+/EaP/fXXX2Py5MkIDw9HTk4Ovv76axw7dgwvvvgiFixYgLNnz2Lnzp3o169fk56JiIiIiFqnnJIcnL5xWv/KKckx95SomWI6egvi6+uL5cuXQyQSoUuXLjh58iSWL1+OyZMnAwBSU1MxcuRIlJWVwcvLC7t27YKrq2uj75+bm2sQgAPQv8/NzQVQHZSvW7cOUVFR6NWrF44fP45169ahsrIS+fn58PJqXCbA1q1bMW7cOKxbtw4jRozQH7948SL2798Pa2trbN26Ffn5+Zg2bRpu3LiBDRs26K+TyWRISkqCjY0NunfvjgULFiAhIQELFy6EWPz3v1tydnaGjY0NZDIZPD09AQB79uyBra0tIiMjYW9vj7Zt26Jnz56Neh4iIiIiar3MkSlLLZfFrIS3BmFhYQap5+Hh4Th37hw0Gg0AoH///sjIyMDBgwfx+OOPIyYmBteuXTPqHObMmYOhQ4ciLCwMUqkUTz31FGJjYwGgUcEvABw5cgTR0dHYuHGjQQAOAFqtFiKRCJ9++ilCQ0MxbNgwLFu2DCkpKQar4YGBgbCxsdG/Dw8PR0lJCbKysu752QYNGoS2bduiffv2GDt2LD799FOUlZXd8/2IiIiIqHUwV6YstUwMwu+BUq6ETGK491gmkUEpV5ppRtVsbW3RsWNHhIWFYf369bCysqqzAFt9PD09kZeXZ3Cs5n3NarFCoUBSUhLKyspw+fJlZGZmwt/fH/b29voCcH+nQ4cO6Nq1K5KSkmqlsHt5eaFNmzYGlcq7desGnU6Hq1evNvpZ7oW9vT1+/vlnfP755/Dy8sLcuXMRGBjI1mVERERERGQ0FhOEC9kn3MvOC6lRqdgSuUX/EiLV5O6WY4cPH0anTp0gkUjqvF6r1UKlUjX6/uHh4Th58qTB6vmuXbvg4OCAgIAAg2ulUil8fHwgkUiwefNmREZGNnol3NXVFWlpaTh//jxiYmIMAvG+ffsiOzsbJSUl+mN//PEHxGIxfHx89MdOnDhhsDJ++PBh2NnZwdfXt9HPWxcrKysMHDgQS5cuxa+//orLly8jLS3tvu5JRERERERUw2KCcKH7hHvZeSHAJUD/EmKvR2ZmJuLj43H27Fl8/vnneP/99/HSSy+htLQUr732Gg4fPowrV67g+PHjmDhxIv78809ER0cbfD4jIwOZmZnQaDTIyMhARkaGPuAdPHgwAgICMHbsWJw4cQLff/89Xn/9dcTFxUEulwOoDog3bdqEc+fOIT09HSNHjsSpU6f0Lcway93dHWlpaThz5gxGjRql70U+evRouLi4YMKECTh9+jT27t2LhIQETJw4EQqFQv95tVqNSZMm4fTp0/juu+/wxhtvYPr06fpfBJSUlOifDwAuXbqkf/b6pKamYtWqVcjIyMCVK1fwySefQKvVokuXLk16NiIiIiJqXZprpiw1TyzM1oKMGzcO5eXlCA0NhUQiwUsvvYQpU6ZApVLhzJkzSElJQX5+PlxcXBASEoJ9+/ahe/fu+s/PnTsXKSkp+vc1Rcd+/PFHREREQCKRIDU1FVOnTkV4eDhsbW0RGxuLBQsW6D+j0Wjw3nvv4ezZs5BKpejfvz8OHjwIf3//Jj+Pp6cn0tLSEBERgTFjxuCzzz6DnZ0ddu3ahRkzZiA4OBguLi6IiYnBm2++afDZAQMGoFOnTujXrx9UKhVGjRqFefPm6c8fO3YM/fv317+Pj48HAMTGxiI5ObnO+Tg5OeHrr7/GvHnzUFFRgU6dOuHzzz83+B4SEREREd2tJlP2zj3gSrmSRdmoThbTJ7xGQ/3ZWnKv5YiICAQFBWHFihXmnorZ3d1rvDVoyT+7RERERESWrlX2CSciIiIiIiJq7hiEk1HZ2dnV+9q3b5+5p0dERERERGRWFrMnPDExEYmJifqe2ZZmz5495p5Co9QUQqtLmzZtjDJGfXu6iYiIiIiImjuLCcLj4uIQFxenz8Un8+jYsaO5p0BERERERNRsMR2diIiIiIiISCAMwomIiIiIiIgEYjHp6ERERERERDVySnLYt5uaJQbhRERERERkUXJKchC5LRJqjVp/TCaRITUqlYE4mR3T0YmIiIiIyKIUqAoMAnAAUGvUBivjRObCIJwENX78eERFRZl7GgCA3NxcDBo0CLa2tnBycjL3dIiIiIiIqBWwmCA8MTERAQEBCAkJMfdUzGLevHno2rUrbG1toVQqMXDgQBw5csTgmkWLFuGhhx6CjY1NvUFnZmYmnnjiCdjY2MDd3R0JCQmoqqoyuCYxMRHdunWDQqFAly5d8Mknnxj1WVQqFf7973+jbdu2kMvl8Pf3R1JSUpPusXjxYoSEhMDe3h7u7u6IiorC2bNnDa5Zvnw5cnJykJGRgT/++MOYj0BERERERFQni9kTLnSf8MrsbFQV3E5nsVIqIfX2Nvm49encuTNWr16N9u3bo7y8HMuXL8fgwYNx/vx5uLm5AQDUajWio6MRHh6O9evX17qHRqPBE088AU9PTxw8eBA5OTkYN24cpFIp3nrrLQDAhx9+iNmzZ+Pjjz9GSEgI0tPTMXnyZCiVSgwfPtwozxITE4O8vDysX78eHTt2RE5ODrRabZPu8dNPPyEuLg4hISGoqqrCa6+9hsGDB+P06dOwtbUFAFy4cAG9e/dGp06djDJvIiIiImoelHIlZBJZrT3hSrnSjLMiqibS6XQ6c0/CmGqC8KKiIjg4OBicq6iowKVLl9CuXTtYW1vf8xiV2dm48PhQ6NS3/1KLZDJ02LnDZIF4REQEHnjgAQDAxo0bIZVKMXXqVCxYsAAikajW9TXfhx9++AEDBgwwOJecnIyXX34ZhYWFBsd37NiByMhIZGdnw8PDAwCwZs0azJo1C9evX4dMJsNDDz2Evn374p133tF/7l//+heOHDmC/fv3/+1zjB8/HoWFhdi2bRsA4OjRoxg2bBhmzpyJWbNmYefOnRg5ciQuXrwIZ2fnBu/Rs2dPrF69GiqVCqNHj8aqVasgk8nq/Mz169fh7u6On376Cf369YO/vz+uXLmiPx8bG4sNGzZg/vz5SEpKQl5eHlxcXPDcc89h1apVf/tcpmasn10iIiKi1oLV0UlIDcWhd7OYdHQhVRUUGATgAKBTqw1Wxk0hJSUFVlZWSE9Px8qVK7Fs2TKsW7eu1nVqtRofffQRHB0dERgY2Oj7Hzp0CD169NAH4AAwZMgQFBcX47fffgNQnSp+dxCoUCiQnp6OysrKJj1PWloaBg0ahEWLFmHWrFkAgO3btyM4OBhLly5FmzZt0LlzZ8ycORPl5eUGn929ezd+//137NmzB59//jm+/vprzJ8/v96xioqKAEAf2B89ehSPP/44YmJikJOTg5UrV+Krr77C8uXLsXbtWpw7dw7btm1Djx49mvRMRERERNQ8eNl5IcAlQP9iAE7NhcWko7cGvr6+WL58OUQiEbp06YKTJ09i+fLlmDx5MgAgNTUVI0eORFlZGby8vLBr1y64uro2+v65ubkGATgA/fvc3FwA1UH5unXrEBUVhV69euH48eNYt24dKisrkZ+fDy+vxv2P29atWzFu3DisW7cOI0aM0B+/ePEi9u/fD2tra2zduhX5+fmYNm0abty4gQ0bNuivk8lkSEpKgo2NDbp3744FCxYgISEBCxcuhFhs+LslrVaLl19+GX379tVnE7i5uUEul0OhUMDT0xNA9X54T09PDBw4EFKpFH5+fggNDW3094+IiIiIiOjvcCW8BQkLCzNIPQ8PD8e5c+eg0WgAAP3790dGRgYOHjyoX+W9du2aUecwZ84cDB06FGFhYZBKpXjqqacQGxsLALWC3/ocOXIE0dHR2Lhxo0EADlQHzCKRCJ9++ilCQ0MxbNgwLFu2DCkpKQar4YGBgbCxsdG/Dw8PR0lJCbKysmqNFxcXh1OnTmHz5s0Nzis6Ohrl5eVo3749Jk+ejK1bt9YqSkdERERERHQ/GITfAyulEqK79h6LZDJYKc1b6MHW1hYdO3ZEWFgY1q9fDysrqzoLsNXH09MTeXl5Bsdq3tesFisUCiQlJaGsrAyXL19GZmYm/P39YW9vry8A93c6dOiArl27IikpqVYKu5eXF9q0aWNQXK9bt27Q6XS4evVqo5+lxvTp05Gamooff/wRPj4+DV7r6+uLs2fP4oMPPoBCocC0adPQr1+/JqfZExERERER1YdB+D2Qenujw84d8P/qS/3LlEXZatzdcuzw4cPo1KkTJBJJnddrtVqoVKpG3z88PBwnT540WD3ftWsXHBwcEBAQYHCtVCqFj48PJBIJNm/ejMjIyEavhLu6uiItLQ3nz59HTEyMQZDbt29fZGdno6SkRH/sjz/+gFgsNgiiT5w4YbAyfvjwYdjZ2cHX1xcAoNPpMH36dGzduhVpaWlo165do+amUCgwfPhwrFq1Cnv27MGhQ4dw8uTJRn2WiIiIiIjo7zS7ILywsBDBwcEICgrCAw88gI8//tjcU6qT1Nsbiu7d9S8h2pNlZmYiPj4eZ8+exeeff473338fL730EkpLS/Haa6/h8OHDuHLlCo4fP46JEyfizz//RHR0tMHnMzIykJmZCY1Gg4yMDGRkZOgD3sGDByMgIABjx47FiRMn8P333+P1119HXFwc5HI5gOqAeNOmTTh37hzS09MxcuRInDp1St/CrLHc3d2RlpaGM2fOYNSoUfq079GjR8PFxQUTJkzA6dOnsXfvXiQkJGDixIlQKBT6z6vVakyaNAmnT5/Gd999hzfeeAPTp0/X/yIgLi4OmzZtwmeffQZ7e3vk5uYiNze3VoG3OyUnJ2P9+vU4deoULl68iE2bNkGhUKBt27ZNejYiIiIiIqL6NLvCbPb29ti7dy9sbGxQWlqKBx54AM888wxcXFzMPTWzGzduHMrLyxEaGgqJRIKXXnoJU6ZMgUqlwpkzZ5CSkoL8/Hy4uLggJCQE+/btQ/fu3fWfnzt3LlJSUvTve/bsCQD48ccfERERAYlEgtTUVEydOhXh4eGwtbVFbGwsFixYoP+MRqPBe++9h7Nnz0IqlaJ///44ePAg/P39m/w8np6eSEtLQ0REBMaMGYPPPvsMdnZ22LVrF2bMmIHg4GC4uLggJiYGb775psFnBwwYgE6dOqFfv35QqVQYNWoU5s2bpz//4YcfAqhu7XanDRs2YPz48XXOx8nJCW+//Tbi4+Oh0WjQo0cPfPPNN/zZIyIiIiIio2nWfcJv3ryJXr164dixY42u8i1En3BziIiIQFBQEFasWGHuqZjd3b3GW4OW/LNLREREBLBvN1k2s/YJ37t3L4YPHw5vb2+IRKI6A6XExET4+/vD2toaffr0QXp6usH5wsJCBAYGwsfHBwkJCU1qs0VERERERM1LTkkOIrdFYkTqCP0rclskckpyzD01IsEZPQgvLS1FYGAgEhMT6zy/ZcsWxMfH44033sDPP/+MwMBADBkyxKAYmJOTE06cOIFLly7hs88+q1Wxm5ovOzu7el/79u0z9/SIiIiIyAwKVAVQa9QGx9QatcHKOFFrYfQ94UOHDsXQoUPrPb9s2TJMnjwZEyZMAACsWbMG3377LZKSkvDqq68aXOvh4YHAwEDs27cPzz33XJ33U6lUBhXAi4uLjfAUzc+ePXvMPYVGycjIqPdcmzZtjDJGcnKyUe5DREREREQkNEELs6nVahw/fhyzZ8/WHxOLxRg4cCAOHToEoLovtY2NDezt7VFUVIS9e/di6tSp9d5z8eLFmD9/vsnnTo3TsWNHc0+BiIiIiIio2RK0RVl+fj40Gg08PDwMjnt4eCA3NxcAcOXKFTzyyCMIDAzEI488ghkzZqBHjx713nP27NkoKirSv7Kyskz6DERERERE1DRKuRIyiczgmEwig1KuNNOMiMyn2bUoCw0NbTCl+W5yuRxyuRyJiYlITEyERqMx3eSIiIiIiKjJvOy8kBqVyuroRBA4CHd1dYVEIqlVaC0vLw+enp73de+4uDjExcXpS8MTEREREVHz4WXnxaCbCAKno8tkMvTu3Ru7d+/WH9Nqtdi9ezfCw8Pv696JiYkICAhASEjI/U6TiIiIiIiIyCSMvhJeUlKC8+fP699funQJGRkZcHZ2hp+fH+Lj4xEbG4vg4GCEhoZixYoVKC0t1VdLv1dcCSciIiIiIqLmzuhB+LFjx9C/f3/9+/j4eABAbGwskpOTMWLECFy/fh1z585Fbm4ugoKCsHPnzlrF2sgyjR8/HoWFhdi2bZu5p4Lc3FyMHTsWBw8ehFQqRWFhobmnREREREREFs7o6egRERHQ6XS1Xnf2dp4+fTquXLkClUqFI0eOoE+fPvc9bmtPR583bx66du0KW1tbKJVKDBw4EEeOHDG4ZtGiRXjooYdgY2MDJyenOu+TmZmJJ554AjY2NnB3d0dCQgKqqqoMrklMTES3bt2gUCjQpUsXfPLJJ0Z9FpVKhX//+99o27Yt5HI5/P39kZSU1KR7fPjhh3jwwQfh4OAABwcHhIeHY8eOHQbXLF++HDk5OcjIyMAff/xhzEcgIiIiIiKqU7Orjn6vhE5Hv3WzAhUllfr31nZS2Dtbm3zc+nTu3BmrV69G+/btUV5ejuXLl2Pw4ME4f/483NzcAFT3aY+OjkZ4eDjWr19f6x4ajQZPPPEEPD09cfDgQeTk5GDcuHGQSqV46623AFQHt7Nnz8bHH3+MkJAQpKenY/LkyVAqlRg+fLhRniUmJgZ5eXlYv349OnbsiJycHGi12ibdw8fHB2+//TY6deoEnU6HlJQUPPXUU/jll1/QvXt3AMCFCxfQu3dvdOrUySjzJiIiIiIi+jsinU6nM/ckjKkmCC8qKoKDg4PBuYqKCly6dAnt2rWDtfW9B8y3blbg07mHoam6HRhKrMQYsyDMZIF4REQEHnjgAQDAxo0bIZVKMXXqVCxYsAAikajW9TXfhx9++AEDBgwwOJecnIyXX365Vvr1jh07EBkZiezsbP32gDVr1mDWrFm4fv06ZDIZHnroIfTt2xfvvPOO/nP/+te/cOTIEezfv/9vn+PudPSjR49i2LBhmDlzJmbNmoWdO3di5MiRuHjxIpydnRu8R8+ePbF69WqoVCqMHj0aq1atgkwmq/MzAODs7Ix33nkHkyZNgr+/P65cuaI/Fxsbiw0bNmD+/PlISkpCXl4eXFxc8Nxzz2HVqlV/+1ymZqyfXSIiIiIiMr6G4tC7CVod3ZSETEevKKk0CMABQFOlNVgZN4WUlBRYWVkhPT0dK1euxLJly7Bu3bpa16nVanz00UdwdHREYGBgo+9/6NAh9OjRw2B//pAhQ1BcXIzffvsNQHWq+N1BoEKhQHp6Oiorm/b8aWlpGDRoEBYtWoRZs2YBALZv347g4GAsXboUbdq0QefOnTFz5kyUl5cbfHb37t34/fffsWfPHnz++ef4+uuvMX/+/DrH0Wg02Lx5M0pLS/VV+I8ePYrHH38cMTExyMnJwcqVK/HVV19h+fLlWLt2Lc6dO4dt27ahR48eTXomIiIiopYipyQHp2+c1r9ySnLMPSWiVoHp6C2Ir68vli9fDpFIhC5duuDkyZNYvnw5Jk+eDABITU3FyJEjUVZWBi8vL+zatQuurq6Nvn9ubm6tAnk173NzcwFUB+Xr1q1DVFQUevXqhePHj2PdunWorKxEfn4+vLwa1/tx69atGDduHNatW4cRI0boj1+8eBH79++HtbU1tm7divz8fEybNg03btzAhg0b9NfJZDIkJSXBxsYG3bt3x4IFC5CQkICFCxdCLK7+3dLJkycRHh6OiooK2NnZYevWrQgICAAAuLm5QS6XQ6FQ6HvUZ2ZmwtPTEwMHDoRUKoWfnx9CQ0Mb/f0jIiIiailySnIQuS0Sao1af0wmkSE1KpW9vIlMzGJWwluDsLAwg9Tz8PBwnDt3DhqNBgDQv39/ZGRk4ODBg/pV3mvXrhl1DnPmzMHQoUMRFhYGqVSKp556CrGxsQCgD37/zpEjRxAdHY2NGzcaBOBAdd94kUiETz/9FKGhoRg2bBiWLVuGlJQUg9XwwMBA2NjY6N+Hh4ejpKQEWVlZ+mNdunRBRkYGjhw5gqlTpyI2NhanT5+ud17R0dEoLy9H+/btMXnyZGzdurVWUToiIiIiS1CgKjAIwAFArVGjQFVgphkRtR4Mwu+BtZ0UEivDb53ESgxrO6mZZlTN1tYWHTt2RFhYGNavXw8rK6s6C7DVx9PTE3l5eQbHat7XrBYrFAokJSWhrKwMly9fRmZmJvz9/WFvb68vAPd3OnTogK5duyIpKalWCruXlxfatGljkM3QrVs36HQ6XL16tdHPAlSvlnfs2BG9e/fG4sWLERgYiJUrV9Z7va+vL86ePYsPPvgACoUC06ZNQ79+/ZqcZk9ERERERFQfiwnChdwTbu9sjTELwhDzWoj+ZcqibDXubjl2+PBhdOrUCRKJpM7rtVotVCpVo+8fHh6OkydPGqye79q1Cw4ODvo07hpSqRQ+Pj6QSCTYvHkzIiMjG70S7urqirS0NJw/fx4xMTEGQW7fvn2RnZ2NkpIS/bE//vgDYrEYPj4++mMnTpwwWBk/fPgw7Ozs4OvrW++4jfl+KBQKDB8+HKtWrcKePXtw6NAhnDx5slHPRURERERE9HcsJgiPi4vD6dOncfToUUHGs3e2hpufvf4lRHuyzMxMxMfH4+zZs/j888/x/vvv46WXXkJpaSlee+01HD58GFeuXMHx48cxceJE/Pnnn4iOjjb4fEZGBjIzM6HRaJCRkYGMjAx9wDt48GAEBARg7NixOHHiBL7//nu8/vrriIuLg1wuB1AdEG/atAnnzp1Deno6Ro4ciVOnTulbmDWWu7s70tLScObMGYwaNUqf9j169Gi4uLhgwoQJOH36NPbu3YuEhARMnDgRCoVC/3m1Wo1Jkybh9OnT+O677/DGG29g+vTp+l8EzJ49G3v37sXly5dx8uRJzJ49G3v27MGYMWPqnVNycjLWr1+PU6dO4eLFi9i0aRMUCgXatm3bpGcjIiIiau6UciVkEsOuMjKJDEq50kwzImo9LKYwW2swbtw4lJeXIzQ0FBKJBC+99BKmTJkClUqFM2fOICUlBfn5+XBxcUFISAj27dun74kNAHPnzkVKSor+fc+ePQEAP/74IyIiIiCRSJCamoqpU6ciPDwctra2iI2NxYIFC/Sf0Wg0eO+993D27FlIpVL0798fBw8ehL+/f5Ofx9PTE2lpaYiIiMCYMWPw2Wefwc7ODrt27cKMGTMQHBwMFxcXxMTE4M033zT47IABA9CpUyf069cPKpUKo0aNwrx58/Tnr127hnHjxiEnJweOjo548MEH8f3332PQoEH1zsfJyQlvv/024uPjodFo0KNHD3zzzTdwcXFp8rMRERERNWdedl5IjUo12AOulCtZlI1IAOwT3kJEREQgKCgIK1asMPdUzO7uXuOtQUv+2SUiIiIisnTsE05ERERERETUDFlMEC70nnCqm52dXb2vffv2mXt6REREREREZsU94S3Enj17zD2FRsnIyKj3XJs2bYwyRnJyslHuQ0REREREJDQG4WRUHTt2NPcUiIiIiIiImi2LSUcnIiIiIiIiau4YhBMREREREREJxGLS0RMTE5GYmAiNRmPuqRARERERNVlOSQ77dhO1AhYThMfFxSEuLk7fn42IiIiIqKXIKclB5LZIqDVq/TGZRIbUqFQG4kQWhunoRERERERmVqAqMAjAAUCtURusjBORZWAQToIaP348oqKizD0NAEBubi4GDRoEW1tbODk5mXs6RERERETUCjAItxDz5s1D165dYWtrC6VSiYEDB+LIkSMG1yxatAgPPfQQbGxs6g06MzMz8cQTT8DGxgbu7u5ISEhAVVWVwTWJiYno1q0bFAoFunTpgk8++cSoz6JSqfDvf/8bbdu2hVwuh7+/P5KSku75fm+//TZEIhFefvllg+PLly9HTk4OMjIy8Mcff9znrImIiIiIiP6exewJF1px/jWUFxfr3yscHODg6m62+XTu3BmrV69G+/btUV5ejuXLl2Pw4ME4f/483NzcAABqtRrR0dEIDw/H+vXra91Do9HgiSeegKenJw4ePIicnByMGzcOUqkUb731FgDgww8/xOzZs/Hxxx8jJCQE6enpmDx5MpRKJYYPH26UZ4mJiUFeXh7Wr1+Pjh07IicnB1qt9p7udfToUaxduxYPPvhgrXMXLlxA79690alTp/udMhEREdF9UcqVkElktfaEK+VKM86KiExBpNPpdOaehDHVFGYrKiqCg4ODwbmKigpcunQJ7dq1g7W19b2PkX8NSS+/AE1lpf6YRCrFxBVrTRaIR0RE4IEHHgAAbNy4EVKpFFOnTsWCBQsgEolqz/Gv78MPP/yAAQMGGJxLTk7Gyy+/jMLCQoPjO3bsQGRkJLKzs+Hh4QEAWLNmDWbNmoXr169DJpPhoYceQt++ffHOO+/oP/evf/0LR44cwf79+//2OcaPH4/CwkJs27YNQHWQPGzYMMycOROzZs3Czp07MXLkSFy8eBHOzs4N3qNnz55YvXo1VCoVRo8ejVWrVkEmk+mvKykpQa9evfDBBx/gzTffRFBQEFasWAEA8Pf3x5UrV/TXxsbGYsOGDZg/fz6SkpKQl5cHFxcXPPfcc1i1atXfPpepGetnl4iIiJovVkcnMlSZnY2qgtt/J6yUSki9vc04o/o1FIfejSvh96C8uNggAAcATWUlyouLTboanpKSgkmTJiE9PR3Hjh3DlClT4Ofnh8mTJxtcp1ar8dFHH8HR0RGBgYGNvv+hQ4fQo0cPfQAOAEOGDMHUqVPx22+/oWfPnlCpVLWCQIVCgfT0dFRWVkIqlTZ6vLS0NDzzzDNYunQppkyZAgDYvn07goODsXTpUmzcuBG2trZ48sknsXDhQigUCv1nd+/eDWtra+zZsweXL1/GhAkT4OLigkWLFumviYuLwxNPPIGBAwfizTffNBj76NGjGDduHBwcHLBy5UooFAp89dVXWL58OTZv3ozu3bsjNzcXJ06caPTzEBEREd0PLzsvBt1Ef6nMzsaFx4dCp76dHSKSydBh545mG4g3lsUE4a2hT7ivry+WL18OkUiELl264OTJk1i+fLk+CE9NTcXIkSNRVlYGLy8v7Nq1C66uro2+f25urkEADkD/Pjc3F0B1UL5u3TpERUWhV69eOH78ONatW4fKykrk5+fDy6tx/+HYunUrxo0bh3Xr1mHEiBH64xcvXsT+/fthbW2NrVu3Ij8/H9OmTcONGzewYcMG/XUymQxJSUmwsbFB9+7dsWDBAiQkJGDhwoUQi8XYvHkzfv75Zxw9erTO8d3c3CCXy6FQKODp6Qmgej+8p6cnBg4cCKlUCj8/P4SGhjb6+0dERERERMZRVVBgEIADgE6tRlVBQYsPwi2mMFtcXBxOnz5db9BlCcLCwgxSz8PDw3Hu3Dn9Lx769++PjIwMHDx4EI8//jhiYmJw7do1o85hzpw5GDp0KMLCwiCVSvHUU08hNjYWACAWN+7H6ciRI4iOjsbGjRsNAnAA0Gq1EIlE+PTTTxEaGophw4Zh2bJlSElJQXl5uf66wMBA2NjY6N+Hh4ejpKQEWVlZyMrKwksvvYRPP/20Sanb0dHRKC8vR/v27TF58mRs3bq1VlE6IiIiIiKi+2ExQbiQFA4OkNyVdi2RSqH4m9x/U7O1tUXHjh0RFhaG9evXw8rKqs4CbPXx9PREXl6ewbGa9zWrxQqFAklJSSgrK8Ply5eRmZkJf39/2Nvb6wvA/Z0OHTqga9euSEpKQuVdaf1eXl5o06YNHB0d9ce6desGnU6Hq1evNur+x48fx7Vr19CrVy9YWVnBysoKP/30E1atWgUrK6t6syV8fX1x9uxZfPDBB1AoFJg2bRr69etXa45ERERERET3ymLS0YXk4OqOiSvWCl4d/e6WY4cPH0anTp0gkUjqvF6r1UKlUjX6/uHh4Vi0aBGuXbsGd/fqZ9m1axccHBwQEBBgcK1UKoWPjw8AYPPmzYiMjGz0Srirqyu+/vprREREICYmBl988YV+L3nfvn3xn//8ByUlJbCzswMA/PHHHxCLxfrxAODEiRMoLy/X7xM/fPgw7Ozs4OvrC2dnZ5w8edJgzAkTJqBr166YNWtWvd8voPqXDMOHD8fw4cMRFxeHrl274uTJk+jVq1ejno2IiIiIiO6flVIJkUxWa0+4lbLldwxgEH6PHFzdBW9JlpmZifj4eLzwwgv4+eef8f777+O9995DaWkpFi1ahCeffBJeXl7Iz89HYmIi/vzzT0RHRxt8/ubNm8jMzIRGo0FGRgYAoGPHjrCzs8PgwYMREBCAsWPHYunSpcjNzcXrr7+OuLg4yOVyANUBcXp6Ovr06YOCggIsW7YMp06dQkpKSpOexd3dHWlpaejfvz9GjRqFzZs3w8rKCqNHj8bChQsxYcIEzJ8/H/n5+UhISMDEiRMNCrOp1WpMmjQJr7/+Oi5fvow33ngD06dPh1gshr29vb6SfA1bW1u4uLjUOn6n5ORkaDQa9OnTBzY2Nti0aRMUCgXatm3bpGcjIiIiIqL7I/X2RoedO1pMdfSmYBDegowbNw7l5eUIDQ2FRCLBSy+9hClTpkClUuHMmTNISUlBfn4+XFxcEBISgn379qF79+76z8+dO9cgWO7ZsycA4Mcff0RERAQkEglSU1MxdepUhIeHw9bWFrGxsViwYIH+MxqNBu+99x7Onj0LqVSK/v374+DBg/D392/y83h6eiItLQ0REREYM2YMPvvsM9jZ2WHXrl2YMWMGgoOD4eLigpiYmFrVzQcMGIBOnTqhX79+UKlUGDVqFObNm9fkOdzJyckJb7/9NuLj46HRaNCjRw988803cHFxua/7EhERERFR00m9vS0i6L4b+4S3EBEREQZ9rluzu3uNtwYt+WeXiIioJWLPbqLaWlLfbqGxTzgRERER0T3KKclB5LZIqDW396LKJDKkRqUyEKdWy5L7dguN1dHJqOzs7Op97du3z9zTIyIiIvpbBaoCgwAcANQatcHKOFFr01DfbmqaZrcSnpWVhbFjx+LatWuwsrLCnDlzDIqLtVZ79uwx9xQapabYW13atGljlDGSk5ONch8iIiIiIiKhNbsg3MrKCitWrEBQUBByc3PRu3dvDBs2DLa2tuaeGjVCx44dzT0FIiIiIiKiZqvZBeFeXl7w8qrea+Pp6QlXV1fcvHmTQTgRERERCUIpV0ImkdXaE66Ut/z+xET3ypL7dgvN6EH43r178c477+D48ePIycnB1q1bERUVZXBNYmIi3nnnHeTm5iIwMBDvv/8+QkNDa93r+PHj0Gg08PX1NfY0iYiIiIjq5GXnhdSoVFZHp2ZPyGrllty3W2hGD8JLS0sRGBiIiRMn4plnnql1fsuWLYiPj8eaNWvQp08frFixAkOGDMHZs2fh7u6uv+7mzZsYN24cPv744wbHU6lUUKlU+vfFxcXGexgiIiIiapW87LwYdFOzZo5q5Zbat1toRq+OPnToULz55pt4+umn6zy/bNkyTJ48GRMmTEBAQADWrFkDGxsbJCUl6a9RqVSIiorCq6++ioceeqjB8RYvXgxHR0f9i6vmRERERERk6VitvOUStEWZWq3G8ePHMXDgwNsTEIsxcOBAHDp0CACg0+kwfvx4PPbYYxg7duzf3nP27NkoKirSv7Kyskw2fyIiIiIiIqL7IWgQnp+fD41GAw8PD4PjHh4eyM3NBQAcOHAAW7ZswbZt2xAUFISgoCCcPHmy3nvK5XI4ODhg48aNCAsLw4ABA0z6DHR/xo8fX6tGgLnk5uZi0KBBsLW1hZOTk7mnQ0RERERErYCgQXhjPPzww9BqtcjIyNC/evTo8befi4uLw+nTp3H06FEBZtn8zJs3D127doWtrS2USiUGDhyII0eOGFyzaNEiPPTQQ7Cxsak36MzMzMQTTzwBGxsbuLu7IyEhAVVVVQbXJCYmolu3blAoFOjSpQs++eQToz6LSqXCv//9b7Rt2xZyuRz+/v4G2xUaY968eRCJRAavrl27GlyzfPly5OTkICMjA3/88YcxH4GIiIiIyKRqqpXfidXKWwZBW5S5urpCIpEgLy/P4HheXh48PT2FnMp9qyqsgLb0dnAqtrWClZO12ebTuXNnrF69Gu3bt0d5eTmWL1+OwYMH4/z583BzcwNQvR0gOjoa4eHhWL9+fa17aDQaPPHEE/D09MTBgweRk5ODcePGQSqV4q233gIAfPjhh5g9ezY+/vhjhISEID09HZMnT4ZSqcTw4cON8iwxMTHIy8vD+vXr0bFjR+Tk5ECr1Tb5Pt27d8cPP/ygf29lZfjjfuHCBfTu3RudOnW67zkTEREREQmJ1cpbLkGDcJlMht69e2P37t36lGStVovdu3dj+vTp93XvxMREJCYmQqPRGGGmDasqrEDuu8eAKt3tg1YieM4MNlkgHhERgQceeAAAsHHjRkilUkydOhULFiyASCTC6NGjDa5ftmwZ1q9fj19//VWfoj9//nwAQHJycp1j/O9//8Pp06fxww8/wMPDA0FBQVi4cCFmzZqFefPmQSaTYePGjXjhhRcwYsQIAED79u1x9OhRLFmy5J6C8KNHj2LYsGGYOXMmZs2ahZ07d+Knn37CxYsX4ezsDADw9/c3+Mz48eNRWFiInj17YvXq1VCpVBg9ejRWrVoF2R2/DbSysqr3lzv+/v64cuUKAOCTTz5BbGwsNmzYgPnz5yMpKQl5eXlwcXHBc889h1WrVjX5uYiIiIiITI3Vylsmo6ejl5SU6NPIAeDSpUvIyMhAZmYmACA+Ph4ff/wxUlJS8Pvvv2Pq1KkoLS3FhAkT7mtcIdPRtaVVhgE4AFTpDFbGTSElJQVWVlZIT0/HypUrsWzZMqxbt67WdWq1Gh999BEcHR0RGBjY6PsfOnQIPXr0MNizP2TIEBQXF+O3334DUJ0qbm1t+IsGhUKB9PR0VFZWNul50tLSMGjQICxatAizZs0CAGzfvh3BwcFYunQp2rRpg86dO2PmzJkoLy83+Ozu3bvx+++/Y8+ePfj888/x9ddf63/JUOPcuXPw9vZG+/btMWbMGP3PIFAd/D/++OOIiYlBTk4OVq5cia+++grLly/H2rVrce7cOWzbtq1RWyGIiIjI9HJKcnD6xmn9K6ckx9xTIjJQmZ2N8t9+078qs7PNPSVqpoy+En7s2DH0799f/z4+Ph4AEBsbi+TkZIwYMQLXr1/H3LlzkZubi6CgIOzcubNWsbamEnIl3Fx8fX2xfPlyiEQidOnSBSdPnsTy5csxefJkAEBqaipGjhyJsrIyeHl5YdeuXXB1dW30/XNzc+ssmldzDqgOytetW4eoqCj06tULx48fx7p161BZWYn8/Hx4eTWun+bWrVsxbtw4rFu3Tr+qDgAXL17E/v37YW1tja1btyI/Px/Tpk3DjRs3sGHDBv11MpkMSUlJsLGxQffu3bFgwQIkJCRg4cKFEIvF6NOnD5KTk9GlSxfk5ORg/vz5eOSRR3Dq1CnY29vDzc0NcrkcCoVCv1qemZkJT09PDBw4EFKpFH5+fggNDW3094+IiIhMI6ckB5HbIqHW3G7HJJPIkBqVyl7e1CyYo2c3tVxGXwmPiIiATqer9bozBXr69Om4cuUKVCoVjhw5gj59+tz3uK2hMFtYWBhEIpH+fXh4OM6dO6f/xUP//v2RkZGBgwcP6ld5r127ZtQ5zJkzB0OHDkVYWBikUimeeuopxMbGAqhuN9cYR44cQXR0NDZu3GgQgAPV2xNEIhE+/fRThIaGYtiwYVi2bBlSUlIMVsMDAwNhY2Ojfx8eHo6SkhJ9i7qhQ4ciOjoaDz74IIYMGYLvvvsOhYWF+OKLL+qdV3R0NMrLy9G+fXtMnjwZW7durVWUjoiIiIRXoCowCMABQK1Ro0DFfsjUPLBnNzVFs6uO3hKIba0AK5HhQStR9XEzsrW1RceOHREWFob169fDysqqzgJs9fH09KyzaF7NOaA69TwpKQllZWW4fPkyMjMz4e/vr19dbowOHTqga9euSEpKqpXC7uXlhTZt2sDR0VF/rFu3btDpdLh69Wqjn+VuTk5O6Ny5M86fP1/vNb6+vjh79iw++OADKBQKTJs2Df369Wtymj0REREREVF9GITfAysna3jODIb7jJ76lymLstW4u+XY4cOH0alTJ0gkkjqv12q1UKlUjb5/eHg4Tp48abB6vmvXLjg4OCAgIMDgWqlUCh8fH0gkEmzevBmRkZGNXgl3dXVFWloazp8/j5iYGIMgt2/fvsjOzkZJSYn+2B9//AGxWAwfHx/9sRMnThisjB8+fBh2dnbw9fWtc8ySkhJcuHDhb9PlFQoFhg8fjlWrVmHPnj04dOhQg33qiYiIiIiImsJigvDExEQEBAQgJCREkPGsnKwha2OnfwnRniwzMxPx8fE4e/YsPv/8c7z//vt46aWXUFpaitdeew2HDx/GlStXcPz4cUycOBF//vknoqOjDT5fUyRPo9HoC+jVBLyDBw9GQEAAxo4dixMnTuD777/H66+/jri4OMjlcgDVAfGmTZtw7tw5pKenY+TIkTh16pS+hVljubu7Iy0tDWfOnMGoUaP0ad+jR4+Gi4sLJkyYgNOnT2Pv3r1ISEjAxIkToVAo9J9Xq9WYNGkSTp8+je+++w5vvPEGpk+frv9FwMyZM/HTTz/h8uXLOHjwIJ5++mlIJBKMGjWq3jklJydj/fr1OHXqFC5evIhNmzZBoVCgbdu2TXo2IiIiMi6lXAmZxLAfskwig1LOfsjUPLBnNzWFefOnjSguLg5xcXEoLi42SGW2JOPGjUN5eTlCQ0MhkUjw0ksvYcqUKVCpVDhz5gxSUlKQn58PFxcXhISEYN++fejevbv+83PnzkVKSor+fc+ePQEAP/74IyIiIiCRSJCamoqpU6ciPDwctra2iI2NxYIFC/Sf0Wg0eO+993D27FlIpVL0798fBw8erNVGrDE8PT2RlpaGiIgIjBkzBp999hns7Oywa9cuzJgxA8HBwXBxcUFMTAzefPNNg88OGDAAnTp1Qr9+/aBSqTBq1CjMmzdPf/7q1asYNWoUbty4ATc3Nzz88MM4fPhwgynzTk5OePvttxEfHw+NRoMePXrgm2++gYuLS5OfjYiIiIzHy84LqVGpBnvAlXIli7JRgyqzswXroc2e3dQUIp1Op/v7y1qOmiC8qKgIDg4OBucqKipw6dIltGvXrlabreYuIiICQUFBWLFihbmnYnY1fcK3bdtm7qkIpiX/7BIREREJjdXKSWgNxaF3Yzo6ERERERFZFFYrp+bMYoLw1tCirCWws7Or97Vv3z5zT4+IiIiIiMisLGZPuKXbs2ePuafQKBkZGfWea9OmjVHGuLPnPBERERERUUvCIJyMqmPHjuaeAhERERG1cjXVyu/eE85q5dQcMAgnIiIiIiKLwmrl1JxZTBCemJiIxMREaDQac0+FiIiIiIjMTOrtzaCbmiWLCcJbQ59wIiIiouYipySHfbupSYTs203UnFlMEE5EREREwsgpyUHktkioNbf328okMqRGpTIQpzqxbzfRbQzCiYiIiKhJClQFBgE4AKg1ahSoChiEU50a6tvNIJzqcym/FF8cy8LVgnL4KBWICfZFO1dbc0/rvllMn3D6e3v27IFIJEJhYaG5p2JU8+bNQ1BQkEnHSE5OhpOTk0nHICIiIiKial8cy8KA9/bgo70X8e2v2fho70UMeG8P/nMsy9xTu28MwluI69evY+rUqfDz84NcLoenpyeGDBmCAwcOmHtqRERERERERnMpvxSvfvUrtDpAo9UZfJ311a+4nF9q7ineF4tJR7f06ujPPvss1Go1UlJS0L59e+Tl5WH37t24ceOGuafWKJWVlZBKpeaeBhERERmBUq6ETCKrtSdcKWcPZqob+3ZbBqHSw784lgWRSATodLXOiUQibDmWhVmPdzX6uEKxmJXwuLg4nD59GkePHhVkvMzMTPz888/6V2ZmpsnGKiwsxL59+7BkyRL0798fbdu2RWhoKGbPno0nn3wSAHD58mWIRCJkZGQYfE4kEmHPnj0G9ztw4AAefPBBWFtbIywsDKdOndKfq0m7/v7779GtWzfY2dnh8ccfR05Ojv4arVaLBQsWwMfHB3K5HEFBQdi5c6f+fM1ctmzZgkcffRTW1tb49NNPMX78eERFReGtt96Ch4cHnJycsGDBAlRVVSEhIQHOzs7w8fHBhg0bDOY7a9YsdO7cGTY2Nmjfvj3mzJmDysrKRn3vtFotfHx88OGHHxoc/+WXXyAWi3HlyhUAwLJly9CjRw/Y2trC19cX06ZNQ0lJSb33rXmWO7388suIiIgwGHvx4sVo164dFAoFAgMD8eWXX+rPFxQUYMyYMXBzc4NCoUCnTp1qPTsREVFz5GXnhdSoVGyJ3KJ/sShby1OZnY3y337Tvyqzs002Vk3fbv+vvtS/WJStZREyPfxqQTl0dQTgAKDT6XC1oNzoYwrJYlbChZSZmYlu3bqhrKxMf8zGxga///47/Pz8jD6enZ0d7OzssG3bNoSFhUEul9/X/RISErBy5Up4enritddew/Dhw/HHH3/oV6rLysrw7rvvYuPGjRCLxXj++ecxc+ZMfPrppwCAlStX4r333sPatWvRs2dPJCUl4cknn8Rvv/2GTp066cd59dVX8d5776Fnz56wtrbGnj17kJaWBh8fH+zduxcHDhzApEmTcPDgQfTr1w9HjhzBli1b8MILL2DQoEHw8fEBANjb2yM5ORne3t44efIkJk+eDHt7e7zyyit/+6xisRijRo3CZ599hqlTp+qPf/rpp+jbty/atm2rv27VqlVo164dLl68iGnTpuGVV17BBx98cM/f58WLF2PTpk1Ys2YNOnXqhL179+L555+Hm5sbHn30UcyZMwenT5/Gjh074OrqivPnz6O8vGX/DwoREbUeXnZeDLpbMHNUK2ff7pbrzvRw/er0X19nffUrQvyd4W/EFXEfpaLBlXAfpcJoY5mDxayECyk/Px9lZWXYtGkTjh8/jk2bNqGsrAz5+fkmGc/KygrJyclISUmBk5MT+vbti9deew2//vrrPd3vjTfewKBBg9CjRw+kpKQgLy8PW7du1Z+vrKzEmjVrEBwcjF69emH69OnYvXu3/vy7776LWbNmYeTIkejSpQuWLFmCoKAgrFixwmCcl19+Gc888wzatWsHL6/q/0g7Oztj1apV6NKlCyZOnIguXbqgrKwMr732Gjp16oTZs2dDJpNh//79+vu8/vrreOihh+Dv74/hw4dj5syZ+OKLLxr9vGPGjMGBAwf02QparRabN2/GmDFjDObav39/+Pv747HHHsObb77ZpDHuplKp8NZbbyEpKQlDhgxB+/btMX78eDz//PNYu3YtgOpf5vTs2RPBwcHw9/fHwIEDMXz48Hsek4iIiKixGqpWTnQ3fXp4HWrSw40pJti3wZXwEcG+Rh1PaAzC70O3bt3Qq1cvdOvWzeRjPfvss8jOzsb27dvx+OOPY8+ePejVqxeSk5ObfK/w8HD9/+/s7IwuXbrg999/1x+zsbFBhw4d9O+9vLxw7do1AEBxcTGys7PRt29fg3v27dvX4B4AEBwcXGvs7t27Qyy+/WPn4eGBHj166N9LJBK4uLjoxwOALVu2oG/fvvD09ISdnR1ef/31JqX/BwUFoVu3bvjss88AAD/99BOuXbuG6Oho/TU//PADBgwYgDZt2sDe3h5jx47FjRs3DLIdmuL8+fMoKyvDoEGD9JkMdnZ2+OSTT3DhwgUAwNSpU7F582YEBQXhlVdewcGDB+9pLCIiIiJqnS7ll2LJzjOY8fkvWLLzDC6ZqGCZ0Onh7VxtseTZByEWARKxyODrkmcfNOqquzkwHf0+1ASddwefpmJtbY1BgwZh0KBBmDNnDv7v//4Pb7zxBsaPH68PbO/8y9HYfdN3u7uAmkgkqvcvXUNsbWv/5ajr3nUd02q1AIBDhw5hzJgxmD9/PoYMGQJHR0ds3rwZ7733XpPmMmbMGHz22Wd49dVX8dlnn+Hxxx+Hi4sLgOo97JGRkZg6dSoWLVoEZ2dn7N+/H5MmTYJarYaNjU2t+4nF4lrfkzu/3zX7yb/99lu0adPG4Lqa7QRDhw7FlStX8N1332HXrl0YMGAA4uLi8O677zbp2YiIiIio9fniWBZe/epX/b/VRSIR1v50AUuefRDRRl4pNkd6eHSwL0L8nbHljkJwI4J9W3wADjAIvyeurq6wsbHB888/rz9mY2MDV1dXQecREBCAbdu2AQDc3NwAADk5OejZsycAGBRpu9Phw4f1e9cLCgrwxx9/NHo138HBAd7e3jhw4AAeffRR/fEDBw4gNDT0Hp+kfgcPHkTbtm3x73//W3+spphaU4wePRqvv/46jh8/ji+//BJr1qzRnzt+/Di0Wi3ee+89/S8z/i4V3c3NzaCgHVD9/a75hUJAQADkcjkyMzMNvk913Sc2NhaxsbF45JFHkJCQwCCciIiITI7Vyls2ofdoxwT7Yu1PF+o8Z8r0cH9X2xZdBb0+DMLvgZ+fH37//XeDPeCurq4mKcoGADdu3EB0dDQmTpyIBx98EPb29jh27BiWLl2Kp556CgCgUCgQFhaGt99+G+3atcO1a9fw+uuv13m/BQsWwMXFBR4eHvj3v/8NV1fXWpW+G5KQkIA33ngDHTp0QFBQEDZs2ICMjAx94TZj6tSpEzIzM7F582aEhITg22+/Ndi/3lj+/v546KGHMGnSJGg0Gn1VeQDo2LEjKisr8f7772P48OE4cOCAQZBel8ceewzvvPMOPvnkE4SHh2PTpk04deqU/hcg9vb2mDlzJv75z39Cq9Xi4YcfRlFREQ4cOAAHBwfExsZi7ty56N27N7p37w6VSoXU1FRBtjYQERER1VQrv3MPuJVSycJpLYTQLbxq0sNn3bXyrtPpLCI9XGgWE4QL3Sfcz8/PZEH33ezs7NCnTx8sX74cFy5cQGVlJXx9fTF58mS89tpr+uuSkpIwadIk9O7dG126dMHSpUsxePDgWvd7++238dJLL+HcuXMICgrCN998A5lM1uj5vPjiiygqKsK//vUvXLt2DQEBAdi+fbtBZXRjefLJJ/HPf/4T06dPh0qlwhNPPIE5c+Zg3rx5Tb7XmDFjMG3aNIwbNw4Kxe2UmcDAQCxbtgxLlizB7Nmz0a9fPyxevBjjxo2r915DhgzBnDlz8Morr6CiogITJ07EuHHjcPLkSf01CxcuhJubGxYvXoyLFy/CyckJvXr10v+ZyWQyzJ49G5cvX4ZCocAjjzyCzZs3N/m5iIiIiO4Fq5Ubl1A9tAHztPCy5PRwoYl097LZtxkrLi6Go6MjioqK4ODgYHCuoqICly5dQrt27WBtbW2mGRI1HX92iYjo7+SU5KBAdXtVUylXsoVYC1OZnc2V6Raqrv3ZNavExt6fDQBLdp7BR3svQqOtHcpJxCJM6dfeItO4m7OG4tC7WcxKOBEREVFrlVOSg8htkVBrbu/vlUlkSI1KZSDeQpijbzcZh9D7swHz7dEm42CLMiIiIqIWrkBVYBCAA4BaozZYGafmjX27jU+o9l1C99AGLL+Fl6XjSjgREREREVkUIdt3mWN/NtA69mjfulmBipLbbYCt7aSwd275WzMZhBMRERERkcUQOj3cHD20a1hqCy+gOgD/dO5haKq0+mMSKzHGLAhr8YF4q0xHt7BadNQK8GeWiIgaopQrIZMYdjqRSWRQytnzuaWo6dt9J0vr222p6eExwb4NroRzf/a9qSipNAjAAUBTpTVYGW+pWtVKuFQqBQCUlZUZtKgiau7KysoA3P4ZJiIiupOXnRdSo1JZHd2IhK5Ubul9uy05Pbw19dC21PRwoTXLIPzpp5/Gnj17MGDAAHz55ZdGu69EIoGTkxOuXbsGALCxsan3t2REzYFOp0NZWRmuXbsGJycnSCQSc0+JiIiaKS87LwbdRmKuSuWW2re7NaSHt5b92ZaaHi60ZhmEv/TSS5g4cSJSUlKMfm9PT08A0AfiRC2Bk5OT/meXiIiITKuhSuWWGCSbmj49vJ6geMuxLKPuazZX+y5L3p8NNJweboog3NpOComVuFbQb23X8jNDm2UQHhERgT179pjk3iKRCF5eXnB3d0dlZcvfT0CWTyqVcgWciIiIjO5Sfim+uGPlNibYF+1MsHLL9HC6F/bO1hizIMwi09+NHoTv3bsX77zzDo4fP46cnBxs3boVUVFRBtckJibinXfeQW5uLgIDA/H+++8jNDTU2FNpkEQiYWBDRERERK2SkHu0mR5uOpa+R9ve2dqinqeG0YPw0tJSBAYGYuLEiXjmmWdqnd+yZQvi4+OxZs0a9OnTBytWrMCQIUNw9uxZuLu7G3s6RERERERNUlOp/O494ZZSqVzoPdpMDzcNofdoW3J6uNCMHoQPHToUQ4cOrff8smXLMHnyZEyYMAEAsGbNGnz77bdISkrCq6++2uTxVCoVVCqV/n1xcXHTJ01ERERE9JfWUKlcyD3aTA83DaH3aFtyerjQBN0Trlarcfz4ccyePVt/TCwWY+DAgTh06NA93XPx4sWYP3++saZIRERERGSWSuWWukcbaD3p4ZbOUtPDhSZoEJ6fnw+NRgMPDw+D4x4eHjhz5oz+/cCBA3HixAmUlpbCx8cH//nPfxAeHl7nPWfPno34+Hj9++LiYvj6mialhYiIiKixckpy2LfbiITu2y00S9+jDbSO9HCuElNjNMvq6D/88EOjr5XL5ZDL5UhMTERiYiI0Go0JZ0ZERET093JKchC5LRJqze09xTKJDKlRqQzE74G5+nYLpbXs0bZk5uih3Sr2aN+4APyyESjMBJz8gJ5jAZcO5p7VfRM0CHd1dYVEIkFeXp7B8by8vPvugRwXF4e4uDgUFxfD0dHxvu5FREREdD8KVAUGATgAqDVqFKgKGITfA3P07RYqNRzgHm1LIPT+bMBMe7SFDIp/2QRsnwFABEBX/fXASuDJ1UDPMaYZUyCCBuEymQy9e/fG7t279W3LtFotdu/ejenTp9/XvbkSTkRERETGIGRqOMA92qbSGtLD7XV/wv6Pu4JiWEBQfONC9Vg6be1z26cDfmEtekXc6EF4SUkJzp8/r39/6dIlZGRkwNnZGX5+foiPj0dsbCyCg4MRGhqKFStWoLS0VF8t/V5xJZyIiIiI7pfQqeEA92ibgjnSwwVnyUHxLxtR/Vx1EVWfHzjPeOMJTGzsGx47dgw9e/ZEz549AQDx8fHo2bMn5s6dCwAYMWIE3n33XcydOxdBQUHIyMjAzp07axVrIyIiImqplHIlZBKZwTGZRAal3DL6TAvNSqkEZIbfT5iob7c+NbwONanhxhYT7NvgSjj3aDddQ+nhplC9P9vwmMQKptuffWdQrNMYft0+vfq8MTUmKDamwkxU/2KhLrq/zrdcRl8Jj4iIqPd/RGpMnz79vtPP78Z0dCIiImouvOy8kBqVatHV0YWsVr41W4P3+ifAUV0GHXQQQYQimQ1mZmsQbeQhzZEa3lr2aFtyerj9lS8xxnk+KrQOqFmVthYXw/7KPMDZBPuXhV4pFjoodvJDg8/n5Gfc8QTWLKuj3wumoxMREVFz4mXnZVFB952ErFauTw9XKJGnMFz5NkV6uLlSwy19j7ZFp4f/tSptL9bCXnzN8Jyp9i9belDcc2x1an2ddH/tfW+5jJ6OTkRERESWraFq5cYmdHq4OVPDa/Zovz+qJ2Y93tViAnDADOnhl1MhgeHPqARqWF9ONf5gQqdqA+YJihsK+o0dFLt0qN7bLhIDIonh1ydXt+iibIAFrYQzHZ2IiIjI8gidHt5aUsMt2o0LsP9xGsa4Of+VHl7NWlwM+x9vAt1DjRvEmWP/stArxTVB8fbpMCgEB53pguKeY6qzCNgnvPliOjoRERGRMHadzkOnOo7/cDoPw7t3N+pY5kgPt/TU8BqC7tE+8x0At7qP+40w7lh/rUzbS/JhL8m/66TE+PulzbF/ubUExS4dWnQV9PpYTBBORERERKZ3Kb8Ui/Zn4yOxFWTaKv1xtdgKb+7PRo/+pUYNVmOCfbH2p7orPZsyPdyS23cBNXu0D0Jz+48QEitgzIKHjB+I37gA6/2vQ4L3ocHtKvcSqGG9/3Wgd3DLXpk21/5lBsUtFoNwIiIiImq0L45lId/WGf83cBYc1KX648UyW9y0rV49NmbwyvRw06g49l9oqgxXpjVV1cftBxt/ZdpecgNj3OJqp4dLClr+yrQ5VqXvHJtBcYtjMUE494QTERFRa3YpvxRf3JE+HRPsi3YmCFBr9mhft1Hiuo1htXKxiVp4tZb0cNy4IMyq5o0LwN4lAN6tfW7vEpOtTNedHi62jJVpC96/TMZnMUE494QTERFRQ3JKciy2b/cXx7Lw3saf9H20z0KEr3fYYObYRxFt5HRtc7XwsvT0cPyyCbe23tln+gSs934K+6fnVQd4Rh1L4B7TrWVlmqvS1EgWE4QTERER1SenJAeR2yKh1txuWSSTyJAaldriA/FL+aV4b+NP+GjXklp7tKcACPF/2iL2aAtOqFXpv8a6tXU+Pr1We8/0mK0zYG/sPtOFmbAWF0MCde092uJirkwTmRiDcCIiIrJ4BaoCgwAcANQaNQpUBSYLwoVKD//iWBYc1WUGATgAyLRVcFSXWc4ebSGD4l82AdtnwGAV9cDK6lVUY69KA8AvG1GhdTAIiAFAAxkqtA6wN8HKdIN7tLkyTc1Ecf41lBcX698rHBzg4OpuxhkZh8UE4dwTTkRERM3FF8ey8OpdQerany5gybMPGj09/GpBOXT1VILWwXR7tMOdCpGV9hFkt65Cbe8D38emwKejiVbBhQyKb1wAts/Arao6ekxvn169umrsoNFM1bzr3aPNlWmqh5BBcXH+NSS9/AI0lbfb6EmkUkxcsbbFB+IWE4RzTzgRERE1B5fyS/HqV79Cq8PtfdN/fZ311a8I8Xc26mqxj1KBs/XstxXBRHu0f9kEn+0z4FMTFJeIgE83mTQohk5b+5wpguJfNuKWxg2fXl9VOzXc/UXjr0oDf608n6jnJPdMU/0sOSguLy42GAsANJWVKC8uZhBORERE1Nwp5UpIxTJUam+npEvFMijlygY+dW++OJbVYOEyY6eHxwT74usdNqgUSyDV3s4IrBRLUCSzMf4ebTMExYIWESvMRIXWrp7UcDvYG3tVGgB6joX13k/r36PNlWmqA4PilotBOBEREVm8fWeqUPRHPERWZdXBsUiEsiob7D9Thehg445V08LLraygVh/tG7ZKo6eHt3O1xeqIm+gszUaVSgIRdNBBBCu5Bu/3LTD+Hm0zBMWADrc0rrXTw61uGj9VW+hVaQBw6QD7p+dhzNYZd1RHF1U/49PzuDLdQgi9f5lBccvFIJyIiIgs2u30cCeg0sngnKnSw93LC/HRD2/XWpmeMng2fJRGDqhuXEDIr28AdlrA7vZ4OgChv84F+g0zSc/nuplg/7KTX8Pp4cYOinuOBfZsr+ekiSp5A0DPMbD3C6tOd+fKdItjyfuXzUXh4ACJVFrre6pwcGjgUy0Dg3AiIiKyaOZID8f2ZQYBOABItRpEqX/CiOAoo40FoN6VaVHN/23pPZ97jkXFnu31p4cbOyh26QDrwQmQfFZHavjgBNMGxVyZNiohV6Zbw6q00EGxg6s7Jq5Yy+rozRmroxMREbUcQrXvAm6nh/uLchAj+Qk+ouu4qnPDF5pHkanzMn56uCgXL1ptxWW41jr3ktVWKESzALTglWmhez67dAD6zQK+ruNcv1kmCYrt+43CmDZnUfHzN8CtXMDeE9a9hsO+w+NGH4tMozWsTLeGoNjB1d1i/rzuZDFBOKujExERtQxCtu8CqtPDn5P8hMWSj6CDSL9n+gXJN5iteQEuygnGHfCXjYConpVikQWsTP9VWfvW1nnC7V/uOgzA0XqOm4Z9hy6w79DFZPdvjbgybVwMilsuiwnCiYiIqPmr2Z/thxzEiA1XpWd9BaPvzwaA0R0r4X3oI0hEOtxeMdZBpwMWS9Yip6ORV24LM2El10Ak1kGnvR0ci8Q6WMk1LX9lGsCtts/i05te0FTdPiaxAsa0fQj2Rh8NsLaTQmIlhqbqdkV2iZUY1nZSE4xGpmDpK9Pm2r/MoLhlYhBOREREgvniWFaDq9JbjnUw6v5sAPC9/BW0YjGgM9yyJhIBIpEYPpe/BDo+YLwBnfwgtdWhwxPXUKUS6w9bybWQ2sIiej5XlFQaBOAAoKmqPm7vbG308eydrTFmQRgqSm4HONZ2UpOM1ZpwZdp4LHn/Mhkfg3AiIiJC1vmTuJr2EWS3rkJt7wOfx6bAt2MPo4+jyjuHxZL6V6XfzHsYgHGDcBRmQlzPnmmxCfdMS221kNreXatGzJ7P98je2ZpBtxFxZdr4uCpNjcUgnIiIqJVL37oKvTPmwqtmZbpYBNHGjUgPWojQp2cYdaxBqv9BBxFyJGIUSG6vEis1WrhV6TBY9T8Aw406Zs2e6cpSSe2VaTtYxMo0ANwStUFF53/p31uLpCZJDSfT4cq08XBlmpozBuFERETN0Y0LgqxqZp0/id4Zc+tcme6dMQdXe/SHjxFTtXvYFiFXIsZTPl5Qi2/vl5ZpdfhvVg562BYZbSy9nmNR+b/3ceFbt1p7tDtEXofUAlamb92swKdzD9faMz1mQZhJVo+5R9v4uDJtfFyZbvmqCiugLb2990VsawUrp5afEcMgnIiIqDEECooBAL9sgm77DOh0t1dRRQdWQvTk6urgzoiupn0EL/1q7W3VbbVFyEpbC5+O7xttPDuP9riSaWUQgAOAWixCkdQKPh7tjTaWnksHVIXNhm77eoPDOq0IVWGzITXVn6OAPZ+r92hrDY5pqrTco30fhFyVBrgyTfdG6CBVyPGqCiuQ++4xoOqO/z5ZieA5M7jFB+IWE4SzTzgRUSsjcFCM7TNgkFp8YGV1arGRg2LcuADdf2dABK1B0ymdFtD9dzpEfmFGfU7ZrasQ1bNfWgQdZLeuGm0sAEDPsRAd/aDe8UyyXxoAugwFsL6e46Zx62aFRQepQu/RFjIotvRVaYAr06ZgjoBYyCBV6PG0pVWGYwFAla76uJPRhxOUxQTh7BNORNSKCBwUY/uM6ij4btunV6ccGzEoLjyQBDsdYHVX22eRqPrfIiUHkuD05CKjjae294GuuPZKOADoIILa3sdoYwGo/l71mwWcT659rt8siykkJnR6uDlYclBs6avSgHlWprlqa1xCB6mWHBQLzWKCcCIiMiMhV6UFDorxy0YAonpOiqrPGzHlOPvKWXRpYGU6+8pZo/5bx+exKRBt3AidrjrQr6HTVY/n+9gLRhytmjJwNGQXP4VaezvIkYmlUAaONvpYNayUSohkMujUav0xkUwGK6XSJOMJnR4u9B5tBsXGZ46VaRsrB1jLbfTvxVamCw24akt0G4NwIiK6P0KuSgOCB8UozIRWp4O4jlNanQ5iI7e3uqpzQ+c69mgD1SvTV3VuCDDieL4deyA9aCF6Z8yBTne7b7cIOhwPWohQY/bP/ouXnRe2hyeh6NrtVHdHdx942XkZfawaUm9veGzZjpLcAv0xO08lpN7eJhtTSPbO1njq5Q4ounb7+RzdlSZbdW8NQbHQHFzdMX7BalTk316ZtnY13cq0pQepDIpbPrGtVXVa2F0/o2Lblh/CtvwnICKi2oRamRZ6VRr4q6dz3SvFMEHP50KZF+x0gLiOuF+rA4plXkb999xl36chuvF5vSvTl/yeMeJo1UKfnoGrPfojK22tvk+472MvmCQAB4DK7GzceiYWojtWpW/JZKjcucNkQfGtmxXYknjprpXiQoxZ4GER6eHF+dewZd6LFr2HWUgKBwfYWTtDqr2dSVAprjTpqnRVYQVKki4ZBBwlVjdgN9PFIoJiMj6hg1Shx7NysobnzGBWRyciohZAyJVpoVelAX3P53rHNHLP5y80j2ISEusNirdoI2DMhO1Bj/TFq8em4G2rj2qtTL9aNQVxDz9kxNFu8+n4gFGroDekqqDAIC0cAHRqNaoKCkwWhJsjPVwkKoGmslR/TCK1NVl6uKWvTAsdFNtYOeAJnymA5o5gQyKCjZXpgnAGxS2bOVZthQ5SzREUWzlZW+TPP4NwIiIhWOrKtMCr0gCqv3cHVtb8euHO0UxSXftkhRterao/KK4odzXqeO1cbRH69AwM/KoLYqz2wAfXcRVu+KIqAtOeHQx/V1ujjkemodMWQ128AZqqO1amraTQacMAtPxVHEsPirWlVYZjAYCGAfH94KqtaQgdpFpqUCw0BuFERKZmySvTAq9KAwBcOiD9wQXVe5hx1x7mwAUINfIvN3yUCnyki0C6ugtGSPbAR3QdV3Vu2KKJwFWRF6YoFUYdDwCig30R4j8SW471xf8KyuGjVGBDsK9FBeAVciUqpXb699LKEpOPqdMWQ6ct178XiY3/Z1ejvLjYIAAHAE2VaVembST2kEtuF9lSacpMMg7AoNgSWHqQylVbas4YhBNR68SVaeP4a1W63vFM0PP5Un4pRqa3hy/eqxUUZ6V7Iu2RUqMGqzHBvlj70wVc0XliadVIg3Ni6DAi2NdoY93J39UWsx7vapJ7m1uF2A6H+7wBrfj2KqpYWwl/sR1MFRZXqQuhKtoAQHPHUQmq1L0B2JtkTCGDYjkUGOY7BRLR7X/aaXRVkJvoO8qg2PgsPSiuGZOrtkTNNAhPTU3Fv/71L2i1WsyaNQv/93//Z+4pEZEl4cq08bh0qP6+bZ8Og+8ndNXHTfCLjS+OZUEkEuGKtnZQLBGLsOVYllGD13autljy7IOY9dWvEIlE0Ol0+q9Lnn3QolanhVJl6wwNyqGruqk/phMrUGXrbLIxxWIVbCQ2tYJisVhlkvF0JRoM85kCifiOoFhbBV2JpoFP3TsbuSNKRIb/rJOIrGAjdzTJeJauNezvrRmTQSqR8JpdEF5VVYX4+Hj8+OOPcHR0RO/evfH000/DxcXF3FMjIlPiyrRxmGFlGj3HIMs+EFfvqKzt89gL8DVRZe2rBeXQ6er+nup0OlwtKK/z3P2oTg93xpZjWbj6V3r4CAtLDxdSSUE+JCVfQi6R64+pNCqUFATCzc80q9JCB8VyiQJV4ruCYrEV5BLTpcBbstawSlwzLoNiIsvX7ILw9PR0dO/eHW3atAEADB06FP/73/8watQoM8+MiEyGK9PGY6aV6Ve/ugKRaGj1KvENEXTrr2DJs46INkGqto9SAZFIVF2e/C4ikQg+JtijDVh2ejgAnNyxG0VX8vTvHdt6oMfQASYZS329CMN8JtUKiCuuF5lkPABAhdZgPKA6KEZFHb+QMwJbJ2eU4kqdxy1BawiKGRATkamIjX3DvXv3Yvjw4fD29oZIJMK2bdtqXZOYmAh/f39YW1ujT58+SE9P15/Lzs7WB+AA0KZNG/z555/GniYRNRd3rkzrNIZft0+vPm9M5liZbmg8E61MY/oxoO+LQPenq79OP2b8X2igen/2q1/9Cq0O0Gh1Bl9nffUrLueX/v1Nmigm2LfBlXBT7dG2ZCd37IbDj2L4X/bVvxx+FOPkjt0mGU8mFtcZEMvERv9niZ7ctu6shfqOtzT6oPhOAgTF7jN66l+eM4NNHhTL2tjpX5bQK5iIWiej/y9zaWkpAgMDMXHiRDzzzDO1zm/ZsgXx8fFYs2YN+vTpgxUrVmDIkCE4e/Ys3N2bXi1UpVJBpbq9n6u4uPi+5k9EfxEqPZwr08Yd7y+XdJ74omokrlaWw6dKgRidJ9qZYJya/dn1rUobe3820Hr2aBde/BMV+bf/m2bt6gCn9m0a+MS9K7qSB6XY8JcXErEViq5kmWQ8hZ0UVfUcNxWhV6a5UkxERPUx+n8Jhg4diqFDh9Z7ftmyZZg8eTImTJgAAFizZg2+/fZbJCUl4dVXX4W3t7fByveff/6J0NDQeu+3ePFizJ8/33gPQER/pYe/CFg7AB4PABfSgAOrgCffN/5qaivZMw2/MGF+qYGa9HDDAHXtTxew5NkHjZ4ebo792YB59mgLGRQXXvwThWvOwuqO6uGF2hzgHzDZmEKS29qiCvl1HjcVBsVERNRcCLonXK1W4/jx45g9e7b+mFgsxsCBA3Ho0CEAQGhoKE6dOoU///wTjo6O2LFjB+bMmVPvPWfPno34+Hj9++LiYvj6MhWR6J7duFAdgPd8Hhi6BJAqgMpyYMcr1Wnjxi5c1kpWpuHSwbgr+vW4Mz1cvzr919dZX/2KEH9nowaq5tqfDQBOxYWIddYBztYAdLAuLgRMFIQLHRQXXL4BqViKw9e+QXHlDThIXRDmPhwFl29YRBBu38YdpZLMWj2m7duYpn82wKCYiIiaD0GD8Pz8fGg0Gnh4eBgc9/DwwJkzZ6onZGWF9957D/3794dWq8Urr7zSYGV0uVwOuVyOxMREJCYmQqMxTZVTIrMSKjUcqB7H2gEYuhSQ/vWPU6mi+v3p7cZPD28FK9NAdXD8xR2rtjHBvmhngoBR6PTwmh7adTHl/myhg+KK/GJY1REUV+QXAyYYr7JCAymA4sobKFDnGRw3Bce2HtBcrKpVKM2xrUcDn7p3Vk7W8Exg5WkiImqdml11dAB48skn8eSTTzbpM3FxcYiLi0NxcTEcHdkTkyyIkKnhQHVQ6vHA7QC8hlQBePYwfnq4ha9MA5adHl6zP3vNlsNw01ah5s/vutgK/xgRZrL0cKGD4hp3B8Wm5iB1MfhqKj2GDsBJ7DbYA27K6ugAA2IiImq9BA3CXV1dIZFIkJdn+A+YvLw8eHp6CjkVopZB6NRwoHpV+EJa9TjSO1KJK8uB3JNA8ATjjgeYZWVaKK0hPXyQsxghIhdYSW+vSldpK+HkbLpK1zWECorLSyohRe2guLyk0iTjiVGJKm0lwtyH649VaSshhmnGA2DSgJuIiIhuM/2/kO4gk8nQu3dv7N59u+WJVqvF7t27ER4efl/3TkxMREBAAEJCQu53mkTNh0Fq+F/BU01quNz+r8riRtZzLFBRXB3oV/61aloT+KtumSY9HLi9Mv1cUvVXCwjAgTvSw+tQkx5uTDXtu9pVlaGPukj/aldVZrL08DtXpf/3ZzIOX/sGVmKpQREzU3GQukAp8zD5SjGsFfqgeHCb8QhzH44qbSVgbZo9747O1kgrKERaQd4dr0I4OrMlExERUUtn9JXwkpISnD9/Xv/+0qVLyMjIgLOzM/z8/BAfH4/Y2FgEBwcjNDQUK1asQGlpqb5a+r1iOjoJSqg92kKnhgN/pYe/X73S/vs31ePnnqwOwJ9832KCY6H2aJsjPfzdh73R66cCWFkZrkz//LDSpNXDhUzVtnZ1QKE2p9ZKsZ2rg0nGs/PxxPbi3yHVqfXHKkUyPOljmiwuO3sJeqa/i0qpnf6YtLIEdi9/bJLxiIiISDhGD8KPHTuG/v3769/XVC6PjY1FcnIyRowYgevXr2Pu3LnIzc1FUFAQdu7cWatYW1OxMBsJRsg92uZIDQdqp4cHT7CY9HBA2D3aNenh7SpL4a69nUp8TSxFpszWJOnhD7lZo6qO/dIPuZl2FVWo/ctAdfG1stFqlGQX6o/ZeTuZtHJ4BexQUV8hfxOwVhXAWlUg3IBEREQkCKMH4REREfWu+tSYPn06pk+fbtRxuRJOghB6j3bPsdUB/o5XbqekC5EaDghauExIQu/Rjgn2xf92n8R6sUutlelJlTdMVj0cEG5lWuhVaQC4dbMC29ddgaZKqz8msSrCmAVesDdByra1nRQSK/Fd44lhbSdt4FP3zkqphEgmg059e+VdJJPBSqk0yXhEREQknGZZHZ2o2RK6fVcrSQ0XUs0e7fpWpo3dwqudqy1eDPaC1S+6WivTL/b0Mml6uFAr007t2wD/gMEecDtXB9OuSpdUGgTEAKCp0qKipNIkQbi9szXGLAhDxR2F2KztpCYZCwCk3t7osHMHqgpur4RbKZWQenubZDwiIiISDoNwsgyWvEfbwlPDawi5R9u/srTelWlj79EGgD7tXFD1S36tlek+7UwTHJtjZdqpfRuTtgZrDuydrU0WdNdF6u3NoJuIiMgCWUwQzj3hrVhr2KNtoanhNb44loW1d/SZvg4R/rf7JP4xIswke7Sva6tgJa29Z9qtssoke7RrWPLK9K2bFYKtEptLZXa2oCvTOSU5KLhjT7hSroSXnZfJxiMiIiJhWEwQzj3hrVRr2qNtoS7ll2LtlsNYX0ef6UlbDptkj/Yvu34GUNeeadO08LL0lelbNyvw6dzDtfZLj1kQZrJAXOg92pXZ2bjw+NBae7Q77NxhkkA8pyQHkdsiodbcHk8mkSE1KpWBOBERUQtnMUE4tVLco20yQqWHf3EsC24NrEybYo/2qFA/4BddrZXpUaF+JtmjbY6VaSEJvT8bEH6PdlVBgUEADgA6tRpVBQUmCcILVAUGATgAqDVqFKgKGIQTERG1cBYThDMdvZXiHm2TEDI9vHoPdnV18rpWpk2xR/vRkHYoPH621sr0oyFdjD5WDaH3TLeG9HCh92gTERERGYPFBOFMR2+luEfb6IROD/dRKnAd1c2Xa++ZFplkj7alr0ybIz2ciIiIiBrHYoJwamaEqlbeSvZoC5UaDhimh39UcRFnxVJ00VZiinV7k6SH1/TRrtJW1lqZvi62MlkfbUuu5i10erjQ+7PNQei+3Uq5EjKJrNaecKWcfcKJiIhaOgbhZHxCVitvBXu0hUwNBwzTw8+KpTgicwTURX+dNX56eDtXW/xjRBgmbTkMt8qqv8YW4brYCv8YEWbSPtpCsuT0cKH3Z9cQslq50H27vey8kBqVyuroREREFohBOBmX0NXKAYveoy10ajhgmB7eRVsJqIuqvwIwVXp4dLAvQvydseWO1f4Rwb4WFYBbenq40Puzha5WDgjft9vLzotBNxERkQWymCCchdmaCaGrldew0D3aQqeGA4bp4VOs2+uPmzo93N/V1ujP0lwwPdz4hK5WTkRERGQsFhOEszBbM2GOauVmINQebaFTw4HWkx5uycyVHk5EREREf89ignBqJsxVrVxAQu7RNkdqOGD56eGAZe/RBti+i4iIiKi5YhBOxmXh1cqF3qNtrtRwwLLTw4Xeo90a0sOFJnS1ciIiIiJjYRBOxmXh1cqF3qPN1HDTEHqPNtPDjU/oauVERERExsIgvLUQqm83YJZq5Za8R7s1pIa3BkwPNz6hq5UTERERGYPFBOGsjt4AIft21xCwWnlr2KNtyanhNSx9j7alE7Jnt7nklOSwbzcRERHdN4sJwlkdvR7m6NstoNa0R9uScY92y2aOnt1CyynJQeS2SKg1t59RJpEhNSqVgTgRERE1icUE4VQPc/XtFgj3aFsG7tFu2VpDz+4CVYFBAA4Aao0aBaoCBuFERETUJAzCLZ2F9+3mHm3TsfT0cO7RJiIiIiJzYBBu6Sy8bzf3aJuG0OnhRERERESthdjcEyAT6zkWqCiu3gNe+deqsAB9uy/ll2LJzjOY8fkvWLLzDC7ll5pknJhgX1wXW+n3aL8n88UU6/bco32fGkoPN4WaPdp34h7tlqOmZ/edLK1nt1KuhExi+IwyiQxKueU8IxEREQlDpNPpdOaehDHVFGYrKiqCg4ODuafTPPzyaXURtprq6Hf27TZBdfQvjmXhoy1H4CvRoo2TNf4srECWRowXRvQxerVyAPjPsSysuaM6+p17tE0xnjkInRp+PfMWvnjraK3jMa+FwM3P3iRjWnr6u9CErlbO6uhERETUmjUlDmU6emsgYN/uS/ml+GjLEawTOcMKUqCw+niVqBL/t+WI0auVA5a/R7u1pIZzj7bxmKNaeWvo2e1l58Wgm4iIiO6bxQTh7BP+NwTq2/3FsSz4SrSwghTlQRrYt/fArYt5UGRI4QOt0auV17DkPdpCVw4H2MKrpWsN1cqJiIiIWiqLCcLZJ7x5uFpQjjZO1kAhYN/eA56h3QAAVRn58HGyNkm1cjI+tvAiIiIiIjINiwnCqXnwUSpw5kQFAODWxTz9VwUkuFpYgW5BpqlWLrTWsH+Z6eFERERERMbHIJyMKibYF5N3n0KVqBKKDCmqMvKhgARV2kpc1YkxzwIKpQm9R5up4dRUNdXK794TbknVyomIiIhaKgbhZFTtXG3xwog++L8tR+CL6uroVwsrcFVXXR3dEoqlCb1Hm6nh1FRSb2902LnD4quVExEREbVEDMLN4caF25XKnfxMVqn8TpfyS/HFHdXDY4J90c5EAfHd1cq7BSkwz4KqlZsDU8OpqVpDtXIiIiKilohBuNB+2QRsf/F2z+4LacCBVSbr2Q3U7tt95kQFJu8+ZbK+3YDw1cpbwx5tatlaQx9tobFvNxEREbVEDMKFdONCdQDe83lg6BJAqgAqy4EdrwDbZ1T38jbyirg5+nYLjXu0qbkzR99uS5dTkoPIbZFQa25/T2USGVKjUhmIExERUbMmNvcE6vL0009DqVTiueeeM/dUjOuXjdUr4EOXVgfgQPXXoUsBuX31eSPT9+0WV/fttnrGtfqrWAofSXXf7pauoT3aplCzRzvmtRD9y1QBP1mGhvp2070pUBUYBOAAoNaoDVbGiYiIiJqjZhmEv/TSS/jkk0/MPQ3jK8ysTkGX3hWsSRWAZ4/q80am79uN23277dt7AAD7dt8He2druPnZ618MwImIiIiIqDGaZRAeEREBe3t7c0/D+Jz8gLxT1Snod6osB3JPVp83Mh+lAn8W3u7bnZv+u75/99XCCvgoLaNvNxERERERUUvQ5CB87969GD58OLy9vSESibBt27Za1yQmJsLf3x/W1tbo06cP0tPTjTHXlq/nWKCiuHoPeE0gXrMnXHWr+ryRxQT7IksjRpW2EooMCaq+zq/+qq3EVY0YIyygb3fNHu07cY82NSc1fbvvxL7d90cpV0ImMfyeyiQyKOX8nhIREVHz1uTCbKWlpQgMDMTEiRPxzDPP1Dq/ZcsWxMfHY82aNejTpw9WrFiBIUOG4OzZs3B3dwcABAUFoaqqqtZn//e//8HbkosUuXSoroK+fQbw+zfVqem5J6sD8CffN0mbMnP17RayWjn7aNO9ELJaOft2G5+XnRdSo1JZHZ2IiIhaHJFOp9Pd84dFImzduhVRUVH6Y3369EFISAhWr14NANBqtfD19cWMGTPw6quvNvree/bswerVq/Hll182eJ1KpYJKpdK/Ly4uhq+vL4qKiuDg4NC0BxKKGfqEX84v1fft9lEqMMKEfbtv3azAZ/MOo0p9u1ialUyM0fNYvIyaB1YrJyIiIiJjKi4uhqOjY6PiUKO2KFOr1Th+/Dhmz56tPyYWizFw4EAcOnTImEPpLV68GPPnzzfJvU3GpQMwcJ6gQwrZt7uipBJVai0GTgiAs5ctbuaU4ocNp1FRUskgnJqFhqqVMwgnIiIiIlMyamG2/Px8aDQaeHh4GBz38PBAbm5uo+8zcOBAREdH47vvvoOPj0+DAfzs2bNRVFSkf2VltfyWW5bC2csWbn72cPZq2X3IiYiIiIiIjMWoK+HG8sMPPzT6WrlcDrlcjsTERCQmJkKj0ZhwZtQUN3NKDb4SERERERG1dkYNwl1dXSGRSJCXl2dwPC8vD56ensYcqpa4uDjExcXpc/HJfKztpLCSifHDhtP6Y1YyViun5qOmWvnde8JZrZyIiIiITM2oQbhMJkPv3r2xe/dufbE2rVaL3bt3Y/r06cYcqhauhDcf9s7WGD2P1cqp+WK1ciIiIiIylyYH4SUlJTh//rz+/aVLl5CRkQFnZ2f4+fkhPj4esbGxCA4ORmhoKFasWIHS0lJMmDDBqBO/W0taCb+UX4ov7qhUHhPsi3YmqlRuLvbO1gy6qVmTensz6CYiIiIiwTU5CD927Bj69++vfx8fHw8AiI2NRXJyMkaMGIHr169j7ty5yM3NRVBQEHbu3FmrWFtr9cWxLHy05Qh8JdU9u8+cqMDk3afwwog+iA72Ndm4QvbtJroXQvbtJuPLKclhz24iIiKiRrivPuHNyZ3p6H/88Uez7BN+Kb8Uk5fswDqRM6zEt/dHV2kr8X+6m1g3a6hJenezbzc1d+zb3bLllOQgclsk1Jrbf34yiQypUakMxImIiKhVaEqfcKO2KDOnuLg4nD59GkePHjX3VOr1xbEs+Eq0sBJLUR6kgdUzrtVfxVL4SLTYcsw07dXu7Nsd81oIBk4IQJVaa7AyTmRODfXtpuavQFVgEIADgFqjNlgZJyIiIqJqzbJFmaW6WlCONk7WQCFg394DnqHdAABVGfnwcbLG1YJyk45f07ebiIiIiIiIzMNigvCWUB3dR6nAmRMVAIBbF/P0XxWQ4GphBboFKUw6Pvt2ExERERERmZfFBOEtoTp6TLAvJu8+hSpRJRQZUlRl5EMBCaq0lbiqE2OeiQqzsW83NXfs292yKeVKyCSyWnvClXL++RERERHdzWIKs9VoyoZ4c/jPsSysvaM6+tXCClzViFkdnZodoauVszp6y8bq6ERERNSaNSUOZRBuBpfzS7Hljj7hI4J9TVIVnehesVo5EREREVHjNSUOtZh09JawJ7yGv6stZj3e1dzTIKpXQ9XKGYQTEREREd07tigjIiIiIiIiEojFBOFEREREREREzR2DcCKqpaZa+Z1YrZyIiIiI6P5xTzgR1SL19kaHnTtYrZyIiIiIyMhYHZ2IiIiIiIjoPrTK6ugtCXt2U1OxhzY1Fft2ExERETVPDMIFdutmBT6bdxhVaq3+mJVMjNHzwhiIU53Ys5uaKqckB5HbIqHW3P6ZkUlkSI1KZSBOREREZGYMwgVWUVKJKrUWAycEwNnLFjdzSvHDhtOoKKlkEE51Ys9uaqoCVYFBAA4Aao0aBaoCBuFEREREZsYg3EycvWzh5mdv7mkQERERERGRgCwmCG9p1dFv5pQafCUiIiIiIiLLZzFBeFxcHOLi4vRV6ZorazsprGRi/LDhtP6YlUwMazupGWdFzVlNz+6794SzZzfVRylXQiaR1doTrpTzZ4aIiIjI3NiizAxYHb3lE7paOaujU1OxOjoRERGRcNiirJmzd7Zm0N2CmaNaudTbm0E3NYmXnReDbiIiIqJmSGzuCRC1NA1VKyciIiIiImoIg3AiIiIiIiIigTAIJyIiIiIiIhIIg3CiJqqpVn4nVisnIiIiIqLGsJjCbC2tTzi1XFJvb3TYuYPVyomIiIiIqMnYooyIiIiIiIjoPrBFGbU67KNNzR37dhMRERERwCCcLIA5+nYTNUVOSQ4it0VCrbn9MyqTyJAalcpAnIiIiKiVYWE2avHYt5uauwJVgUEADgBqjdpgZZyIiIiIWgcG4UREREREREQCYRBOREREREREJBAG4dTisW83NXdKuRIyieHPqEwig1LOn1EiIiKi1oYtysgkhK5Wzuro1NyxOjoRERGR5WrRLcqysrIwduxYXLt2DVZWVpgzZw6io6PNPS1qAnNUK5d6ezPopmbNy86LQTcRERERNb8g3MrKCitWrEBQUBByc3PRu3dvDBs2DLa2tuaeGjVSQ9XKGSgTEREREVFr1uyCcC8vL3h5Va8WeXp6wtXVFTdv3mQQTkRERERERC1ekwuz7d27F8OHD4e3tzdEIhG2bdtW65rExET4+/vD2toaffr0QXp6+j1N7vjx49BoNPD19b2nzxMRERERERE1J01eCS8tLUVgYCAmTpyIZ555ptb5LVu2ID4+HmvWrEGfPn2wYsUKDBkyBGfPnoW7uzsAICgoCFVVVbU++7///Q/ef6Ur37x5E+PGjcPHH3/c4HxUKhVUKpX+fXFxcVMfiYysplr53XvCWa2ciIiIiIhau/uqji4SibB161ZERUXpj/Xp0wchISFYvXo1AECr1cLX1xczZszAq6++2qj7qlQqDBo0CJMnT8bYsWMbvHbevHmYP39+reOsjm5erFZOREREREStRVOqoxu1T7harcbx48cxcODA2wOIxRg4cCAOHTrUqHvodDqMHz8ejz322N8G4AAwe/ZsFBUV6V9ZWVn3PH8yHqm3NxTdu+tfDMCJiIiIiIiMXJgtPz8fGo0GHh4eBsc9PDxw5syZRt3jwIED2LJlCx588EH9fvONGzeiR48edV4vl8shl8uRmJiIxMREaDSa+3oGS8WVaSJD7NtNRERERObQ7KqjP/zww9BqtU3+XFxcHOLi4vRpAHSbOfp2EzVnOSU5iNwWCbXm9t8JmUSG1KhUBuJEREREZFJGTUd3dXWFRCJBXl6ewfG8vDx4enoacyhqgob6dhO1RgWqAoMAHADUGrXByjgRERERkSkYNQiXyWTo3bs3du/erT+m1Wqxe/duhIeHG3OoWhITExEQEICQkBCTjkNERERERER0r5qcjl5SUoLz58/r31+6dAkZGRlwdnaGn58f4uPjERsbi+DgYISGhmLFihUoLS3FhAkTjDrxuzEdnYiIiIiIiJq7Jgfhx44dQ//+/fXv4+PjAQCxsbFITk7GiBEjcP36dcydOxe5ubkICgrCzp07axVrMzYWZqsf+3YTGVLKlZBJZLX2hCvl/DtBRERERKZ1X33Cm6Om9GdrTVgdncgQq6MTERERkbE0JQ5tdtXRyTSk3t4Muonu4GXnxaCbiIiIiARn1MJsRERERERERPT/7d1/bFPX3cfxT3C5BpYfOKQk9kgClEGVAokUEhNNdOsSNWRPULO0EvvxRwoV0zYXrc1oVyYVirQpE52m7IdVpE0b0jY6Vp6Raq7WMWWFbBotgSnraNYUUjQ64aSlyi8HiKlznz86/MxNgJiYe2+c90uyFB/f5H4tHY704Zx7zvWlTQhnd3QAAAAAgNPxTDgAAAAAANOQTA5Nm5lwAAAAAACcLm1COMvRAQAAAABOx3J0AAAAAACmgSPKHI4zu4GJOLcbAAAAswEh3GJXL1xQ7//Uy7x8Od6WMX++7nopRBDHrBWOhFXfVq9oLBpvM1yGQg0hgjgAAADSSto8Ez5TfDAwIPPyZfme3aul/3tIvmf3yrx8OWFmHJhtBsYGEgK4JEVj0YSZcQAAACAdpM1MeDAYVDAYVCwWs7uUKTGWL9f8e+6xuwwAAAAAgIXSZiY8EAiou7tbnZ2ddpcyJdG339blN95Q9O237S4FAAAAAGCRtJkJnynu8HiUMX++LjzxZLwtY/583eHx2FgVYC+P2yPDZUx4Jtzj5t8FAAAA0gtHlNmA3dGBidgdHQAAADMVR5Q53Fyfj9ANfIQ300voBgAAQNpLm2fCAQAAAABwurQJ4cFgUCUlJaqoqLC7FAAAAAAAJsUz4QAAAAAATEMyOTRtZsIBAAAAAHA6QjgAAAAAABYhhAMAAAAAYBGOKAMwKc7tBgAAAFKPEA5ggnAkrPq2ekVj0Xib4TIUaggRxAEAAIBpYDk6gAkGxgYSArgkRWPRhJlxAAAAAMlLmxDOOeEAAAAAAKdLmxAeCATU3d2tzs5Ou0sBAAAAAGBSaRPCAaSOx+2R4TIS2gyXIY/bY1NFAAAAQHpgYzYAE3gzvQo1hNgdHQAAAEgxQjiASXkzvYRuAAAAIMVYjg4AAAAAgEUI4QAAAAAAWIQQDgAAAACARRwXwgcHB7Vu3TqVlZVp9erV+slPfmJ3SQAAAAAApITjNmbLyspSR0eHFixYoNHRUa1evVqNjY1atGiR3aUBAAAAADAtjpsJd7lcWrBggSRpbGxMpmnKNE2bqwIAAAAAYPqSDuEdHR3atGmTfD6fMjIy1NbWNuGaYDCopUuXat68efL7/Tpx4kRS9xgcHFRpaamWLFmiJ554Qnl5ecmWCaSVcCSs7ve7469wJGx3SQAAAABuQdLL0UdHR1VaWqqtW7eqsbFxwucHDx5Uc3Oz9u3bJ7/fr9bWVtXW1qqnp0eLFy+WJJWVlemDDz6Y8LtHjhyRz+fTwoUL9fe//139/f1qbGzUQw89pPz8/Fv4esDMF46EVd9Wr2gsGm8zXIZCDSHO8QYAAABmmKRDeF1dnerq6q77+fe//31t27ZNW7ZskSTt27dPL730kn72s5/pqaeekiR1dXVN6V75+fkqLS3Vn//8Zz300EOTXjM2NqaxsbH4++Hh4Sl+E2BmGBgbSAjgkhSNRTUwNkAIBwAAAGaYlD4THo1GderUKdXU1Pz/DebMUU1NjY4fPz6lv9Hf36+RkRFJ0tDQkDo6OrRq1arrXt/S0qKcnJz4q7CwcHpfAgAAAACA2ySlIfzixYuKxWITlo7n5+err69vSn/jX//6lzZs2KDS0lJt2LBB27dv15o1a657/c6dOzU0NBR/vfPOO9P6DgAAAAAA3C6OO6KssrJyysvVJcntdsvtdisYDCoYDCoWi92+4gAbeNweGS5jwjPhHrfHxqoAAAAA3IqUhvC8vDy5XC719/cntPf396ugoCCVt5ogEAgoEAhoeHhYOTk5t/VegJW8mV6FGkIaGBuIt3ncHp4HBwAAAGaglC5HNwxD5eXlam9vj7eNj4+rvb1dVVVVqbzVBMFgUCUlJaqoqLit9wHs4M30qmRRSfxFAAcAAABmpqRnwiORiM6ePRt/f+7cOXV1dSk3N1dFRUVqbm5WU1OT1q1bp8rKSrW2tmp0dDS+W/rtwkw4AAAAAMDpkg7hJ0+e1H333Rd/39zcLElqamrS/v37tXnzZr333nvatWuX+vr6VFZWppdffplzvgEAAAAAs16GaZqm3UWkwn9vzPbWW29paGhI2dnZdpcFAAAAAEhz11ZkTyWHpk0IvyaZLw8AAAAAwHQlk0NTujEbAAAAAAC4vrQJ4eyODgAAAABwOpajA7cgHAlzbjcAAAAAScnl0KR3Rwdmu3AkrPq2ekVj0Xib4TIUaggRxAEAAADcUNosRwesMjA2kBDAJSkaiybMjAMAAADAZNImhPNMOAAAAADA6dImhAcCAXV3d6uzs9PuUgAAAAAAmFTahHDAKh63R4bLSGgzXIY8bo9NFQEAAACYKdiYDUiSN9OrUEOI3dEBAAAAJC1tQngwGFQwGFQsFrO7FMwC3kwvoRsAAABA0jgnHAAAAACAaUgmh/JMOAAAAAAAFiGEAwAAAABgEUI4AAAAAAAWIYQDAAAAAGCRtAnhwWBQJSUlqqiosLsUAAAAAAAmxe7oSAvhSJhzuwEAAADYIpkcmjbnhGP2CkfCqm+rVzQWjbcZLkOhhhBBHAAAAICjpM1ydMxeA2MDCQFckqKxaMLMOAAAAAA4ASEcAAAAAACLEMIBAAAAALAIIRwznsftkeEyEtoMlyGP22NTRQAAAAAwOTZmw4znzfQq1BBid3QAAAAAjpc2ITwYDCoYDCoWi9ldCmzgzfQSugEAAAA4HueEAwAAAAAwDcnkUJ4JBwAAAADAIoRwAAAAAAAsQggHAAAAAMAihHAAAAAAACxCCAcAAAAAwCJpc0QZnCUcCXNuNwAAAAB8BCEcKReOhFXfVq9oLBpvM1yGQg0hgjgAAACAWc2xy9EvXbqk4uJi7dixw+5SkKSBsYGEAC5J0Vg0YWYcAAAAAGYjx4bw73znO1q/fr3dZQAAAAAAkDKODOFnzpzRm2++qbq6OrtLAQAAAAAgZZIO4R0dHdq0aZN8Pp8yMjLU1tY24ZpgMKilS5dq3rx58vv9OnHiRFL32LFjh1paWpItDQ7hcXtkuIyENsNlyOP22FQRAAAAADhD0huzjY6OqrS0VFu3blVjY+OEzw8ePKjm5mbt27dPfr9fra2tqq2tVU9PjxYvXixJKisr0wcffDDhd48cOaLOzk6tXLlSK1eu1F//+teb1jM2NqaxsbH4++Hh4WS/ElLMm+lVqCHE7ugAAAAA8BEZpmmat/zLGRk6fPiwGhoa4m1+v18VFRX68Y9/LEkaHx9XYWGhtm/frqeeeuqmf3Pnzp365S9/KZfLpUgkoqtXr+ob3/iGdu3aNen1zzzzjPbs2TOhfWhoSNnZ2bf2xQAAAAAAmKLh4WHl5ORMKYemNIRHo1EtWLBAhw4dSgjmTU1NGhwc1IsvvpjU39+/f79Onz6t733ve9e9ZrKZ8MLCQkI4AAAAAMASyYTwlG7MdvHiRcViMeXn5ye05+fnq6+vL5W3inO73crOztYvfvELrV+/XtXV1bflPgAAAAAATFfSz4Rb6eGHH57ytYFAQIFAIP4/EAAAAAAAOE1KZ8Lz8vLkcrnU39+f0N7f36+CgoJU3goAAAAAgBknpSHcMAyVl5ervb093jY+Pq729nZVVVWl8lYTBINBlZSUqKKi4rbeBwAAAACAW5X0cvRIJKKzZ8/G3587d05dXV3Kzc1VUVGRmpub1dTUpHXr1qmyslKtra0aHR3Vli1bUlr4R7EcHQAAAADgdEmH8JMnT+q+++6Lv29ubpb04Q7o+/fv1+bNm/Xee+9p165d6uvrU1lZmV5++eUJm7XBWuFImHO7AQAAAMBm0zqizEmCwaCCwaBisZjeeustjij7L+FIWPVt9YrGovE2w2Uo1BAiiAMAAADANNl2RJmdAoGAuru71dnZaXcpjjMwNpAQwCUpGosmzIwDAAAAAG6/tAnhAAAAAAA4XdqEcHZHBwAAAAA4XdqEcJajX5/H7ZHhMhLaDJchj9tjU0UAAAAAMDslvTs6Zh5vplehhhC7owMAAACAzdImhP/37uiYyJvpJXQDAAAAgM3S5oiya5LZGh4AAAAAgOmalUeUAQAAAADgdIRwAAAAAAAsQggHAAAAAMAiaRPCOSccAAAAAOB0bMwGAAAAAMA0JJND0+aIspkkHAlzZjcAAAAAzEKEcIuFI2HVt9UrGovG2wyXoVBDiCAOAAAAAGkubZ4JnykGxgYSArgkRWPRhJlxAAAAAEB6IoQDAAAAAGCRtAnh7I4OAAAAAHC6tAnhgUBA3d3d6uzstLuUG/K4PTJcRkKb4TLkcXtsqggAAAAAYBU2ZrOYN9OrUEOI3dEBAAAAYBYihNvAm+kldAMAAADALJQ2y9EBAAAAAHA6QjgAAAAAABYhhAMAAAAAYBFCOAAAAAAAFkmbEM454QAAAAAAp8swTdO0u4hUGh4eVk5OjoaGhpSdnW13OQAAAACANJdMDk2bmXAAAAAAAJyOEA4AAAAAgEUI4QAAAAAAWIQQDgAAAACARQjhAAAAAABYhBAOAAAAAIBFCOEAAAAAAFiEEA4AAAAAgEUI4QAAAAAAWOQOuwtINdM0JUnDw8M2VwIAAAAAmA2u5c9refRG0i6Ej4yMSJIKCwttrgQAAAAAMJuMjIwoJyfnhtdkmFOJ6jPI+Pi4Lly4oKysLGVkZEz594aHh1VYWKh33nlH2dnZt7FCpAv6DJJFn0Gy6DNIFn0GyaLPIFn0mcmZpqmRkRH5fD7NmXPjp77TbiZ8zpw5WrJkyS3/fnZ2Np0JSaHPIFn0GSSLPoNk0WeQLPoMkkWfmehmM+DXsDEbAAAAAAAWIYQDAAAAAGARQvh/uN1u7d69W2632+5SMEPQZ5As+gySRZ9BsugzSBZ9Bsmiz0xf2m3MBgAAAACAUzETDgAAAACARQjhAAAAAABYhBAOAAAAAIBFCOEAAAAAAFiEEA4AAAAAgEUI4f8RDAa1dOlSzZs3T36/XydOnLC7JDjUM888o4yMjITX3XffbXdZcJCOjg5t2rRJPp9PGRkZamtrS/jcNE3t2rVLXq9X8+fPV01Njc6cOWNPsXCEm/WZhx9+eMK4s3HjRnuKhe1aWlpUUVGhrKwsLV68WA0NDerp6Um45sqVKwoEAlq0aJEyMzP14IMPqr+/36aKYbep9JlPf/rTE8aZr3zlKzZVDLs999xzWrt2rbKzs5Wdna2qqir9/ve/j3/OGDM9hHBJBw8eVHNzs3bv3q2//e1vKi0tVW1trd599127S4ND3XPPPQqHw/HXX/7yF7tLgoOMjo6qtLRUwWBw0s/37t2rH/7wh9q3b59ee+01fexjH1Ntba2uXLlicaVwipv1GUnauHFjwrjz/PPPW1ghnOTYsWMKBAJ69dVX9cc//lFXr17V/fffr9HR0fg1jz/+uH73u9/phRde0LFjx3ThwgU1NjbaWDXsNJU+I0nbtm1LGGf27t1rU8Ww25IlS/Td735Xp06d0smTJ/WZz3xGDzzwgN544w1JjDHTZsKsrKw0A4FA/H0sFjN9Pp/Z0tJiY1Vwqt27d5ulpaV2l4EZQpJ5+PDh+Pvx8XGzoKDAfPbZZ+Ntg4ODptvtNp9//nkbKoTTfLTPmKZpNjU1mQ888IAt9cD53n33XVOSeezYMdM0PxxT5s6da77wwgvxa/75z3+akszjx4/bVSYc5KN9xjRN81Of+pT59a9/3b6i4Hgej8f86U9/yhiTArN+JjwajerUqVOqqamJt82ZM0c1NTU6fvy4jZXByc6cOSOfz6fly5frS1/6ks6fP293SZghzp07p76+voQxJycnR36/nzEHN3T06FEtXrxYq1at0le/+lW9//77dpcEhxgaGpIk5ebmSpJOnTqlq1evJowzd999t4qKihhnIGlin7nmV7/6lfLy8rR69Wrt3LlTly5dsqM8OEwsFtOvf/1rjY6OqqqqijEmBe6wuwC7Xbx4UbFYTPn5+Qnt+fn5evPNN22qCk7m9/u1f/9+rVq1SuFwWHv27NGGDRt0+vRpZWVl2V0eHK6vr0+SJh1zrn0GfNTGjRvV2NioZcuWqbe3V9/61rdUV1en48ePy+Vy2V0ebDQ+Pq7HHntMn/zkJ7V69WpJH44zhmFo4cKFCdcyzkCavM9I0he/+EUVFxfL5/Pp9ddf1ze/+U319PTot7/9rY3Vwk7/+Mc/VFVVpStXrigzM1OHDx9WSUmJurq6GGOmadaHcCBZdXV18Z/Xrl0rv9+v4uJi/eY3v9EjjzxiY2UA0tXnP//5+M9r1qzR2rVrddddd+no0aOqrq62sTLYLRAI6PTp0+xNgim7Xp/58pe/HP95zZo18nq9qq6uVm9vr+666y6ry4QDrFq1Sl1dXRoaGtKhQ4fU1NSkY8eO2V1WWpj1y9Hz8vLkcrkm7ObX39+vgoICm6rCTLJw4UKtXLlSZ8+etbsUzADXxhXGHEzH8uXLlZeXx7gzyz366KMKhUJ65ZVXtGTJknh7QUGBotGoBgcHE65nnMH1+sxk/H6/JDHOzGKGYWjFihUqLy9XS0uLSktL9YMf/IAxJgVmfQg3DEPl5eVqb2+Pt42Pj6u9vV1VVVU2VoaZIhKJqLe3V16v1+5SMAMsW7ZMBQUFCWPO8PCwXnvtNcYcTNm///1vvf/++4w7s5Rpmnr00Ud1+PBh/elPf9KyZcsSPi8vL9fcuXMTxpmenh6dP3+ecWaWulmfmUxXV5ckMc4gbnx8XGNjY4wxKcBydEnNzc1qamrSunXrVFlZqdbWVo2OjmrLli12lwYH2rFjhzZt2qTi4mJduHBBu3fvlsvl0he+8AW7S4NDRCKRhJmDc+fOqaurS7m5uSoqKtJjjz2mb3/72/rEJz6hZcuW6emnn5bP51NDQ4N9RcNWN+ozubm52rNnjx588EEVFBSot7dXTz75pFasWKHa2lobq4ZdAoGADhw4oBdffFFZWVnxZzBzcnI0f/585eTk6JFHHlFzc7Nyc3OVnZ2t7du3q6qqSuvXr7e5etjhZn2mt7dXBw4c0Gc/+1ktWrRIr7/+uh5//HHde++9Wrt2rc3Vww47d+5UXV2dioqKNDIyogMHDujo0aP6wx/+wBiTCnZvz+4UP/rRj8yioiLTMAyzsrLSfPXVV+0uCQ61efNm0+v1moZhmB//+MfNzZs3m2fPnrW7LDjIK6+8Ykqa8GpqajJN88Njyp5++mkzPz/fdLvdZnV1tdnT02Nv0bDVjfrMpUuXzPvvv9+88847zblz55rFxcXmtm3bzL6+PrvLhk0m6yuSzJ///Ofxay5fvmx+7WtfMz0ej7lgwQLzc5/7nBkOh+0rGra6WZ85f/68ee+995q5ubmm2+02V6xYYT7xxBPm0NCQvYXDNlu3bjWLi4tNwzDMO++806yurjaPHDkS/5wxZnoyTNM0rQz9AAAAAADMVrP+mXAAAAAAAKxCCAcAAAAAwCKEcAAAAAAALEIIBwAAAADAIoRwAAAAAAAsQggHAAAAAMAihHAAAAAAACxCCAcAAAAAwCKEcAAAAAAALEIIBwAAAADAIoRwAAAAAAAs8n+DSth2QatXHwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from matplotlib import pyplot as plt\n", + "from gfloat import decode_ndarray\n", + "\n", + "plt.figure(figsize=(12, 6))\n", + "code = np.arange(0, 2**6)\n", + "for fi in (\n", + " format_info_ocp_e3m2,\n", + " format_info_ocp_e2m3,\n", + " *(format_info_p3109(6, p, Domain.Finite) for p in range(1, 6)),\n", + "):\n", + " val = decode_ndarray(fi, code)\n", + " valid = (val > 0) & np.isfinite(val)\n", + " subnormal = val < fi.smallest_normal\n", + " if \"ocp\" in str(fi):\n", + " nsty = dict(marker=\"o\", markersize=5, linestyle=\"None\")\n", + " snsty = dict(marker=\"o\", markersize=5, linestyle=\"None\", markerfacecolor=\"none\")\n", + " else:\n", + " nsty = dict(marker=\"s\", markersize=3.5, linestyle=\"None\")\n", + " snsty = dict(marker=\"s\", markersize=3.5, linestyle=\"None\", markerfacecolor=\"none\")\n", + " (p,) = plt.plot(\n", + " code[valid & ~subnormal], val[valid & ~subnormal], label=fi.name, **nsty\n", + " )\n", + " (hsub,) = plt.plot(\n", + " code[valid & subnormal],\n", + " val[valid & subnormal],\n", + " label=None,\n", + " color=p.get_color(),\n", + " **snsty,\n", + " )\n", + "\n", + "plt.plot(np.nan, np.nan, label=\"Subnormal values\", color=\"k\", **snsty)\n", + "plt.yscale(\"log\")\n", + "plt.legend()\n", + "None # suppress output" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Additional format info: special values, min, max, dynamic range\n", + "\n", + "In addition, `FormatInfo` can tell us about other characteristics of each format.\n", + "To reproduce some of the OCP spec's tables 1 and 2:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Format ocp_e4m3 ocp_e5m2 p3109_k8p3es\n", + "Exponent bias 7 15 16\n", + "Infinities 0 2 2\n", + "Number of NaNs 2 6 1\n", + "Number of zeros 2 2 1\n", + "Max exponent (emax) 8 15 15\n", + "Max normal number 448.0 57344.0 49152.0\n", + "Min normal number 0.015625 6.103515625e-05 3.0517578125e-05\n", + "Min subnormal number 0.001953125 1.52587890625e-05 7.62939453125e-06\n", + "Dynamic range (binades) 18 32 33\n" + ] + } + ], + "source": [ + "def compute_dynamic_range(fi):\n", + " return np.log2(fi.max / fi.smallest)\n", + "\n", + "\n", + "for prop, probe in (\n", + " (\"Format \", lambda fi: fi.name.replace(\"format_info_\", \"\")),\n", + " (\"Exponent bias \", lambda fi: fi.bias),\n", + " (\"Infinities \", lambda fi: 2 * fi.num_posinfs),\n", + " (\"Number of NaNs \", lambda fi: fi.num_nans),\n", + " (\"Number of zeros \", lambda fi: int(fi.has_zero) + int(fi.has_nz)),\n", + " (\"Max exponent (emax) \", lambda fi: fi.emax),\n", + " (\"Max normal number \", lambda fi: fi.max),\n", + " (\"Min normal number \", lambda fi: fi.smallest_normal),\n", + " (\"Min subnormal number \", lambda fi: fi.smallest_subnormal),\n", + " (\"Dynamic range (binades)\", lambda x: round(compute_dynamic_range(x))),\n", + "):\n", + " print(\n", + " prop,\n", + " f\"{probe(format_info_ocp_e4m3):<20}\",\n", + " f\"{probe(format_info_ocp_e5m2):<20}\",\n", + " f\"{probe(format_info_p3109(8, 3))}\",\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## How do subnormals affect dynamic range?\n", + "\n", + "Most, if not all, low-precision formats include subnormal numbers, as they increase the number of values near zero, and increase dynamic range.\n", + "A natural question is \"by how much?\". To answer this, we can create a mythical new format, a copy of `e4m3`, but with `has_subnormals` set to true." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "import copy\n", + "\n", + "e4m3_no_subnormals = copy.copy(format_info_ocp_e4m3)\n", + "e4m3_no_subnormals.has_subnormals = False" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "And now compute the dynamic range with and without:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Dynamic range with subnormals = 17.807354922057606\n", + "Dynamic range without subnormals = 15.637429920615292\n", + "Ratio = 4.5\n" + ] + } + ], + "source": [ + "dr_with = compute_dynamic_range(format_info_ocp_e4m3)\n", + "dr_without = compute_dynamic_range(e4m3_no_subnormals)\n", + "\n", + "print(f\"Dynamic range with subnormals = {dr_with}\")\n", + "print(f\"Dynamic range without subnormals = {dr_without}\")\n", + "print(f\"Ratio = {2**(dr_with - dr_without):.1f}\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "gfloat", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" } - ], - "source": [ - "dr_with = compute_dynamic_range(format_info_ocp_e4m3)\n", - "dr_without = compute_dynamic_range(e4m3_no_subnormals)\n", - "\n", - "print(f\"Dynamic range with subnormals = {dr_with}\")\n", - "print(f\"Dynamic range without subnormals = {dr_without}\")\n", - "print(f\"Ratio = {2**(dr_with - dr_without):.1f}\")" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "gfloat", - "language": "python", - "name": "python3" }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.12.3" - } - }, - "nbformat": 4, - "nbformat_minor": 2 + "nbformat": 4, + "nbformat_minor": 2 } diff --git a/docs/source/02-value-stats.ipynb b/docs/source/02-value-stats.ipynb index 0abc09a..73030b6 100644 --- a/docs/source/02-value-stats.ipynb +++ b/docs/source/02-value-stats.ipynb @@ -63,15 +63,15 @@ " 0\n", " \n", " \n", - " p3109_4p2\n", + " p3109_k4p2fs\n", " 4\n", " 2\n", " 2\n", " 0.25\n", " 0.5\n", - " 2\n", + " 3\n", " 1\n", - " 2\n", + " 0\n", " \n", " \n", " ocp_e2m3\n", @@ -96,26 +96,26 @@ " 0\n", " \n", " \n", - " p3109_6p3\n", + " p3109_k6p3fs\n", " 6\n", " 3\n", " 3\n", " 0.03125\n", " 0.125\n", - " 12\n", + " 14\n", " 1\n", - " 2\n", + " 0\n", " \n", " \n", - " p3109_6p4\n", + " p3109_k6p4fs\n", " 6\n", " 4\n", " 2\n", " 0.0625\n", " 0.5\n", - " 3.5\n", + " 3.75\n", " 1\n", - " 2\n", + " 0\n", " \n", " \n", " ocp_e4m3\n", @@ -140,137 +140,203 @@ " 2\n", " \n", " \n", - " p3109_8p1\n", + " p3109_k8p1es\n", " 8\n", " 1\n", " 7\n", - " ≈2.1684e-19\n", - " ≈2.1684e-19\n", - " ≈9.2234e+18\n", + " ≈1.0842e-19\n", + " ≈1.0842e-19\n", + " ≈4.6117e+18\n", " 1\n", " 2\n", " \n", " \n", - " p3109_8p2\n", + " p3109_k8p1fs\n", " 8\n", - " 2\n", - " 6\n", - " ≈2.3283e-10\n", - " ≈4.6566e-10\n", - " ≈2.1475e+09\n", + " 1\n", + " 7\n", + " ≈1.0842e-19\n", + " ≈1.0842e-19\n", + " ≈9.2234e+18\n", " 1\n", - " 2\n", + " 0\n", " \n", " \n", - " p3109_8p3\n", + " p3109_k8p1eu\n", " 8\n", - " 3\n", - " 5\n", - " ≈7.6294e-06\n", - " ≈3.0518e-05\n", - " 49152\n", + " 1\n", + " 8\n", + " ≈5.8775e-39\n", + " ≈5.8775e-39\n", + " ≈4.2535e+37\n", " 1\n", - " 2\n", + " 1\n", " \n", " \n", - " p3109_8p4\n", + " p3109_k8p1fu\n", " 8\n", - " 4\n", - " 4\n", - " ≈0.00097656\n", - " 0.0078125\n", - " 224\n", + " 1\n", + " 8\n", + " ≈5.8775e-39\n", + " ≈5.8775e-39\n", + " ≈8.5071e+37\n", " 1\n", - " 2\n", + " 0\n", " \n", " \n", - " p3109_8p5\n", + " p3109_k8p3es\n", " 8\n", - " 5\n", - " 3\n", - " 0.0078125\n", - " 0.125\n", - " 15\n", + " 3\n", + " 5\n", + " ≈7.6294e-06\n", + " ≈3.0518e-05\n", + " 49152\n", " 1\n", " 2\n", " \n", " \n", - " p3109_8p6\n", + " p3109_k8p3fs\n", " 8\n", - " 6\n", - " 2\n", - " 0.015625\n", - " 0.5\n", - " 3.875\n", + " 3\n", + " 5\n", + " ≈7.6294e-06\n", + " ≈3.0518e-05\n", + " 57344\n", " 1\n", - " 2\n", - " \n", - " \n", - " binary16\n", - " 16\n", - " 11\n", - " 5\n", - " ≈5.9605e-08\n", - " ≈6.1035e-05\n", - " 65504\n", - " 2046\n", - " 2\n", - " \n", - " \n", - " bfloat16\n", - " 16\n", - " 8\n", - " 8\n", - " ≈9.1835e-41\n", - " ≈1.1755e-38\n", - " ≈3.3895e+38\n", - " 254\n", - " 2\n", - " \n", - " \n", - " binary32\n", - " 32\n", - " 24\n", - " 8\n", - " ≈1.4013e-45\n", - " ≈1.1755e-38\n", - " ≈3.4028e+38\n", - " ≈1.6777e+07\n", + " 0\n", + " \n", + " \n", + " p3109_k8p3eu\n", + " 8\n", + " 3\n", + " 6\n", + " ≈1.1642e-10\n", + " ≈4.6566e-10\n", + " ≈2.6844e+09\n", + " 1\n", + " 1\n", + " \n", + " \n", + " p3109_k8p3fu\n", + " 8\n", + " 3\n", + " 6\n", + " ≈1.1642e-10\n", + " ≈4.6566e-10\n", + " ≈3.2212e+09\n", + " 1\n", + " 0\n", + " \n", + " \n", + " p3109_k8p4es\n", + " 8\n", + " 4\n", + " 4\n", + " ≈0.00097656\n", + " 0.0078125\n", + " 224\n", + " 1\n", " 2\n", " \n", " \n", - " binary64\n", - " 64\n", - " 53\n", - " 11\n", - " 4.9407e-324\n", - " ≈2.2251e-308\n", - " ≈1.7977e+308\n", - " ≈9.0072e+15\n", - " 2\n", + " p3109_k8p4fs\n", + " 8\n", + " 4\n", + " 4\n", + " ≈0.00097656\n", + " 0.0078125\n", + " 240\n", + " 1\n", + " 0\n", " \n", " \n", - " ocp_e8m0\n", + " p3109_k8p4eu\n", " 8\n", - " 1\n", - " 8\n", - " ≈5.8775e-39\n", - " ≈5.8775e-39\n", - " ≈1.7014e+38\n", + " 4\n", + " 5\n", + " ≈3.8147e-06\n", + " ≈3.0518e-05\n", + " 53248\n", " 1\n", - " 0\n", + " 1\n", " \n", " \n", - " ocp_int8\n", + " p3109_k8p4fu\n", " 8\n", - " 8\n", - " 0\n", - " 0.015625\n", - " n/a\n", - " ≈ 1.9844\n", - " 0\n", + " 4\n", + " 5\n", + " ≈3.8147e-06\n", + " ≈3.0518e-05\n", + " 57344\n", + " 1\n", " 0\n", " \n", + " \n", + " binary16\n", + " 16\n", + " 11\n", + " 5\n", + " ≈5.9605e-08\n", + " ≈6.1035e-05\n", + " 65504\n", + " 2046\n", + " 2\n", + " \n", + " \n", + " bfloat16\n", + " 16\n", + " 8\n", + " 8\n", + " ≈9.1835e-41\n", + " ≈1.1755e-38\n", + " ≈3.3895e+38\n", + " 254\n", + " 2\n", + " \n", + " \n", + " binary32\n", + " 32\n", + " 24\n", + " 8\n", + " ≈1.4013e-45\n", + " ≈1.1755e-38\n", + " ≈3.4028e+38\n", + " ≈1.6777e+07\n", + " 2\n", + " \n", + " \n", + " binary64\n", + " 64\n", + " 53\n", + " 11\n", + " 4.9407e-324\n", + " ≈2.2251e-308\n", + " ≈1.7977e+308\n", + " ≈9.0072e+15\n", + " 2\n", + " \n", + " \n", + " ocp_e8m0\n", + " 8\n", + " 1\n", + " 8\n", + " ≈5.8775e-39\n", + " ≈5.8775e-39\n", + " ≈1.7014e+38\n", + " 1\n", + " 0\n", + " \n", + " \n", + " ocp_int8\n", + " 8\n", + " 8\n", + " 0\n", + " 0.015625\n", + " n/a\n", + " ≈ 1.9844\n", + " 0\n", + " 0\n", + " \n", " \n", "\n" ], @@ -323,7 +389,7 @@ " smallest_normal=fi.smallest_normal if not fi.is_all_subnormal else np.nan,\n", " max=fi.max,\n", " num_nans=float(fi.num_nans),\n", - " infs=2 if fi.has_infs else 0,\n", + " infs=fi.num_infs,\n", " )\n", "\n", "\n", @@ -364,12 +430,13 @@ " P\n", " E\n", " rt16\n", - " lt1\n", - " gt1\n", - " minSubnormal\n", - " maxSubnormal\n", - " minNormal\n", - " maxNormal\n", + " rt32\n", + " lt1\n", + " gt1\n", + " minSubnormal\n", + " maxSubnormal\n", + " minNormal\n", + " maxNormal\n", " \n", " \n", " \n", @@ -379,25 +446,27 @@ " 2\n", " 2\n", " True\n", - " 1\n", - " 5\n", - " 0.5\n", + " True\n", + " 1\n", + " 5\n", " 0.5\n", - " 1\n", - " 6\n", + " 0.5\n", + " 1\n", + " 6\n", " \n", " \n", - " p3109_4p2\n", + " p3109_k4p2fs\n", " 4\n", " 2\n", " 2\n", " True\n", - " 3\n", - " 2\n", - " 0.25\n", + " True\n", + " 3\n", + " 3\n", " 0.25\n", - " 0.5\n", - " 2\n", + " 0.25\n", + " 0.5\n", + " 3\n", " \n", " \n", " ocp_e2m3\n", @@ -405,12 +474,13 @@ " 4\n", " 2\n", " True\n", - " 7\n", - " 23\n", - " 0.125\n", - " 0.875\n", - " 1\n", - " 7.5\n", + " True\n", + " 7\n", + " 23\n", + " 0.125\n", + " 0.875\n", + " 1\n", + " 7.5\n", " \n", " \n", " ocp_e3m2\n", @@ -418,38 +488,41 @@ " 3\n", " 3\n", " True\n", - " 11\n", - " 19\n", - " 0.0625\n", - " 0.1875\n", - " 0.25\n", - " 28\n", + " True\n", + " 11\n", + " 19\n", + " 0.0625\n", + " 0.1875\n", + " 0.25\n", + " 28\n", " \n", " \n", - " p3109_6p3\n", + " p3109_k6p3fs\n", " 6\n", " 3\n", " 3\n", " True\n", - " 15\n", - " 14\n", - " 0.03125\n", - " 0.09375\n", - " 0.125\n", - " 12\n", + " True\n", + " 15\n", + " 15\n", + " 0.03125\n", + " 0.09375\n", + " 0.125\n", + " 14\n", " \n", " \n", - " p3109_6p4\n", + " p3109_k6p4fs\n", " 6\n", " 4\n", " 2\n", " True\n", - " 15\n", - " 14\n", - " 0.0625\n", - " 0.4375\n", - " 0.5\n", - " 3.5\n", + " True\n", + " 15\n", + " 15\n", + " 0.0625\n", + " 0.4375\n", + " 0.5\n", + " 3.75\n", " \n", " \n", " ocp_e4m3\n", @@ -457,12 +530,13 @@ " 4\n", " 4\n", " True\n", - " 55\n", - " 70\n", - " ≈0.0019531\n", - " ≈0.013672\n", - " 0.015625\n", - " 448\n", + " True\n", + " 55\n", + " 70\n", + " ≈0.0019531\n", + " ≈0.013672\n", + " 0.015625\n", + " 448\n", " \n", " \n", " ocp_e5m2\n", @@ -470,142 +544,237 @@ " 3\n", " 5\n", " True\n", - " 59\n", - " 63\n", - " ≈1.5259e-05\n", - " ≈4.5776e-05\n", - " ≈6.1035e-05\n", - " 57344\n", + " True\n", + " 59\n", + " 63\n", + " ≈1.5259e-05\n", + " ≈4.5776e-05\n", + " ≈6.1035e-05\n", + " 57344\n", " \n", " \n", - " p3109_8p1\n", + " p3109_k8p1es\n", " 8\n", " 1\n", " 7\n", " False\n", - " 62\n", + " True\n", " 63\n", - " n/a\n", + " 62\n", " n/a\n", - " ≈2.1684e-19\n", - " ≈9.2234e+18\n", + " n/a\n", + " ≈1.0842e-19\n", + " ≈4.6117e+18\n", " \n", " \n", - " p3109_8p2\n", + " p3109_k8p1fs\n", " 8\n", - " 2\n", - " 6\n", + " 1\n", + " 7\n", " False\n", - " 63\n", - " 62\n", - " ≈2.3283e-10\n", - " ≈2.3283e-10\n", - " ≈4.6566e-10\n", - " ≈2.1475e+09\n", + " True\n", + " 63\n", + " 63\n", + " n/a\n", + " n/a\n", + " ≈1.0842e-19\n", + " ≈9.2234e+18\n", " \n", " \n", - " p3109_8p3\n", + " p3109_k8p1eu\n", " 8\n", - " 3\n", - " 5\n", - " True\n", - " 63\n", - " 62\n", - " ≈7.6294e-06\n", - " ≈2.2888e-05\n", - " ≈3.0518e-05\n", - " 49152\n", - " \n", - " \n", - " p3109_8p4\n", + " 1\n", + " 8\n", + " False\n", + " True\n", + " 127\n", + " 125\n", + " n/a\n", + " n/a\n", + " ≈5.8775e-39\n", + " ≈4.2535e+37\n", + " \n", + " \n", + " p3109_k8p1fu\n", " 8\n", - " 4\n", - " 4\n", - " True\n", - " 63\n", - " 62\n", - " ≈0.00097656\n", - " ≈0.0068359\n", - " 0.0078125\n", - " 224\n", - " \n", - " \n", - " p3109_8p5\n", + " 1\n", + " 8\n", + " False\n", + " True\n", + " 127\n", + " 126\n", + " n/a\n", + " n/a\n", + " ≈5.8775e-39\n", + " ≈8.5071e+37\n", + " \n", + " \n", + " p3109_k8p3es\n", " 8\n", - " 5\n", - " 3\n", + " 3\n", + " 5\n", " True\n", - " 63\n", - " 62\n", - " 0.0078125\n", - " ≈ 0.11719\n", - " 0.125\n", - " 15\n", + " True\n", + " 63\n", + " 62\n", + " ≈7.6294e-06\n", + " ≈2.2888e-05\n", + " ≈3.0518e-05\n", + " 49152\n", " \n", " \n", - " p3109_8p6\n", + " p3109_k8p3fs\n", " 8\n", - " 6\n", - " 2\n", + " 3\n", + " 5\n", " True\n", - " 63\n", - " 62\n", - " 0.015625\n", - " ≈ 0.48438\n", - " 0.5\n", - " 3.875\n", - " \n", - " \n", - " binary16\n", - " 16\n", - " 11\n", - " 5\n", - " True\n", - " 15359\n", - " 16383\n", - " ≈5.9605e-08\n", - " ≈6.0976e-05\n", - " ≈6.1035e-05\n", - " 65504\n", - " \n", - " \n", - " bfloat16\n", - " 16\n", - " 8\n", - " 8\n", + " True\n", + " 63\n", + " 63\n", + " ≈7.6294e-06\n", + " ≈2.2888e-05\n", + " ≈3.0518e-05\n", + " 57344\n", + " \n", + " \n", + " p3109_k8p3eu\n", + " 8\n", + " 3\n", + " 6\n", + " False\n", + " True\n", + " 127\n", + " 125\n", + " ≈1.1642e-10\n", + " ≈3.4925e-10\n", + " ≈4.6566e-10\n", + " ≈2.6844e+09\n", + " \n", + " \n", + " p3109_k8p3fu\n", + " 8\n", + " 3\n", + " 6\n", " False\n", - " 16255\n", - " 16383\n", - " ≈9.1835e-41\n", - " ≈1.1663e-38\n", - " ≈1.1755e-38\n", - " ≈3.3895e+38\n", + " True\n", + " 127\n", + " 126\n", + " ≈1.1642e-10\n", + " ≈3.4925e-10\n", + " ≈4.6566e-10\n", + " ≈3.2212e+09\n", " \n", " \n", - " ocp_e8m0\n", + " p3109_k8p4es\n", " 8\n", - " 1\n", - " 8\n", - " False\n", - " 127\n", - " 127\n", - " n/a\n", - " n/a\n", - " ≈5.8775e-39\n", - " ≈1.7014e+38\n", - " \n", - " \n", - " ocp_int8\n", + " 4\n", + " 4\n", + " True\n", + " True\n", + " 63\n", + " 62\n", + " ≈0.00097656\n", + " ≈0.0068359\n", + " 0.0078125\n", + " 224\n", + " \n", + " \n", + " p3109_k8p4fs\n", " 8\n", - " 8\n", - " 0\n", + " 4\n", + " 4\n", " True\n", - " 63\n", + " True\n", " 63\n", - " 0.015625\n", - " ≈ 1.9844\n", - " n/a\n", - " n/a\n", + " 63\n", + " ≈0.00097656\n", + " ≈0.0068359\n", + " 0.0078125\n", + " 240\n", + " \n", + " \n", + " p3109_k8p4eu\n", + " 8\n", + " 4\n", + " 5\n", + " True\n", + " True\n", + " 127\n", + " 125\n", + " ≈3.8147e-06\n", + " ≈2.6703e-05\n", + " ≈3.0518e-05\n", + " 53248\n", + " \n", + " \n", + " p3109_k8p4fu\n", + " 8\n", + " 4\n", + " 5\n", + " True\n", + " True\n", + " 127\n", + " 126\n", + " ≈3.8147e-06\n", + " ≈2.6703e-05\n", + " ≈3.0518e-05\n", + " 57344\n", + " \n", + " \n", + " binary16\n", + " 16\n", + " 11\n", + " 5\n", + " True\n", + " True\n", + " 15359\n", + " 16383\n", + " ≈5.9605e-08\n", + " ≈6.0976e-05\n", + " ≈6.1035e-05\n", + " 65504\n", + " \n", + " \n", + " bfloat16\n", + " 16\n", + " 8\n", + " 8\n", + " False\n", + " True\n", + " 16255\n", + " 16383\n", + " ≈9.1835e-41\n", + " ≈1.1663e-38\n", + " ≈1.1755e-38\n", + " ≈3.3895e+38\n", + " \n", + " \n", + " ocp_e8m0\n", + " 8\n", + " 1\n", + " 8\n", + " False\n", + " True\n", + " 127\n", + " 127\n", + " n/a\n", + " n/a\n", + " ≈5.8775e-39\n", + " ≈1.7014e+38\n", + " \n", + " \n", + " ocp_int8\n", + " 8\n", + " 8\n", + " 0\n", + " True\n", + " True\n", + " 63\n", + " 63\n", + " 0.015625\n", + " ≈ 1.9844\n", + " n/a\n", + " n/a\n", " \n", " \n", "\n" @@ -636,6 +805,7 @@ " minFinite = finite_vals.loc[finite_vals.idxmin()]\n", " assert maxFinite == fi.max\n", " assert minFinite == fi.min\n", + " fi.emax\n", "\n", " # Compute statistics: maxNormal,minNormal\n", " normal_vals = fval[(df[\"fclass\"] == FloatClass.NORMAL) & (fval > 0)]\n", @@ -653,6 +823,7 @@ " pos_subnormal.loc[pos_subnormal.idxmin()] if pos_subnormal.any() else np.nan\n", " )\n", " assert np.isnan(minSubnormal) or minSubnormal == fi.smallest_subnormal\n", + " assert np.isnan(minNormal) or minNormal == fi.smallest_normal\n", "\n", " assert np.nanmin([minSubnormal, minNormal]) == fi.smallest\n", "\n", @@ -663,7 +834,7 @@ "\n", " rt16 = rt16.all()\n", " rt32 = rt32.all()\n", - " assert rt32 # If not, we should include rt32 in the table\n", + " # assert rt32 # If not, we should include rt32 in the table\n", "\n", " # Assemble tuple\n", " return dict(\n", @@ -672,6 +843,7 @@ " P=fi.precision,\n", " E=fi.expBits,\n", " rt16=rt16,\n", + " rt32=rt32,\n", " lt1=total_01,\n", " gt1=total_1Inf,\n", " minSubnormal=minSubnormal,\n", @@ -714,12 +886,13 @@ " P\n", " E\n", " rt16\n", - " lt1\n", - " gt1\n", - " minSubnormal\n", - " maxSubnormal\n", - " minNormal\n", - " maxNormal\n", + " rt32\n", + " lt1\n", + " gt1\n", + " minSubnormal\n", + " maxSubnormal\n", + " minNormal\n", + " maxNormal\n", " \n", " \n", " \n", @@ -729,25 +902,27 @@ " 2\n", " 2\n", " True\n", - " 1\n", - " 5\n", - " 0.5\n", + " True\n", + " 1\n", + " 5\n", " 0.5\n", - " 1\n", - " 6\n", + " 0.5\n", + " 1\n", + " 6\n", " \n", " \n", - " p3109_4p2\n", + " p3109_k4p2fs\n", " 4\n", " 2\n", " 2\n", " True\n", - " 3\n", - " 2\n", - " 0.25\n", + " True\n", + " 3\n", + " 3\n", " 0.25\n", - " 0.5\n", - " 2\n", + " 0.25\n", + " 0.5\n", + " 3\n", " \n", " \n", " ocp_e2m3\n", @@ -755,12 +930,13 @@ " 4\n", " 2\n", " True\n", - " 7\n", - " 23\n", - " 0.125\n", - " 0.875\n", - " 1\n", - " 7.5\n", + " True\n", + " 7\n", + " 23\n", + " 0.125\n", + " 0.875\n", + " 1\n", + " 7.5\n", " \n", " \n", " ocp_e3m2\n", @@ -768,38 +944,41 @@ " 3\n", " 3\n", " True\n", - " 11\n", - " 19\n", - " 0.0625\n", - " 0.1875\n", - " 0.25\n", - " 28\n", + " True\n", + " 11\n", + " 19\n", + " 0.0625\n", + " 0.1875\n", + " 0.25\n", + " 28\n", " \n", " \n", - " p3109_6p3\n", + " p3109_k6p3fs\n", " 6\n", " 3\n", " 3\n", " True\n", - " 15\n", - " 14\n", - " 0.03125\n", - " 0.09375\n", - " 0.125\n", - " 12\n", + " True\n", + " 15\n", + " 15\n", + " 0.03125\n", + " 0.09375\n", + " 0.125\n", + " 14\n", " \n", " \n", - " p3109_6p4\n", + " p3109_k6p4fs\n", " 6\n", " 4\n", " 2\n", " True\n", - " 15\n", - " 14\n", - " 0.0625\n", - " 0.4375\n", - " 0.5\n", - " 3.5\n", + " True\n", + " 15\n", + " 15\n", + " 0.0625\n", + " 0.4375\n", + " 0.5\n", + " 3.75\n", " \n", " \n", " ocp_e4m3\n", @@ -807,12 +986,13 @@ " 4\n", " 4\n", " True\n", - " 55\n", - " 70\n", - " 2^-9\n", - " 7/4*2^-7\n", - " 0.015625\n", - " 448\n", + " True\n", + " 55\n", + " 70\n", + " 2^-9\n", + " 7/4*2^-7\n", + " 0.015625\n", + " 448\n", " \n", " \n", " ocp_e5m2\n", @@ -820,142 +1000,237 @@ " 3\n", " 5\n", " True\n", - " 59\n", - " 63\n", - " 2^-16\n", - " 3/2*2^-15\n", - " 2^-14\n", - " 57344\n", + " True\n", + " 59\n", + " 63\n", + " 2^-16\n", + " 3/2*2^-15\n", + " 2^-14\n", + " 57344\n", " \n", " \n", - " p3109_8p1\n", + " p3109_k8p1es\n", " 8\n", " 1\n", " 7\n", " False\n", - " 62\n", + " True\n", " 63\n", - " n/a\n", + " 62\n", " n/a\n", - " 2^-62\n", - " 2^63\n", + " n/a\n", + " 2^-63\n", + " 2^62\n", " \n", " \n", - " p3109_8p2\n", + " p3109_k8p1fs\n", " 8\n", - " 2\n", - " 6\n", + " 1\n", + " 7\n", " False\n", - " 63\n", - " 62\n", - " 2^-32\n", - " 2^-32\n", - " 2^-31\n", - " 2^31\n", + " True\n", + " 63\n", + " 63\n", + " n/a\n", + " n/a\n", + " 2^-63\n", + " 2^63\n", " \n", " \n", - " p3109_8p3\n", + " p3109_k8p1eu\n", " 8\n", - " 3\n", - " 5\n", - " True\n", - " 63\n", - " 62\n", - " 2^-17\n", - " 3/2*2^-16\n", - " 2^-15\n", - " 49152\n", - " \n", - " \n", - " p3109_8p4\n", + " 1\n", + " 8\n", + " False\n", + " True\n", + " 127\n", + " 125\n", + " n/a\n", + " n/a\n", + " 2^-127\n", + " 2^125\n", + " \n", + " \n", + " p3109_k8p1fu\n", " 8\n", - " 4\n", - " 4\n", - " True\n", - " 63\n", - " 62\n", - " 2^-10\n", - " 7/4*2^-8\n", - " 0.0078125\n", - " 224\n", - " \n", - " \n", - " p3109_8p5\n", + " 1\n", + " 8\n", + " False\n", + " True\n", + " 127\n", + " 126\n", + " n/a\n", + " n/a\n", + " 2^-127\n", + " 2^126\n", + " \n", + " \n", + " p3109_k8p3es\n", " 8\n", - " 5\n", - " 3\n", + " 3\n", + " 5\n", " True\n", - " 63\n", - " 62\n", - " 0.0078125\n", - " 15/8*2^-4\n", - " 0.125\n", - " 15\n", + " True\n", + " 63\n", + " 62\n", + " 2^-17\n", + " 3/2*2^-16\n", + " 2^-15\n", + " 49152\n", " \n", " \n", - " p3109_8p6\n", + " p3109_k8p3fs\n", " 8\n", - " 6\n", - " 2\n", + " 3\n", + " 5\n", " True\n", - " 63\n", - " 62\n", - " 0.015625\n", - " 31/16*2^-2\n", - " 0.5\n", - " 3.875\n", - " \n", - " \n", - " binary16\n", - " 16\n", - " 11\n", - " 5\n", - " True\n", - " 15359\n", - " 16383\n", - " 2^-24\n", - " 1023/512*2^-15\n", - " 2^-14\n", - " 65504\n", - " \n", - " \n", - " bfloat16\n", - " 16\n", - " 8\n", - " 8\n", + " True\n", + " 63\n", + " 63\n", + " 2^-17\n", + " 3/2*2^-16\n", + " 2^-15\n", + " 57344\n", + " \n", + " \n", + " p3109_k8p3eu\n", + " 8\n", + " 3\n", + " 6\n", + " False\n", + " True\n", + " 127\n", + " 125\n", + " 2^-33\n", + " 3/2*2^-32\n", + " 2^-31\n", + " 5/4*2^31\n", + " \n", + " \n", + " p3109_k8p3fu\n", + " 8\n", + " 3\n", + " 6\n", " False\n", - " 16255\n", - " 16383\n", - " 2^-133\n", - " 127/64*2^-127\n", - " 2^-126\n", - " 255/128*2^127\n", + " True\n", + " 127\n", + " 126\n", + " 2^-33\n", + " 3/2*2^-32\n", + " 2^-31\n", + " 3/2*2^31\n", " \n", " \n", - " ocp_e8m0\n", + " p3109_k8p4es\n", " 8\n", - " 1\n", - " 8\n", - " False\n", - " 127\n", - " 127\n", - " n/a\n", - " n/a\n", - " 2^-127\n", - " 2^127\n", - " \n", - " \n", - " ocp_int8\n", + " 4\n", + " 4\n", + " True\n", + " True\n", + " 63\n", + " 62\n", + " 2^-10\n", + " 7/4*2^-8\n", + " 0.0078125\n", + " 224\n", + " \n", + " \n", + " p3109_k8p4fs\n", " 8\n", - " 8\n", - " 0\n", + " 4\n", + " 4\n", " True\n", - " 63\n", + " True\n", " 63\n", - " 0.015625\n", - " 127/64*2^0\n", - " n/a\n", - " n/a\n", + " 63\n", + " 2^-10\n", + " 7/4*2^-8\n", + " 0.0078125\n", + " 240\n", + " \n", + " \n", + " p3109_k8p4eu\n", + " 8\n", + " 4\n", + " 5\n", + " True\n", + " True\n", + " 127\n", + " 125\n", + " 2^-18\n", + " 7/4*2^-16\n", + " 2^-15\n", + " 53248\n", + " \n", + " \n", + " p3109_k8p4fu\n", + " 8\n", + " 4\n", + " 5\n", + " True\n", + " True\n", + " 127\n", + " 126\n", + " 2^-18\n", + " 7/4*2^-16\n", + " 2^-15\n", + " 57344\n", + " \n", + " \n", + " binary16\n", + " 16\n", + " 11\n", + " 5\n", + " True\n", + " True\n", + " 15359\n", + " 16383\n", + " 2^-24\n", + " 1023/512*2^-15\n", + " 2^-14\n", + " 65504\n", + " \n", + " \n", + " bfloat16\n", + " 16\n", + " 8\n", + " 8\n", + " False\n", + " True\n", + " 16255\n", + " 16383\n", + " 2^-133\n", + " 127/64*2^-127\n", + " 2^-126\n", + " 255/128*2^127\n", + " \n", + " \n", + " ocp_e8m0\n", + " 8\n", + " 1\n", + " 8\n", + " False\n", + " True\n", + " 127\n", + " 127\n", + " n/a\n", + " n/a\n", + " 2^-127\n", + " 2^127\n", + " \n", + " \n", + " ocp_int8\n", + " 8\n", + " 8\n", + " 0\n", + " True\n", + " True\n", + " 63\n", + " 63\n", + " 0.015625\n", + " 127/64*2^0\n", + " n/a\n", + " n/a\n", " \n", " \n", "\n" @@ -973,6 +1248,66 @@ "D(df2, format=partial(render_float, False))" ] }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(448, True)" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "count_p3109_formats = len(\n", + " [\n", + " 1\n", + " for signedness in (True, False)\n", + " for domain in (Domain.Extended, Domain.Finite)\n", + " for k in range(2, 16)\n", + " for p in range(1, k if signedness else k + 1)\n", + " ]\n", + ")\n", + "count_p3109_formats, count_p3109_formats == format_info_ocp_e4m3.max" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "np.True_" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "all_p3109 = [\n", + " format_info_p3109(k, p, domain, signedness)\n", + " for signedness in (True, False)\n", + " for domain in (Domain.Extended, Domain.Finite)\n", + " for k in range(3, 8)\n", + " for p in range(1, k if signedness else k + 1)\n", + "]\n", + "\n", + "stats = [compute_stats(fi) for fi in all_p3109]\n", + "df2 = pandas.DataFrame(stats)\n", + "df2[\"rt32\"].all()\n", + "# D(df2, format=partial(render_float, True))" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -985,37 +1320,43 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "========= === === === =========== ================= ============ =========== ======\n", - "name B P E smallest smallest_normal max num_nans infs\n", - "========= === === === =========== ================= ============ =========== ======\n", - "ocp_e2m1 4 2 2 0.5 1 6 0 0\n", - "p3109_4p2 4 2 2 0.25 0.5 2 1 2\n", - "ocp_e2m3 6 4 2 0.125 1 7.5 0 0\n", - "ocp_e3m2 6 3 3 0.0625 0.25 28 0 0\n", - "p3109_6p3 6 3 3 0.03125 0.125 12 1 2\n", - "p3109_6p4 6 4 2 0.0625 0.5 3.5 1 2\n", - "ocp_e4m3 8 4 4 ≈0.0019531 0.015625 448 2 0\n", - "ocp_e5m2 8 3 5 ≈1.5259e-05 ≈6.1035e-05 57344 6 2\n", - "p3109_8p1 8 1 7 ≈2.1684e-19 ≈2.1684e-19 ≈9.2234e+18 1 2\n", - "p3109_8p2 8 2 6 ≈2.3283e-10 ≈4.6566e-10 ≈2.1475e+09 1 2\n", - "p3109_8p3 8 3 5 ≈7.6294e-06 ≈3.0518e-05 49152 1 2\n", - "p3109_8p4 8 4 4 ≈0.00097656 0.0078125 224 1 2\n", - "p3109_8p5 8 5 3 0.0078125 0.125 15 1 2\n", - "p3109_8p6 8 6 2 0.015625 0.5 3.875 1 2\n", - "binary16 16 11 5 ≈5.9605e-08 ≈6.1035e-05 65504 2046 2\n", - "bfloat16 16 8 8 ≈9.1835e-41 ≈1.1755e-38 ≈3.3895e+38 254 2\n", - "binary32 32 24 8 ≈1.4013e-45 ≈1.1755e-38 ≈3.4028e+38 ≈1.6777e+07 2\n", - "binary64 64 53 11 4.9407e-324 ≈2.2251e-308 ≈1.7977e+308 ≈9.0072e+15 2\n", - "ocp_e8m0 8 1 8 ≈5.8775e-39 ≈5.8775e-39 ≈1.7014e+38 1 0\n", - "ocp_int8 8 8 0 0.015625 n/a ≈ 1.9844 0 0\n", - "========= === === === =========== ================= ============ =========== ======\n" + "============ === === === =========== ================= ============ =========== ======\n", + "name B P E smallest smallest_normal max num_nans infs\n", + "============ === === === =========== ================= ============ =========== ======\n", + "ocp_e2m1 4 2 2 0.5 1 6 0 0\n", + "p3109_k4p2fs 4 2 2 0.25 0.5 3 1 0\n", + "ocp_e2m3 6 4 2 0.125 1 7.5 0 0\n", + "ocp_e3m2 6 3 3 0.0625 0.25 28 0 0\n", + "p3109_k6p3fs 6 3 3 0.03125 0.125 14 1 0\n", + "p3109_k6p4fs 6 4 2 0.0625 0.5 3.75 1 0\n", + "ocp_e4m3 8 4 4 ≈0.0019531 0.015625 448 2 0\n", + "ocp_e5m2 8 3 5 ≈1.5259e-05 ≈6.1035e-05 57344 6 2\n", + "p3109_k8p1es 8 1 7 ≈1.0842e-19 ≈1.0842e-19 ≈4.6117e+18 1 2\n", + "p3109_k8p1fs 8 1 7 ≈1.0842e-19 ≈1.0842e-19 ≈9.2234e+18 1 0\n", + "p3109_k8p1eu 8 1 8 ≈5.8775e-39 ≈5.8775e-39 ≈4.2535e+37 1 1\n", + "p3109_k8p1fu 8 1 8 ≈5.8775e-39 ≈5.8775e-39 ≈8.5071e+37 1 0\n", + "p3109_k8p3es 8 3 5 ≈7.6294e-06 ≈3.0518e-05 49152 1 2\n", + "p3109_k8p3fs 8 3 5 ≈7.6294e-06 ≈3.0518e-05 57344 1 0\n", + "p3109_k8p3eu 8 3 6 ≈1.1642e-10 ≈4.6566e-10 ≈2.6844e+09 1 1\n", + "p3109_k8p3fu 8 3 6 ≈1.1642e-10 ≈4.6566e-10 ≈3.2212e+09 1 0\n", + "p3109_k8p4es 8 4 4 ≈0.00097656 0.0078125 224 1 2\n", + "p3109_k8p4fs 8 4 4 ≈0.00097656 0.0078125 240 1 0\n", + "p3109_k8p4eu 8 4 5 ≈3.8147e-06 ≈3.0518e-05 53248 1 1\n", + "p3109_k8p4fu 8 4 5 ≈3.8147e-06 ≈3.0518e-05 57344 1 0\n", + "binary16 16 11 5 ≈5.9605e-08 ≈6.1035e-05 65504 2046 2\n", + "bfloat16 16 8 8 ≈9.1835e-41 ≈1.1755e-38 ≈3.3895e+38 254 2\n", + "binary32 32 24 8 ≈1.4013e-45 ≈1.1755e-38 ≈3.4028e+38 ≈1.6777e+07 2\n", + "binary64 64 53 11 4.9407e-324 ≈2.2251e-308 ≈1.7977e+308 ≈9.0072e+15 2\n", + "ocp_e8m0 8 1 8 ≈5.8775e-39 ≈5.8775e-39 ≈1.7014e+38 1 0\n", + "ocp_int8 8 8 0 0.015625 n/a ≈ 1.9844 0 0\n", + "============ === === === =========== ================= ============ =========== ======\n" ] } ], @@ -1030,37 +1371,43 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "========= === === === =========== ================= ======================================== ====================================== ======\n", - "name B P E smallest smallest_normal max num_nans infs\n", - "========= === === === =========== ================= ======================================== ====================================== ======\n", - "ocp_e2m1 4 2 2 0.5 1 6 0 0\n", - "p3109_4p2 4 2 2 0.25 0.5 2 1 2\n", - "ocp_e2m3 6 4 2 0.125 1 7.5 0 0\n", - "ocp_e3m2 6 3 3 0.0625 0.25 28 0 0\n", - "p3109_6p3 6 3 3 0.03125 0.125 12 1 2\n", - "p3109_6p4 6 4 2 0.0625 0.5 3.5 1 2\n", - "ocp_e4m3 8 4 4 2^-9 0.015625 448 2 0\n", - "ocp_e5m2 8 3 5 2^-16 2^-14 57344 6 2\n", - "p3109_8p1 8 1 7 2^-62 2^-62 2^63 1 2\n", - "p3109_8p2 8 2 6 2^-32 2^-31 2^31 1 2\n", - "p3109_8p3 8 3 5 2^-17 2^-15 49152 1 2\n", - "p3109_8p4 8 4 4 2^-10 0.0078125 224 1 2\n", - "p3109_8p5 8 5 3 0.0078125 0.125 15 1 2\n", - "p3109_8p6 8 6 2 0.015625 0.5 3.875 1 2\n", - "binary16 16 11 5 2^-24 2^-14 65504 2046 2\n", - "bfloat16 16 8 8 2^-133 2^-126 255/128*2^127 254 2\n", - "binary32 32 24 8 2^-149 2^-126 16777215/8388608*2^127 8388607/4194304*2^23 2\n", - "binary64 64 53 11 4.9407e-324 2^-1022 9007199254740991/9007199254740992*2^1024 4503599627370495/4503599627370496*2^53 2\n", - "ocp_e8m0 8 1 8 2^-127 2^-127 2^127 1 0\n", - "ocp_int8 8 8 0 0.015625 n/a 127/64*2^0 0 0\n", - "========= === === === =========== ================= ======================================== ====================================== ======\n" + "============ === === === =========== ================= ======================================== ====================================== ======\n", + "name B P E smallest smallest_normal max num_nans infs\n", + "============ === === === =========== ================= ======================================== ====================================== ======\n", + "ocp_e2m1 4 2 2 0.5 1 6 0 0\n", + "p3109_k4p2fs 4 2 2 0.25 0.5 3 1 0\n", + "ocp_e2m3 6 4 2 0.125 1 7.5 0 0\n", + "ocp_e3m2 6 3 3 0.0625 0.25 28 0 0\n", + "p3109_k6p3fs 6 3 3 0.03125 0.125 14 1 0\n", + "p3109_k6p4fs 6 4 2 0.0625 0.5 3.75 1 0\n", + "ocp_e4m3 8 4 4 2^-9 0.015625 448 2 0\n", + "ocp_e5m2 8 3 5 2^-16 2^-14 57344 6 2\n", + "p3109_k8p1es 8 1 7 2^-63 2^-63 2^62 1 2\n", + "p3109_k8p1fs 8 1 7 2^-63 2^-63 2^63 1 0\n", + "p3109_k8p1eu 8 1 8 2^-127 2^-127 2^125 1 1\n", + "p3109_k8p1fu 8 1 8 2^-127 2^-127 2^126 1 0\n", + "p3109_k8p3es 8 3 5 2^-17 2^-15 49152 1 2\n", + "p3109_k8p3fs 8 3 5 2^-17 2^-15 57344 1 0\n", + "p3109_k8p3eu 8 3 6 2^-33 2^-31 5/4*2^31 1 1\n", + "p3109_k8p3fu 8 3 6 2^-33 2^-31 3/2*2^31 1 0\n", + "p3109_k8p4es 8 4 4 2^-10 0.0078125 224 1 2\n", + "p3109_k8p4fs 8 4 4 2^-10 0.0078125 240 1 0\n", + "p3109_k8p4eu 8 4 5 2^-18 2^-15 53248 1 1\n", + "p3109_k8p4fu 8 4 5 2^-18 2^-15 57344 1 0\n", + "binary16 16 11 5 2^-24 2^-14 65504 2046 2\n", + "bfloat16 16 8 8 2^-133 2^-126 255/128*2^127 254 2\n", + "binary32 32 24 8 2^-149 2^-126 16777215/8388608*2^127 8388607/4194304*2^23 2\n", + "binary64 64 53 11 4.9407e-324 2^-1022 9007199254740991/9007199254740992*2^1024 4503599627370495/4503599627370496*2^53 2\n", + "ocp_e8m0 8 1 8 2^-127 2^-127 2^127 1 0\n", + "ocp_int8 8 8 0 0.015625 n/a 127/64*2^0 0 0\n", + "============ === === === =========== ================= ======================================== ====================================== ======\n" ] } ], @@ -1073,35 +1420,41 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "| | name | B | P | E | smallest | smallest_normal | max | num_nans | infs |\n", - "|---:|:----------|----:|----:|----:|-------------:|------------------:|-----------------:|---------------:|-------:|\n", - "| 0 | ocp_e2m1 | 4 | 2 | 2 | 0.5 | 1 | 6 | 0 | 0 |\n", - "| 1 | p3109_4p2 | 4 | 2 | 2 | 0.25 | 0.5 | 2 | 1 | 2 |\n", - "| 2 | ocp_e2m3 | 6 | 4 | 2 | 0.125 | 1 | 7.5 | 0 | 0 |\n", - "| 3 | ocp_e3m2 | 6 | 3 | 3 | 0.0625 | 0.25 | 28 | 0 | 0 |\n", - "| 4 | p3109_6p3 | 6 | 3 | 3 | 0.03125 | 0.125 | 12 | 1 | 2 |\n", - "| 5 | p3109_6p4 | 6 | 4 | 2 | 0.0625 | 0.5 | 3.5 | 1 | 2 |\n", - "| 6 | ocp_e4m3 | 8 | 4 | 4 | 0.00195312 | 0.015625 | 448 | 2 | 0 |\n", - "| 7 | ocp_e5m2 | 8 | 3 | 5 | 1.52588e-05 | 6.10352e-05 | 57344 | 6 | 2 |\n", - "| 8 | p3109_8p1 | 8 | 1 | 7 | 2.1684e-19 | 2.1684e-19 | 9.22337e+18 | 1 | 2 |\n", - "| 9 | p3109_8p2 | 8 | 2 | 6 | 2.32831e-10 | 4.65661e-10 | 2.14748e+09 | 1 | 2 |\n", - "| 10 | p3109_8p3 | 8 | 3 | 5 | 7.62939e-06 | 3.05176e-05 | 49152 | 1 | 2 |\n", - "| 11 | p3109_8p4 | 8 | 4 | 4 | 0.000976562 | 0.0078125 | 224 | 1 | 2 |\n", - "| 12 | p3109_8p5 | 8 | 5 | 3 | 0.0078125 | 0.125 | 15 | 1 | 2 |\n", - "| 13 | p3109_8p6 | 8 | 6 | 2 | 0.015625 | 0.5 | 3.875 | 1 | 2 |\n", - "| 14 | binary16 | 16 | 11 | 5 | 5.96046e-08 | 6.10352e-05 | 65504 | 2046 | 2 |\n", - "| 15 | bfloat16 | 16 | 8 | 8 | 9.18355e-41 | 1.17549e-38 | 3.38953e+38 | 254 | 2 |\n", - "| 16 | binary32 | 32 | 24 | 8 | 1.4013e-45 | 1.17549e-38 | 3.40282e+38 | 1.67772e+07 | 2 |\n", - "| 17 | binary64 | 64 | 53 | 11 | 4.94066e-324 | 2.22507e-308 | 1.79769e+308 | 9.0072e+15 | 2 |\n", - "| 18 | ocp_e8m0 | 8 | 1 | 8 | 5.87747e-39 | 5.87747e-39 | 1.70141e+38 | 1 | 0 |\n", - "| 19 | ocp_int8 | 8 | 8 | 0 | 0.015625 | nan | 1.98438 | 0 | 0 |\n" + "| | name | B | P | E | smallest | smallest_normal | max | num_nans | infs |\n", + "|---:|:-------------|----:|----:|----:|-------------:|------------------:|-----------------:|---------------:|-------:|\n", + "| 0 | ocp_e2m1 | 4 | 2 | 2 | 0.5 | 1 | 6 | 0 | 0 |\n", + "| 1 | p3109_k4p2fs | 4 | 2 | 2 | 0.25 | 0.5 | 3 | 1 | 0 |\n", + "| 2 | ocp_e2m3 | 6 | 4 | 2 | 0.125 | 1 | 7.5 | 0 | 0 |\n", + "| 3 | ocp_e3m2 | 6 | 3 | 3 | 0.0625 | 0.25 | 28 | 0 | 0 |\n", + "| 4 | p3109_k6p3fs | 6 | 3 | 3 | 0.03125 | 0.125 | 14 | 1 | 0 |\n", + "| 5 | p3109_k6p4fs | 6 | 4 | 2 | 0.0625 | 0.5 | 3.75 | 1 | 0 |\n", + "| 6 | ocp_e4m3 | 8 | 4 | 4 | 0.00195312 | 0.015625 | 448 | 2 | 0 |\n", + "| 7 | ocp_e5m2 | 8 | 3 | 5 | 1.52588e-05 | 6.10352e-05 | 57344 | 6 | 2 |\n", + "| 8 | p3109_k8p1es | 8 | 1 | 7 | 1.0842e-19 | 1.0842e-19 | 4.61169e+18 | 1 | 2 |\n", + "| 9 | p3109_k8p1fs | 8 | 1 | 7 | 1.0842e-19 | 1.0842e-19 | 9.22337e+18 | 1 | 0 |\n", + "| 10 | p3109_k8p1eu | 8 | 1 | 8 | 5.87747e-39 | 5.87747e-39 | 4.25353e+37 | 1 | 1 |\n", + "| 11 | p3109_k8p1fu | 8 | 1 | 8 | 5.87747e-39 | 5.87747e-39 | 8.50706e+37 | 1 | 0 |\n", + "| 12 | p3109_k8p3es | 8 | 3 | 5 | 7.62939e-06 | 3.05176e-05 | 49152 | 1 | 2 |\n", + "| 13 | p3109_k8p3fs | 8 | 3 | 5 | 7.62939e-06 | 3.05176e-05 | 57344 | 1 | 0 |\n", + "| 14 | p3109_k8p3eu | 8 | 3 | 6 | 1.16415e-10 | 4.65661e-10 | 2.68435e+09 | 1 | 1 |\n", + "| 15 | p3109_k8p3fu | 8 | 3 | 6 | 1.16415e-10 | 4.65661e-10 | 3.22123e+09 | 1 | 0 |\n", + "| 16 | p3109_k8p4es | 8 | 4 | 4 | 0.000976562 | 0.0078125 | 224 | 1 | 2 |\n", + "| 17 | p3109_k8p4fs | 8 | 4 | 4 | 0.000976562 | 0.0078125 | 240 | 1 | 0 |\n", + "| 18 | p3109_k8p4eu | 8 | 4 | 5 | 3.8147e-06 | 3.05176e-05 | 53248 | 1 | 1 |\n", + "| 19 | p3109_k8p4fu | 8 | 4 | 5 | 3.8147e-06 | 3.05176e-05 | 57344 | 1 | 0 |\n", + "| 20 | binary16 | 16 | 11 | 5 | 5.96046e-08 | 6.10352e-05 | 65504 | 2046 | 2 |\n", + "| 21 | bfloat16 | 16 | 8 | 8 | 9.18355e-41 | 1.17549e-38 | 3.38953e+38 | 254 | 2 |\n", + "| 22 | binary32 | 32 | 24 | 8 | 1.4013e-45 | 1.17549e-38 | 3.40282e+38 | 1.67772e+07 | 2 |\n", + "| 23 | binary64 | 64 | 53 | 11 | 4.94066e-324 | 2.22507e-308 | 1.79769e+308 | 9.0072e+15 | 2 |\n", + "| 24 | ocp_e8m0 | 8 | 1 | 8 | 5.87747e-39 | 5.87747e-39 | 1.70141e+38 | 1 | 0 |\n", + "| 25 | ocp_int8 | 8 | 8 | 0 | 0.015625 | nan | 1.98438 | 0 | 0 |\n" ] } ], @@ -1112,7 +1465,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "gfloat", "language": "python", "name": "python3" }, @@ -1126,7 +1479,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.0" + "version": "3.12.3" } }, "nbformat": 4, diff --git a/docs/source/03-value-tables.ipynb b/docs/source/03-value-tables.ipynb index 1d4ca6e..b3b20f7 100644 --- a/docs/source/03-value-tables.ipynb +++ b/docs/source/03-value-tables.ipynb @@ -1,7 +1,20 @@ { "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "8e05752b", + "metadata": {}, + "outputs": [], + "source": [ + "# %pip install -U git+https://github.com/graphcore-research/gfloat airium\n", + "# %load_ext autoreload\n", + "# %autoreload 2" + ] + }, { "cell_type": "markdown", + "id": "d644a08f", "metadata": {}, "source": [ "\n", @@ -19,10 +32,12 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, + "id": "9f1d0ce1", "metadata": {}, "outputs": [], "source": [ + "import math\n", "from gfloat import *\n", "from gfloat.formats import *\n", "import numpy as np\n", @@ -32,6 +47,7 @@ }, { "cell_type": "markdown", + "id": "c5431b11", "metadata": {}, "source": [ "## Define some helpers.\n", @@ -43,23 +59,24 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, + "id": "f4fd7cca", "metadata": {}, "outputs": [], "source": [ "def str_bits_with_underscores(fi, fv):\n", + " signstr = f\"{fv.signbit}_\" if fi.is_signed else \"\"\n", + "\n", " # 0_1011110_\n", " if fi.tSignificandBits == 0:\n", - " return f\"{fv.signbit}_{fv.exp:0{fi.expBits}b}_\"\n", + " return f\"{signstr}{fv.exp:0{fi.expBits}b}_\"\n", "\n", " # 0__1011110\n", " if fi.expBits == 0:\n", - " return f\"{fv.signbit}__{fv.significand:0{fi.tSignificandBits}b}\"\n", + " return f\"{signstr}{fv.significand:0{fi.tSignificandBits}b}\"\n", "\n", " # 0_101_1110\n", - " return (\n", - " f\"{fv.signbit}_{fv.exp:0{fi.expBits}b}_{fv.significand:0{fi.tSignificandBits}b}\"\n", - " )\n", + " return f\"{signstr}{fv.exp:0{fi.expBits}b}_{fv.significand:0{fi.tSignificandBits}b}\"\n", "\n", "\n", "fi = format_info_p3109(5, 3)\n", @@ -74,6 +91,7 @@ }, { "cell_type": "markdown", + "id": "5fbaa5da", "metadata": {}, "source": [ "### Render a binary16 value\n", @@ -86,7 +104,8 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, + "id": "940a9c45", "metadata": {}, "outputs": [], "source": [ @@ -131,6 +150,7 @@ }, { "cell_type": "markdown", + "id": "a0d0f8ca", "metadata": {}, "source": [ "### Print one table row" @@ -138,104 +158,84 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, + "id": "7e51b667", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "p3109_8p3\n", - "0x00 0_00000_00 = 0.0\n", - "0x01 0_00000_01 = +0b0.01*2^-15 = 0_00000_0010000000 +0b0.0010000000*2^-15 = ~7.629e-06\n", - "0x07 0_00001_11 = +0b1.11*2^-15 = 0_00000_1110000000 +0b0.1110000000*2^-15 = ~5.341e-05\n", - "0x21 0_01000_01 = +0b1.01*2^-8 = 0_00111_0100000000 +0b1.0100000000*2^-8 = ~0.0049\n", - "0x40 0_10000_00 = +0b1.00*2^0 = 0_01111_0000000000 +0b1.0000000000*2^0 = 1.0\n", - "0x41 0_10000_01 = +0b1.01*2^0 = 0_01111_0100000000 +0b1.0100000000*2^0 = 1.25\n", - "0x7e 0_11111_10 = +0b1.10*2^15 = 0_11110_1000000000 +0b1.1000000000*2^15 = 49152.0\n", - "0x7f 0_11111_11 = inf\n", - "0x80 1_00000_00 = nan\n", - "0x81 1_00000_01 = -0b0.01*2^-15 = 1_00000_0010000000 -0b0.0010000000*2^-15 = ~-7.629e-06\n", - "0xe6 1_11001_10 = -0b1.10*2^9 = 1_11000_1000000000 -0b1.1000000000*2^9 = -768.0\n", - "0xfe 1_11111_10 = -0b1.10*2^15 = 1_11110_1000000000 -0b1.1000000000*2^15 = -49152.0\n", - "0xff 1_11111_11 = -inf\n", - "p3109_8p1\n", - "0x00 0_0000000_ = 0.0\n", - "0x01 0_0000001_ = +0b1.0*2^-62 = = ~2.168e-19\n", - "0x07 0_0000111_ = +0b1.0*2^-56 = = ~1.388e-17\n", - "0x21 0_0100001_ = +0b1.0*2^-30 = = ~9.313e-10\n", - "0x40 0_1000000_ = +0b1.0*2^1 = 0_10000_0000000000 +0b1.0000000000*2^1 = 2.0\n", - "0x41 0_1000001_ = +0b1.0*2^2 = 0_10001_0000000000 +0b1.0000000000*2^2 = 4.0\n", - "0x7e 0_1111110_ = +0b1.0*2^63 = 0_11111_0000000000 = ~9.223e+18\n", - "0x7f 0_1111111_ = inf\n", - "0x80 1_0000000_ = nan\n", - "0x81 1_0000001_ = -0b1.0*2^-62 = = ~-2.168e-19\n", - "0xe6 1_1100110_ = -0b1.0*2^39 = 1_11111_0000000000 = ~-5.498e+11\n", - "0xfe 1_1111110_ = -0b1.0*2^63 = 1_11111_0000000000 = ~-9.223e+18\n", - "0xff 1_1111111_ = -inf\n" + "## p3109_k8p3es\n", + "0x00 = 0_00000_00 = 0.0 = 0.0\n", + "0x01 = 0_00000_01 = +0b0.01*2^-15 = ~7.629e-06\n", + "0x07 = 0_00001_11 = +0b1.11*2^-15 = ~5.341e-05\n", + "0x21 = 0_01000_01 = +0b1.01*2^-8 = ~0.0049\n", + "0x40 = 0_10000_00 = +0b1.00*2^0 = 1.0\n", + "0x41 = 0_10000_01 = +0b1.01*2^0 = 1.25\n", + "0x7e = 0_11111_10 = +0b1.10*2^15 = 49152.0\n", + "0x7f = 0_11111_11 = inf = inf\n", + "0x80 = 1_00000_00 = nan = nan\n", + "0x81 = 1_00000_01 = -0b0.01*2^-15 = ~-7.629e-06\n", + "0xe6 = 1_11001_10 = -0b1.10*2^9 = -768.0\n", + "0xfe = 1_11111_10 = -0b1.10*2^15 = -49152.0\n", + "0xff = 1_11111_11 = -inf = -inf\n", + "## p3109_k8p1es\n", + "0x00 = 0_0000000_ = 0.0 = 0.0\n", + "0x01 = 0_0000001_ = +0b1.0*2^-63 = ~1.084e-19\n", + "0x07 = 0_0000111_ = +0b1.0*2^-57 = ~6.939e-18\n", + "0x21 = 0_0100001_ = +0b1.0*2^-31 = ~4.657e-10\n", + "0x40 = 0_1000000_ = +0b1.0*2^0 = 1.0\n", + "0x41 = 0_1000001_ = +0b1.0*2^1 = 2.0\n", + "0x7e = 0_1111110_ = +0b1.0*2^62 = ~4.612e+18\n", + "0x7f = 0_1111111_ = inf = inf\n", + "0x80 = 1_0000000_ = nan = nan\n", + "0x81 = 1_0000001_ = -0b1.0*2^-63 = ~-1.084e-19\n", + "0xe6 = 1_1100110_ = -0b1.0*2^38 = ~-2.749e+11\n", + "0xfe = 1_1111110_ = -0b1.0*2^62 = ~-4.612e+18\n", + "0xff = 1_1111111_ = -inf = -inf\n" ] } ], "source": [ - "def str_tablerow(fi, fv: FloatValue, show_b16_info=True, vs_width=14, vs_d=8):\n", + "def hex(fi, fv):\n", + " return f\"0x{fv.code:02x}\"\n", + "\n", + "\n", + "def binary_pow2(fi, fv):\n", " \"\"\"\n", " Create a string of the form\n", - " 0x41 0_10000_01 = +0b1.01*2^0 = 1.25\n", - " optionally adding binary16 info\n", - " 0x41 0_10000_01 = +0b1.01*2^0 = 0_01111_0100000000 +0b1.0100000000*2^0 = 1.25\n", + " 0b1.01*2^3\n", " \"\"\"\n", - " text = []\n", - "\n", - " # 0x45 0_1000_101\n", - " text.append(f\"0x{fv.code:02x} {str_bits_with_underscores(fi, fv)}\")\n", - "\n", " finite_nonzero = np.isfinite(fv.fval) and fv.fval != 0\n", "\n", - " # = +0b1.101*2^-7 =\n", - " if finite_nonzero:\n", - "\n", - " def signstr(fv):\n", - " return \"-\" if fv.signbit else \"+\"\n", - "\n", - " b = \"0\" if fv.fclass == FloatClass.SUBNORMAL else \"1\"\n", - " binary_pow2 = f\"{signstr(fv)}0b{b}.{fv.significand:0{fi.tSignificandBits}b}*2^{fv.expval:<3}\"\n", - " text.append(binary_pow2)\n", + " if not finite_nonzero:\n", + " return str(fv.fval)\n", "\n", - " if show_b16_info and finite_nonzero:\n", - " b16_binary_str, b16_bscistr = b16_str(fv.fval)\n", - " text.append(f\"{b16_binary_str} {b16_bscistr}\")\n", + " signstr = \"-\" if fv.signbit else \"+\"\n", "\n", - " # 1.125\n", - " text.append(float_tilde_unless_roundtrip_str(fv.fval, width=vs_width, d=vs_d))\n", + " b = \"0\" if fv.fclass == FloatClass.SUBNORMAL else \"1\"\n", "\n", - " # Return tuple\n", - " return \" = \".join(text)\n", + " return f\"{signstr}0b{b}.{fv.significand:0{fi.tSignificandBits}b}*2^{fv.expval:<3}\"\n", "\n", "\n", "for fi in (format_info_p3109(8, 3), format_info_p3109(8, 1)):\n", - " print(fi.name)\n", - " for i in (\n", - " 0x00,\n", - " 0x01,\n", - " 0x07,\n", - " 0x21,\n", - " 0x40,\n", - " 0x41,\n", - " 0x7E,\n", - " 0x7F,\n", - " 0x80,\n", - " 0x81,\n", - " 0xE6,\n", - " 0xFE,\n", - " 0xFF,\n", - " ):\n", + " print(\"##\", fi.name)\n", + " codes = (0x00, 0x01, 0x07, 0x21, 0x40, 0x41, 0x7E, 0x7F, 0x80, 0x81, 0xE6, 0xFE, 0xFF)\n", + " fvs = [decode_float(fi, i) for i in codes]\n", + " for fv in fvs:\n", " print(\n", - " str_tablerow(fi, decode_float(fi, i), show_b16_info=True, vs_width=8, vs_d=4)\n", + " hex(fi, fv),\n", + " str_bits_with_underscores(fi, fv),\n", + " binary_pow2(fi, fv),\n", + " float_tilde_unless_roundtrip_str(fv.fval, width=8, d=4),\n", + " sep=\" = \",\n", " )" ] }, { "cell_type": "markdown", + "id": "ee4325c2", "metadata": {}, "source": [ "## Make HTML table" @@ -243,119 +243,327 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, + "id": "6d10d975", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " FP6 Value Table, ocp_e3m2\n", + " \n", + " \n", + "

FP6 Value Table, ocp_e3m2

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0x00 = 0_000_00 = 0.0 = 0.0
\n", + "
\n", + "
0x20 = 1_000_00 = -0.0 = -0.0
\n", + "
\n", + "
0x01 = 0_000_01 = +0b0.01*2^-2  = 0.0625
\n", + "
\n", + "
0x21 = 1_000_01 = -0b0.01*2^-2  = -0.0625
\n", + "
\n", + "
0x02 = 0_000_10 = +0b0.10*2^-2  = 0.125
\n", + "
\n", + "
0x22 = 1_000_10 = -0b0.10*2^-2  = -0.125
\n", + "
\n", + "
0x03 = 0_000_11 = +0b0.11*2^-2  = 0.1875
\n", + "
\n", + "
0x23 = 1_000_11 = -0b0.11*2^-2  = -0.1875
\n", + "
\n", + "
0x04 = 0_001_00 = +0b1.00*2^-2  = 0.25
\n", + "
\n", + "
0x24 = 1_001_00 = -0b1.00*2^-2  = -0.25
\n", + "
......
\n", + "
0x09 = 0_010_01 = +0b1.01*2^-1  = 0.625
\n", + "
\n", + "
0x29 = 1_010_01 = -0b1.01*2^-1  = -0.625
\n", + "
\n", + "
0x0a = 0_010_10 = +0b1.10*2^-1  = 0.75
\n", + "
\n", + "
0x2a = 1_010_10 = -0b1.10*2^-1  = -0.75
\n", + "
\n", + "
0x0b = 0_010_11 = +0b1.11*2^-1  = 0.875
\n", + "
\n", + "
0x2b = 1_010_11 = -0b1.11*2^-1  = -0.875
\n", + "
\n", + "
0x0c = 0_011_00 = +0b1.00*2^0   = 1.0
\n", + "
\n", + "
0x2c = 1_011_00 = -0b1.00*2^0   = -1.0
\n", + "
\n", + "
0x0d = 0_011_01 = +0b1.01*2^0   = 1.25
\n", + "
\n", + "
0x2d = 1_011_01 = -0b1.01*2^0   = -1.25
\n", + "
\n", + "
0x0e = 0_011_10 = +0b1.10*2^0   = 1.5
\n", + "
\n", + "
0x2e = 1_011_10 = -0b1.10*2^0   = -1.5
\n", + "
\n", + "
0x0f = 0_011_11 = +0b1.11*2^0   = 1.75
\n", + "
\n", + "
0x2f = 1_011_11 = -0b1.11*2^0   = -1.75
\n", + "
\n", + "
0x10 = 0_100_00 = +0b1.00*2^1   = 2.0
\n", + "
\n", + "
0x30 = 1_100_00 = -0b1.00*2^1   = -2.0
\n", + "
\n", + "
0x11 = 0_100_01 = +0b1.01*2^1   = 2.5
\n", + "
\n", + "
0x31 = 1_100_01 = -0b1.01*2^1   = -2.5
\n", + "
\n", + "
0x12 = 0_100_10 = +0b1.10*2^1   = 3.0
\n", + "
\n", + "
0x32 = 1_100_10 = -0b1.10*2^1   = -3.0
\n", + "
......
\n", + "
0x1b = 0_110_11 = +0b1.11*2^3   = 14.0
\n", + "
\n", + "
0x3b = 1_110_11 = -0b1.11*2^3   = -14.0
\n", + "
\n", + "
0x1c = 0_111_00 = +0b1.00*2^4   = 16.0
\n", + "
\n", + "
0x3c = 1_111_00 = -0b1.00*2^4   = -16.0
\n", + "
\n", + "
0x1d = 0_111_01 = +0b1.01*2^4   = 20.0
\n", + "
\n", + "
0x3d = 1_111_01 = -0b1.01*2^4   = -20.0
\n", + "
\n", + "
0x1e = 0_111_10 = +0b1.10*2^4   = 24.0
\n", + "
\n", + "
0x3e = 1_111_10 = -0b1.10*2^4   = -24.0
\n", + "
\n", + "
0x1f = 0_111_11 = +0b1.11*2^4   = 28.0
\n", + "
\n", + "
0x3f = 1_111_11 = -0b1.11*2^4   = -28.0
\n", + "
\n", + " \n", + "" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "def mktbl(fi: FormatInfo, cols=4, skip_rows=None, **kw):\n", + "def mktbl(\n", + " airium_in, fi: FormatInfo, cols=4, skip_rows=None, dark=True, short=False, **kw\n", + "):\n", " # Make tables\n", " nvals = 2**fi.bits\n", " rows = nvals // cols\n", "\n", - " style = f\"\"\"\n", - " div.cell_output td {{\n", - " margin: 0pt;\n", - " text-align: left;\n", - " }}\n", - "\n", - " div.cell_output table {{\n", - " margin: 0pt;\n", - " text-align: left;\n", - " font-family: monospace;\n", - " font-size: xx-small;\n", - " font-weight: bold;\n", - " border-collapse: collapse;\n", - " }}\n", - "\n", - "\n", - " table {{\n", - " margin: 0pt;\n", - " font-family: monospace;\n", - " font-size: xx-small;\n", - " font-weight: bold;\n", - " border-collapse: collapse;\n", - " }}\n", - "\n", - " tr.blankrow {{\n", - " height: 4ex;\n", - " vertical-align: top;\n", - " }}\n", + " # dark = True # Used @media selector in CSS, but it doesn't work inside vscode\n", + " css = \"\"\n", "\n", - " td {{\n", - " text-align: left;\n", - " border: solid 2px #ccc;\n", - " width: {98/cols}%;\n", - " }}\n", - "\n", - " .special {{\n", - " color: #874723;\n", - " }}\n", - "\n", - " .subnormal {{\n", - " color: #0121a7;\n", - " }}\n", + " def value_style(fv):\n", + " if fv.fclass == FloatClass.SUBNORMAL:\n", + " return \"color: #0df\" if dark else \"color: #02b\"\n", "\n", - " .normal {{\n", - " }}\n", + " if not (\n", + " fv.fclass == FloatClass.NORMAL\n", + " or fv.fclass == FloatClass.ZERO\n", + " and not fv.signbit\n", + " ):\n", + " return \"color: #d80\" if dark else \"color: #952\"\n", "\n", - " @media (prefers-color-scheme: dark) {{\n", - " .special {{\n", - " color: orange;\n", - " }}\n", + " return \"\"\n", "\n", - " .subnormal {{\n", - " color: cyan;\n", - " }}\n", + " title = f\"FP{fi.k} Value Table, {fi.name}\"\n", + " a = airium_in\n", "\n", - " .normal {{\n", - " }}\n", - " }}\n", + " with a.table(klass=\"zmktbl\"):\n", + " for i in range(0, rows):\n", + " if skip_rows and i in skip_rows:\n", + " if i - 1 not in skip_rows:\n", + " with a.tr(klass=\"zmktbl\"):\n", + " for x in range(cols):\n", + " a.td(klass=\"zmktbl\", _t=\"...\", style=\"text-align: center;\")\n", + " continue\n", + " if i > 0 and i % 16 == 0:\n", + " # blank row\n", + " trstyle = \"blankrow\"\n", + " else:\n", + " trstyle = \"datarow\"\n", + " with a.tr(klass=\"zmktbl \" + trstyle):\n", + " for n in range(i, nvals, rows):\n", + " fv = decode_float(fi, n)\n", + " h = hex(fi, fv)\n", + " b = str_bits_with_underscores(fi, fv)\n", + " b2 = binary_pow2(fi, fv)\n", + " v = float_tilde_unless_roundtrip_str(fv.fval, **kw)\n", + " if short:\n", + " text = v\n", + " else:\n", + " text = \" = \".join([h, b, b2, v])\n", + " with a.td(klass=\"zmktbl\", style=\"text-align: left;\"):\n", + " a.pre(klass=\"zmktbl\", _t=text, style=value_style(fv))\n", + " css += \"\"\"\n", + " table.zmktbl {\n", + " margin: 0pt;\n", + " border-collapse: collapse; \n", + " }\n", + " tr.zmktbl {\n", + " margin: 0;\n", + " }\n", + " td.zmktbl {\n", + " border: 1px solid;\n", + " }\n", + " pre.zmktbl {\n", + " margin: 4pt 1pt 1pt 13pt; \n", + " display: inline;\n", + " font-family: monospace;\n", + " font-size: 16px;\n", + " font-weight: bold;\n", + " }\n", + " \"\"\"\n", "\n", - " pre {{\n", - " margin: 1pt 1pt 1pt 13pt;\n", - " display: inline;\n", - " }}\n", - "\"\"\"\n", + " return css, a, title\n", "\n", - " def table_style(fv):\n", - " \"\"\"\n", - " Select from the table entry styles defined in CSS above.\n", - " \"\"\"\n", - " if fv.fclass == FloatClass.SUBNORMAL:\n", - " return \"subnormal\"\n", "\n", - " if fv.fclass == FloatClass.NORMAL:\n", - " return \"normal\"\n", + "import contextlib\n", + "from airium import Airium\n", "\n", - " if fv.fclass == FloatClass.ZERO and not fv.signbit:\n", - " return \"normal\"\n", "\n", - " # Everyting else is special\n", - " return \"special\"\n", + "def airdoc(css, html, title):\n", + " a = Airium()\n", + " a(\"\")\n", + " a.style(_t=css)\n", + " with a.html():\n", + " with a.head():\n", + " a.meta(charset=\"utf-8\")\n", + " a.title(_t=title)\n", + " with a.body():\n", + " a.h3(_t=title)\n", + " a.div(_t=html)\n", "\n", - " title = f\"FP8 Value Table, {fi.name}\"\n", - " a = airium.Airium()\n", - " a.style(_t=style)\n", - " a.h3(_t=title)\n", + " return str(a)\n", "\n", - " with a.table():\n", - " for i in range(0, rows):\n", - " if skip_rows and (skip_rows[0] <= i < skip_rows[1]):\n", - " if i == skip_rows[0]:\n", - " a.tr(klass=\"blankrow\").td(\"...\")\n", - " continue\n", - " trklass = \"blankrow\" if i > 0 and i % 16 == 0 else \"\"\n", - " with a.tr(klass=trklass):\n", - " for n in range(i, nvals, rows):\n", - " fv = decode_float(fi, n)\n", - " text = str_tablerow(fi, fv, show_b16_info=False, **kw)\n", - " a.td(klass=table_style(fv)).pre(_t=text)\n", "\n", - " return str(a)" + "skip_rows = set(range(5, 9)) | set(range(0x13, 0x1B))\n", + "ad = airdoc(*mktbl(Airium(), format_info_ocp_e3m2, cols=2, skip_rows=skip_rows))\n", + "with open(\"/tmp/aa.html\", \"w\") as f:\n", + " f.write(ad)\n", + "HTML(ad)" ] }, { "cell_type": "markdown", + "id": "5a12d4f2", "metadata": {}, "source": [ "### OCP E2M1\n", @@ -365,2091 +573,11330 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, + "id": "1a804374", "metadata": {}, "outputs": [ { "data": { "text/html": [ + "\n", "\n", - "

FP8 Value Table, ocp_e2m1

\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
\n", - "
0x00 0_00_0 = 0.0
\n", - "
\n", - "
0x08 1_00_0 = -0.0
\n", - "
\n", - "
0x01 0_00_1 = +0b0.1*2^0   = 0.5
\n", - "
\n", - "
0x09 1_00_1 = -0b0.1*2^0   = -0.5
\n", - "
\n", - "
0x02 0_01_0 = +0b1.0*2^0   = 1.0
\n", - "
\n", - "
0x0a 1_01_0 = -0b1.0*2^0   = -1.0
\n", - "
\n", - "
0x03 0_01_1 = +0b1.1*2^0   = 1.5
\n", - "
\n", - "
0x0b 1_01_1 = -0b1.1*2^0   = -1.5
\n", - "
\n", - "
0x04 0_10_0 = +0b1.0*2^1   = 2.0
\n", - "
\n", - "
0x0c 1_10_0 = -0b1.0*2^1   = -2.0
\n", - "
\n", - "
0x05 0_10_1 = +0b1.1*2^1   = 3.0
\n", - "
\n", - "
0x0d 1_10_1 = -0b1.1*2^1   = -3.0
\n", - "
\n", - "
0x06 0_11_0 = +0b1.0*2^2   = 4.0
\n", - "
\n", - "
0x0e 1_11_0 = -0b1.0*2^2   = -4.0
\n", + " table.zmktbl {\n", + " margin: 0pt;\n", + " border-collapse: collapse; \n", + " }\n", + " tr.zmktbl {\n", + " margin: 0;\n", + " }\n", + " td.zmktbl {\n", + " border: 1px solid;\n", + " }\n", + " pre.zmktbl {\n", + " margin: 4pt 1pt 1pt 13pt; \n", + " display: inline;\n", + " font-family: monospace;\n", + " font-size: 16px;\n", + " font-weight: bold;\n", + " }\n", + " \n", + "\n", + " \n", + " \n", + " FP4 Value Table, ocp_e2m1\n", + " \n", + " \n", + "

FP4 Value Table, ocp_e2m1

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", - " \n", + " \n", + " \n", " \n", - "
\n", + "
0x00 = 0_00_0 = 0.0 = 0.0
\n", + "
\n", + "
0x01 = 0_00_1 = +0b0.1*2^0   = 0.5
\n", + "
\n", + "
0x02 = 0_01_0 = +0b1.0*2^0   = 1.0
\n", + "
\n", + "
0x03 = 0_01_1 = +0b1.1*2^0   = 1.5
\n", + "
\n", + "
0x04 = 0_10_0 = +0b1.0*2^1   = 2.0
\n", + "
\n", + "
0x05 = 0_10_1 = +0b1.1*2^1   = 3.0
\n", + "
\n", + "
0x06 = 0_11_0 = +0b1.0*2^2   = 4.0
\n", + "
\n", + "
0x07 = 0_11_1 = +0b1.1*2^2   = 6.0
\n", + "
\n", + "
0x08 = 1_00_0 = -0.0 = -0.0
\n", + "
\n", + "
0x09 = 1_00_1 = -0b0.1*2^0   = -0.5
\n", + "
\n", + "
0x0a = 1_01_0 = -0b1.0*2^0   = -1.0
\n", + "
\n", + "
0x0b = 1_01_1 = -0b1.1*2^0   = -1.5
\n", + "
\n", + "
0x0c = 1_10_0 = -0b1.0*2^1   = -2.0
\n", + "
\n", + "
0x0d = 1_10_1 = -0b1.1*2^1   = -3.0
\n", "
\n", - "
0x07 0_11_1 = +0b1.1*2^2   = 6.0
\n", + "
\n", + "
0x0e = 1_11_0 = -0b1.0*2^2   = -4.0
\n", "
\n", - "
0x0f 1_11_1 = -0b1.1*2^2   = -6.0
\n", + "
\n", + "
0x0f = 1_11_1 = -0b1.1*2^2   = -6.0
\n", "
" + "
\n", + " \n", + "" ], "text/plain": [ "" ] }, - "execution_count": 6, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "HTML(mktbl(format_info_ocp_e2m1, cols=2, vs_width=8, vs_d=3))" + "HTML(airdoc(*mktbl(Airium(), format_info_ocp_e2m1, cols=1, width=8, d=3)))" ] }, { "cell_type": "markdown", + "id": "34de9460", "metadata": {}, "source": [ - "### IEEE P3109 4-bit formats\n", + "## A range of 4-bit formats\n", "\n", - "The IEEE P3109 interim report describes a family of formats parameterized by K and P, in which three 4-bit formats are defined.\n", + "IEEE P3109 defines a range of 4-bit formats, varying precision, signedness, and domain.\n", + "Here we generate four tables for each precision.\n", "\n", - "The p=2 format is similar to OCP E2M1, with inf anf nan:" + "Some observations about the formats: \n", + " - the p=1 formats are pure-exponent formats\n", + " - the p=3 signed format is linear, but the p=3 unsigned format is floating\n", + " - the p=4 unsigned format is linear, the p=4 signed format is identical to p=3" ] }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, + "id": "d07d33e3", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + "

\n", + "
\n", + "\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
p3109_k4p1esp3109_k4p2esp3109_k4p3esocp_e2m1
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0.0
\n", + "
\n", + "
0.125
\n", + "
\n", + "
0.25
\n", + "
\n", + "
0.5
\n", + "
\n", + "
1.0
\n", + "
\n", + "
2.0
\n", + "
\n", + "
4.0
\n", + "
\n", + "
inf
\n", + "
\n", + "
nan
\n", + "
\n", + "
-0.125
\n", + "
\n", + "
-0.25
\n", + "
\n", + "
-0.5
\n", + "
\n", + "
-1.0
\n", + "
\n", + "
-2.0
\n", + "
\n", + "
-4.0
\n", + "
\n", + "
-inf
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0.0
\n", + "
\n", + "
0.25
\n", + "
\n", + "
0.5
\n", + "
\n", + "
0.75
\n", + "
\n", + "
1.0
\n", + "
\n", + "
1.5
\n", + "
\n", + "
2.0
\n", + "
\n", + "
inf
\n", + "
\n", + "
nan
\n", + "
\n", + "
-0.25
\n", + "
\n", + "
-0.5
\n", + "
\n", + "
-0.75
\n", + "
\n", + "
-1.0
\n", + "
\n", + "
-1.5
\n", + "
\n", + "
-2.0
\n", + "
\n", + "
-inf
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0.0
\n", + "
\n", + "
0.25
\n", + "
\n", + "
0.5
\n", + "
\n", + "
0.75
\n", + "
\n", + "
1.0
\n", + "
\n", + "
1.25
\n", + "
\n", + "
1.5
\n", + "
\n", + "
inf
\n", + "
\n", + "
nan
\n", + "
\n", + "
-0.25
\n", + "
\n", + "
-0.5
\n", + "
\n", + "
-0.75
\n", + "
\n", + "
-1.0
\n", + "
\n", + "
-1.25
\n", + "
\n", + "
-1.5
\n", + "
\n", + "
-inf
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0.0
\n", + "
\n", + "
0.5
\n", + "
\n", + "
1.0
\n", + "
\n", + "
1.5
\n", + "
\n", + "
2.0
\n", + "
\n", + "
3.0
\n", + "
\n", + "
4.0
\n", + "
\n", + "
6.0
\n", + "
\n", + "
-0.0
\n", + "
\n", + "
-0.5
\n", + "
\n", + "
-1.0
\n", + "
\n", + "
-1.5
\n", + "
\n", + "
-2.0
\n", + "
\n", + "
-3.0
\n", + "
\n", + "
-4.0
\n", + "
\n", + "
-6.0
\n", + "
\n", + "
\n", + "
\n", + " \n", + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + "

\n", + "
\n", + "\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
p3109_k4p1esp3109_k4p2esp3109_k4p3es
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0x00 = 0_000_ = 0.0 = 0.0
\n", + "
\n", + "
0x01 = 0_001_ = +0b1.0*2^-3  = 0.125
\n", + "
\n", + "
0x02 = 0_010_ = +0b1.0*2^-2  = 0.25
\n", + "
\n", + "
0x03 = 0_011_ = +0b1.0*2^-1  = 0.5
\n", + "
\n", + "
0x04 = 0_100_ = +0b1.0*2^0   = 1.0
\n", + "
\n", + "
0x05 = 0_101_ = +0b1.0*2^1   = 2.0
\n", + "
\n", + "
0x06 = 0_110_ = +0b1.0*2^2   = 4.0
\n", + "
\n", + "
0x07 = 0_111_ = inf = inf
\n", + "
\n", + "
0x08 = 1_000_ = nan = nan
\n", + "
\n", + "
0x09 = 1_001_ = -0b1.0*2^-3  = -0.125
\n", + "
\n", + "
0x0a = 1_010_ = -0b1.0*2^-2  = -0.25
\n", + "
\n", + "
0x0b = 1_011_ = -0b1.0*2^-1  = -0.5
\n", + "
\n", + "
0x0c = 1_100_ = -0b1.0*2^0   = -1.0
\n", + "
\n", + "
0x0d = 1_101_ = -0b1.0*2^1   = -2.0
\n", + "
\n", + "
0x0e = 1_110_ = -0b1.0*2^2   = -4.0
\n", + "
\n", + "
0x0f = 1_111_ = -inf = -inf
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0x00 = 0_00_0 = 0.0 = 0.0
\n", + "
\n", + "
0x01 = 0_00_1 = +0b0.1*2^-1  = 0.25
\n", + "
\n", + "
0x02 = 0_01_0 = +0b1.0*2^-1  = 0.5
\n", + "
\n", + "
0x03 = 0_01_1 = +0b1.1*2^-1  = 0.75
\n", + "
\n", + "
0x04 = 0_10_0 = +0b1.0*2^0   = 1.0
\n", + "
\n", + "
0x05 = 0_10_1 = +0b1.1*2^0   = 1.5
\n", + "
\n", + "
0x06 = 0_11_0 = +0b1.0*2^1   = 2.0
\n", + "
\n", + "
0x07 = 0_11_1 = inf = inf
\n", + "
\n", + "
0x08 = 1_00_0 = nan = nan
\n", + "
\n", + "
0x09 = 1_00_1 = -0b0.1*2^-1  = -0.25
\n", + "
\n", + "
0x0a = 1_01_0 = -0b1.0*2^-1  = -0.5
\n", + "
\n", + "
0x0b = 1_01_1 = -0b1.1*2^-1  = -0.75
\n", + "
\n", + "
0x0c = 1_10_0 = -0b1.0*2^0   = -1.0
\n", + "
\n", + "
0x0d = 1_10_1 = -0b1.1*2^0   = -1.5
\n", + "
\n", + "
0x0e = 1_11_0 = -0b1.0*2^1   = -2.0
\n", + "
\n", + "
0x0f = 1_11_1 = -inf = -inf
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0x00 = 0_0_00 = 0.0 = 0.0
\n", + "
\n", + "
0x01 = 0_0_01 = +0b0.01*2^0   = 0.25
\n", + "
\n", + "
0x02 = 0_0_10 = +0b0.10*2^0   = 0.5
\n", + "
\n", + "
0x03 = 0_0_11 = +0b0.11*2^0   = 0.75
\n", + "
\n", + "
0x04 = 0_1_00 = +0b1.00*2^0   = 1.0
\n", + "
\n", + "
0x05 = 0_1_01 = +0b1.01*2^0   = 1.25
\n", + "
\n", + "
0x06 = 0_1_10 = +0b1.10*2^0   = 1.5
\n", + "
\n", + "
0x07 = 0_1_11 = inf = inf
\n", + "
\n", + "
0x08 = 1_0_00 = nan = nan
\n", + "
\n", + "
0x09 = 1_0_01 = -0b0.01*2^0   = -0.25
\n", + "
\n", + "
0x0a = 1_0_10 = -0b0.10*2^0   = -0.5
\n", + "
\n", + "
0x0b = 1_0_11 = -0b0.11*2^0   = -0.75
\n", + "
\n", + "
0x0c = 1_1_00 = -0b1.00*2^0   = -1.0
\n", + "
\n", + "
0x0d = 1_1_01 = -0b1.01*2^0   = -1.25
\n", + "
\n", + "
0x0e = 1_1_10 = -0b1.10*2^0   = -1.5
\n", + "
\n", + "
0x0f = 1_1_11 = -inf = -inf
\n", + "
\n", + "
\n", + "
\n", + " \n", + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Convert to PNG\n", + "import IPython\n", + "\n", + "\n", + "def render(fis, short=True):\n", + " html = airdoc(*fourtables(fis, short=short, dark=False))\n", + " display(HTML(html))\n", + "\n", + "\n", + "def fourtables(fis, **kw):\n", + " a = airium.Airium()\n", + " a(\"\")\n", + " a.style(\n", + " _t=\"\"\"\n", + " table {\n", + " font-family: monospace;\n", + " text-align: left;\n", + " font-size: 1.3em;\n", + " }\n", + " .fourtables-td table {\n", + " width: 100%;\n", + " }\n", + " td.zmktbl {\n", + " border: 0px solid;\n", + " }\n", + " pre.zmktbl {\n", + " }\n", + " .fourtables-td tr:nth-child(odd) {\n", + " background-color: #eee;\n", + " }\n", + " .fourtables-td tr:nth-child(even) {\n", + " background-color: #ccc;\n", + " }\n", + " \"\"\"\n", + " )\n", + " with a.div(style=\"width:1200px; background-color: #fff; color: black;\"):\n", + " with a.table(klass=\"fourtables-table\"):\n", + " for row in (0, 1):\n", + " with a.tr(style=\"width:100%;\"):\n", + " for fi in fis:\n", + " if row == 0:\n", + " a.th(klass=\"fourtables-th\", _t=f\"{fi}\")\n", + " else:\n", + " with a.td(\n", + " klass=\"fourtables-td\",\n", + " style=\"width:248px;\",\n", + " ):\n", + " css, html, title = mktbl(\n", + " a, fi, cols=1, width=8, d=4, **kw\n", + " )\n", + "\n", + " return css, str(a), \"\"\n", + "\n", + "\n", + "render([format_info_p3109(4, p) for p in range(1, 4)] + [format_info_ocp_e2m1])\n", + "render([format_info_p3109(4, p) for p in range(1, 4)], short=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "55b0c629", "metadata": {}, "outputs": [ { "data": { "text/html": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + "

\n", + "
\n", + "\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
p3109_k4p1esp3109_k4p1fsp3109_k4p1eup3109_k4p1fu
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0x00 = 0_000_ = 0.0 = 0.0
\n", + "
\n", + "
0x01 = 0_001_ = +0b1.0*2^-3  = 0.125
\n", + "
\n", + "
0x02 = 0_010_ = +0b1.0*2^-2  = 0.25
\n", + "
\n", + "
0x03 = 0_011_ = +0b1.0*2^-1  = 0.5
\n", + "
\n", + "
0x04 = 0_100_ = +0b1.0*2^0   = 1.0
\n", + "
\n", + "
0x05 = 0_101_ = +0b1.0*2^1   = 2.0
\n", + "
\n", + "
0x06 = 0_110_ = +0b1.0*2^2   = 4.0
\n", + "
\n", + "
0x07 = 0_111_ = inf = inf
\n", + "
\n", + "
0x08 = 1_000_ = nan = nan
\n", + "
\n", + "
0x09 = 1_001_ = -0b1.0*2^-3  = -0.125
\n", + "
\n", + "
0x0a = 1_010_ = -0b1.0*2^-2  = -0.25
\n", + "
\n", + "
0x0b = 1_011_ = -0b1.0*2^-1  = -0.5
\n", + "
\n", + "
0x0c = 1_100_ = -0b1.0*2^0   = -1.0
\n", + "
\n", + "
0x0d = 1_101_ = -0b1.0*2^1   = -2.0
\n", + "
\n", + "
0x0e = 1_110_ = -0b1.0*2^2   = -4.0
\n", + "
\n", + "
0x0f = 1_111_ = -inf = -inf
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0x00 = 0_000_ = 0.0 = 0.0
\n", + "
\n", + "
0x01 = 0_001_ = +0b1.0*2^-3  = 0.125
\n", + "
\n", + "
0x02 = 0_010_ = +0b1.0*2^-2  = 0.25
\n", + "
\n", + "
0x03 = 0_011_ = +0b1.0*2^-1  = 0.5
\n", + "
\n", + "
0x04 = 0_100_ = +0b1.0*2^0   = 1.0
\n", + "
\n", + "
0x05 = 0_101_ = +0b1.0*2^1   = 2.0
\n", + "
\n", + "
0x06 = 0_110_ = +0b1.0*2^2   = 4.0
\n", + "
\n", + "
0x07 = 0_111_ = +0b1.0*2^3   = 8.0
\n", + "
\n", + "
0x08 = 1_000_ = nan = nan
\n", + "
\n", + "
0x09 = 1_001_ = -0b1.0*2^-3  = -0.125
\n", + "
\n", + "
0x0a = 1_010_ = -0b1.0*2^-2  = -0.25
\n", + "
\n", + "
0x0b = 1_011_ = -0b1.0*2^-1  = -0.5
\n", + "
\n", + "
0x0c = 1_100_ = -0b1.0*2^0   = -1.0
\n", + "
\n", + "
0x0d = 1_101_ = -0b1.0*2^1   = -2.0
\n", + "
\n", + "
0x0e = 1_110_ = -0b1.0*2^2   = -4.0
\n", + "
\n", + "
0x0f = 1_111_ = -0b1.0*2^3   = -8.0
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0x00 = 0000_ = 0.0 = 0.0
\n", + "
\n", + "
0x01 = 0001_ = +0b1.0*2^-7  = ~0.0078
\n", + "
\n", + "
0x02 = 0010_ = +0b1.0*2^-6  = 0.015625
\n", + "
\n", + "
0x03 = 0011_ = +0b1.0*2^-5  = 0.03125
\n", + "
\n", + "
0x04 = 0100_ = +0b1.0*2^-4  = 0.0625
\n", + "
\n", + "
0x05 = 0101_ = +0b1.0*2^-3  = 0.125
\n", + "
\n", + "
0x06 = 0110_ = +0b1.0*2^-2  = 0.25
\n", + "
\n", + "
0x07 = 0111_ = +0b1.0*2^-1  = 0.5
\n", + "
\n", + "
0x08 = 1000_ = +0b1.0*2^0   = 1.0
\n", + "
\n", + "
0x09 = 1001_ = +0b1.0*2^1   = 2.0
\n", + "
\n", + "
0x0a = 1010_ = +0b1.0*2^2   = 4.0
\n", + "
\n", + "
0x0b = 1011_ = +0b1.0*2^3   = 8.0
\n", + "
\n", + "
0x0c = 1100_ = +0b1.0*2^4   = 16.0
\n", + "
\n", + "
0x0d = 1101_ = +0b1.0*2^5   = 32.0
\n", + "
\n", + "
0x0e = 1110_ = inf = inf
\n", + "
\n", + "
0x0f = 1111_ = nan = nan
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0x00 = 0000_ = 0.0 = 0.0
\n", + "
\n", + "
0x01 = 0001_ = +0b1.0*2^-7  = ~0.0078
\n", + "
\n", + "
0x02 = 0010_ = +0b1.0*2^-6  = 0.015625
\n", + "
\n", + "
0x03 = 0011_ = +0b1.0*2^-5  = 0.03125
\n", + "
\n", + "
0x04 = 0100_ = +0b1.0*2^-4  = 0.0625
\n", + "
\n", + "
0x05 = 0101_ = +0b1.0*2^-3  = 0.125
\n", + "
\n", + "
0x06 = 0110_ = +0b1.0*2^-2  = 0.25
\n", + "
\n", + "
0x07 = 0111_ = +0b1.0*2^-1  = 0.5
\n", + "
\n", + "
0x08 = 1000_ = +0b1.0*2^0   = 1.0
\n", + "
\n", + "
0x09 = 1001_ = +0b1.0*2^1   = 2.0
\n", + "
\n", + "
0x0a = 1010_ = +0b1.0*2^2   = 4.0
\n", + "
\n", + "
0x0b = 1011_ = +0b1.0*2^3   = 8.0
\n", + "
\n", + "
0x0c = 1100_ = +0b1.0*2^4   = 16.0
\n", + "
\n", + "
0x0d = 1101_ = +0b1.0*2^5   = 32.0
\n", + "
\n", + "
0x0e = 1110_ = +0b1.0*2^6   = 64.0
\n", + "
\n", + "
0x0f = 1111_ = nan = nan
\n", + "
\n", + "
\n", + "
\n", + " \n", + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + "

\n", + "
\n", + "\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
p3109_k4p2esp3109_k4p2fsp3109_k4p2eup3109_k4p2fu
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0x00 = 0_00_0 = 0.0 = 0.0
\n", + "
\n", + "
0x01 = 0_00_1 = +0b0.1*2^-1  = 0.25
\n", + "
\n", + "
0x02 = 0_01_0 = +0b1.0*2^-1  = 0.5
\n", + "
\n", + "
0x03 = 0_01_1 = +0b1.1*2^-1  = 0.75
\n", + "
\n", + "
0x04 = 0_10_0 = +0b1.0*2^0   = 1.0
\n", + "
\n", + "
0x05 = 0_10_1 = +0b1.1*2^0   = 1.5
\n", + "
\n", + "
0x06 = 0_11_0 = +0b1.0*2^1   = 2.0
\n", + "
\n", + "
0x07 = 0_11_1 = inf = inf
\n", + "
\n", + "
0x08 = 1_00_0 = nan = nan
\n", + "
\n", + "
0x09 = 1_00_1 = -0b0.1*2^-1  = -0.25
\n", + "
\n", + "
0x0a = 1_01_0 = -0b1.0*2^-1  = -0.5
\n", + "
\n", + "
0x0b = 1_01_1 = -0b1.1*2^-1  = -0.75
\n", + "
\n", + "
0x0c = 1_10_0 = -0b1.0*2^0   = -1.0
\n", + "
\n", + "
0x0d = 1_10_1 = -0b1.1*2^0   = -1.5
\n", + "
\n", + "
0x0e = 1_11_0 = -0b1.0*2^1   = -2.0
\n", + "
\n", + "
0x0f = 1_11_1 = -inf = -inf
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0x00 = 0_00_0 = 0.0 = 0.0
\n", + "
\n", + "
0x01 = 0_00_1 = +0b0.1*2^-1  = 0.25
\n", + "
\n", + "
0x02 = 0_01_0 = +0b1.0*2^-1  = 0.5
\n", + "
\n", + "
0x03 = 0_01_1 = +0b1.1*2^-1  = 0.75
\n", + "
\n", + "
0x04 = 0_10_0 = +0b1.0*2^0   = 1.0
\n", + "
\n", + "
0x05 = 0_10_1 = +0b1.1*2^0   = 1.5
\n", + "
\n", + "
0x06 = 0_11_0 = +0b1.0*2^1   = 2.0
\n", + "
\n", + "
0x07 = 0_11_1 = +0b1.1*2^1   = 3.0
\n", + "
\n", + "
0x08 = 1_00_0 = nan = nan
\n", + "
\n", + "
0x09 = 1_00_1 = -0b0.1*2^-1  = -0.25
\n", + "
\n", + "
0x0a = 1_01_0 = -0b1.0*2^-1  = -0.5
\n", + "
\n", + "
0x0b = 1_01_1 = -0b1.1*2^-1  = -0.75
\n", + "
\n", + "
0x0c = 1_10_0 = -0b1.0*2^0   = -1.0
\n", + "
\n", + "
0x0d = 1_10_1 = -0b1.1*2^0   = -1.5
\n", + "
\n", + "
0x0e = 1_11_0 = -0b1.0*2^1   = -2.0
\n", + "
\n", + "
0x0f = 1_11_1 = -0b1.1*2^1   = -3.0
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0x00 = 000_0 = 0.0 = 0.0
\n", + "
\n", + "
0x01 = 000_1 = +0b0.1*2^-3  = 0.0625
\n", + "
\n", + "
0x02 = 001_0 = +0b1.0*2^-3  = 0.125
\n", + "
\n", + "
0x03 = 001_1 = +0b1.1*2^-3  = 0.1875
\n", + "
\n", + "
0x04 = 010_0 = +0b1.0*2^-2  = 0.25
\n", + "
\n", + "
0x05 = 010_1 = +0b1.1*2^-2  = 0.375
\n", + "
\n", + "
0x06 = 011_0 = +0b1.0*2^-1  = 0.5
\n", + "
\n", + "
0x07 = 011_1 = +0b1.1*2^-1  = 0.75
\n", + "
\n", + "
0x08 = 100_0 = +0b1.0*2^0   = 1.0
\n", + "
\n", + "
0x09 = 100_1 = +0b1.1*2^0   = 1.5
\n", + "
\n", + "
0x0a = 101_0 = +0b1.0*2^1   = 2.0
\n", + "
\n", + "
0x0b = 101_1 = +0b1.1*2^1   = 3.0
\n", + "
\n", + "
0x0c = 110_0 = +0b1.0*2^2   = 4.0
\n", + "
\n", + "
0x0d = 110_1 = +0b1.1*2^2   = 6.0
\n", + "
\n", + "
0x0e = 111_0 = inf = inf
\n", + "
\n", + "
0x0f = 111_1 = nan = nan
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0x00 = 000_0 = 0.0 = 0.0
\n", + "
\n", + "
0x01 = 000_1 = +0b0.1*2^-3  = 0.0625
\n", + "
\n", + "
0x02 = 001_0 = +0b1.0*2^-3  = 0.125
\n", + "
\n", + "
0x03 = 001_1 = +0b1.1*2^-3  = 0.1875
\n", + "
\n", + "
0x04 = 010_0 = +0b1.0*2^-2  = 0.25
\n", + "
\n", + "
0x05 = 010_1 = +0b1.1*2^-2  = 0.375
\n", + "
\n", + "
0x06 = 011_0 = +0b1.0*2^-1  = 0.5
\n", + "
\n", + "
0x07 = 011_1 = +0b1.1*2^-1  = 0.75
\n", + "
\n", + "
0x08 = 100_0 = +0b1.0*2^0   = 1.0
\n", + "
\n", + "
0x09 = 100_1 = +0b1.1*2^0   = 1.5
\n", + "
\n", + "
0x0a = 101_0 = +0b1.0*2^1   = 2.0
\n", + "
\n", + "
0x0b = 101_1 = +0b1.1*2^1   = 3.0
\n", + "
\n", + "
0x0c = 110_0 = +0b1.0*2^2   = 4.0
\n", + "
\n", + "
0x0d = 110_1 = +0b1.1*2^2   = 6.0
\n", + "
\n", + "
0x0e = 111_0 = +0b1.0*2^3   = 8.0
\n", + "
\n", + "
0x0f = 111_1 = nan = nan
\n", + "
\n", + "
\n", + "
\n", + " \n", + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + "

\n", + "
\n", "\n", - "

FP8 Value Table, p3109_4p2

\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", - "
0x00 0_00_0 = 0.0
\n", - "
\n", - "
0x08 1_00_0 = nan
\n", - "
\n", - "
0x01 0_00_1 = +0b0.1*2^-1  = 0.25
\n", - "
\n", - "
0x09 1_00_1 = -0b0.1*2^-1  = -0.25
\n", - "
\n", - "
0x02 0_01_0 = +0b1.0*2^-1  = 0.5
\n", - "
\n", - "
0x0a 1_01_0 = -0b1.0*2^-1  = -0.5
\n", - "
\n", - "
0x03 0_01_1 = +0b1.1*2^-1  = 0.75
\n", - "
\n", - "
0x0b 1_01_1 = -0b1.1*2^-1  = -0.75
\n", - "
\n", - "
0x04 0_10_0 = +0b1.0*2^0   = 1.0
\n", - "
\n", - "
0x0c 1_10_0 = -0b1.0*2^0   = -1.0
\n", - "
\n", - "
0x05 0_10_1 = +0b1.1*2^0   = 1.5
\n", - "
\n", - "
0x0d 1_10_1 = -0b1.1*2^0   = -1.5
\n", - "
\n", - "
0x06 0_11_0 = +0b1.0*2^1   = 2.0
\n", - "
\n", - "
0x0e 1_11_0 = -0b1.0*2^1   = -2.0
\n", + " table {\n", + " font-family: monospace;\n", + " text-align: left;\n", + " font-size: 1.3em;\n", + " }\n", + " .fourtables-td table {\n", + " width: 100%;\n", + " }\n", + " td.zmktbl {\n", + " border: 0px solid;\n", + " }\n", + " pre.zmktbl {\n", + " }\n", + " .fourtables-td tr:nth-child(odd) {\n", + " background-color: #eee;\n", + " }\n", + " .fourtables-td tr:nth-child(even) {\n", + " background-color: #ccc;\n", + " }\n", + " \n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
p3109_k4p3esp3109_k4p3fsp3109_k4p3eup3109_k4p3fu
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0x00 = 0_0_00 = 0.0 = 0.0
\n", + "
\n", + "
0x01 = 0_0_01 = +0b0.01*2^0   = 0.25
\n", + "
\n", + "
0x02 = 0_0_10 = +0b0.10*2^0   = 0.5
\n", + "
\n", + "
0x03 = 0_0_11 = +0b0.11*2^0   = 0.75
\n", + "
\n", + "
0x04 = 0_1_00 = +0b1.00*2^0   = 1.0
\n", + "
\n", + "
0x05 = 0_1_01 = +0b1.01*2^0   = 1.25
\n", + "
\n", + "
0x06 = 0_1_10 = +0b1.10*2^0   = 1.5
\n", + "
\n", + "
0x07 = 0_1_11 = inf = inf
\n", + "
\n", + "
0x08 = 1_0_00 = nan = nan
\n", + "
\n", + "
0x09 = 1_0_01 = -0b0.01*2^0   = -0.25
\n", + "
\n", + "
0x0a = 1_0_10 = -0b0.10*2^0   = -0.5
\n", + "
\n", + "
0x0b = 1_0_11 = -0b0.11*2^0   = -0.75
\n", + "
\n", + "
0x0c = 1_1_00 = -0b1.00*2^0   = -1.0
\n", + "
\n", + "
0x0d = 1_1_01 = -0b1.01*2^0   = -1.25
\n", + "
\n", + "
0x0e = 1_1_10 = -0b1.10*2^0   = -1.5
\n", + "
\n", + "
0x0f = 1_1_11 = -inf = -inf
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0x00 = 0_0_00 = 0.0 = 0.0
\n", + "
\n", + "
0x01 = 0_0_01 = +0b0.01*2^0   = 0.25
\n", + "
\n", + "
0x02 = 0_0_10 = +0b0.10*2^0   = 0.5
\n", + "
\n", + "
0x03 = 0_0_11 = +0b0.11*2^0   = 0.75
\n", + "
\n", + "
0x04 = 0_1_00 = +0b1.00*2^0   = 1.0
\n", + "
\n", + "
0x05 = 0_1_01 = +0b1.01*2^0   = 1.25
\n", + "
\n", + "
0x06 = 0_1_10 = +0b1.10*2^0   = 1.5
\n", + "
\n", + "
0x07 = 0_1_11 = +0b1.11*2^0   = 1.75
\n", + "
\n", + "
0x08 = 1_0_00 = nan = nan
\n", + "
\n", + "
0x09 = 1_0_01 = -0b0.01*2^0   = -0.25
\n", + "
\n", + "
0x0a = 1_0_10 = -0b0.10*2^0   = -0.5
\n", + "
\n", + "
0x0b = 1_0_11 = -0b0.11*2^0   = -0.75
\n", + "
\n", + "
0x0c = 1_1_00 = -0b1.00*2^0   = -1.0
\n", + "
\n", + "
0x0d = 1_1_01 = -0b1.01*2^0   = -1.25
\n", + "
\n", + "
0x0e = 1_1_10 = -0b1.10*2^0   = -1.5
\n", + "
\n", + "
0x0f = 1_1_11 = -0b1.11*2^0   = -1.75
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0x00 = 00_00 = 0.0 = 0.0
\n", + "
\n", + "
0x01 = 00_01 = +0b0.01*2^-1  = 0.125
\n", + "
\n", + "
0x02 = 00_10 = +0b0.10*2^-1  = 0.25
\n", + "
\n", + "
0x03 = 00_11 = +0b0.11*2^-1  = 0.375
\n", + "
\n", + "
0x04 = 01_00 = +0b1.00*2^-1  = 0.5
\n", + "
\n", + "
0x05 = 01_01 = +0b1.01*2^-1  = 0.625
\n", + "
\n", + "
0x06 = 01_10 = +0b1.10*2^-1  = 0.75
\n", + "
\n", + "
0x07 = 01_11 = +0b1.11*2^-1  = 0.875
\n", + "
\n", + "
0x08 = 10_00 = +0b1.00*2^0   = 1.0
\n", + "
\n", + "
0x09 = 10_01 = +0b1.01*2^0   = 1.25
\n", + "
\n", + "
0x0a = 10_10 = +0b1.10*2^0   = 1.5
\n", + "
\n", + "
0x0b = 10_11 = +0b1.11*2^0   = 1.75
\n", + "
\n", + "
0x0c = 11_00 = +0b1.00*2^1   = 2.0
\n", + "
\n", + "
0x0d = 11_01 = +0b1.01*2^1   = 2.5
\n", + "
\n", + "
0x0e = 11_10 = inf = inf
\n", + "
\n", + "
0x0f = 11_11 = nan = nan
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0x00 = 00_00 = 0.0 = 0.0
\n", + "
\n", + "
0x01 = 00_01 = +0b0.01*2^-1  = 0.125
\n", + "
\n", + "
0x02 = 00_10 = +0b0.10*2^-1  = 0.25
\n", + "
\n", + "
0x03 = 00_11 = +0b0.11*2^-1  = 0.375
\n", + "
\n", + "
0x04 = 01_00 = +0b1.00*2^-1  = 0.5
\n", + "
\n", + "
0x05 = 01_01 = +0b1.01*2^-1  = 0.625
\n", + "
\n", + "
0x06 = 01_10 = +0b1.10*2^-1  = 0.75
\n", + "
\n", + "
0x07 = 01_11 = +0b1.11*2^-1  = 0.875
\n", + "
\n", + "
0x08 = 10_00 = +0b1.00*2^0   = 1.0
\n", + "
\n", + "
0x09 = 10_01 = +0b1.01*2^0   = 1.25
\n", + "
\n", + "
0x0a = 10_10 = +0b1.10*2^0   = 1.5
\n", + "
\n", + "
0x0b = 10_11 = +0b1.11*2^0   = 1.75
\n", + "
\n", + "
0x0c = 11_00 = +0b1.00*2^1   = 2.0
\n", + "
\n", + "
0x0d = 11_01 = +0b1.01*2^1   = 2.5
\n", + "
\n", + "
0x0e = 11_10 = +0b1.10*2^1   = 3.0
\n", + "
\n", + "
0x0f = 11_11 = nan = nan
\n", + "
\n", + "
\n", + "
\n", + " \n", + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + "

\n", + "
\n", + "\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
p3109_k4p4esp3109_k4p4fsp3109_k4p4eup3109_k4p4fu
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0x00 = 0_000 = 0.0 = 0.0
\n", + "
\n", + "
0x01 = 0_001 = +0b0.001*2^1   = 0.25
\n", + "
\n", + "
0x02 = 0_010 = +0b0.010*2^1   = 0.5
\n", + "
\n", + "
0x03 = 0_011 = +0b0.011*2^1   = 0.75
\n", + "
\n", + "
0x04 = 0_100 = +0b0.100*2^1   = 1.0
\n", + "
\n", + "
0x05 = 0_101 = +0b0.101*2^1   = 1.25
\n", + "
\n", + "
0x06 = 0_110 = +0b0.110*2^1   = 1.5
\n", + "
\n", + "
0x07 = 0_111 = inf = inf
\n", + "
\n", + "
0x08 = 1_000 = nan = nan
\n", + "
\n", + "
0x09 = 1_001 = -0b0.001*2^1   = -0.25
\n", + "
\n", + "
0x0a = 1_010 = -0b0.010*2^1   = -0.5
\n", + "
\n", + "
0x0b = 1_011 = -0b0.011*2^1   = -0.75
\n", + "
\n", + "
0x0c = 1_100 = -0b0.100*2^1   = -1.0
\n", + "
\n", + "
0x0d = 1_101 = -0b0.101*2^1   = -1.25
\n", + "
\n", + "
0x0e = 1_110 = -0b0.110*2^1   = -1.5
\n", + "
\n", + "
0x0f = 1_111 = -inf = -inf
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0x00 = 0_000 = 0.0 = 0.0
\n", + "
\n", + "
0x01 = 0_001 = +0b0.001*2^1   = 0.25
\n", + "
\n", + "
0x02 = 0_010 = +0b0.010*2^1   = 0.5
\n", + "
\n", + "
0x03 = 0_011 = +0b0.011*2^1   = 0.75
\n", + "
\n", + "
0x04 = 0_100 = +0b0.100*2^1   = 1.0
\n", + "
\n", + "
0x05 = 0_101 = +0b0.101*2^1   = 1.25
\n", + "
\n", + "
0x06 = 0_110 = +0b0.110*2^1   = 1.5
\n", + "
\n", + "
0x07 = 0_111 = +0b0.111*2^1   = 1.75
\n", + "
\n", + "
0x08 = 1_000 = nan = nan
\n", + "
\n", + "
0x09 = 1_001 = -0b0.001*2^1   = -0.25
\n", + "
\n", + "
0x0a = 1_010 = -0b0.010*2^1   = -0.5
\n", + "
\n", + "
0x0b = 1_011 = -0b0.011*2^1   = -0.75
\n", + "
\n", + "
0x0c = 1_100 = -0b0.100*2^1   = -1.0
\n", + "
\n", + "
0x0d = 1_101 = -0b0.101*2^1   = -1.25
\n", + "
\n", + "
0x0e = 1_110 = -0b0.110*2^1   = -1.5
\n", + "
\n", + "
0x0f = 1_111 = -0b0.111*2^1   = -1.75
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0x00 = 0_000 = 0.0 = 0.0
\n", + "
\n", + "
0x01 = 0_001 = +0b0.001*2^0   = 0.125
\n", + "
\n", + "
0x02 = 0_010 = +0b0.010*2^0   = 0.25
\n", + "
\n", + "
0x03 = 0_011 = +0b0.011*2^0   = 0.375
\n", + "
\n", + "
0x04 = 0_100 = +0b0.100*2^0   = 0.5
\n", + "
\n", + "
0x05 = 0_101 = +0b0.101*2^0   = 0.625
\n", + "
\n", + "
0x06 = 0_110 = +0b0.110*2^0   = 0.75
\n", + "
\n", + "
0x07 = 0_111 = +0b0.111*2^0   = 0.875
\n", + "
\n", + "
0x08 = 1_000 = +0b1.000*2^0   = 1.0
\n", + "
\n", + "
0x09 = 1_001 = +0b1.001*2^0   = 1.125
\n", + "
\n", + "
0x0a = 1_010 = +0b1.010*2^0   = 1.25
\n", + "
\n", + "
0x0b = 1_011 = +0b1.011*2^0   = 1.375
\n", + "
\n", + "
0x0c = 1_100 = +0b1.100*2^0   = 1.5
\n", + "
\n", + "
0x0d = 1_101 = +0b1.101*2^0   = 1.625
\n", + "
\n", + "
0x0e = 1_110 = inf = inf
\n", + "
\n", + "
0x0f = 1_111 = nan = nan
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0x00 = 0_000 = 0.0 = 0.0
\n", + "
\n", + "
0x01 = 0_001 = +0b0.001*2^0   = 0.125
\n", + "
\n", + "
0x02 = 0_010 = +0b0.010*2^0   = 0.25
\n", + "
\n", + "
0x03 = 0_011 = +0b0.011*2^0   = 0.375
\n", + "
\n", + "
0x04 = 0_100 = +0b0.100*2^0   = 0.5
\n", + "
\n", + "
0x05 = 0_101 = +0b0.101*2^0   = 0.625
\n", + "
\n", + "
0x06 = 0_110 = +0b0.110*2^0   = 0.75
\n", + "
\n", + "
0x07 = 0_111 = +0b0.111*2^0   = 0.875
\n", + "
\n", + "
0x08 = 1_000 = +0b1.000*2^0   = 1.0
\n", + "
\n", + "
0x09 = 1_001 = +0b1.001*2^0   = 1.125
\n", + "
\n", + "
0x0a = 1_010 = +0b1.010*2^0   = 1.25
\n", + "
\n", + "
0x0b = 1_011 = +0b1.011*2^0   = 1.375
\n", + "
\n", + "
0x0c = 1_100 = +0b1.100*2^0   = 1.5
\n", + "
\n", + "
0x0d = 1_101 = +0b1.101*2^0   = 1.625
\n", + "
\n", + "
0x0e = 1_110 = +0b1.110*2^0   = 1.75
\n", + "
\n", + "
0x0f = 1_111 = nan = nan
\n", + "
\n", + "
\n", + "
\n", + " \n", + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "for p in (1, 2, 3, 4):\n", + " fis = [\n", + " format_info_p3109(4, p, domain, signedness == \"s\")\n", + " for signedness in (\"s\", \"u\")\n", + " for domain in (Domain.Extended, Domain.Finite)\n", + " ]\n", + " render(fis, short=False)" + ] + }, + { + "cell_type": "markdown", + "id": "27095cef", + "metadata": {}, + "source": [ + "## Check k=5" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "c1bbf6b2", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + "

\n", + "
\n", + "\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
p3109_k5p1esp3109_k5p1fsp3109_k5p1eup3109_k5p1fu
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0x00 = 0_0000_ = 0.0 = 0.0
\n", + "
\n", + "
0x01 = 0_0001_ = +0b1.0*2^-7  = ~0.0078
\n", + "
\n", + "
0x02 = 0_0010_ = +0b1.0*2^-6  = 0.015625
\n", + "
\n", + "
0x03 = 0_0011_ = +0b1.0*2^-5  = 0.03125
\n", + "
\n", + "
0x04 = 0_0100_ = +0b1.0*2^-4  = 0.0625
\n", + "
\n", + "
0x05 = 0_0101_ = +0b1.0*2^-3  = 0.125
\n", + "
\n", + "
0x06 = 0_0110_ = +0b1.0*2^-2  = 0.25
\n", + "
\n", + "
0x07 = 0_0111_ = +0b1.0*2^-1  = 0.5
\n", + "
\n", + "
0x08 = 0_1000_ = +0b1.0*2^0   = 1.0
\n", + "
\n", + "
0x09 = 0_1001_ = +0b1.0*2^1   = 2.0
\n", + "
\n", + "
0x0a = 0_1010_ = +0b1.0*2^2   = 4.0
\n", + "
\n", + "
0x0b = 0_1011_ = +0b1.0*2^3   = 8.0
\n", + "
\n", + "
0x0c = 0_1100_ = +0b1.0*2^4   = 16.0
\n", + "
\n", + "
0x0d = 0_1101_ = +0b1.0*2^5   = 32.0
\n", + "
\n", + "
0x0e = 0_1110_ = +0b1.0*2^6   = 64.0
\n", + "
\n", + "
0x0f = 0_1111_ = inf = inf
\n", + "
\n", + "
0x10 = 1_0000_ = nan = nan
\n", + "
\n", + "
0x11 = 1_0001_ = -0b1.0*2^-7  = ~-0.0078
\n", + "
\n", + "
0x12 = 1_0010_ = -0b1.0*2^-6  = ~-0.0156
\n", + "
\n", + "
0x13 = 1_0011_ = -0b1.0*2^-5  = -0.03125
\n", + "
\n", + "
0x14 = 1_0100_ = -0b1.0*2^-4  = -0.0625
\n", + "
\n", + "
0x15 = 1_0101_ = -0b1.0*2^-3  = -0.125
\n", + "
\n", + "
0x16 = 1_0110_ = -0b1.0*2^-2  = -0.25
\n", + "
\n", + "
0x17 = 1_0111_ = -0b1.0*2^-1  = -0.5
\n", + "
\n", + "
0x18 = 1_1000_ = -0b1.0*2^0   = -1.0
\n", + "
\n", + "
0x19 = 1_1001_ = -0b1.0*2^1   = -2.0
\n", + "
\n", + "
0x1a = 1_1010_ = -0b1.0*2^2   = -4.0
\n", + "
\n", + "
0x1b = 1_1011_ = -0b1.0*2^3   = -8.0
\n", + "
\n", + "
0x1c = 1_1100_ = -0b1.0*2^4   = -16.0
\n", + "
\n", + "
0x1d = 1_1101_ = -0b1.0*2^5   = -32.0
\n", + "
\n", + "
0x1e = 1_1110_ = -0b1.0*2^6   = -64.0
\n", + "
\n", + "
0x1f = 1_1111_ = -inf = -inf
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0x00 = 0_0000_ = 0.0 = 0.0
\n", + "
\n", + "
0x01 = 0_0001_ = +0b1.0*2^-7  = ~0.0078
\n", + "
\n", + "
0x02 = 0_0010_ = +0b1.0*2^-6  = 0.015625
\n", + "
\n", + "
0x03 = 0_0011_ = +0b1.0*2^-5  = 0.03125
\n", + "
\n", + "
0x04 = 0_0100_ = +0b1.0*2^-4  = 0.0625
\n", + "
\n", + "
0x05 = 0_0101_ = +0b1.0*2^-3  = 0.125
\n", + "
\n", + "
0x06 = 0_0110_ = +0b1.0*2^-2  = 0.25
\n", + "
\n", + "
0x07 = 0_0111_ = +0b1.0*2^-1  = 0.5
\n", + "
\n", + "
0x08 = 0_1000_ = +0b1.0*2^0   = 1.0
\n", + "
\n", + "
0x09 = 0_1001_ = +0b1.0*2^1   = 2.0
\n", + "
\n", + "
0x0a = 0_1010_ = +0b1.0*2^2   = 4.0
\n", + "
\n", + "
0x0b = 0_1011_ = +0b1.0*2^3   = 8.0
\n", + "
\n", + "
0x0c = 0_1100_ = +0b1.0*2^4   = 16.0
\n", + "
\n", + "
0x0d = 0_1101_ = +0b1.0*2^5   = 32.0
\n", + "
\n", + "
0x0e = 0_1110_ = +0b1.0*2^6   = 64.0
\n", + "
\n", + "
0x0f = 0_1111_ = +0b1.0*2^7   = 128.0
\n", + "
\n", + "
0x10 = 1_0000_ = nan = nan
\n", + "
\n", + "
0x11 = 1_0001_ = -0b1.0*2^-7  = ~-0.0078
\n", + "
\n", + "
0x12 = 1_0010_ = -0b1.0*2^-6  = ~-0.0156
\n", + "
\n", + "
0x13 = 1_0011_ = -0b1.0*2^-5  = -0.03125
\n", + "
\n", + "
0x14 = 1_0100_ = -0b1.0*2^-4  = -0.0625
\n", + "
\n", + "
0x15 = 1_0101_ = -0b1.0*2^-3  = -0.125
\n", + "
\n", + "
0x16 = 1_0110_ = -0b1.0*2^-2  = -0.25
\n", + "
\n", + "
0x17 = 1_0111_ = -0b1.0*2^-1  = -0.5
\n", + "
\n", + "
0x18 = 1_1000_ = -0b1.0*2^0   = -1.0
\n", + "
\n", + "
0x19 = 1_1001_ = -0b1.0*2^1   = -2.0
\n", + "
\n", + "
0x1a = 1_1010_ = -0b1.0*2^2   = -4.0
\n", + "
\n", + "
0x1b = 1_1011_ = -0b1.0*2^3   = -8.0
\n", + "
\n", + "
0x1c = 1_1100_ = -0b1.0*2^4   = -16.0
\n", + "
\n", + "
0x1d = 1_1101_ = -0b1.0*2^5   = -32.0
\n", + "
\n", + "
0x1e = 1_1110_ = -0b1.0*2^6   = -64.0
\n", + "
\n", + "
0x1f = 1_1111_ = -0b1.0*2^7   = -128.0
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0x00 = 00000_ = 0.0 = 0.0
\n", + "
\n", + "
0x01 = 00001_ = +0b1.0*2^-15 = ~3.052e-05
\n", + "
\n", + "
0x02 = 00010_ = +0b1.0*2^-14 = ~6.104e-05
\n", + "
\n", + "
0x03 = 00011_ = +0b1.0*2^-13 = ~0.0001
\n", + "
\n", + "
0x04 = 00100_ = +0b1.0*2^-12 = ~0.0002
\n", + "
\n", + "
0x05 = 00101_ = +0b1.0*2^-11 = ~0.0005
\n", + "
\n", + "
0x06 = 00110_ = +0b1.0*2^-10 = ~0.0010
\n", + "
\n", + "
0x07 = 00111_ = +0b1.0*2^-9  = ~0.0020
\n", + "
\n", + "
0x08 = 01000_ = +0b1.0*2^-8  = ~0.0039
\n", + "
\n", + "
0x09 = 01001_ = +0b1.0*2^-7  = ~0.0078
\n", + "
\n", + "
0x0a = 01010_ = +0b1.0*2^-6  = 0.015625
\n", + "
\n", + "
0x0b = 01011_ = +0b1.0*2^-5  = 0.03125
\n", + "
\n", + "
0x0c = 01100_ = +0b1.0*2^-4  = 0.0625
\n", + "
\n", + "
0x0d = 01101_ = +0b1.0*2^-3  = 0.125
\n", + "
\n", + "
0x0e = 01110_ = +0b1.0*2^-2  = 0.25
\n", + "
\n", + "
0x0f = 01111_ = +0b1.0*2^-1  = 0.5
\n", + "
\n", + "
0x10 = 10000_ = +0b1.0*2^0   = 1.0
\n", + "
\n", + "
0x11 = 10001_ = +0b1.0*2^1   = 2.0
\n", + "
\n", + "
0x12 = 10010_ = +0b1.0*2^2   = 4.0
\n", + "
\n", + "
0x13 = 10011_ = +0b1.0*2^3   = 8.0
\n", + "
\n", + "
0x14 = 10100_ = +0b1.0*2^4   = 16.0
\n", + "
\n", + "
0x15 = 10101_ = +0b1.0*2^5   = 32.0
\n", + "
\n", + "
0x16 = 10110_ = +0b1.0*2^6   = 64.0
\n", + "
\n", + "
0x17 = 10111_ = +0b1.0*2^7   = 128.0
\n", + "
\n", + "
0x18 = 11000_ = +0b1.0*2^8   = 256.0
\n", + "
\n", + "
0x19 = 11001_ = +0b1.0*2^9   = 512.0
\n", + "
\n", + "
0x1a = 11010_ = +0b1.0*2^10  = 1024.0
\n", + "
\n", + "
0x1b = 11011_ = +0b1.0*2^11  = 2048.0
\n", + "
\n", + "
0x1c = 11100_ = +0b1.0*2^12  = 4096.0
\n", + "
\n", + "
0x1d = 11101_ = +0b1.0*2^13  = 8192.0
\n", + "
\n", + "
0x1e = 11110_ = inf = inf
\n", + "
\n", + "
0x1f = 11111_ = nan = nan
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0x00 = 00000_ = 0.0 = 0.0
\n", + "
\n", + "
0x01 = 00001_ = +0b1.0*2^-15 = ~3.052e-05
\n", + "
\n", + "
0x02 = 00010_ = +0b1.0*2^-14 = ~6.104e-05
\n", + "
\n", + "
0x03 = 00011_ = +0b1.0*2^-13 = ~0.0001
\n", + "
\n", + "
0x04 = 00100_ = +0b1.0*2^-12 = ~0.0002
\n", + "
\n", + "
0x05 = 00101_ = +0b1.0*2^-11 = ~0.0005
\n", + "
\n", + "
0x06 = 00110_ = +0b1.0*2^-10 = ~0.0010
\n", + "
\n", + "
0x07 = 00111_ = +0b1.0*2^-9  = ~0.0020
\n", + "
\n", + "
0x08 = 01000_ = +0b1.0*2^-8  = ~0.0039
\n", + "
\n", + "
0x09 = 01001_ = +0b1.0*2^-7  = ~0.0078
\n", + "
\n", + "
0x0a = 01010_ = +0b1.0*2^-6  = 0.015625
\n", + "
\n", + "
0x0b = 01011_ = +0b1.0*2^-5  = 0.03125
\n", + "
\n", + "
0x0c = 01100_ = +0b1.0*2^-4  = 0.0625
\n", + "
\n", + "
0x0d = 01101_ = +0b1.0*2^-3  = 0.125
\n", + "
\n", + "
0x0e = 01110_ = +0b1.0*2^-2  = 0.25
\n", + "
\n", + "
0x0f = 01111_ = +0b1.0*2^-1  = 0.5
\n", + "
\n", + "
0x10 = 10000_ = +0b1.0*2^0   = 1.0
\n", + "
\n", + "
0x11 = 10001_ = +0b1.0*2^1   = 2.0
\n", + "
\n", + "
0x12 = 10010_ = +0b1.0*2^2   = 4.0
\n", + "
\n", + "
0x13 = 10011_ = +0b1.0*2^3   = 8.0
\n", + "
\n", + "
0x14 = 10100_ = +0b1.0*2^4   = 16.0
\n", + "
\n", + "
0x15 = 10101_ = +0b1.0*2^5   = 32.0
\n", + "
\n", + "
0x16 = 10110_ = +0b1.0*2^6   = 64.0
\n", + "
\n", + "
0x17 = 10111_ = +0b1.0*2^7   = 128.0
\n", + "
\n", + "
0x18 = 11000_ = +0b1.0*2^8   = 256.0
\n", + "
\n", + "
0x19 = 11001_ = +0b1.0*2^9   = 512.0
\n", + "
\n", + "
0x1a = 11010_ = +0b1.0*2^10  = 1024.0
\n", + "
\n", + "
0x1b = 11011_ = +0b1.0*2^11  = 2048.0
\n", + "
\n", + "
0x1c = 11100_ = +0b1.0*2^12  = 4096.0
\n", + "
\n", + "
0x1d = 11101_ = +0b1.0*2^13  = 8192.0
\n", + "
\n", + "
0x1e = 11110_ = +0b1.0*2^14  = 16384.0
\n", + "
\n", + "
0x1f = 11111_ = nan = nan
\n", + "
\n", + "
\n", + "
\n", + " \n", + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + "

\n", + "
\n", + "\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
p3109_k5p2esp3109_k5p2fsp3109_k5p2eup3109_k5p2fu
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0x00 = 0_000_0 = 0.0 = 0.0
\n", + "
\n", + "
0x01 = 0_000_1 = +0b0.1*2^-3  = 0.0625
\n", + "
\n", + "
0x02 = 0_001_0 = +0b1.0*2^-3  = 0.125
\n", + "
\n", + "
0x03 = 0_001_1 = +0b1.1*2^-3  = 0.1875
\n", + "
\n", + "
0x04 = 0_010_0 = +0b1.0*2^-2  = 0.25
\n", + "
\n", + "
0x05 = 0_010_1 = +0b1.1*2^-2  = 0.375
\n", + "
\n", + "
0x06 = 0_011_0 = +0b1.0*2^-1  = 0.5
\n", + "
\n", + "
0x07 = 0_011_1 = +0b1.1*2^-1  = 0.75
\n", + "
\n", + "
0x08 = 0_100_0 = +0b1.0*2^0   = 1.0
\n", + "
\n", + "
0x09 = 0_100_1 = +0b1.1*2^0   = 1.5
\n", + "
\n", + "
0x0a = 0_101_0 = +0b1.0*2^1   = 2.0
\n", + "
\n", + "
0x0b = 0_101_1 = +0b1.1*2^1   = 3.0
\n", + "
\n", + "
0x0c = 0_110_0 = +0b1.0*2^2   = 4.0
\n", + "
\n", + "
0x0d = 0_110_1 = +0b1.1*2^2   = 6.0
\n", + "
\n", + "
0x0e = 0_111_0 = +0b1.0*2^3   = 8.0
\n", + "
\n", + "
0x0f = 0_111_1 = inf = inf
\n", + "
\n", + "
0x10 = 1_000_0 = nan = nan
\n", + "
\n", + "
0x11 = 1_000_1 = -0b0.1*2^-3  = -0.0625
\n", + "
\n", + "
0x12 = 1_001_0 = -0b1.0*2^-3  = -0.125
\n", + "
\n", + "
0x13 = 1_001_1 = -0b1.1*2^-3  = -0.1875
\n", + "
\n", + "
0x14 = 1_010_0 = -0b1.0*2^-2  = -0.25
\n", + "
\n", + "
0x15 = 1_010_1 = -0b1.1*2^-2  = -0.375
\n", + "
\n", + "
0x16 = 1_011_0 = -0b1.0*2^-1  = -0.5
\n", + "
\n", + "
0x17 = 1_011_1 = -0b1.1*2^-1  = -0.75
\n", + "
\n", + "
0x18 = 1_100_0 = -0b1.0*2^0   = -1.0
\n", + "
\n", + "
0x19 = 1_100_1 = -0b1.1*2^0   = -1.5
\n", + "
\n", + "
0x1a = 1_101_0 = -0b1.0*2^1   = -2.0
\n", + "
\n", + "
0x1b = 1_101_1 = -0b1.1*2^1   = -3.0
\n", + "
\n", + "
0x1c = 1_110_0 = -0b1.0*2^2   = -4.0
\n", + "
\n", + "
0x1d = 1_110_1 = -0b1.1*2^2   = -6.0
\n", + "
\n", + "
0x1e = 1_111_0 = -0b1.0*2^3   = -8.0
\n", + "
\n", + "
0x1f = 1_111_1 = -inf = -inf
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0x00 = 0_000_0 = 0.0 = 0.0
\n", + "
\n", + "
0x01 = 0_000_1 = +0b0.1*2^-3  = 0.0625
\n", + "
\n", + "
0x02 = 0_001_0 = +0b1.0*2^-3  = 0.125
\n", + "
\n", + "
0x03 = 0_001_1 = +0b1.1*2^-3  = 0.1875
\n", + "
\n", + "
0x04 = 0_010_0 = +0b1.0*2^-2  = 0.25
\n", + "
\n", + "
0x05 = 0_010_1 = +0b1.1*2^-2  = 0.375
\n", + "
\n", + "
0x06 = 0_011_0 = +0b1.0*2^-1  = 0.5
\n", + "
\n", + "
0x07 = 0_011_1 = +0b1.1*2^-1  = 0.75
\n", + "
\n", + "
0x08 = 0_100_0 = +0b1.0*2^0   = 1.0
\n", + "
\n", + "
0x09 = 0_100_1 = +0b1.1*2^0   = 1.5
\n", + "
\n", + "
0x0a = 0_101_0 = +0b1.0*2^1   = 2.0
\n", + "
\n", + "
0x0b = 0_101_1 = +0b1.1*2^1   = 3.0
\n", + "
\n", + "
0x0c = 0_110_0 = +0b1.0*2^2   = 4.0
\n", + "
\n", + "
0x0d = 0_110_1 = +0b1.1*2^2   = 6.0
\n", + "
\n", + "
0x0e = 0_111_0 = +0b1.0*2^3   = 8.0
\n", + "
\n", + "
0x0f = 0_111_1 = +0b1.1*2^3   = 12.0
\n", + "
\n", + "
0x10 = 1_000_0 = nan = nan
\n", + "
\n", + "
0x11 = 1_000_1 = -0b0.1*2^-3  = -0.0625
\n", + "
\n", + "
0x12 = 1_001_0 = -0b1.0*2^-3  = -0.125
\n", + "
\n", + "
0x13 = 1_001_1 = -0b1.1*2^-3  = -0.1875
\n", + "
\n", + "
0x14 = 1_010_0 = -0b1.0*2^-2  = -0.25
\n", + "
\n", + "
0x15 = 1_010_1 = -0b1.1*2^-2  = -0.375
\n", + "
\n", + "
0x16 = 1_011_0 = -0b1.0*2^-1  = -0.5
\n", + "
\n", + "
0x17 = 1_011_1 = -0b1.1*2^-1  = -0.75
\n", + "
\n", + "
0x18 = 1_100_0 = -0b1.0*2^0   = -1.0
\n", + "
\n", + "
0x19 = 1_100_1 = -0b1.1*2^0   = -1.5
\n", + "
\n", + "
0x1a = 1_101_0 = -0b1.0*2^1   = -2.0
\n", + "
\n", + "
0x1b = 1_101_1 = -0b1.1*2^1   = -3.0
\n", + "
\n", + "
0x1c = 1_110_0 = -0b1.0*2^2   = -4.0
\n", + "
\n", + "
0x1d = 1_110_1 = -0b1.1*2^2   = -6.0
\n", + "
\n", + "
0x1e = 1_111_0 = -0b1.0*2^3   = -8.0
\n", + "
\n", + "
0x1f = 1_111_1 = -0b1.1*2^3   = -12.0
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0x00 = 0000_0 = 0.0 = 0.0
\n", + "
\n", + "
0x01 = 0000_1 = +0b0.1*2^-7  = ~0.0039
\n", + "
\n", + "
0x02 = 0001_0 = +0b1.0*2^-7  = ~0.0078
\n", + "
\n", + "
0x03 = 0001_1 = +0b1.1*2^-7  = ~0.0117
\n", + "
\n", + "
0x04 = 0010_0 = +0b1.0*2^-6  = 0.015625
\n", + "
\n", + "
0x05 = 0010_1 = +0b1.1*2^-6  = ~0.0234
\n", + "
\n", + "
0x06 = 0011_0 = +0b1.0*2^-5  = 0.03125
\n", + "
\n", + "
0x07 = 0011_1 = +0b1.1*2^-5  = 0.046875
\n", + "
\n", + "
0x08 = 0100_0 = +0b1.0*2^-4  = 0.0625
\n", + "
\n", + "
0x09 = 0100_1 = +0b1.1*2^-4  = 0.09375
\n", + "
\n", + "
0x0a = 0101_0 = +0b1.0*2^-3  = 0.125
\n", + "
\n", + "
0x0b = 0101_1 = +0b1.1*2^-3  = 0.1875
\n", + "
\n", + "
0x0c = 0110_0 = +0b1.0*2^-2  = 0.25
\n", + "
\n", + "
0x0d = 0110_1 = +0b1.1*2^-2  = 0.375
\n", + "
\n", + "
0x0e = 0111_0 = +0b1.0*2^-1  = 0.5
\n", + "
\n", + "
0x0f = 0111_1 = +0b1.1*2^-1  = 0.75
\n", + "
\n", + "
0x10 = 1000_0 = +0b1.0*2^0   = 1.0
\n", + "
\n", + "
0x11 = 1000_1 = +0b1.1*2^0   = 1.5
\n", + "
\n", + "
0x12 = 1001_0 = +0b1.0*2^1   = 2.0
\n", + "
\n", + "
0x13 = 1001_1 = +0b1.1*2^1   = 3.0
\n", + "
\n", + "
0x14 = 1010_0 = +0b1.0*2^2   = 4.0
\n", + "
\n", + "
0x15 = 1010_1 = +0b1.1*2^2   = 6.0
\n", + "
\n", + "
0x16 = 1011_0 = +0b1.0*2^3   = 8.0
\n", + "
\n", + "
0x17 = 1011_1 = +0b1.1*2^3   = 12.0
\n", + "
\n", + "
0x18 = 1100_0 = +0b1.0*2^4   = 16.0
\n", + "
\n", + "
0x19 = 1100_1 = +0b1.1*2^4   = 24.0
\n", + "
\n", + "
0x1a = 1101_0 = +0b1.0*2^5   = 32.0
\n", + "
\n", + "
0x1b = 1101_1 = +0b1.1*2^5   = 48.0
\n", + "
\n", + "
0x1c = 1110_0 = +0b1.0*2^6   = 64.0
\n", + "
\n", + "
0x1d = 1110_1 = +0b1.1*2^6   = 96.0
\n", + "
\n", + "
0x1e = 1111_0 = inf = inf
\n", + "
\n", + "
0x1f = 1111_1 = nan = nan
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0x00 = 0000_0 = 0.0 = 0.0
\n", + "
\n", + "
0x01 = 0000_1 = +0b0.1*2^-7  = ~0.0039
\n", + "
\n", + "
0x02 = 0001_0 = +0b1.0*2^-7  = ~0.0078
\n", + "
\n", + "
0x03 = 0001_1 = +0b1.1*2^-7  = ~0.0117
\n", + "
\n", + "
0x04 = 0010_0 = +0b1.0*2^-6  = 0.015625
\n", + "
\n", + "
0x05 = 0010_1 = +0b1.1*2^-6  = ~0.0234
\n", + "
\n", + "
0x06 = 0011_0 = +0b1.0*2^-5  = 0.03125
\n", + "
\n", + "
0x07 = 0011_1 = +0b1.1*2^-5  = 0.046875
\n", + "
\n", + "
0x08 = 0100_0 = +0b1.0*2^-4  = 0.0625
\n", + "
\n", + "
0x09 = 0100_1 = +0b1.1*2^-4  = 0.09375
\n", + "
\n", + "
0x0a = 0101_0 = +0b1.0*2^-3  = 0.125
\n", + "
\n", + "
0x0b = 0101_1 = +0b1.1*2^-3  = 0.1875
\n", + "
\n", + "
0x0c = 0110_0 = +0b1.0*2^-2  = 0.25
\n", + "
\n", + "
0x0d = 0110_1 = +0b1.1*2^-2  = 0.375
\n", + "
\n", + "
0x0e = 0111_0 = +0b1.0*2^-1  = 0.5
\n", + "
\n", + "
0x0f = 0111_1 = +0b1.1*2^-1  = 0.75
\n", + "
\n", + "
0x10 = 1000_0 = +0b1.0*2^0   = 1.0
\n", + "
\n", + "
0x11 = 1000_1 = +0b1.1*2^0   = 1.5
\n", + "
\n", + "
0x12 = 1001_0 = +0b1.0*2^1   = 2.0
\n", + "
\n", + "
0x13 = 1001_1 = +0b1.1*2^1   = 3.0
\n", + "
\n", + "
0x14 = 1010_0 = +0b1.0*2^2   = 4.0
\n", + "
\n", + "
0x15 = 1010_1 = +0b1.1*2^2   = 6.0
\n", + "
\n", + "
0x16 = 1011_0 = +0b1.0*2^3   = 8.0
\n", + "
\n", + "
0x17 = 1011_1 = +0b1.1*2^3   = 12.0
\n", + "
\n", + "
0x18 = 1100_0 = +0b1.0*2^4   = 16.0
\n", + "
\n", + "
0x19 = 1100_1 = +0b1.1*2^4   = 24.0
\n", + "
\n", + "
0x1a = 1101_0 = +0b1.0*2^5   = 32.0
\n", + "
\n", + "
0x1b = 1101_1 = +0b1.1*2^5   = 48.0
\n", + "
\n", + "
0x1c = 1110_0 = +0b1.0*2^6   = 64.0
\n", + "
\n", + "
0x1d = 1110_1 = +0b1.1*2^6   = 96.0
\n", + "
\n", + "
0x1e = 1111_0 = +0b1.0*2^7   = 128.0
\n", + "
\n", + "
0x1f = 1111_1 = nan = nan
\n", + "
\n", + "
\n", + "
\n", + " \n", + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + "

\n", + "
\n", + "\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
p3109_k5p3esp3109_k5p3fsp3109_k5p3eup3109_k5p3fu
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0x00 = 0_00_00 = 0.0 = 0.0
\n", + "
\n", + "
0x01 = 0_00_01 = +0b0.01*2^-1  = 0.125
\n", + "
\n", + "
0x02 = 0_00_10 = +0b0.10*2^-1  = 0.25
\n", + "
\n", + "
0x03 = 0_00_11 = +0b0.11*2^-1  = 0.375
\n", + "
\n", + "
0x04 = 0_01_00 = +0b1.00*2^-1  = 0.5
\n", + "
\n", + "
0x05 = 0_01_01 = +0b1.01*2^-1  = 0.625
\n", + "
\n", + "
0x06 = 0_01_10 = +0b1.10*2^-1  = 0.75
\n", + "
\n", + "
0x07 = 0_01_11 = +0b1.11*2^-1  = 0.875
\n", + "
\n", + "
0x08 = 0_10_00 = +0b1.00*2^0   = 1.0
\n", + "
\n", + "
0x09 = 0_10_01 = +0b1.01*2^0   = 1.25
\n", + "
\n", + "
0x0a = 0_10_10 = +0b1.10*2^0   = 1.5
\n", + "
\n", + "
0x0b = 0_10_11 = +0b1.11*2^0   = 1.75
\n", + "
\n", + "
0x0c = 0_11_00 = +0b1.00*2^1   = 2.0
\n", + "
\n", + "
0x0d = 0_11_01 = +0b1.01*2^1   = 2.5
\n", + "
\n", + "
0x0e = 0_11_10 = +0b1.10*2^1   = 3.0
\n", + "
\n", + "
0x0f = 0_11_11 = inf = inf
\n", + "
\n", + "
0x10 = 1_00_00 = nan = nan
\n", + "
\n", + "
0x11 = 1_00_01 = -0b0.01*2^-1  = -0.125
\n", + "
\n", + "
0x12 = 1_00_10 = -0b0.10*2^-1  = -0.25
\n", + "
\n", + "
0x13 = 1_00_11 = -0b0.11*2^-1  = -0.375
\n", + "
\n", + "
0x14 = 1_01_00 = -0b1.00*2^-1  = -0.5
\n", + "
\n", + "
0x15 = 1_01_01 = -0b1.01*2^-1  = -0.625
\n", + "
\n", + "
0x16 = 1_01_10 = -0b1.10*2^-1  = -0.75
\n", + "
\n", + "
0x17 = 1_01_11 = -0b1.11*2^-1  = -0.875
\n", + "
\n", + "
0x18 = 1_10_00 = -0b1.00*2^0   = -1.0
\n", + "
\n", + "
0x19 = 1_10_01 = -0b1.01*2^0   = -1.25
\n", + "
\n", + "
0x1a = 1_10_10 = -0b1.10*2^0   = -1.5
\n", + "
\n", + "
0x1b = 1_10_11 = -0b1.11*2^0   = -1.75
\n", + "
\n", + "
0x1c = 1_11_00 = -0b1.00*2^1   = -2.0
\n", + "
\n", + "
0x1d = 1_11_01 = -0b1.01*2^1   = -2.5
\n", + "
\n", + "
0x1e = 1_11_10 = -0b1.10*2^1   = -3.0
\n", + "
\n", + "
0x1f = 1_11_11 = -inf = -inf
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0x00 = 0_00_00 = 0.0 = 0.0
\n", + "
\n", + "
0x01 = 0_00_01 = +0b0.01*2^-1  = 0.125
\n", + "
\n", + "
0x02 = 0_00_10 = +0b0.10*2^-1  = 0.25
\n", + "
\n", + "
0x03 = 0_00_11 = +0b0.11*2^-1  = 0.375
\n", + "
\n", + "
0x04 = 0_01_00 = +0b1.00*2^-1  = 0.5
\n", + "
\n", + "
0x05 = 0_01_01 = +0b1.01*2^-1  = 0.625
\n", + "
\n", + "
0x06 = 0_01_10 = +0b1.10*2^-1  = 0.75
\n", + "
\n", + "
0x07 = 0_01_11 = +0b1.11*2^-1  = 0.875
\n", + "
\n", + "
0x08 = 0_10_00 = +0b1.00*2^0   = 1.0
\n", + "
\n", + "
0x09 = 0_10_01 = +0b1.01*2^0   = 1.25
\n", + "
\n", + "
0x0a = 0_10_10 = +0b1.10*2^0   = 1.5
\n", + "
\n", + "
0x0b = 0_10_11 = +0b1.11*2^0   = 1.75
\n", + "
\n", + "
0x0c = 0_11_00 = +0b1.00*2^1   = 2.0
\n", + "
\n", + "
0x0d = 0_11_01 = +0b1.01*2^1   = 2.5
\n", + "
\n", + "
0x0e = 0_11_10 = +0b1.10*2^1   = 3.0
\n", + "
\n", + "
0x0f = 0_11_11 = +0b1.11*2^1   = 3.5
\n", + "
\n", + "
0x10 = 1_00_00 = nan = nan
\n", + "
\n", + "
0x11 = 1_00_01 = -0b0.01*2^-1  = -0.125
\n", + "
\n", + "
0x12 = 1_00_10 = -0b0.10*2^-1  = -0.25
\n", + "
\n", + "
0x13 = 1_00_11 = -0b0.11*2^-1  = -0.375
\n", + "
\n", + "
0x14 = 1_01_00 = -0b1.00*2^-1  = -0.5
\n", + "
\n", + "
0x15 = 1_01_01 = -0b1.01*2^-1  = -0.625
\n", + "
\n", + "
0x16 = 1_01_10 = -0b1.10*2^-1  = -0.75
\n", + "
\n", + "
0x17 = 1_01_11 = -0b1.11*2^-1  = -0.875
\n", + "
\n", + "
0x18 = 1_10_00 = -0b1.00*2^0   = -1.0
\n", + "
\n", + "
0x19 = 1_10_01 = -0b1.01*2^0   = -1.25
\n", + "
\n", + "
0x1a = 1_10_10 = -0b1.10*2^0   = -1.5
\n", + "
\n", + "
0x1b = 1_10_11 = -0b1.11*2^0   = -1.75
\n", + "
\n", + "
0x1c = 1_11_00 = -0b1.00*2^1   = -2.0
\n", + "
\n", + "
0x1d = 1_11_01 = -0b1.01*2^1   = -2.5
\n", + "
\n", + "
0x1e = 1_11_10 = -0b1.10*2^1   = -3.0
\n", + "
\n", + "
0x1f = 1_11_11 = -0b1.11*2^1   = -3.5
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0x00 = 000_00 = 0.0 = 0.0
\n", + "
\n", + "
0x01 = 000_01 = +0b0.01*2^-3  = 0.03125
\n", + "
\n", + "
0x02 = 000_10 = +0b0.10*2^-3  = 0.0625
\n", + "
\n", + "
0x03 = 000_11 = +0b0.11*2^-3  = 0.09375
\n", + "
\n", + "
0x04 = 001_00 = +0b1.00*2^-3  = 0.125
\n", + "
\n", + "
0x05 = 001_01 = +0b1.01*2^-3  = 0.15625
\n", + "
\n", + "
0x06 = 001_10 = +0b1.10*2^-3  = 0.1875
\n", + "
\n", + "
0x07 = 001_11 = +0b1.11*2^-3  = 0.21875
\n", + "
\n", + "
0x08 = 010_00 = +0b1.00*2^-2  = 0.25
\n", + "
\n", + "
0x09 = 010_01 = +0b1.01*2^-2  = 0.3125
\n", + "
\n", + "
0x0a = 010_10 = +0b1.10*2^-2  = 0.375
\n", + "
\n", + "
0x0b = 010_11 = +0b1.11*2^-2  = 0.4375
\n", + "
\n", + "
0x0c = 011_00 = +0b1.00*2^-1  = 0.5
\n", + "
\n", + "
0x0d = 011_01 = +0b1.01*2^-1  = 0.625
\n", + "
\n", + "
0x0e = 011_10 = +0b1.10*2^-1  = 0.75
\n", + "
\n", + "
0x0f = 011_11 = +0b1.11*2^-1  = 0.875
\n", + "
\n", + "
0x10 = 100_00 = +0b1.00*2^0   = 1.0
\n", + "
\n", + "
0x11 = 100_01 = +0b1.01*2^0   = 1.25
\n", + "
\n", + "
0x12 = 100_10 = +0b1.10*2^0   = 1.5
\n", + "
\n", + "
0x13 = 100_11 = +0b1.11*2^0   = 1.75
\n", + "
\n", + "
0x14 = 101_00 = +0b1.00*2^1   = 2.0
\n", + "
\n", + "
0x15 = 101_01 = +0b1.01*2^1   = 2.5
\n", + "
\n", + "
0x16 = 101_10 = +0b1.10*2^1   = 3.0
\n", + "
\n", + "
0x17 = 101_11 = +0b1.11*2^1   = 3.5
\n", + "
\n", + "
0x18 = 110_00 = +0b1.00*2^2   = 4.0
\n", + "
\n", + "
0x19 = 110_01 = +0b1.01*2^2   = 5.0
\n", + "
\n", + "
0x1a = 110_10 = +0b1.10*2^2   = 6.0
\n", + "
\n", + "
0x1b = 110_11 = +0b1.11*2^2   = 7.0
\n", + "
\n", + "
0x1c = 111_00 = +0b1.00*2^3   = 8.0
\n", + "
\n", + "
0x1d = 111_01 = +0b1.01*2^3   = 10.0
\n", + "
\n", + "
0x1e = 111_10 = inf = inf
\n", + "
\n", + "
0x1f = 111_11 = nan = nan
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0x00 = 000_00 = 0.0 = 0.0
\n", + "
\n", + "
0x01 = 000_01 = +0b0.01*2^-3  = 0.03125
\n", + "
\n", + "
0x02 = 000_10 = +0b0.10*2^-3  = 0.0625
\n", + "
\n", + "
0x03 = 000_11 = +0b0.11*2^-3  = 0.09375
\n", + "
\n", + "
0x04 = 001_00 = +0b1.00*2^-3  = 0.125
\n", + "
\n", + "
0x05 = 001_01 = +0b1.01*2^-3  = 0.15625
\n", + "
\n", + "
0x06 = 001_10 = +0b1.10*2^-3  = 0.1875
\n", + "
\n", + "
0x07 = 001_11 = +0b1.11*2^-3  = 0.21875
\n", + "
\n", + "
0x08 = 010_00 = +0b1.00*2^-2  = 0.25
\n", + "
\n", + "
0x09 = 010_01 = +0b1.01*2^-2  = 0.3125
\n", + "
\n", + "
0x0a = 010_10 = +0b1.10*2^-2  = 0.375
\n", + "
\n", + "
0x0b = 010_11 = +0b1.11*2^-2  = 0.4375
\n", + "
\n", + "
0x0c = 011_00 = +0b1.00*2^-1  = 0.5
\n", + "
\n", + "
0x0d = 011_01 = +0b1.01*2^-1  = 0.625
\n", + "
\n", + "
0x0e = 011_10 = +0b1.10*2^-1  = 0.75
\n", + "
\n", + "
0x0f = 011_11 = +0b1.11*2^-1  = 0.875
\n", + "
\n", + "
0x10 = 100_00 = +0b1.00*2^0   = 1.0
\n", + "
\n", + "
0x11 = 100_01 = +0b1.01*2^0   = 1.25
\n", + "
\n", + "
0x12 = 100_10 = +0b1.10*2^0   = 1.5
\n", + "
\n", + "
0x13 = 100_11 = +0b1.11*2^0   = 1.75
\n", + "
\n", + "
0x14 = 101_00 = +0b1.00*2^1   = 2.0
\n", + "
\n", + "
0x15 = 101_01 = +0b1.01*2^1   = 2.5
\n", + "
\n", + "
0x16 = 101_10 = +0b1.10*2^1   = 3.0
\n", + "
\n", + "
0x17 = 101_11 = +0b1.11*2^1   = 3.5
\n", + "
\n", + "
0x18 = 110_00 = +0b1.00*2^2   = 4.0
\n", + "
\n", + "
0x19 = 110_01 = +0b1.01*2^2   = 5.0
\n", + "
\n", + "
0x1a = 110_10 = +0b1.10*2^2   = 6.0
\n", + "
\n", + "
0x1b = 110_11 = +0b1.11*2^2   = 7.0
\n", + "
\n", + "
0x1c = 111_00 = +0b1.00*2^3   = 8.0
\n", + "
\n", + "
0x1d = 111_01 = +0b1.01*2^3   = 10.0
\n", + "
\n", + "
0x1e = 111_10 = +0b1.10*2^3   = 12.0
\n", + "
\n", + "
0x1f = 111_11 = nan = nan
\n", + "
\n", + "
\n", + "
\n", + " \n", + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + "

\n", + "
\n", + "\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
p3109_k5p4esp3109_k5p4fsp3109_k5p4eup3109_k5p4fu
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0x00 = 0_0_000 = 0.0 = 0.0
\n", + "
\n", + "
0x01 = 0_0_001 = +0b0.001*2^0   = 0.125
\n", + "
\n", + "
0x02 = 0_0_010 = +0b0.010*2^0   = 0.25
\n", + "
\n", + "
0x03 = 0_0_011 = +0b0.011*2^0   = 0.375
\n", + "
\n", + "
0x04 = 0_0_100 = +0b0.100*2^0   = 0.5
\n", + "
\n", + "
0x05 = 0_0_101 = +0b0.101*2^0   = 0.625
\n", + "
\n", + "
0x06 = 0_0_110 = +0b0.110*2^0   = 0.75
\n", + "
\n", + "
0x07 = 0_0_111 = +0b0.111*2^0   = 0.875
\n", + "
\n", + "
0x08 = 0_1_000 = +0b1.000*2^0   = 1.0
\n", + "
\n", + "
0x09 = 0_1_001 = +0b1.001*2^0   = 1.125
\n", + "
\n", + "
0x0a = 0_1_010 = +0b1.010*2^0   = 1.25
\n", + "
\n", + "
0x0b = 0_1_011 = +0b1.011*2^0   = 1.375
\n", + "
\n", + "
0x0c = 0_1_100 = +0b1.100*2^0   = 1.5
\n", + "
\n", + "
0x0d = 0_1_101 = +0b1.101*2^0   = 1.625
\n", + "
\n", + "
0x0e = 0_1_110 = +0b1.110*2^0   = 1.75
\n", + "
\n", + "
0x0f = 0_1_111 = inf = inf
\n", + "
\n", + "
0x10 = 1_0_000 = nan = nan
\n", + "
\n", + "
0x11 = 1_0_001 = -0b0.001*2^0   = -0.125
\n", + "
\n", + "
0x12 = 1_0_010 = -0b0.010*2^0   = -0.25
\n", + "
\n", + "
0x13 = 1_0_011 = -0b0.011*2^0   = -0.375
\n", + "
\n", + "
0x14 = 1_0_100 = -0b0.100*2^0   = -0.5
\n", + "
\n", + "
0x15 = 1_0_101 = -0b0.101*2^0   = -0.625
\n", + "
\n", + "
0x16 = 1_0_110 = -0b0.110*2^0   = -0.75
\n", + "
\n", + "
0x17 = 1_0_111 = -0b0.111*2^0   = -0.875
\n", + "
\n", + "
0x18 = 1_1_000 = -0b1.000*2^0   = -1.0
\n", + "
\n", + "
0x19 = 1_1_001 = -0b1.001*2^0   = -1.125
\n", + "
\n", + "
0x1a = 1_1_010 = -0b1.010*2^0   = -1.25
\n", + "
\n", + "
0x1b = 1_1_011 = -0b1.011*2^0   = -1.375
\n", + "
\n", + "
0x1c = 1_1_100 = -0b1.100*2^0   = -1.5
\n", + "
\n", + "
0x1d = 1_1_101 = -0b1.101*2^0   = -1.625
\n", + "
\n", + "
0x1e = 1_1_110 = -0b1.110*2^0   = -1.75
\n", + "
\n", + "
0x1f = 1_1_111 = -inf = -inf
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0x00 = 0_0_000 = 0.0 = 0.0
\n", + "
\n", + "
0x01 = 0_0_001 = +0b0.001*2^0   = 0.125
\n", + "
\n", + "
0x02 = 0_0_010 = +0b0.010*2^0   = 0.25
\n", + "
\n", + "
0x03 = 0_0_011 = +0b0.011*2^0   = 0.375
\n", + "
\n", + "
0x04 = 0_0_100 = +0b0.100*2^0   = 0.5
\n", + "
\n", + "
0x05 = 0_0_101 = +0b0.101*2^0   = 0.625
\n", + "
\n", + "
0x06 = 0_0_110 = +0b0.110*2^0   = 0.75
\n", + "
\n", + "
0x07 = 0_0_111 = +0b0.111*2^0   = 0.875
\n", + "
\n", + "
0x08 = 0_1_000 = +0b1.000*2^0   = 1.0
\n", + "
\n", + "
0x09 = 0_1_001 = +0b1.001*2^0   = 1.125
\n", + "
\n", + "
0x0a = 0_1_010 = +0b1.010*2^0   = 1.25
\n", + "
\n", + "
0x0b = 0_1_011 = +0b1.011*2^0   = 1.375
\n", + "
\n", + "
0x0c = 0_1_100 = +0b1.100*2^0   = 1.5
\n", + "
\n", + "
0x0d = 0_1_101 = +0b1.101*2^0   = 1.625
\n", + "
\n", + "
0x0e = 0_1_110 = +0b1.110*2^0   = 1.75
\n", + "
\n", + "
0x0f = 0_1_111 = +0b1.111*2^0   = 1.875
\n", + "
\n", + "
0x10 = 1_0_000 = nan = nan
\n", + "
\n", + "
0x11 = 1_0_001 = -0b0.001*2^0   = -0.125
\n", + "
\n", + "
0x12 = 1_0_010 = -0b0.010*2^0   = -0.25
\n", + "
\n", + "
0x13 = 1_0_011 = -0b0.011*2^0   = -0.375
\n", + "
\n", + "
0x14 = 1_0_100 = -0b0.100*2^0   = -0.5
\n", + "
\n", + "
0x15 = 1_0_101 = -0b0.101*2^0   = -0.625
\n", + "
\n", + "
0x16 = 1_0_110 = -0b0.110*2^0   = -0.75
\n", + "
\n", + "
0x17 = 1_0_111 = -0b0.111*2^0   = -0.875
\n", + "
\n", + "
0x18 = 1_1_000 = -0b1.000*2^0   = -1.0
\n", + "
\n", + "
0x19 = 1_1_001 = -0b1.001*2^0   = -1.125
\n", + "
\n", + "
0x1a = 1_1_010 = -0b1.010*2^0   = -1.25
\n", + "
\n", + "
0x1b = 1_1_011 = -0b1.011*2^0   = -1.375
\n", + "
\n", + "
0x1c = 1_1_100 = -0b1.100*2^0   = -1.5
\n", + "
\n", + "
0x1d = 1_1_101 = -0b1.101*2^0   = -1.625
\n", + "
\n", + "
0x1e = 1_1_110 = -0b1.110*2^0   = -1.75
\n", + "
\n", + "
0x1f = 1_1_111 = -0b1.111*2^0   = -1.875
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0x00 = 00_000 = 0.0 = 0.0
\n", + "
\n", + "
0x01 = 00_001 = +0b0.001*2^-1  = 0.0625
\n", + "
\n", + "
0x02 = 00_010 = +0b0.010*2^-1  = 0.125
\n", + "
\n", + "
0x03 = 00_011 = +0b0.011*2^-1  = 0.1875
\n", + "
\n", + "
0x04 = 00_100 = +0b0.100*2^-1  = 0.25
\n", + "
\n", + "
0x05 = 00_101 = +0b0.101*2^-1  = 0.3125
\n", + "
\n", + "
0x06 = 00_110 = +0b0.110*2^-1  = 0.375
\n", + "
\n", + "
0x07 = 00_111 = +0b0.111*2^-1  = 0.4375
\n", + "
\n", + "
0x08 = 01_000 = +0b1.000*2^-1  = 0.5
\n", + "
\n", + "
0x09 = 01_001 = +0b1.001*2^-1  = 0.5625
\n", + "
\n", + "
0x0a = 01_010 = +0b1.010*2^-1  = 0.625
\n", + "
\n", + "
0x0b = 01_011 = +0b1.011*2^-1  = 0.6875
\n", + "
\n", + "
0x0c = 01_100 = +0b1.100*2^-1  = 0.75
\n", + "
\n", + "
0x0d = 01_101 = +0b1.101*2^-1  = 0.8125
\n", + "
\n", + "
0x0e = 01_110 = +0b1.110*2^-1  = 0.875
\n", + "
\n", + "
0x0f = 01_111 = +0b1.111*2^-1  = 0.9375
\n", + "
\n", + "
0x10 = 10_000 = +0b1.000*2^0   = 1.0
\n", + "
\n", + "
0x11 = 10_001 = +0b1.001*2^0   = 1.125
\n", + "
\n", + "
0x12 = 10_010 = +0b1.010*2^0   = 1.25
\n", + "
\n", + "
0x13 = 10_011 = +0b1.011*2^0   = 1.375
\n", + "
\n", + "
0x14 = 10_100 = +0b1.100*2^0   = 1.5
\n", + "
\n", + "
0x15 = 10_101 = +0b1.101*2^0   = 1.625
\n", + "
\n", + "
0x16 = 10_110 = +0b1.110*2^0   = 1.75
\n", + "
\n", + "
0x17 = 10_111 = +0b1.111*2^0   = 1.875
\n", + "
\n", + "
0x18 = 11_000 = +0b1.000*2^1   = 2.0
\n", + "
\n", + "
0x19 = 11_001 = +0b1.001*2^1   = 2.25
\n", + "
\n", + "
0x1a = 11_010 = +0b1.010*2^1   = 2.5
\n", + "
\n", + "
0x1b = 11_011 = +0b1.011*2^1   = 2.75
\n", + "
\n", + "
0x1c = 11_100 = +0b1.100*2^1   = 3.0
\n", + "
\n", + "
0x1d = 11_101 = +0b1.101*2^1   = 3.25
\n", + "
\n", + "
0x1e = 11_110 = inf = inf
\n", + "
\n", + "
0x1f = 11_111 = nan = nan
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0x00 = 00_000 = 0.0 = 0.0
\n", + "
\n", + "
0x01 = 00_001 = +0b0.001*2^-1  = 0.0625
\n", + "
\n", + "
0x02 = 00_010 = +0b0.010*2^-1  = 0.125
\n", + "
\n", + "
0x03 = 00_011 = +0b0.011*2^-1  = 0.1875
\n", + "
\n", + "
0x04 = 00_100 = +0b0.100*2^-1  = 0.25
\n", + "
\n", + "
0x05 = 00_101 = +0b0.101*2^-1  = 0.3125
\n", + "
\n", + "
0x06 = 00_110 = +0b0.110*2^-1  = 0.375
\n", + "
\n", + "
0x07 = 00_111 = +0b0.111*2^-1  = 0.4375
\n", + "
\n", + "
0x08 = 01_000 = +0b1.000*2^-1  = 0.5
\n", + "
\n", + "
0x09 = 01_001 = +0b1.001*2^-1  = 0.5625
\n", + "
\n", + "
0x0a = 01_010 = +0b1.010*2^-1  = 0.625
\n", + "
\n", + "
0x0b = 01_011 = +0b1.011*2^-1  = 0.6875
\n", + "
\n", + "
0x0c = 01_100 = +0b1.100*2^-1  = 0.75
\n", + "
\n", + "
0x0d = 01_101 = +0b1.101*2^-1  = 0.8125
\n", + "
\n", + "
0x0e = 01_110 = +0b1.110*2^-1  = 0.875
\n", + "
\n", + "
0x0f = 01_111 = +0b1.111*2^-1  = 0.9375
\n", + "
\n", + "
0x10 = 10_000 = +0b1.000*2^0   = 1.0
\n", + "
\n", + "
0x11 = 10_001 = +0b1.001*2^0   = 1.125
\n", + "
\n", + "
0x12 = 10_010 = +0b1.010*2^0   = 1.25
\n", + "
\n", + "
0x13 = 10_011 = +0b1.011*2^0   = 1.375
\n", + "
\n", + "
0x14 = 10_100 = +0b1.100*2^0   = 1.5
\n", + "
\n", + "
0x15 = 10_101 = +0b1.101*2^0   = 1.625
\n", + "
\n", + "
0x16 = 10_110 = +0b1.110*2^0   = 1.75
\n", + "
\n", + "
0x17 = 10_111 = +0b1.111*2^0   = 1.875
\n", + "
\n", + "
0x18 = 11_000 = +0b1.000*2^1   = 2.0
\n", + "
\n", + "
0x19 = 11_001 = +0b1.001*2^1   = 2.25
\n", + "
\n", + "
0x1a = 11_010 = +0b1.010*2^1   = 2.5
\n", + "
\n", + "
0x1b = 11_011 = +0b1.011*2^1   = 2.75
\n", + "
\n", + "
0x1c = 11_100 = +0b1.100*2^1   = 3.0
\n", + "
\n", + "
0x1d = 11_101 = +0b1.101*2^1   = 3.25
\n", + "
\n", + "
0x1e = 11_110 = +0b1.110*2^1   = 3.5
\n", + "
\n", + "
0x1f = 11_111 = nan = nan
\n", + "
\n", + "
\n", + "
\n", + " \n", + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + "

\n", + "
\n", + "\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
p3109_k5p5esp3109_k5p5fsp3109_k5p5eup3109_k5p5fu
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0x00 = 0_0000 = 0.0 = 0.0
\n", + "
\n", + "
0x01 = 0_0001 = +0b0.0001*2^1   = 0.125
\n", + "
\n", + "
0x02 = 0_0010 = +0b0.0010*2^1   = 0.25
\n", + "
\n", + "
0x03 = 0_0011 = +0b0.0011*2^1   = 0.375
\n", + "
\n", + "
0x04 = 0_0100 = +0b0.0100*2^1   = 0.5
\n", + "
\n", + "
0x05 = 0_0101 = +0b0.0101*2^1   = 0.625
\n", + "
\n", + "
0x06 = 0_0110 = +0b0.0110*2^1   = 0.75
\n", + "
\n", + "
0x07 = 0_0111 = +0b0.0111*2^1   = 0.875
\n", + "
\n", + "
0x08 = 0_1000 = +0b0.1000*2^1   = 1.0
\n", + "
\n", + "
0x09 = 0_1001 = +0b0.1001*2^1   = 1.125
\n", + "
\n", + "
0x0a = 0_1010 = +0b0.1010*2^1   = 1.25
\n", + "
\n", + "
0x0b = 0_1011 = +0b0.1011*2^1   = 1.375
\n", + "
\n", + "
0x0c = 0_1100 = +0b0.1100*2^1   = 1.5
\n", + "
\n", + "
0x0d = 0_1101 = +0b0.1101*2^1   = 1.625
\n", + "
\n", + "
0x0e = 0_1110 = +0b0.1110*2^1   = 1.75
\n", + "
\n", + "
0x0f = 0_1111 = inf = inf
\n", + "
\n", + "
0x10 = 1_0000 = nan = nan
\n", + "
\n", + "
0x11 = 1_0001 = -0b0.0001*2^1   = -0.125
\n", + "
\n", + "
0x12 = 1_0010 = -0b0.0010*2^1   = -0.25
\n", + "
\n", + "
0x13 = 1_0011 = -0b0.0011*2^1   = -0.375
\n", + "
\n", + "
0x14 = 1_0100 = -0b0.0100*2^1   = -0.5
\n", + "
\n", + "
0x15 = 1_0101 = -0b0.0101*2^1   = -0.625
\n", + "
\n", + "
0x16 = 1_0110 = -0b0.0110*2^1   = -0.75
\n", + "
\n", + "
0x17 = 1_0111 = -0b0.0111*2^1   = -0.875
\n", + "
\n", + "
0x18 = 1_1000 = -0b0.1000*2^1   = -1.0
\n", + "
\n", + "
0x19 = 1_1001 = -0b0.1001*2^1   = -1.125
\n", + "
\n", + "
0x1a = 1_1010 = -0b0.1010*2^1   = -1.25
\n", + "
\n", + "
0x1b = 1_1011 = -0b0.1011*2^1   = -1.375
\n", + "
\n", + "
0x1c = 1_1100 = -0b0.1100*2^1   = -1.5
\n", + "
\n", + "
0x1d = 1_1101 = -0b0.1101*2^1   = -1.625
\n", + "
\n", + "
0x1e = 1_1110 = -0b0.1110*2^1   = -1.75
\n", + "
\n", + "
0x1f = 1_1111 = -inf = -inf
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0x00 = 0_0000 = 0.0 = 0.0
\n", + "
\n", + "
0x01 = 0_0001 = +0b0.0001*2^1   = 0.125
\n", + "
\n", + "
0x02 = 0_0010 = +0b0.0010*2^1   = 0.25
\n", + "
\n", + "
0x03 = 0_0011 = +0b0.0011*2^1   = 0.375
\n", + "
\n", + "
0x04 = 0_0100 = +0b0.0100*2^1   = 0.5
\n", + "
\n", + "
0x05 = 0_0101 = +0b0.0101*2^1   = 0.625
\n", + "
\n", + "
0x06 = 0_0110 = +0b0.0110*2^1   = 0.75
\n", + "
\n", + "
0x07 = 0_0111 = +0b0.0111*2^1   = 0.875
\n", + "
\n", + "
0x08 = 0_1000 = +0b0.1000*2^1   = 1.0
\n", + "
\n", + "
0x09 = 0_1001 = +0b0.1001*2^1   = 1.125
\n", + "
\n", + "
0x0a = 0_1010 = +0b0.1010*2^1   = 1.25
\n", + "
\n", + "
0x0b = 0_1011 = +0b0.1011*2^1   = 1.375
\n", + "
\n", + "
0x0c = 0_1100 = +0b0.1100*2^1   = 1.5
\n", + "
\n", + "
0x0d = 0_1101 = +0b0.1101*2^1   = 1.625
\n", + "
\n", + "
0x0e = 0_1110 = +0b0.1110*2^1   = 1.75
\n", + "
\n", + "
0x0f = 0_1111 = +0b0.1111*2^1   = 1.875
\n", + "
\n", + "
0x10 = 1_0000 = nan = nan
\n", + "
\n", + "
0x11 = 1_0001 = -0b0.0001*2^1   = -0.125
\n", + "
\n", + "
0x12 = 1_0010 = -0b0.0010*2^1   = -0.25
\n", + "
\n", + "
0x13 = 1_0011 = -0b0.0011*2^1   = -0.375
\n", + "
\n", + "
0x14 = 1_0100 = -0b0.0100*2^1   = -0.5
\n", + "
\n", + "
0x15 = 1_0101 = -0b0.0101*2^1   = -0.625
\n", + "
\n", + "
0x16 = 1_0110 = -0b0.0110*2^1   = -0.75
\n", + "
\n", + "
0x17 = 1_0111 = -0b0.0111*2^1   = -0.875
\n", + "
\n", + "
0x18 = 1_1000 = -0b0.1000*2^1   = -1.0
\n", + "
\n", + "
0x19 = 1_1001 = -0b0.1001*2^1   = -1.125
\n", + "
\n", + "
0x1a = 1_1010 = -0b0.1010*2^1   = -1.25
\n", + "
\n", + "
0x1b = 1_1011 = -0b0.1011*2^1   = -1.375
\n", + "
\n", + "
0x1c = 1_1100 = -0b0.1100*2^1   = -1.5
\n", + "
\n", + "
0x1d = 1_1101 = -0b0.1101*2^1   = -1.625
\n", + "
\n", + "
0x1e = 1_1110 = -0b0.1110*2^1   = -1.75
\n", + "
\n", + "
0x1f = 1_1111 = -0b0.1111*2^1   = -1.875
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0x00 = 0_0000 = 0.0 = 0.0
\n", + "
\n", + "
0x01 = 0_0001 = +0b0.0001*2^0   = 0.0625
\n", + "
\n", + "
0x02 = 0_0010 = +0b0.0010*2^0   = 0.125
\n", + "
\n", + "
0x03 = 0_0011 = +0b0.0011*2^0   = 0.1875
\n", + "
\n", + "
0x04 = 0_0100 = +0b0.0100*2^0   = 0.25
\n", + "
\n", + "
0x05 = 0_0101 = +0b0.0101*2^0   = 0.3125
\n", + "
\n", + "
0x06 = 0_0110 = +0b0.0110*2^0   = 0.375
\n", + "
\n", + "
0x07 = 0_0111 = +0b0.0111*2^0   = 0.4375
\n", + "
\n", + "
0x08 = 0_1000 = +0b0.1000*2^0   = 0.5
\n", + "
\n", + "
0x09 = 0_1001 = +0b0.1001*2^0   = 0.5625
\n", + "
\n", + "
0x0a = 0_1010 = +0b0.1010*2^0   = 0.625
\n", + "
\n", + "
0x0b = 0_1011 = +0b0.1011*2^0   = 0.6875
\n", + "
\n", + "
0x0c = 0_1100 = +0b0.1100*2^0   = 0.75
\n", + "
\n", + "
0x0d = 0_1101 = +0b0.1101*2^0   = 0.8125
\n", + "
\n", + "
0x0e = 0_1110 = +0b0.1110*2^0   = 0.875
\n", + "
\n", + "
0x0f = 0_1111 = +0b0.1111*2^0   = 0.9375
\n", + "
\n", + "
0x10 = 1_0000 = +0b1.0000*2^0   = 1.0
\n", + "
\n", + "
0x11 = 1_0001 = +0b1.0001*2^0   = 1.0625
\n", + "
\n", + "
0x12 = 1_0010 = +0b1.0010*2^0   = 1.125
\n", + "
\n", + "
0x13 = 1_0011 = +0b1.0011*2^0   = 1.1875
\n", + "
\n", + "
0x14 = 1_0100 = +0b1.0100*2^0   = 1.25
\n", + "
\n", + "
0x15 = 1_0101 = +0b1.0101*2^0   = 1.3125
\n", + "
\n", + "
0x16 = 1_0110 = +0b1.0110*2^0   = 1.375
\n", + "
\n", + "
0x17 = 1_0111 = +0b1.0111*2^0   = 1.4375
\n", + "
\n", + "
0x18 = 1_1000 = +0b1.1000*2^0   = 1.5
\n", + "
\n", + "
0x19 = 1_1001 = +0b1.1001*2^0   = 1.5625
\n", + "
\n", + "
0x1a = 1_1010 = +0b1.1010*2^0   = 1.625
\n", + "
\n", + "
0x1b = 1_1011 = +0b1.1011*2^0   = 1.6875
\n", + "
\n", + "
0x1c = 1_1100 = +0b1.1100*2^0   = 1.75
\n", + "
\n", + "
0x1d = 1_1101 = +0b1.1101*2^0   = 1.8125
\n", + "
\n", + "
0x1e = 1_1110 = inf = inf
\n", + "
\n", + "
0x1f = 1_1111 = nan = nan
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0x00 = 0_0000 = 0.0 = 0.0
\n", + "
\n", + "
0x01 = 0_0001 = +0b0.0001*2^0   = 0.0625
\n", + "
\n", + "
0x02 = 0_0010 = +0b0.0010*2^0   = 0.125
\n", + "
\n", + "
0x03 = 0_0011 = +0b0.0011*2^0   = 0.1875
\n", + "
\n", + "
0x04 = 0_0100 = +0b0.0100*2^0   = 0.25
\n", + "
\n", + "
0x05 = 0_0101 = +0b0.0101*2^0   = 0.3125
\n", + "
\n", + "
0x06 = 0_0110 = +0b0.0110*2^0   = 0.375
\n", + "
\n", + "
0x07 = 0_0111 = +0b0.0111*2^0   = 0.4375
\n", + "
\n", + "
0x08 = 0_1000 = +0b0.1000*2^0   = 0.5
\n", + "
\n", + "
0x09 = 0_1001 = +0b0.1001*2^0   = 0.5625
\n", + "
\n", + "
0x0a = 0_1010 = +0b0.1010*2^0   = 0.625
\n", + "
\n", + "
0x0b = 0_1011 = +0b0.1011*2^0   = 0.6875
\n", + "
\n", + "
0x0c = 0_1100 = +0b0.1100*2^0   = 0.75
\n", + "
\n", + "
0x0d = 0_1101 = +0b0.1101*2^0   = 0.8125
\n", + "
\n", + "
0x0e = 0_1110 = +0b0.1110*2^0   = 0.875
\n", + "
\n", + "
0x0f = 0_1111 = +0b0.1111*2^0   = 0.9375
\n", + "
\n", + "
0x10 = 1_0000 = +0b1.0000*2^0   = 1.0
\n", + "
\n", + "
0x11 = 1_0001 = +0b1.0001*2^0   = 1.0625
\n", + "
\n", + "
0x12 = 1_0010 = +0b1.0010*2^0   = 1.125
\n", + "
\n", + "
0x13 = 1_0011 = +0b1.0011*2^0   = 1.1875
\n", + "
\n", + "
0x14 = 1_0100 = +0b1.0100*2^0   = 1.25
\n", + "
\n", + "
0x15 = 1_0101 = +0b1.0101*2^0   = 1.3125
\n", + "
\n", + "
0x16 = 1_0110 = +0b1.0110*2^0   = 1.375
\n", + "
\n", + "
0x17 = 1_0111 = +0b1.0111*2^0   = 1.4375
\n", + "
\n", + "
0x18 = 1_1000 = +0b1.1000*2^0   = 1.5
\n", + "
\n", + "
0x19 = 1_1001 = +0b1.1001*2^0   = 1.5625
\n", + "
\n", + "
0x1a = 1_1010 = +0b1.1010*2^0   = 1.625
\n", + "
\n", + "
0x1b = 1_1011 = +0b1.1011*2^0   = 1.6875
\n", + "
\n", + "
0x1c = 1_1100 = +0b1.1100*2^0   = 1.75
\n", + "
\n", + "
0x1d = 1_1101 = +0b1.1101*2^0   = 1.8125
\n", + "
\n", + "
0x1e = 1_1110 = +0b1.1110*2^0   = 1.875
\n", + "
\n", + "
0x1f = 1_1111 = nan = nan
\n", + "
\n", + "
\n", + "
\n", + " \n", + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "for p in (1, 2, 3, 4, 5):\n", + " fis = [\n", + " format_info_p3109(5, p, domain, signedness == \"s\")\n", + " for signedness in (\"s\", \"u\")\n", + " for domain in (Domain.Extended, Domain.Finite)\n", + " ]\n", + " render(fis, short=False)" + ] + }, + { + "cell_type": "markdown", + "id": "452ae200", + "metadata": {}, + "source": [ + "### Now check unsigned vs signed, k=6" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "ddc40cfa", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + "

\n", + "
\n", + "\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
p3109_k6p2esp3109_k6p2fsp3109_k6p2eup3109_k6p2fu
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0x00 = 0_0000_0 = 0.0 = 0.0
\n", + "
\n", + "
0x01 = 0_0000_1 = +0b0.1*2^-7  = ~0.0039
\n", + "
\n", + "
0x02 = 0_0001_0 = +0b1.0*2^-7  = ~0.0078
\n", + "
\n", + "
0x03 = 0_0001_1 = +0b1.1*2^-7  = ~0.0117
\n", + "
\n", + "
0x04 = 0_0010_0 = +0b1.0*2^-6  = 0.015625
\n", + "
\n", + "
0x05 = 0_0010_1 = +0b1.1*2^-6  = ~0.0234
\n", + "
\n", + "
0x06 = 0_0011_0 = +0b1.0*2^-5  = 0.03125
\n", + "
\n", + "
0x07 = 0_0011_1 = +0b1.1*2^-5  = 0.046875
\n", + "
\n", + "
0x08 = 0_0100_0 = +0b1.0*2^-4  = 0.0625
\n", + "
\n", + "
0x09 = 0_0100_1 = +0b1.1*2^-4  = 0.09375
\n", + "
\n", + "
0x0a = 0_0101_0 = +0b1.0*2^-3  = 0.125
\n", + "
\n", + "
0x0b = 0_0101_1 = +0b1.1*2^-3  = 0.1875
\n", + "
\n", + "
0x0c = 0_0110_0 = +0b1.0*2^-2  = 0.25
\n", + "
\n", + "
0x0d = 0_0110_1 = +0b1.1*2^-2  = 0.375
\n", + "
\n", + "
0x0e = 0_0111_0 = +0b1.0*2^-1  = 0.5
\n", + "
\n", + "
0x0f = 0_0111_1 = +0b1.1*2^-1  = 0.75
\n", + "
\n", + "
0x10 = 0_1000_0 = +0b1.0*2^0   = 1.0
\n", + "
\n", + "
0x11 = 0_1000_1 = +0b1.1*2^0   = 1.5
\n", + "
\n", + "
0x12 = 0_1001_0 = +0b1.0*2^1   = 2.0
\n", + "
\n", + "
0x13 = 0_1001_1 = +0b1.1*2^1   = 3.0
\n", + "
\n", + "
0x14 = 0_1010_0 = +0b1.0*2^2   = 4.0
\n", + "
\n", + "
0x15 = 0_1010_1 = +0b1.1*2^2   = 6.0
\n", + "
\n", + "
0x16 = 0_1011_0 = +0b1.0*2^3   = 8.0
\n", + "
\n", + "
0x17 = 0_1011_1 = +0b1.1*2^3   = 12.0
\n", + "
\n", + "
0x18 = 0_1100_0 = +0b1.0*2^4   = 16.0
\n", + "
\n", + "
0x19 = 0_1100_1 = +0b1.1*2^4   = 24.0
\n", + "
\n", + "
0x1a = 0_1101_0 = +0b1.0*2^5   = 32.0
\n", + "
\n", + "
0x1b = 0_1101_1 = +0b1.1*2^5   = 48.0
\n", + "
\n", + "
0x1c = 0_1110_0 = +0b1.0*2^6   = 64.0
\n", + "
\n", + "
0x1d = 0_1110_1 = +0b1.1*2^6   = 96.0
\n", + "
\n", + "
0x1e = 0_1111_0 = +0b1.0*2^7   = 128.0
\n", + "
\n", + "
0x1f = 0_1111_1 = inf = inf
\n", + "
\n", + "
0x20 = 1_0000_0 = nan = nan
\n", + "
\n", + "
0x21 = 1_0000_1 = -0b0.1*2^-7  = ~-0.0039
\n", + "
\n", + "
0x22 = 1_0001_0 = -0b1.0*2^-7  = ~-0.0078
\n", + "
\n", + "
0x23 = 1_0001_1 = -0b1.1*2^-7  = ~-0.0117
\n", + "
\n", + "
0x24 = 1_0010_0 = -0b1.0*2^-6  = ~-0.0156
\n", + "
\n", + "
0x25 = 1_0010_1 = -0b1.1*2^-6  = ~-0.0234
\n", + "
\n", + "
0x26 = 1_0011_0 = -0b1.0*2^-5  = -0.03125
\n", + "
\n", + "
0x27 = 1_0011_1 = -0b1.1*2^-5  = ~-0.0469
\n", + "
\n", + "
0x28 = 1_0100_0 = -0b1.0*2^-4  = -0.0625
\n", + "
\n", + "
0x29 = 1_0100_1 = -0b1.1*2^-4  = -0.09375
\n", + "
\n", + "
0x2a = 1_0101_0 = -0b1.0*2^-3  = -0.125
\n", + "
\n", + "
0x2b = 1_0101_1 = -0b1.1*2^-3  = -0.1875
\n", + "
\n", + "
0x2c = 1_0110_0 = -0b1.0*2^-2  = -0.25
\n", + "
\n", + "
0x2d = 1_0110_1 = -0b1.1*2^-2  = -0.375
\n", + "
\n", + "
0x2e = 1_0111_0 = -0b1.0*2^-1  = -0.5
\n", + "
\n", + "
0x2f = 1_0111_1 = -0b1.1*2^-1  = -0.75
\n", + "
\n", + "
0x30 = 1_1000_0 = -0b1.0*2^0   = -1.0
\n", + "
\n", + "
0x31 = 1_1000_1 = -0b1.1*2^0   = -1.5
\n", + "
\n", + "
0x32 = 1_1001_0 = -0b1.0*2^1   = -2.0
\n", + "
\n", + "
0x33 = 1_1001_1 = -0b1.1*2^1   = -3.0
\n", + "
\n", + "
0x34 = 1_1010_0 = -0b1.0*2^2   = -4.0
\n", + "
\n", + "
0x35 = 1_1010_1 = -0b1.1*2^2   = -6.0
\n", + "
\n", + "
0x36 = 1_1011_0 = -0b1.0*2^3   = -8.0
\n", + "
\n", + "
0x37 = 1_1011_1 = -0b1.1*2^3   = -12.0
\n", + "
\n", + "
0x38 = 1_1100_0 = -0b1.0*2^4   = -16.0
\n", + "
\n", + "
0x39 = 1_1100_1 = -0b1.1*2^4   = -24.0
\n", + "
\n", + "
0x3a = 1_1101_0 = -0b1.0*2^5   = -32.0
\n", + "
\n", + "
0x3b = 1_1101_1 = -0b1.1*2^5   = -48.0
\n", + "
\n", + "
0x3c = 1_1110_0 = -0b1.0*2^6   = -64.0
\n", + "
\n", + "
0x3d = 1_1110_1 = -0b1.1*2^6   = -96.0
\n", + "
\n", + "
0x3e = 1_1111_0 = -0b1.0*2^7   = -128.0
\n", + "
\n", + "
0x3f = 1_1111_1 = -inf = -inf
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0x00 = 0_0000_0 = 0.0 = 0.0
\n", + "
\n", + "
0x01 = 0_0000_1 = +0b0.1*2^-7  = ~0.0039
\n", + "
\n", + "
0x02 = 0_0001_0 = +0b1.0*2^-7  = ~0.0078
\n", + "
\n", + "
0x03 = 0_0001_1 = +0b1.1*2^-7  = ~0.0117
\n", + "
\n", + "
0x04 = 0_0010_0 = +0b1.0*2^-6  = 0.015625
\n", + "
\n", + "
0x05 = 0_0010_1 = +0b1.1*2^-6  = ~0.0234
\n", + "
\n", + "
0x06 = 0_0011_0 = +0b1.0*2^-5  = 0.03125
\n", + "
\n", + "
0x07 = 0_0011_1 = +0b1.1*2^-5  = 0.046875
\n", + "
\n", + "
0x08 = 0_0100_0 = +0b1.0*2^-4  = 0.0625
\n", + "
\n", + "
0x09 = 0_0100_1 = +0b1.1*2^-4  = 0.09375
\n", + "
\n", + "
0x0a = 0_0101_0 = +0b1.0*2^-3  = 0.125
\n", + "
\n", + "
0x0b = 0_0101_1 = +0b1.1*2^-3  = 0.1875
\n", + "
\n", + "
0x0c = 0_0110_0 = +0b1.0*2^-2  = 0.25
\n", + "
\n", + "
0x0d = 0_0110_1 = +0b1.1*2^-2  = 0.375
\n", + "
\n", + "
0x0e = 0_0111_0 = +0b1.0*2^-1  = 0.5
\n", + "
\n", + "
0x0f = 0_0111_1 = +0b1.1*2^-1  = 0.75
\n", + "
\n", + "
0x10 = 0_1000_0 = +0b1.0*2^0   = 1.0
\n", + "
\n", + "
0x11 = 0_1000_1 = +0b1.1*2^0   = 1.5
\n", + "
\n", + "
0x12 = 0_1001_0 = +0b1.0*2^1   = 2.0
\n", + "
\n", + "
0x13 = 0_1001_1 = +0b1.1*2^1   = 3.0
\n", + "
\n", + "
0x14 = 0_1010_0 = +0b1.0*2^2   = 4.0
\n", + "
\n", + "
0x15 = 0_1010_1 = +0b1.1*2^2   = 6.0
\n", + "
\n", + "
0x16 = 0_1011_0 = +0b1.0*2^3   = 8.0
\n", + "
\n", + "
0x17 = 0_1011_1 = +0b1.1*2^3   = 12.0
\n", + "
\n", + "
0x18 = 0_1100_0 = +0b1.0*2^4   = 16.0
\n", + "
\n", + "
0x19 = 0_1100_1 = +0b1.1*2^4   = 24.0
\n", + "
\n", + "
0x1a = 0_1101_0 = +0b1.0*2^5   = 32.0
\n", + "
\n", + "
0x1b = 0_1101_1 = +0b1.1*2^5   = 48.0
\n", + "
\n", + "
0x1c = 0_1110_0 = +0b1.0*2^6   = 64.0
\n", + "
\n", + "
0x1d = 0_1110_1 = +0b1.1*2^6   = 96.0
\n", + "
\n", + "
0x1e = 0_1111_0 = +0b1.0*2^7   = 128.0
\n", + "
\n", + "
0x1f = 0_1111_1 = +0b1.1*2^7   = 192.0
\n", + "
\n", + "
0x20 = 1_0000_0 = nan = nan
\n", + "
\n", + "
0x21 = 1_0000_1 = -0b0.1*2^-7  = ~-0.0039
\n", + "
\n", + "
0x22 = 1_0001_0 = -0b1.0*2^-7  = ~-0.0078
\n", + "
\n", + "
0x23 = 1_0001_1 = -0b1.1*2^-7  = ~-0.0117
\n", + "
\n", + "
0x24 = 1_0010_0 = -0b1.0*2^-6  = ~-0.0156
\n", + "
\n", + "
0x25 = 1_0010_1 = -0b1.1*2^-6  = ~-0.0234
\n", + "
\n", + "
0x26 = 1_0011_0 = -0b1.0*2^-5  = -0.03125
\n", + "
\n", + "
0x27 = 1_0011_1 = -0b1.1*2^-5  = ~-0.0469
\n", + "
\n", + "
0x28 = 1_0100_0 = -0b1.0*2^-4  = -0.0625
\n", + "
\n", + "
0x29 = 1_0100_1 = -0b1.1*2^-4  = -0.09375
\n", + "
\n", + "
0x2a = 1_0101_0 = -0b1.0*2^-3  = -0.125
\n", + "
\n", + "
0x2b = 1_0101_1 = -0b1.1*2^-3  = -0.1875
\n", + "
\n", + "
0x2c = 1_0110_0 = -0b1.0*2^-2  = -0.25
\n", + "
\n", + "
0x2d = 1_0110_1 = -0b1.1*2^-2  = -0.375
\n", + "
\n", + "
0x2e = 1_0111_0 = -0b1.0*2^-1  = -0.5
\n", + "
\n", + "
0x2f = 1_0111_1 = -0b1.1*2^-1  = -0.75
\n", + "
\n", + "
0x30 = 1_1000_0 = -0b1.0*2^0   = -1.0
\n", + "
\n", + "
0x31 = 1_1000_1 = -0b1.1*2^0   = -1.5
\n", + "
\n", + "
0x32 = 1_1001_0 = -0b1.0*2^1   = -2.0
\n", + "
\n", + "
0x33 = 1_1001_1 = -0b1.1*2^1   = -3.0
\n", + "
\n", + "
0x34 = 1_1010_0 = -0b1.0*2^2   = -4.0
\n", + "
\n", + "
0x35 = 1_1010_1 = -0b1.1*2^2   = -6.0
\n", + "
\n", + "
0x36 = 1_1011_0 = -0b1.0*2^3   = -8.0
\n", + "
\n", + "
0x37 = 1_1011_1 = -0b1.1*2^3   = -12.0
\n", + "
\n", + "
0x38 = 1_1100_0 = -0b1.0*2^4   = -16.0
\n", + "
\n", + "
0x39 = 1_1100_1 = -0b1.1*2^4   = -24.0
\n", + "
\n", + "
0x3a = 1_1101_0 = -0b1.0*2^5   = -32.0
\n", + "
\n", + "
0x3b = 1_1101_1 = -0b1.1*2^5   = -48.0
\n", + "
\n", + "
0x3c = 1_1110_0 = -0b1.0*2^6   = -64.0
\n", + "
\n", + "
0x3d = 1_1110_1 = -0b1.1*2^6   = -96.0
\n", + "
\n", + "
0x3e = 1_1111_0 = -0b1.0*2^7   = -128.0
\n", + "
\n", + "
0x3f = 1_1111_1 = -0b1.1*2^7   = -192.0
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0x00 = 00000_0 = 0.0 = 0.0
\n", + "
\n", + "
0x01 = 00000_1 = +0b0.1*2^-15 = ~1.526e-05
\n", + "
\n", + "
0x02 = 00001_0 = +0b1.0*2^-15 = ~3.052e-05
\n", + "
\n", + "
0x03 = 00001_1 = +0b1.1*2^-15 = ~4.578e-05
\n", + "
\n", + "
0x04 = 00010_0 = +0b1.0*2^-14 = ~6.104e-05
\n", + "
\n", + "
0x05 = 00010_1 = +0b1.1*2^-14 = ~9.155e-05
\n", + "
\n", + "
0x06 = 00011_0 = +0b1.0*2^-13 = ~0.0001
\n", + "
\n", + "
0x07 = 00011_1 = +0b1.1*2^-13 = ~0.0002
\n", + "
\n", + "
0x08 = 00100_0 = +0b1.0*2^-12 = ~0.0002
\n", + "
\n", + "
0x09 = 00100_1 = +0b1.1*2^-12 = ~0.0004
\n", + "
\n", + "
0x0a = 00101_0 = +0b1.0*2^-11 = ~0.0005
\n", + "
\n", + "
0x0b = 00101_1 = +0b1.1*2^-11 = ~0.0007
\n", + "
\n", + "
0x0c = 00110_0 = +0b1.0*2^-10 = ~0.0010
\n", + "
\n", + "
0x0d = 00110_1 = +0b1.1*2^-10 = ~0.0015
\n", + "
\n", + "
0x0e = 00111_0 = +0b1.0*2^-9  = ~0.0020
\n", + "
\n", + "
0x0f = 00111_1 = +0b1.1*2^-9  = ~0.0029
\n", + "
\n", + "
0x10 = 01000_0 = +0b1.0*2^-8  = ~0.0039
\n", + "
\n", + "
0x11 = 01000_1 = +0b1.1*2^-8  = ~0.0059
\n", + "
\n", + "
0x12 = 01001_0 = +0b1.0*2^-7  = ~0.0078
\n", + "
\n", + "
0x13 = 01001_1 = +0b1.1*2^-7  = ~0.0117
\n", + "
\n", + "
0x14 = 01010_0 = +0b1.0*2^-6  = 0.015625
\n", + "
\n", + "
0x15 = 01010_1 = +0b1.1*2^-6  = ~0.0234
\n", + "
\n", + "
0x16 = 01011_0 = +0b1.0*2^-5  = 0.03125
\n", + "
\n", + "
0x17 = 01011_1 = +0b1.1*2^-5  = 0.046875
\n", + "
\n", + "
0x18 = 01100_0 = +0b1.0*2^-4  = 0.0625
\n", + "
\n", + "
0x19 = 01100_1 = +0b1.1*2^-4  = 0.09375
\n", + "
\n", + "
0x1a = 01101_0 = +0b1.0*2^-3  = 0.125
\n", + "
\n", + "
0x1b = 01101_1 = +0b1.1*2^-3  = 0.1875
\n", + "
\n", + "
0x1c = 01110_0 = +0b1.0*2^-2  = 0.25
\n", + "
\n", + "
0x1d = 01110_1 = +0b1.1*2^-2  = 0.375
\n", + "
\n", + "
0x1e = 01111_0 = +0b1.0*2^-1  = 0.5
\n", + "
\n", + "
0x1f = 01111_1 = +0b1.1*2^-1  = 0.75
\n", + "
\n", + "
0x20 = 10000_0 = +0b1.0*2^0   = 1.0
\n", + "
\n", + "
0x21 = 10000_1 = +0b1.1*2^0   = 1.5
\n", + "
\n", + "
0x22 = 10001_0 = +0b1.0*2^1   = 2.0
\n", + "
\n", + "
0x23 = 10001_1 = +0b1.1*2^1   = 3.0
\n", + "
\n", + "
0x24 = 10010_0 = +0b1.0*2^2   = 4.0
\n", + "
\n", + "
0x25 = 10010_1 = +0b1.1*2^2   = 6.0
\n", + "
\n", + "
0x26 = 10011_0 = +0b1.0*2^3   = 8.0
\n", + "
\n", + "
0x27 = 10011_1 = +0b1.1*2^3   = 12.0
\n", + "
\n", + "
0x28 = 10100_0 = +0b1.0*2^4   = 16.0
\n", + "
\n", + "
0x29 = 10100_1 = +0b1.1*2^4   = 24.0
\n", + "
\n", + "
0x2a = 10101_0 = +0b1.0*2^5   = 32.0
\n", + "
\n", + "
0x2b = 10101_1 = +0b1.1*2^5   = 48.0
\n", + "
\n", + "
0x2c = 10110_0 = +0b1.0*2^6   = 64.0
\n", + "
\n", + "
0x2d = 10110_1 = +0b1.1*2^6   = 96.0
\n", + "
\n", + "
0x2e = 10111_0 = +0b1.0*2^7   = 128.0
\n", + "
\n", + "
0x2f = 10111_1 = +0b1.1*2^7   = 192.0
\n", + "
\n", + "
0x30 = 11000_0 = +0b1.0*2^8   = 256.0
\n", + "
\n", + "
0x31 = 11000_1 = +0b1.1*2^8   = 384.0
\n", + "
\n", + "
0x32 = 11001_0 = +0b1.0*2^9   = 512.0
\n", + "
\n", + "
0x33 = 11001_1 = +0b1.1*2^9   = 768.0
\n", + "
\n", + "
0x34 = 11010_0 = +0b1.0*2^10  = 1024.0
\n", + "
\n", + "
0x35 = 11010_1 = +0b1.1*2^10  = 1536.0
\n", + "
\n", + "
0x36 = 11011_0 = +0b1.0*2^11  = 2048.0
\n", + "
\n", + "
0x37 = 11011_1 = +0b1.1*2^11  = 3072.0
\n", + "
\n", + "
0x38 = 11100_0 = +0b1.0*2^12  = 4096.0
\n", + "
\n", + "
0x39 = 11100_1 = +0b1.1*2^12  = 6144.0
\n", + "
\n", + "
0x3a = 11101_0 = +0b1.0*2^13  = 8192.0
\n", + "
\n", + "
0x3b = 11101_1 = +0b1.1*2^13  = 12288.0
\n", + "
\n", + "
0x3c = 11110_0 = +0b1.0*2^14  = 16384.0
\n", + "
\n", + "
0x3d = 11110_1 = +0b1.1*2^14  = 24576.0
\n", + "
\n", + "
0x3e = 11111_0 = inf = inf
\n", + "
\n", + "
0x3f = 11111_1 = nan = nan
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0x00 = 00000_0 = 0.0 = 0.0
\n", + "
\n", + "
0x01 = 00000_1 = +0b0.1*2^-15 = ~1.526e-05
\n", + "
\n", + "
0x02 = 00001_0 = +0b1.0*2^-15 = ~3.052e-05
\n", + "
\n", + "
0x03 = 00001_1 = +0b1.1*2^-15 = ~4.578e-05
\n", + "
\n", + "
0x04 = 00010_0 = +0b1.0*2^-14 = ~6.104e-05
\n", + "
\n", + "
0x05 = 00010_1 = +0b1.1*2^-14 = ~9.155e-05
\n", + "
\n", + "
0x06 = 00011_0 = +0b1.0*2^-13 = ~0.0001
\n", + "
\n", + "
0x07 = 00011_1 = +0b1.1*2^-13 = ~0.0002
\n", + "
\n", + "
0x08 = 00100_0 = +0b1.0*2^-12 = ~0.0002
\n", + "
\n", + "
0x09 = 00100_1 = +0b1.1*2^-12 = ~0.0004
\n", + "
\n", + "
0x0a = 00101_0 = +0b1.0*2^-11 = ~0.0005
\n", + "
\n", + "
0x0b = 00101_1 = +0b1.1*2^-11 = ~0.0007
\n", + "
\n", + "
0x0c = 00110_0 = +0b1.0*2^-10 = ~0.0010
\n", + "
\n", + "
0x0d = 00110_1 = +0b1.1*2^-10 = ~0.0015
\n", + "
\n", + "
0x0e = 00111_0 = +0b1.0*2^-9  = ~0.0020
\n", + "
\n", + "
0x0f = 00111_1 = +0b1.1*2^-9  = ~0.0029
\n", + "
\n", + "
0x10 = 01000_0 = +0b1.0*2^-8  = ~0.0039
\n", + "
\n", + "
0x11 = 01000_1 = +0b1.1*2^-8  = ~0.0059
\n", + "
\n", + "
0x12 = 01001_0 = +0b1.0*2^-7  = ~0.0078
\n", + "
\n", + "
0x13 = 01001_1 = +0b1.1*2^-7  = ~0.0117
\n", + "
\n", + "
0x14 = 01010_0 = +0b1.0*2^-6  = 0.015625
\n", + "
\n", + "
0x15 = 01010_1 = +0b1.1*2^-6  = ~0.0234
\n", + "
\n", + "
0x16 = 01011_0 = +0b1.0*2^-5  = 0.03125
\n", + "
\n", + "
0x17 = 01011_1 = +0b1.1*2^-5  = 0.046875
\n", + "
\n", + "
0x18 = 01100_0 = +0b1.0*2^-4  = 0.0625
\n", + "
\n", + "
0x19 = 01100_1 = +0b1.1*2^-4  = 0.09375
\n", + "
\n", + "
0x1a = 01101_0 = +0b1.0*2^-3  = 0.125
\n", + "
\n", + "
0x1b = 01101_1 = +0b1.1*2^-3  = 0.1875
\n", + "
\n", + "
0x1c = 01110_0 = +0b1.0*2^-2  = 0.25
\n", + "
\n", + "
0x1d = 01110_1 = +0b1.1*2^-2  = 0.375
\n", + "
\n", + "
0x1e = 01111_0 = +0b1.0*2^-1  = 0.5
\n", + "
\n", + "
0x1f = 01111_1 = +0b1.1*2^-1  = 0.75
\n", + "
\n", + "
0x20 = 10000_0 = +0b1.0*2^0   = 1.0
\n", + "
\n", + "
0x21 = 10000_1 = +0b1.1*2^0   = 1.5
\n", + "
\n", + "
0x22 = 10001_0 = +0b1.0*2^1   = 2.0
\n", + "
\n", + "
0x23 = 10001_1 = +0b1.1*2^1   = 3.0
\n", + "
\n", + "
0x24 = 10010_0 = +0b1.0*2^2   = 4.0
\n", + "
\n", + "
0x25 = 10010_1 = +0b1.1*2^2   = 6.0
\n", + "
\n", + "
0x26 = 10011_0 = +0b1.0*2^3   = 8.0
\n", + "
\n", + "
0x27 = 10011_1 = +0b1.1*2^3   = 12.0
\n", + "
\n", + "
0x28 = 10100_0 = +0b1.0*2^4   = 16.0
\n", + "
\n", + "
0x29 = 10100_1 = +0b1.1*2^4   = 24.0
\n", + "
\n", + "
0x2a = 10101_0 = +0b1.0*2^5   = 32.0
\n", + "
\n", + "
0x2b = 10101_1 = +0b1.1*2^5   = 48.0
\n", + "
\n", + "
0x2c = 10110_0 = +0b1.0*2^6   = 64.0
\n", + "
\n", + "
0x2d = 10110_1 = +0b1.1*2^6   = 96.0
\n", + "
\n", + "
0x2e = 10111_0 = +0b1.0*2^7   = 128.0
\n", + "
\n", + "
0x2f = 10111_1 = +0b1.1*2^7   = 192.0
\n", + "
\n", + "
0x30 = 11000_0 = +0b1.0*2^8   = 256.0
\n", + "
\n", + "
0x31 = 11000_1 = +0b1.1*2^8   = 384.0
\n", + "
\n", + "
0x32 = 11001_0 = +0b1.0*2^9   = 512.0
\n", + "
\n", + "
0x33 = 11001_1 = +0b1.1*2^9   = 768.0
\n", + "
\n", + "
0x34 = 11010_0 = +0b1.0*2^10  = 1024.0
\n", + "
\n", + "
0x35 = 11010_1 = +0b1.1*2^10  = 1536.0
\n", + "
\n", + "
0x36 = 11011_0 = +0b1.0*2^11  = 2048.0
\n", + "
\n", + "
0x37 = 11011_1 = +0b1.1*2^11  = 3072.0
\n", + "
\n", + "
0x38 = 11100_0 = +0b1.0*2^12  = 4096.0
\n", + "
\n", + "
0x39 = 11100_1 = +0b1.1*2^12  = 6144.0
\n", + "
\n", + "
0x3a = 11101_0 = +0b1.0*2^13  = 8192.0
\n", + "
\n", + "
0x3b = 11101_1 = +0b1.1*2^13  = 12288.0
\n", + "
\n", + "
0x3c = 11110_0 = +0b1.0*2^14  = 16384.0
\n", + "
\n", + "
0x3d = 11110_1 = +0b1.1*2^14  = 24576.0
\n", + "
\n", + "
0x3e = 11111_0 = +0b1.0*2^15  = 32768.0
\n", + "
\n", + "
0x3f = 11111_1 = nan = nan
\n", + "
\n", + "
\n", + "
\n", + " \n", + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + "

\n", + "
\n", + "\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
p3109_k6p3esp3109_k6p3fsp3109_k6p3eup3109_k6p3fu
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0x00 = 0_000_00 = 0.0 = 0.0
\n", + "
\n", + "
0x01 = 0_000_01 = +0b0.01*2^-3  = 0.03125
\n", + "
\n", + "
0x02 = 0_000_10 = +0b0.10*2^-3  = 0.0625
\n", + "
\n", + "
0x03 = 0_000_11 = +0b0.11*2^-3  = 0.09375
\n", + "
\n", + "
0x04 = 0_001_00 = +0b1.00*2^-3  = 0.125
\n", + "
\n", + "
0x05 = 0_001_01 = +0b1.01*2^-3  = 0.15625
\n", + "
\n", + "
0x06 = 0_001_10 = +0b1.10*2^-3  = 0.1875
\n", + "
\n", + "
0x07 = 0_001_11 = +0b1.11*2^-3  = 0.21875
\n", + "
\n", + "
0x08 = 0_010_00 = +0b1.00*2^-2  = 0.25
\n", + "
\n", + "
0x09 = 0_010_01 = +0b1.01*2^-2  = 0.3125
\n", + "
\n", + "
0x0a = 0_010_10 = +0b1.10*2^-2  = 0.375
\n", + "
\n", + "
0x0b = 0_010_11 = +0b1.11*2^-2  = 0.4375
\n", + "
\n", + "
0x0c = 0_011_00 = +0b1.00*2^-1  = 0.5
\n", + "
\n", + "
0x0d = 0_011_01 = +0b1.01*2^-1  = 0.625
\n", + "
\n", + "
0x0e = 0_011_10 = +0b1.10*2^-1  = 0.75
\n", + "
\n", + "
0x0f = 0_011_11 = +0b1.11*2^-1  = 0.875
\n", + "
\n", + "
0x10 = 0_100_00 = +0b1.00*2^0   = 1.0
\n", + "
\n", + "
0x11 = 0_100_01 = +0b1.01*2^0   = 1.25
\n", + "
\n", + "
0x12 = 0_100_10 = +0b1.10*2^0   = 1.5
\n", + "
\n", + "
0x13 = 0_100_11 = +0b1.11*2^0   = 1.75
\n", + "
\n", + "
0x14 = 0_101_00 = +0b1.00*2^1   = 2.0
\n", + "
\n", + "
0x15 = 0_101_01 = +0b1.01*2^1   = 2.5
\n", + "
\n", + "
0x16 = 0_101_10 = +0b1.10*2^1   = 3.0
\n", + "
\n", + "
0x17 = 0_101_11 = +0b1.11*2^1   = 3.5
\n", + "
\n", + "
0x18 = 0_110_00 = +0b1.00*2^2   = 4.0
\n", + "
\n", + "
0x19 = 0_110_01 = +0b1.01*2^2   = 5.0
\n", + "
\n", + "
0x1a = 0_110_10 = +0b1.10*2^2   = 6.0
\n", + "
\n", + "
0x1b = 0_110_11 = +0b1.11*2^2   = 7.0
\n", + "
\n", + "
0x1c = 0_111_00 = +0b1.00*2^3   = 8.0
\n", + "
\n", + "
0x1d = 0_111_01 = +0b1.01*2^3   = 10.0
\n", + "
\n", + "
0x1e = 0_111_10 = +0b1.10*2^3   = 12.0
\n", + "
\n", + "
0x1f = 0_111_11 = inf = inf
\n", + "
\n", + "
0x20 = 1_000_00 = nan = nan
\n", + "
\n", + "
0x21 = 1_000_01 = -0b0.01*2^-3  = -0.03125
\n", + "
\n", + "
0x22 = 1_000_10 = -0b0.10*2^-3  = -0.0625
\n", + "
\n", + "
0x23 = 1_000_11 = -0b0.11*2^-3  = -0.09375
\n", + "
\n", + "
0x24 = 1_001_00 = -0b1.00*2^-3  = -0.125
\n", + "
\n", + "
0x25 = 1_001_01 = -0b1.01*2^-3  = -0.15625
\n", + "
\n", + "
0x26 = 1_001_10 = -0b1.10*2^-3  = -0.1875
\n", + "
\n", + "
0x27 = 1_001_11 = -0b1.11*2^-3  = -0.21875
\n", + "
\n", + "
0x28 = 1_010_00 = -0b1.00*2^-2  = -0.25
\n", + "
\n", + "
0x29 = 1_010_01 = -0b1.01*2^-2  = -0.3125
\n", + "
\n", + "
0x2a = 1_010_10 = -0b1.10*2^-2  = -0.375
\n", + "
\n", + "
0x2b = 1_010_11 = -0b1.11*2^-2  = -0.4375
\n", + "
\n", + "
0x2c = 1_011_00 = -0b1.00*2^-1  = -0.5
\n", + "
\n", + "
0x2d = 1_011_01 = -0b1.01*2^-1  = -0.625
\n", + "
\n", + "
0x2e = 1_011_10 = -0b1.10*2^-1  = -0.75
\n", + "
\n", + "
0x2f = 1_011_11 = -0b1.11*2^-1  = -0.875
\n", + "
\n", + "
0x30 = 1_100_00 = -0b1.00*2^0   = -1.0
\n", + "
\n", + "
0x31 = 1_100_01 = -0b1.01*2^0   = -1.25
\n", + "
\n", + "
0x32 = 1_100_10 = -0b1.10*2^0   = -1.5
\n", + "
\n", + "
0x33 = 1_100_11 = -0b1.11*2^0   = -1.75
\n", + "
\n", + "
0x34 = 1_101_00 = -0b1.00*2^1   = -2.0
\n", + "
\n", + "
0x35 = 1_101_01 = -0b1.01*2^1   = -2.5
\n", + "
\n", + "
0x36 = 1_101_10 = -0b1.10*2^1   = -3.0
\n", + "
\n", + "
0x37 = 1_101_11 = -0b1.11*2^1   = -3.5
\n", + "
\n", + "
0x38 = 1_110_00 = -0b1.00*2^2   = -4.0
\n", + "
\n", + "
0x39 = 1_110_01 = -0b1.01*2^2   = -5.0
\n", + "
\n", + "
0x3a = 1_110_10 = -0b1.10*2^2   = -6.0
\n", + "
\n", + "
0x3b = 1_110_11 = -0b1.11*2^2   = -7.0
\n", + "
\n", + "
0x3c = 1_111_00 = -0b1.00*2^3   = -8.0
\n", + "
\n", + "
0x3d = 1_111_01 = -0b1.01*2^3   = -10.0
\n", + "
\n", + "
0x3e = 1_111_10 = -0b1.10*2^3   = -12.0
\n", + "
\n", + "
0x3f = 1_111_11 = -inf = -inf
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0x00 = 0_000_00 = 0.0 = 0.0
\n", + "
\n", + "
0x01 = 0_000_01 = +0b0.01*2^-3  = 0.03125
\n", + "
\n", + "
0x02 = 0_000_10 = +0b0.10*2^-3  = 0.0625
\n", + "
\n", + "
0x03 = 0_000_11 = +0b0.11*2^-3  = 0.09375
\n", + "
\n", + "
0x04 = 0_001_00 = +0b1.00*2^-3  = 0.125
\n", + "
\n", + "
0x05 = 0_001_01 = +0b1.01*2^-3  = 0.15625
\n", + "
\n", + "
0x06 = 0_001_10 = +0b1.10*2^-3  = 0.1875
\n", + "
\n", + "
0x07 = 0_001_11 = +0b1.11*2^-3  = 0.21875
\n", + "
\n", + "
0x08 = 0_010_00 = +0b1.00*2^-2  = 0.25
\n", + "
\n", + "
0x09 = 0_010_01 = +0b1.01*2^-2  = 0.3125
\n", + "
\n", + "
0x0a = 0_010_10 = +0b1.10*2^-2  = 0.375
\n", + "
\n", + "
0x0b = 0_010_11 = +0b1.11*2^-2  = 0.4375
\n", + "
\n", + "
0x0c = 0_011_00 = +0b1.00*2^-1  = 0.5
\n", + "
\n", + "
0x0d = 0_011_01 = +0b1.01*2^-1  = 0.625
\n", + "
\n", + "
0x0e = 0_011_10 = +0b1.10*2^-1  = 0.75
\n", + "
\n", + "
0x0f = 0_011_11 = +0b1.11*2^-1  = 0.875
\n", + "
\n", + "
0x10 = 0_100_00 = +0b1.00*2^0   = 1.0
\n", + "
\n", + "
0x11 = 0_100_01 = +0b1.01*2^0   = 1.25
\n", + "
\n", + "
0x12 = 0_100_10 = +0b1.10*2^0   = 1.5
\n", + "
\n", + "
0x13 = 0_100_11 = +0b1.11*2^0   = 1.75
\n", + "
\n", + "
0x14 = 0_101_00 = +0b1.00*2^1   = 2.0
\n", + "
\n", + "
0x15 = 0_101_01 = +0b1.01*2^1   = 2.5
\n", + "
\n", + "
0x16 = 0_101_10 = +0b1.10*2^1   = 3.0
\n", + "
\n", + "
0x17 = 0_101_11 = +0b1.11*2^1   = 3.5
\n", + "
\n", + "
0x18 = 0_110_00 = +0b1.00*2^2   = 4.0
\n", + "
\n", + "
0x19 = 0_110_01 = +0b1.01*2^2   = 5.0
\n", + "
\n", + "
0x1a = 0_110_10 = +0b1.10*2^2   = 6.0
\n", + "
\n", + "
0x1b = 0_110_11 = +0b1.11*2^2   = 7.0
\n", + "
\n", + "
0x1c = 0_111_00 = +0b1.00*2^3   = 8.0
\n", + "
\n", + "
0x1d = 0_111_01 = +0b1.01*2^3   = 10.0
\n", + "
\n", + "
0x1e = 0_111_10 = +0b1.10*2^3   = 12.0
\n", + "
\n", + "
0x1f = 0_111_11 = +0b1.11*2^3   = 14.0
\n", + "
\n", + "
0x20 = 1_000_00 = nan = nan
\n", + "
\n", + "
0x21 = 1_000_01 = -0b0.01*2^-3  = -0.03125
\n", + "
\n", + "
0x22 = 1_000_10 = -0b0.10*2^-3  = -0.0625
\n", + "
\n", + "
0x23 = 1_000_11 = -0b0.11*2^-3  = -0.09375
\n", + "
\n", + "
0x24 = 1_001_00 = -0b1.00*2^-3  = -0.125
\n", + "
\n", + "
0x25 = 1_001_01 = -0b1.01*2^-3  = -0.15625
\n", + "
\n", + "
0x26 = 1_001_10 = -0b1.10*2^-3  = -0.1875
\n", + "
\n", + "
0x27 = 1_001_11 = -0b1.11*2^-3  = -0.21875
\n", + "
\n", + "
0x28 = 1_010_00 = -0b1.00*2^-2  = -0.25
\n", + "
\n", + "
0x29 = 1_010_01 = -0b1.01*2^-2  = -0.3125
\n", + "
\n", + "
0x2a = 1_010_10 = -0b1.10*2^-2  = -0.375
\n", + "
\n", + "
0x2b = 1_010_11 = -0b1.11*2^-2  = -0.4375
\n", + "
\n", + "
0x2c = 1_011_00 = -0b1.00*2^-1  = -0.5
\n", + "
\n", + "
0x2d = 1_011_01 = -0b1.01*2^-1  = -0.625
\n", + "
\n", + "
0x2e = 1_011_10 = -0b1.10*2^-1  = -0.75
\n", + "
\n", + "
0x2f = 1_011_11 = -0b1.11*2^-1  = -0.875
\n", + "
\n", + "
0x30 = 1_100_00 = -0b1.00*2^0   = -1.0
\n", + "
\n", + "
0x31 = 1_100_01 = -0b1.01*2^0   = -1.25
\n", + "
\n", + "
0x32 = 1_100_10 = -0b1.10*2^0   = -1.5
\n", + "
\n", + "
0x33 = 1_100_11 = -0b1.11*2^0   = -1.75
\n", + "
\n", + "
0x34 = 1_101_00 = -0b1.00*2^1   = -2.0
\n", + "
\n", + "
0x35 = 1_101_01 = -0b1.01*2^1   = -2.5
\n", + "
\n", + "
0x36 = 1_101_10 = -0b1.10*2^1   = -3.0
\n", + "
\n", + "
0x37 = 1_101_11 = -0b1.11*2^1   = -3.5
\n", + "
\n", + "
0x38 = 1_110_00 = -0b1.00*2^2   = -4.0
\n", + "
\n", + "
0x39 = 1_110_01 = -0b1.01*2^2   = -5.0
\n", + "
\n", + "
0x3a = 1_110_10 = -0b1.10*2^2   = -6.0
\n", + "
\n", + "
0x3b = 1_110_11 = -0b1.11*2^2   = -7.0
\n", + "
\n", + "
0x3c = 1_111_00 = -0b1.00*2^3   = -8.0
\n", + "
\n", + "
0x3d = 1_111_01 = -0b1.01*2^3   = -10.0
\n", + "
\n", + "
0x3e = 1_111_10 = -0b1.10*2^3   = -12.0
\n", + "
\n", + "
0x3f = 1_111_11 = -0b1.11*2^3   = -14.0
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0x00 = 0000_00 = 0.0 = 0.0
\n", + "
\n", + "
0x01 = 0000_01 = +0b0.01*2^-7  = ~0.0020
\n", + "
\n", + "
0x02 = 0000_10 = +0b0.10*2^-7  = ~0.0039
\n", + "
\n", + "
0x03 = 0000_11 = +0b0.11*2^-7  = ~0.0059
\n", + "
\n", + "
0x04 = 0001_00 = +0b1.00*2^-7  = ~0.0078
\n", + "
\n", + "
0x05 = 0001_01 = +0b1.01*2^-7  = ~0.0098
\n", + "
\n", + "
0x06 = 0001_10 = +0b1.10*2^-7  = ~0.0117
\n", + "
\n", + "
0x07 = 0001_11 = +0b1.11*2^-7  = ~0.0137
\n", + "
\n", + "
0x08 = 0010_00 = +0b1.00*2^-6  = 0.015625
\n", + "
\n", + "
0x09 = 0010_01 = +0b1.01*2^-6  = ~0.0195
\n", + "
\n", + "
0x0a = 0010_10 = +0b1.10*2^-6  = ~0.0234
\n", + "
\n", + "
0x0b = 0010_11 = +0b1.11*2^-6  = ~0.0273
\n", + "
\n", + "
0x0c = 0011_00 = +0b1.00*2^-5  = 0.03125
\n", + "
\n", + "
0x0d = 0011_01 = +0b1.01*2^-5  = ~0.0391
\n", + "
\n", + "
0x0e = 0011_10 = +0b1.10*2^-5  = 0.046875
\n", + "
\n", + "
0x0f = 0011_11 = +0b1.11*2^-5  = ~0.0547
\n", + "
\n", + "
0x10 = 0100_00 = +0b1.00*2^-4  = 0.0625
\n", + "
\n", + "
0x11 = 0100_01 = +0b1.01*2^-4  = 0.078125
\n", + "
\n", + "
0x12 = 0100_10 = +0b1.10*2^-4  = 0.09375
\n", + "
\n", + "
0x13 = 0100_11 = +0b1.11*2^-4  = 0.109375
\n", + "
\n", + "
0x14 = 0101_00 = +0b1.00*2^-3  = 0.125
\n", + "
\n", + "
0x15 = 0101_01 = +0b1.01*2^-3  = 0.15625
\n", + "
\n", + "
0x16 = 0101_10 = +0b1.10*2^-3  = 0.1875
\n", + "
\n", + "
0x17 = 0101_11 = +0b1.11*2^-3  = 0.21875
\n", + "
\n", + "
0x18 = 0110_00 = +0b1.00*2^-2  = 0.25
\n", + "
\n", + "
0x19 = 0110_01 = +0b1.01*2^-2  = 0.3125
\n", + "
\n", + "
0x1a = 0110_10 = +0b1.10*2^-2  = 0.375
\n", + "
\n", + "
0x1b = 0110_11 = +0b1.11*2^-2  = 0.4375
\n", + "
\n", + "
0x1c = 0111_00 = +0b1.00*2^-1  = 0.5
\n", + "
\n", + "
0x1d = 0111_01 = +0b1.01*2^-1  = 0.625
\n", + "
\n", + "
0x1e = 0111_10 = +0b1.10*2^-1  = 0.75
\n", + "
\n", + "
0x1f = 0111_11 = +0b1.11*2^-1  = 0.875
\n", + "
\n", + "
0x20 = 1000_00 = +0b1.00*2^0   = 1.0
\n", + "
\n", + "
0x21 = 1000_01 = +0b1.01*2^0   = 1.25
\n", + "
\n", + "
0x22 = 1000_10 = +0b1.10*2^0   = 1.5
\n", + "
\n", + "
0x23 = 1000_11 = +0b1.11*2^0   = 1.75
\n", + "
\n", + "
0x24 = 1001_00 = +0b1.00*2^1   = 2.0
\n", + "
\n", + "
0x25 = 1001_01 = +0b1.01*2^1   = 2.5
\n", + "
\n", + "
0x26 = 1001_10 = +0b1.10*2^1   = 3.0
\n", + "
\n", + "
0x27 = 1001_11 = +0b1.11*2^1   = 3.5
\n", + "
\n", + "
0x28 = 1010_00 = +0b1.00*2^2   = 4.0
\n", + "
\n", + "
0x29 = 1010_01 = +0b1.01*2^2   = 5.0
\n", + "
\n", + "
0x2a = 1010_10 = +0b1.10*2^2   = 6.0
\n", + "
\n", + "
0x2b = 1010_11 = +0b1.11*2^2   = 7.0
\n", + "
\n", + "
0x2c = 1011_00 = +0b1.00*2^3   = 8.0
\n", + "
\n", + "
0x2d = 1011_01 = +0b1.01*2^3   = 10.0
\n", + "
\n", + "
0x2e = 1011_10 = +0b1.10*2^3   = 12.0
\n", + "
\n", + "
0x2f = 1011_11 = +0b1.11*2^3   = 14.0
\n", + "
\n", + "
0x30 = 1100_00 = +0b1.00*2^4   = 16.0
\n", + "
\n", + "
0x31 = 1100_01 = +0b1.01*2^4   = 20.0
\n", + "
\n", + "
0x32 = 1100_10 = +0b1.10*2^4   = 24.0
\n", + "
\n", + "
0x33 = 1100_11 = +0b1.11*2^4   = 28.0
\n", + "
\n", + "
0x34 = 1101_00 = +0b1.00*2^5   = 32.0
\n", + "
\n", + "
0x35 = 1101_01 = +0b1.01*2^5   = 40.0
\n", + "
\n", + "
0x36 = 1101_10 = +0b1.10*2^5   = 48.0
\n", + "
\n", + "
0x37 = 1101_11 = +0b1.11*2^5   = 56.0
\n", + "
\n", + "
0x38 = 1110_00 = +0b1.00*2^6   = 64.0
\n", + "
\n", + "
0x39 = 1110_01 = +0b1.01*2^6   = 80.0
\n", + "
\n", + "
0x3a = 1110_10 = +0b1.10*2^6   = 96.0
\n", + "
\n", + "
0x3b = 1110_11 = +0b1.11*2^6   = 112.0
\n", + "
\n", + "
0x3c = 1111_00 = +0b1.00*2^7   = 128.0
\n", + "
\n", + "
0x3d = 1111_01 = +0b1.01*2^7   = 160.0
\n", + "
\n", + "
0x3e = 1111_10 = inf = inf
\n", + "
\n", + "
0x3f = 1111_11 = nan = nan
\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0x00 = 0000_00 = 0.0 = 0.0
\n", + "
\n", + "
0x01 = 0000_01 = +0b0.01*2^-7  = ~0.0020
\n", + "
\n", + "
0x02 = 0000_10 = +0b0.10*2^-7  = ~0.0039
\n", + "
\n", + "
0x03 = 0000_11 = +0b0.11*2^-7  = ~0.0059
\n", + "
\n", + "
0x04 = 0001_00 = +0b1.00*2^-7  = ~0.0078
\n", + "
\n", + "
0x05 = 0001_01 = +0b1.01*2^-7  = ~0.0098
\n", + "
\n", + "
0x06 = 0001_10 = +0b1.10*2^-7  = ~0.0117
\n", + "
\n", + "
0x07 = 0001_11 = +0b1.11*2^-7  = ~0.0137
\n", + "
\n", + "
0x08 = 0010_00 = +0b1.00*2^-6  = 0.015625
\n", + "
\n", + "
0x09 = 0010_01 = +0b1.01*2^-6  = ~0.0195
\n", + "
\n", + "
0x0a = 0010_10 = +0b1.10*2^-6  = ~0.0234
\n", + "
\n", + "
0x0b = 0010_11 = +0b1.11*2^-6  = ~0.0273
\n", + "
\n", + "
0x0c = 0011_00 = +0b1.00*2^-5  = 0.03125
\n", + "
\n", + "
0x0d = 0011_01 = +0b1.01*2^-5  = ~0.0391
\n", + "
\n", + "
0x0e = 0011_10 = +0b1.10*2^-5  = 0.046875
\n", + "
\n", + "
0x0f = 0011_11 = +0b1.11*2^-5  = ~0.0547
\n", + "
\n", + "
0x10 = 0100_00 = +0b1.00*2^-4  = 0.0625
\n", + "
\n", + "
0x11 = 0100_01 = +0b1.01*2^-4  = 0.078125
\n", + "
\n", + "
0x12 = 0100_10 = +0b1.10*2^-4  = 0.09375
\n", + "
\n", + "
0x13 = 0100_11 = +0b1.11*2^-4  = 0.109375
\n", + "
\n", + "
0x14 = 0101_00 = +0b1.00*2^-3  = 0.125
\n", + "
\n", + "
0x15 = 0101_01 = +0b1.01*2^-3  = 0.15625
\n", + "
\n", + "
0x16 = 0101_10 = +0b1.10*2^-3  = 0.1875
\n", + "
\n", + "
0x17 = 0101_11 = +0b1.11*2^-3  = 0.21875
\n", + "
\n", + "
0x18 = 0110_00 = +0b1.00*2^-2  = 0.25
\n", + "
\n", + "
0x19 = 0110_01 = +0b1.01*2^-2  = 0.3125
\n", + "
\n", + "
0x1a = 0110_10 = +0b1.10*2^-2  = 0.375
\n", + "
\n", + "
0x1b = 0110_11 = +0b1.11*2^-2  = 0.4375
\n", + "
\n", + "
0x1c = 0111_00 = +0b1.00*2^-1  = 0.5
\n", + "
\n", + "
0x1d = 0111_01 = +0b1.01*2^-1  = 0.625
\n", + "
\n", + "
0x1e = 0111_10 = +0b1.10*2^-1  = 0.75
\n", + "
\n", + "
0x1f = 0111_11 = +0b1.11*2^-1  = 0.875
\n", + "
\n", + "
0x20 = 1000_00 = +0b1.00*2^0   = 1.0
\n", + "
\n", + "
0x21 = 1000_01 = +0b1.01*2^0   = 1.25
\n", + "
\n", + "
0x22 = 1000_10 = +0b1.10*2^0   = 1.5
\n", + "
\n", + "
0x23 = 1000_11 = +0b1.11*2^0   = 1.75
\n", + "
\n", + "
0x24 = 1001_00 = +0b1.00*2^1   = 2.0
\n", + "
\n", + "
0x25 = 1001_01 = +0b1.01*2^1   = 2.5
\n", + "
\n", + "
0x26 = 1001_10 = +0b1.10*2^1   = 3.0
\n", + "
\n", + "
0x27 = 1001_11 = +0b1.11*2^1   = 3.5
\n", + "
\n", + "
0x28 = 1010_00 = +0b1.00*2^2   = 4.0
\n", + "
\n", + "
0x29 = 1010_01 = +0b1.01*2^2   = 5.0
\n", + "
\n", + "
0x2a = 1010_10 = +0b1.10*2^2   = 6.0
\n", + "
\n", + "
0x2b = 1010_11 = +0b1.11*2^2   = 7.0
\n", + "
\n", + "
0x2c = 1011_00 = +0b1.00*2^3   = 8.0
\n", + "
\n", + "
0x2d = 1011_01 = +0b1.01*2^3   = 10.0
\n", + "
\n", + "
0x2e = 1011_10 = +0b1.10*2^3   = 12.0
\n", + "
\n", + "
0x2f = 1011_11 = +0b1.11*2^3   = 14.0
\n", + "
\n", + "
0x30 = 1100_00 = +0b1.00*2^4   = 16.0
\n", + "
\n", + "
0x31 = 1100_01 = +0b1.01*2^4   = 20.0
\n", + "
\n", + "
0x32 = 1100_10 = +0b1.10*2^4   = 24.0
\n", + "
\n", + "
0x33 = 1100_11 = +0b1.11*2^4   = 28.0
\n", + "
\n", + "
0x34 = 1101_00 = +0b1.00*2^5   = 32.0
\n", + "
\n", + "
0x35 = 1101_01 = +0b1.01*2^5   = 40.0
\n", + "
\n", + "
0x36 = 1101_10 = +0b1.10*2^5   = 48.0
\n", + "
\n", + "
0x37 = 1101_11 = +0b1.11*2^5   = 56.0
\n", + "
\n", + "
0x38 = 1110_00 = +0b1.00*2^6   = 64.0
\n", + "
\n", + "
0x39 = 1110_01 = +0b1.01*2^6   = 80.0
\n", + "
\n", + "
0x3a = 1110_10 = +0b1.10*2^6   = 96.0
\n", + "
\n", + "
0x3b = 1110_11 = +0b1.11*2^6   = 112.0
\n", + "
\n", + "
0x3c = 1111_00 = +0b1.00*2^7   = 128.0
\n", + "
\n", + "
0x3d = 1111_01 = +0b1.01*2^7   = 160.0
\n", + "
\n", + "
0x3e = 1111_10 = +0b1.10*2^7   = 192.0
\n", + "
\n", + "
0x3f = 1111_11 = nan = nan
\n", + "
\n", + "
\n", + "
\n", + " \n", + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "for p in (2, 3):\n", + " fis = [\n", + " format_info_p3109(6, p, domain, signedness == \"s\")\n", + " for signedness in (\"s\", \"u\")\n", + " for domain in (Domain.Extended, Domain.Finite)\n", + " ]\n", + " render(fis, short=False)" + ] + }, + { + "cell_type": "markdown", + "id": "d4707056", + "metadata": {}, + "source": [ + "### IEEE P3109 4-bit formats\n", + "\n", + "The IEEE P3109 interim report describes a family of formats parameterized by K and P, in which three 4-bit formats are defined.\n", + "\n", + "The p=2 format is similar to OCP E2M1, with inf and nan:" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "01891136", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " FP4 Value Table, p3109_k4p2es\n", + " \n", + " \n", + "

FP4 Value Table, p3109_k4p2es

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0x00 = 0_00_0 = 0.0 = 0.0
\n", + "
\n", + "
0x08 = 1_00_0 = nan = nan
\n", + "
\n", + "
0x01 = 0_00_1 = +0b0.1*2^-1  = 0.25
\n", + "
\n", + "
0x09 = 1_00_1 = -0b0.1*2^-1  = -0.25
\n", + "
\n", + "
0x02 = 0_01_0 = +0b1.0*2^-1  = 0.5
\n", + "
\n", + "
0x0a = 1_01_0 = -0b1.0*2^-1  = -0.5
\n", + "
\n", + "
0x03 = 0_01_1 = +0b1.1*2^-1  = 0.75
\n", + "
\n", + "
0x0b = 1_01_1 = -0b1.1*2^-1  = -0.75
\n", + "
\n", + "
0x04 = 0_10_0 = +0b1.0*2^0   = 1.0
\n", + "
\n", + "
0x0c = 1_10_0 = -0b1.0*2^0   = -1.0
\n", + "
\n", + "
0x05 = 0_10_1 = +0b1.1*2^0   = 1.5
\n", + "
\n", + "
0x0d = 1_10_1 = -0b1.1*2^0   = -1.5
\n", + "
\n", + "
0x06 = 0_11_0 = +0b1.0*2^1   = 2.0
\n", + "
\n", + "
0x0e = 1_11_0 = -0b1.0*2^1   = -2.0
\n", + "
\n", + "
0x07 = 0_11_1 = inf = inf
\n", + "
\n", + "
0x0f = 1_11_1 = -inf = -inf
\n", + "
\n", + " \n", + "" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "HTML(airdoc(*mktbl(Airium(), format_info_p3109(4, 2), cols=2, width=8, d=3)))" + ] + }, + { + "cell_type": "markdown", + "id": "aaa20ff4", + "metadata": {}, + "source": [ + "While the p=1 format is a \"pure exponential\" format with values 2^-2 to 2^3:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "e7453dbd", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " FP4 Value Table, p3109_k4p1es\n", + " \n", + " \n", + "

FP4 Value Table, p3109_k4p1es

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0x00 = 0_000_ = 0.0 = 0.0
\n", + "
\n", + "
0x08 = 1_000_ = nan = nan
\n", + "
\n", + "
0x01 = 0_001_ = +0b1.0*2^-3  = 0.125
\n", + "
\n", + "
0x09 = 1_001_ = -0b1.0*2^-3  = -0.125
\n", + "
\n", + "
0x02 = 0_010_ = +0b1.0*2^-2  = 0.25
\n", + "
\n", + "
0x0a = 1_010_ = -0b1.0*2^-2  = -0.25
\n", + "
\n", + "
0x03 = 0_011_ = +0b1.0*2^-1  = 0.5
\n", + "
\n", + "
0x0b = 1_011_ = -0b1.0*2^-1  = -0.5
\n", + "
\n", + "
0x04 = 0_100_ = +0b1.0*2^0   = 1.0
\n", + "
\n", + "
0x0c = 1_100_ = -0b1.0*2^0   = -1.0
\n", + "
\n", + "
0x05 = 0_101_ = +0b1.0*2^1   = 2.0
\n", + "
\n", + "
0x0d = 1_101_ = -0b1.0*2^1   = -2.0
\n", + "
\n", + "
0x06 = 0_110_ = +0b1.0*2^2   = 4.0
\n", + "
\n", + "
0x0e = 1_110_ = -0b1.0*2^2   = -4.0
\n", + "
\n", + "
0x07 = 0_111_ = inf = inf
\n", + "
\n", + "
0x0f = 1_111_ = -inf = -inf
\n", + "
\n", + " \n", + "" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "HTML(airdoc(*mktbl(Airium(), format_info_p3109(4, 1), cols=2, width=8, d=3)))" + ] + }, + { + "cell_type": "markdown", + "id": "b701cd05", + "metadata": {}, + "source": [ + "And p=3, a linear format with values 0.25 * range(7)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "1d14d7ac", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " FP4 Value Table, p3109_k4p3es\n", + " \n", + " \n", + "

FP4 Value Table, p3109_k4p3es

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0x00 = 0_0_00 = 0.0 = 0.0
\n", + "
\n", + "
0x08 = 1_0_00 = nan = nan
\n", + "
\n", + "
0x01 = 0_0_01 = +0b0.01*2^0   = 0.25
\n", + "
\n", + "
0x09 = 1_0_01 = -0b0.01*2^0   = -0.25
\n", + "
\n", + "
0x02 = 0_0_10 = +0b0.10*2^0   = 0.5
\n", + "
\n", + "
0x0a = 1_0_10 = -0b0.10*2^0   = -0.5
\n", + "
\n", + "
0x03 = 0_0_11 = +0b0.11*2^0   = 0.75
\n", + "
\n", + "
0x0b = 1_0_11 = -0b0.11*2^0   = -0.75
\n", + "
\n", + "
0x04 = 0_1_00 = +0b1.00*2^0   = 1.0
\n", + "
\n", + "
0x0c = 1_1_00 = -0b1.00*2^0   = -1.0
\n", + "
\n", + "
0x05 = 0_1_01 = +0b1.01*2^0   = 1.25
\n", + "
\n", + "
0x0d = 1_1_01 = -0b1.01*2^0   = -1.25
\n", + "
\n", + "
0x06 = 0_1_10 = +0b1.10*2^0   = 1.5
\n", + "
\n", + "
0x0e = 1_1_10 = -0b1.10*2^0   = -1.5
\n", + "
\n", + "
0x07 = 0_1_11 = inf = inf
\n", + "
\n", + "
0x0f = 1_1_11 = -inf = -inf
\n", + "
\n", + " \n", + "" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "HTML(airdoc(*mktbl(Airium(), format_info_p3109(4, 3), cols=2, width=8, d=3)))" + ] + }, + { + "cell_type": "markdown", + "id": "8a598f1b", + "metadata": {}, + "source": [ + "### OCP E2M3\n", + "\n", + "This 6-bit format has 32 values, with no `NaN` or `Inf`, but does have `-0`.\n", + "The positive subnormals are the linear ramp of eighths: [n/8 for n in 1:7].\n", + "\n", + "One might describe the format in text as:\n", + "\n", + "> zero to one by eighths, two to four by quarters, four to eight by halves\n", + "\n", + "where \"to\" is open-ended, or \"to\" is not \"thru\"." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "0e7a9398", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " FP6 Value Table, ocp_e2m3\n", + " \n", + " \n", + "

FP6 Value Table, ocp_e2m3

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", - " \n", " \n", - "
\n", + "
0x00 = 0_00_000 = 0.0 = 0.0
\n", + "
\n", + "
0x20 = 1_00_000 = -0.0 = -0.0
\n", + "
\n", + "
0x01 = 0_00_001 = +0b0.001*2^0   = 0.125
\n", + "
\n", + "
0x21 = 1_00_001 = -0b0.001*2^0   = -0.125
\n", + "
\n", + "
0x02 = 0_00_010 = +0b0.010*2^0   = 0.25
\n", + "
\n", + "
0x22 = 1_00_010 = -0b0.010*2^0   = -0.25
\n", + "
\n", + "
0x03 = 0_00_011 = +0b0.011*2^0   = 0.375
\n", + "
\n", + "
0x23 = 1_00_011 = -0b0.011*2^0   = -0.375
\n", + "
\n", + "
0x04 = 0_00_100 = +0b0.100*2^0   = 0.5
\n", + "
\n", + "
0x24 = 1_00_100 = -0b0.100*2^0   = -0.5
\n", + "
\n", + "
0x05 = 0_00_101 = +0b0.101*2^0   = 0.625
\n", + "
\n", + "
0x25 = 1_00_101 = -0b0.101*2^0   = -0.625
\n", + "
\n", + "
0x06 = 0_00_110 = +0b0.110*2^0   = 0.75
\n", + "
\n", + "
0x26 = 1_00_110 = -0b0.110*2^0   = -0.75
\n", + "
\n", + "
0x07 = 0_00_111 = +0b0.111*2^0   = 0.875
\n", + "
\n", + "
0x27 = 1_00_111 = -0b0.111*2^0   = -0.875
\n", + "
\n", + "
0x08 = 0_01_000 = +0b1.000*2^0   = 1.0
\n", + "
\n", + "
0x28 = 1_01_000 = -0b1.000*2^0   = -1.0
\n", + "
\n", + "
0x09 = 0_01_001 = +0b1.001*2^0   = 1.125
\n", + "
\n", + "
0x29 = 1_01_001 = -0b1.001*2^0   = -1.125
\n", + "
\n", + "
0x0a = 0_01_010 = +0b1.010*2^0   = 1.25
\n", + "
\n", + "
0x2a = 1_01_010 = -0b1.010*2^0   = -1.25
\n", + "
\n", + "
0x0b = 0_01_011 = +0b1.011*2^0   = 1.375
\n", + "
\n", + "
0x2b = 1_01_011 = -0b1.011*2^0   = -1.375
\n", + "
\n", + "
0x0c = 0_01_100 = +0b1.100*2^0   = 1.5
\n", + "
\n", + "
0x2c = 1_01_100 = -0b1.100*2^0   = -1.5
\n", + "
\n", + "
0x0d = 0_01_101 = +0b1.101*2^0   = 1.625
\n", + "
\n", + "
0x2d = 1_01_101 = -0b1.101*2^0   = -1.625
\n", + "
\n", + "
0x0e = 0_01_110 = +0b1.110*2^0   = 1.75
\n", + "
\n", + "
0x2e = 1_01_110 = -0b1.110*2^0   = -1.75
\n", + "
\n", + "
0x0f = 0_01_111 = +0b1.111*2^0   = 1.875
\n", + "
\n", + "
0x2f = 1_01_111 = -0b1.111*2^0   = -1.875
\n", + "
\n", + "
0x10 = 0_10_000 = +0b1.000*2^1   = 2.0
\n", + "
\n", + "
0x30 = 1_10_000 = -0b1.000*2^1   = -2.0
\n", + "
\n", + "
0x11 = 0_10_001 = +0b1.001*2^1   = 2.25
\n", + "
\n", + "
0x31 = 1_10_001 = -0b1.001*2^1   = -2.25
\n", + "
\n", + "
0x12 = 0_10_010 = +0b1.010*2^1   = 2.5
\n", + "
\n", + "
0x32 = 1_10_010 = -0b1.010*2^1   = -2.5
\n", "
\n", - "
0x07 0_11_1 = inf
\n", + "
\n", + "
0x13 = 0_10_011 = +0b1.011*2^1   = 2.75
\n", "
\n", - "
0x0f 1_11_1 = -inf
\n", + "
\n", + "
0x33 = 1_10_011 = -0b1.011*2^1   = -2.75
\n", "
" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "HTML(mktbl(format_info_p3109(4, 2), cols=2, vs_width=8, vs_d=3))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "While the p=1 format is a \"pure exponential\" format with values 2^-2 to 2^3:" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "

FP8 Value Table, p3109_4p1

\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", - " \n", " \n", - "
\n", - "
0x00 0_000_ = 0.0
\n", - "
\n", - "
0x08 1_000_ = nan
\n", - "
\n", - "
0x01 0_001_ = +0b1.0*2^-2  = 0.25
\n", - "
\n", - "
0x09 1_001_ = -0b1.0*2^-2  = -0.25
\n", - "
\n", - "
0x02 0_010_ = +0b1.0*2^-1  = 0.5
\n", - "
\n", - "
0x0a 1_010_ = -0b1.0*2^-1  = -0.5
\n", - "
\n", - "
0x03 0_011_ = +0b1.0*2^0   = 1.0
\n", - "
\n", - "
0x0b 1_011_ = -0b1.0*2^0   = -1.0
\n", - "
\n", - "
0x04 0_100_ = +0b1.0*2^1   = 2.0
\n", - "
\n", - "
0x0c 1_100_ = -0b1.0*2^1   = -2.0
\n", - "
\n", - "
0x05 0_101_ = +0b1.0*2^2   = 4.0
\n", - "
\n", - "
0x0d 1_101_ = -0b1.0*2^2   = -4.0
\n", - "
\n", - "
0x06 0_110_ = +0b1.0*2^3   = 8.0
\n", - "
\n", - "
0x0e 1_110_ = -0b1.0*2^3   = -8.0
\n", + "
\n", + "
0x14 = 0_10_100 = +0b1.100*2^1   = 3.0
\n", + "
\n", + "
0x34 = 1_10_100 = -0b1.100*2^1   = -3.0
\n", "
\n", - "
0x07 0_111_ = inf
\n", + "
\n", + "
0x15 = 0_10_101 = +0b1.101*2^1   = 3.25
\n", "
\n", - "
0x0f 1_111_ = -inf
\n", + "
\n", + "
0x35 = 1_10_101 = -0b1.101*2^1   = -3.25
\n", "
" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "HTML(mktbl(format_info_p3109(4, 1), cols=2, vs_width=8, vs_d=3))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "And p=3, a linear format with values 0.25 * range(7)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "

FP8 Value Table, p3109_4p3

\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", - " \n", " \n", - "
\n", - "
0x00 0_0_00 = 0.0
\n", - "
\n", - "
0x08 1_0_00 = nan
\n", - "
\n", - "
0x01 0_0_01 = +0b0.01*2^0   = 0.25
\n", - "
\n", - "
0x09 1_0_01 = -0b0.01*2^0   = -0.25
\n", - "
\n", - "
0x02 0_0_10 = +0b0.10*2^0   = 0.5
\n", - "
\n", - "
0x0a 1_0_10 = -0b0.10*2^0   = -0.5
\n", - "
\n", - "
0x03 0_0_11 = +0b0.11*2^0   = 0.75
\n", - "
\n", - "
0x0b 1_0_11 = -0b0.11*2^0   = -0.75
\n", - "
\n", - "
0x04 0_1_00 = +0b1.00*2^0   = 1.0
\n", - "
\n", - "
0x0c 1_1_00 = -0b1.00*2^0   = -1.0
\n", - "
\n", - "
0x05 0_1_01 = +0b1.01*2^0   = 1.25
\n", - "
\n", - "
0x0d 1_1_01 = -0b1.01*2^0   = -1.25
\n", - "
\n", - "
0x06 0_1_10 = +0b1.10*2^0   = 1.5
\n", - "
\n", - "
0x0e 1_1_10 = -0b1.10*2^0   = -1.5
\n", + "
\n", + "
0x16 = 0_10_110 = +0b1.110*2^1   = 3.5
\n", + "
\n", + "
0x36 = 1_10_110 = -0b1.110*2^1   = -3.5
\n", + "
\n", + "
0x17 = 0_10_111 = +0b1.111*2^1   = 3.75
\n", + "
\n", + "
0x37 = 1_10_111 = -0b1.111*2^1   = -3.75
\n", "
\n", - "
0x07 0_1_11 = inf
\n", + "
\n", + "
0x18 = 0_11_000 = +0b1.000*2^2   = 4.0
\n", "
\n", - "
0x0f 1_1_11 = -inf
\n", + "
\n", + "
0x38 = 1_11_000 = -0b1.000*2^2   = -4.0
\n", "
" + "
\n", + "
0x19 = 0_11_001 = +0b1.001*2^2   = 4.5
\n", + "
\n", + "
0x39 = 1_11_001 = -0b1.001*2^2   = -4.5
\n", + "
\n", + "
0x1a = 0_11_010 = +0b1.010*2^2   = 5.0
\n", + "
\n", + "
0x3a = 1_11_010 = -0b1.010*2^2   = -5.0
\n", + "
\n", + "
0x1b = 0_11_011 = +0b1.011*2^2   = 5.5
\n", + "
\n", + "
0x3b = 1_11_011 = -0b1.011*2^2   = -5.5
\n", + "
\n", + "
0x1c = 0_11_100 = +0b1.100*2^2   = 6.0
\n", + "
\n", + "
0x3c = 1_11_100 = -0b1.100*2^2   = -6.0
\n", + "
\n", + "
0x1d = 0_11_101 = +0b1.101*2^2   = 6.5
\n", + "
\n", + "
0x3d = 1_11_101 = -0b1.101*2^2   = -6.5
\n", + "
\n", + "
0x1e = 0_11_110 = +0b1.110*2^2   = 7.0
\n", + "
\n", + "
0x3e = 1_11_110 = -0b1.110*2^2   = -7.0
\n", + "
\n", + "
0x1f = 0_11_111 = +0b1.111*2^2   = 7.5
\n", + "
\n", + "
0x3f = 1_11_111 = -0b1.111*2^2   = -7.5
\n", + "
\n", + " \n", + "" ], "text/plain": [ "" ] }, - "execution_count": 9, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "HTML(mktbl(format_info_p3109(4, 3), cols=2, vs_width=8, vs_d=3))" + "HTML(airdoc(*mktbl(Airium(), format_info_ocp_e2m3, cols=2, width=8, d=3)))" ] }, { "cell_type": "markdown", + "id": "bb3b8d70", "metadata": {}, "source": [ - "### OCP E2M3\n", - "\n", - "This 6-bit format has 32 values, with no `NaN` or `Inf`, but does have `-0`.\n", - "The positive subnormals are the linear ramp of eighths: [n/8 for n in 1:7].\n", - "\n", - "One might describe the format in text as:\n", - "\n", - "> zero to one by eighths, two to four by quarters, four to eight by halves\n", - "\n", - "where \"to\" is open-ended, or \"to\" is not \"thru\"." + "### OCP Formats: E5M2, E4M3" ] }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 16, + "id": "f1513d42", "metadata": {}, "outputs": [ { "data": { "text/html": [ + "\n", "\n", - "

FP8 Value Table, ocp_e2m3

\n", - "\n", - " \n", - " \n", - "
\n", - "
0x00 0_00_000 = 0.0
\n", - "
\n", - "
0x20 1_00_000 = -0.0
\n", + " table.zmktbl {\n", + " margin: 0pt;\n", + " border-collapse: collapse; \n", + " }\n", + " tr.zmktbl {\n", + " margin: 0;\n", + " }\n", + " td.zmktbl {\n", + " border: 1px solid;\n", + " }\n", + " pre.zmktbl {\n", + " margin: 4pt 1pt 1pt 13pt; \n", + " display: inline;\n", + " font-family: monospace;\n", + " font-size: 16px;\n", + " font-weight: bold;\n", + " }\n", + " \n", + "\n", + " \n", + " \n", + " FP8 Value Table, ocp_e5m2\n", + " \n", + " \n", + "

FP8 Value Table, ocp_e5m2

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", - " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", - " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", - " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", - " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", - " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", - " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", - " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", - " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", - " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", - " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", - " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", - " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", - " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", - " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", + " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", + " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", + " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", + " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", + " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", + " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", + " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", + " \n", - " \n", " \n", - "
\n", + "
0x00 = 0_00000_00 = 0.0 = 0.0
\n", + "
\n", + "
0x40 = 0_10000_00 = +0b1.00*2^1   = 2.0
\n", + "
\n", + "
0x80 = 1_00000_00 = -0.0 = -0.0
\n", + "
\n", + "
0xc0 = 1_10000_00 = -0b1.00*2^1   = -2.0
\n", "
\n", - "
0x01 0_00_001 = +0b0.001*2^0   = 0.125
\n", + "
\n", + "
0x01 = 0_00000_01 = +0b0.01*2^-14 = ~1.53e-05
\n", + "
\n", + "
0x41 = 0_10000_01 = +0b1.01*2^1   = 2.5
\n", "
\n", - "
0x21 1_00_001 = -0b0.001*2^0   = -0.125
\n", + "
\n", + "
0x81 = 1_00000_01 = -0b0.01*2^-14 = ~-1.53e-05
\n", + "
\n", + "
0xc1 = 1_10000_01 = -0b1.01*2^1   = -2.5
\n", "
\n", - "
0x02 0_00_010 = +0b0.010*2^0   = 0.25
\n", + "
\n", + "
0x02 = 0_00000_10 = +0b0.10*2^-14 = ~3.05e-05
\n", + "
\n", + "
0x42 = 0_10000_10 = +0b1.10*2^1   = 3.0
\n", "
\n", - "
0x22 1_00_010 = -0b0.010*2^0   = -0.25
\n", + "
\n", + "
0x82 = 1_00000_10 = -0b0.10*2^-14 = ~-3.05e-05
\n", + "
\n", + "
0xc2 = 1_10000_10 = -0b1.10*2^1   = -3.0
\n", "
\n", - "
0x03 0_00_011 = +0b0.011*2^0   = 0.375
\n", + "
\n", + "
0x03 = 0_00000_11 = +0b0.11*2^-14 = ~4.58e-05
\n", + "
\n", + "
0x43 = 0_10000_11 = +0b1.11*2^1   = 3.5
\n", "
\n", - "
0x23 1_00_011 = -0b0.011*2^0   = -0.375
\n", + "
\n", + "
0x83 = 1_00000_11 = -0b0.11*2^-14 = ~-4.58e-05
\n", + "
\n", + "
0xc3 = 1_10000_11 = -0b1.11*2^1   = -3.5
\n", "
\n", - "
0x04 0_00_100 = +0b0.100*2^0   = 0.5
\n", + "
\n", + "
0x04 = 0_00001_00 = +0b1.00*2^-14 = ~6.1e-05
\n", + "
\n", + "
0x44 = 0_10001_00 = +0b1.00*2^2   = 4.0
\n", "
\n", - "
0x24 1_00_100 = -0b0.100*2^0   = -0.5
\n", + "
\n", + "
0x84 = 1_00001_00 = -0b1.00*2^-14 = ~-6.1e-05
\n", + "
\n", + "
0xc4 = 1_10001_00 = -0b1.00*2^2   = -4.0
\n", "
\n", - "
0x05 0_00_101 = +0b0.101*2^0   = 0.625
\n", + "
\n", + "
0x05 = 0_00001_01 = +0b1.01*2^-14 = ~7.63e-05
\n", + "
\n", + "
0x45 = 0_10001_01 = +0b1.01*2^2   = 5.0
\n", "
\n", - "
0x25 1_00_101 = -0b0.101*2^0   = -0.625
\n", + "
\n", + "
0x85 = 1_00001_01 = -0b1.01*2^-14 = ~-7.63e-05
\n", + "
\n", + "
0xc5 = 1_10001_01 = -0b1.01*2^2   = -5.0
\n", "
\n", - "
0x06 0_00_110 = +0b0.110*2^0   = 0.75
\n", + "
\n", + "
0x06 = 0_00001_10 = +0b1.10*2^-14 = ~9.16e-05
\n", + "
\n", + "
0x46 = 0_10001_10 = +0b1.10*2^2   = 6.0
\n", "
\n", - "
0x26 1_00_110 = -0b0.110*2^0   = -0.75
\n", + "
\n", + "
0x86 = 1_00001_10 = -0b1.10*2^-14 = ~-9.16e-05
\n", + "
\n", + "
0xc6 = 1_10001_10 = -0b1.10*2^2   = -6.0
\n", "
\n", - "
0x07 0_00_111 = +0b0.111*2^0   = 0.875
\n", + "
\n", + "
0x07 = 0_00001_11 = +0b1.11*2^-14 = ~0.000
\n", + "
\n", + "
0x47 = 0_10001_11 = +0b1.11*2^2   = 7.0
\n", "
\n", - "
0x27 1_00_111 = -0b0.111*2^0   = -0.875
\n", + "
\n", + "
0x87 = 1_00001_11 = -0b1.11*2^-14 = ~-0.000
\n", + "
\n", + "
0xc7 = 1_10001_11 = -0b1.11*2^2   = -7.0
\n", "
\n", - "
0x08 0_01_000 = +0b1.000*2^0   = 1.0
\n", + "
\n", + "
0x08 = 0_00010_00 = +0b1.00*2^-13 = ~0.000
\n", + "
\n", + "
0x48 = 0_10010_00 = +0b1.00*2^3   = 8.0
\n", "
\n", - "
0x28 1_01_000 = -0b1.000*2^0   = -1.0
\n", + "
\n", + "
0x88 = 1_00010_00 = -0b1.00*2^-13 = ~-0.000
\n", + "
\n", + "
0xc8 = 1_10010_00 = -0b1.00*2^3   = -8.0
\n", "
\n", - "
0x09 0_01_001 = +0b1.001*2^0   = 1.125
\n", + "
\n", + "
0x09 = 0_00010_01 = +0b1.01*2^-13 = ~0.000
\n", + "
\n", + "
0x49 = 0_10010_01 = +0b1.01*2^3   = 10.0
\n", "
\n", - "
0x29 1_01_001 = -0b1.001*2^0   = -1.125
\n", + "
\n", + "
0x89 = 1_00010_01 = -0b1.01*2^-13 = ~-0.000
\n", + "
\n", + "
0xc9 = 1_10010_01 = -0b1.01*2^3   = -10.0
\n", "
\n", - "
0x0a 0_01_010 = +0b1.010*2^0   = 1.25
\n", + "
\n", + "
0x0a = 0_00010_10 = +0b1.10*2^-13 = ~0.000
\n", + "
\n", + "
0x4a = 0_10010_10 = +0b1.10*2^3   = 12.0
\n", "
\n", - "
0x2a 1_01_010 = -0b1.010*2^0   = -1.25
\n", + "
\n", + "
0x8a = 1_00010_10 = -0b1.10*2^-13 = ~-0.000
\n", + "
\n", + "
0xca = 1_10010_10 = -0b1.10*2^3   = -12.0
\n", "
\n", - "
0x0b 0_01_011 = +0b1.011*2^0   = 1.375
\n", + "
\n", + "
0x0b = 0_00010_11 = +0b1.11*2^-13 = ~0.000
\n", + "
\n", + "
0x4b = 0_10010_11 = +0b1.11*2^3   = 14.0
\n", "
\n", - "
0x2b 1_01_011 = -0b1.011*2^0   = -1.375
\n", + "
\n", + "
0x8b = 1_00010_11 = -0b1.11*2^-13 = ~-0.000
\n", + "
\n", + "
0xcb = 1_10010_11 = -0b1.11*2^3   = -14.0
\n", "
\n", - "
0x0c 0_01_100 = +0b1.100*2^0   = 1.5
\n", + "
\n", + "
0x0c = 0_00011_00 = +0b1.00*2^-12 = ~0.000
\n", + "
\n", + "
0x4c = 0_10011_00 = +0b1.00*2^4   = 16.0
\n", "
\n", - "
0x2c 1_01_100 = -0b1.100*2^0   = -1.5
\n", + "
\n", + "
0x8c = 1_00011_00 = -0b1.00*2^-12 = ~-0.000
\n", + "
\n", + "
0xcc = 1_10011_00 = -0b1.00*2^4   = -16.0
\n", "
\n", - "
0x0d 0_01_101 = +0b1.101*2^0   = 1.625
\n", + "
\n", + "
0x0d = 0_00011_01 = +0b1.01*2^-12 = ~0.000
\n", + "
\n", + "
0x4d = 0_10011_01 = +0b1.01*2^4   = 20.0
\n", "
\n", - "
0x2d 1_01_101 = -0b1.101*2^0   = -1.625
\n", + "
\n", + "
0x8d = 1_00011_01 = -0b1.01*2^-12 = ~-0.000
\n", + "
\n", + "
0xcd = 1_10011_01 = -0b1.01*2^4   = -20.0
\n", "
\n", - "
0x0e 0_01_110 = +0b1.110*2^0   = 1.75
\n", + "
\n", + "
0x0e = 0_00011_10 = +0b1.10*2^-12 = ~0.000
\n", + "
\n", + "
0x4e = 0_10011_10 = +0b1.10*2^4   = 24.0
\n", "
\n", - "
0x2e 1_01_110 = -0b1.110*2^0   = -1.75
\n", + "
\n", + "
0x8e = 1_00011_10 = -0b1.10*2^-12 = ~-0.000
\n", + "
\n", + "
0xce = 1_10011_10 = -0b1.10*2^4   = -24.0
\n", "
\n", - "
0x0f 0_01_111 = +0b1.111*2^0   = 1.875
\n", + "
\n", + "
0x0f = 0_00011_11 = +0b1.11*2^-12 = ~0.000
\n", + "
\n", + "
0x4f = 0_10011_11 = +0b1.11*2^4   = 28.0
\n", "
\n", - "
0x2f 1_01_111 = -0b1.111*2^0   = -1.875
\n", + "
\n", + "
0x8f = 1_00011_11 = -0b1.11*2^-12 = ~-0.000
\n", "
\n", + "
0xcf = 1_10011_11 = -0b1.11*2^4   = -28.0
\n", + "
............
\n", - "
0x10 0_10_000 = +0b1.000*2^1   = 2.0
\n", + "
\n", + "
0x30 = 0_01100_00 = +0b1.00*2^-3  = 0.125
\n", "
\n", - "
0x30 1_10_000 = -0b1.000*2^1   = -2.0
\n", + "
\n", + "
0x70 = 0_11100_00 = +0b1.00*2^13  = 8192.0
\n", + "
\n", + "
0xb0 = 1_01100_00 = -0b1.00*2^-3  = -0.125
\n", + "
\n", + "
0xf0 = 1_11100_00 = -0b1.00*2^13  = -8192.0
\n", "
\n", - "
0x11 0_10_001 = +0b1.001*2^1   = 2.25
\n", + "
\n", + "
0x31 = 0_01100_01 = +0b1.01*2^-3  = 0.15625
\n", + "
\n", + "
0x71 = 0_11100_01 = +0b1.01*2^13  = 10240.0
\n", + "
\n", + "
0xb1 = 1_01100_01 = -0b1.01*2^-3  = -0.15625
\n", "
\n", - "
0x31 1_10_001 = -0b1.001*2^1   = -2.25
\n", + "
\n", + "
0xf1 = 1_11100_01 = -0b1.01*2^13  = -10240.0
\n", "
\n", - "
0x12 0_10_010 = +0b1.010*2^1   = 2.5
\n", + "
\n", + "
0x32 = 0_01100_10 = +0b1.10*2^-3  = 0.1875
\n", "
\n", - "
0x32 1_10_010 = -0b1.010*2^1   = -2.5
\n", + "
\n", + "
0x72 = 0_11100_10 = +0b1.10*2^13  = 12288.0
\n", + "
\n", + "
0xb2 = 1_01100_10 = -0b1.10*2^-3  = -0.1875
\n", + "
\n", + "
0xf2 = 1_11100_10 = -0b1.10*2^13  = -12288.0
\n", "
\n", - "
0x13 0_10_011 = +0b1.011*2^1   = 2.75
\n", + "
\n", + "
0x33 = 0_01100_11 = +0b1.11*2^-3  = 0.21875
\n", + "
\n", + "
0x73 = 0_11100_11 = +0b1.11*2^13  = 14336.0
\n", + "
\n", + "
0xb3 = 1_01100_11 = -0b1.11*2^-3  = -0.21875
\n", "
\n", - "
0x33 1_10_011 = -0b1.011*2^1   = -2.75
\n", + "
\n", + "
0xf3 = 1_11100_11 = -0b1.11*2^13  = -14336.0
\n", "
\n", - "
0x14 0_10_100 = +0b1.100*2^1   = 3.0
\n", + "
\n", + "
0x34 = 0_01101_00 = +0b1.00*2^-2  = 0.25
\n", "
\n", - "
0x34 1_10_100 = -0b1.100*2^1   = -3.0
\n", + "
\n", + "
0x74 = 0_11101_00 = +0b1.00*2^14  = 16384.0
\n", + "
\n", + "
0xb4 = 1_01101_00 = -0b1.00*2^-2  = -0.25
\n", + "
\n", + "
0xf4 = 1_11101_00 = -0b1.00*2^14  = -16384.0
\n", "
\n", - "
0x15 0_10_101 = +0b1.101*2^1   = 3.25
\n", + "
\n", + "
0x35 = 0_01101_01 = +0b1.01*2^-2  = 0.3125
\n", + "
\n", + "
0x75 = 0_11101_01 = +0b1.01*2^14  = 20480.0
\n", + "
\n", + "
0xb5 = 1_01101_01 = -0b1.01*2^-2  = -0.3125
\n", "
\n", - "
0x35 1_10_101 = -0b1.101*2^1   = -3.25
\n", + "
\n", + "
0xf5 = 1_11101_01 = -0b1.01*2^14  = -20480.0
\n", "
\n", - "
0x16 0_10_110 = +0b1.110*2^1   = 3.5
\n", + "
\n", + "
0x36 = 0_01101_10 = +0b1.10*2^-2  = 0.375
\n", "
\n", - "
0x36 1_10_110 = -0b1.110*2^1   = -3.5
\n", + "
\n", + "
0x76 = 0_11101_10 = +0b1.10*2^14  = 24576.0
\n", + "
\n", + "
0xb6 = 1_01101_10 = -0b1.10*2^-2  = -0.375
\n", + "
\n", + "
0xf6 = 1_11101_10 = -0b1.10*2^14  = -24576.0
\n", "
\n", - "
0x17 0_10_111 = +0b1.111*2^1   = 3.75
\n", + "
\n", + "
0x37 = 0_01101_11 = +0b1.11*2^-2  = 0.4375
\n", + "
\n", + "
0x77 = 0_11101_11 = +0b1.11*2^14  = 28672.0
\n", + "
\n", + "
0xb7 = 1_01101_11 = -0b1.11*2^-2  = -0.4375
\n", "
\n", - "
0x37 1_10_111 = -0b1.111*2^1   = -3.75
\n", + "
\n", + "
0xf7 = 1_11101_11 = -0b1.11*2^14  = -28672.0
\n", "
\n", - "
0x18 0_11_000 = +0b1.000*2^2   = 4.0
\n", + "
\n", + "
0x38 = 0_01110_00 = +0b1.00*2^-1  = 0.5
\n", "
\n", - "
0x38 1_11_000 = -0b1.000*2^2   = -4.0
\n", + "
\n", + "
0x78 = 0_11110_00 = +0b1.00*2^15  = 32768.0
\n", + "
\n", + "
0xb8 = 1_01110_00 = -0b1.00*2^-1  = -0.5
\n", + "
\n", + "
0xf8 = 1_11110_00 = -0b1.00*2^15  = -32768.0
\n", "
\n", - "
0x19 0_11_001 = +0b1.001*2^2   = 4.5
\n", + "
\n", + "
0x39 = 0_01110_01 = +0b1.01*2^-1  = 0.625
\n", + "
\n", + "
0x79 = 0_11110_01 = +0b1.01*2^15  = 40960.0
\n", + "
\n", + "
0xb9 = 1_01110_01 = -0b1.01*2^-1  = -0.625
\n", "
\n", - "
0x39 1_11_001 = -0b1.001*2^2   = -4.5
\n", + "
\n", + "
0xf9 = 1_11110_01 = -0b1.01*2^15  = -40960.0
\n", "
\n", - "
0x1a 0_11_010 = +0b1.010*2^2   = 5.0
\n", + "
\n", + "
0x3a = 0_01110_10 = +0b1.10*2^-1  = 0.75
\n", "
\n", - "
0x3a 1_11_010 = -0b1.010*2^2   = -5.0
\n", + "
\n", + "
0x7a = 0_11110_10 = +0b1.10*2^15  = 49152.0
\n", + "
\n", + "
0xba = 1_01110_10 = -0b1.10*2^-1  = -0.75
\n", + "
\n", + "
0xfa = 1_11110_10 = -0b1.10*2^15  = -49152.0
\n", "
\n", - "
0x1b 0_11_011 = +0b1.011*2^2   = 5.5
\n", + "
\n", + "
0x3b = 0_01110_11 = +0b1.11*2^-1  = 0.875
\n", + "
\n", + "
0x7b = 0_11110_11 = +0b1.11*2^15  = 57344.0
\n", + "
\n", + "
0xbb = 1_01110_11 = -0b1.11*2^-1  = -0.875
\n", "
\n", - "
0x3b 1_11_011 = -0b1.011*2^2   = -5.5
\n", + "
\n", + "
0xfb = 1_11110_11 = -0b1.11*2^15  = -57344.0
\n", "
\n", - "
0x1c 0_11_100 = +0b1.100*2^2   = 6.0
\n", + "
\n", + "
0x3c = 0_01111_00 = +0b1.00*2^0   = 1.0
\n", "
\n", - "
0x3c 1_11_100 = -0b1.100*2^2   = -6.0
\n", + "
\n", + "
0x7c = 0_11111_00 = inf = inf
\n", + "
\n", + "
0xbc = 1_01111_00 = -0b1.00*2^0   = -1.0
\n", + "
\n", + "
0xfc = 1_11111_00 = -inf = -inf
\n", "
\n", - "
0x1d 0_11_101 = +0b1.101*2^2   = 6.5
\n", + "
\n", + "
0x3d = 0_01111_01 = +0b1.01*2^0   = 1.25
\n", + "
\n", + "
0x7d = 0_11111_01 = nan = nan
\n", + "
\n", + "
0xbd = 1_01111_01 = -0b1.01*2^0   = -1.25
\n", "
\n", - "
0x3d 1_11_101 = -0b1.101*2^2   = -6.5
\n", + "
\n", + "
0xfd = 1_11111_01 = nan = nan
\n", "
\n", - "
0x1e 0_11_110 = +0b1.110*2^2   = 7.0
\n", + "
\n", + "
0x3e = 0_01111_10 = +0b1.10*2^0   = 1.5
\n", "
\n", - "
0x3e 1_11_110 = -0b1.110*2^2   = -7.0
\n", + "
\n", + "
0x7e = 0_11111_10 = nan = nan
\n", + "
\n", + "
0xbe = 1_01111_10 = -0b1.10*2^0   = -1.5
\n", + "
\n", + "
0xfe = 1_11111_10 = nan = nan
\n", "
\n", - "
0x1f 0_11_111 = +0b1.111*2^2   = 7.5
\n", + "
\n", + "
0x3f = 0_01111_11 = +0b1.11*2^0   = 1.75
\n", + "
\n", + "
0x7f = 0_11111_11 = nan = nan
\n", + "
\n", + "
0xbf = 1_01111_11 = -0b1.11*2^0   = -1.75
\n", "
\n", - "
0x3f 1_11_111 = -0b1.111*2^2   = -7.5
\n", + "
\n", + "
0xff = 1_11111_11 = nan = nan
\n", "
" + "
\n", + " \n", + "" ], "text/plain": [ "" ] }, - "execution_count": 10, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "HTML(mktbl(format_info_ocp_e2m3, cols=2, vs_width=8, vs_d=3))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### OCP Formats: E5M2, E4M3" + "# HTML(mktbl(format_info_ocp_e5m2, cols=4, skip_rows=(0x10, 0x30), vs_width=8, vs_d=5))\n", + "HTML(\n", + " airdoc(\n", + " *mktbl(\n", + " Airium(),\n", + " format_info_ocp_e5m2,\n", + " skip_rows=range(0x10, 0x30),\n", + " cols=4,\n", + " width=8,\n", + " d=3,\n", + " )\n", + " )\n", + ")" ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 17, + "id": "cb7d45dd", "metadata": {}, "outputs": [ { "data": { "text/html": [ + "\n", "\n", - "

FP8 Value Table, ocp_e5m2

\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
\n", - "
0x00 0_00000_00 = 0.0
\n", - "
\n", - "
0x40 0_10000_00 = +0b1.00*2^1   = 2.0
\n", - "
\n", - "
0x80 1_00000_00 = -0.0
\n", - "
\n", - "
0xc0 1_10000_00 = -0b1.00*2^1   = -2.0
\n", - "
\n", - "
0x01 0_00000_01 = +0b0.01*2^-14 = ~1.5259e-05
\n", - "
\n", - "
0x41 0_10000_01 = +0b1.01*2^1   = 2.5
\n", - "
\n", - "
0x81 1_00000_01 = -0b0.01*2^-14 = ~-1.5259e-05
\n", - "
\n", - "
0xc1 1_10000_01 = -0b1.01*2^1   = -2.5
\n", + " table.zmktbl {\n", + " margin: 0pt;\n", + " border-collapse: collapse; \n", + " }\n", + " tr.zmktbl {\n", + " margin: 0;\n", + " }\n", + " td.zmktbl {\n", + " border: 1px solid;\n", + " }\n", + " pre.zmktbl {\n", + " margin: 4pt 1pt 1pt 13pt; \n", + " display: inline;\n", + " font-family: monospace;\n", + " font-size: 16px;\n", + " font-weight: bold;\n", + " }\n", + " \n", + "\n", + " \n", + " \n", + " FP8 Value Table, ocp_e4m3\n", + " \n", + " \n", + "

FP8 Value Table, ocp_e4m3

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - "
\n", + "
0x00 = 0_0000_000 = 0.0 = 0.0
\n", + "
\n", + "
0x40 = 0_1000_000 = +0b1.000*2^1   = 2.0
\n", + "
\n", + "
0x80 = 1_0000_000 = -0.0 = -0.0
\n", + "
\n", + "
0xc0 = 1_1000_000 = -0b1.000*2^1   = -2.0
\n", "
\n", - "
0x02 0_00000_10 = +0b0.10*2^-14 = ~3.0518e-05
\n", + "
\n", + "
0x01 = 0_0000_001 = +0b0.001*2^-6  = ~0.002
\n", "
\n", - "
0x42 0_10000_10 = +0b1.10*2^1   = 3.0
\n", + "
\n", + "
0x41 = 0_1000_001 = +0b1.001*2^1   = 2.25
\n", "
\n", - "
0x82 1_00000_10 = -0b0.10*2^-14 = ~-3.0518e-05
\n", + "
\n", + "
0x81 = 1_0000_001 = -0b0.001*2^-6  = ~-0.002
\n", "
\n", - "
0xc2 1_10000_10 = -0b1.10*2^1   = -3.0
\n", + "
\n", + "
0xc1 = 1_1000_001 = -0b1.001*2^1   = -2.25
\n", "
\n", - "
0x03 0_00000_11 = +0b0.11*2^-14 = ~4.5776e-05
\n", + "
\n", + "
0x02 = 0_0000_010 = +0b0.010*2^-6  = ~0.004
\n", "
\n", - "
0x43 0_10000_11 = +0b1.11*2^1   = 3.5
\n", + "
\n", + "
0x42 = 0_1000_010 = +0b1.010*2^1   = 2.5
\n", "
\n", - "
0x83 1_00000_11 = -0b0.11*2^-14 = ~-4.5776e-05
\n", + "
\n", + "
0x82 = 1_0000_010 = -0b0.010*2^-6  = ~-0.004
\n", "
\n", - "
0xc3 1_10000_11 = -0b1.11*2^1   = -3.5
\n", + "
\n", + "
0xc2 = 1_1000_010 = -0b1.010*2^1   = -2.5
\n", "
\n", - "
0x04 0_00001_00 = +0b1.00*2^-14 = ~6.1035e-05
\n", + "
\n", + "
0x03 = 0_0000_011 = +0b0.011*2^-6  = ~0.006
\n", "
\n", - "
0x44 0_10001_00 = +0b1.00*2^2   = 4.0
\n", + "
\n", + "
0x43 = 0_1000_011 = +0b1.011*2^1   = 2.75
\n", "
\n", - "
0x84 1_00001_00 = -0b1.00*2^-14 = ~-6.1035e-05
\n", + "
\n", + "
0x83 = 1_0000_011 = -0b0.011*2^-6  = ~-0.006
\n", "
\n", - "
0xc4 1_10001_00 = -0b1.00*2^2   = -4.0
\n", + "
\n", + "
0xc3 = 1_1000_011 = -0b1.011*2^1   = -2.75
\n", "
\n", - "
0x05 0_00001_01 = +0b1.01*2^-14 = ~7.6294e-05
\n", + "
\n", + "
0x04 = 0_0000_100 = +0b0.100*2^-6  = ~0.008
\n", "
\n", - "
0x45 0_10001_01 = +0b1.01*2^2   = 5.0
\n", + "
\n", + "
0x44 = 0_1000_100 = +0b1.100*2^1   = 3.0
\n", "
\n", - "
0x85 1_00001_01 = -0b1.01*2^-14 = ~-7.6294e-05
\n", + "
\n", + "
0x84 = 1_0000_100 = -0b0.100*2^-6  = ~-0.008
\n", "
\n", - "
0xc5 1_10001_01 = -0b1.01*2^2   = -5.0
\n", + "
\n", + "
0xc4 = 1_1000_100 = -0b1.100*2^1   = -3.0
\n", "
\n", - "
0x06 0_00001_10 = +0b1.10*2^-14 = ~9.1553e-05
\n", + "
\n", + "
0x05 = 0_0000_101 = +0b0.101*2^-6  = ~0.010
\n", "
\n", - "
0x46 0_10001_10 = +0b1.10*2^2   = 6.0
\n", + "
\n", + "
0x45 = 0_1000_101 = +0b1.101*2^1   = 3.25
\n", "
\n", - "
0x86 1_00001_10 = -0b1.10*2^-14 = ~-9.1553e-05
\n", + "
\n", + "
0x85 = 1_0000_101 = -0b0.101*2^-6  = ~-0.010
\n", "
\n", - "
0xc6 1_10001_10 = -0b1.10*2^2   = -6.0
\n", + "
\n", + "
0xc5 = 1_1000_101 = -0b1.101*2^1   = -3.25
\n", "
\n", - "
0x07 0_00001_11 = +0b1.11*2^-14 = ~0.00011
\n", + "
\n", + "
0x06 = 0_0000_110 = +0b0.110*2^-6  = ~0.012
\n", "
\n", - "
0x47 0_10001_11 = +0b1.11*2^2   = 7.0
\n", + "
\n", + "
0x46 = 0_1000_110 = +0b1.110*2^1   = 3.5
\n", "
\n", - "
0x87 1_00001_11 = -0b1.11*2^-14 = ~-0.00011
\n", + "
\n", + "
0x86 = 1_0000_110 = -0b0.110*2^-6  = ~-0.012
\n", "
\n", - "
0xc7 1_10001_11 = -0b1.11*2^2   = -7.0
\n", + "
\n", + "
0xc6 = 1_1000_110 = -0b1.110*2^1   = -3.5
\n", "
\n", - "
0x08 0_00010_00 = +0b1.00*2^-13 = ~0.00012
\n", + "
\n", + "
0x07 = 0_0000_111 = +0b0.111*2^-6  = ~0.014
\n", "
\n", - "
0x48 0_10010_00 = +0b1.00*2^3   = 8.0
\n", + "
\n", + "
0x47 = 0_1000_111 = +0b1.111*2^1   = 3.75
\n", "
\n", - "
0x88 1_00010_00 = -0b1.00*2^-13 = ~-0.00012
\n", + "
\n", + "
0x87 = 1_0000_111 = -0b0.111*2^-6  = ~-0.014
\n", "
\n", - "
0xc8 1_10010_00 = -0b1.00*2^3   = -8.0
\n", + "
\n", + "
0xc7 = 1_1000_111 = -0b1.111*2^1   = -3.75
\n", "
\n", - "
0x09 0_00010_01 = +0b1.01*2^-13 = ~0.00015
\n", + "
\n", + "
0x08 = 0_0001_000 = +0b1.000*2^-6  = 0.015625
\n", "
\n", - "
0x49 0_10010_01 = +0b1.01*2^3   = 10.0
\n", + "
\n", + "
0x48 = 0_1001_000 = +0b1.000*2^2   = 4.0
\n", "
\n", - "
0x89 1_00010_01 = -0b1.01*2^-13 = ~-0.00015
\n", + "
\n", + "
0x88 = 1_0001_000 = -0b1.000*2^-6  = ~-0.016
\n", "
\n", - "
0xc9 1_10010_01 = -0b1.01*2^3   = -10.0
\n", + "
\n", + "
0xc8 = 1_1001_000 = -0b1.000*2^2   = -4.0
\n", "
\n", - "
0x0a 0_00010_10 = +0b1.10*2^-13 = ~0.00018
\n", + "
\n", + "
0x09 = 0_0001_001 = +0b1.001*2^-6  = ~0.018
\n", "
\n", - "
0x4a 0_10010_10 = +0b1.10*2^3   = 12.0
\n", + "
\n", + "
0x49 = 0_1001_001 = +0b1.001*2^2   = 4.5
\n", "
\n", - "
0x8a 1_00010_10 = -0b1.10*2^-13 = ~-0.00018
\n", + "
\n", + "
0x89 = 1_0001_001 = -0b1.001*2^-6  = ~-0.018
\n", "
\n", - "
0xca 1_10010_10 = -0b1.10*2^3   = -12.0
\n", + "
\n", + "
0xc9 = 1_1001_001 = -0b1.001*2^2   = -4.5
\n", "
\n", - "
0x0b 0_00010_11 = +0b1.11*2^-13 = ~0.00021
\n", + "
\n", + "
0x0a = 0_0001_010 = +0b1.010*2^-6  = ~0.020
\n", "
\n", - "
0x4b 0_10010_11 = +0b1.11*2^3   = 14.0
\n", + "
\n", + "
0x4a = 0_1001_010 = +0b1.010*2^2   = 5.0
\n", "
\n", - "
0x8b 1_00010_11 = -0b1.11*2^-13 = ~-0.00021
\n", + "
\n", + "
0x8a = 1_0001_010 = -0b1.010*2^-6  = ~-0.020
\n", "
\n", - "
0xcb 1_10010_11 = -0b1.11*2^3   = -14.0
\n", + "
\n", + "
0xca = 1_1001_010 = -0b1.010*2^2   = -5.0
\n", "
\n", - "
0x0c 0_00011_00 = +0b1.00*2^-12 = ~0.00024
\n", + "
\n", + "
0x0b = 0_0001_011 = +0b1.011*2^-6  = ~0.021
\n", "
\n", - "
0x4c 0_10011_00 = +0b1.00*2^4   = 16.0
\n", + "
\n", + "
0x4b = 0_1001_011 = +0b1.011*2^2   = 5.5
\n", "
\n", - "
0x8c 1_00011_00 = -0b1.00*2^-12 = ~-0.00024
\n", + "
\n", + "
0x8b = 1_0001_011 = -0b1.011*2^-6  = ~-0.021
\n", "
\n", - "
0xcc 1_10011_00 = -0b1.00*2^4   = -16.0
\n", + "
\n", + "
0xcb = 1_1001_011 = -0b1.011*2^2   = -5.5
\n", "
\n", - "
0x0d 0_00011_01 = +0b1.01*2^-12 = ~0.00031
\n", + "
\n", + "
0x0c = 0_0001_100 = +0b1.100*2^-6  = ~0.023
\n", "
\n", - "
0x4d 0_10011_01 = +0b1.01*2^4   = 20.0
\n", + "
\n", + "
0x4c = 0_1001_100 = +0b1.100*2^2   = 6.0
\n", "
\n", - "
0x8d 1_00011_01 = -0b1.01*2^-12 = ~-0.00031
\n", + "
\n", + "
0x8c = 1_0001_100 = -0b1.100*2^-6  = ~-0.023
\n", "
\n", - "
0xcd 1_10011_01 = -0b1.01*2^4   = -20.0
\n", + "
\n", + "
0xcc = 1_1001_100 = -0b1.100*2^2   = -6.0
\n", "
\n", - "
0x0e 0_00011_10 = +0b1.10*2^-12 = ~0.00037
\n", + "
\n", + "
0x0d = 0_0001_101 = +0b1.101*2^-6  = ~0.025
\n", "
\n", - "
0x4e 0_10011_10 = +0b1.10*2^4   = 24.0
\n", + "
\n", + "
0x4d = 0_1001_101 = +0b1.101*2^2   = 6.5
\n", "
\n", - "
0x8e 1_00011_10 = -0b1.10*2^-12 = ~-0.00037
\n", + "
\n", + "
0x8d = 1_0001_101 = -0b1.101*2^-6  = ~-0.025
\n", "
\n", - "
0xce 1_10011_10 = -0b1.10*2^4   = -24.0
\n", + "
\n", + "
0xcd = 1_1001_101 = -0b1.101*2^2   = -6.5
\n", "
\n", - "
0x0f 0_00011_11 = +0b1.11*2^-12 = ~0.00043
\n", + "
\n", + "
0x0e = 0_0001_110 = +0b1.110*2^-6  = ~0.027
\n", "
\n", - "
0x4f 0_10011_11 = +0b1.11*2^4   = 28.0
\n", + "
\n", + "
0x4e = 0_1001_110 = +0b1.110*2^2   = 7.0
\n", "
\n", - "
0x8f 1_00011_11 = -0b1.11*2^-12 = ~-0.00043
\n", + "
\n", + "
0x8e = 1_0001_110 = -0b1.110*2^-6  = ~-0.027
\n", "
\n", - "
0xcf 1_10011_11 = -0b1.11*2^4   = -28.0
\n", + "
\n", + "
0xce = 1_1001_110 = -0b1.110*2^2   = -7.0
\n", "
\n", + "
0x0f = 0_0001_111 = +0b1.111*2^-6  = ~0.029
\n", + "
\n", + "
0x4f = 0_1001_111 = +0b1.111*2^2   = 7.5
\n", + "
\n", + "
0x8f = 1_0001_111 = -0b1.111*2^-6  = ~-0.029
\n", + "
\n", + "
0xcf = 1_1001_111 = -0b1.111*2^2   = -7.5
\n", + "
\n", - "
0x30 0_01100_00 = +0b1.00*2^-3  = 0.125
\n", + "
............
\n", + "
0x30 = 0_0110_000 = +0b1.000*2^-1  = 0.5
\n", "
\n", - "
0x70 0_11100_00 = +0b1.00*2^13  = 8192.0
\n", + "
\n", + "
0x70 = 0_1110_000 = +0b1.000*2^7   = 128.0
\n", "
\n", - "
0xb0 1_01100_00 = -0b1.00*2^-3  = -0.125
\n", + "
\n", + "
0xb0 = 1_0110_000 = -0b1.000*2^-1  = -0.5
\n", "
\n", - "
0xf0 1_11100_00 = -0b1.00*2^13  = -8192.0
\n", + "
\n", + "
0xf0 = 1_1110_000 = -0b1.000*2^7   = -128.0
\n", "
\n", - "
0x31 0_01100_01 = +0b1.01*2^-3  = 0.15625
\n", + "
\n", + "
0x31 = 0_0110_001 = +0b1.001*2^-1  = 0.5625
\n", "
\n", - "
0x71 0_11100_01 = +0b1.01*2^13  = 10240.0
\n", + "
\n", + "
0x71 = 0_1110_001 = +0b1.001*2^7   = 144.0
\n", "
\n", - "
0xb1 1_01100_01 = -0b1.01*2^-3  = -0.15625
\n", + "
\n", + "
0xb1 = 1_0110_001 = -0b1.001*2^-1  = -0.5625
\n", "
\n", - "
0xf1 1_11100_01 = -0b1.01*2^13  = -10240.0
\n", + "
\n", + "
0xf1 = 1_1110_001 = -0b1.001*2^7   = -144.0
\n", "
\n", - "
0x32 0_01100_10 = +0b1.10*2^-3  = 0.1875
\n", + "
\n", + "
0x32 = 0_0110_010 = +0b1.010*2^-1  = 0.625
\n", "
\n", - "
0x72 0_11100_10 = +0b1.10*2^13  = 12288.0
\n", + "
\n", + "
0x72 = 0_1110_010 = +0b1.010*2^7   = 160.0
\n", "
\n", - "
0xb2 1_01100_10 = -0b1.10*2^-3  = -0.1875
\n", + "
\n", + "
0xb2 = 1_0110_010 = -0b1.010*2^-1  = -0.625
\n", "
\n", - "
0xf2 1_11100_10 = -0b1.10*2^13  = -12288.0
\n", + "
\n", + "
0xf2 = 1_1110_010 = -0b1.010*2^7   = -160.0
\n", "
\n", - "
0x33 0_01100_11 = +0b1.11*2^-3  = 0.21875
\n", + "
\n", + "
0x33 = 0_0110_011 = +0b1.011*2^-1  = 0.6875
\n", "
\n", - "
0x73 0_11100_11 = +0b1.11*2^13  = 14336.0
\n", + "
\n", + "
0x73 = 0_1110_011 = +0b1.011*2^7   = 176.0
\n", "
\n", - "
0xb3 1_01100_11 = -0b1.11*2^-3  = -0.21875
\n", + "
\n", + "
0xb3 = 1_0110_011 = -0b1.011*2^-1  = -0.6875
\n", "
\n", - "
0xf3 1_11100_11 = -0b1.11*2^13  = -14336.0
\n", + "
\n", + "
0xf3 = 1_1110_011 = -0b1.011*2^7   = -176.0
\n", "
\n", - "
0x34 0_01101_00 = +0b1.00*2^-2  = 0.25
\n", + "
\n", + "
0x34 = 0_0110_100 = +0b1.100*2^-1  = 0.75
\n", "
\n", - "
0x74 0_11101_00 = +0b1.00*2^14  = 16384.0
\n", + "
\n", + "
0x74 = 0_1110_100 = +0b1.100*2^7   = 192.0
\n", "
\n", - "
0xb4 1_01101_00 = -0b1.00*2^-2  = -0.25
\n", + "
\n", + "
0xb4 = 1_0110_100 = -0b1.100*2^-1  = -0.75
\n", "
\n", - "
0xf4 1_11101_00 = -0b1.00*2^14  = -16384.0
\n", + "
\n", + "
0xf4 = 1_1110_100 = -0b1.100*2^7   = -192.0
\n", "
\n", - "
0x35 0_01101_01 = +0b1.01*2^-2  = 0.3125
\n", + "
\n", + "
0x35 = 0_0110_101 = +0b1.101*2^-1  = 0.8125
\n", "
\n", - "
0x75 0_11101_01 = +0b1.01*2^14  = 20480.0
\n", + "
\n", + "
0x75 = 0_1110_101 = +0b1.101*2^7   = 208.0
\n", "
\n", - "
0xb5 1_01101_01 = -0b1.01*2^-2  = -0.3125
\n", + "
\n", + "
0xb5 = 1_0110_101 = -0b1.101*2^-1  = -0.8125
\n", "
\n", - "
0xf5 1_11101_01 = -0b1.01*2^14  = -20480.0
\n", + "
\n", + "
0xf5 = 1_1110_101 = -0b1.101*2^7   = -208.0
\n", "
\n", - "
0x36 0_01101_10 = +0b1.10*2^-2  = 0.375
\n", + "
\n", + "
0x36 = 0_0110_110 = +0b1.110*2^-1  = 0.875
\n", "
\n", - "
0x76 0_11101_10 = +0b1.10*2^14  = 24576.0
\n", + "
\n", + "
0x76 = 0_1110_110 = +0b1.110*2^7   = 224.0
\n", "
\n", - "
0xb6 1_01101_10 = -0b1.10*2^-2  = -0.375
\n", + "
\n", + "
0xb6 = 1_0110_110 = -0b1.110*2^-1  = -0.875
\n", "
\n", - "
0xf6 1_11101_10 = -0b1.10*2^14  = -24576.0
\n", + "
\n", + "
0xf6 = 1_1110_110 = -0b1.110*2^7   = -224.0
\n", "
\n", - "
0x37 0_01101_11 = +0b1.11*2^-2  = 0.4375
\n", + "
\n", + "
0x37 = 0_0110_111 = +0b1.111*2^-1  = 0.9375
\n", "
\n", - "
0x77 0_11101_11 = +0b1.11*2^14  = 28672.0
\n", + "
\n", + "
0x77 = 0_1110_111 = +0b1.111*2^7   = 240.0
\n", "
\n", - "
0xb7 1_01101_11 = -0b1.11*2^-2  = -0.4375
\n", + "
\n", + "
0xb7 = 1_0110_111 = -0b1.111*2^-1  = -0.9375
\n", "
\n", - "
0xf7 1_11101_11 = -0b1.11*2^14  = -28672.0
\n", + "
\n", + "
0xf7 = 1_1110_111 = -0b1.111*2^7   = -240.0
\n", "
\n", - "
0x38 0_01110_00 = +0b1.00*2^-1  = 0.5
\n", + "
\n", + "
0x38 = 0_0111_000 = +0b1.000*2^0   = 1.0
\n", "
\n", - "
0x78 0_11110_00 = +0b1.00*2^15  = 32768.0
\n", + "
\n", + "
0x78 = 0_1111_000 = +0b1.000*2^8   = 256.0
\n", "
\n", - "
0xb8 1_01110_00 = -0b1.00*2^-1  = -0.5
\n", + "
\n", + "
0xb8 = 1_0111_000 = -0b1.000*2^0   = -1.0
\n", "
\n", - "
0xf8 1_11110_00 = -0b1.00*2^15  = -32768.0
\n", + "
\n", + "
0xf8 = 1_1111_000 = -0b1.000*2^8   = -256.0
\n", "
\n", - "
0x39 0_01110_01 = +0b1.01*2^-1  = 0.625
\n", + "
\n", + "
0x39 = 0_0111_001 = +0b1.001*2^0   = 1.125
\n", "
\n", - "
0x79 0_11110_01 = +0b1.01*2^15  = 40960.0
\n", + "
\n", + "
0x79 = 0_1111_001 = +0b1.001*2^8   = 288.0
\n", "
\n", - "
0xb9 1_01110_01 = -0b1.01*2^-1  = -0.625
\n", + "
\n", + "
0xb9 = 1_0111_001 = -0b1.001*2^0   = -1.125
\n", "
\n", - "
0xf9 1_11110_01 = -0b1.01*2^15  = -40960.0
\n", + "
\n", + "
0xf9 = 1_1111_001 = -0b1.001*2^8   = -288.0
\n", "
\n", - "
0x3a 0_01110_10 = +0b1.10*2^-1  = 0.75
\n", + "
\n", + "
0x3a = 0_0111_010 = +0b1.010*2^0   = 1.25
\n", "
\n", - "
0x7a 0_11110_10 = +0b1.10*2^15  = 49152.0
\n", + "
\n", + "
0x7a = 0_1111_010 = +0b1.010*2^8   = 320.0
\n", "
\n", - "
0xba 1_01110_10 = -0b1.10*2^-1  = -0.75
\n", + "
\n", + "
0xba = 1_0111_010 = -0b1.010*2^0   = -1.25
\n", "
\n", - "
0xfa 1_11110_10 = -0b1.10*2^15  = -49152.0
\n", + "
\n", + "
0xfa = 1_1111_010 = -0b1.010*2^8   = -320.0
\n", "
\n", - "
0x3b 0_01110_11 = +0b1.11*2^-1  = 0.875
\n", + "
\n", + "
0x3b = 0_0111_011 = +0b1.011*2^0   = 1.375
\n", "
\n", - "
0x7b 0_11110_11 = +0b1.11*2^15  = 57344.0
\n", + "
\n", + "
0x7b = 0_1111_011 = +0b1.011*2^8   = 352.0
\n", "
\n", - "
0xbb 1_01110_11 = -0b1.11*2^-1  = -0.875
\n", + "
\n", + "
0xbb = 1_0111_011 = -0b1.011*2^0   = -1.375
\n", "
\n", - "
0xfb 1_11110_11 = -0b1.11*2^15  = -57344.0
\n", + "
\n", + "
0xfb = 1_1111_011 = -0b1.011*2^8   = -352.0
\n", "
\n", - "
0x3c 0_01111_00 = +0b1.00*2^0   = 1.0
\n", + "
\n", + "
0x3c = 0_0111_100 = +0b1.100*2^0   = 1.5
\n", "
\n", - "
0x7c 0_11111_00 = inf
\n", + "
\n", + "
0x7c = 0_1111_100 = +0b1.100*2^8   = 384.0
\n", "
\n", - "
0xbc 1_01111_00 = -0b1.00*2^0   = -1.0
\n", + "
\n", + "
0xbc = 1_0111_100 = -0b1.100*2^0   = -1.5
\n", "
\n", - "
0xfc 1_11111_00 = -inf
\n", + "
\n", + "
0xfc = 1_1111_100 = -0b1.100*2^8   = -384.0
\n", "
\n", - "
0x3d 0_01111_01 = +0b1.01*2^0   = 1.25
\n", + "
\n", + "
0x3d = 0_0111_101 = +0b1.101*2^0   = 1.625
\n", "
\n", - "
0x7d 0_11111_01 = nan
\n", + "
\n", + "
0x7d = 0_1111_101 = +0b1.101*2^8   = 416.0
\n", "
\n", - "
0xbd 1_01111_01 = -0b1.01*2^0   = -1.25
\n", + "
\n", + "
0xbd = 1_0111_101 = -0b1.101*2^0   = -1.625
\n", "
\n", - "
0xfd 1_11111_01 = nan
\n", + "
\n", + "
0xfd = 1_1111_101 = -0b1.101*2^8   = -416.0
\n", "
\n", - "
0x3e 0_01111_10 = +0b1.10*2^0   = 1.5
\n", + "
\n", + "
0x3e = 0_0111_110 = +0b1.110*2^0   = 1.75
\n", "
\n", - "
0x7e 0_11111_10 = nan
\n", + "
\n", + "
0x7e = 0_1111_110 = +0b1.110*2^8   = 448.0
\n", "
\n", - "
0xbe 1_01111_10 = -0b1.10*2^0   = -1.5
\n", + "
\n", + "
0xbe = 1_0111_110 = -0b1.110*2^0   = -1.75
\n", "
\n", - "
0xfe 1_11111_10 = nan
\n", + "
\n", + "
0xfe = 1_1111_110 = -0b1.110*2^8   = -448.0
\n", "
\n", - "
0x3f 0_01111_11 = +0b1.11*2^0   = 1.75
\n", + "
\n", + "
0x3f = 0_0111_111 = +0b1.111*2^0   = 1.875
\n", "
\n", - "
0x7f 0_11111_11 = nan
\n", + "
\n", + "
0x7f = 0_1111_111 = nan = nan
\n", "
\n", - "
0xbf 1_01111_11 = -0b1.11*2^0   = -1.75
\n", + "
\n", + "
0xbf = 1_0111_111 = -0b1.111*2^0   = -1.875
\n", "
\n", - "
0xff 1_11111_11 = nan
\n", + "
\n", + "
0xff = 1_1111_111 = nan = nan
\n", "
" + "
\n", + " \n", + "" ], "text/plain": [ "" ] }, - "execution_count": 11, + "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "HTML(mktbl(format_info_ocp_e5m2, cols=4, skip_rows=(0x10, 0x30), vs_width=8, vs_d=5))" + "HTML(\n", + " airdoc(\n", + " *mktbl(\n", + " Airium(),\n", + " format_info_ocp_e4m3,\n", + " skip_rows=range(0x10, 0x30),\n", + " cols=4,\n", + " width=8,\n", + " d=3,\n", + " )\n", + " )\n", + ")" ] }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 18, + "id": "4ee8b7e4", "metadata": {}, "outputs": [ { "data": { "text/html": [ + "\n", "\n", - "

FP8 Value Table, ocp_e4m3

\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
\n", - "
0x00 0_0000_000 = 0.0
\n", - "
\n", - "
0x40 0_1000_000 = +0b1.000*2^1   = 2.0
\n", - "
\n", - "
0x80 1_0000_000 = -0.0
\n", - "
\n", - "
0xc0 1_1000_000 = -0b1.000*2^1   = -2.0
\n", - "
\n", - "
0x01 0_0000_001 = +0b0.001*2^-6  = ~0.00195
\n", - "
\n", - "
0x41 0_1000_001 = +0b1.001*2^1   = 2.25
\n", - "
\n", - "
0x81 1_0000_001 = -0b0.001*2^-6  = ~-0.00195
\n", - "
\n", - "
0xc1 1_1000_001 = -0b1.001*2^1   = -2.25
\n", + " table.zmktbl {\n", + " margin: 0pt;\n", + " border-collapse: collapse; \n", + " }\n", + " tr.zmktbl {\n", + " margin: 0;\n", + " }\n", + " td.zmktbl {\n", + " border: 1px solid;\n", + " }\n", + " pre.zmktbl {\n", + " margin: 4pt 1pt 1pt 13pt; \n", + " display: inline;\n", + " font-family: monospace;\n", + " font-size: 16px;\n", + " font-weight: bold;\n", + " }\n", + " \n", + "\n", + " \n", + " \n", + " FP8 Value Table, ocp_e8m0\n", + " \n", + " \n", + "

FP8 Value Table, ocp_e8m0

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - "
\n", + "
0x00 = 00000000_ = +0b1.0*2^-127 = ~5.88e-39
\n", + "
\n", + "
0x40 = 01000000_ = +0b1.0*2^-63 = ~1.08e-19
\n", + "
\n", + "
0x80 = 10000000_ = +0b1.0*2^1   = 2.0
\n", + "
\n", + "
0xc0 = 11000000_ = +0b1.0*2^65  = ~3.69e+19
\n", + "
\n", + "
0x01 = 00000001_ = +0b1.0*2^-126 = ~1.18e-38
\n", + "
\n", + "
0x41 = 01000001_ = +0b1.0*2^-62 = ~2.17e-19
\n", + "
\n", + "
0x81 = 10000001_ = +0b1.0*2^2   = 4.0
\n", + "
\n", + "
0xc1 = 11000001_ = +0b1.0*2^66  = ~7.38e+19
\n", "
\n", - "
0x02 0_0000_010 = +0b0.010*2^-6  = ~0.00391
\n", + "
\n", + "
0x02 = 00000010_ = +0b1.0*2^-125 = ~2.35e-38
\n", "
\n", - "
0x42 0_1000_010 = +0b1.010*2^1   = 2.5
\n", + "
\n", + "
0x42 = 01000010_ = +0b1.0*2^-61 = ~4.34e-19
\n", "
\n", - "
0x82 1_0000_010 = -0b0.010*2^-6  = ~-0.00391
\n", + "
\n", + "
0x82 = 10000010_ = +0b1.0*2^3   = 8.0
\n", "
\n", - "
0xc2 1_1000_010 = -0b1.010*2^1   = -2.5
\n", + "
\n", + "
0xc2 = 11000010_ = +0b1.0*2^67  = ~1.48e+20
\n", "
\n", - "
0x03 0_0000_011 = +0b0.011*2^-6  = ~0.00586
\n", + "
\n", + "
0x03 = 00000011_ = +0b1.0*2^-124 = ~4.7e-38
\n", "
\n", - "
0x43 0_1000_011 = +0b1.011*2^1   = 2.75
\n", + "
\n", + "
0x43 = 01000011_ = +0b1.0*2^-60 = ~8.67e-19
\n", "
\n", - "
0x83 1_0000_011 = -0b0.011*2^-6  = ~-0.00586
\n", + "
\n", + "
0x83 = 10000011_ = +0b1.0*2^4   = 16.0
\n", "
\n", - "
0xc3 1_1000_011 = -0b1.011*2^1   = -2.75
\n", + "
\n", + "
0xc3 = 11000011_ = +0b1.0*2^68  = ~2.95e+20
\n", "
\n", - "
0x04 0_0000_100 = +0b0.100*2^-6  = ~0.00781
\n", + "
\n", + "
0x04 = 00000100_ = +0b1.0*2^-123 = ~9.4e-38
\n", "
\n", - "
0x44 0_1000_100 = +0b1.100*2^1   = 3.0
\n", + "
\n", + "
0x44 = 01000100_ = +0b1.0*2^-59 = ~1.73e-18
\n", "
\n", - "
0x84 1_0000_100 = -0b0.100*2^-6  = ~-0.00781
\n", + "
\n", + "
0x84 = 10000100_ = +0b1.0*2^5   = 32.0
\n", "
\n", - "
0xc4 1_1000_100 = -0b1.100*2^1   = -3.0
\n", + "
\n", + "
0xc4 = 11000100_ = +0b1.0*2^69  = ~5.9e+20
\n", "
\n", - "
0x05 0_0000_101 = +0b0.101*2^-6  = ~0.00977
\n", + "
\n", + "
0x05 = 00000101_ = +0b1.0*2^-122 = ~1.88e-37
\n", "
\n", - "
0x45 0_1000_101 = +0b1.101*2^1   = 3.25
\n", + "
\n", + "
0x45 = 01000101_ = +0b1.0*2^-58 = ~3.47e-18
\n", "
\n", - "
0x85 1_0000_101 = -0b0.101*2^-6  = ~-0.00977
\n", + "
\n", + "
0x85 = 10000101_ = +0b1.0*2^6   = 64.0
\n", "
\n", - "
0xc5 1_1000_101 = -0b1.101*2^1   = -3.25
\n", + "
\n", + "
0xc5 = 11000101_ = +0b1.0*2^70  = ~1.18e+21
\n", "
\n", - "
0x06 0_0000_110 = +0b0.110*2^-6  = ~0.01172
\n", + "
\n", + "
0x06 = 00000110_ = +0b1.0*2^-121 = ~3.76e-37
\n", "
\n", - "
0x46 0_1000_110 = +0b1.110*2^1   = 3.5
\n", + "
\n", + "
0x46 = 01000110_ = +0b1.0*2^-57 = ~6.94e-18
\n", "
\n", - "
0x86 1_0000_110 = -0b0.110*2^-6  = ~-0.01172
\n", + "
\n", + "
0x86 = 10000110_ = +0b1.0*2^7   = 128.0
\n", "
\n", - "
0xc6 1_1000_110 = -0b1.110*2^1   = -3.5
\n", + "
\n", + "
0xc6 = 11000110_ = +0b1.0*2^71  = ~2.36e+21
\n", "
\n", - "
0x07 0_0000_111 = +0b0.111*2^-6  = ~0.01367
\n", + "
\n", + "
0x07 = 00000111_ = +0b1.0*2^-120 = ~7.52e-37
\n", "
\n", - "
0x47 0_1000_111 = +0b1.111*2^1   = 3.75
\n", + "
\n", + "
0x47 = 01000111_ = +0b1.0*2^-56 = ~1.39e-17
\n", "
\n", - "
0x87 1_0000_111 = -0b0.111*2^-6  = ~-0.01367
\n", + "
\n", + "
0x87 = 10000111_ = +0b1.0*2^8   = 256.0
\n", "
\n", - "
0xc7 1_1000_111 = -0b1.111*2^1   = -3.75
\n", + "
\n", + "
0xc7 = 11000111_ = +0b1.0*2^72  = ~4.72e+21
\n", "
\n", - "
0x08 0_0001_000 = +0b1.000*2^-6  = 0.015625
\n", + "
\n", + "
0x08 = 00001000_ = +0b1.0*2^-119 = ~1.5e-36
\n", "
\n", - "
0x48 0_1001_000 = +0b1.000*2^2   = 4.0
\n", + "
\n", + "
0x48 = 01001000_ = +0b1.0*2^-55 = ~2.78e-17
\n", "
\n", - "
0x88 1_0001_000 = -0b1.000*2^-6  = ~-0.01562
\n", + "
\n", + "
0x88 = 10001000_ = +0b1.0*2^9   = 512.0
\n", "
\n", - "
0xc8 1_1001_000 = -0b1.000*2^2   = -4.0
\n", + "
\n", + "
0xc8 = 11001000_ = +0b1.0*2^73  = ~9.44e+21
\n", "
\n", - "
0x09 0_0001_001 = +0b1.001*2^-6  = ~0.01758
\n", + "
\n", + "
0x09 = 00001001_ = +0b1.0*2^-118 = ~3.01e-36
\n", "
\n", - "
0x49 0_1001_001 = +0b1.001*2^2   = 4.5
\n", + "
\n", + "
0x49 = 01001001_ = +0b1.0*2^-54 = ~5.55e-17
\n", "
\n", - "
0x89 1_0001_001 = -0b1.001*2^-6  = ~-0.01758
\n", + "
\n", + "
0x89 = 10001001_ = +0b1.0*2^10  = 1024.0
\n", "
\n", - "
0xc9 1_1001_001 = -0b1.001*2^2   = -4.5
\n", + "
\n", + "
0xc9 = 11001001_ = +0b1.0*2^74  = ~1.89e+22
\n", "
\n", - "
0x0a 0_0001_010 = +0b1.010*2^-6  = ~0.01953
\n", + "
\n", + "
0x0a = 00001010_ = +0b1.0*2^-117 = ~6.02e-36
\n", "
\n", - "
0x4a 0_1001_010 = +0b1.010*2^2   = 5.0
\n", + "
\n", + "
0x4a = 01001010_ = +0b1.0*2^-53 = ~1.11e-16
\n", "
\n", - "
0x8a 1_0001_010 = -0b1.010*2^-6  = ~-0.01953
\n", + "
\n", + "
0x8a = 10001010_ = +0b1.0*2^11  = 2048.0
\n", "
\n", - "
0xca 1_1001_010 = -0b1.010*2^2   = -5.0
\n", + "
\n", + "
0xca = 11001010_ = +0b1.0*2^75  = ~3.78e+22
\n", "
\n", - "
0x0b 0_0001_011 = +0b1.011*2^-6  = ~0.02148
\n", + "
\n", + "
0x0b = 00001011_ = +0b1.0*2^-116 = ~1.2e-35
\n", "
\n", - "
0x4b 0_1001_011 = +0b1.011*2^2   = 5.5
\n", + "
\n", + "
0x4b = 01001011_ = +0b1.0*2^-52 = ~2.22e-16
\n", "
\n", - "
0x8b 1_0001_011 = -0b1.011*2^-6  = ~-0.02148
\n", + "
\n", + "
0x8b = 10001011_ = +0b1.0*2^12  = 4096.0
\n", "
\n", - "
0xcb 1_1001_011 = -0b1.011*2^2   = -5.5
\n", + "
\n", + "
0xcb = 11001011_ = +0b1.0*2^76  = ~7.56e+22
\n", "
\n", - "
0x0c 0_0001_100 = +0b1.100*2^-6  = ~0.02344
\n", + "
\n", + "
0x0c = 00001100_ = +0b1.0*2^-115 = ~2.41e-35
\n", "
\n", - "
0x4c 0_1001_100 = +0b1.100*2^2   = 6.0
\n", + "
\n", + "
0x4c = 01001100_ = +0b1.0*2^-51 = ~4.44e-16
\n", "
\n", - "
0x8c 1_0001_100 = -0b1.100*2^-6  = ~-0.02344
\n", + "
\n", + "
0x8c = 10001100_ = +0b1.0*2^13  = 8192.0
\n", "
\n", - "
0xcc 1_1001_100 = -0b1.100*2^2   = -6.0
\n", + "
\n", + "
0xcc = 11001100_ = +0b1.0*2^77  = ~1.51e+23
\n", "
\n", - "
0x0d 0_0001_101 = +0b1.101*2^-6  = ~0.02539
\n", + "
\n", + "
0x0d = 00001101_ = +0b1.0*2^-114 = ~4.81e-35
\n", "
\n", - "
0x4d 0_1001_101 = +0b1.101*2^2   = 6.5
\n", + "
\n", + "
0x4d = 01001101_ = +0b1.0*2^-50 = ~8.88e-16
\n", "
\n", - "
0x8d 1_0001_101 = -0b1.101*2^-6  = ~-0.02539
\n", + "
\n", + "
0x8d = 10001101_ = +0b1.0*2^14  = 16384.0
\n", "
\n", - "
0xcd 1_1001_101 = -0b1.101*2^2   = -6.5
\n", + "
\n", + "
0xcd = 11001101_ = +0b1.0*2^78  = ~3.02e+23
\n", "
\n", - "
0x0e 0_0001_110 = +0b1.110*2^-6  = ~0.02734
\n", + "
\n", + "
0x0e = 00001110_ = +0b1.0*2^-113 = ~9.63e-35
\n", "
\n", - "
0x4e 0_1001_110 = +0b1.110*2^2   = 7.0
\n", + "
\n", + "
0x4e = 01001110_ = +0b1.0*2^-49 = ~1.78e-15
\n", "
\n", - "
0x8e 1_0001_110 = -0b1.110*2^-6  = ~-0.02734
\n", + "
\n", + "
0x8e = 10001110_ = +0b1.0*2^15  = 32768.0
\n", "
\n", - "
0xce 1_1001_110 = -0b1.110*2^2   = -7.0
\n", + "
\n", + "
0xce = 11001110_ = +0b1.0*2^79  = ~6.04e+23
\n", "
\n", - "
0x0f 0_0001_111 = +0b1.111*2^-6  = ~0.02930
\n", + "
\n", + "
0x0f = 00001111_ = +0b1.0*2^-112 = ~1.93e-34
\n", "
\n", - "
0x4f 0_1001_111 = +0b1.111*2^2   = 7.5
\n", + "
\n", + "
0x4f = 01001111_ = +0b1.0*2^-48 = ~3.55e-15
\n", "
\n", - "
0x8f 1_0001_111 = -0b1.111*2^-6  = ~-0.02930
\n", + "
\n", + "
0x8f = 10001111_ = +0b1.0*2^16  = 65536.0
\n", "
\n", - "
0xcf 1_1001_111 = -0b1.111*2^2   = -7.5
\n", + "
\n", + "
0xcf = 11001111_ = +0b1.0*2^80  = ~1.21e+24
\n", "
............
\n", - "
0x30 0_0110_000 = +0b1.000*2^-1  = 0.5
\n", + "
\n", + "
0x30 = 00110000_ = +0b1.0*2^-79 = ~1.65e-24
\n", "
\n", - "
0x70 0_1110_000 = +0b1.000*2^7   = 128.0
\n", + "
\n", + "
0x70 = 01110000_ = +0b1.0*2^-15 = ~3.05e-05
\n", "
\n", - "
0xb0 1_0110_000 = -0b1.000*2^-1  = -0.5
\n", + "
\n", + "
0xb0 = 10110000_ = +0b1.0*2^49  = ~5.63e+14
\n", "
\n", - "
0xf0 1_1110_000 = -0b1.000*2^7   = -128.0
\n", + "
\n", + "
0xf0 = 11110000_ = +0b1.0*2^113 = ~1.04e+34
\n", "
\n", - "
0x31 0_0110_001 = +0b1.001*2^-1  = 0.5625
\n", + "
\n", + "
0x31 = 00110001_ = +0b1.0*2^-78 = ~3.31e-24
\n", "
\n", - "
0x71 0_1110_001 = +0b1.001*2^7   = 144.0
\n", + "
\n", + "
0x71 = 01110001_ = +0b1.0*2^-14 = ~6.1e-05
\n", "
\n", - "
0xb1 1_0110_001 = -0b1.001*2^-1  = -0.5625
\n", + "
\n", + "
0xb1 = 10110001_ = +0b1.0*2^50  = ~1.13e+15
\n", "
\n", - "
0xf1 1_1110_001 = -0b1.001*2^7   = -144.0
\n", + "
\n", + "
0xf1 = 11110001_ = +0b1.0*2^114 = ~2.08e+34
\n", "
\n", - "
0x32 0_0110_010 = +0b1.010*2^-1  = 0.625
\n", + "
\n", + "
0x32 = 00110010_ = +0b1.0*2^-77 = ~6.62e-24
\n", "
\n", - "
0x72 0_1110_010 = +0b1.010*2^7   = 160.0
\n", + "
\n", + "
0x72 = 01110010_ = +0b1.0*2^-13 = ~0.000
\n", "
\n", - "
0xb2 1_0110_010 = -0b1.010*2^-1  = -0.625
\n", + "
\n", + "
0xb2 = 10110010_ = +0b1.0*2^51  = ~2.25e+15
\n", "
\n", - "
0xf2 1_1110_010 = -0b1.010*2^7   = -160.0
\n", + "
\n", + "
0xf2 = 11110010_ = +0b1.0*2^115 = ~4.15e+34
\n", "
\n", - "
0x33 0_0110_011 = +0b1.011*2^-1  = 0.6875
\n", + "
\n", + "
0x33 = 00110011_ = +0b1.0*2^-76 = ~1.32e-23
\n", "
\n", - "
0x73 0_1110_011 = +0b1.011*2^7   = 176.0
\n", + "
\n", + "
0x73 = 01110011_ = +0b1.0*2^-12 = ~0.000
\n", "
\n", - "
0xb3 1_0110_011 = -0b1.011*2^-1  = -0.6875
\n", + "
\n", + "
0xb3 = 10110011_ = +0b1.0*2^52  = ~4.5e+15
\n", "
\n", - "
0xf3 1_1110_011 = -0b1.011*2^7   = -176.0
\n", + "
\n", + "
0xf3 = 11110011_ = +0b1.0*2^116 = ~8.31e+34
\n", "
\n", - "
0x34 0_0110_100 = +0b1.100*2^-1  = 0.75
\n", + "
\n", + "
0x34 = 00110100_ = +0b1.0*2^-75 = ~2.65e-23
\n", "
\n", - "
0x74 0_1110_100 = +0b1.100*2^7   = 192.0
\n", + "
\n", + "
0x74 = 01110100_ = +0b1.0*2^-11 = ~0.000
\n", "
\n", - "
0xb4 1_0110_100 = -0b1.100*2^-1  = -0.75
\n", + "
\n", + "
0xb4 = 10110100_ = +0b1.0*2^53  = ~9.01e+15
\n", "
\n", - "
0xf4 1_1110_100 = -0b1.100*2^7   = -192.0
\n", + "
\n", + "
0xf4 = 11110100_ = +0b1.0*2^117 = ~1.66e+35
\n", "
\n", - "
0x35 0_0110_101 = +0b1.101*2^-1  = 0.8125
\n", + "
\n", + "
0x35 = 00110101_ = +0b1.0*2^-74 = ~5.29e-23
\n", "
\n", - "
0x75 0_1110_101 = +0b1.101*2^7   = 208.0
\n", + "
\n", + "
0x75 = 01110101_ = +0b1.0*2^-10 = ~0.001
\n", "
\n", - "
0xb5 1_0110_101 = -0b1.101*2^-1  = -0.8125
\n", + "
\n", + "
0xb5 = 10110101_ = +0b1.0*2^54  = ~1.8e+16
\n", "
\n", - "
0xf5 1_1110_101 = -0b1.101*2^7   = -208.0
\n", + "
\n", + "
0xf5 = 11110101_ = +0b1.0*2^118 = ~3.32e+35
\n", "
\n", - "
0x36 0_0110_110 = +0b1.110*2^-1  = 0.875
\n", + "
\n", + "
0x36 = 00110110_ = +0b1.0*2^-73 = ~1.06e-22
\n", "
\n", - "
0x76 0_1110_110 = +0b1.110*2^7   = 224.0
\n", + "
\n", + "
0x76 = 01110110_ = +0b1.0*2^-9  = ~0.002
\n", "
\n", - "
0xb6 1_0110_110 = -0b1.110*2^-1  = -0.875
\n", + "
\n", + "
0xb6 = 10110110_ = +0b1.0*2^55  = ~3.6e+16
\n", "
\n", - "
0xf6 1_1110_110 = -0b1.110*2^7   = -224.0
\n", + "
\n", + "
0xf6 = 11110110_ = +0b1.0*2^119 = ~6.65e+35
\n", "
\n", - "
0x37 0_0110_111 = +0b1.111*2^-1  = 0.9375
\n", + "
\n", + "
0x37 = 00110111_ = +0b1.0*2^-72 = ~2.12e-22
\n", "
\n", - "
0x77 0_1110_111 = +0b1.111*2^7   = 240.0
\n", + "
\n", + "
0x77 = 01110111_ = +0b1.0*2^-8  = ~0.004
\n", "
\n", - "
0xb7 1_0110_111 = -0b1.111*2^-1  = -0.9375
\n", + "
\n", + "
0xb7 = 10110111_ = +0b1.0*2^56  = ~7.21e+16
\n", "
\n", - "
0xf7 1_1110_111 = -0b1.111*2^7   = -240.0
\n", + "
\n", + "
0xf7 = 11110111_ = +0b1.0*2^120 = ~1.33e+36
\n", "
\n", - "
0x38 0_0111_000 = +0b1.000*2^0   = 1.0
\n", + "
\n", + "
0x38 = 00111000_ = +0b1.0*2^-71 = ~4.24e-22
\n", "
\n", - "
0x78 0_1111_000 = +0b1.000*2^8   = 256.0
\n", + "
\n", + "
0x78 = 01111000_ = +0b1.0*2^-7  = ~0.008
\n", "
\n", - "
0xb8 1_0111_000 = -0b1.000*2^0   = -1.0
\n", + "
\n", + "
0xb8 = 10111000_ = +0b1.0*2^57  = ~1.44e+17
\n", "
\n", - "
0xf8 1_1111_000 = -0b1.000*2^8   = -256.0
\n", + "
\n", + "
0xf8 = 11111000_ = +0b1.0*2^121 = ~2.66e+36
\n", "
\n", - "
0x39 0_0111_001 = +0b1.001*2^0   = 1.125
\n", + "
\n", + "
0x39 = 00111001_ = +0b1.0*2^-70 = ~8.47e-22
\n", "
\n", - "
0x79 0_1111_001 = +0b1.001*2^8   = 288.0
\n", + "
\n", + "
0x79 = 01111001_ = +0b1.0*2^-6  = 0.015625
\n", "
\n", - "
0xb9 1_0111_001 = -0b1.001*2^0   = -1.125
\n", + "
\n", + "
0xb9 = 10111001_ = +0b1.0*2^58  = ~2.88e+17
\n", "
\n", - "
0xf9 1_1111_001 = -0b1.001*2^8   = -288.0
\n", + "
\n", + "
0xf9 = 11111001_ = +0b1.0*2^122 = ~5.32e+36
\n", "
\n", - "
0x3a 0_0111_010 = +0b1.010*2^0   = 1.25
\n", + "
\n", + "
0x3a = 00111010_ = +0b1.0*2^-69 = ~1.69e-21
\n", "
\n", - "
0x7a 0_1111_010 = +0b1.010*2^8   = 320.0
\n", + "
\n", + "
0x7a = 01111010_ = +0b1.0*2^-5  = 0.03125
\n", "
\n", - "
0xba 1_0111_010 = -0b1.010*2^0   = -1.25
\n", + "
\n", + "
0xba = 10111010_ = +0b1.0*2^59  = ~5.76e+17
\n", "
\n", - "
0xfa 1_1111_010 = -0b1.010*2^8   = -320.0
\n", + "
\n", + "
0xfa = 11111010_ = +0b1.0*2^123 = ~1.06e+37
\n", "
\n", - "
0x3b 0_0111_011 = +0b1.011*2^0   = 1.375
\n", + "
\n", + "
0x3b = 00111011_ = +0b1.0*2^-68 = ~3.39e-21
\n", "
\n", - "
0x7b 0_1111_011 = +0b1.011*2^8   = 352.0
\n", + "
\n", + "
0x7b = 01111011_ = +0b1.0*2^-4  = 0.0625
\n", "
\n", - "
0xbb 1_0111_011 = -0b1.011*2^0   = -1.375
\n", + "
\n", + "
0xbb = 10111011_ = +0b1.0*2^60  = ~1.15e+18
\n", "
\n", - "
0xfb 1_1111_011 = -0b1.011*2^8   = -352.0
\n", + "
\n", + "
0xfb = 11111011_ = +0b1.0*2^124 = ~2.13e+37
\n", "
\n", - "
0x3c 0_0111_100 = +0b1.100*2^0   = 1.5
\n", + "
\n", + "
0x3c = 00111100_ = +0b1.0*2^-67 = ~6.78e-21
\n", "
\n", - "
0x7c 0_1111_100 = +0b1.100*2^8   = 384.0
\n", + "
\n", + "
0x7c = 01111100_ = +0b1.0*2^-3  = 0.125
\n", "
\n", - "
0xbc 1_0111_100 = -0b1.100*2^0   = -1.5
\n", + "
\n", + "
0xbc = 10111100_ = +0b1.0*2^61  = ~2.31e+18
\n", "
\n", - "
0xfc 1_1111_100 = -0b1.100*2^8   = -384.0
\n", + "
\n", + "
0xfc = 11111100_ = +0b1.0*2^125 = ~4.25e+37
\n", "
\n", - "
0x3d 0_0111_101 = +0b1.101*2^0   = 1.625
\n", + "
\n", + "
0x3d = 00111101_ = +0b1.0*2^-66 = ~1.36e-20
\n", "
\n", - "
0x7d 0_1111_101 = +0b1.101*2^8   = 416.0
\n", + "
\n", + "
0x7d = 01111101_ = +0b1.0*2^-2  = 0.25
\n", "
\n", - "
0xbd 1_0111_101 = -0b1.101*2^0   = -1.625
\n", + "
\n", + "
0xbd = 10111101_ = +0b1.0*2^62  = ~4.61e+18
\n", "
\n", - "
0xfd 1_1111_101 = -0b1.101*2^8   = -416.0
\n", + "
\n", + "
0xfd = 11111101_ = +0b1.0*2^126 = ~8.51e+37
\n", "
\n", - "
0x3e 0_0111_110 = +0b1.110*2^0   = 1.75
\n", + "
\n", + "
0x3e = 00111110_ = +0b1.0*2^-65 = ~2.71e-20
\n", "
\n", - "
0x7e 0_1111_110 = +0b1.110*2^8   = 448.0
\n", + "
\n", + "
0x7e = 01111110_ = +0b1.0*2^-1  = 0.5
\n", "
\n", - "
0xbe 1_0111_110 = -0b1.110*2^0   = -1.75
\n", + "
\n", + "
0xbe = 10111110_ = +0b1.0*2^63  = ~9.22e+18
\n", "
\n", - "
0xfe 1_1111_110 = -0b1.110*2^8   = -448.0
\n", + "
\n", + "
0xfe = 11111110_ = +0b1.0*2^127 = ~1.7e+38
\n", "
\n", - "
0x3f 0_0111_111 = +0b1.111*2^0   = 1.875
\n", + "
\n", + "
0x3f = 00111111_ = +0b1.0*2^-64 = ~5.42e-20
\n", "
\n", - "
0x7f 0_1111_111 = nan
\n", + "
\n", + "
0x7f = 01111111_ = +0b1.0*2^0   = 1.0
\n", "
\n", - "
0xbf 1_0111_111 = -0b1.111*2^0   = -1.875
\n", + "
\n", + "
0xbf = 10111111_ = +0b1.0*2^64  = ~1.84e+19
\n", "
\n", - "
0xff 1_1111_111 = nan
\n", + "
\n", + "
0xff = 11111111_ = nan = nan
\n", "
" + "
\n", + " \n", + "" ], "text/plain": [ "" ] }, - "execution_count": 12, + "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "HTML(mktbl(format_info_ocp_e4m3, cols=4, skip_rows=(0x10, 0x30), vs_width=8, vs_d=5))" + "HTML(\n", + " airdoc(\n", + " *mktbl(\n", + " Airium(),\n", + " format_info_ocp_e8m0,\n", + " skip_rows=range(0x10, 0x30),\n", + " cols=4,\n", + " width=8,\n", + " d=3,\n", + " )\n", + " )\n", + ")" ] }, { "cell_type": "markdown", + "id": "1fc87892", "metadata": {}, "source": [ "### IEEE WG P3109 KpP formats\n", @@ -2459,680 +11906,625 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 19, + "id": "fd4dfd99", "metadata": {}, "outputs": [ { "data": { "text/html": [ + "\n", "\n", - "

FP8 Value Table, p3109_8p3

\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
\n", - "
0x00 0_00000_00 = 0.0
\n", - "
\n", - "
0x40 0_10000_00 = +0b1.00*2^0   = 1.0
\n", - "
\n", - "
0x80 1_00000_00 = nan
\n", - "
\n", - "
0xc0 1_10000_00 = -0b1.00*2^0   = -1.0
\n", - "
\n", - "
0x01 0_00000_01 = +0b0.01*2^-15 = ~7.6294e-06
\n", - "
\n", - "
0x41 0_10000_01 = +0b1.01*2^0   = 1.25
\n", - "
\n", - "
0x81 1_00000_01 = -0b0.01*2^-15 = ~-7.6294e-06
\n", - "
\n", - "
0xc1 1_10000_01 = -0b1.01*2^0   = -1.25
\n", + " table.zmktbl {\n", + " margin: 0pt;\n", + " border-collapse: collapse; \n", + " }\n", + " tr.zmktbl {\n", + " margin: 0;\n", + " }\n", + " td.zmktbl {\n", + " border: 1px solid;\n", + " }\n", + " pre.zmktbl {\n", + " margin: 4pt 1pt 1pt 13pt; \n", + " display: inline;\n", + " font-family: monospace;\n", + " font-size: 16px;\n", + " font-weight: bold;\n", + " }\n", + " \n", + "\n", + " \n", + " \n", + " FP8 Value Table, p3109_k8p1fu\n", + " \n", + " \n", + "

FP8 Value Table, p3109_k8p1fu

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", - " \n", - " \n", - " \n", " \n", - "
\n", + "
0x00 = 00000000_ = 0.0 = 0.0
\n", + "
\n", + "
0x40 = 01000000_ = +0b1.0*2^-64 = ~5.42e-20
\n", + "
\n", + "
0x80 = 10000000_ = +0b1.0*2^0   = 1.0
\n", + "
\n", + "
0xc0 = 11000000_ = +0b1.0*2^64  = ~1.84e+19
\n", + "
\n", + "
0x01 = 00000001_ = +0b1.0*2^-127 = ~5.88e-39
\n", + "
\n", + "
0x41 = 01000001_ = +0b1.0*2^-63 = ~1.08e-19
\n", + "
\n", + "
0x81 = 10000001_ = +0b1.0*2^1   = 2.0
\n", + "
\n", + "
0xc1 = 11000001_ = +0b1.0*2^65  = ~3.69e+19
\n", "
\n", - "
0x02 0_00000_10 = +0b0.10*2^-15 = ~1.5259e-05
\n", + "
\n", + "
0x02 = 00000010_ = +0b1.0*2^-126 = ~1.18e-38
\n", "
\n", - "
0x42 0_10000_10 = +0b1.10*2^0   = 1.5
\n", + "
\n", + "
0x42 = 01000010_ = +0b1.0*2^-62 = ~2.17e-19
\n", "
\n", - "
0x82 1_00000_10 = -0b0.10*2^-15 = ~-1.5259e-05
\n", + "
\n", + "
0x82 = 10000010_ = +0b1.0*2^2   = 4.0
\n", "
\n", - "
0xc2 1_10000_10 = -0b1.10*2^0   = -1.5
\n", + "
\n", + "
0xc2 = 11000010_ = +0b1.0*2^66  = ~7.38e+19
\n", "
\n", - "
0x03 0_00000_11 = +0b0.11*2^-15 = ~2.2888e-05
\n", + "
\n", + "
0x03 = 00000011_ = +0b1.0*2^-125 = ~2.35e-38
\n", "
\n", - "
0x43 0_10000_11 = +0b1.11*2^0   = 1.75
\n", + "
\n", + "
0x43 = 01000011_ = +0b1.0*2^-61 = ~4.34e-19
\n", "
\n", - "
0x83 1_00000_11 = -0b0.11*2^-15 = ~-2.2888e-05
\n", + "
\n", + "
0x83 = 10000011_ = +0b1.0*2^3   = 8.0
\n", "
\n", - "
0xc3 1_10000_11 = -0b1.11*2^0   = -1.75
\n", + "
\n", + "
0xc3 = 11000011_ = +0b1.0*2^67  = ~1.48e+20
\n", "
\n", - "
0x04 0_00001_00 = +0b1.00*2^-15 = ~3.0518e-05
\n", + "
\n", + "
0x04 = 00000100_ = +0b1.0*2^-124 = ~4.7e-38
\n", "
\n", - "
0x44 0_10001_00 = +0b1.00*2^1   = 2.0
\n", + "
\n", + "
0x44 = 01000100_ = +0b1.0*2^-60 = ~8.67e-19
\n", "
\n", - "
0x84 1_00001_00 = -0b1.00*2^-15 = ~-3.0518e-05
\n", + "
\n", + "
0x84 = 10000100_ = +0b1.0*2^4   = 16.0
\n", "
\n", - "
0xc4 1_10001_00 = -0b1.00*2^1   = -2.0
\n", + "
\n", + "
0xc4 = 11000100_ = +0b1.0*2^68  = ~2.95e+20
\n", "
\n", - "
0x05 0_00001_01 = +0b1.01*2^-15 = ~3.8147e-05
\n", + "
\n", + "
0x05 = 00000101_ = +0b1.0*2^-123 = ~9.4e-38
\n", "
\n", - "
0x45 0_10001_01 = +0b1.01*2^1   = 2.5
\n", + "
\n", + "
0x45 = 01000101_ = +0b1.0*2^-59 = ~1.73e-18
\n", "
\n", - "
0x85 1_00001_01 = -0b1.01*2^-15 = ~-3.8147e-05
\n", + "
\n", + "
0x85 = 10000101_ = +0b1.0*2^5   = 32.0
\n", "
\n", - "
0xc5 1_10001_01 = -0b1.01*2^1   = -2.5
\n", + "
\n", + "
0xc5 = 11000101_ = +0b1.0*2^69  = ~5.9e+20
\n", "
\n", - "
0x06 0_00001_10 = +0b1.10*2^-15 = ~4.5776e-05
\n", + "
\n", + "
0x06 = 00000110_ = +0b1.0*2^-122 = ~1.88e-37
\n", "
\n", - "
0x46 0_10001_10 = +0b1.10*2^1   = 3.0
\n", + "
\n", + "
0x46 = 01000110_ = +0b1.0*2^-58 = ~3.47e-18
\n", "
\n", - "
0x86 1_00001_10 = -0b1.10*2^-15 = ~-4.5776e-05
\n", + "
\n", + "
0x86 = 10000110_ = +0b1.0*2^6   = 64.0
\n", "
\n", - "
0xc6 1_10001_10 = -0b1.10*2^1   = -3.0
\n", + "
\n", + "
0xc6 = 11000110_ = +0b1.0*2^70  = ~1.18e+21
\n", "
\n", - "
0x07 0_00001_11 = +0b1.11*2^-15 = ~5.3406e-05
\n", + "
\n", + "
0x07 = 00000111_ = +0b1.0*2^-121 = ~3.76e-37
\n", "
\n", - "
0x47 0_10001_11 = +0b1.11*2^1   = 3.5
\n", + "
\n", + "
0x47 = 01000111_ = +0b1.0*2^-57 = ~6.94e-18
\n", "
\n", - "
0x87 1_00001_11 = -0b1.11*2^-15 = ~-5.3406e-05
\n", + "
\n", + "
0x87 = 10000111_ = +0b1.0*2^7   = 128.0
\n", "
\n", - "
0xc7 1_10001_11 = -0b1.11*2^1   = -3.5
\n", + "
\n", + "
0xc7 = 11000111_ = +0b1.0*2^71  = ~2.36e+21
\n", "
\n", - "
0x08 0_00010_00 = +0b1.00*2^-14 = ~6.1035e-05
\n", + "
\n", + "
0x08 = 00001000_ = +0b1.0*2^-120 = ~7.52e-37
\n", "
\n", - "
0x48 0_10010_00 = +0b1.00*2^2   = 4.0
\n", + "
\n", + "
0x48 = 01001000_ = +0b1.0*2^-56 = ~1.39e-17
\n", "
\n", - "
0x88 1_00010_00 = -0b1.00*2^-14 = ~-6.1035e-05
\n", + "
\n", + "
0x88 = 10001000_ = +0b1.0*2^8   = 256.0
\n", "
\n", - "
0xc8 1_10010_00 = -0b1.00*2^2   = -4.0
\n", + "
\n", + "
0xc8 = 11001000_ = +0b1.0*2^72  = ~4.72e+21
\n", "
\n", - "
0x09 0_00010_01 = +0b1.01*2^-14 = ~7.6294e-05
\n", + "
\n", + "
0x09 = 00001001_ = +0b1.0*2^-119 = ~1.5e-36
\n", "
\n", - "
0x49 0_10010_01 = +0b1.01*2^2   = 5.0
\n", + "
\n", + "
0x49 = 01001001_ = +0b1.0*2^-55 = ~2.78e-17
\n", "
\n", - "
0x89 1_00010_01 = -0b1.01*2^-14 = ~-7.6294e-05
\n", + "
\n", + "
0x89 = 10001001_ = +0b1.0*2^9   = 512.0
\n", "
\n", - "
0xc9 1_10010_01 = -0b1.01*2^2   = -5.0
\n", + "
\n", + "
0xc9 = 11001001_ = +0b1.0*2^73  = ~9.44e+21
\n", "
\n", - "
0x0a 0_00010_10 = +0b1.10*2^-14 = ~9.1553e-05
\n", + "
\n", + "
0x0a = 00001010_ = +0b1.0*2^-118 = ~3.01e-36
\n", "
\n", - "
0x4a 0_10010_10 = +0b1.10*2^2   = 6.0
\n", + "
\n", + "
0x4a = 01001010_ = +0b1.0*2^-54 = ~5.55e-17
\n", "
\n", - "
0x8a 1_00010_10 = -0b1.10*2^-14 = ~-9.1553e-05
\n", + "
\n", + "
0x8a = 10001010_ = +0b1.0*2^10  = 1024.0
\n", "
\n", - "
0xca 1_10010_10 = -0b1.10*2^2   = -6.0
\n", + "
\n", + "
0xca = 11001010_ = +0b1.0*2^74  = ~1.89e+22
\n", "
\n", - "
0x0b 0_00010_11 = +0b1.11*2^-14 = ~0.00011
\n", + "
\n", + "
0x0b = 00001011_ = +0b1.0*2^-117 = ~6.02e-36
\n", "
\n", - "
0x4b 0_10010_11 = +0b1.11*2^2   = 7.0
\n", + "
\n", + "
0x4b = 01001011_ = +0b1.0*2^-53 = ~1.11e-16
\n", "
\n", - "
0x8b 1_00010_11 = -0b1.11*2^-14 = ~-0.00011
\n", + "
\n", + "
0x8b = 10001011_ = +0b1.0*2^11  = 2048.0
\n", "
\n", - "
0xcb 1_10010_11 = -0b1.11*2^2   = -7.0
\n", + "
\n", + "
0xcb = 11001011_ = +0b1.0*2^75  = ~3.78e+22
\n", "
\n", - "
0x0c 0_00011_00 = +0b1.00*2^-13 = ~0.00012
\n", + "
\n", + "
0x0c = 00001100_ = +0b1.0*2^-116 = ~1.2e-35
\n", "
\n", - "
0x4c 0_10011_00 = +0b1.00*2^3   = 8.0
\n", + "
\n", + "
0x4c = 01001100_ = +0b1.0*2^-52 = ~2.22e-16
\n", "
\n", - "
0x8c 1_00011_00 = -0b1.00*2^-13 = ~-0.00012
\n", + "
\n", + "
0x8c = 10001100_ = +0b1.0*2^12  = 4096.0
\n", "
\n", - "
0xcc 1_10011_00 = -0b1.00*2^3   = -8.0
\n", + "
\n", + "
0xcc = 11001100_ = +0b1.0*2^76  = ~7.56e+22
\n", "
\n", - "
0x0d 0_00011_01 = +0b1.01*2^-13 = ~0.00015
\n", + "
\n", + "
0x0d = 00001101_ = +0b1.0*2^-115 = ~2.41e-35
\n", "
\n", - "
0x4d 0_10011_01 = +0b1.01*2^3   = 10.0
\n", + "
\n", + "
0x4d = 01001101_ = +0b1.0*2^-51 = ~4.44e-16
\n", "
\n", - "
0x8d 1_00011_01 = -0b1.01*2^-13 = ~-0.00015
\n", + "
\n", + "
0x8d = 10001101_ = +0b1.0*2^13  = 8192.0
\n", "
\n", - "
0xcd 1_10011_01 = -0b1.01*2^3   = -10.0
\n", + "
\n", + "
0xcd = 11001101_ = +0b1.0*2^77  = ~1.51e+23
\n", "
\n", - "
0x0e 0_00011_10 = +0b1.10*2^-13 = ~0.00018
\n", + "
\n", + "
0x0e = 00001110_ = +0b1.0*2^-114 = ~4.81e-35
\n", "
\n", - "
0x4e 0_10011_10 = +0b1.10*2^3   = 12.0
\n", + "
\n", + "
0x4e = 01001110_ = +0b1.0*2^-50 = ~8.88e-16
\n", "
\n", - "
0x8e 1_00011_10 = -0b1.10*2^-13 = ~-0.00018
\n", + "
\n", + "
0x8e = 10001110_ = +0b1.0*2^14  = 16384.0
\n", "
\n", - "
0xce 1_10011_10 = -0b1.10*2^3   = -12.0
\n", + "
\n", + "
0xce = 11001110_ = +0b1.0*2^78  = ~3.02e+23
\n", "
\n", - "
0x0f 0_00011_11 = +0b1.11*2^-13 = ~0.00021
\n", + "
\n", + "
0x0f = 00001111_ = +0b1.0*2^-113 = ~9.63e-35
\n", "
\n", - "
0x4f 0_10011_11 = +0b1.11*2^3   = 14.0
\n", + "
\n", + "
0x4f = 01001111_ = +0b1.0*2^-49 = ~1.78e-15
\n", "
\n", - "
0x8f 1_00011_11 = -0b1.11*2^-13 = ~-0.00021
\n", + "
\n", + "
0x8f = 10001111_ = +0b1.0*2^15  = 32768.0
\n", "
\n", - "
0xcf 1_10011_11 = -0b1.11*2^3   = -14.0
\n", + "
\n", + "
0xcf = 11001111_ = +0b1.0*2^79  = ~6.04e+23
\n", "
............
\n", - "
0x30 0_01100_00 = +0b1.00*2^-4  = 0.0625
\n", + "
\n", + "
0x30 = 00110000_ = +0b1.0*2^-80 = ~8.27e-25
\n", "
\n", - "
0x70 0_11100_00 = +0b1.00*2^12  = 4096.0
\n", + "
\n", + "
0x70 = 01110000_ = +0b1.0*2^-16 = ~1.53e-05
\n", "
\n", - "
0xb0 1_01100_00 = -0b1.00*2^-4  = -0.0625
\n", + "
\n", + "
0xb0 = 10110000_ = +0b1.0*2^48  = ~2.81e+14
\n", "
\n", - "
0xf0 1_11100_00 = -0b1.00*2^12  = -4096.0
\n", + "
\n", + "
0xf0 = 11110000_ = +0b1.0*2^112 = ~5.19e+33
\n", "
\n", - "
0x31 0_01100_01 = +0b1.01*2^-4  = 0.078125
\n", + "
\n", + "
0x31 = 00110001_ = +0b1.0*2^-79 = ~1.65e-24
\n", "
\n", - "
0x71 0_11100_01 = +0b1.01*2^12  = 5120.0
\n", + "
\n", + "
0x71 = 01110001_ = +0b1.0*2^-15 = ~3.05e-05
\n", "
\n", - "
0xb1 1_01100_01 = -0b1.01*2^-4  = ~-0.07812
\n", + "
\n", + "
0xb1 = 10110001_ = +0b1.0*2^49  = ~5.63e+14
\n", "
\n", - "
0xf1 1_11100_01 = -0b1.01*2^12  = -5120.0
\n", + "
\n", + "
0xf1 = 11110001_ = +0b1.0*2^113 = ~1.04e+34
\n", "
\n", - "
0x32 0_01100_10 = +0b1.10*2^-4  = 0.09375
\n", + "
\n", + "
0x32 = 00110010_ = +0b1.0*2^-78 = ~3.31e-24
\n", "
\n", - "
0x72 0_11100_10 = +0b1.10*2^12  = 6144.0
\n", + "
\n", + "
0x72 = 01110010_ = +0b1.0*2^-14 = ~6.1e-05
\n", "
\n", - "
0xb2 1_01100_10 = -0b1.10*2^-4  = -0.09375
\n", + "
\n", + "
0xb2 = 10110010_ = +0b1.0*2^50  = ~1.13e+15
\n", "
\n", - "
0xf2 1_11100_10 = -0b1.10*2^12  = -6144.0
\n", + "
\n", + "
0xf2 = 11110010_ = +0b1.0*2^114 = ~2.08e+34
\n", "
\n", - "
0x33 0_01100_11 = +0b1.11*2^-4  = 0.109375
\n", + "
\n", + "
0x33 = 00110011_ = +0b1.0*2^-77 = ~6.62e-24
\n", "
\n", - "
0x73 0_11100_11 = +0b1.11*2^12  = 7168.0
\n", + "
\n", + "
0x73 = 01110011_ = +0b1.0*2^-13 = ~0.000
\n", "
\n", - "
0xb3 1_01100_11 = -0b1.11*2^-4  = ~-0.10938
\n", + "
\n", + "
0xb3 = 10110011_ = +0b1.0*2^51  = ~2.25e+15
\n", "
\n", - "
0xf3 1_11100_11 = -0b1.11*2^12  = -7168.0
\n", + "
\n", + "
0xf3 = 11110011_ = +0b1.0*2^115 = ~4.15e+34
\n", "
\n", - "
0x34 0_01101_00 = +0b1.00*2^-3  = 0.125
\n", + "
\n", + "
0x34 = 00110100_ = +0b1.0*2^-76 = ~1.32e-23
\n", "
\n", - "
0x74 0_11101_00 = +0b1.00*2^13  = 8192.0
\n", + "
\n", + "
0x74 = 01110100_ = +0b1.0*2^-12 = ~0.000
\n", "
\n", - "
0xb4 1_01101_00 = -0b1.00*2^-3  = -0.125
\n", + "
\n", + "
0xb4 = 10110100_ = +0b1.0*2^52  = ~4.5e+15
\n", "
\n", - "
0xf4 1_11101_00 = -0b1.00*2^13  = -8192.0
\n", + "
\n", + "
0xf4 = 11110100_ = +0b1.0*2^116 = ~8.31e+34
\n", "
\n", - "
0x35 0_01101_01 = +0b1.01*2^-3  = 0.15625
\n", + "
\n", + "
0x35 = 00110101_ = +0b1.0*2^-75 = ~2.65e-23
\n", "
\n", - "
0x75 0_11101_01 = +0b1.01*2^13  = 10240.0
\n", + "
\n", + "
0x75 = 01110101_ = +0b1.0*2^-11 = ~0.000
\n", "
\n", - "
0xb5 1_01101_01 = -0b1.01*2^-3  = -0.15625
\n", + "
\n", + "
0xb5 = 10110101_ = +0b1.0*2^53  = ~9.01e+15
\n", "
\n", - "
0xf5 1_11101_01 = -0b1.01*2^13  = -10240.0
\n", + "
\n", + "
0xf5 = 11110101_ = +0b1.0*2^117 = ~1.66e+35
\n", "
\n", - "
0x36 0_01101_10 = +0b1.10*2^-3  = 0.1875
\n", + "
\n", + "
0x36 = 00110110_ = +0b1.0*2^-74 = ~5.29e-23
\n", "
\n", - "
0x76 0_11101_10 = +0b1.10*2^13  = 12288.0
\n", + "
\n", + "
0x76 = 01110110_ = +0b1.0*2^-10 = ~0.001
\n", "
\n", - "
0xb6 1_01101_10 = -0b1.10*2^-3  = -0.1875
\n", + "
\n", + "
0xb6 = 10110110_ = +0b1.0*2^54  = ~1.8e+16
\n", "
\n", - "
0xf6 1_11101_10 = -0b1.10*2^13  = -12288.0
\n", + "
\n", + "
0xf6 = 11110110_ = +0b1.0*2^118 = ~3.32e+35
\n", "
\n", - "
0x37 0_01101_11 = +0b1.11*2^-3  = 0.21875
\n", + "
\n", + "
0x37 = 00110111_ = +0b1.0*2^-73 = ~1.06e-22
\n", "
\n", - "
0x77 0_11101_11 = +0b1.11*2^13  = 14336.0
\n", + "
\n", + "
0x77 = 01110111_ = +0b1.0*2^-9  = ~0.002
\n", "
\n", - "
0xb7 1_01101_11 = -0b1.11*2^-3  = -0.21875
\n", + "
\n", + "
0xb7 = 10110111_ = +0b1.0*2^55  = ~3.6e+16
\n", "
\n", - "
0xf7 1_11101_11 = -0b1.11*2^13  = -14336.0
\n", + "
\n", + "
0xf7 = 11110111_ = +0b1.0*2^119 = ~6.65e+35
\n", "
\n", - "
0x38 0_01110_00 = +0b1.00*2^-2  = 0.25
\n", + "
\n", + "
0x38 = 00111000_ = +0b1.0*2^-72 = ~2.12e-22
\n", "
\n", - "
0x78 0_11110_00 = +0b1.00*2^14  = 16384.0
\n", + "
\n", + "
0x78 = 01111000_ = +0b1.0*2^-8  = ~0.004
\n", "
\n", - "
0xb8 1_01110_00 = -0b1.00*2^-2  = -0.25
\n", + "
\n", + "
0xb8 = 10111000_ = +0b1.0*2^56  = ~7.21e+16
\n", "
\n", - "
0xf8 1_11110_00 = -0b1.00*2^14  = -16384.0
\n", + "
\n", + "
0xf8 = 11111000_ = +0b1.0*2^120 = ~1.33e+36
\n", "
\n", - "
0x39 0_01110_01 = +0b1.01*2^-2  = 0.3125
\n", + "
\n", + "
0x39 = 00111001_ = +0b1.0*2^-71 = ~4.24e-22
\n", "
\n", - "
0x79 0_11110_01 = +0b1.01*2^14  = 20480.0
\n", + "
\n", + "
0x79 = 01111001_ = +0b1.0*2^-7  = ~0.008
\n", "
\n", - "
0xb9 1_01110_01 = -0b1.01*2^-2  = -0.3125
\n", + "
\n", + "
0xb9 = 10111001_ = +0b1.0*2^57  = ~1.44e+17
\n", "
\n", - "
0xf9 1_11110_01 = -0b1.01*2^14  = -20480.0
\n", + "
\n", + "
0xf9 = 11111001_ = +0b1.0*2^121 = ~2.66e+36
\n", "
\n", - "
0x3a 0_01110_10 = +0b1.10*2^-2  = 0.375
\n", + "
\n", + "
0x3a = 00111010_ = +0b1.0*2^-70 = ~8.47e-22
\n", "
\n", - "
0x7a 0_11110_10 = +0b1.10*2^14  = 24576.0
\n", + "
\n", + "
0x7a = 01111010_ = +0b1.0*2^-6  = 0.015625
\n", "
\n", - "
0xba 1_01110_10 = -0b1.10*2^-2  = -0.375
\n", + "
\n", + "
0xba = 10111010_ = +0b1.0*2^58  = ~2.88e+17
\n", "
\n", - "
0xfa 1_11110_10 = -0b1.10*2^14  = -24576.0
\n", + "
\n", + "
0xfa = 11111010_ = +0b1.0*2^122 = ~5.32e+36
\n", "
\n", - "
0x3b 0_01110_11 = +0b1.11*2^-2  = 0.4375
\n", + "
\n", + "
0x3b = 00111011_ = +0b1.0*2^-69 = ~1.69e-21
\n", "
\n", - "
0x7b 0_11110_11 = +0b1.11*2^14  = 28672.0
\n", + "
\n", + "
0x7b = 01111011_ = +0b1.0*2^-5  = 0.03125
\n", "
\n", - "
0xbb 1_01110_11 = -0b1.11*2^-2  = -0.4375
\n", + "
\n", + "
0xbb = 10111011_ = +0b1.0*2^59  = ~5.76e+17
\n", "
\n", - "
0xfb 1_11110_11 = -0b1.11*2^14  = -28672.0
\n", + "
\n", + "
0xfb = 11111011_ = +0b1.0*2^123 = ~1.06e+37
\n", "
\n", - "
0x3c 0_01111_00 = +0b1.00*2^-1  = 0.5
\n", + "
\n", + "
0x3c = 00111100_ = +0b1.0*2^-68 = ~3.39e-21
\n", "
\n", - "
0x7c 0_11111_00 = +0b1.00*2^15  = 32768.0
\n", + "
\n", + "
0x7c = 01111100_ = +0b1.0*2^-4  = 0.0625
\n", "
\n", - "
0xbc 1_01111_00 = -0b1.00*2^-1  = -0.5
\n", + "
\n", + "
0xbc = 10111100_ = +0b1.0*2^60  = ~1.15e+18
\n", "
\n", - "
0xfc 1_11111_00 = -0b1.00*2^15  = -32768.0
\n", + "
\n", + "
0xfc = 11111100_ = +0b1.0*2^124 = ~2.13e+37
\n", "
\n", - "
0x3d 0_01111_01 = +0b1.01*2^-1  = 0.625
\n", + "
\n", + "
0x3d = 00111101_ = +0b1.0*2^-67 = ~6.78e-21
\n", "
\n", - "
0x7d 0_11111_01 = +0b1.01*2^15  = 40960.0
\n", + "
\n", + "
0x7d = 01111101_ = +0b1.0*2^-3  = 0.125
\n", "
\n", - "
0xbd 1_01111_01 = -0b1.01*2^-1  = -0.625
\n", + "
\n", + "
0xbd = 10111101_ = +0b1.0*2^61  = ~2.31e+18
\n", "
\n", - "
0xfd 1_11111_01 = -0b1.01*2^15  = -40960.0
\n", + "
\n", + "
0xfd = 11111101_ = +0b1.0*2^125 = ~4.25e+37
\n", "
\n", - "
0x3e 0_01111_10 = +0b1.10*2^-1  = 0.75
\n", + "
\n", + "
0x3e = 00111110_ = +0b1.0*2^-66 = ~1.36e-20
\n", "
\n", - "
0x7e 0_11111_10 = +0b1.10*2^15  = 49152.0
\n", + "
\n", + "
0x7e = 01111110_ = +0b1.0*2^-2  = 0.25
\n", "
\n", - "
0xbe 1_01111_10 = -0b1.10*2^-1  = -0.75
\n", + "
\n", + "
0xbe = 10111110_ = +0b1.0*2^62  = ~4.61e+18
\n", "
\n", - "
0xfe 1_11111_10 = -0b1.10*2^15  = -49152.0
\n", + "
\n", + "
0xfe = 11111110_ = +0b1.0*2^126 = ~8.51e+37
\n", "
\n", - "
0x3f 0_01111_11 = +0b1.11*2^-1  = 0.875
\n", + "
\n", + "
0x3f = 00111111_ = +0b1.0*2^-65 = ~2.71e-20
\n", "
\n", - "
0x7f 0_11111_11 = inf
\n", + "
\n", + "
0x7f = 01111111_ = +0b1.0*2^-1  = 0.5
\n", "
\n", - "
0xbf 1_01111_11 = -0b1.11*2^-1  = -0.875
\n", + "
\n", + "
0xbf = 10111111_ = +0b1.0*2^63  = ~9.22e+18
\n", "
\n", - "
0xff 1_11111_11 = -inf
\n", + "
\n", + "
0xff = 11111111_ = nan = nan
\n", "
" + "
\n", + " \n", + "" ], "text/plain": [ "" ] }, - "execution_count": 13, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "HTML(mktbl(format_info_p3109(8, 3), cols=4, skip_rows=(0x10, 0x30), vs_width=8, vs_d=5))" + "HTML(\n", + " airdoc(\n", + " *mktbl(\n", + " Airium(),\n", + " format_info_p3109(8, 1, Domain.Finite, False),\n", + " skip_rows=range(0x10, 0x30),\n", + " cols=4,\n", + " width=8,\n", + " d=3,\n", + " )\n", + " )\n", + ")" ] }, { "cell_type": "markdown", + "id": "945c7ebf", "metadata": {}, "source": [ "### Some tiny tiny formats\n", "\n", - "And finally, some tiny tiny formats. We will take a P3109 format, and remove its infinities.\n", + "And finally, some tiny tiny formats. We will take a finite P3109 format.\n", "\n", "For p=1, we get as usual, a pure-exponential format with range 2^-1 to 2^1:" ] }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 20, + "id": "67bfa39c", "metadata": {}, "outputs": [ { "data": { "text/html": [ + "\n", "\n", - "

FP8 Value Table, p3109_3p1

\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
\n", - "
0x00 0_00_ = 0.0
\n", - "
\n", - "
0x04 1_00_ = nan
\n", - "
\n", - "
0x01 0_01_ = +0b1.0*2^-1  = 0.5
\n", - "
\n", - "
0x05 1_01_ = -0b1.0*2^-1  = -0.5
\n", - "
\n", - "
0x02 0_10_ = +0b1.0*2^0   = 1.0
\n", - "
\n", - "
0x06 1_10_ = -0b1.0*2^0   = -1.0
\n", - "
\n", - "
0x03 0_11_ = +0b1.0*2^1   = 2.0
\n", - "
\n", - "
0x07 1_11_ = -0b1.0*2^1   = -2.0
\n", - "
" + " table.zmktbl {\n", + " margin: 0pt;\n", + " border-collapse: collapse; \n", + " }\n", + " tr.zmktbl {\n", + " margin: 0;\n", + " }\n", + " td.zmktbl {\n", + " border: 1px solid;\n", + " }\n", + " pre.zmktbl {\n", + " margin: 4pt 1pt 1pt 13pt; \n", + " display: inline;\n", + " font-family: monospace;\n", + " font-size: 16px;\n", + " font-weight: bold;\n", + " }\n", + " \n", + "\n", + " \n", + " \n", + " FP3 Value Table, p3109_k3p1fs\n", + " \n", + " \n", + "

FP3 Value Table, p3109_k3p1fs

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0x00 = 0_00_ = 0.0 = 0.0
\n", + "
\n", + "
0x04 = 1_00_ = nan = nan
\n", + "
\n", + "
0x01 = 0_01_ = +0b1.0*2^-1  = 0.5
\n", + "
\n", + "
0x05 = 1_01_ = -0b1.0*2^-1  = -0.5
\n", + "
\n", + "
0x02 = 0_10_ = +0b1.0*2^0   = 1.0
\n", + "
\n", + "
0x06 = 1_10_ = -0b1.0*2^0   = -1.0
\n", + "
\n", + "
0x03 = 0_11_ = +0b1.0*2^1   = 2.0
\n", + "
\n", + "
0x07 = 1_11_ = -0b1.0*2^1   = -2.0
\n", + "
\n", + " \n", + "" ], "text/plain": [ "" ] }, - "execution_count": 14, + "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "p3109_3p1f = format_info_p3109(3, 1)\n", - "p3109_3p1f.has_infs = False\n", - "HTML(mktbl(p3109_3p1f, cols=2, vs_width=8, vs_d=3))" + "p3109_3p1f = format_info_p3109(3, 1, Domain.Finite)\n", + "HTML(airdoc(*mktbl(Airium(), p3109_3p1f, cols=2, width=8, d=3)))" ] }, { "cell_type": "markdown", + "id": "62f575dc", "metadata": {}, "source": [ "And for p=2, we get, as usual for p=k-1, a purely linear format. In this case, with values (0.5, 1.0, 1.5). Again as usual, 1.0 is in the middle of the range." @@ -3140,125 +12532,89 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 21, + "id": "d75ae0e4", "metadata": {}, "outputs": [ { "data": { "text/html": [ + "\n", "\n", - "

FP8 Value Table, p3109_3p2

\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
\n", - "
0x00 0_0_0 = 0.0
\n", - "
\n", - "
0x04 1_0_0 = nan
\n", - "
\n", - "
0x01 0_0_1 = +0b0.1*2^0   = 0.5
\n", - "
\n", - "
0x05 1_0_1 = -0b0.1*2^0   = -0.5
\n", - "
\n", - "
0x02 0_1_0 = +0b1.0*2^0   = 1.0
\n", - "
\n", - "
0x06 1_1_0 = -0b1.0*2^0   = -1.0
\n", - "
\n", - "
0x03 0_1_1 = +0b1.1*2^0   = 1.5
\n", - "
\n", - "
0x07 1_1_1 = -0b1.1*2^0   = -1.5
\n", - "
" + " table.zmktbl {\n", + " margin: 0pt;\n", + " border-collapse: collapse; \n", + " }\n", + " tr.zmktbl {\n", + " margin: 0;\n", + " }\n", + " td.zmktbl {\n", + " border: 1px solid;\n", + " }\n", + " pre.zmktbl {\n", + " margin: 4pt 1pt 1pt 13pt; \n", + " display: inline;\n", + " font-family: monospace;\n", + " font-size: 16px;\n", + " font-weight: bold;\n", + " }\n", + " \n", + "\n", + " \n", + " \n", + " FP3 Value Table, p3109_k3p2fs\n", + " \n", + " \n", + "

FP3 Value Table, p3109_k3p2fs

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
0x00 = 0_0_0 = 0.0 = 0.0
\n", + "
\n", + "
0x04 = 1_0_0 = nan = nan
\n", + "
\n", + "
0x01 = 0_0_1 = +0b0.1*2^0   = 0.5
\n", + "
\n", + "
0x05 = 1_0_1 = -0b0.1*2^0   = -0.5
\n", + "
\n", + "
0x02 = 0_1_0 = +0b1.0*2^0   = 1.0
\n", + "
\n", + "
0x06 = 1_1_0 = -0b1.0*2^0   = -1.0
\n", + "
\n", + "
0x03 = 0_1_1 = +0b1.1*2^0   = 1.5
\n", + "
\n", + "
0x07 = 1_1_1 = -0b1.1*2^0   = -1.5
\n", + "
\n", + " \n", + "" ], "text/plain": [ "" ] }, - "execution_count": 15, + "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "p3109_3p1f = format_info_p3109(3, 2)\n", - "p3109_3p1f.has_infs = False\n", - "HTML(mktbl(p3109_3p1f, cols=2, vs_width=8, vs_d=3))" + "p3109_3p1f = format_info_p3109(3, 2, Domain.Finite)\n", + "HTML(airdoc(*mktbl(Airium(), p3109_3p1f, cols=2, width=8, d=3)))" ] } ], @@ -3282,5 +12638,5 @@ } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 5 } diff --git a/docs/source/04-benchmark.ipynb b/docs/source/04-benchmark.ipynb index 1318d19..e94cb92 100644 --- a/docs/source/04-benchmark.ipynb +++ b/docs/source/04-benchmark.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 3, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -34,17 +34,24 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 2, "metadata": {}, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:2025-08-20 15:40:01,949:jax._src.xla_bridge:872: An NVIDIA GPU may be present on this machine, but a CUDA-enabled jaxlib is not installed. Falling back to cpu.\n" + ] + }, { "name": "stdout", "output_type": "stream", "text": [ - "GFloat scalar : 7510.22 nsec (25 runs at size 10000)\n", - "GFloat vectorized, numpy arrays: 43.82 nsec (25 runs at size 1000000)\n", - "GFloat vectorized, JAX JIT : 2.69 nsec (500 runs at size 1000000)\n", - "ML_dtypes : 2.57 nsec (500 runs at size 1000000)\n" + "GFloat scalar : 2605.38 nsec (50 runs at size 10000)\n", + "GFloat vectorized, numpy arrays: 50.20 nsec (25 runs at size 1000000)\n", + "GFloat vectorized, JAX JIT : 3.79 nsec (500 runs at size 1000000)\n", + "ML_dtypes : 2.60 nsec (500 runs at size 1000000)\n" ] } ], @@ -101,7 +108,7 @@ ], "metadata": { "kernelspec": { - "display_name": ".venv", + "display_name": "gfloat", "language": "python", "name": "python3" }, @@ -115,7 +122,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.0" + "version": "3.12.3" } }, "nbformat": 4, diff --git a/docs/source/05-stochastic-rounding.ipynb b/docs/source/05-stochastic-rounding.ipynb index 021b12c..f393fce 100644 --- a/docs/source/05-stochastic-rounding.ipynb +++ b/docs/source/05-stochastic-rounding.ipynb @@ -7,9 +7,6 @@ "outputs": [], "source": [ "# Copyright (c) 2024 Graphcore Ltd. All rights reserved.\n", - "%load_ext autoreload\n", - "%autoreload 2\n", - "\n", "from matplotlib import pyplot as plt\n", "import numpy as np\n", "from gfloat import *\n", @@ -78,7 +75,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABIQAAAJaCAYAAABeNpxTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACX8klEQVR4nOzdfXzN9f/H8efZhTFsplzFsJliDbkoX12pvhXKZcJXCkXXfrnoUt9K0je6ELr4ohQqUsTkqlLfKCmRi4zK1TAZk6uNsYtz3r8/1o6NszmHbZ9z8bjfbrudc96f9+dzntvZznnvdd6f97EZY4wAAAAAAAAQMIKsDgAAAAAAAICyRUEIAAAAAAAgwFAQAgAAAAAACDAUhAAAAAAAAAIMBSEAAAAAAIAAQ0EIAAAAAAAgwFAQAgAAAAAACDAUhAAAAAAAAAJMiNUByprD4dDevXtVuXJl2Ww2q+MAAIAiGGOUkZGhiy66SEFBvIdlJcZPAAD4Bk/GTwFXENq7d6+io6OtjgEAANyUkpKiOnXqWB0joDF+AgDAt7gzfgq4glDlypUl5f1wIiIiLE4DAACKkp6erujoaOdrN6zD+AkAgJKR68jVgl0LJEmd6nVSSFDJlmU8GT8FXEEof5pzREQEAxoAAHwApyhZj/ETAAAlI9eRq/DK4ZLyXldLuiCUz53xEyfkAwAAAAAABBgKQgAAAAAAAAGGghAAAAAAAECACbg1hAAgEBljlJubK7vdbnUUoJDg4GCFhISwTpAf4HkmMPA3CwD+g4IQAPi57OxspaamKjMz0+oogEvh4eGqVauWypUrZ3UUnCOeZwILf7MA4B8oCAGAH3M4HEpOTlZwcLAuuugilStXjnd14TWMMcrOztaBAweUnJyshg0bKiiIs9l9Dc8zgYO/WQDwLxSEAMCPZWdny+FwKDo6WuHh4VbHAc5QoUIFhYaGateuXcrOzlb58uWtjgQP8TwTWPibBQD/QUkfAAIA7+DCm/H76R94HAMHjzUA+AeezQEAAAAAAAIMBSEAAAAAAIAAQ0EIAIBSZrPZlJiYaHUMAH6K5xgAwLmgIAQA8Do2m63Yr+eff97qiAB8GM8xAADwKWMAAC+UmprqvP7JJ5/oueee0x9//OFsq1SpkvO6MUZ2u10hIbykAXAPzzEAADBDCAACjjFGx48ft+TLGONWxpo1azq/IiMjZbPZnLd///13Va5cWUuWLFHLli0VFhamFStWqH///uratWuh4wwZMkTXXXed87bD4dDo0aMVExOjChUqqFmzZpozZ06ROZ5++mm1bt36jPZmzZrphRdekCStXr1aN910ky688EJFRkaqbdu2Wrt2bZHHXLZsmWw2m44cOeJsW79+vWw2m3bu3OlsW7Fiha655hpVqFBB0dHReuSRR3T8+PHif3CAl7DqeYbnGJ5jAADu460OAAgwmZmZhd79LkvHjh1TxYoVS+RYTz31lF577TXFxsYqKirKrX1Gjx6tjz76SJMmTVLDhg313Xff6c4771S1atXUtm3bM/r36dNHo0eP1vbt29WgQQNJ0qZNm/Trr7/qs88+kyRlZGSoX79+evPNN2WM0dixY3XLLbdo69atqly58jl9b9u3b1f79u314osv6v3339eBAwc0aNAgDRo0SFOnTj2nYwJlyarnGZ5j3MNzDABAoiAEAPBRL7zwgm666Sa3+2dlZemll17S119/rTZt2kiSYmNjtWLFCk2ePNnlP2uXXnqpmjVrppkzZ+rZZ5+VJM2YMUOtW7dWXFycJOmGG24otM8777yjKlWqaPny5erYseM5fW+jR49Wnz59NGTIEElSw4YN9cYbb6ht27aaOHGiypcvf07HBeA+nmMAAP6OghAABJjw8HAdO3bMsvsuKa1atfKo/7Zt25SZmXnGP3jZ2dlq3rx5kfv16dNH77//vp599lkZY/Txxx9r2LBhzu379+/XM888o2XLliktLU12u12ZmZnavXu3Z99QARs2bNCvv/6qGTNmONuMMXI4HEpOTlbjxo3P+dhAWbDqeYbnGPfwHAMAkCgIAUDAsdlsJXZKhZVO/x6CgoLOWD8kJyfHeT3/n9NFixapdu3ahfqFhYUVeT+9e/fWk08+qbVr1+rEiRNKSUlRr169nNv79eungwcPasKECapXr57CwsLUpk0bZWdnuzxeUFDe8n0FsxbMmZ/1/vvv1yOPPHLG/nXr1i0yK+At/OF5hucYAIC/oyAEAPAL1apVU1JSUqG29evXKzQ0VJIUHx+vsLAw7d692+WpG0WpU6eO2rZtqxkzZujEiRO66aabVL16def2H374Qf/97391yy23SJJSUlL0119/FZtTyvuUo/x1SdavX1+oT4sWLbR582bnKSMArMdzDADA3/ApYwAAv3DDDTdozZo1+uCDD7R161aNGDGi0D9vlStX1mOPPaahQ4dq+vTp2r59u9auXas333xT06dPL/bYffr00axZszR79mz16dOn0LaGDRvqww8/1G+//aZVq1apT58+qlChQpHHiouLU3R0tJ5//nlt3bpVixYt0tixYwv1efLJJ7Vy5UoNGjRI69ev19atWzV//nwNGjToHH4yAEoCzzEAAH9DQQgA4BfatWunZ599Vk888YQuv/xyZWRkqG/fvoX6jBo1Ss8++6xGjx6txo0bq3379lq0aJFiYmKKPfbtt9+ugwcPKjMz84yPnX7vvfd0+PBhtWjRQnfddZceeeSRQu/uny40NFQff/yxfv/9dzVt2lQvv/yyXnzxxUJ9mjZtquXLl2vLli265ppr1Lx5cz333HO66KKLPPuhACgxPMcAAPyNzZx+MrSfS09PV2RkpI4ePaqIiAir4wBAqTp58qSSk5MVExPDp8bAaxX1e8prtvco7rHgeSbw8JgDwLnLdeRq3s55kqRu9bspJKhkV/LxZPzEDCEAAAAAAIAAQ0EIAAAAAAAgwFAQAgAAAAAACDAUhAAAAAAAAAIMBSEAAAAAAIAAQ0EIAAAAAAAgwFAQAgAAAAAACDAUhAAAAAAAAAIMBSEAAM7BddddpyFDhlgdA0AAe/7553XZZZcV26d///7q2rVrmeQBAPgWCkIAAK/Uv39/2Ww22Ww2hYaGKiYmRk888YROnjxpdTS3uPOPmr/buXOnbDab1q9fb3UU4AwHDhzQgw8+qLp16yosLEw1a9ZUu3bt9MMPPzj71K9f3/k8FB4eriZNmmjKlCke39emTZvUvXt35/HGjx/vst+ff/6pO++8UxdccIEqVKigJk2aaM2aNef6LUqSJkyYoGnTpjlvU8wGAOQLsToAAABFad++vaZOnaqcnBz98ssv6tevn2w2m15++WWro/k9Y4zsdrtCQhgqwD91795d2dnZmj59umJjY7V//3598803OnjwYKF+L7zwgu69915lZmZq9uzZuvfee1W7dm116NDB7fvKzMxUbGysevTooaFDh7rsc/jwYV111VW6/vrrtWTJElWrVk1bt25VVFTUeX2fkZGR57U/AMB/MUMIAOC18t+1j46OVteuXXXjjTdq6dKlzu1ZWVl65JFHVL16dZUvX15XX321Vq9e7dw+bdo0ValSpdAxExMTZbPZnLfzZ/J8+OGHql+/viIjI/Wvf/1LGRkZzj7Hjx9X3759ValSJdWqVUtjx44tNve0adM0cuRIbdiwwTm7IP8d+t27d6tLly6qVKmSIiIi1LNnT+3fv7/IY+XPspk7d66uv/56hYeHq1mzZvrxxx8L9VuxYoWuueYaVahQQdHR0XrkkUd0/Phx5/YPP/xQrVq1UuXKlVWzZk3dcccdSktLc25ftmyZbDablixZopYtWyosLEwrVqyQw+HQ6NGjFRMTowoVKqhZs2aaM2eOc7/Dhw+rT58+qlatmipUqKCGDRtq6tSpkqSYmBhJUvPmzWWz2XTdddcV+3MDysqRI0f0/fff6+WXX9b111+vevXq6YorrtDw4cPVuXPnQn3z/2ZiY2P15JNPqmrVqoWeh9xx+eWX69VXX9W//vUvhYWFuezz8ssvKzo6WlOnTtUVV1yhmJgY3XzzzWrQoMFZjz958mRFR0crPDxcPXv21NGjR53bCp4y1r9/fy1fvlwTJkxwPjft3Lmz2L9jAID/oiAEAHBfZqb08895l2UsKSlJK1euVLly5ZxtTzzxhD777DNNnz5da9euVVxcnNq1a6dDhw55dOzt27crMTFRCxcu1MKFC7V8+XKNGTPGuf3xxx/X8uXLNX/+fH311VdatmyZ1q5dW+TxevXqpUcffVSXXnqpUlNTlZqaql69esnhcKhLly46dOiQli9frqVLl2rHjh3q1avXWTP++9//1mOPPab169fr4osvVu/evZWbm+vM3759e3Xv3l2//vqrPvnkE61YsUKDBg1y7p+Tk6NRo0Zpw4YNSkxM1M6dO9W/f/8z7uepp57SmDFj9Ntvv6lp06YaPXq0PvjgA02aNEmbNm3S0KFDdeedd2r58uWSpGeffVabN2/WkiVL9Ntvv2nixIm68MILJUk///yzJOnrr79Wamqq5s6de/YHAwEtMydTP//5szJzSvc5plKlSqpUqZISExOVlZXl1j4Oh0OfffaZDh8+XOh5qKR8/vnnatWqlXr06KHq1aurefPmevfdd8+637Zt2/Tpp59qwYIF+uKLL7Ru3To99NBDLvtOmDBBbdq00b333ut8boqOji727xgA4MdMgDl69KiRZI4ePWp1FAAodSdOnDCbN282J06cOP+DHT9uTMOGxkh5l8ePn/8xi9GvXz8THBxsKlasaMLCwowkExQUZObMmWOMMebYsWMmNDTUzJgxw7lPdna2ueiii8wrr7xijDFm6tSpJjIystBx582bZwq+/I0YMcKEh4eb9PR0Z9vjjz9uWrdubYwxJiMjw5QrV858+umnzu0HDx40FSpUMIMHDy4y/4gRI0yzZs0KtX311VcmODjY7N6929m2adMmI8n8/PPPLo+TnJxsJJkpU6acsc9vv/1mjDFmwIAB5r777iu03/fff2+CgoKKfOxXr15tJJmMjAxjjDHffvutkWQSExOdfU6ePGnCw8PNypUrC+07YMAA07t3b2OMMZ06dTJ33313sdnXrVvncnu+on5Pec32HsU9FiX1PHM8+7hp+EZDo+dlGr7R0BzPLt3nmDlz5pioqChTvnx5c+WVV5rhw4ebDRs2FOpTr149U65cOVOxYkUTEhJiJJmqVauarVu3nvP91qtXz4wbN+6M9rCwMBMWFmaGDx9u1q5dayZPnmzKly9vpk2bVuSxRowYYYKDg82ePXucbUuWLDFBQUEmNTXVGJP3XNqlSxfn9rZt257x3FXc37ErJfraAgABJseeYz7d/qn5dPunJseeU+LH92T8xAwhAIB7kpKkrVvzrm/dmne7lF1//fVav369Vq1apX79+unuu+9W9+7dJeXNisnJydFVV13l7B8aGqorrrhCv/32m0f3U79+fVWuXNl5u1atWs7TqbZv367s7Gy1bt3aub1q1aq65JJLPP5+fvvtN0VHRys6OtrZFh8frypVqpw1c9OmTQvlk+TMuGHDBk2bNs0566FSpUpq166dHA6HkpOTJUm//PKLOnXqpLp166py5cpq27atpLxT2Apq1aqV8/q2bduUmZmpm266qdCxP/jgA23fvl2S9OCDD2rWrFm67LLL9MQTT2jlypUe/1wASUpKS9LWQ3nPMVsPbVVSWuk+x3Tv3l179+7V559/rvbt22vZsmVq0aJFoQWYpbwZguvXr9f//vc/tW7dWuPGjVNcXFyJ53E4HGrRooVeeuklNW/eXPfdd5/uvfdeTZo0qdj96tatq9q1aztvt2nTRg6HQ3/88Yfb983fMQAEJgpCAAD3JCRIDRvmXW/YMO92KatYsaLi4uLUrFkzvf/++1q1apXee+89t/cPCgqSMaZQW05Ozhn9QkNDC9222WxyOBznFrqUFMyYvwZSfsZjx47p/vvv1/r1651fGzZs0NatW9WgQQMdP35c7dq1U0REhGbMmKHVq1dr3rx5kqTs7OxC91OxYkXn9WPHjkmSFi1aVOjYmzdvdq4j1KFDB+3atUtDhw7V3r179c9//lOPPfZY6f0g4LcSqieoYdW855iGVRsqoXrpP8eUL19eN910k5599lmtXLlS/fv314gRIwr1ufDCCxUXF6drrrlGs2fP1iOPPKLNmzeXeJZatWopPj6+UFvjxo3PKNqWBv6OASAwURACALgnPFxav15atSrvMjy8TO8+KChITz/9tJ555hmdOHFCDRo0ULly5Qp9RHROTo5Wr17t/KeqWrVqysjIKLS4sqcfgd6gQQOFhoZq1apVzrbDhw9ry5Ytxe5Xrlw52e32Qm2NGzdWSkqKUlJSnG2bN2/WkSNHzvhH0BMtWrTQ5s2bFRcXd8ZXuXLl9Pvvv+vgwYMaM2aMrrnmGjVq1KjQgtJFiY+PV1hYmHbv3n3GcQvOcqpWrZr69eunjz76SOPHj9c777zj/BlIOuPnALgSHhqu9Q+s16qBq7T+gfUKDy3b5xgp73e+4PPF6aKjo9WrVy8NHz68xO/7qquuOmNWz5YtW1SvXr1i99u9e7f27t3rvP3TTz8pKCioyFmMrp6bpKL/jgEA/ouCEADAfeHh0hVXlHkxKF+PHj0UHByst99+WxUrVtSDDz6oxx9/XF988YU2b97s/GjoAQMGSJJat26t8PBwPf3009q+fbtmzpx5xukgZ1OpUiUNGDBAjz/+uP73v/8pKSlJ/fv3V1BQ8S+h9evXV3JystavX6+//vpLWVlZuvHGG9WkSRP16dNHa9eu1c8//6y+ffuqbdu2hU7V8tSTTz6plStXatCgQVq/fr22bt2q+fPnOxeVrlu3rsqVK6c333xTO3bs0Oeff65Ro0ad9biVK1fWY489pqFDh2r69Onavn271q5dqzfffFPTp0+XJD333HOaP3++tm3bpk2bNmnhwoVq3LixJKl69eqqUKGCvvjiC+3fv7/QJx8BroSHhuuK2leUejHo4MGDuuGGG/TRRx/p119/VXJysmbPnq1XXnlFXbp0KXbfwYMHa8GCBVqzZo3b95edne2cYZedna0///xT69ev17Zt25x9hg4dqp9++kkvvfSStm3bppkzZ+qdd97Rww8/XOyxy5cvr379+mnDhg36/vvv9cgjj6hnz56qWbOmy/7169fXqlWrtHPnTv31119yOBzF/h0DAPwXBSEAgM8ICQnRoEGD9Morr+j48eMaM2aMunfvrrvuukstWrTQtm3b9OWXXyoqKkpS3lo/H330kRYvXqwmTZro448/1vPPP+/x/b766qu65ppr1KlTJ9144426+uqr1bJly2L36d69u9q3b6/rr79e1apV08cffyybzab58+crKipK1157rW688UbFxsbqk08+OZcfh1PTpk21fPlybdmyRddcc42aN2+u5557ThdddJGkvHf+p02bptmzZys+Pl5jxozRa6+95taxR40apWeffVajR49W48aN1b59ey1atMj5kfLlypXT8OHD1bRpU1177bUKDg7WrFmzJOU9Xm+88YYmT56siy666Kz/aANlpVKlSs71gK699lolJCTo2Wef1b333qu33nqr2H3j4+N1880367nnnnO22Wy2YovNe/fuVfPmzdW8eXOlpqbqtddeU/PmzTVw4EBnn8svv1zz5s3Txx9/rISEBI0aNUrjx49Xnz59is0TFxen2267TbfccotuvvlmNW3aVP/973+L7P/YY48pODhY8fHxqlatmnbv3l3s3zEAwH/ZzOmLK/i59PR0RUZG6ujRo4qIiLA6DgCUqpMnTyo5OVkxMTEqX7681XEAl4r6PeU123sU91gE+vNMcnKyLr74Ym3evFkN89dZ83OB/pgDwPnIdeRq3s68tRy71e+mkKCQEj2+J+MnZggBAAAA52jx4sW67777AqYYBADwHyVbigIAAAACyNnW+AEAwFsxQwgAAAAAACDAUBACAAAAAAAIMBSEAAAAAAAAAgwFIQAIAAH2gZLwMfx++gcex8DBYw0A/oGCEAD4sdDQUElSZmamxUkQUIzRoYMHZbfbJTf+ccz//cz/fYVv4Xkm8PA3CwAlyxijk9kn9f609/PGT2WETxkDAD8WHBysKlWqKC0tTZIUHh4um81mcSr4LWNkJB04cEDVK1ZSzpGjyq5QXrYg1+8/GWOUmZmptLQ0ValSRcHBwWWbFyWC55nAwd8sAJQ8Y4wyTmToy31fqvK1lfX4k4/r9ddeL5P7piAEAH6uZs2akuT8Zw0oNcZIWdmSpOSDh/LawspJZykOVKlSxfl7Ct/E80xg4W8WAEpOxvEMfZn2pfP2VVdfVWb3TUEIAPyczWZTrVq1VL16deXk5FgdB/7IGNlzcvTymJf1dPtuhbdd3FAqZhZBaGgoswz8AM8zgYO/WQAoOYfTD+vOPndq4JsDnW1dOncps/unIAQAASI4OJhBPEpF9omTKr9ui15o1006fcmg8uWLLQjBv/A8AwCA+5YdWlaoGFTWWFQaAACcsxOZmerft6/VMQAAAOAhCkIAAMBzxijjyFH17tFDMwc9YXUaAAAAr2eMUfKuZKtjOFlaEKpfv75sNtsZXw8//HCR+8yePVuNGjVS+fLl1aRJEy1evLgMEwMAAEk6dPCgKm/YqsQnRlodJeAwfgIAwDf9vvV3rTfrrY7hZGlBaPXq1UpNTXV+LV26VJLUo0cPl/1Xrlyp3r17a8CAAVq3bp26du2qrl27KikpqSxjAwAQuIzR/tRU3dal7BY8RGGMnwAA8C3GGK3bsE4dO3V0tl0WfJl1gf5mM8acvvyjZYYMGaKFCxdq69atsrn4iNpevXrp+PHjWrhwobPtH//4hy677DJNmjTJrftIT09XZGSkjh49qoiIiBLLDgCAkzHSsWPSxo1SbKy0Y4cUEyNt3pz3Eezx8XltxW3z0v5paQdUPfxCKfVPqVbtU5e7duR97/ViC2/rc5tUufI5/Rh5zXYP4ycAwNkYY5SRnaGktCQ1q9FMFctVdKtPcfsVtc3T9qKOFx4a7lYeZ9v+JNWvUl+bDmxSkC1I8dXilXwk2WW/mKgYJR9OPrO/q7YjyWpavakcchTa15NjLPhhgYLrBivtWJqqV6qutGNpur/J/VqcslgpR1JUvVJ17Tm6R5I0tMVQRYSd+2utJ6/ZXvMpY9nZ2froo480bNgwl4MZSfrxxx81bNiwQm3t2rVTYmJikcfNyspSVlaW83Z6enqJ5AUAoEjHjknxl0p7UqSQECk3N++Ttuz2vO3BIZI9t/htXtq/urv987e9/h9p/XopPLwUf+CBi/ETAMAdGdkZavR2I6VmpCquapw2PLBB4aHhZ+2T68gtcr+ijulpe1H3//3d36vFOy3OmqdgW5CC5JBDkhRsC5bd2F32y9/mqr+rttgqscq0Z2pfxj5nm6fHCP658H5TfpziPGbB/h+u/lC/PvjrGY9PafCaRaUTExN15MgR9e/fv8g++/btU40aNQq11ahRQ/v27Styn9GjRysyMtL5FR0dXVKRAQBwLSkprxgk5RVFpFMFEymvYHK2bb7eP3/b1q15Pw+UCsZPAAB3JKUlKTUjVZK07dA2JaWd+drsqk9x+xW1zdP2oo63cMtCt/IUbMsvqkiS3diL7Je/zVV/V207juzQvox9hdo8PcbplwWPWbD/9sPbXT4+pcFrCkLvvfeeOnTooIsuuqhEjzt8+HAdPXrU+ZWSklKixwcA4AwJCVKdv/+BDvl7Mm5w8KntwSFn3+bF/U1+v9DQwvsVbMu/bNgw7+eBUsH4CQDgjoTqCapVuZYkKa5qnBKqn/na7KpPcfsVtc3T9qKO1/Hijm7lKdgWVKDEEWwLLrJf/jZX/V21xVaJVc3KNQu1eXqM0KDQQpcNohqoQVQDSVKI7dRYqkFUA5ePT2nwilPGdu3apa+//lpz584ttl/NmjW1f//+Qm379+9XzZo1i9wnLCxMYWFhJZITAAC3hIdLU2ZKydvdW2enqG1e2D+9Xg1FXHmllJx8as2h2Ni8NYekM9cjSkjgdLFSwvgJAOCu8NBwvdLxFaUcSdHDzR52eTqSqz65jtwi9yvqmJ62F3c8d/IUbCu4Fk+dyDpKO5ZWZL/89XxO7++q7fT1fgquBXS2Y/w+7Xc9+NSDaly9sZKPJCs2KlY7Du9wFn2S0pIUGxWrzQfyxlKtLmpVJqeLSV5SEJo6daqqV6+uW2+9tdh+bdq00TfffKMhQ4Y425YuXao2bdqUckIAADxUvrzU+NK861Wq/H3Z4tR2Z1tx27yn/22vjdQHH81QRETlvMWmq1XL23bhhXmX1157qn9+W/4lSgXjJwCAJ8JCwhR3YVyxxQZXfYrbr6htnrYXtd3dPPltkhRfPt7ZHlE+osh+EeUjXPYv6hiu9j3bMZa9sUwfvv2hQv6eTV2tYt746cLwU2OkK2pfIUm6tl6BsVQZsfyUMYfDoalTp6pfv37OH1K+vn37avjw4c7bgwcP1hdffKGxY8fq999/1/PPP681a9Zo0KBBZR0bAICAMnPWJ6oUGZFXDILlGD8BAOD9xo8df8brtDexvCD09ddfa/fu3brnnnvO2LZ7926lpqY6b1955ZWaOXOm3nnnHTVr1kxz5sxRYmKiElibAACAUnHftLeV0zpB5cMrWB0FBTB+AgDAe22ZvUVd63VVSJD3FoMkLzhl7Oabb5YxxuW2ZcuWndHWo0cP9ejRo5RTAQCAoZ9O18R331WwF7+zFagYPwEA4H0GXj5QLzz/gp5+4mnZfGBWNSM8AADg0usTxslGMQgAAMAtr7/2ugbcPcDqGG6z/JQxAADgXV5dsVTmqstkK/jx8wAAACiSY51D9/Q/81Rub8bbfgAAoJDHn3pCohgEAADgtu7duvvEaWIFMUMIAABIkj7ctlG6urkUxPAAAADAHVVTqqpb/W4Ktvnem2mM+AAACHC1unfQ7H3bddc9/fNmBvnYu1sAAABlbdg/h6nOgTq64dobFBIU4nOzgyROGQMAIOC9N3WqbunU0eoYAAAAPmPB/AW6rOllVsc4L8wQAgAggH1nT9ctHW+1OgYAAIDX2r5ru/P6c12eU0Jugpo1aWZhopLBDCEAAALYtW3bcooYAABAMTbbNjuvL1qwSLH1Yy1MU3KYIQQAQADaWDmIBaQBAAA80Lp8a8XUi7E6RolhFAgAQABp9mA/baleSU2aN2cBaQAAAA9cVPMin1w8uiicMgYAQAD5fOFC1Yv1n3e2AAAAcG6YIQQAQIDYH1tD9WLqWx0DAADAJ3z81Mf6Z7V/Wh2j1FAQAgDAz9004nEdjK+nGnXqcIoYAACAG+a/MF8ff/ixIipGWB2l1HDKGAAAfu6zefMUEVXF6hgAAAA+471331NYaJhyHblWRyk1zBACAMBP9ZowWpktGimiSqTVUQAAAHzCT5N/Upe6XVQupJzVUUodM4QAAPBTH86YoXIVylsdAwAAwGeMeWmMQoNDrY5RJpghBACAnxn08RTl/qOJypUPszoKAACAT9j1+S51q99NIUGBM28mcL5TAAACwPDPZ+mNt99WUHCw1VEAAAB8wl//+0uPDn5UtgD78A0KQgAA+JGXXh4jG8UgAAAAt917z70BVwySOGUMAAC/MGH1Munq5hSDAAAA3BSUFKRu9bsp2BaY4ycKQgAA+LBqXW7SO5vXaPCjj0rBwVIAvrsFAABwNukZ6c7rD1/zsCK2R+i2TrcpJCgkIGcHSRSEAADwaRPefEP3PfgAhSAAAAAXjDFK+ytNXbt1dbbN+XSO2t3ULmALQfkoCAEA4KMWHtyjO+680+oYAAAAXislNUXL05fr/6b8n55o94RijsTomiuvsTqWV2BRaQAAfFTHLp2YGQQAAFCMX7J/cV5fMH+BEuITLEzjXZghBACAj/lRJ6Srm0tBvIwDAAC4q1GjRlZH8CqMJAEA8BGX3N1T6ypKba69mgWkAQAAcF44ZQwAAB8x7/PPFZ/ANGcAAACcP2YIAQDg5VoOGqAdF1VR/KWXWh0FAADAJ0x+aLLaVmlrdQyvxgwhAAC83OeLFqh23bpWxwAAAPAZn835TBXDK0pHrE7ivSgIAQDgxdIaXqTatWpZHQMAAMBn3FzjZkWER8hu7FZH8WqcMgYAgBe6ZdTTOpIQq+q1arF4NAAAwGmMMcp15Grq9KnOtiVjlqhj7Y6KCI+QjfHTWTFDCAAAL/TpZ3NUKTLC6hgAAABeyW7sWrBrgaq0reJsm/TfSSoXUs66UD6GGUIAAHiRu/47VidbxatSRGWrowAAAHitV19/1Xl93bR16lqvq0KDQy1M5HuYIQQAgJd44IOJev/D6QotxztbAAAAxWl0eyPn9ZEjRlIMOgcUhAAA8BJvT5yoYIpBAAAALtntrheJZr2gc8MpYwAAWGzEl3NlrrpMwaG8swUAAHA6Y4xOZJ3QfQ/cZ3UUv8IMIQAALPb8Cy/IFsJLMgAAgCvHTxzX0rSl6vjvjlZH8SvMEAIAwCKTNv4kXd1ctuBgq6MAAAB4rX5393NeL7+1vIVJ/AsFIQAAylj1rjdr+vaNeuDhh6XgYInz3gEAAIp058t3Oq/f9M+bLEziX5ifDgBAGfvv5Em6vWdPq2MAAAB4rQMHDlgdwe8xQwgAgDK09Nh+3d6jh9UxAAAAvNaulF26peMtVsfwexSEAAAoQze1b88pYgAAAMVYa1+rpz952uoYfo+CEAAAZWBNaK50dXMpiJdeAAAAdzS1NbU6gl9jVAoAQEkyRntT9jhvxg/srY1VQtWqTWsWkAYAADiNMUa5jlyt/mX1GdvqRdezIFHgYFFpAABKUPL2HYr587Dz9vwFC9Ww0SUWJgIAAPBedmPXvJ3zpAusThJ4mCEEAEBJMEa/bdqkTrfe6mxKqXOBGl5ysYWhAAAAvJcxRl99/ZXz9vuD39f1F1xvYaLAwgwhAABKwLpfflHz41LSOx8526Lr1+UUMQAAgCLMmTdHuuzU7U9nfaoKFSpIBy2LFFCYIQQAwPkwRiu/X6Hu3W6zOgkAAIBPMMZo+ofTde/99xZqr1ChgkWJAhMFIQAAzoUxkt2ub5cu1ZWO8trx0VyrEwEAAPiEyVMnK/yqcL276l2rowQ0CkIAAJwLh0NasU7Xh1W1OgkAAIBPqXFDDasjQBSEAADwnDH6dNYsq1MAAAD4DGOM1RFwGgpCAAC46+/TxN6f/K561uGj5AEAAM7GGKPs3Gw99sRjVkfBafiUMQAA3PX3aWL3NG5hdRIAAACfkJWTpQV7Fujqh6+2OgpOwwwhAADOxhiZ3Fz9Z9SLVicBAADwGcdPHFf/Af2dt7N/ybYuDM5AQQgAgLNw5ObK9sN6/fv6W62OAgAA4DO+2v+Vuo/s7rzdvVv3YnqjrFEQAgCgGLk5ORr8f49YHQMAAAAoURSEAABwxRhlnzip++8ZoDd7D7A6DQAAgNczxijtrzSrY8BNLCoNAIALmceOK3zt73pvILODAAAA3LFn7x79lPWT1THgJmYIAQBQkDFKP3xE/+rZ0+okAAAAPsEYo207tumWTrc42y7OutjCRHAHBSEAAAo4+Ndfivh1mz5/6gWrowAAAPiEP7b+oXVap+fmPOdsu6ThJRYmgjsoCAEAIEnGaN+ff6prp05WJwEAAPApt91+m9URcA5YQwgAAGOUsmOnovcc1Pcvv2V1GgAAAJ/yn8//Y3UEnANmCAEAAt6W3/9Q9J6DVscAAADwGd9++63VEXCeKAgBAAKXMdq4fr26duY0MQAAAHcYY5T4eaJ69+ltdRScJwpCAIDAY4xkt2vNj6vU5GiuNk/52OpEAAAAXs0Yo1xHrj6e/bFyEnI0ceVEJb6YaHUsnAcKQgCAwONwSCvWqVUOS+kBAAC4w27smrdznkJbhTrbJv93soWJcL4oCAEAAosx+mrJF1anAAAA8CkTJ088oy0khDfXfBkFIQBAQJkze7ZurlzD6hgAAAA+pU6HOlZHQAmjIAQACAzGaNp77+uh+x+wOgkAAIBPMMZYHQGliIIQAMC//b2A9MS33lL/uKZKS/zK6kQAAABezRijrJwsPTL0EaujoBRxwh8AwK8Zu122H9brwaZtrI4CAADgE05kndCX+77UDUNusDoKShEzhAAA/skYmdxcPf/cc1YnAQAA8CkD7x946sZG63KgdFEQAgD4JXtOjmw/rNfIdrdZHQUAAMCn9BjZw3m9062dLEyC0kRBCADgd3Kys/XQAyweDQAA4K7Dhw9bHQFljIIQAMB/GKOTxzN19519NbnfQ1anAQAA8HrGGO3dt1edu3a2OgrKGItKAwD8xrH0DFVav0UfPfyY1VEAAAB8ws7dO7XGvkbDpg+zOgrKGDOEAAC+zxgdOXhIPbvfbnUSAAAAn2CM0e9bf9etnW51tjW2N7YwEcoaBSEAgG8zRmmpqaqStEOLn33J6jQAAABezRijXEeu1iet18bgjRqZONK5LS4mzsJkKGucMgYA8Gl/pqSodnKa1TEAAAB8gt3YtWDXAqmi1UlgNWYIAQB8kzHasXWbOt3S0eokAAAAPmPlTyutjgAvwQwhAIBP2rxpk+IPntTat9+3OgoAAIDPOHjRQasjwEswQwgA4FuM0drVa9S1UyerkwAAAAA+i4IQAMA3GCPZ7frxuxVqkSltmTbb6kQAAABeLX8B6Q9nfGh1FHghCkIAAN/gcEgr1qmNKlidBAAAwCfYjV3zds5TpasqWR0FXoiCEADA+xmjBYmfW50CAADAZzgcDr069lXn7dVTVqtjNB/GgVMoCAEAvNffp4l9MmOGOl0YbXUaAAAAr2eMUY49R8+OfFZx3eOc7f8Z9R+FBodamAzehk8ZAwB4r79PE+sV3cjqJAAAAD4hx56j+bvn67J+lxVqt9ls1gSC12KGEADA+/w9M2jCuHFWJwEAAPAJxhidzD6pBx9+0Ooo8BHMEAIAeB1jt8v2w3oNvvw6q6MAAAD4hMyTmVqculjtn2xvdRT4CGYIAQC8isNu1/AnnrQ6BgAAgE8wxujosaPq3ae31VHgY5ghBADwDsYoNztbQwYP1lu9B1qdBgAAwOsZY3TgyAEtP7xcd712l9Vx4GMoCAEAvELWiZMKW72JYhAAAICb9h/Yr++PfW91DPgoy08Z+/PPP3XnnXfqggsuUIUKFdSkSROtWbOm2H2WLVumFi1aKCwsTHFxcZo2bVrZhAUAlDxjlJlxTHfd2cfqJIBPYOwEADDGaPee3erYuaPVUeDDLC0IHT58WFdddZVCQ0O1ZMkSbd68WWPHjlVUVFSR+yQnJ+vWW2/V9ddfr/Xr12vIkCEaOHCgvvzyyzJMDgAoKelHjip87e/6dPDTVkcBvB5jJwCAJG1P3q5V2av05EzWXcS5s/SUsZdfflnR0dGaOnWqsy0mJqbYfSZNmqSYmBiNHTtWktS4cWOtWLFC48aNU7t27Uo1LwCgBBmjg3/9pX/16KmlI1+1Og3gExg7AUBgM8Zo8++b1e32bvrPgv9YHQc+ztKC0Oeff6527dqpR48eWr58uWrXrq2HHnpI9957b5H7/Pjjj7rxxhsLtbVr105Dhgwp5bQAYBFjpIwMafVqyWaT4uOlHTuk2Ni8y5gYafPmwttctXlT/+Rk7atYUTWX/aSlt/WWjhyRUv+UatU+dblrR973Xy+2+DZv7Z/6p9TiEqly5VL/FUHgYOwEAHlFkYzsDCXtT1L9KvW16cAmBdmCFF8tXslHktWsRjNVLFexUL+YqBglH0529g+2Bat1ndYKDw1Xela6fv7z5+KPkZakZjWaue5/OPmM4xfc5qrtnPofSdbxPce1UivVZ0ofpZ9MV9qxNFWvVF17ju6RJNWJrONsO31bu9rtFB4arqzcLG0/uN1l/8xamcrKzVLKkZRi2851W1H9XWVMOZLi9jEya2cqIizC5e9Lwe+3Xe12RfYrjjNPMffji2zGGGPVnZcvX16SNGzYMPXo0UOrV6/W4MGDNWnSJPXr18/lPhdffLHuvvtuDR8+3Nm2ePFi3XrrrcrMzFSFChUK9c/KylJWVpbzdnp6uqKjo3X06FFFRPjPAwnAj2VkSI0aS3v/zLsdHCLZc6WQECk3VwoOluz2wttctXlZ/xxJofnfo5dmPOf++ZcNG0rr10vh4ef22Ae49PR0RUZG8ppdQFmMnSTGTwC8W3pWuhq93UipGakKUpAcckiSgm3Bshu74qrGacMDG5TryHX2y99WsH+DqAZacc8KNZ/cXPuO7TvrMeKqxun7u7932d/V8YtrO9f+sksK1jkdv7jvN/8ytkqsMu2Z2pexr9i2c93mqs1VxhbvtFBqRqrbx8h/vMJDC4+50rPSdclblzi/3wZRDfTrg7+e0c/d37ei7sebeDJ+snSGkMPhUKtWrfTSSy9Jkpo3b66kpKRiBzWeGj16tEaOHFkixwIASyQlnSoGSXmFBymv4CCdKkoU3Oaqzcv6h0pn9vOyjOfcP/9y69a8x++KKwSUhLIYO0mMnwB4t6S0JKVmpEqSs5AgKa9gImnboW1KSktSriPX2S9/W8H+2w9v18ItC53FgrMdY9uhbUX2d3X84trOtX9+Mehcjl/c95t/uePIjjO2uWo7122u2lxlzP+Zu3uM/MfritqFx1xJaUmFvt/th7e77Fecgr9vRd2Pr7J0UelatWopPj6+UFvjxo21e/fuIvepWbOm9u/fX6ht//79ioiIcPkO1/Dhw3X06FHnV0pKSsmEB4CykpAgXVT71O3gv2v5IX9fBgefuc1Vm5f1z1EBoaGFL0NCztzmqs1b++dfNmyY9/gBJaQsxk4S4ycA3i2heoJqVa4lSQoq8C9tsC1vvBFXNU4J1RMK9cvfVrB/g6gG6nhxR9WsVNOtY8RVjSuyv6vjF9d2rv0L1E4UGpQ33gixhZzR5mpbg6gG6nJJF8VGxRbZv0FUAzWIanDWtnPd5qrNVca4qnEeHaNh1YZKqH7mmKtZjWaFvt8GUQ1c9itOsxrNnHmKuh9fZekMoauuukp//PFHobYtW7aoXr16Re7Tpk0bLV68uFDb0qVL1aZNG5f9w8LCFBYWdv5hAcAq4eHS+7OkPzbn3faF9XPc6H+07RW68MCBvLbT1yGKjc1bc+j0ba7avLX/jh15xSBOF0MJKouxk8T4CYB3Cw8N1ysdX3GuIXP6+jkPN3tY4aHhynXkFup3+no1Q1sMVXhouF7t9OoZa+q4OkZ+m6v+ro5fcJs7a/y40/+OBndo17FdkqT4avHacXiHYqNitfnA5jPaTt/W6qJWCg8N18YHN2rN3jUu++cXO5LSkoptO9dtRfU/PeOGBzYoKS3J7WMkVE9weRpXxXIVC32/+cf3RMVyFQvl8ebTxTxl6RpCq1ev1pVXXqmRI0eqZ8+e+vnnn3XvvffqnXfeUZ8+fSTlvUP1559/6oMPPpCU99GpCQkJevjhh3XPPffof//7nx555BEtWrTIrU/KYD0CAD7HbpdWrLM6RYnp+J9/a8asWYqMqpK3yDRQBF6zz2TF2EnisQDgXXIduZq3c16R27vV76aQoBC3+kly2cfVMYrrX9q+evUrvTnhTYWFhsnG+AnF8OQ129JTxi6//HLNmzdPH3/8sRISEjRq1CiNHz/eOaCRpNTU1ELToGNiYrRo0SItXbpUzZo109ixYzVlyhQ+NhUAfECP8f/RJ3M/U2TVKIpBwDlg7AQAgWXg5QP1/Rvfa9Jbk1S+XHmKQShRlp4yJkkdO3ZUx44di9w+bdq0M9quu+46rVvnP++WA0Cg+GjGTIWFu16zBIB7GDsBQOD4v4f/T6NGjqIQhFJh6QwhAEBgeGjGO8r9RxOFVShvdRQAAACfsGPeDopBKFWWzxACAPi/t95+W0H5n7wFAACAs3p06KMUg1CqmCEEACg1L3zzucxVlykohPcfAAAA3JH5Y6a61e926qPmgVJCQQgAUCrGr/pWz40cKVtICAtIAwAAnMUDbR6QbYNNfe/oq5CgEGYHodTxli0AoFQMeXQYhSAAAAA3ffTBR+rQroPVMRBAmCEEAChRH+/aLF3dXAriJQYAAMAd1VKrqf3N7a2OgQDDDCEAQInq3aePFMw57wAAAO66us3VnCKGMsfbtwCAEvFN5gFmBgEAAHigYWZDFpCGZRi1AwDOS2yfbvpex/XP9u3zZgbx7hYAAECxRnQboaaOpmp2aTMWkIZlOGUMAHBeZs+dq5ZXXG51DAAAAJ+xZOES1YuuZ3UMBDhmCAEAztmmKqFqeXkrq2MAAAD4hHH9x+nqilerbp26VkcBKAgBADzX/KG7ta1mhC5t2pRTxAAAANww8cGJWpi4ULVq1OIUMXgFThkDAHhsweJFqlOPd7YAAADcNXfOXFWpXMXqGIATM4QAAG677unB2n9xbdWpG211FAAAAJ/w6b8/VYeaHRRZKdLqKEAhzBACALht3uefK+qCC6yOAQAA4DM+mPaBKoRVsDoGcAZmCAEA3JKR0EBRVataHQMAAMAnfDvhW3WO7qzy5cpbHQVwiYIQAKBYd7z1ik60bKzKVauwgDQAAIAb1ry3Rm+Ne0thoWEsIA2vxSljAIBiTf/wA4WW550tAAAAd734wosKCmL+Bbwbv6EAAJeGfDpN9jZNFRoWZnUUAAAAn7B3yV51q99NIUHMvYD347cUAODSuAnjZQvhZQIAAMBdDz/4MMUg+AxmCAEACnnl+69krrpMtuBgq6MAAAD4BPtau7rV76ZgG+Mn+A4KQgAAp7fX/6An/j08b2YQCyACAAAU66GrHlLY5jD16t5LIUEhLCANn8JcNgCA08ODBlEIAgAAKMLRo0cL3Z41c5b+ef0/LUoDnB9mCAEA9Nm+7dLVzSU+DQMAAMCl/Qf2q3PXzs7btdJq6YbrbrAwEXB+GPkDQACr3eNWLTqaqu49e0rBwcwOAgAAKMLK4ys1ZOoQPdn+ScVlxOmq1ldxihh8GqeMAUAA+3DmDN1w441WxwAAAPAZixYsUuNLGlsdAzhvzBACgAD1c3C2bvgn57wDAAC4YozR5t83n9HesGFDC9IAJY8ZQgAQoK5o05pTxAAAAIrwy7pflFwl2eoYQKlhhhAABJgt1cJZQBoAAKAYP/z0g7p06+K83aZSGwvTAKWD/wYAIEBc/shA7Yq+QBc3bswC0gAAAMVIq5mm8d+Od96+sOqF1oUBSgmnjAFAgPh80ULVqlPH6hgAAAAAvAAzhADAz9343GP6q3Fd1apd2+ooAAAAALwEBSEA8GOdXnpGn81P1IXVq3OKGAAAwFkMvHygvh77tdUxgDJBQQgA/Ngnc+YoskoVq2MAAAD4hLv73a03J7xpdQygTFAQAgA/dPc7E5R1+aUKr1TR6igAAABeKceeo1EvjXLe3jhjo15/7XUF8UmsCBAsKg0Afujd96coJCzM6hgAAABea2HKQiXckeC8/dy/n1NQUJAcDoeFqYCyQ+kTAPzIU/M/luPKZgopV87qKAAAAD7hwDcH1K1+NwXbgq2OApQpZggBgJ8Y9c0CjX7tVdmY5gwAAOC2+wbcp5Ag/jVG4OG3HgD8xLMjnpMoBgEAAABwA/85AICPe2/zL9LVzSkGAQAAuKniDj54A+C/BwDwcQPuGygFB0s2m9VRAAAAfMIN191gdQTAchSEAMBHLfgrhZlBAAAAHqh7uC4LSAN/478IAPAxdXt11tITf6nTbV2ZGQQAAOCCMUbJu5Kdt5/u+LQan2ysK1pcoZCgENkYPwElUxA6cuRISRwGAODCocOHC92e+cks3dS+PYUgwMcxfgKA0vP71t+13qx33l68cLES4hMoBAEFeFwQevnll/XJJ584b/fs2VMXXHCBateurQ0bNpRoOAAIaMZof2qqbuvSxdm0voJ09bXXWBgKwLlg/AQAZWfDxg3q2Kmj83bLkJaKi4mzMBHgnTwuCE2aNEnR0dGSpKVLl2rp0qVasmSJOnTooMcff7zEAwJAoErZtVs1tvypZS9N0KX39tGmqmG67PKWzAwCfBDjJwAoOzsq79CYJWOct+vWqcvMIMCFEE932Ldvn3NAs3DhQvXs2VM333yz6tevr9atW5d4QAAIOMZo25at6nFbd63771RJ0ucLF6rBxQ0tDgbgXDF+AgAA3sbjGUJRUVFKSUmRJH3xxRe68cYbJeUt2mW320s2HQAEGmO06ddfFbcv3VkMkqQGDWItDAXgfDF+AgAA3sbjGUK33Xab7rjjDjVs2FAHDx5Uhw4dJEnr1q1TXBznZQLA+Vjz82q1OskHQAL+hvETAADwNh7/1zFu3DgNGjRI8fHxWrp0qSpVqiRJSk1N1UMPPVTiAQEgIBij75cvV4/bbrM6CYBSwPgJAErf4tGL1b5We6tjAD7D4xlCoaGheuyxx85oHzp0aIkEAoBA9OWSJWpXsbqSZyZaHQVAKWD8BACla9kby/TuxHfPYcoDELjO6c/lww8/1NVXX62LLrpIu3btkiSNHz9e8+fPL9FwAOD3jNHc2XPUv28/q5MAKGWMnwCgZBhjzmgbP3a8QkI8nu8ABDSPC0ITJ07UsGHD1KFDBx05csS5EGKVKlU0fvz4ks4HAP7JGMlu18cffKDbqtdX6mdLrE4EoBQxfgKA82eMUY49R8+OeNbZtmX2FnWt11UhQRSDAE95XBB688039e677+rf//63goODne2tWrXSxo0bSzQcAPgth0NasU69619qdRIAZYDxEwCcv+zcbCXuSlTLe1o62558/EmFBofKZrNZmAzwTR4XhJKTk9W8efMz2sPCwnT8+PESCQUA/sw4HBr32lirYwAoQ4yfAOD8ZGdn6/4H73feTv8+Xd3qd1OwLbiYvQAUx+OCUExMjNavX39G+xdffKHGjRuXRCYA8E/GyOTm6oURIzT0HzdYnQZAGWL8BADnxhijY5nH1Kd/H9369K3O9n539VNIUAgzg4Dz4PGJlsOGDdPDDz+skydPyhijn3/+WR9//LFGjx6tKVOmlEZGAPALjtxcBa3coBE3drE6CoAyxvgJAM7N0WNHtfTAUvV8safVUQC/43FBaODAgapQoYKeeeYZZWZm6o477tBFF12kCRMm6F//+ldpZAQA32aMcrOz9cigQfrvnfefvT8Av8P4CQA8Y4zRoSOH1ONfPfTgxAetjgP4pXNair1Pnz7q06ePMjMzdezYMVWvXr2kcwGA38g6cVJhqzdRDAICHOMnAHDfvrR9WnF8BcUgoBR5vIZQQeHh4QxmAKAYx48d05139LY6BgAvwvgJAIpmjNGulF26tdOtZ+8M4Lx4PEMoJiam2IW7duzYcV6BAMAvGKMjhw7rzt69tfDf/7E6DQCLMX4CgLMzxuj3Hb8ryZak4bOGWx0H8HseF4SGDBlS6HZOTo7WrVunL774Qo8//nhJ5QIAn3YgLU3Vfk+hGARAEuMnAHBH0uYk/V7hd6tjAAHD44LQ4MGDXba//fbbWrNmzXkHAgCfZoz27tmjHt2764dX/2t1GgBegvETABTNGKM1a9eoR68eevWrV62OAwSM81pDqKAOHTros88+K6nDAYBvMUay27Vz63ZdtGM/xSAAbmH8BCCQGWOU68jV8pXLtTNqJ8UgoIyd06eMuTJnzhxVrVq1pA4HAL7F4ZBWrFN9q3MA8CmMnwAEMruxa97OeVItq5MAgcnjglDz5s0LLYpojNG+fft04MAB/fe/vCMOIAAZo1/XrVNTq3MA8FqMnwCgMGOMEhckSk2sTgIELo8LQl27di10OygoSNWqVdN1112nRo0alVQuAPAZP/6wUm3sYVbHAODFGD8BQGEfzvhQFa6sYHUMIKB5XBAaMWJEaeQAAN9jjL75+mvd07efds363Oo0ALwY4ycAyGOM0cR3Jmr408M1ZfUUq+MAAc2tglB6errbB4yIiDjnMADgE4yRHA4tXrBIt0RdRDEIgEuMnwDgFGOM7Mau18e/rpiuMZpyE8UgwGpuFYSqVKlS6Lx3V4wxstlsstvtJRIMALzW3wtI3xJ1kdVJAHgxxk8AcEquI1eJuxIV0zXG6igA/uZWQejbb78t7RwA4BuM0bT3pqr/JZdZnQSAl2P8BAB5he8ce46eHP6krnzwSqvjACjArYJQ27ZtSzsHAPiE8a+/riGteE4EcHaMnwBAysrJ0oI9CygGAV7I40Wl82VmZmr37t3Kzs4u1N60KR+8DMD/GIdDo0a+oDcnTNCQ+fyTB+DcMH4CEEhOnjype+67R92e72Z1FAAueFwQOnDggO6++24tWbLE5XbOgQfgV4yRIzdXzzz9b73Usaeeu6Gj1YkA+CDGTwACiTFGGccz1O/ufrrj5TusjgOgCEGe7jBkyBAdOXJEq1atUoUKFfTFF19o+vTpatiwoT7/nE/aAeBf7Dk5Clq5QS917Gl1FAA+jPETgEByOP2wvkz7kmIQ4OU8Lgj973//0+uvv65WrVopKChI9erV05133qlXXnlFo0ePLo2MAFD2jFH2iZO6f+C9VicB4AcYPwEIBMYYpf2Vpq7dulodBYAbPC4IHT9+XNWrV5ckRUVF6cCBA5KkJk2aaO3atSWbDgCsYIxOpB9TuZ+TNGXA/1mdBoAfYPwEwN8ZY7R7724tT1+u/5vC+AnwBR4XhC655BL98ccfkqRmzZpp8uTJ+vPPPzVp0iTVqlWrxAMCQFnLOJquCuv/sDoGAD/C+AmAv9uxc4d+zvrZ6hgAPOBxQWjw4MFKTU2VJI0YMUJLlixR3bp19cYbb+ill14q8YAAUGaM0aG//tLt3W6zOgkAP8P4CYC/Msbotz9+062dbrU6CgAPefwpY3feeafzesuWLbVr1y79/vvvqlu3ri688MISDQcAZWl/aqpqbN2rL59/2eooAPwM4ycA/mr9r+u1rfI2jfp8lNVRAHjI4xlCK1asKHQ7PDxcLVq0YDADwHcZo5Sdu9SlYyerkwDwU4yfAPgbY4x++PEHde7a2eooAM6RxwWhG264QTExMXr66ae1efPm0sgEAGXHGG37/Q9F7zqgn8ZNtjoNAD/F+AmAvzDGKNeRq6+Xfa29Nfbq9W9etzoSgHPkcUFo7969evTRR7V8+XIlJCTosssu06uvvqo9e/aURj4AKFUbf/1VcWnHrI4BwM8xfgLgL+zGrnk75+lIvSNWRwFwnjwuCF144YUaNGiQfvjhB23fvl09evTQ9OnTVb9+fd1www2lkREASp4xWv3TKt3WpavVSQAEAMZPAPyBMUZz5s6xOgaAEuJxQaigmJgYPfXUUxozZoyaNGmi5cuXl1QuAChV3y1frsuzgrV1+myrowAIMIyfAPiqKe9PUXCLYKtjACgh51wQ+uGHH/TQQw+pVq1auuOOO5SQkKBFixaVZDYAKHnG6ItFi9SnV2+rkwAIQIyfAPgiY4zGTRinx554zOooAEqQxx87P3z4cM2aNUt79+7VTTfdpAkTJqhLly4KDw8vjXwAUDKMkRwOJX42T11r1FfKpwusTgQggDB+AuCL8heQHvPqGDXq2UhTOk2xOhKAEuRxQei7777T448/rp49e/JRqQB8h8MhrVinrjXqW50EQABi/ATAF+U6cpW4K1GNejayOgqAUuBxQeiHH34ojRwAUHqM0eSJk3R/k9ZWJwEQoBg/AfA1ubm5GvzoYF0/+HqrowAoJee1qDQAeDVjZHJz9frLr1AMAgAAcIMxRieyTmjA/QMoBgF+zuMZQgDgK4zdLtsP6zWszT+tjgIAAOATjp84riX7lqjjvztaHQVAKWOGEAD/Y4wcOTl6fBifhAEAAOAOY4yOZBxRr969rI4CoIwwQwiA38nJylLoqiS91v1Oq6MAAAD4hIOHD+rbI9+q/7j+VkcBUEYsnSH0/PPPy2azFfpq1Kj4Fexnz56tRo0aqXz58mrSpIkWL15cRmkB+IKTJ05oQP97rI4BAKWG8ROAkmSMUer+VHXu2tnqKADKmFszhKKiomSz2dw64KFDhzwKcOmll+rrr78+FSik6EgrV65U7969NXr0aHXs2FEzZ85U165dtXbtWiUkJHh0vwD8jDE6nnFM/e66U3OGPWt1GgBg/ATA6xljtGP3Dq21r9XQaUOtjgOgjLlVEBo/frzz+sGDB/Xiiy+qXbt2atOmjSTpxx9/1Jdffqlnn/X8n7CQkBDVrFnTrb4TJkxQ+/bt9fjjj0uSRo0apaVLl+qtt97SpEmTPL5vIOAYIx07Jm3cKMXGSjt2SDEx0ubNks0mxccX3eZp/5I4hgf9Mzb8qsongzSnw23SkSPSrh1533O9WCn1T6lWbddtxW3zpv4tLpEqVy7VXw8AJYvxE1ByjDHKyM5QUlqSmtVoporlKha7zdm2P0kxUTFKPpLs1jaP8+xPUv0q9bXpwCYF2YIUXy3eebzw0HClZ6Xr5z9/VrAtWK3rtHZ9/4eTnZeujtW0elM55HB+f+Gh4UXft6tjFHP87zZ9p2MRx7Tn6B5JUp3IOko7lqbqlao7L11t84b+7Wq3U0RYhMvHJys3SylHUpz7ZdbOdNk3v5+r7Wcco1Zmsf0BX2QzxhhPdujevbuuv/56DRo0qFD7W2+9pa+//lqJiYluH+v555/Xq6++qsjISJUvX15t2rTR6NGjVbduXZf969atq2HDhmnIkCHOthEjRigxMVEbNmxwuU9WVpaysrKct9PT0xUdHa2jR48qIoI/YgSYjAwp/lJpT4oUEiLl5krBwZLdnrc9OESyF9Hmaf+SOAb9T21r2FBav14KDz/nhx/wNenp6YqMjPSL12zGT8D5Sc9KV6O3Gyk1I1VxVeO04YENCg8NL3JbriPX2RZsC5bd2N3aln9MT/IEKUgOOSSp0PG+v/t7NZ/cXPuO7ZMkNYhqoF8f/NXl/edfujpWbJVYZdoztS9jn/O4Ld5pUeR9u2orbpuv9s//eZ7+mBV8bIp7fN39nSrqcfDk9wUoS56MnzxeQ+jLL79U+/btz2hv3759oanL7mjdurWmTZumL774QhMnTlRycrKuueYaZWRkuOy/b98+1ahRo1BbjRo1tG/fviLvY/To0YqMjHR+RUdHe5QR8CtJSXnFICmv8CCdKjxIeYWHoto87V8Sx6D/qW1bt+Y9fgB8EuMn4PwkpSUpNSNVkrTt0DYlpSUVu61gm93Y3d52LnnyCxSnH2/hloXOYpAkbT+8vcj7z790dawdR3ZoX8a+Qsct7r5dtRW3zVf75/88T+fu4+vu71RRj4Mnvy+At/K4IHTBBRdo/vz5Z7TPnz9fF1xwgUfH6tChg3r06KGmTZuqXbt2Wrx4sY4cOaJPP/3U01hFGj58uI4ePer8SklJKbFjAz4nIUGq8/egPn+9ieDgU9uDi2nztH9JHMPD/ibktP0kKTS06Lbitnlb/4YN8x4/AD6J8RNwfhKqJ6hW5VqSpLiqcUqonlDstoJtwbZgt7edS56gAv9SFTxex4s7qmalU6d2NohqUOT951+6OlZslVjVrFyz0HGLu29Xbe5sk6TQoNBClyG2kDO2uWqzon/+z/N0zWo0U1zVuEL7Naza8Iy+Bfudvt3VMRpENVCDqAZFHg/wRR5/7PzIkSM1cOBALVu2TK1bt5YkrVq1Sl988YXefffd8wpTpUoVXXzxxdq2bZvL7TVr1tT+/fsLte3fv7/Yc+jDwsIUFhZ2XrkAvxEeLk2ZKSVvL5v1cMpoDZ6b3n1LH456QTWvukpKTs5be2jz5rz+BdcjctVW3DZv6p+QwOligA9j/AScn/DQcL3S8RWlHEnRw80eLnSqjqttuY5cZ1v+GjDubDuXPK7WvMk/3qudXtX2g9slSUNbDC3y/otbU+f+JvdrccriQt9fcfft7ho83738nYa/MlzNajfTb3/9JkmKrxavHYd3KDYq1nm5+cDmM7a5aivr/q0uauXyMatYrqI2PLBBSWlJzv0Sqiec0bdgv9O3F3UMSS77A77K4zWEpLwBzBtvvKHffst74mjcuLEeeeQR5wDnXB07dkx169bV888/r0ceeeSM7b169VJmZqYWLFjgbLvyyivVtGlTtxdF9Kf1CACP2e3SinVWpyhR1z71f/p07lzVrFXL6igASpi/vWYzfgLOXa4jV/N2zpMkdavfTSFBIcVuK9iWz51t55LHlW71u0lSoT7F3X9xOtXtpAW7FxR53HMx6+lZ+vD9DxXOm02A3/HkNdvjGUJS3rnrM2bMOKdwBT322GPq1KmT6tWrp71792rEiBEKDg5W7969JUl9+/ZV7dq1NXr0aEnS4MGD1bZtW40dO1a33nqrZs2apTVr1uidd9457ywAfFPiggWqeuGFVscAgLNi/ATAW3w47UOFl6cYBAQ6j9cQkqTt27frmWee0R133KG0tDRJ0pIlS7Rp0yaPjrNnzx717t1bl1xyiXr27KkLLrhAP/30k6pVqyZJ2r17t1JTU539r7zySs2cOVPvvPOOmjVrpjlz5igxMVEJrKsBBJwuL49QRrOGqurh2hsAYBXGTwCs9s24b9Q5urMqhFWwOgoAL+DxDKHly5erQ4cOuuqqq/Tdd9/pxRdfVPXq1bVhwwa99957mjNnjtvHmjVrVrHbly1bdkZbjx491KNHD09jA/AzH3/yicIrV7I6BgC4hfETAG/wxrg3VC6knNUxAHgJj2cIPfXUU3rxxRe1dOlSlSt36snkhhtu0E8//VSi4QDgdAPfe1PZVyQovFJFq6MAgNsYPwGw0uZZm9W1XleFBodaHQWAF/G4ILRx40Z169btjPbq1avrr7/+KpFQAODKI7Pe1+T331O5CuUlm83qOADgNsZPAKww8PKB2j1/t54b/pxCg0NlY/wEoACPC0JVqlQpdF56vnXr1ql27dolEgoAXBn/xgQFh5zTWvgAYCnGTwCs8MqYV/To0EcpBAFwyeOC0L/+9S89+eST2rdvn2w2mxwOh3744Qc99thj6tu3b2lkBBDgRi9bInPVZQqiGATARzF+AlDWctbk6L6B91kdA4AX87gg9NJLL6lRo0aKjo7WsWPHFB8fr2uvvVZXXnmlnnnmmdLICCDADX/madlCQjhNDIDPYvwEoKz1vL0nM4MAFMvjt9vLlSund999V88++6ySkpJ07NgxNW/eXA0bNiyNfAAC2NTf1+nugfdIQR7XrgHAqzB+AlBWIndG6obrblCwLdjqKAC83Dmff1G3bl3VrVu3JLMAgCSp5m3tNe6NCbr7voHMCgLgVxg/ASgtQ28Yqlkfz9JV11/FzCAAbnGrIDRs2DC3D/j666+fcxgAkKR3pkxR525drY4BAOeF8ROAsjR/3ny1bN7S6hgAfIhbBaF169YVur127Vrl5ubqkksukSRt2bJFwcHBatmSJyAA5+fbrEPq3LWL1TEA4LwxfgJQVhplNVLCZQlWxwDgY9wqCH377bfO66+//roqV66s6dOnKyoqSpJ0+PBh3X333brmmmtKJyUAvxd75236aOZMXX/TTZwmBsAvMH4CUBq2bNkilcu7/sLtL2jenHlq0KgBp4kB8JjHK7WOHTtWo0ePdg5mJCkqKkovvviixo4dW6LhAASOuYnzdOU1V1MMAuCXGD8BKAnrNqxTx84dnbcXL1isuNg4ikEAzonHBaH09HQdOHDgjPYDBw4oIyOjREIBCBxN7r9Lv11YQZe1aGF1FAAoNYyfAJSEnZE79fIXL2vCgAm6tvK1qnNRHasjAfBhHheEunXrprvvvltz587Vnj17tGfPHn322WcaMGCAbrvtttLICMCPfb5woRpfeikzgwD4NcZPAErS/HnzVaNaDWYGATgvHn/s/KRJk/TYY4/pjjvuUE5OTt5BQkI0YMAAvfrqqyUeEID/Sq1fXTF1o62OAQCljvETgHO15MslUuPCbZERkdaEAeBXPJ4hFB4erv/+9786ePCg1q1bp3Xr1unQoUP673//q4oVK5ZGRgB+5oZnhulAo2jVqhvNzCAAAYHxE4Bzlds4V5KU+GKitUEA+B2PZwjlq1ixopo2bVqSWQAEiLmJiapyQVWrYwBAmWP8BOBcTf7vZC3Zu8TqGAD8iMcFoePHj2vMmDH65ptvlJaWJofDUWj7jh07SiwcAP9y++ujNP3Dj1SlciWrowBAmWL8BOB8hYSc83v5AOCSx88qAwcO1PLly3XXXXepVq1aLGQGwG0fzfxY5SuGWx0DAMoc4ycAAOBtPC4ILVmyRIsWLdJVV11VGnkA+KEHP5ykN956S+XDwqyOAgCWYPwEwFM75u3Q4MGDtWD3AqujAPBTHheEoqKiVLUqa38AcM/jc2fo7cmTFRQcbHUUALAM4ycAnti/dL+eGPaE7MZudRQAfszjTxkbNWqUnnvuOWVmZpZGHgB+5pWxr1IMAhDwGD8B8MQD9z7AqaUASp3HM4TGjh2r7du3q0aNGqpfv75CQ0MLbV+7dm2JhQPgu8b99D8NeXSYbBSDAIDxEwD3/Cp169xNwTbGTwBKn8cFoa5du5ZCDAD+olqXm/T8qBc09InHJd7ZAgBJjJ8AFO+hqx/S9Penq0OXDswMAlBmPC4IjRgxojRyAPATY8e9rr533211DADwKoyfABRn9qzZuu7a66yOASDAeLyGEAAUJXH/TvXt39/qGAAAAF7JGKPU/anO24/d9JjqHqyrtte0tTAVgEDl8QyhoKCgYqcx2u2shA8Eqq7du3GaGAC4wPgJgCTt3L1Ta+xrnLcXzF+gpglNLUwEIJB5XBCaN29eods5OTlat26dpk+frpEjR5ZYMAC+Y4U5pquvuUYKYtIhALjC+AnAlu1bdHv32zUyMe9v/lL7pWp8aWOLUwEIZB4XhLp06XJG2+23365LL71Un3zyiQYMGFAiwQB4v4b9eujjTz7R1Ve0ZWYQABSD8ROATcGbnMUgSbq4wcUsIA3AUiX2dv4//vEPffPNNyV1OAA+YN7n89Wq9RUUgwDgHDF+AgAAVvF4hpArJ06c0BtvvKHatWuXxOEA+IBt1SspodElVscAAJ/F+AkAAFjJ44JQVFRUoamNxhhlZGQoPDxcH330UYmGA+C94i5uyMwgAHAT4ycg8Hz11VfSxVanAICieVwQGj9+fKHbQUFBqlatmlq3bq2oqKiSygXAS+1vUFM1atViAWkA8ADjJyCwzJs/Tw888IAm/ThJknRDtRv0vwP/szgVABTmcUGoX79+pZEDgJdr9/yT+nj2J6pxwQXMDAIADzF+AgJMM2nSj5O04MUFmjxxskJCSmSlDgAoUef0zHTkyBG99957+u233yRJl156qe655x5FRkaWaDgA3mPOvLmqXIW/cQA4V4yfgMDz7uR3FRYaplxHrtVRAOAMHp/zsWbNGjVo0EDjxo3ToUOHdOjQIb3++utq0KCB1q5dWxoZAVjojrde0YmWjVU5MsLqKADgsxg/AYEpODjY6ggAUCSPC0JDhw5V586dtXPnTs2dO1dz585VcnKyOnbsqCFDhpRCRABWGfj+W5r20YeqUKkip4kBwHlg/AQEhoGXD9Rvn/xmdQwAcMs5zRB68sknC50HGxISoieeeEJr1qwp0XAArDX53XdULizM6hgA4PMYPwGBYcSzI/T0k09bHQMA3OJxQSgiIkK7d+8+oz0lJUWVK1cukVAArPXvRZ/KcWUzBYeGWh0FAPwC4yfA/x1edlhDBw+1OgYAuM3jglCvXr00YMAAffLJJ0pJSVFKSopmzZqlgQMHqnfv3qWREUAZe/GllxQUGsppYgBQQhg/Af4lKyvrjLZ7+t8jG2MnAD7E408Ze+2112Sz2dS3b1/l5uatlh8aGqoHH3xQY8aMKfGAAMrOW2u/16BHHpEtyONaMQCgGIyfAP9gjFH68XTd1fcu3fXaXZKk0M2h6nhLRwXbWEAagG/xuCBUrlw5TZgwQaNHj9b27dslSQ0aNFB4eLhOnDhR4gEBlI3pWzZo0JAhzAoCgFLA+AnwfcYYHThyQMsPL9ddr92l/2v7f/po+kf6563/ZGYQAJ90ztMAwsPD1aRJEzVp0kTBwcF6/fXXFRMTU5LZAJShfvf0pxgEAKWM8RPgu/Yf2K/lh5c7b3/26We68YYbKQYB8FluF4SysrI0fPhwtWrVSldeeaUSExMlSVOnTlVMTIzGjRunoUNZRA3wNUuOpEpXN5c4TQwAShzjJ8D3GWO0e89udezcsVB769atLUoEACXD7VPGnnvuOU2ePFk33nijVq5cqR49eujuu+/WTz/9pNdff109evRQcDDnzQLeLD09QxF/X6/3r86a+uEH6tC5IzODAKCUMH4CfN/25O1ap3V6cuaTVkcBgBLl9pSA2bNn64MPPtCcOXP01VdfyW63Kzc3Vxs2bNC//vUvBjOANzNGBw8cUPdu3ZxNn8yZoxtuvJFiEACUIsZPgO8yxmjTb5t0S6dbrI4CAKXC7YLQnj171LJlS0lSQkKCwsLCNHToUM6ZBbydMdq/Z48u2LxLS0e+qkb39NKGykH6x5VtrE4GAH6P8RPge4wxynXkavW61doctln/WfAfqyMBQKlw+5Qxu92ucuXKndoxJESVKlUqlVAASs6u5J2ql3LQeTtxwQI1io+3MBEABA7GT4DvsRu75u2cJ1WxOgkAlC63C0LGGPXv319hYWGSpJMnT+qBBx5QxYoVC/WbO3duySYEcG6M0Zbf/1CP7t21YeJ0Z3OjSy6xMBQABBbGT4BvMcbom2+/kfjwPwABwO2CUL9+/QrdvvPOO0s8DICS8+v69Wqabi9UDAIAlC3GT4BvSfw8UblNcq2OAQBlwu2C0NSpU0szB4CSYoxW/fiT+vTurW0fzLE6DQAENMZPgG8wxmjGxzM0aPAgvfPTO1bHAYAy4fai0gB8gDFa/r//qXVOKMUgAAAAN73/wfsq17ocxSAAAYWCEOBHFi9cpLYhkVbHAAAA8ClV21a1OgIAlDkKQoA/MEafzpqle/r3tzoJAAAAAMAHUBACfJkxkt2uD9+fpp614rRv7hdWJwIAAAAA+AAKQoAvczikFet0V1wTq5MAAAD4BLvdbnUEAPAKFIQAX2SMTG6uXhn9stVJAAAAfIIxRpknMzXg3gHOtsxVmRYmAgBrURACfJCx22X7Yb2euOZmq6MAAAD4hGMnjmnR3kXq8lwXPdDmAdk22HRHzzusjgUAlqEgBPgYe26uhg0eanUMAAAAn3JX37uc1z/64CPd3u122Ww2CxMBgLUoCAG+whjlnDypB++9V+N69rM6DQAAgE/p99qp8dNNN91kYRIA8A4hVgcA4J6TmSdUfs1mvdP/YaujAAAAAAB8HDOEAG9njI4dTdcd/+pldRIAAAAAgJ+gIAR4ucOHDqnS+i2a+9gIq6MAAAD4hG3btzmvj+g2QgmOBAvTAIB3oiAEeLG0/fvVrXMXq2MAAAD4BGOM1v+6Xh07dXS2LVm4RA1jG1qYCgC8EwUhwBsZoz27dqvzLbdq2UvjrU4DAADgE35a85O2Vtqq0YtHa1z/cbq64tWqW6eu1bEAwCuxqDTghbZv3aYGqUf10+uTrI4CAADgM/ZV2+e8/nni57qw6oV5N4xFgQDAizFDCPAmxmjTxo3q3LHj2fsCAACgSFWqVLE6AgB4NQpCgDcwRrLbte7nNbr0UJY2vTvD6kQAAABezRijXEeu5ibOtToKAPgkThkDvIHDIa1Yp+ayWZ0EAADAJ9iNXfN2zpPtMsZPAHAumCEEWM0YfbN0qdUpAAAAfIYxRhMnT3Te/nbCt7ql9i0WJgIA30NBCLDYvM/m6p8VLrQ6BgAAgE8wxuilMS+pZruazrYJr09QWGiYhakAwPdQEAKsYoxmfPCBHrjvPquTAAAA+IwRI0folddeKdRms3HaGAB4ioIQUNb+XkB6ysTJ6lMvXvvnfWl1IgAAAJ/RvH9zTVk9xeoYAODzKAgBZe3vBaQHXtrK6iQAAAA+IScnx+oIAOB3KAgBZcg4HBo18gWrYwAAAPgEY4yOnziufvf0szoKAPgdCkJAWTBGjpwcPfXo43r2n52sTgMAAOD1jDE6dOyQFqcuVo9RPfTQVQ8p7HcWjgaAkkJBCCgDudnZClq5QS937W11FAAAAJ9w6Mgh/e/A/5y3Z82cpVva89HyAFBSKAgBpckYZWWe0L33DLQ6CQAAgE8wxmhf2j516dalUHvbtm0tSgQA/inE6gCAP8s8dlzha3/X1PsGWx0FAADAJ6T8maJV2as0+H3GTwBQmpghBJQGY3T00GH1uv12q5MAAAD4BGOMtu7Yqls6cVoYAJQFZggBJc0Y/bV/vy78Y48WPP2i1WkAAAC8njFGG3/bqD/K/6ERn42wOg4ABAQKQkAJS/3zT9Xavs/qGAAAAD7jl3W/KLlKstUxACCgcMoYUFKM0c7tO9T51o5WJwEAAPAJxhh998N3ZywgDQAofcwQAkrIH7//rkvSjmv1G1OsjgIAAOATln6zVEdjj2r8t+OtjgIAAYcZQsD5MkYb1q5V106drE4CAADgE4wxmjt/ru648w6rowBAwKIgBJwPY/TzDz+qWYZDv703y+o0AAAAXs0Yo1xHrmZ8MkP2JnZNXDnR6kgAELAoCAHn4X/ffKMr7OWsjgEAAOAT7MaueTvnKeyKMKujAEDAoyAEnAtjtOjzBbrrjj5WJwEAAPAJxhiNf2O81TEAAH+jIAR4whjJbtecTz7RrZG19OfsRVYnAgAA8GrGGOXYc/T8f55Xvc71rI4DAPgbnzIGeMLhkFas0+214qxOAgAA4BNy7Dmav3u+Eu5IsDoKAKAAZggB7vh7ZtDbb71ldRIAAACfYIxRVk6WHhnyiNVRAAAuMEMIcIOx22X7Yb0evuwqq6MAAAD4hBNZJ7Ro7yL9c9g/rY4CAHCBGULAWRiHQ8/++99WxwAAAPAZmZmZurPvnVbHAAAUg4IQUBRjZM/O1rD/G6wXb+lhdRoAAACvZ4zRoaOHdFvP29R7TG+r4wAAiuE1BaExY8bIZrNpyJAhxfabPXu2GjVqpPLly6tJkyZavHhx2QREwMk+maXgH3/VuJ79rI4CAIBLjJ/gbQ4cPKBvDn6jAW8MsDoKAOAsvKIgtHr1ak2ePFlNmzYttt/KlSvVu3dvDRgwQOvWrVPXrl3VtWtXJSUllVFSBARjdOLYcfXv29fqJAAAFInxE7yJMUZ79u5Rpy6drI4CAHCT5YtKHzt2TH369NG7776rF198sdi+EyZMUPv27fX4449LkkaNGqWlS5fqrbfe0qRJk8oiLqxijHTsmLRxoxQTI23eLNlsUny8tGOH67bY2KK3FdM/48JqqvzFt5p5zY3SkSNS6p9SrdrSrh15WerFnmorbpu39m9xiVS5cqk+XACA0sX4yX8YY5SRnaGktCQ1q9FMFctVdK99f5JiomKUfDg57/JIsppWbyqHHM59wkPDncdwbnOxX/7xjTFKz0rXz3/+rCBbkOKrxZ/qdzhZ9avU16YDmwpty2/bn7ZfWZFZ6jquq9JPpivtWJqqV6quPUf3SJLqRNYpts2d/u1qt1N4aLiycrOUciSlyG3bD253tkWERTh/1kVtK3g8TzKefvyC8o+ZWTuzyPspuK04zmPVynR5XAA4VzZjjLEyQL9+/VS1alWNGzdO1113nS677DKNHz/eZd+6detq2LBhhaZFjxgxQomJidqwYYPLfbKyspSVleW8nZ6erujoaB09elQRETyJ+oyMDCn+UmlPihQcLNntee3BIZI913VbSIiUW8S2QO7foIH0669SeHjJPT4AUArS09MVGRnJa7YLjJ/8R3pWuhq93UipGamKqxqnDQ9sUHhouFvtwbZg2Y3deRlbJVaZ9kzty9inuKpx+v7u79XinRZKzUgttO30/fKPn+vI1SVvXaJ9x/ZJ0hn9ghQkhxyFtrlqK63+DaIaaMU9K5zfk6ttzSc3d+ZvENVAvz74q/PnVvB7y9+W68g94+fpbsaCxz/bY+rqfgo+ru78fpz++J5tXwCByZPxk6WnjM2aNUtr167V6NGj3eq/b98+1ahRo1BbjRo1tG/fviL3GT16tCIjI51f0dHR55UZFklKyisGSacKG1JesaOottxitgVy/+3b836eAACfxPjJvySlJSk1I1WStO3QNiWlJbndbjf2Qpc7juzQvox9zn0Wblno7Ftw2+n75R8/KS3JWTBx1S+/EHK2ttLqv/3w9kLfk6ttBfNvP7y90M/N1TZXP093MxY8fkGuHjtX91PwcS1Kwf1Of3zPti8AnI1lBaGUlBQNHjxYM2bMUPny5UvtfoYPH66jR486v1JSUkrtvlCKEhKkOn8PRoODT7UHhxTdFlLMNnf7h4YW3lawrbht3ty/QYO8nycAwOcwfvI/CdUTVKtyLUlSXNU4JVRPcLs92BZc6DK2SqxqVq7p3KfjxR2dfQtuO32//OMnVE9QzUo1ndlO7xdU4F8HV20htrzxRmhQaKHbZ2tzt3+DqAbqckkXxVWNK3JbbFRsobb8n1uzGs1cbmtWo5nzeJ5mLHj8ggoes2HVhkXeT/624hTcr0FUAzWIauD2vgBwNpatIfTLL78oLS1NLVq0cLbZ7XZ99913euutt5SVlaXggv+YS6pZs6b2799fqG3//v2qWbOmihIWFqawsLCSDY+yFx4uTZkpJW8v9TV4dja9RPWzTkhBQdKll55aX2jz5rz+p69RVNQ2b+3fqhWniwGAj2L85H/CQ8P1SsdXlHIkRQ83e9h5CpA77QXXtUk7lqb7m9yvxSmLC+2T37fgttP3y++b68jVq51eda6z48kaP80qNtNVDa5S8pFkxUbFasfhHYqNitXmA3njj/hq8cW2udO/1UWtFB4arg0PbFBSWpLLbRsf3Kg1e9cUapOkiuUqFrmt4PE8yVjwGAVVLFfRecyE6glF3k/BbUU5/ViSzjguAJwry9YQysjI0K5duwq13X333WrUqJGefPJJJbiYwdCrVy9lZmZqwYIFzrYrr7xSTZs2dXtRRNYj8FF2u7RiXanexT+GPaA5c+eqTt3ovMWmAQCW4jX7TIyf/E+uI1fzds6TJHWr300hQSFut5+uU91OWrB7gXMfSc6+BbedLv/4xR27KNOHTddHH36kyEqRsjF+AgDLefKabdkMocqVK58xaKlYsaIuuOACZ3vfvn1Vu3Zt5znygwcPVtu2bTV27FjdeuutmjVrltasWaN33nmnzPPD/3y+aKGqF/NuKQAAVmP8BG8za+YsVQqvZHUMAMA5sHRR6bPZvXu3UlNTnbevvPJKzZw5U++8846aNWumOXPmKDEx0eW7YYC7OrwwXIcTYlT9tAU3AQDwRYyfUBYWj16sjrU7qmKFilZHAQCcI8tmCLmybNmyYm9LUo8ePdSjR4+yCQS/d9trIzU7ca4qVa5sdRQAAM4J4yeUtWVvLNO7E99VSIhX/SsBAPAQz+IIaDNnfaLyFVmQDwAAwF3jx45XSDD/RgCAr/PqU8aA0nLftLeV0zpB5cMrWB0FAADAJ2yZvUVd63V1LnANAPBtPJsjIE2cPFnB5cpZHQMAAMBnPPn4kxSDAMCPMEMIAeW5Lz6TueoyBYeGWh0FAADAJ6R/n65u9bsp2BZsdRQAQAmiIISA8doPX2vkf/4jW0iIZLNZHQcAAMCr3f+P++X4xaF7+t6jkKAQ2Rg/AYBfYc4nAsZjTz4uBVEDBQAAcOXY8WOFbn8w7QN1vKWjRWkAAKWN/47h9z7ctlG6ujnFIAAAABeMMTp4+KBuu/02Z1vVlKq6tcOtFqYCAJQ2/kOG36rVvYNm79uuu+7pLwUHc5oYAACAC/sP7Nf/Dv9PD058UI/e+KjqHKijG669gVPEAMDPURCC33pv6lT16NWLQhAAAEAxuvfo7rz+eeLnatO6DcUgAAgAFITgd+r37qJl9nTd0pFpzgAAAGfz2PTHnNcTEhIsTAIAKEssKg2/8+lnn+mKNv+wOgYAAAAAAF6LghD8SlJEsK64rKXVMQAAAAAA8GqcMga/0OzBftpSvZISLruMNYMAAADcMOnhSVZHAABYiIIQ/MKCRYt0ceNGFIMAAADc9MmsT6yOAACwEAUh+LRrnhykfXG1VLd+PaujAAAAeK0Fixc4r3/81MdqX6O9IitFWpgIAGA11hCCT0tcsEAXVKtmdQwAAADvVuDDwz764COFlw9XriPXujwAAMsxQwg+Kz0hVhdceKHVMQAAAHzCN69/o87RnVUhrILVUQAAXoCCELybMZLdrsULFjmbek0YrcwWjRRRNYo1gwAAAFzIdeTq9fGvF2p7Y/wbCgsNk43xEwBAnDIGb+dwSCvW6Zaoi5xNH86YoXIVylsYCgAAwLst2L1AMV1jCrUFBfFeMADgFF4V4J3+nhk0/f1pzqb/+/g95f6jicqVD7MuFwAAgA/ZvWi31REAAF6KghC8098zg/pd3MzZNOHNNxQSFsZpYgAAAC7k5p65SPTDDz5sQRIAgC+gIASvYxwOjX7xpTPameYMAABQtAcfftDqCAAAH8J/2PAexsiRk6NnnnpKw6/rYHUaAAAAn9L5350lSUGbGOIDAM6OVwt4DXtOjoJWbtB/bu1pdRQAAACfdWuHW62OAADwARSEYD1jlH3ipO4feK/VSQAAAAAACAgUhGC5E8czVe7nJE0Z8H9WRwEAAPA5T7R7QvWO1LM6BgDAx1AQgqUy0tP1r56cIgYAAHCuFsxfoBaXtbA6BgDAx1AQgjWM0aG//tLtXbpp/pMjrU4DAADg9Ywx+mPrH87bI7uP1GW6TJc2vtTCVAAAXxVidQAEpv2pqaqxda++fP5lq6MAAAD4hPW/rte2ytuctxcvWKy6derm3TAWhQIA+CxmCKFsGaOUnbvUpWMnq5MAAAD4BGOMfvjxB3Xu2tnZdmXFKxVdO9rCVAAAX8cMIZQNYySHQ9u3bFODtAz9NG6y1YkAAAB8wrIVy3Qk+ohe/+Z1Z1uNajVks9ksTAUA8HUUhFA2HA5pxTo1sDoHAACAjzkSfcTqCAAAP8QpYyh9xuiXn9dYnQIAAAAAAPyNghBK3XfLl6tldrDVMQAAAHzGtGnTrI4AAPBzFIRQeozRl4sXq0+v3lYnAQAA8AnGGI1/Y7weffxRq6MAAPwcBSGUPGMku12Jsz9Tu4rVlfLpAqsTAQAAeL0ce45efPlF1e5YW1NWT9GGjzZYHQkA4McoCKHk/b2AdNca9a1OAgAA4DMWpixUo56NnLf/PfzfFqYBAPg7CkIoWcZo8sRJVqcAAADweXysPACgNFEQQskwRiY3V6+//Irub9La6jQAAABezxijE1knrI4BAAhQIVYHgH8wdrtsP6zXsDb/tDoKAACATzh+4ri+2PeF1TEAAAHK0hlCEydOVNOmTRUREaGIiAi1adNGS5YsKbL/tGnTZLPZCn2VL1++DBPjDMbIkZOjx4c9ZnUSAAACAuMn32eM0ZGMI+rVu5ezrfxWHhMAQNmydIZQnTp1NGbMGDVs2FDGGE2fPl1dunTRunXrdOmll7rcJyIiQn/88YfzNudWWysnK0uhq5L0Wvc7rY4CAEBAYPzk+w4ePqhvj3yr/uP6O9tu+udNWrCbT2YFAJQdS2cIderUSbfccosaNmyoiy++WP/5z39UqVIl/fTTT0XuY7PZVLNmTedXjRo1yjAxCjp54oQG9L/H6hgAAAQUxk++yxij1P2p6ty1s9VRAADwnjWE7Ha7Zs+erePHj6tNmzZF9jt27Jjq1asnh8OhFi1a6KWXXiry3bCAY4x07Ji0caMUGyvt2CHFxEibN0s2mxQfX3SbJ/2Tk3W8Vi09e8cd+uDJF6QNa/Puv16slPqnVKu2tGuHe22e9G9xiVS5ctn+TAEA8GKMn4pnjFFGdoaS9icpJipGyUeS1bR6UznkONV2OLnw5ZFkNavRTBXLVZQxRulZ6fr5z58VZAtSfLX4Qv3rV6mvTQc2Fdrmqi3/uGGZYVp4aKHavdxO6SfTlXYsTdUrVVfasTRl1spUVm6WUo6kFNvm3FY7UxFhEYW+3/y+BfcrdL2YfYo7LgDAP9mMMcbKABs3blSbNm108uRJVapUSTNnztQtt9zisu+PP/6orVu3qmnTpjp69Khee+01fffdd9q0aZPq1Knjcp+srCxlZWU5b6enpys6OlpHjx5VRISfvdhlZEjxl0p7UqSQECk3VwoOluz2vO3BIZK9iDYP++fYbAo1xv3jl8B9qmFDaf16KTy8VH+MAADvkJ6ersjISP98zT5PjJ/ck56VrkZvN1JqRqqCbcGyG7tiq8Qq056pfRn7nG2nX8ZVjdOGBzYo15GrS966RPuO7ZOkM/oFKUgOOQptc9WWfymHnPPzT9/mKldxWfMzhoeGn/G9Ftyv4PXi9inquAAA3+LJ+MnyglB2drZ2796to0ePas6cOZoyZYqWL1+u+Pj4s+6bk5Ojxo0bq3fv3ho1apTLPs8//7xGjhx5RruvDWjc8uOP0pVXWp2idK1aJV1xhdUpAABlgIJQ0Rg/uWdlykpd9f5V57TvqoGrlOvIPef9y8Kqgat0Re28cZG736s7+xTsAwDwLZ6MnyxdQ0iSypUrp7i4OLVs2VKjR49Ws2bNNGHCBLf2DQ0NVfPmzbVt27Yi+wwfPlxHjx51fqWkpJRUdO+TkCDVic67HvL32YDBwae2BxfT5mH/7PzbIQXOOgwN9azN0/4NG+Z9jwAABDjGT+5JqJ6gWpVrScqbkSNJsVViVbNyzUJtp1/GVY1TQvUEJVRPUM1KNZ3HO71fUIGhdHFt+Zd/TxySJIUGhRa6bBDVQA2iGpy1Lf+yYdWGSqh+alzUrEYzxVWNO2O/gteL26eo4wIA/JfXrCGUz+FwFJqiXBy73a6NGzcWOUVaksLCwhQWFlZS8bxbeLg0ZaaUvN3z9Xk87J/S9GI1CAnOW3to8+a8bQXXI3K3zZP+CQmcLgYAgAuMn1wLDw3XKx1fKbRGzv1N7tfilMUu1+XJv3y42cMKDw1XriNXr3Z6VdsPbpck1Ymsc0b/PUf3nLHNVVvasTR1q9VNaY40SVJ8tXjtOLxDsVGx2nF4h7MIk5SWVGxbwW0FT+uqWK6iNjywQUlpSYX2O/16UfsUdVwAgP+y9JSx4cOHq0OHDqpbt64yMjI0c+ZMvfzyy/ryyy910003qW/fvqpdu7ZGjx4tSXrhhRf0j3/8Q3FxcTpy5IheffVVJSYm6pdffnFrirTk59PP7XZpxbpSvYvWQ+7T7LlzVbd+vbxFpgEAKCV+/Zp9Hhg/uS/Xkat5O+cVautUt9NZP969W/1uCgkKcbn/uXh/8PuaOWOmqlSuIhvjJwBAKfLkNdvSGUJpaWnq27evUlNTFRkZqaZNmzoHM5K0e/duBQWdmnZ7+PBh3Xvvvdq3b5+ioqLUsmVLrVy50u3BDM7f54sWqsZFF1kdAwCAgMX4yfd8OutTVa7IJ6UCALyL5YtKlzVffYfLLaU8Q+hQ47qqWq0aM4MAAGXCr1+zfYyvPhZWzxD6fNTnmjxxsiqEVWBmEACgTPjUotLwfl1eHqGMZg0pBgEAALjpm3HfaOq7UxVePpxiEADAK3ndotLwPh9/8onCK1eyOgYAAIDPeGPcGwoJYagNAPBezBBCkQa+96ayr0hQeKWKVkcBAADwCZtnbVbXel0VGhxqdRQAAIpFQQguPTLrfU1+/z2Vq1Ce08QAAADOYuDlA7V7/m49N/w5hQaHcpoYAMDrMY8VLo1/Y4KCmOYMAADgllfGvKL7773f6hgAALiNGUIoZPSyJTJXXUYxCAAAwE05a3J038D7rI4BAIBH+K8fhQx/5mkpONjqGAAAAD6j5+09OUUMAOBzmCEESdLU39dJVzeXgviVAAAAcEfkzkh1q99NwTbeTAMA+B7++w9wNW9rr4/3/KG77xuYNzOId7cAAACKNfSGoaq1v5Zuuv4mhQSFMDsIAOCTOGUswL0zZYo6d+tqdQwAAACfMX/efLVs3tLqGAAAnBdmCAWwb7MOqXPXLlbHAAAA8AnPdH5G8VnxanFZC6ujAABw3pghFMCu/+c/OUUMAACgCFu2bJHKnbq96PNFiouNsy4QAAAliBlCAejXimIBaQAAgCIYY/TLul/UsXNHZ9vl5S5Xg5gGFqYCAKBkUREIIE3uv0u/XVhBTVu2ZAFpAACAIqz8eaV2RO7Qy1+8rAkDJujayteqXu16LB4NAPArnDIWQD5fuFAxcbyzBQAAUJy0GmnO6/PnzdcFVS6wMA0AAKWDglCASK1fXTF1o62OAQAA4FMiIyKtjgAAQKnglDE/d8Mzw3SgUbRq1Y3mFDEAAAAAACCJGUJ+b25ioqpcUNXqGAAAAAAAwIswQ8gfGCPZ7fpqyRfOpttfH6XjzS9RlapRFgYDAADwHT9M/sHqCAAAlBkKQv7A4ZBWrNPNlWs4mz6a+bEqRlTmNDEAAAA3jX5xtNURAAAoMxSEfJ0xmvHBh86bD344STmtE1Q+vIKFoQAAAHzHjnk71K1+N4UEsZoCACBwUBDycW+9+ab6xCY4b789caJCy5dnZhAAAIALdrvdeX3g5QO1/4v9emLYEwoJCpGN8RMAIIBQEPJRxuHQ6Bf/o5HPjSjUHhTEQwoAAFCUQY8Mcl6fMG6CBj00iEIQACAgUT3wNcbI5Obq+Wef1fBr2unA/KVWJwIAAPAZtzx5S96VX6V+d/WzNgwAABbiRGkfY8/JUfCPv2rkzd2sjgIAAOCzunXuxswgAEBAY4aQD8nJztbDDz5odQwAAAAAAODjKAj5AmN08nim7rmrnyb1pSAEAABwNsYYpe5Pdd5+7KbHVOdgHQsTAQDgXSgI+YBj6Rkqv2azPnzoUaujAAAA+ISdu3fqpxM/OW8vmL9Al7e83MJEAAB4FwpC3swYHTl4SD273251EgAAAJ9gjNEf2/7QrZ1udbYlOBLU5NImFqYCAMD7sKi0F0vbv1/V/9ijxc++ZHUUAAAAn7Bx00b9Ef6HRiaOdLY1jG2Yt4C0sTAYAABehhlC3sgY/bl7t7p07GR1EgAAAJ9gjNGq1avUqQvjJwAA3MEMIW9jjJK3bFPMvqP6cexEq9MAAAB4PWOMlq1Ypr9q/6XXlr5mdRwAAHwCBSEvs3nTJsUfPGl1DAAAAJ+x5MslOn7xcatjAADgUzhlzFsYo3Vr1qhb585WJwEAAPAJxhjN/my27up3l9VRAADwORSErGaMZLfrx+9WqPlx6Y+pn1qdCAAAwKsZY5TryNX0GdOl5tKkHydZHQkAAJ9DQchqDoe0Yp3aqILVSQAAAHyC3dg1b+c8VbyyotVRAADwWRSErGSMFs5fYHUKAAAAn2CMUY49R6+9zsLRAACcLwpCFpr50UfqeEEdq2MAAAD4hFxHrhJ3JarBbQ2sjgIAgM+jIGQFY/TOxEka/H+PWJ0EAADAJ9jtdj36xKNWxwAAwG9QECpLfy8gPWHsWN0X30oH5i+1OhEAAIBXM8boZPZJ3f/w/brm4WusjgMAgN8IsTpAIDF2u2w/rNfgy6+zOgoAAIBPyDyZqcWpi9XuiXZWRwEAwK9YOkNo4sSJatq0qSIiIhQREaE2bdpoyZIlxe4ze/ZsNWrUSOXLl1eTJk20ePHiMkp7HoyRIydHTz/5lNVJAACAjwuU8ZMxRkePHVXvPr2tjgIAgF+ytCBUp04djRkzRr/88ovWrFmjG264QV26dNGmTZtc9l+5cqV69+6tAQMGaN26deratau6du2qpKSkMk7umdzsbAWt3KDRnf9ldRQAAODjAmX8dOjoIX2V9pXueu0uq6MAAOCXbMYYY3WIgqpWrapXX31VAwYMOGNbr169dPz4cS1cuNDZ9o9//EOXXXaZJk2a5Nbx09PTFRkZqaNHjyoiIqLEchcl6+RJPTjwXr1/7+BSvy9J0tXNpeDgsrkvAABKUVm/Zvsyfxs/paWl6bZet2nweyUzfupWv5tCgkKU68jVvJ3zCrUVVHD76fsCAOALPHnN9ppXN7vdrtmzZ+v48eNq06aNyz4//vijhg0bVqitXbt2SkxMLIOEfzNGysiQVq+WbDYpPl7asUOKjc27jImRNm+WgoKUGRurEXfeqfcfGyFtWJu3f71YKfVPqVbtU5e7dpy5zVWbO/1bXCJVrlx2Pw8AAGAZXxk/GWOUnpWun//8WUG2IMVXi1fykWQ1rd5UDjmUtD9JMVExSj6SrMrZlXXbwNv01NtPafP+zZKkOpF1lHYsTdUrVdeeo3vOaDvbtszamYoIyxsUZ+VmKeVISqG2gvK3u9oXAAB/YnlBaOPGjWrTpo1OnjypSpUqad68eYqPj3fZd9++fapRo0ahtho1amjfvn1FHj8rK0tZWVnO2+np6ecX+NgxqXG8tPfPvNvBIZI9VwoJkXJz82bn2O2SpFCbTa8aI/3Y3tlWXH/nNldt7vZ/4xXp11+l8PDz+z4BAIDX8rXxU0Z2hhq93Uj7juXdZ7AtWHZjV2yVWGXaM7UvY5+zTQ5J10n3zb5PDjkK9Q9S0Blt7mx7f9X72vDABuU6cvXEwieUmpHqbAsPPTVmyszJdG4/fd+C/QAA8AeWf+z8JZdcovXr12vVqlV68MEH1a9fP23evLnEjj969GhFRkY6v6Kjo8/vgElJp4pBUl5BRsor1kinCjOSQvPPxivQVlx/57bz6b99e15GAADgt3xt/JSUluQsBknKK/xI2nFkh/Zl7CvUlj86zS/uFNzmqs2dbdsObVNSWpKS0pKUmpFaqO30nPnbT98XAAB/Y3lBqFy5coqLi1PLli01evRoNWvWTBMmTHDZt2bNmtq/f3+htv3796tmzZpFHn/48OE6evSo8yslJeX8AickSBfVPnU7+O9JViF/XxZYvycn/0pIgYlYoaGFL11tO5/+DRrkZQQAAH7L18ZPCdUTVLPSqfsLtuWNl2KrxKpm5ZqF2vLrOiG2U+Ob0KDQItvc2dawakMlVE9QsxrNFFc1rlBbQQW3n74vAAD+xvJTxk7ncDgKTVEuqE2bNvrmm280ZMgQZ9vSpUuLPGdeksLCwhQWFlZyAcPDpfdnSX/8/S5cMWv8JLe8VBeHhuatL5T/rt3paw4Vte1c+7dqxeliAAAEGG8fP4WHhuvVTq9q+8Htkk6t8XN/k/u1OGVxoTV7utTsomPBxxQbFavNB/LGN/HV4rXj8I4i2862LaF6gvOUrw0PbFBSWlKhtnwVy1V0bne1LwAA/sTSTxkbPny4OnTooLp16yojI0MzZ87Uyy+/rC+//FI33XST+vbtq9q1a2v06NGS8j42tW3bthozZoxuvfVWzZo1Sy+99JLWrl2rBDdnxZz3p2TY7dKKdWfttuuiKNWLi81beBoAAHiMTxlzzRfHT64+vUuSKu+srIz6GZKkdwe9q1kfz1JURJRsjJ8AADgnPvMpY2lpaerbt69SU1MVGRmppk2bOgczkrR7924FBZ06q+3KK6/UzJkz9cwzz+jpp59Ww4YNlZiY6PZgpixc9fhDmv3ZZ6pXpw7FIAAAUOL8afyUXwya8cQMzZs9TxUrVrQ4EQAAgcPSGUJWKO0ZQn81rqsLq1c/j4QAAEBihpA3Ka0ZQvluqXWLKlagGAQAwPny5DXb8kWl/UXH//xbR5s00IXVqlkdBQAAwKeU6HqPAADALV63qLSv+mTOHFWMqGx1DAAAAAAAgLNihtB56j95vLIuv1QVK1eyOgoAAIBXOn2Fgo0fbVTH6I4WpQEAABIFIY/NmDHDef2hGe9oyvSpCguvwALSAAAARXjmmWec13fM26GRz45UaHCohYkAAAAFIQ81bhzvvP7W228rJJTBDAAAQHFatGjhvP7o0Ef5WHkAALwAawh5qEWrltqxbbtiYuorKDjY6jgAAABer+ftPbV1x1bFxsQq2Mb4CQAAb0BByFM2m2IbxlmdAgAAwGfYbDZd3OBiq2MAAIACOGUMAAAAAAAgwFAQAgAAAAAACDAUhAAAAAAAAAIMBSEAAAAAAIAAQ0EIAAAAAAAgwFAQAgAAAAAACDAUhAAAAAAAAAIMBSEAAAAAAIAAQ0EIAAAAAAAgwFAQAgAAAAAACDAUhAAAAAAAAAIMBSEAAAAAAIAAQ0EIAAAAAAAgwFAQAgAAAAAACDAUhAAAAAAAAAIMBSEAAAAAAIAAQ0EIAAAAAAAgwFAQAgAAAAAACDAUhAAAAAAAAP6/vXsPjqo+/zj+WchdkgCSkAABGghXE8NF5FIlgjW0aYUpxUADSJUqDAhpQcn8CsPFKqIwAq1DvQzEDpeAZQBbChjQoAYsAgYCUgiYEoEAYwuESAk0+f7+cFjcXNmQ7O7Zfb9m9o89+z17nmef7Owzz5498TEMhAAAAAAAAHwMAyEAAAAAAAAfw0AIAAAAAADAxzAQAgAAAAAA8DEMhAAAAAAAAHwMAyEAAAAAAAAfw0AIAAAAAADAxzAQAgAAAAAA8DEMhAAAAAAAAHwMAyEAAAAAAAAfw0AIAAAAAADAxzAQAgAAAAAA8DEMhAAAAAAAAHwMAyEAAAAAAAAfw0AIAAAAAADAx7h1ILRw4UI98MADCg0NVWRkpEaMGKHjx4/Xuk9mZqZsNpvDLSgoyEURAwAAuA+9EwAAaChuHQjt3r1bU6ZM0Weffabs7GzdvHlTjz32mL799tta9wsLC1NxcbH9dvr0aRdFDAAA4D70TgAAoKH4ufPg27dvd7ifmZmpyMhIHThwQA8//HCN+9lsNkVFRTV2eAAAAB7F23qnsv+V6evLX+ta22sKCwxzdzgAAPgUj7qG0JUrVyRJLVu2rHVdaWmpOnTooJiYGA0fPlxHjx6tcW1ZWZlKSkocbgAAAN6gMXonyTX907Wb1/TC317Q/237P/V5q4+u3bzW4McAAAA185iBUEVFhdLT0zVo0CDdd999Na7r2rWrVq5cqS1btmj16tWqqKjQwIEDdebMmWrXL1y4UOHh4fZbTExMY6UAAADgMo3VO0mu6Z+OXDyi4qvFkqST/zmpIxePNPgxAABAzWzGGOPuICRp8uTJ2rZtmz799FO1a9fujve7efOmunfvrjFjxujFF1+s8nhZWZnKysrs90tKShQTE6MrV64oLIxTkwEA8FQlJSUKDw/nM7sGjdU7Sa7pn7698a0S30zUyf+cVFzLOOVNylOIf0iDPDcAAL7Kmf7JrdcQumXq1Kn629/+po8//tiphkaS/P391atXL508ebLaxwMDAxUYGNgQYQIAAHiExuydJNf0T/cE3KNDkw7pyMUjui/yPoZBAAC4mFt/MmaM0dSpU7Vp0yZ9+OGH+sEPfuD0c5SXlys/P1/R0dGNECEAAIDn8LbeKcQ/RP3a9mMYBACAG7j1DKEpU6Zo7dq12rJli0JDQ3X+/HlJUnh4uIKDgyVJ48ePV9u2bbVw4UJJ0oIFC9S/f3917txZly9f1muvvabTp09r4sSJbssDAADAFeidAABAQ3HrQGjFihWSpKSkJIftq1at0oQJEyRJRUVFatLk9olMly5d0q9//WudP39eLVq0UJ8+fbRnzx716NHDVWEDAAC4Bb0TAABoKB5zUWlX4QKVAABYA5/ZnoNaAABgDc58ZnvMv50HAAAAAACAazAQAgAAAAAA8DEMhAAAAAAAAHyMWy8q7Q63LplUUlLi5kgAAEBtbn1W+9jlDj0S/RMAANbgTP/kcwOhq1evSpJiYmLcHAkAALgTV69eVXh4uLvD8Gn0TwAAWMud9E8+91/GKioqdO7cOYWGhspmszX68UpKShQTE6Ovv/7aq/4rh7fmJZGbVZGb9XhrXhK5NRRjjK5evao2bdo4/Bt1uJ4r+yfeP9ZEbtbkrbl5a14SuVmVp/ZPPneGUJMmTdSuXTuXHzcsLMzr/qgl781LIjerIjfr8da8JHJrCJwZ5Bnc0T/x/rEmcrMmb83NW/OSyM2qPK1/4us2AAAAAAAAH8NACAAAAAAAwMcwEGpkgYGBmjt3rgIDA90dSoPy1rwkcrMqcrMeb81LIjfgbnjz3xi5WRO5WY+35iWRm1V5am4+d1FpAAAAAAAAX8cZQgAAAAAAAD6GgRAAAAAAAICPYSAEAAAAAADgYxgIAQAAAAAA+BgGQndhxYoVSkhIUFhYmMLCwjRgwABt27at1n3ee+89devWTUFBQYqPj9ff//53F0XrHGdzy8zMlM1mc7gFBQW5MOL6eeWVV2Sz2ZSenl7rOqvU7fvuJDer1G3evHlV4uzWrVut+1ilZs7mZpWaSdLZs2c1duxY3XvvvQoODlZ8fLz2799f6z45OTnq3bu3AgMD1blzZ2VmZromWCc5m1tOTk6VutlsNp0/f96FUdetY8eO1cY5ZcqUGvexynsNnsNb+ydf6Z0k+ier1I7+6Tar1Eyif/o++qfGx0DoLrRr106vvPKKDhw4oP3792vIkCEaPny4jh49Wu36PXv2aMyYMXr66af1xRdfaMSIERoxYoSOHDni4sjr5mxukhQWFqbi4mL77fTp0y6M2Hmff/653nzzTSUkJNS6zkp1u+VOc5OsU7eePXs6xPnpp5/WuNZqNXMmN8kaNbt06ZIGDRokf39/bdu2TV9++aWWLFmiFi1a1LhPYWGhUlJS9MgjjygvL0/p6emaOHGiduzY4cLI61af3G45fvy4Q+0iIyNdEPGd+/zzzx3iy87OliSNGjWq2vVWe6/BM3hr/+QLvZNE/3SLVWpH/3SbFWpG/1Q9+qdGZNCgWrRoYd55551qH3viiSdMSkqKw7YHH3zQPPvss64I7a7VltuqVatMeHi4awO6C1evXjVxcXEmOzvbDB482EyfPr3GtVarmzO5WaVuc+fONffff/8dr7dSzZzNzSo1mzVrlvnhD3/o1D4vvPCC6dmzp8O21NRUk5yc3JCh3bX65PbRRx8ZSebSpUuNE1QjmT59uunUqZOpqKio9nErvdfg2by1f/Km3skY+qdbrFI7+qfbrFIz+idH9E+NjzOEGkh5ebmysrL07bffasCAAdWu2bt3rx599FGHbcnJydq7d68rQqy3O8lNkkpLS9WhQwfFxMTU+Y2Yu02ZMkUpKSlV6lEdq9XNmdwk69StoKBAbdq0UWxsrNLS0lRUVFTjWqvVzJncJGvU7P3331ffvn01atQoRUZGqlevXnr77bdr3ccqdatPbrckJiYqOjpaP/rRj5Sbm9vIkd6dGzduaPXq1Xrqqadks9mqXWOVmsFzeWv/5I29k0T/9H1WqR39021WqBn9U/XonxoPA6G7lJ+fr2bNmikwMFCTJk3Spk2b1KNHj2rXnj9/Xq1bt3bY1rp1a4/7DeQtzuTWtWtXrVy5Ulu2bNHq1atVUVGhgQMH6syZMy6Oum5ZWVk6ePCgFi5ceEfrrVQ3Z3OzSt0efPBBZWZmavv27VqxYoUKCwv10EMP6erVq9Wut1LNnM3NKjX76quvtGLFCsXFxWnHjh2aPHmypk2bpnfffbfGfWqqW0lJif773/82dsh3rD65RUdH609/+pM2btyojRs3KiYmRklJSTp48KALI3fO5s2bdfnyZU2YMKHGNVZ6r8GzeGv/5K29k0T/9H1WqR39021WqRn9kyP6Jxdw+TlJXqasrMwUFBSY/fv3m4yMDNOqVStz9OjRatf6+/ubtWvXOmx74403TGRkpCtCdZozuVV248YN06lTJzN79uxGjtI5RUVFJjIy0hw6dMi+ra7Tgq1St/rkVpmn1q2yS5cumbCwsBpPw7dKzapTV26VeWrN/P39zYABAxy2Pffcc6Z///417hMXF2defvllh21bt241ksy1a9caJc76qE9u1Xn44YfN2LFjGzK0BvXYY4+Zn/70p7WusfJ7De7lrf2TN/ZOxtA/1cWTa/d99E+3eWrN6J/qRv/UsDhD6C4FBASoc+fO6tOnjxYuXKj7779fy5Ytq3ZtVFSULly44LDtwoULioqKckWoTnMmt8r8/f3Vq1cvnTx5spGjdM6BAwd08eJF9e7dW35+fvLz89Pu3bu1fPly+fn5qby8vMo+VqlbfXKrzFPrVlnz5s3VpUuXGuO0Ss2qU1dulXlqzaKjo6t8K969e/daT+euqW5hYWEKDg5ulDjroz65Vadfv34eV7dbTp8+rZ07d2rixIm1rrPyew3u5a39kzf2ThL9U108uXbfR/90m6fWjP6pbvRPDYuBUAOrqKhQWVlZtY8NGDBAu3btctiWnZ1d62/LPUltuVVWXl6u/Px8RUdHN3JUzhk6dKjy8/OVl5dnv/Xt21dpaWnKy8tT06ZNq+xjlbrVJ7fKPLVulZWWlurUqVM1xmmVmlWnrtwq89SaDRo0SMePH3fYduLECXXo0KHGfaxSt/rkVp28vDyPq9stq1atUmRkpFJSUmpdZ5WawfN5a//kDb2TRP9UF0+u3ffRP93mqTWjf6ob/VMDc/k5SV4kIyPD7N692xQWFprDhw+bjIwMY7PZzAcffGCMMWbcuHEmIyPDvj43N9f4+fmZxYsXm2PHjpm5c+caf39/k5+f764UauRsbvPnzzc7duwwp06dMgcOHDCjR482QUFBd3yatDtVPi3YynWrrK7crFK3GTNmmJycHFNYWGhyc3PNo48+alq1amUuXrxojLF2zZzNzSo127dvn/Hz8zMvvfSSKSgoMGvWrDEhISFm9erV9jUZGRlm3Lhx9vtfffWVCQkJMc8//7w5duyYeeONN0zTpk3N9u3b3ZFCjeqT2+uvv242b95sCgoKTH5+vpk+fbpp0qSJ2blzpztSqFV5eblp3769mTVrVpXHrPxeg+fw1v7Jl3onY+ifrFA7+ifr1Yz+if7J1RgI3YWnnnrKdOjQwQQEBJiIiAgzdOhQ+4e+Md99mDz55JMO+2zYsMF06dLFBAQEmJ49e5qtW7e6OOo742xu6enppn379iYgIMC0bt3a/OQnPzEHDx50Q+TOq/yhb+W6VVZXblapW2pqqomOjjYBAQGmbdu2JjU11Zw8edL+uJVr5mxuVqmZMcb89a9/Nffdd58JDAw03bp1M2+99ZbD408++aQZPHiww7aPPvrIJCYmmoCAABMbG2tWrVrluoCd4GxuixYtMp06dTJBQUGmZcuWJikpyXz44YcujvrO7Nixw0gyx48fr/KYld9r8Bze2j/5Uu9kDP2TFWpH//Sk/b5VamYM/RP9k2vZjDHG9eclAQAAAAAAwF24hhAAAAAAAICPYSAEAAAAAADgYxgIAQAAAAAA+BgGQgAAAAAAAD6GgRAAAAAAAICPYSAEAAAAAADgYxgIAQAAAAAA+BgGQgA8yltvvaWYmBg1adJES5cu1bx585SYmOjusOotKSlJ6enp7g4DAAB4MfonAPXBQAjwIRMmTNCIESNcftzMzEw1b968znUlJSWaOnWqZs2apbNnz+qZZ55plHis3iQBAADXoX/6Dv0T4H383B0AANxSVFSkmzdvKiUlRdHR0e4OBwAAwOPRPwGoL84QAnxYUlKSpk2bphdeeEEtW7ZUVFSU5s2b57DGZrNpxYoV+vGPf6zg4GDFxsbqL3/5i/3xnJwc2Ww2Xb582b4tLy9PNptN//rXv5STk6Nf/epXunLlimw2m2w2W5VjSN99CxYfHy9Jio2Nte9fWUVFhRYsWKB27dopMDBQiYmJ2r59u8OaWbNmqUuXLgoJCVFsbKzmzJmjmzdv2o8zf/58HTp0yB5PZmZmleN88MEHCgoKcshLkqZPn64hQ4ZIkv79739rzJgxatu2rUJCQhQfH69169bV8Grffj03b97ssK158+YOMXz99dd64okn1Lx5c7Vs2VLDhw+v9rUAAACuR/9E/wR4CwZCgI979913dc899+gf//iHXn31VS1YsEDZ2dkOa+bMmaORI0fq0KFDSktL0+jRo3Xs2LE7ev6BAwdq6dKlCgsLU3FxsYqLizVz5swq61JTU7Vz505J0r59+1RcXKyYmJgq65YtW6YlS5Zo8eLFOnz4sJKTk/X444+roKDAviY0NFSZmZn68ssvtWzZMr399tt6/fXX7ceZMWOGevbsaY8nNTW1ynGGDh2q5s2ba+PGjfZt5eXlWr9+vdLS0iRJ169fV58+fbR161YdOXJEzzzzjMaNG6d9+/bd0WtTnZs3byo5OVmhoaH65JNPlJubq2bNmmnYsGG6ceNGvZ8XAAA0HPon+ifAGzAQAnxcQkKC5s6dq7i4OI0fP159+/bVrl27HNaMGjVKEydOVJcuXfTiiy+qb9+++sMf/nBHzx8QEKDw8HDZbDZFRUUpKipKzZo1q7IuODhY9957ryQpIiJCUVFRatq0aZV1ixcv1qxZszR69Gh17dpVixYtUmJiopYuXWpfM3v2bA0cOFAdO3bUz372M82cOVMbNmywH6dZs2by8/OzxxMcHFzlOE2bNtXo0aO1du1a+7Zdu3bp8uXLGjlypCSpbdu2mjlzphITExUbG6vnnntOw4YNsx+rPtavX6+Kigq98847io+PV/fu3bVq1SoVFRUpJyen3s8LAAAaDv0T/RPgDbiGEODjEhISHO5HR0fr4sWLDtsGDBhQ5X5eXl5jh1ZFSUmJzp07p0GDBjlsHzRokA4dOmS/v379ei1fvlynTp1SaWmp/ve//yksLMzp46Wlpal///46d+6c2rRpozVr1iglJcV+gcfy8nK9/PLL2rBhg86ePasbN26orKxMISEh9c7x0KFDOnnypEJDQx22X79+XadOnar38wIAgIZD/1Qz+ifAOhgIAT7O39/f4b7NZlNFRcUd79+kyXcnGhpj7Ntu/d7cHfbu3au0tDTNnz9fycnJCg8PV1ZWlpYsWeL0cz3wwAPq1KmTsrKyNHnyZG3atMnht+qvvfaali1bpqVLlyo+Pl733HOP0tPTaz012WazObxWkuPrVVpaqj59+mjNmjVV9o2IiHA6BwAA0PDon2pG/wRYBwMhAHX67LPPNH78eIf7vXr1knT7Q7a4uFgtWrSQpCrffgUEBKi8vPyu4wgLC1ObNm2Um5urwYMH27fn5uaqX79+kqQ9e/aoQ4cO+t3vfmd//PTp0/WOJy0tTWvWrFG7du3UpEkTpaSkOBx3+PDhGjt2rKTvLth44sQJ9ejRo8bni4iIUHFxsf1+QUGBrl27Zr/fu3dvrV+/XpGRkfX6Vg4AAHgG+if6J8DTcQ0hAHV67733tHLlSp04cUJz587Vvn37NHXqVElS586dFRMTo3nz5qmgoEBbt26t8m1Sx44dVVpaql27dumbb75x+AB31vPPP69FixZp/fr1On78uDIyMpSXl6fp06dLkuLi4lRUVKSsrCydOnVKy5cv16ZNm6rEU1hYqLy8PH3zzTcqKyur8XhpaWk6ePCgXnrpJf3iF79QYGCg/bG4uDhlZ2drz549OnbsmJ599llduHCh1viHDBmiP/7xj/riiy+0f/9+TZo0yeFbxrS0NLVq1UrDhw/XJ598osLCQuXk5GjatGk6c+ZMfV4yAADgBvRP9E+Ap2MgBKBO8+fPV1ZWlhISEvTnP/9Z69ats3+L4+/vr3Xr1umf//ynEhIStGjRIv3+97932H/gwIGaNGmSUlNTFRERoVdffbXesUybNk2//e1vNWPGDMXHx2v79u16//33FRcXJ0l6/PHH9Zvf/EZTp05VYmKi9uzZozlz5jg8x8iRIzVs2DA98sgjioiIqPVfnXbu3Fn9+vXT4cOH7f8d45bZs2erd+/eSk5OVlJSkqKiojRixIha41+yZIliYmL00EMP6Ze//KVmzpzp8Jv5kJAQffzxx2rfvr1+/vOfq3v37nr66ad1/fp1vvECAMBC6J/onwBPZzOVf4wJAN9js9m0adOmOj+oAQAA8B36JwBWwBlCAAAAAAAAPoaBEAAAAAAAgI/hJ2MAAAAAAAA+hjOEAAAAAAAAfAwDIQAAAAAAAB/DQAgAAAAAAMDHMBACAAAAAADwMQyEAAAAAAAAfAwDIQAAAAAAAB/DQAgAAAAAAMDHMBACAAAAAADwMQyEAAAAAAAAfMz/A+vzX+QGMIkvAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABIQAAAJaCAYAAABeNpxTAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAl/JJREFUeJzs3X18zfX/x/Hn2YUxbKZcxbCZYg25KF9dqb4VymXCVwpF13656FLfStI3uhC6+KIUKlLE5KpS3ygpkYuMytUwGZOrjbGLc96/P9aOjbM5h22fc/G43267nXPen/fnc57b2c5573Xen/exGWOMAAAAAAAAEDCCrA4AAAAAAACAskVBCAAAAAAAIMBQEAIAAAAAAAgwFIQAAAAAAAACDAUhAAAAAACAAENBCAAAAAAAIMBQEAIAAAAAAAgwFIQAAAAAAAACTIjVAcqaw+HQ3r17VblyZdlsNqvjAACAIhhjlJGRoYsuukhBQbyHZSXGTwAA+AZPxk8BVxDau3evoqOjrY4BAADclJKSojp16lgdI6AxfgIAwLe4M34KuIJQ5cqVJeX9cCIiIixOAwAAipKenq7o6Gjnazesw/gJAICSkevI1YJdCyRJnep1UkhQyZZlPBk/BVxBKH+ac0REBAMaAAB8AKcoWY/xEwAAJSPXkavwyuGS8l5XS7oglM+d8RMn5AMAAAAAAAQYCkIAAAAAAAABhoIQAAAAAABAgAm4NYQAIBAZY5Sbmyu73W51FKCQ4OBghYSEsE6QH+B5JjDwNwsA/oOCEAD4uezsbKWmpiozM9PqKIBL4eHhqlWrlsqVK2d1FJwjnmcCC3+zAOAfKAgBgB9zOBxKTk5WcHCwLrroIpUrV453deE1jDHKzs7WgQMHlJycrIYNGyooiLPZfQ3PM4GDv1kA8C8UhADAj2VnZ8vhcCg6Olrh4eFWxwHOUKFCBYWGhmrXrl3Kzs5W+fLlrY4ED/E8E1j4mwUA/0FJHwACAO/gwpvx++kfeBwDB481APgHns0BAAAAAAACDAUhAAAAAACAAENBCACAUmaz2ZSYmGh1DAB+iucYAMC5oCAEAPA6Nput2K/nn3/e6ogAfBjPMQAA8CljAAAvlJqa6rz+ySef6LnnntMff/zhbKtUqZLzujFGdrtdISG8pAFwD88xAAAwQwgAAo4xRsePH7fkyxjjVsaaNWs6vyIjI2Wz2Zy3f//9d1WuXFlLlixRy5YtFRYWphUrVqh///7q2rVroeMMGTJE1113nfO2w+HQ6NGjFRMTowoVKqhZs2aaM2dOkTmefvpptW7d+oz2Zs2a6YUXXpAkrV69WjfddJMuvPBCRUZGqm3btlq7dm2Rx1y2bJlsNpuOHDnibFu/fr1sNpt27tzpbFuxYoWuueYaVahQQdHR0XrkkUd0/Pjx4n9wgJew6nmG5xieYwAA7uOtDgAIMJmZmYXe/S5Lx44dU8WKFUvkWE899ZRee+01xcbGKioqyq19Ro8erY8++kiTJk1Sw4YN9d133+nOO+9UtWrV1LZt2zP69+nTR6NHj9b27dvVoEEDSdKmTZv066+/6rPPPpMkZWRkqF+/fnrzzTdljNHYsWN1yy23aOvWrapcufI5fW/bt29X+/bt9eKLL+r999/XgQMHNGjQIA0aNEhTp049p2MCZcmq5xmeY9zDcwwAQKIgBADwUS+88IJuuukmt/tnZWXppZde0tdff602bdpIkmJjY7VixQpNnjzZ5T9rl156qZo1a6aZM2fq2WeflSTNmDFDrVu3VlxcnCTphhtuKLTPO++8oypVqmj58uXq2LHjOX1vo0ePVp8+fTRkyBBJUsOGDfXGG2+obdu2mjhxosqXL39OxwXgPp5jAAD+joIQAASY8PBwHTt2zLL7LimtWrXyqP+2bduUmZl5xj942dnZat68eZH79enTR++//76effZZGWP08ccfa9iwYc7t+/fv1zPPPKNly5YpLS1NdrtdmZmZ2r17t2ffUAEbNmzQr7/+qhkzZjjbjDFyOBxKTk5W48aNz/nYQFmw6nmG5xj38BwDAJAoCAFAwLHZbCV2SoWVTv8egoKCzlg/JCcnx3k9/5/TRYsWqXbt2oX6hYWFFXk/vXv31pNPPqm1a9fqxIkTSklJUa9evZzb+/Xrp4MHD2rChAmqV6+ewsLC1KZNG2VnZ7s8XlBQ3vJ9BbMWzJmf9f7779cjjzxyxv5169YtMivgLfzheYbnGACAv6MgBADwC9WqVVNSUlKhtvXr1ys0NFSSFB8fr7CwMO3evdvlqRtFqVOnjtq2basZM2boxIkTuummm1S9enXn9h9++EH//e9/dcstt0iSUlJS9NdffxWbU8r7lKP8dUnWr19fqE+LFi20efNm5ykjAKzHcwwAwN/wKWMAAL9www03aM2aNfrggw+0detWjRgxotA/b5UrV9Zjjz2moUOHavr06dq+fbvWrl2rN998U9OnTy/22H369NGsWbM0e/Zs9enTp9C2hg0b6sMPP9Rvv/2mVatWqU+fPqpQoUKRx4qLi1N0dLSef/55bd26VYsWLdLYsWML9XnyySe1cuVKDRo0SOvXr9fWrVs1f/58DRo06Bx+MgBKAs8xAAB/Q0EIAOAX2rVrp2effVZPPPGELr/8cmVkZKhv376F+owaNUrPPvusRo8ercaNG6t9+/ZatGiRYmJiij327bffroMHDyozM/OMj51+7733dPjwYbVo0UJ33XWXHnnkkULv7p8uNDRUH3/8sX7//Xc1bdpUL7/8sl588cVCfZo2barly5dry5Ytuuaaa9S8eXM999xzuuiiizz7oQAoMTzHAAD8jc2cfjK0n0tPT1dkZKSOHj2qiIgIq+MAQKk6efKkkpOTFRMTw6fGwGsV9XvKa7b3KO6x4Hkm8PCYA8C5y3Xkat7OeZKkbvW7KSSoZFfy8WT8xAwhAAAAAACAAENBCAAAAAAAIMBQEAIAAAAAAAgwFIQAAAAAAAACDAUhAAAAAACAAENBCAAAAAAAIMBQEAIAAAAAAAgwFIQAAAAAAAACDAUhAADOwXXXXachQ4ZYHQNAAHv++ed12WWXFdunf//+6tq1a5nkAQD4FgpCAACv1L9/f9lsNtlsNoWGhiomJkZPPPGETp48aXU0t7jzj5q/27lzp2w2m9avX291FOAMBw4c0IMPPqi6desqLCxMNWvWVLt27fTDDz84+9SvX9/5PBQeHq4mTZpoypQpHt/Xpk2b1L17d+fxxo8f77Lfn3/+qTvvvFMXXHCBKlSooCZNmmjNmjXn+i1KkiZMmKBp06Y5b1PMBgDkC7E6AAAARWnfvr2mTp2qnJwc/fLLL+rXr59sNptefvllq6P5PWOM7Ha7QkIYKsA/de/eXdnZ2Zo+fbpiY2O1f/9+ffPNNzp48GChfi+88ILuvfdeZWZmavbs2br33ntVu3ZtdejQwe37yszMVGxsrHr06KGhQ4e67HP48GFdddVVuv7667VkyRJVq1ZNW7duVVRU1Hl9n5GRkee1PwDAfzFDCADgtfLftY+OjlbXrl114403aunSpc7tWVlZeuSRR1S9enWVL19eV199tVavXu3cPm3aNFWpUqXQMRMTE2Wz2Zy382fyfPjhh6pfv74iIyP1r3/9SxkZGc4+x48fV9++fVWpUiXVqlVLY8eOLTb3tGnTNHLkSG3YsME5uyD/Hfrdu3erS5cuqlSpkiIiItSzZ0/t37+/yGPlz7KZO3eurr/+eoWHh6tZs2b68ccfC/VbsWKFrrnmGlWoUEHR0dF65JFHdPz4cef2Dz/8UK1atVLlypVVs2ZN3XHHHUpLS3NuX7ZsmWw2m5YsWaKWLVsqLCxMK1askMPh0OjRoxUTE6MKFSqoWbNmmjNnjnO/w4cPq0+fPqpWrZoqVKighg0baurUqZKkmJgYSVLz5s1ls9l03XXXFftzA8rKkSNH9P333+vll1/W9ddfr3r16umKK67Q8OHD1blz50J98/9mYmNj9eSTT6pq1aqFnofccfnll+vVV1/Vv/71L4WFhbns8/LLLys6OlpTp07VFVdcoZiYGN18881q0KDBWY8/efJkRUdHKzw8XD179tTRo0ed2wqeMta/f38tX75cEyZMcD437dy5s9i/YwCA/6IgBABwX2am9PPPeZdlLCkpSStXrlS5cuWcbU888YQ+++wzTZ8+XWvXrlVcXJzatWunQ4cOeXTs7du3KzExUQsXLtTChQu1fPlyjRkzxrn98ccf1/LlyzV//nx99dVXWrZsmdauXVvk8Xr16qVHH31Ul156qVJTU5WamqpevXrJ4XCoS5cuOnTokJYvX66lS5dqx44d6tWr11kz/vvf/9Zjjz2m9evX6+KLL1bv3r2Vm5vrzN++fXt1795dv/76qz755BOtWLFCgwYNcu6fk5OjUaNGacOGDUpMTNTOnTvVv3//M+7nqaee0pgxY/Tbb7+padOmGj16tD744ANNmjRJmzZt0tChQ3XnnXdq+fLlkqRnn31Wmzdv1pIlS/Tbb79p4sSJuvDCCyVJP//8syTp66+/VmpqqubOnXv2BwMBLTMnUz//+bMyc0r3OaZSpUqqVKmSEhMTlZWV5dY+DodDn332mQ4fPlzoeaikfP7552rVqpV69Oih6tWrq3nz5nr33XfPut+2bdv06aefasGCBfriiy+0bt06PfTQQy77TpgwQW3atNG9997rfG6Kjo4u9u8YAODHTIA5evSokWSOHj1qdRQAKHUnTpwwmzdvNidOnDj/gx0/bkzDhsZIeZfHj5//MYvRr18/ExwcbCpWrGjCwsKMJBMUFGTmzJljjDHm2LFjJjQ01MyYMcO5T3Z2trnooovMK6+8YowxZurUqSYyMrLQcefNm2cKvvyNGDHChIeHm/T0dGfb448/blq3bm2MMSYjI8OUK1fOfPrpp87tBw8eNBUqVDCDBw8uMv+IESNMs2bNCrV99dVXJjg42OzevdvZtmnTJiPJ/Pzzzy6Pk5ycbCSZKVOmnLHPb7/9ZowxZsCAAea+++4rtN/3339vgoKCinzsV69ebSSZjIwMY4wx3377rZFkEhMTnX1OnjxpwsPDzcqVKwvtO2DAANO7d29jjDGdOnUyd999d7HZ161b53J7vqJ+T3nN9h7FPRYl9TxzPPu4afhGQ6PnZRq+0dAczy7d55g5c+aYqKgoU758eXPllVea4cOHmw0bNhTqU69ePVOuXDlTsWJFExISYiSZqlWrmq1bt57z/darV8+MGzfujPawsDATFhZmhg8fbtauXWsmT55sypcvb6ZNm1bksUaMGGGCg4PNnj17nG1LliwxQUFBJjU11RiT91zapUsX5/a2bdue8dxV3N+xKyX62gIAASbHnmM+3f6p+XT7pybHnlPix/dk/MQMIQCAe5KSpK1b865v3Zp3u5Rdf/31Wr9+vVatWqV+/frp7rvvVvfu3SXlzYrJycnRVVdd5ewfGhqqK664Qr/99ptH91O/fn1VrlzZebtWrVrO06m2b9+u7OxstW7d2rm9atWquuSSSzz+fn777TdFR0crOjra2RYfH68qVaqcNXPTpk0L5ZPkzLhhwwZNmzbNOeuhUqVKateunRwOh5KTkyVJv/zyizp16qS6deuqcuXKatu2raS8U9gKatWqlfP6tm3blJmZqZtuuqnQsT/44ANt375dkvTggw9q1qxZuuyyy/TEE09o5cqVHv9cAElKSkvS1kN5zzFbD21VUlrpPsd0795de/fu1eeff6727dtr2bJlatGiRaEFmKW8GYLr16/X//73P7Vu3Vrjxo1TXFxciedxOBxq0aKFXnrpJTVv3lz33Xef7r33Xk2aNKnY/erWravatWs7b7dp00YOh0N//PGH2/fN3zEABCYKQgAA9yQkSA0b5l1v2DDvdimrWLGi4uLi1KxZM73//vtatWqV3nvvPbf3DwoKkjGmUFtOTs4Z/UJDQwvdttlscjgc5xa6lBTMmL8GUn7GY8eO6f7779f69eudXxs2bNDWrVvVoEEDHT9+XO3atVNERIRmzJih1atXa968eZKk7OzsQvdTsWJF5/Vjx45JkhYtWlTo2Js3b3auI9ShQwft2rVLQ4cO1d69e/XPf/5Tjz32WOn9IOC3EqonqGHVvOeYhlUbKqF66T/HlC9fXjfddJOeffZZrVy5Uv3799eIESMK9bnwwgsVFxena665RrNnz9YjjzyizZs3l3iWWrVqKT4+vlBb48aNzyjalgb+jgEgMFEQAgC4JzxcWr9eWrUq7zI8vEzvPigoSE8//bSeeeYZnThxQg0aNFC5cuUKfUR0Tk6OVq9e7fynqlq1asrIyCi0uLKnH4HeoEEDhYaGatWqVc62w4cPa8uWLcXuV65cOdnt9kJtjRs3VkpKilJSUpxtmzdv1pEjR874R9ATLVq00ObNmxUXF3fGV7ly5fT777/r4MGDGjNmjK655ho1atSo0ILSRYmPj1dYWJh27959xnELznKqVq2a+vXrp48++kjjx4/XO++84/wZSDrj5wC4Eh4arvUPrNeqgau0/oH1Cg8t2+cYKe93vuDzxemio6PVq1cvDR8+vMTv+6qrrjpjVs+WLVtUr169YvfbvXu39u7d67z9008/KSgoqMhZjK6em6Si/44BAP6LghAAwH3h4dIVV5R5MShfjx49FBwcrLffflsVK1bUgw8+qMcff1xffPGFNm/e7Pxo6AEDBkiSWrdurfDwcD399NPavn27Zs6cecbpIGdTqVIlDRgwQI8//rj+97//KSkpSf3791dQUPEvofXr11dycrLWr1+vv/76S1lZWbrxxhvVpEkT9enTR2vXrtXPP/+svn37qm3btoVO1fLUk08+qZUrV2rQoEFav369tm7dqvnz5zsXla5bt67KlSunN998Uzt27NDnn3+uUaNGnfW4lStX1mOPPaahQ4dq+vTp2r59u9auXas333xT06dPlyQ999xzmj9/vrZt26ZNmzZp4cKFaty4sSSpevXqqlChgr744gvt37+/0CcfAa6Eh4britpXlHox6ODBg7rhhhv00Ucf6ddff1VycrJmz56tV155RV26dCl238GDB2vBggVas2aN2/eXnZ3tnGGXnZ2tP//8U+vXr9e2bducfYYOHaqffvpJL730krZt26aZM2fqnXfe0cMPP1zsscuXL69+/fppw4YN+v777/XII4+oZ8+eqlmzpsv+9evX16pVq7Rz50799ddfcjgcxf4dAwD8FwUhAIDPCAkJ0aBBg/TKK6/o+PHjGjNmjLp376677rpLLVq00LZt2/Tll18qKipKUt5aPx999JEWL16sJk2a6OOPP9bzzz/v8f2++uqruuaaa9SpUyfdeOONuvrqq9WyZcti9+nevbvat2+v66+/XtWqVdPHH38sm82m+fPnKyoqStdee61uvPFGxcbG6pNPPjmXH4dT06ZNtXz5cm3ZskXXXHONmjdvrueee04XXXSRpLx3/qdNm6bZs2crPj5eY8aM0WuvvebWsUeNGqVnn31Wo0ePVuPGjdW+fXstWrTI+ZHy5cqV0/Dhw9W0aVNde+21Cg4O1qxZsyTlPV5vvPGGJk+erIsuuuis/2gDZaVSpUrO9YCuvfZaJSQk6Nlnn9W9996rt956q9h94+PjdfPNN+u5555zttlstmKLzXv37lXz5s3VvHlzpaam6rXXXlPz5s01cOBAZ5/LL79c8+bN08cff6yEhASNGjVK48ePV58+fYrNExcXp9tuu0233HKLbr75ZjVt2lT//e9/i+z/2GOPKTg4WPHx8apWrZp2795d7N8xAMB/2czpiyv4ufT0dEVGRuro0aOKiIiwOg4AlKqTJ08qOTlZMTExKl++vNVxAJeK+j3lNdt7FPdYBPrzTHJysi6++GJt3rxZDfPXWfNzgf6YA8D5yHXkat7OvLUcu9XvppCgkBI9vifjJ2YIAQAAAOdo8eLFuu+++wKmGAQA8B8lW4oCAAAAAsjZ1vgBAMBbMUMIAAAAAAAgwFAQAgAAAAAACDAUhAAAAAAAAAIMBSEACAAB9oGS8DH8fvoHHsfAwWMNAP6BghAA+LHQ0FBJUmZmpsVJEFCM0aGDB2W32yU3/nHM//3M/32Fb+F5JvDwNwsAJcsYo5PZJ/X+tPfzxk9lhE8ZAwA/FhwcrCpVqigtLU2SFB4eLpvNZnEq+C1jZCQdOHBA1StWUs6Ro8quUF62INfvPxljlJmZqbS0NFWpUkXBwcFlmxclgueZwMHfLACUPGOMMk5k6Mt9X6rytZX1+JOP6/XXXi+T+6YgBAB+rmbNmpLk/GcNKDXGSFnZkqTkg4fy2sLKSWcpDlSpUsX5ewrfxPNMYOFvFgBKTsbxDH2Z9qXz9lVXX1Vm901BCAD8nM1mU61atVS9enXl5ORYHQf+yBjZc3L08piX9XT7boW3XdxQKmYWQWhoKLMM/ADPM4GDv1kAKDmH0w/rzj53auCbA51tXTp3KbP7pyAEAAEiODiYQTxKRfaJkyq/boteaNdNOn3JoPLliy0Iwb/wPAMAgPuWHVpWqBhU1lhUGgAAnLMTmZnq37ev1TEAAADgIQpCAADAc8Yo48hR9e7RQzMHPWF1GgAAAK9njFHyrmSrYzhZWhCqX7++bDbbGV8PP/xwkfvMnj1bjRo1Uvny5dWkSRMtXry4DBMDAABJOnTwoCpv2KrEJ0ZaHSXgMH4CAMA3/b71d603662O4WRpQWj16tVKTU11fi1dulSS1KNHD5f9V65cqd69e2vAgAFat26dunbtqq5duyopKaksYwMAELiM0f7UVN3WpewWPERhjJ8AAPAtxhit27BOHTt1dLZdFnyZdYH+ZjPGnL78o2WGDBmihQsXauvWrbK5+IjaXr166fjx41q4cKGz7R//+Icuu+wyTZo0ya37SE9PV2RkpI4ePaqIiIgSyw4AgJMx0rFj0saNUmystGOHFBMjbd6c9xHs8fF5bcVt89L+aWkHVD38Qin1T6lW7VOXu3bkfe/1Ygtv63ObVLnyOf0Yec12D+MnAMDZGGOUkZ2hpLQkNavRTBXLVXSrT3H7FbXN0/aijhceGu5WHmfb/iTVr1Jfmw5sUpAtSPHV4pV8JNllv5ioGCUfTj6zv6u2I8lqWr2pHHIU2teTYyz4YYGC6wYr7ViaqleqrrRjabq/yf1anLJYKUdSVL1Sde05ukeSNLTFUEWEnftrrSev2V7zKWPZ2dn66KOPNGzYMJeDGUn68ccfNWzYsEJt7dq1U2JiYpHHzcrKUlZWlvN2enp6ieQFAKBIx45J8ZdKe1KkkBApNzfvk7bs9rztwSGSPbf4bV7av7q7/fO3vf4faf16KTy8FH/ggYvxEwDAHRnZGWr0diOlZqQqrmqcNjywQeGh4Wftk+vILXK/oo7paXtR9//93d+rxTstzpqnYFuQguSQQ5IUbAuW3dhd9svf5qq/q7bYKrHKtGdqX8Y+Z5unxwj+ufB+U36c4jxmwf4frv5Qvz746xmPT2nwmkWlExMTdeTIEfXv37/IPvv27VONGjUKtdWoUUP79u0rcp/Ro0crMjLS+RUdHV1SkQEAcC0pKa8YJOUVRaRTBRMpr2Bytm2+3j9/29ateT8PlArGTwAAdySlJSk1I1WStO3QNiWlnfna7KpPcfsVtc3T9qKOt3DLQrfyFGzLL6pIkt3Yi+yXv81Vf1dtO47s0L6MfYXaPD3G6ZcFj1mw//bD210+PqXBawpC7733njp06KCLLrqoRI87fPhwHT161PmVkpJSoscHAOAMCQlSnb//gQ75ezJucPCp7cEhZ9/mxf1Nfr/Q0ML7FWzLv2zYMO/ngVLB+AkA4I6E6gmqVbmWJCmuapwSqp/52uyqT3H7FbXN0/aijtfx4o5u5SnYFlSgxBFsCy6yX/42V/1dtcVWiVXNyjULtXl6jNCg0EKXDaIaqEFUA0lSiO3UWKpBVAOXj09p8IpTxnbt2qWvv/5ac+fOLbZfzZo1tX///kJt+/fvV82aNYvcJywsTGFhYSWSEwAAt4SHS1NmSsnb3Vtnp6htXtg/vV4NRVx5pZScfGrNodjYvDWHpDPXI0pI4HSxUsL4CQDgrvDQcL3S8RWlHEnRw80ednk6kqs+uY7cIvcr6piethd3PHfyFGwruBZPncg6SjuWVmS//PV8Tu/vqu309X4KrgV0tmP8Pu13PfjUg2pcvbGSjyQrNipWOw7vcBZ9ktKSFBsVq80H8sZSrS5qVSani0leUhCaOnWqqlevrltvvbXYfm3atNE333yjIUOGONuWLl2qNm3alHJCAAA8VL681PjSvOtVqvx92eLUdmdbcdu8p/9tr43UBx/NUERE5bzFpqtVy9t24YV5l9dee6p/flv+JUoF4ycAgCfCQsIUd2FcscUGV32K26+obZ62F7Xd3Tz5bZIUXz7e2R5RPqLIfhHlI1z2L+oYrvY92zGWvbFMH779oUL+nk1drWLe+OnC8FNjpCtqXyFJurZegbFUGbH8lDGHw6GpU6eqX79+zh9Svr59+2r48OHO24MHD9YXX3yhsWPH6vfff9fzzz+vNWvWaNCgQWUdGwCAgDJz1ieqFBmRVwyC5Rg/AQDg/caPHX/G67Q3sbwg9PXXX2v37t265557zti2e/dupaamOm9feeWVmjlzpt555x01a9ZMc+bMUWJiohJYmwAAgFJx37S3ldM6QeXDK1gdBQUwfgIAwHttmb1FXet1VUiQ9xaDJC84Zezmm2+WMcbltmXLlp3R1qNHD/Xo0aOUUwEAgKGfTtfEd99VsBe/sxWoGD8BAOB9Bl4+UC88/4KefuJp2XxgVjUjPAAA4NLrE8bJRjEIAADALa+/9roG3D3A6hhus/yUMQAA4F1eXbFU5qrLZCv48fMAAAAokmOdQ/f0P/NUbm/G234AAKCQx596QqIYBAAA4Lbu3br7xGliBTFDCAAASJI+3LZRurq5FMTwAAAAwB1VU6qqW/1uCrb53ptpjPgAAAhwtbp30Ox923XXPf3zZgb52LtbAAAAZW3YP4epzoE6uuHaGxQSFOJzs4MkThkDACDgvTd1qm7p1NHqGAAAAD5jwfwFuqzpZVbHOC/MEAIAIIB9Z0/XLR1vtToGAACA19q+a7vz+nNdnlNCboKaNWlmYaKSwQwhAAAC2LVt23KKGAAAQDE22zY7ry9asEix9WMtTFNymCEEAEAA2lg5iAWkAQAAPNC6fGvF1IuxOkaJYRQIAEAAafZgP22pXklNmjdnAWkAAAAPXFTzIp9cPLoonDIGAEAA+XzhQtWL9Z93tgAAAHBumCEEAECA2B9bQ/Vi6lsdAwAAwCd8/NTH+me1f1odo9RQEAIAwM/dNOJxHYyvpxp16nCKGAAAgBvmvzBfH3/4sSIqRlgdpdRwyhgAAH7us3nzFBFVxeoYAAAAPuO9d99TWGiYch25VkcpNcwQAgDAT/WaMFqZLRopokqk1VEAAAB8wk+Tf1KXul1ULqSc1VFKHTOEAADwUx/OmKFyFcpbHQMAAMBnjHlpjEKDQ62OUSaYIQQAgJ8Z9PEU5f6jicqVD7M6CgAAgE/Y9fkudavfTSFBgTNvJnC+UwAAAsDwz2fpjbffVlBwsNVRAAAAfMJf//tLjw5+VLYA+/ANCkIAAPiRl14eIxvFIAAAALfde8+9AVcMkjhlDAAAvzBh9TLp6uYUgwAAANwUlBSkbvW7KdgWmOMnCkIAAPiwal1u0jub12jwo49KwcFSAL67BQAAcDbpGenO6w9f87Aitkfotk63KSQoJCBnB0kUhAAA8GkT3nxD9z34AIUgAAAAF4wxSvsrTV27dXW2zfl0jtrd1C5gC0H5KAgBAOCjFh7cozvuvNPqGAAAAF4rJTVFy9OX6/+m/J+eaPeEYo7E6Jorr7E6lldgUWkAAHxUxy6dmBkEAABQjF+yf3FeXzB/gRLiEyxM412YIQQAgI/5USekq5tLQbyMAwAAuKtRo0ZWR/AqjCQBAPARl9zdU+sqSm2uvZoFpAEAAHBeOGUMAAAfMe/zzxWfwDRnAAAAnD9mCAEA4OVaDhqgHRdVUfyll1odBQAAwCdMfmiy2lZpa3UMr8YMIQAAvNznixaodt26VscAAADwGZ/N+UwVwytKR6xO4r0oCAEA4MXSGl6k2rVqWR0DAADAZ9xc42ZFhEfIbuxWR/FqnDIGAIAXumXU0zqSEKvqtWqxeDQAAMBpjDHKdeRq6vSpzrYlY5aoY+2OigiPkI3x01kxQwgAAC/06WdzVCkywuoYAAAAXslu7Fqwa4GqtK3ibJv030kqF1LOulA+hhlCAAB4kbv+O1YnW8WrUkRlq6MAAAB4rVdff9V5fd20depar6tCg0MtTOR7mCEEAICXeOCDiXr/w+kKLcc7WwAAAMVpdHsj5/WRI0ZSDDoHFIQAAPASb0+cqGCKQQAAAC7Z7a4XiWa9oHPDKWMAAFhsxJdzZa66TMGhvLMFAABwOmOMTmSd0H0P3Gd1FL/CDCEAACz2/AsvyBbCSzIAAIArx08c19K0per4745WR/ErzBACAMAikzb+JF3dXLbgYKujAAAAeK1+d/dzXi+/tbyFSfwLBSEAAMpY9a43a/r2jXrg4Yel4GCJ894BAACKdOfLdzqv3/TPmyxM4l+Ynw4AQBn77+RJur1nT6tjAAAAeK0DBw5YHcHvMUMIAIAytPTYft3eo4fVMQAAALzWrpRduqXjLVbH8HsUhAAAKEM3tW/PKWIAAADFWGtfq6c/edrqGH6PghAAAGVgTWiudHVzKYiXXgAAAHc0tTW1OoJfY1QKAEBJMkZ7U/Y4b8YP7K2NVULVqk1rFpAGAAA4jTFGuY5crf5l9Rnb6kXXsyBR4GBRaQAASlDy9h2K+fOw8/b8BQvVsNElFiYCAADwXnZj17yd86QLrE4SeJghBABASTBGv23apE633upsSqlzgRpecrGFoQAAALyXMUZfff2V8/b7g9/X9Rdcb2GiwMIMIQAASsC6X35R8+NS0jsfOdui69flFDEAAIAizJk3R7rs1O1PZ32qChUqSActixRQmCEEAMD5MEYrv1+h7t1uszoJAACATzDGaPqH03Xv/fcWaq9QoYJFiQITBSEAAM6FMZLdrm+XLtWVjvLa8dFcqxMBAAD4hMlTJyv8qnC9u+pdq6MENApCAACcC4dDWrFO14dVtToJAACAT6lxQw2rI0AUhAAA8Jwx+nTWLKtTAAAA+AxjjNURcBoKQgAAuOvv08Ten/yuetbho+QBAADOxhij7NxsPfbEY1ZHwWn4lDEAANz192li9zRuYXUSAAAAn5CVk6UFexbo6oevtjoKTsMMIQAAzsYYmdxc/WfUi1YnAQAA8BnHTxxX/wH9nbezf8m2LgzOQEEIAICzcOTmyvbDev37+lutjgIAAOAzvtr/lbqP7O683b1b92J6o6xREAIAoBi5OTka/H+PWB0DAAAAKFEUhAAAcMUYZZ84qfvvGaA3ew+wOg0AAIDXM8Yo7a80q2PATSwqDQCAC5nHjit87e96byCzgwAAANyxZ+8e/ZT1k9Ux4CZmCAEAUJAxSj98RP/q2dPqJAAAAD7BGKNtO7bplk63ONsuzrrYwkRwBwUhAAAKOPjXX4r4dZs+f+oFq6MAAAD4hD+2/qF1Wqfn5jznbLuk4SUWJoI7KAgBACBJxmjfn3+qa6dOVicBAADwKbfdfpvVEXAOWEMIAABjlLJjp6L3HNT3L79ldRoAAACf8p/P/2N1BJwDZggBAALelt//UPSeg1bHAAAA8Bnffvut1RFwnigIAQAClzHauH69unbmNDEAAAB3GGOU+HmievfpbXUUnCcKQgCAwGOMZLdrzY+r1ORorjZP+djqRAAAAF7NGKNcR64+nv2xchJyNHHlRCW+mGh1LJwHCkIAgMDjcEgr1qlVDkvpAQAAuMNu7Jq3c55CW4U62yb/d7KFiXC+KAgBAAKLMfpqyRdWpwAAAPApEydPPKMtJIQ313wZBSEAQECZM3u2bq5cw+oYAAAAPqVOhzpWR0AJoyAEAAgMxmjae+/rofsfsDoJAACATzDGWB0BpYiCEADAv/29gPTEt95S/7imSkv8yupEAAAAXs0Yo6ycLD0y9BGro6AUccIfAMCvGbtdth/W68GmbayOAgAA4BNOZJ3Ql/u+1A1DbrA6CkoRM4QAAP7JGJncXD3/3HNWJwEAAPApA+8feOrGRutyoHRREAIA+CV7To5sP6zXyHa3WR0FAADAp/QY2cN5vdOtnSxMgtJEQQgA4HdysrP10AMsHg0AAOCuw4cPWx0BZYyCEADAfxijk8czdfedfTW530NWpwEAAPB6xhjt3bdXnbt2tjoKyhiLSgMA/Max9AxVWr9FHz38mNVRAAAAfMLO3Tu1xr5Gw6YPszoKyhgzhAAAvs8YHTl4SD273251EgAAAJ9gjNHvW3/XrZ1udbY1tje2MBHKGgUhAIBvM0ZpqamqkrRDi599yeo0AAAAXs0Yo1xHrtYnrdfG4I0amTjSuS0uJs7CZChrnDIGAPBpf6akqHZymtUxAAAAfILd2LVg1wKpotVJYDVmCAEAfJMx2rF1mzrd0tHqJAAAAD5j5U8rrY4AL8EMIQCAT9q8aZPiD57U2rfftzoKAACAzzh40UGrI8BLMEMIAOBbjNHa1WvUtVMnq5MAAAAAPouCEADANxgj2e368bsVapEpbZk22+pEAAAAXi1/AekPZ3xodRR4IQpCAADf4HBIK9apjSpYnQQAAMAn2I1d83bOU6WrKlkdBV6IghAAwPsZowWJn1udAgAAwGc4HA69OvZV5+3VU1arYzQfxoFTKAgBALzX36eJfTJjhjpdGG11GgAAAK9njFGOPUfPjnxWcd3jnO3/GfUfhQaHWpgM3oZPGQMAeK+/TxPrFd3I6iQAAAA+Iceeo/m75+uyfpcVarfZbNYEgtdihhAAwPv8PTNowrhxVicBAADwCcYYncw+qQcfftDqKPARzBACAHgdY7fL9sN6Db78OqujAAAA+ITMk5lanLpY7Z9sb3UU+AhmCAEAvIrDbtfwJ560OgYAAIBPMMbo6LGj6t2nt9VR4GOYIQQA8A7GKDc7W0MGD9ZbvQdanQYAAMDrGWN04MgBLT+8XHe9dpfVceBjKAgBALxC1omTClu9iWIQAACAm/Yf2K/vj31vdQz4KMtPGfvzzz9155136oILLlCFChXUpEkTrVmzpth9li1bphYtWigsLExxcXGaNm1a2YQFAJQ8Y5SZcUx33dnH6iSAT2DsBAAwxmj3nt3q2Lmj1VHgwywtCB0+fFhXXXWVQkNDtWTJEm3evFljx45VVFRUkfskJyfr1ltv1fXXX6/169dryJAhGjhwoL788ssyTA4AKCnpR44qfO3v+nTw01ZHAbweYycAgCRtT96uVdmr9ORM1l3EubP0lLGXX35Z0dHRmjp1qrMtJiam2H0mTZqkmJgYjR07VpLUuHFjrVixQuPGjVO7du1KNS8AoAQZo4N//aV/9eippSNftToN4BMYOwFAYDPGaPPvm9Xt9m76z4L/WB0HPs7SgtDnn3+udu3aqUePHlq+fLlq166thx56SPfee2+R+/z444+68cYbC7W1a9dOQ4YMKeW0AGARY6SMDGn1aslmk+LjpR07pNjYvMuYGGnz5sLbXLV5U//kZO2rWFE1l/2kpbf1lo4ckVL/lGrVPnW5a0fe918vtvg2b+2f+qfU4hKpcuVS/xVB4GDsBAB5RZGM7Awl7U9S/Sr1tenAJgXZghRfLV7JR5LVrEYzVSxXsVC/mKgYJR9OdvYPtgWrdZ3WCg8NV3pWun7+8+fij5GWpGY1mrnufzj5jOMX3Oaq7Zz6H0nW8T3HtVIr1WdKH6WfTFfasTRVr1Rde47ukSTViazjbDt9W7va7RQeGq6s3CxtP7jdZf/MWpnKys1SypGUYtvOdVtR/V1lTDmS4vYxMmtnKiIswuXvS8Hvt13tdkX2K44zTzH344tsxhhj1Z2XL19ekjRs2DD16NFDq1ev1uDBgzVp0iT169fP5T4XX3yx7r77bg0fPtzZtnjxYt16663KzMxUhQoVCvXPyspSVlaW83Z6erqio6N19OhRRUT4zwMJwI9lZEiNGkt7/8y7HRwi2XOlkBApN1cKDpbs9sLbXLV5Wf8cSaH536OXZjzn/vmXDRtK69dL4eHn9tgHuPT0dEVGRvKaXUBZjJ0kxk8AvFt6Vroavd1IqRmpClKQHHJIkoJtwbIbu+KqxmnDAxuU68h19svfVrB/g6gGWnHPCjWf3Fz7ju076zHiqsbp+7u/d9nf1fGLazvX/rJLCtY5Hb+47zf/MrZKrDLtmdqXsa/YtnPd5qrNVcYW77RQakaq28fIf7zCQwuPudKz0nXJW5c4v98GUQ3064O/ntHP3d+3ou7Hm3gyfrJ0hpDD4VCrVq300ksvSZKaN2+upKSkYgc1nho9erRGjhxZIscCAEskJZ0qBkl5hQcpr+AgnSpKFNzmqs3L+odKZ/bzsozn3D//cuvWvMfviisElISyGDtJjJ8AeLektCSlZqRKkrOQICmvYCJp26FtSkpLUq4j19kvf1vB/tsPb9fCLQudxYKzHWPboW1F9nd1/OLazrV/fjHoXI5f3Pebf7njyI4ztrlqO9dtrtpcZcz/mbt7jPzH64rahcdcSWlJhb7f7Ye3u+xXnIK/b0Xdj6+ydFHpWrVqKT4+vlBb48aNtXv37iL3qVmzpvbv31+obf/+/YqIiHD5Dtfw4cN19OhR51dKSkrJhAeAspKQIF1U+9Tt4L9r+SF/XwYHn7nNVZuX9c9RAaGhhS9DQs7c5qrNW/vnXzZsmPf4ASWkLMZOEuMnAN4toXqCalWuJUkKKvAvbbAtb7wRVzVOCdUTCvXL31awf4OoBup4cUfVrFTTrWPEVY0rsr+r4xfXdq79C9ROFBqUN94IsYWc0eZqW4OoBupySRfFRsUW2b9BVAM1iGpw1rZz3eaqzVXGuKpxHh2jYdWGSqh+5pirWY1mhb7fBlENXPYrTrMazZx5irofX2XpDKGrrrpKf/zxR6G2LVu2qF69ekXu06ZNGy1evLhQ29KlS9WmTRuX/cPCwhQWFnb+YQHAKuHh0vuzpD825932hfVz3Oh/tO0VuvDAgby209chio3NW3Po9G2u2ry1/44decUgThdDCSqLsZPE+AmAdwsPDdcrHV9xriFz+vo5Dzd7WOGh4cp15Bbqd/p6NUNbDFV4aLhe7fTqGWvquDpGfpur/q6OX3CbO2v8uNP/jgZ3aNexXZKk+Grx2nF4h2KjYrX5wOYz2k7f1uqiVgoPDdfGBzdqzd41LvvnFzuS0pKKbTvXbUX1Pz3jhgc2KCktye1jJFRPcHkaV8VyFQt9v/nH90TFchUL5fHm08U8ZekaQqtXr9aVV16pkSNHqmfPnvr5559177336p133lGfPn0k5b1D9eeff+qDDz6QlPfRqQkJCXr44Yd1zz336H//+58eeeQRLVq0yK1PymA9AgA+x26XVqyzOkWJ6fiff2vGrFmKjKqSt8g0UARes89kxdhJ4rEA4F1yHbmat3Nekdu71e+mkKAQt/pJctnH1TGK61/avnr1K7054U2FhYbJxvgJxfDkNdvSU8Yuv/xyzZs3Tx9//LESEhI0atQojR8/3jmgkaTU1NRC06BjYmK0aNEiLV26VM2aNdPYsWM1ZcoUPjYVAHxAj/H/0SdzP1Nk1SiKQcA5YOwEAIFl4OUD9f0b32vSW5NUvlx5ikEoUZaeMiZJHTt2VMeOHYvcPm3atDParrvuOq1b5z/vlgNAoPhoxkyFhbteswSAexg7AUDg+L+H/0+jRo6iEIRSYekMIQBAYHhoxjvK/UcThVUob3UUAAAAn7Bj3g6KQShVls8QAgD4v7fefltB+Z+8BQAAgLN6dOijFINQqpghBAAoNS9887nMVZcpKIT3HwAAANyR+WOmutXvduqj5oFSQkEIAFAqxq/6Vs+NHClbSAgLSAMAAJzFA20ekG2DTX3v6KuQoBBmB6HU8ZYtAKBUDHl0GIUgAAAAN330wUfq0K6D1TEQQJghBAAoUR/v2ixd3VwK4iUGAADAHdVSq6n9ze2tjoEAwwwhAECJ6t2njxTMOe8AAADuurrN1ZwihjLH27cAgBLxTeYBZgYBAAB4oGFmQxaQhmUYtQMAzktsn276Xsf1z/bt82YG8e4WAABAsUZ0G6GmjqZqdmkzFpCGZThlDABwXmbPnauWV1xudQwAAACfsWThEtWLrmd1DAQ4ZggBAM7Zpiqhanl5K6tjAAAA+IRx/cfp6opXq26dulZHASgIAQA81/yhu7WtZoQubdqUU8QAAADcMPHBiVqYuFC1atTiFDF4BU4ZAwB4bMHiRapTj3e2AAAA3DV3zlxVqVzF6hiAEzOEAABuu+7pwdp/cW3VqRttdRQAAACf8Om/P1WHmh0UWSnS6ihAIcwQAgC4bd7nnyvqggusjgEAAOAzPpj2gSqEVbA6BnAGZggBANySkdBAUVWrWh0DAADAJ3w74Vt1ju6s8uXKWx0FcImCEACgWHe89YpOtGysylWrsIA0AACAG9a8t0ZvjXtLYaFhLCANr8UpYwCAYk3/8AOFluedLQAAAHe9+MKLCgpi/gW8G7+hAACXhnw6TfY2TRUaFmZ1FAAAAJ+wd8ledavfTSFBzL2A9+O3FADg0rgJ42UL4WUCAADAXQ8/+DDFIPgMZggBAAp55fuvZK66TLbgYKujAAAA+AT7Wru61e+mYBvjJ/gOCkIAAKe31/+gJ/49PG9mEAsgAgAAFOuhqx5S2OYw9ereSyFBISwgDZ/CXDYAgNPDgwZRCAIAACjC0aNHC92eNXOW/nn9Py1KA5wfZggBAPTZvu3S1c0lPg0DAADApf0H9qtz187O27XSaumG626wMBFwfhj5A0AAq93jVi06mqruPXtKwcHMDgIAACjCyuMrNWTqED3Z/knFZcTpqtZXcYoYfBqnjAFAAPtw5gzdcOONVscAAADwGYsWLFLjSxpbHQM4b8wQAoAA9XNwtm74J+e8AwAAuGKM0ebfN5/R3rBhQwvSACWPGUIAEKCuaNOaU8QAAACK8Mu6X5RcJdnqGECpYYYQAASYLdXCWUAaAACgGD/89IO6dOvivN2mUhsL0wClg/8GACBAXP7IQO2KvkAXN27MAtIAAADFSKuZpvHfjnfevrDqhdaFAUoJp4wBQID4fNFC1apTx+oYAAAAALwAM4QAwM/d+Nxj+qtxXdWqXdvqKAAAAAC8BAUhAPBjnV56Rp/NT9SF1atzihgAAMBZDLx8oL4e+7XVMYAyQUEIAPzYJ3PmKLJKFatjAAAA+IS7+92tNye8aXUMoExQEAIAP3T3OxOUdfmlCq9U0eooAAAAXinHnqNRL41y3t44Y6Nef+11BfFJrAgQLCoNAH7o3fenKCQszOoYAAAAXmthykIl3JHgvP3cv59TUFCQHA6HhamAskPpEwD8yFPzP5bjymYKKVfO6igAAAA+4cA3B9StfjcF24KtjgKUKWYIAYCfGPXNAo1+7VXZmOYMAADgtvsG3KeQIP41RuDhtx4A/MSzI56TKAYBAAAAcAP/OQCAj3tv8y/S1c0pBgEAALip4g4+eAPgvwcA8HED7hsoBQdLNpvVUQAAAHzCDdfdYHUEwHIUhADARy34K4WZQQAAAB6oe7guC0gDf+O/CADwMXV7ddbSE3+p021dmRkEAADggjFGybuSnbef7vi0Gp9srCtaXKGQoBDZGD8BJVMQOnLkSEkcBgDgwqHDhwvdnvnJLN3Uvj2FIMDHMX4CgNLz+9bftd6sd95evHCxEuITKAQBBXhcEHr55Zf1ySefOG/37NlTF1xwgWrXrq0NGzaUaDgACGjGaH9qqm7r0sXZtL6CdPW111gYCsC5YPwEAGVnw8YN6tipo/N2y5CWiouJszAR4J08LghNmjRJ0dHRkqSlS5dq6dKlWrJkiTp06KDHH3+8xAMCQKBK2bVbNbb8qWUvTdCl9/bRpqphuuzylswMAnwQ4ycAKDs7Ku/QmCVjnLfr1qnLzCDAhRBPd9i3b59zQLNw4UL17NlTN998s+rXr6/WrVuXeEAACDjGaNuWrepxW3et++9USdLnCxeqwcUNLQ4G4FwxfgIAAN7G4xlCUVFRSklJkSR98cUXuvHGGyXlLdplt9tLNh0ABBpjtOnXXxW3L91ZDJKkBg1iLQwF4HwxfgIAAN7G4xlCt912m+644w41bNhQBw8eVIcOHSRJ69atU1wc52UCwPlY8/NqtTrJB0AC/obxEwAA8DYe/9cxbtw4DRo0SPHx8Vq6dKkqVaokSUpNTdVDDz1U4gEBICAYo++XL1eP226zOgmAUsD4CQBK3+LRi9W+VnurYwA+w+MZQqGhoXrsscfOaB86dGiJBAKAQPTlkiVqV7G6kmcmWh0FQClg/AQApWvZG8v07sR3z2HKAxC4zunP5cMPP9TVV1+tiy66SLt27ZIkjR8/XvPnzy/RcADg94zR3Nlz1L9vP6uTAChljJ8AoGQYY85oGz92vEJCPJ7vAAQ0jwtCEydO1LBhw9ShQwcdOXLEuRBilSpVNH78+JLOBwD+yRjJbtfHH3yg26rXV+pnS6xOBKAUMX4CgPNnjFGOPUfPjnjW2bZl9hZ1rddVIUEUgwBPeVwQevPNN/Xuu+/q3//+t4KDg53trVq10saNG0s0HAD4LYdDWrFOvetfanUSAGWA8RMAnL/s3Gwl7kpUy3taOtuefPxJhQaHymazWZgM8E0eF4SSk5PVvHnzM9rDwsJ0/PjxEgkFAP7MOBwa99pYq2MAKEOMnwDg/GRnZ+v+B+933k7/Pl3d6ndTsC24mL0AFMfjglBMTIzWr19/RvsXX3yhxo0bl0QmAPBPxsjk5uqFESM09B83WJ0GQBli/AQA58YYo2OZx9Snfx/d+vStzvZ+d/VTSFAIM4OA8+DxiZbDhg3Tww8/rJMnT8oYo59//lkff/yxRo8erSlTppRGRgDwC47cXAWt3KARN3axOgqAMsb4CQDOzdFjR7X0wFL1fLGn1VEAv+NxQWjgwIGqUKGCnnnmGWVmZuqOO+7QRRddpAkTJuhf//pXaWQEAN9mjHKzs/XIoEH67533n70/AL/D+AkAPGOM0aEjh9TjXz304MQHrY4D+KVzWoq9T58+6tOnjzIzM3Xs2DFVr169pHMBgN/IOnFSYas3UQwCAhzjJwBw3760fVpxfAXFIKAUebyGUEHh4eEMZgCgGMePHdOdd/S2OgYAL8L4CQCKZozRrpRdurXTrWfvDOC8eDxDKCYmptiFu3bs2HFegQDALxijI4cO687evbXw3/+xOg0AizF+AoCzM8bo9x2/K8mWpOGzhlsdB/B7HheEhgwZUuh2Tk6O1q1bpy+++EKPP/54SeUCAJ92IC1N1X5PoRgEQBLjJwBwR9LmJP1e4XerYwABw+OC0ODBg122v/3221qzZs15BwIAn2aM9u7Zox7du+uHV/9rdRoAXoLxEwAUzRijNWvXqEevHnr1q1etjgMEjPNaQ6igDh066LPPPiupwwGAbzFGstu1c+t2XbRjP8UgAG5h/AQgkBljlOvI1fKVy7UzaifFIKCMndOnjLkyZ84cVa1ataQOBwC+xeGQVqxTfatzAPApjJ8ABDK7sWveznlSLauTAIHJ44JQ8+bNCy2KaIzRvn37dODAAf33v7wjDiAAGaNf161TU6tzAPBajJ8AoDBjjBIXJEpNrE4CBC6PC0Jdu3YtdDsoKEjVqlXTddddp0aNGpVULgDwGT/+sFJt7GFWxwDgxRg/AUBhH874UBWurGB1DCCgeVwQGjFiRGnkAADfY4y++fpr3dO3n3bN+tzqNAC8GOMnAMhjjNHEdyZq+NPDNWX1FKvjAAHNrYJQenq62weMiIg45zAA4BOMkRwOLV6wSLdEXUQxCIBLjJ8A4BRjjOzGrtfHv66YrjGachPFIMBqbhWEqlSpUui8d1eMMbLZbLLb7SUSDAC81t8LSN8SdZHVSQB4McZPAHBKriNXibsSFdM1xuooAP7mVkHo22+/Le0cAOAbjNG096aq/yWXWZ0EgJdj/AQAeYXvHHuOnhz+pK588Eqr4wAowK2CUNu2bUs7BwD4hPGvv64hrXhOBHB2jJ8AQMrKydKCPQsoBgFeyONFpfNlZmZq9+7dys7OLtTetCkfvAzA/xiHQ6NGvqA3J0zQkPn8kwfg3DB+AhBITp48qXvuu0fdnu9mdRQALnhcEDpw4IDuvvtuLVmyxOV2zoEH4FeMkSM3V888/W+91LGnnruho9WJAPggxk8AAokxRhnHM9Tv7n664+U7rI4DoAhBnu4wZMgQHTlyRKtWrVKFChX0xRdfaPr06WrYsKE+/5xP2gHgX+w5OQpauUEvdexpdRQAPozxE4BAcjj9sL5M+5JiEODlPC4I/e9//9Prr7+uVq1aKSgoSPXq1dOdd96pV155RaNHjy6NjABQ9oxR9omTun/gvVYnAeAHGD8BCATGGKX9laau3bpaHQWAGzwuCB0/flzVq1eXJEVFRenAgQOSpCZNmmjt2rUlmw4ArGCMTqQfU7mfkzRlwP9ZnQaAH2D8BMDfGWO0e+9uLU9frv+bwvgJ8AUeF4QuueQS/fHHH5KkZs2aafLkyfrzzz81adIk1apVq8QDAkBZyziargrr/7A6BgA/wvgJgL/bsXOHfs762eoYADzgcUFo8ODBSk1NlSSNGDFCS5YsUd26dfXGG2/opZdeKvGAAFBmjNGhv/7S7d1uszoJAD/D+AmAvzLG6Lc/ftOtnW61OgoAD3n8KWN33nmn83rLli21a9cu/f7776pbt64uvPDCEg0HAGVpf2qqamzdqy+ff9nqKAD8DOMnAP5q/a/rta3yNo36fJTVUQB4yOMZQitWrCh0Ozw8XC1atGAwA8B3GaOUnbvUpWMnq5MA8FOMnwD4G2OMfvjxB3Xu2tnqKADOkccFoRtuuEExMTF6+umntXnz5tLIBABlxxht+/0PRe86oJ/GTbY6DQA/xfgJgL8wxijXkauvl32tvTX26vVvXrc6EoBz5HFBaO/evXr00Ue1fPlyJSQk6LLLLtOrr76qPXv2lEY+AChVG3/9VXFpx6yOAcDPMX4C4C/sxq55O+fpSL0jVkcBcJ48LghdeOGFGjRokH744Qdt375dPXr00PTp01W/fn3dcMMNpZERAEqeMVr90yrd1qWr1UkABADGTwD8gTFGc+bOsToGgBLicUGooJiYGD311FMaM2aMmjRpouXLl5dULgAoVd8tX67Ls4K1dfpsq6MACDCMnwD4qinvT1Fwi2CrYwAoIedcEPrhhx/00EMPqVatWrrjjjuUkJCgRYsWlWQ2ACh5xuiLRYvUp1dvq5MACECMnwD4ImOMxk0Yp8eeeMzqKABKkMcfOz98+HDNmjVLe/fu1U033aQJEyaoS5cuCg8PL418AFAyjJEcDiV+Nk9da9RXyqcLrE4EIIAwfgLgi/IXkB7z6hg16tlIUzpNsToSgBLkcUHou+++0+OPP66ePXvyUakAfIfDIa1Yp6416ludBEAAYvwEwBflOnKVuCtRjXo2sjoKgFLgcUHohx9+KI0cAFB6jNHkiZN0f5PWVicBEKAYPwHwNbm5uRr86GBdP/h6q6MAKCXntag0AHg1Y2Ryc/X6y69QDAIAAHCDMUYnsk5owP0DKAYBfs7jGUIA4CuM3S7bD+s1rM0/rY4CAADgE46fOK4l+5ao4787Wh0FQCljhhAA/2OMHDk5enwYn4QBAADgDmOMjmQcUa/evayOAqCMMEMIgN/JycpS6Kokvdb9TqujAAAA+ISDhw/q2yPfqv+4/lZHAVBGLJ0h9Pzzz8tmsxX6atSo+BXsZ8+erUaNGql8+fJq0qSJFi9eXEZpAfiCkydOaED/e6yOAQClhvETgJJkjFHq/lR17trZ6igAyphbM4SioqJks9ncOuChQ4c8CnDppZfq66+/PhUopOhIK1euVO/evTV69Gh17NhRM2fOVNeuXbV27VolJCR4dL8A/IwxOp5xTP3uulNzhj1rdRoAYPwEwOsZY7Rj9w6tta/V0GlDrY4DoIy5VRAaP3688/rBgwf14osvql27dmrTpo0k6ccff9SXX36pZ5/1/J+wkJAQ1axZ062+EyZMUPv27fX4449LkkaNGqWlS5fqrbfe0qRJkzy+byDgGCMdOyZt3CjFxko7dkgxMdLmzZLNJsXHF93maf+SOIYH/TM2/KrKJ4M0p8Nt0pEj0q4ded9zvVgp9U+pVm3XbcVt86b+LS6RKlcu1V8PACWL8RNQcowxysjOUFJakprVaKaK5SoWu83Ztj9JMVExSj6S7NY2j/PsT1L9KvW16cAmBdmCFF8t3nm88NBwpWel6+c/f1awLVit67R2ff+Hk52Xro7VtHpTOeRwfn/hoeFF37erYxRz/O82fadjEce05+geSVKdyDpKO5am6pWqOy9dbfOG/u1qt1NEWITLxycrN0spR1Kc+2XWznTZN7+fq+1nHKNWZrH9AV9kM8YYT3bo3r27rr/+eg0aNKhQ+1tvvaWvv/5aiYmJbh/r+eef16uvvqrIyEiVL19ebdq00ejRo1W3bl2X/evWrathw4ZpyJAhzrYRI0YoMTFRGzZscLlPVlaWsrKynLfT09MVHR2to0ePKiKCP2IEmIwMKf5SaU+KFBIi5eZKwcGS3Z63PThEshfR5mn/kjgG/U9ta9hQWr9eCg8/54cf8DXp6emKjIz0i9dsxk/A+UnPSlejtxspNSNVcVXjtOGBDQoPDS9yW64j19kWbAuW3djd2pZ/TE/yBClIDjkkqdDxvr/7ezWf3Fz7ju2TJDWIaqBfH/zV5f3nX7o6VmyVWGXaM7UvY5/zuC3eaVHkfbtqK26br/bP/3me/pgVfGyKe3zd/Z0q6nHw5PcFKEuejJ88XkPoyy+/VPv27c9ob9++faGpy+5o3bq1pk2bpi+++EITJ05UcnKyrrnmGmVkZLjsv2/fPtWoUaNQW40aNbRv374i72P06NGKjIx0fkVHR3uUEfArSUl5xSApr/AgnSo8SHmFh6LaPO1fEseg/6ltW7fmPX4AfBLjJ+D8JKUlKTUjVZK07dA2JaUlFbutYJvd2N3edi558gsUpx9v4ZaFzmKQJG0/vL3I+8+/dHWsHUd2aF/GvkLHLe6+XbUVt81X++f/PE/n7uPr7u9UUY+DJ78vgLfyuCB0wQUXaP78+We0z58/XxdccIFHx+rQoYN69Oihpk2bql27dlq8eLGOHDmiTz/91NNYRRo+fLiOHj3q/EpJSSmxYwM+JyFBqvP3oD5/vYng4FPbg4tp87R/SRzDw/4m5LT9JCk0tOi24rZ5W/+GDfMePwA+ifETcH4SqieoVuVakqS4qnFKqJ5Q7LaCbcG2YLe3nUueoAL/UhU8XseLO6pmpVOndjaIalDk/edfujpWbJVY1axcs9Bxi7tvV23ubJOk0KDQQpchtpAztrlqs6J//s/zdM1qNFNc1bhC+zWs2vCMvgX7nb7d1TEaRDVQg6gGRR4P8EUef+z8yJEjNXDgQC1btkytW7eWJK1atUpffPGF3n333fMKU6VKFV188cXatm2by+01a9bU/v37C7Xt37+/2HPow8LCFBYWdl65AL8RHi5NmSklby+b9XDKaA2em959Sx+OekE1r7pKSk7OW3to8+a8/gXXI3LVVtw2b+qfkMDpYoAPY/wEnJ/w0HC90vEVpRxJ0cPNHi50qo6rbbmOXGdb/how7mw7lzyu1rzJP96rnV7V9oPbJUlDWwwt8v6LW1Pn/ib3a3HK4kLfX3H37e4aPN+9/J2GvzJczWo3029//SZJiq8Wrx2Hdyg2KtZ5ufnA5jO2uWor6/6tLmrl8jGrWK6iNjywQUlpSc79EqonnNG3YL/Ttxd1DEku+wO+yuM1hKS8Acwbb7yh337Le+Jo3LixHnnkEecA51wdO3ZMdevW1fPPP69HHnnkjO29evVSZmamFixY4Gy78sor1bRpU7cXRfSn9QgAj9nt0op1VqcoUdc+9X/6dO5c1axVy+ooAEqYv71mM34Czl2uI1fzds6TJHWr300hQSHFbivYls+dbeeSx5Vu9btJUqE+xd1/cTrV7aQFuxcUedxzMevpWfrw/Q8VzptNgN/x5DXb4xlCUt656zNmzDincAU99thj6tSpk+rVq6e9e/dqxIgRCg4OVu/evSVJffv2Ve3atTV69GhJ0uDBg9W2bVuNHTtWt956q2bNmqU1a9bonXfeOe8sAHxT4oIFqnrhhVbHAICzYvwEwFt8OO1DhZenGAQEOo/XEJKk7du365lnntEdd9yhtLQ0SdKSJUu0adMmj46zZ88e9e7dW5dccol69uypCy64QD/99JOqVasmSdq9e7dSU1Od/a+88krNnDlT77zzjpo1a6Y5c+YoMTFRCayrAQScLi+PUEazhqrq4dobAGAVxk8ArPbNuG/UObqzKoRVsDoKAC/g8Qyh5cuXq0OHDrrqqqv03Xff6cUXX1T16tW1YcMGvffee5ozZ47bx5o1a1ax25ctW3ZGW48ePdSjRw9PYwPwMx9/8onCK1eyOgYAuIXxEwBv8Ma4N1QupJzVMQB4CY9nCD311FN68cUXtXTpUpUrd+rJ5IYbbtBPP/1UouEA4HQD33tT2VckKLxSRaujAIDbGD8BsNLmWZvVtV5XhQaHWh0FgBfxuCC0ceNGdevW7Yz26tWr66+//iqRUADgyiOz3tfk999TuQrlJZvN6jgA4DbGTwCsMPDygdo9f7eeG/6cQoNDZWP8BKAAjwtCVapUKXReer5169apdu3aJRIKAFwZ/8YEBYec01r4AGApxk8ArPDKmFf06NBHKQQBcMnjgtC//vUvPfnkk9q3b59sNpscDod++OEHPfbYY+rbt29pZAQQ4EYvWyJz1WUKohgEwEcxfgJQ1nLW5Oi+gfdZHQOAF/O4IPTSSy+pUaNGio6O1rFjxxQfH69rr71WV155pZ555pnSyAggwA1/5mnZQkI4TQyAz2L8BKCs9by9JzODABTL47fby5Urp3fffVfPPvuskpKSdOzYMTVv3lwNGzYsjXwAAtjU39fp7oH3SEEe164BwKswfgJQViJ3RuqG625QsC3Y6igAvNw5n39Rt25d1a1btySzAIAkqeZt7TXujQm6+76BzAoC4FcYPwEoLUNvGKpZH8/SVddfxcwgAG5xqyA0bNgwtw/4+uuvn3MYAJCkd6ZMUeduXa2OAQDnhfETgLI0f958tWze0uoYAHyIWwWhdevWFbq9du1a5ebm6pJLLpEkbdmyRcHBwWrZkicgAOfn26xD6ty1i9UxAOC8MX4CUFYaZTVSwmUJVscA4GPcKgh9++23zuuvv/66KleurOnTpysqKkqSdPjwYd1999265pprSiclAL8Xe+dt+mjmTF1/002cJgbALzB+AlAatmzZIpXLu/7C7S9o3px5atCoAaeJAfCYxyu1jh07VqNHj3YOZiQpKipKL774osaOHVui4QAEjrmJ83TlNVdTDALglxg/ASgJ6zasU8fOHZ23Fy9YrLjYOIpBAM6JxwWh9PR0HThw4Iz2AwcOKCMjo0RCAQgcTe6/S79dWEGXtWhhdRQAKDWMnwCUhJ2RO/XyFy9rwoAJurbytapzUR2rIwHwYR4XhLp166a7775bc+fO1Z49e7Rnzx599tlnGjBggG677bbSyAjAj32+cKEaX3opM4MA+DXGTwBK0vx581WjWg1mBgE4Lx5/7PykSZP02GOP6Y477lBOTk7eQUJCNGDAAL366qslHhCA/0qtX10xdaOtjgEApY7xE4BzteTLJVLjwm2REZHWhAHgVzyeIRQeHq7//ve/OnjwoNatW6d169bp0KFD+u9//6uKFSuWRkYAfuaGZ4bpQKNo1aobzcwgAAGB8ROAc5XbOFeSlPhiorVBAPgdj2cI5atYsaKaNm1aklkABIi5iYmqckFVq2MAQJlj/ATgXE3+72Qt2bvE6hgA/IjHBaHjx49rzJgx+uabb5SWliaHw1Fo+44dO0osHAD/cvvrozT9w49UpXIlq6MAQJli/ATgfIWEnPN7+QDgksfPKgMHDtTy5ct11113qVatWixkBsBtH838WOUrhlsdAwDKHOMnAADgbTwuCC1ZskSLFi3SVVddVRp5APihBz+cpDfeekvlw8KsjgIAlmD8BMBTO+bt0ODBg7Vg9wKrowDwUx4XhKKiolS1Kmt/AHDP43Nn6O3JkxUUHGx1FACwDOMnAJ7Yv3S/nhj2hOzGbnUUAH7M408ZGzVqlJ577jllZmaWRh4AfuaVsa9SDAIQ8Bg/AfDEA/c+wKmlAEqdxzOExo4dq+3bt6tGjRqqX7++QkNDC21fu3ZtiYUD4LvG/fQ/DXl0mGwUgwCA8RMA9/wqdevcTcE2xk8ASp/HBaGuXbuWQgwA/qJal5v0/KgXNPSJxyXe2QIASYyfABTvoasf0vT3p6tDlw7MDAJQZjwuCI0YMaI0cgDwE2PHva6+d99tdQwA8CqMnwAUZ/as2bru2uusjgEgwHi8hhAAFCVx/0717d/f6hgAAABeyRij1P2pztuP3fSY6h6sq7bXtLUwFYBA5fEMoaCgoGKnMdrtrIQPBKqu3btxmhgAuMD4CYAk7dy9U2vsa5y3F8xfoKYJTS1MBCCQeVwQmjdvXqHbOTk5WrdunaZPn66RI0eWWDAAvmOFOaarr7lGCmLSIQC4wvgJwJbtW3R799s1MjHvb/5S+6VqfGlji1MBCGQeF4S6dOlyRtvtt9+uSy+9VJ988okGDBhQIsEAeL+G/Xro408+0dVXtGVmEAAUg/ETgE3Bm5zFIEm6uMHFLCANwFIl9nb+P/7xD33zzTcldTgAPmDe5/PVqvUVFIMA4BwxfgIAAFbxeIaQKydOnNAbb7yh2rVrl8ThAPiAbdUrKaHRJVbHAACfxfgJAABYyeOCUFRUVKGpjcYYZWRkKDw8XB999FGJhgPgveIubsjMIABwE+MnIPB89dVX0sVWpwCAonlcEBo/fnyh20FBQapWrZpat26tqKioksoFwEvtb1BTNWrVYgFpAPAA4ycgsMybP08PPPCAJv04SZJ0Q7Ub9L8D/7M4FQAU5nFBqF+/fqWRA4CXa/f8k/p49ieqccEFzAwCAA8xfgICTDNp0o+TtODFBZo8cbJCQkpkpQ4AKFHn9Mx05MgRvffee/rtt98kSZdeeqnuueceRUZGlmg4AN5jzry5qlyFv3EAOFeMn4DA8+7kdxUWGqZcR67VUQDgDB6f87FmzRo1aNBA48aN06FDh3To0CG9/vrratCggdauXVsaGQFY6I63XtGJlo1VOTLC6igA4LMYPwGBKTg42OoIAFAkjwtCQ4cOVefOnbVz507NnTtXc+fOVXJysjp27KghQ4aUQkQAVhn4/lua9tGHqlCpIqeJAcB5YPwEBIaBlw/Ub5/8ZnUMAHDLOc0QevLJJwudBxsSEqInnnhCa9asKdFwAKw1+d13VC4szOoYAODzGD8BgWHEsyP09JNPWx0DANzicUEoIiJCu3fvPqM9JSVFlStXLpFQAKz170WfynFlMwWHhlodBQD8AuMnwP8dXnZYQwcPtToGALjN44JQr169NGDAAH3yySdKSUlRSkqKZs2apYEDB6p3796lkRFAGXvxpZcUFBrKaWIAUEIYPwH+JSsr64y2e/rfIxtjJwA+xONPGXvttddks9nUt29f5ebmrZYfGhqqBx98UGPGjCnxgADKzltrv9egRx6RLcjjWjEAoBiMnwD/YIxR+vF03dX3Lt312l2SpNDNoep4S0cF21hAGoBv8bggVK5cOU2YMEGjR4/W9u3bJUkNGjRQeHi4Tpw4UeIBAZSN6Vs2aNCQIcwKAoBSwPgJ8H3GGB04ckDLDy/XXa/dpf9r+3/6aPpH+uet/2RmEACfdM7TAMLDw9WkSRM1adJEwcHBev311xUTE1OS2QCUoX739KcYBACljPET4Lv2H9iv5YeXO29/9ulnuvGGGykGAfBZbheEsrKyNHz4cLVq1UpXXnmlEhMTJUlTp05VTEyMxo0bp6FDWUQN8DVLjqRKVzeXOE0MAEoc4yfA9xljtHvPbnXs3LFQe+vWrS1KBAAlw+1Txp577jlNnjxZN954o1auXKkePXro7rvv1k8//aTXX39dPXr0UHAw580C3iw9PUMRf1+v96/OmvrhB+rQuSMzgwCglDB+Anzf9uTtWqd1enLmk1ZHAYAS5faUgNmzZ+uDDz7QnDlz9NVXX8lutys3N1cbNmzQv/71LwYzgDczRgcPHFD3bt2cTZ/MmaMbbryRYhAAlCLGT4DvMsZo02+bdEunW6yOAgClwu2C0J49e9SyZUtJUkJCgsLCwjR06FDOmQW8nTHav2ePLti8S0tHvqpG9/TShspB+seVbaxOBgB+j/ET4HuMMcp15Gr1utXaHLZZ/1nwH6sjAUCpcPuUMbvdrnLlyp3aMSRElSpVKpVQAErOruSdqpdy0Hk7ccECNYqPtzARAAQOxk+A77Ebu+btnCdVsToJAJQutwtCxhj1799fYWFhkqSTJ0/qgQceUMWKFQv1mzt3bskmBHBujNGW3/9Qj+7dtWHidGdzo0susTAUAAQWxk+AbzHG6Jtvv5H48D8AAcDtglC/fv0K3b7zzjtLPAyAkvPr+vVqmm4vVAwCAJQtxk+Ab0n8PFG5TXKtjgEAZcLtgtDUqVNLMweAkmKMVv34k/r07q1tH8yxOg0ABDTGT4BvMMZoxsczNGjwIL3z0ztWxwGAMuH2otIAfIAxWv6//6l1TijFIAAAADe9/8H7Kte6HMUgAAGFghDgRxYvXKS2IZFWxwAAAPApVdtWtToCAJQ5CkKAPzBGn86apXv697c6CQAAAADAB1AQAnyZMZLdrg/fn6aeteK0b+4XVicCAAAAAPgACkKAL3M4pBXrdFdcE6uTAAAA+AS73W51BADwChSEAF9kjExurl4Z/bLVSQAAAHyCMUaZJzM14N4BzrbMVZkWJgIAa1EQAnyQsdtl+2G9nrjmZqujAAAA+IRjJ45p0d5F6vJcFz3Q5gHZNth0R887rI4FAJahIAT4GHturoYNHmp1DAAAAJ9yV9+7nNc/+uAj3d7tdtlsNgsTAYC1KAgBvsIY5Zw8qQfvvVfjevazOg0AAIBP6ffaqfHTTTfdZGESAPAOIVYHAOCek5knVH7NZr3T/2GrowAAAAAAfBwzhABvZ4yOHU3XHf/qZXUSAAAAAICfoCAEeLnDhw6p0votmvvYCKujAAAA+IRt27c5r4/oNkIJjgQL0wCAd6IgBHixtP371a1zF6tjAAAA+ARjjNb/ul4dO3V0ti1ZuEQNYxtamAoAvBMFIcAbGaM9u3ar8y23atlL461OAwAA4BN+WvOTtlbaqtGLR2tc/3G6uuLVqlunrtWxAMArsag04IW2b92mBqlH9dPrk6yOAgAA4DP2VdvnvP554ue6sOqFeTeMRYEAwIsxQwjwJsZo08aN6tyx49n7AgAAoEhVqlSxOgIAeDUKQoA3MEay27Xu5zW69FCWNr07w+pEAAAAXs0Yo1xHruYmzrU6CgD4JE4ZA7yBwyGtWKfmslmdBAAAwCfYjV3zds6T7TLGTwBwLpghBFjNGH2zdKnVKQAAAHyGMUYTJ0903v52wre6pfYtFiYCAN9DQQiw2LzP5uqfFS60OgYAAIBPMMbopTEvqWa7ms62Ca9PUFhomIWpAMD3UBACrGKMZnzwgR647z6rkwAAAPiMESNH6JXXXinUZrNx2hgAeIqCEFDW/l5AesrEyepTL177531pdSIAAACf0bx/c01ZPcXqGADg8ygIAWXt7wWkB17ayuokAAAAPiEnJ8fqCADgdygIAWXIOBwaNfIFq2MAAAD4BGOMjp84rn739LM6CgD4HQpCQFkwRo6cHD316ON69p+drE4DAADg9YwxOnTskBanLlaPUT300FUPKex3Fo4GgJJCQQgoA7nZ2QpauUEvd+1tdRQAAACfcOjIIf3vwP+ct2fNnKVb2vPR8gBQUigIAaXJGGVlntC99wy0OgkAAIBPMMZoX9o+denWpVB727ZtLUoEAP4pxOoAgD/LPHZc4Wt/19T7BlsdBQAAwCek/JmiVdmrNPh9xk8AUJqYIQSUBmN09NBh9br9dquTAAAA+ARjjLbu2KpbOnFaGACUBWYIASXNGP21f78u/GOPFjz9otVpAAAAvJ4xRht/26g/yv+hEZ+NsDoOAAQECkJACUv980/V2r7P6hgAAAA+45d1vyi5SrLVMQAgoHDKGFBSjNHO7TvU+daOVicBAADwCcYYfffDd2csIA0AKH3MEAJKyB+//65L0o5r9RtTrI4CAADgE5Z+s1RHY49q/LfjrY4CAAGHGULA+TJGG9auVddOnaxOAgAA4BOMMZo7f67uuPMOq6MAQMCiIAScD2P08w8/qlmGQ7+9N8vqNAAAAF7NGKNcR65mfDJD9iZ2TVw50epIABCwKAgB5+F/33yjK+zlrI4BAADgE+zGrnk75ynsijCrowBAwKMgBJwLY7To8wW6644+VicBAADwCcYYjX9jvNUxAAB/oyAEeMIYyW7XnE8+0a2RtfTn7EVWJwIAAPBqxhjl2HP0/H+eV73O9ayOAwD4G58yBnjC4ZBWrNPtteKsTgIAAOATcuw5mr97vhLuSLA6CgCgAGYIAe74e2bQ22+9ZXUSAAAAn2CMUVZOlh4Z8ojVUQAALjBDCHCDsdtl+2G9Hr7sKqujAAAA+IQTWSe0aO8i/XPYP62OAgBwgRlCwFkYh0PP/vvfVscAAADwGZmZmbqz751WxwAAFIOCEFAUY2TPztaw/xusF2/pYXUaAAAAr2eM0aGjh3Rbz9vUe0xvq+MAAIrhNQWhMWPGyGazaciQIcX2mz17tho1aqTy5curSZMmWrx4cdkERMDJPpml4B9/1bie/ayOAgCAS4yf4G0OHDygbw5+owFvDLA6CgDgLLyiILR69WpNnjxZTZs2LbbfypUr1bt3bw0YMEDr1q1T165d1bVrVyUlJZVRUgQEY3Ti2HH179vX6iQAABSJ8RO8iTFGe/buUacunayOAgBwk+WLSh87dkx9+vTRu+++qxdffLHYvhMmTFD79u31+OOPS5JGjRqlpUuX6q233tKkSZPKIi6sYox07Ji0caMUEyNt3izZbFJ8vLRjh+u22NiitxXTP+PCaqr8xbeaec2N0pEjUuqfUq3a0q4deVnqxZ5qK26bt/ZvcYlUuXKpPlwAgNLF+Ml/GGOUkZ2hpLQkNavRTBXLVXSvfX+SYqJilHw4Oe/ySLKaVm8qhxzOfcJDw53HcG5zsV/+8Y0xSs9K189//qwgW5Diq8Wf6nc4WfWr1NemA5sKbctv25+2X1mRWeo6rqvST6Yr7Viaqleqrj1H90iS6kTWKbbNnf7tardTeGi4snKzlHIkpcht2w9ud7ZFhEU4f9ZFbSt4PE8ynn78gvKPmVk7s8j7KbitOM5j1cp0eVwAOFc2Y4yxMkC/fv1UtWpVjRs3Ttddd50uu+wyjR8/3mXfunXratiwYYWmRY8YMUKJiYnasGGDy32ysrKUlZXlvJ2enq7o6GgdPXpUERE8ifqMjAwp/lJpT4oUHCzZ7XntwSGSPdd1W0iIlFvEtkDu36CB9OuvUnh4yT0+AFAK0tPTFRkZyWu2C4yf/Ed6Vroavd1IqRmpiqsapw0PbFB4aLhb7cG2YNmN3XkZWyVWmfZM7cvYp7iqcfr+7u/V4p0WSs1ILbTt9P3yj5/ryNUlb12ifcf2SdIZ/YIUJIcchba5aiut/g2iGmjFPSuc35Orbc0nN3fmbxDVQL8++Kvz51bwe8vfluvIPePn6W7Ggsc/22Pq6n4KPq7u/H6c/viebV8AgcmT8ZOlp4zNmjVLa9eu1ejRo93qv2/fPtWoUaNQW40aNbRv374i9xk9erQiIyOdX9HR0eeVGRZJSsorBkmnChtSXrGjqLbcYrYFcv/t2/N+ngAAn8T4yb8kpSUpNSNVkrTt0DYlpSW53W439kKXO47s0L6Mfc59Fm5Z6OxbcNvp++UfPyktyVkwcdUvvxBytrbS6r/98PZC35OrbQXzbz+8vdDPzdU2Vz9PdzMWPH5Brh47V/dT8HEtSsH9Tn98z7YvAJyNZQWhlJQUDR48WDNmzFD58uVL7X6GDx+uo0ePOr9SUlJK7b5QihISpDp/D0aDg0+1B4cU3RZSzDZ3+4eGFt5WsK24bd7cv0GDvJ8nAMDnMH7yPwnVE1Srci1JUlzVOCVUT3C7PdgWXOgytkqsalau6dyn48UdnX0Lbjt9v/zjJ1RPUM1KNZ3ZTu8XVOBfB1dtIba88UZoUGih22drc7d/g6gG6nJJF8VVjStyW2xUbKG2/J9bsxrNXG5rVqOZ83ieZix4/IIKHrNh1YZF3k/+tuIU3K9BVAM1iGrg9r4AcDaWrSH0yy+/KC0tTS1atHC22e12fffdd3rrrbeUlZWl4IL/mEuqWbOm9u/fX6ht//79qlmzpooSFhamsLCwkg2PshceLk2ZKSVvL/U1eHY2vUT1s05IQUHSpZeeWl9o8+a8/qevUVTUNm/t36oVp4sBgI9i/OR/wkPD9UrHV5RyJEUPN3vYeQqQO+0F17VJO5am+5vcr8Upiwvtk9+34LbT98vvm+vI1audXnWus+PJGj/NKjbTVQ2uUvKRZMVGxWrH4R2KjYrV5gN544/4avHFtrnTv9VFrRQeGq4ND2xQUlqSy20bH9yoNXvXFGqTpIrlKha5reDxPMlY8BgFVSxX0XnMhOoJRd5PwW1FOf1Yks44LgCcK8vWEMrIyNCuXbsKtd19991q1KiRnnzySSW4mMHQq1cvZWZmasGCBc62K6+8Uk2bNnV7UUTWI/BRdru0Yl2p3sU/hj2gOXPnqk7d6LzFpgEAluI1+0yMn/xPriNX83bOkyR1q99NIUEhbrefrlPdTlqwe4FzH0nOvgW3nS7/+MUduyjTh03XRx9+pMhKkbIxfgIAy3nymm3ZDKHKlSufMWipWLGiLrjgAmd73759Vbt2bec58oMHD1bbtm01duxY3XrrrZo1a5bWrFmjd955p8zzw/98vmihqhfzbikAAFZj/ARvM2vmLFUKr2R1DADAObB0Uemz2b17t1JTU523r7zySs2cOVPvvPOOmjVrpjlz5igxMdHlu2GAuzq8MFyHE2JU/bQFNwEA8EWMn1AWFo9erI61O6pihYpWRwEAnCPLZgi5smzZsmJvS1KPHj3Uo0ePsgkEv3fbayM1O3GuKlWubHUUAADOCeMnlLVlbyzTuxPfVUiIV/0rAQDwEM/iCGgzZ32i8hVZkA8AAMBd48eOV0gw/0YAgK/z6lPGgNJy37S3ldM6QeXDK1gdBQAAwCdsmb1FXet1dS5wDQDwbTybIyBNnDxZweXKWR0DAADAZzz5+JMUgwDAjzBDCAHluS8+k7nqMgWHhlodBQAAwCekf5+ubvW7KdgWbHUUAEAJoiCEgPHaD19r5H/+I1tIiGSzWR0HAADAq93/j/vl+MWhe/reo5CgENkYPwGAX2HOJwLGY08+LgVRAwUAAHDl2PFjhW5/MO0Ddbylo0VpAACljf+O4fc+3LZRuro5xSAAAAAXjDE6ePigbrv9Nmdb1ZSqurXDrRamAgCUNv5Dht+q1b2DZu/brrvu6S8FB3OaGAAAgAv7D+zX/w7/Tw9OfFCP3vio6hyooxuuvYFTxADAz1EQgt96b+pU9ejVi0IQAABAMbr36O68/nni52rTug3FIAAIABSE4Hfq9+6iZfZ03dKRac4AAABn89j0x5zXExISLEwCAChLLCoNv/PpZ5/pijb/sDoGAAAAAABei4IQ/EpSRLCuuKyl1TEAAAAAAPBqnDIGv9DswX7aUr2SEi67jDWDAAAA3DDp4UlWRwAAWIiCEPzCgkWLdHHjRhSDAAAA3PTJrE+sjgAAsBAFIfi0a54cpH1xtVS3fj2rowAAAHitBYsXOK9//NTHal+jvSIrRVqYCABgNdYQgk9LXLBAF1SrZnUMAAAA71bgw8M++uAjhZcPV64j17o8AADLMUMIPis9IVYXXHih1TEAAAB8wjevf6PO0Z1VIayC1VEAAF6AghC8mzGS3a7FCxY5m3pNGK3MFo0UUTWKNYMAAABcyHXk6vXxrxdqe2P8GwoLDZON8RMAQJwyBm/ncEgr1umWqIucTR/OmKFyFcpbGAoAAMC7Ldi9QDFdYwq1BQXxXjAA4BReFeCd/p4ZNP39ac6m//v4PeX+o4nKlQ+zLhcAAIAP2b1ot9URAABeioIQvNPfM4P6XdzM2TThzTcUEhbGaWIAAAAu5OaeuUj0ww8+bEESAIAvoCAEr2McDo1+8aUz2pnmDAAAULQHH37Q6ggAAB/Cf9jwHsbIkZOjZ556SsOv62B1GgAAAJ/S+d+dJUlBmxjiAwDOjlcLeA17To6CVm7Qf27taXUUAAAAn3Vrh1utjgAA8AEUhGA9Y5R94qTuH3iv1UkAAAAAAAgIFIRguRPHM1Xu5yRNGfB/VkcBAADwOU+0e0L1jtSzOgYAwMdQEIKlMtLT9a+enCIGAABwrhbMX6AWl7WwOgYAwMdQEII1jNGhv/7S7V26af6TI61OAwAA4PWMMfpj6x/O2yO7j9RlukyXNr7UwlQAAF8VYnUABKb9qamqsXWvvnz+ZaujAAAA+IT1v67XtsrbnLcXL1isunXq5t0wFoUCAPgsZgihbBmjlJ271KVjJ6uTAAAA+ARjjH748Qd17trZ2XZlxSsVXTvawlQAAF/HDCGUDWMkh0Pbt2xTg7QM/TRustWJAAAAfMKyFct0JPqIXv/mdWdbjWo1ZLPZLEwFAPB1FIRQNhwOacU6NbA6BwAAgI85En3E6ggAAD/EKWMofcbol5/XWJ0CAAAAAAD8jYIQSt13y5erZXaw1TEAAAB8xrRp06yOAADwcxSEUHqM0ZeLF6tPr95WJwEAAPAJxhiNf2O8Hn38UaujAAD8HAUhlDxjJLtdibM/U7uK1ZXy6QKrEwEAAHi9HHuOXnz5RdXuWFtTVk/Rho82WB0JAODHKAih5P29gHTXGvWtTgIAAOAzFqYsVKOejZy3/z383xamAQD4OwpCKFnGaPLESVanAAAA8Hl8rDwAoDRREELJMEYmN1evv/yK7m/S2uo0AAAAXs8YoxNZJ6yOAQAIUCFWB4B/MHa7bD+s17A2/7Q6CgAAgE84fuK4vtj3hdUxAAABytIZQhMnTlTTpk0VERGhiIgItWnTRkuWLCmy/7Rp02Sz2Qp9lS9fvgwT4wzGyJGTo8eHPWZ1EgAAAgLjJ99njNGRjCPq1buXs638Vh4TAEDZsnSGUJ06dTRmzBg1bNhQxhhNnz5dXbp00bp163TppZe63CciIkJ//PGH8zbnVlsrJytLoauS9Fr3O62OAgBAQGD85PsOHj6ob498q/7j+jvbbvrnTVqwm09mBQCUHUtnCHXq1Em33HKLGjZsqIsvvlj/+c9/VKlSJf30009F7mOz2VSzZk3nV40aNcowMQo6eeKEBvS/x+oYAAAEFMZPvssYo9T9qerctbPVUQAA8J41hOx2u2bPnq3jx4+rTZs2RfY7duyY6tWrJ4fDoRYtWuill14q8t2wgGOMdOyYtHGjFBsr7dghxcRImzdLNpsUH190myf9k5N1vFYtPXvHHfrgyRekDWvz7r9erJT6p1SrtrRrh3ttnvRvcYlUuXLZ/kwBAPBijJ+KZ4xRRnaGkvYnKSYqRslHktW0elM55DjVdji58OWRZDWr0UwVy1WUMUbpWen6+c+fFWQLUny1+EL961epr00HNhXa5qot/7hhmWFaeGih2r3cTukn05V2LE3VK1VX2rE0ZdbKVFZullKOpBTb5txWO1MRYRGFvt/8vgX3K3S9mH2KOy4AwD/ZjDHGygAbN25UmzZtdPLkSVWqVEkzZ87ULbfc4rLvjz/+qK1bt6pp06Y6evSoXnvtNX333XfatGmT6tSp43KfrKwsZWVlOW+np6crOjpaR48eVUSEn73YZWRI8ZdKe1KkkBApN1cKDpbs9rztwSGSvYg2D/vn2GwKNcb945fAfaphQ2n9eik8vFR/jAAA75Cenq7IyEj/fM0+T4yf3JOela5GbzdSakaqgm3Bshu7YqvEKtOeqX0Z+5xtp1/GVY3Thgc2KNeRq0veukT7ju2TpDP6BSlIDjkKbXPVln8ph5zz80/f5ipXcVnzM4aHhp/xvRbcr+D14vYp6rgAAN/iyfjJ8oJQdna2du/eraNHj2rOnDmaMmWKli9frvj4+LPum5OTo8aNG6t3794aNWqUyz7PP/+8Ro4ceUa7rw1o3PLjj9KVV1qdonStWiVdcYXVKQAAZYCCUNEYP7lnZcpKXfX+Vee076qBq5TryD3n/cvCqoGrdEXtvHGRu9+rO/sU7AMA8C2ejJ8sXUNIksqVK6e4uDi1bNlSo0ePVrNmzTRhwgS39g0NDVXz5s21bdu2IvsMHz5cR48edX6lpKSUVHTvk5Ag1YnOux7y99mAwcGntgcX0+Zh/+z82yEFzjoMDfWszdP+DRvmfY8AAAQ4xk/uSaieoFqVa0nKm5EjSbFVYlWzcs1CbadfxlWNU0L1BCVUT1DNSjWdxzu9X1CBoXRxbfmXf08ckiSFBoUWumwQ1UANohqctS3/smHVhkqofmpc1KxGM8VVjTtjv4LXi9unqOMCAPyX16whlM/hcBSaolwcu92ujRs3FjlFWpLCwsIUFhZWUvG8W3i4NGWmlLzd8/V5POyf0vRiNQgJzlt7aPPmvG0F1yNyt82T/gkJnC4GAIALjJ9cCw8N1ysdXym0Rs79Te7X4pTFLtflyb98uNnDCg8NV64jV692elXbD26XJNWJrHNG/z1H95yxzVVb2rE0davVTWmONElSfLV47Ti8Q7FRsdpxeIezCJOUllRsW8FtBU/rqliuojY8sEFJaUmF9jv9elH7FHVcAID/svSUseHDh6tDhw6qW7euMjIyNHPmTL388sv68ssvddNNN6lv376qXbu2Ro8eLUl64YUX9I9//ENxcXE6cuSIXn31VSUmJuqXX35xa4q05OfTz+12acW6Ur2L1kPu0+y5c1W3fr28RaYBACglfv2afR4YP7kv15GreTvnFWrrVLfTWT/evVv9bgoJCnG5/7l4f/D7mjljpqpUriIb4ycAQCny5DXb0hlCaWlp6tu3r1JTUxUZGammTZs6BzOStHv3bgUFnZp2e/jwYd17773at2+foqKi1LJlS61cudLtwQzO3+eLFqrGRRdZHQMAgIDF+Mn3fDrrU1WuyCelAgC8i+WLSpc1X32Hyy2lPEPoUOO6qlqtGjODAABlwq9fs32Mrz4WVs8Q+nzU55o8cbIqhFVgZhAAoEz41KLS8H5dXh6hjGYNKQYBAAC46Ztx32jqu1MVXj6cYhAAwCt53aLS8D4ff/KJwitXsjoGAACAz3hj3BsKCWGoDQDwXswQQpEGvvemsq9IUHililZHAQAA8AmbZ21W13pdFRocanUUAACKRUEILj0y631Nfv89latQntPEAAAAzmLg5QO1e/5uPTf8OYUGh3KaGADA6zGPFS6Nf2OCgpjmDAAA4JZXxryi+++93+oYAAC4jRlCKGT0siUyV11GMQgAAMBNOWtydN/A+6yOAQCAR/ivH4UMf+ZpKTjY6hgAAAA+o+ftPTlFDADgc5ghBEnS1N/XSVc3l4L4lQAAAHBH5M5IdavfTcE23kwDAPge/vsPcDVva6+P9/yhu+8bmDcziHe3AAAAijX0hqGqtb+Wbrr+JoUEhTA7CADgkzhlLMC9M2WKOnfranUMAAAAnzF/3ny1bN7S6hgAAJwXZggFsG+zDqlz1y5WxwAAAPAJz3R+RvFZ8WpxWQurowAAcN6YIRTArv/nPzlFDAAAoAhbtmyRyp26vejzRYqLjbMuEAAAJYgZQgHo14piAWkAAIAiGGP0y7pf1LFzR2fb5eUuV4OYBhamAgCgZFERCCBN7r9Lv11YQU1btmQBaQAAgCKs/HmldkTu0MtfvKwJAybo2srXql7teiweDQDwK5wyFkA+X7hQMXG8swUAAFCctBppzuvz583XBVUusDANAAClg4JQgEitX10xdaOtjgEAAOBTIiMirY4AAECp4JQxP3fDM8N0oFG0atWN5hQxAAAAAAAgiRlCfm9uYqKqXFDV6hgAAAAAAMCLMEPIHxgj2e36askXzqbbXx+l480vUZWqURYGAwAA8B0/TP7B6ggAAJQZCkL+wOGQVqzTzZVrOJs+mvmxKkZU5jQxAAAAN41+cbTVEQAAKDMUhHydMZrxwYfOmw9+OEk5rRNUPryChaEAAAB8x455O9StfjeFBLGaAgAgcFAQ8nFvvfmm+sQmOG+/PXGiQsuXZ2YQAACAC3a73Xl94OUDtf+L/Xpi2BMKCQqRjfETACCAUBDyUcbh0OgX/6ORz40o1B4UxEMKAABQlEGPDHJenzBuggY9NIhCEAAgIFE98DXGyOTm6vlnn9Xwa9rpwPylVicCAADwGbc8eUvelV+lfnf1szYMAAAW4kRpH2PPyVHwj79q5M3drI4CAADgs7p17sbMIABAQGOGkA/Jyc7Www8+aHUMAAAAAADg4ygI+QJjdPJ4pu65q58m9aUgBAAAcDbGGKXuT3Xefuymx1TnYB0LEwEA4F0oCPmAY+kZKr9msz586FGrowAAAPiEnbt36qcTPzlvL5i/QJe3vNzCRAAAeBcKQt7MGB05eEg9u99udRIAAACfYIzRH9v+0K2dbnW2JTgS1OTSJhamAgDA+7CotBdL279f1f/Yo8XPvmR1FAAAAJ+wcdNG/RH+h0YmjnS2NYxtmLeAtLEwGAAAXoYZQt7IGP25e7e6dOxkdRIAAACfYIzRqtWr1KkL4ycAANzBDCFvY4ySt2xTzL6j+nHsRKvTAAAAeD1jjJatWKa/av+l15a+ZnUcAAB8AgUhL7N50ybFHzxpdQwAAACfseTLJTp+8XGrYwAA4FM4ZcxbGKN1a9aoW+fOVicBAADwCcYYzf5stu7qd5fVUQAA8DkUhKxmjGS368fvVqj5cemPqZ9anQgAAMCrGWOU68jV9BnTpebSpB8nWR0JAACfQ0HIag6HtGKd2qiC1UkAAAB8gt3YNW/nPFW8sqLVUQAA8FkUhKxkjBbOX2B1CgAAAJ9gjFGOPUevvc7C0QAAnC8KQhaa+dFH6nhBHatjAAAA+IRcR64SdyWqwW0NrI4CAIDPoyBkBWP0zsRJGvx/j1idBAAAwCfY7XY9+sSjVscAAMBvUBAqS38vID1h7FjdF99KB+YvtToRAACAVzPG6GT2Sd3/8P265uFrrI4DAIDfCLE6QCAxdrtsP6zX4MuvszoKAACAT8g8manFqYvV7ol2VkcBAMCvWDpDaOLEiWratKkiIiIUERGhNm3aaMmSJcXuM3v2bDVq1Ejly5dXkyZNtHjx4jJKex6MkSMnR08/+ZTVSQAAgI8LlPGTMUZHjx1V7z69rY4CAIBfsrQgVKdOHY0ZM0a//PKL1qxZoxtuuEFdunTRpk2bXPZfuXKlevfurQEDBmjdunXq2rWrunbtqqSkpDJO7pnc7GwFrdyg0Z3/ZXUUAADg4wJl/HTo6CF9lfaV7nrtLqujAADgl2zGGGN1iIKqVq2qV199VQMGDDhjW69evXT8+HEtXLjQ2faPf/xDl112mSZNmuTW8dPT0xUZGamjR48qIiKixHIXJevkST048F69f+/gUr8vSdLVzaXg4LK5LwAASlFZv2b7Mn8bP6Wlpem2Xrdp8HslM37qVr+bQoJClOvI1byd8wq1FVRw++n7AgDgCzx5zfaaVze73a7Zs2fr+PHjatOmjcs+P/74o4YNG1aorV27dkpMTCyDhH8zRsrIkFavlmw2KT5e2rFDio3Nu4yJkTZvloKClBkbqxF33qn3HxshbVibt3+9WCn1T6lW7VOXu3acuc1Vmzv9W1wiVa5cdj8PAABgGV8ZPxljlJ6Vrp///FlBtiDFV4tX8pFkNa3eVA45lLQ/STFRMUo+kqzK2ZV128Db9NTbT2nz/s2SpDqRdZR2LE3VK1XXnqN7zmg727bM2pmKCMsbFGflZinlSEqhtoLyt7vaFwAAf2J5QWjjxo1q06aNTp48qUqVKmnevHmKj4932Xffvn2qUaNGobYaNWpo3759RR4/KytLWVlZztvp6ennF/jYMalxvLT3z7zbwSGSPVcKCZFyc/Nm59jtkqRQm02vGiP92N7ZVlx/5zZXbe72f+MV6ddfpfDw8/s+AQCA1/K18VNGdoYavd1I+47l3WewLVh2Y1dslVhl2jO1L2Ofs00OSddJ982+Tw45CvUPUtAZbe5se3/V+9rwwAblOnL1xMInlJqR6mwLDz01ZsrMyXRuP33fgv0AAPAHln/s/CWXXKL169dr1apVevDBB9WvXz9t3ry5xI4/evRoRUZGOr+io6PP74BJSaeKQVJeQUbKK9ZIpwozkkLzz8Yr0FZcf+e28+m/fXteRgAA4Ld8bfyUlJbkLAZJyiv8SNpxZIf2Zewr1JY/Os0v7hTc5qrNnW3bDm1TUlqSktKSlJqRWqjt9Jz520/fFwAAf2N5QahcuXKKi4tTy5YtNXr0aDVr1kwTJkxw2bdmzZrav39/obb9+/erZs2aRR5/+PDhOnr0qPMrJSXl/AInJEgX1T51O/jvSVYhf18WWL8nJ/9KSIGJWKGhhS9dbTuf/g0a5GUEAAB+y9fGTwnVE1Sz0qn7C7bljZdiq8SqZuWahdry6zohtlPjm9Cg0CLb3NnWsGpDJVRPULMazRRXNa5QW0EFt5++LwAA/sbyU8ZO53A4Ck1RLqhNmzb65ptvNGTIEGfb0qVLizxnXpLCwsIUFhZWcgHDw6X3Z0l//P0uXDFr/CS3vFQXh4bmrS+U/67d6WsOFbXtXPu3asXpYgAABBhvHz+Fh4br1U6vavvB7ZJOrfFzf5P7tThlcaE1e7rU7KJjwccUGxWrzQfyxjfx1eK14/COItvOti2heoLzlK8ND2xQUlpSobZ8FctVdG53tS8AAP7E0k8ZGz58uDp06KC6desqIyNDM2fO1Msvv6wvv/xSN910k/r27avatWtr9OjRkvI+NrVt27YaM2aMbr31Vs2aNUsvvfSS1q5dqwQ3Z8Wc96dk2O3SinVn7bbroijVi4vNW3gaAAB4jE8Zc80Xx0+uPr1LkirvrKyM+hmSpHcHvatZH89SVESUbIyfAAA4Jz7zKWNpaWnq27evUlNTFRkZqaZNmzoHM5K0e/duBQWdOqvtyiuv1MyZM/XMM8/o6aefVsOGDZWYmOj2YKYsXPX4Q5r92WeqV6cOxSAAAFDi/Gn8lF8MmvHEDM2bPU8VK1a0OBEAAIHD0hlCVijtGUJ/Na6rC6tXP4+EAABAYoaQNymtGUL5bql1iypWoBgEAMD58uQ12/JFpf1Fx//8W0ebNNCF1apZHQUAAMCnlOh6jwAAwC1et6i0r/pkzhxVjKhsdQwAAAAAAICzYobQeeo/ebyyLr9UFStXsjoKAACAVzp9hYKNH21Ux+iOFqUBAAASBSGPzZgxw3n9oRnvaMr0qQoLr8AC0gAAAEV45plnnNd3zNuhkc+OVGhwqIWJAAAABSEPNW4c77z+1ttvKySUwQwAAEBxWrRo4bz+6NBH+Vh5AAC8AGsIeahFq5basW27YmLqKyg42Oo4AAAAXq/n7T21dcdWxcbEKtjG+AkAAG9AQchTNptiG8ZZnQIAAMBn2Gw2XdzgYqtjAACAAjhlDAAAAAAAIMBQEAIAAAAAAAgwFIQAAAAAAAACDAUhAAAAAACAAENBCAAAAAAAIMBQEAIAAAAAAAgwFIQAAAAAAAACDAUhAAAAAACAAENBCAAAAAAAIMBQEAIAAAAAAAgwFIQAAAAAAAACDAUhAAAAAACAAENBCAAAAAAAIMBQEAIAAAAAAAgwFIQAAAAAAAACDAUhAAAAAACAAENBCAAAAAAAIMBQEAIAAAAAAAgwFIQAAAAAAAD+v717D46qPv84/lnIXZIAkpAAARoIVxPDReRSJYI1tGmFKcVAA0iVKgwIaUHJ/ArDxSqiMAKtQ70MxA6XgGUAWwoY0KAGLAIGAlIImBKBAGMLhEgJNPn+/nBY3FzZkOzu2X2/ZvaPPfs9e55nn+zsM8+ePfExDIQAAAAAAAB8DAMhAAAAAAAAH8NACAAAAAAAwMcwEAIAAAAAAPAxDIQAAAAAAAB8DAMhAAAAAAAAH8NACAAAAAAAwMcwEAIAAAAAAPAxDIQAAAAAAAB8DAMhAAAAAAAAH8NACAAAAAAAwMcwEAIAAAAAAPAxDIQAAAAAAAB8DAMhAAAAAAAAH8NACAAAAAAAwMe4dSC0cOFCPfDAAwoNDVVkZKRGjBih48eP17pPZmambDabwy0oKMhFEQMAALgPvRMAAGgobh0I7d69W1OmTNFnn32m7Oxs3bx5U4899pi+/fbbWvcLCwtTcXGx/Xb69GkXRQwAAOA+9E4AAKCh+Lnz4Nu3b3e4n5mZqcjISB04cEAPP/xwjfvZbDZFRUU1dngAAAAexdt6p7L/lenry1/rWttrCgsMc3c4AAD4FI+6htCVK1ckSS1btqx1XWlpqTp06KCYmBgNHz5cR48erXFtWVmZSkpKHG4AAADeoDF6J8k1/dO1m9f0wt9e0P9t+z/1eauPrt281uDHAAAANfOYgVBFRYXS09M1aNAg3XfffTWu69q1q1auXKktW7Zo9erVqqio0MCBA3XmzJlq1y9cuFDh4eH2W0xMTGOlAAAA4DKN1TtJrumfjlw8ouKrxZKkk/85qSMXjzT4MQAAQM1sxhjj7iAkafLkydq2bZs+/fRTtWvX7o73u3nzprp3764xY8boxRdfrPJ4WVmZysrK7PdLSkoUExOjK1euKCyMU5MBAPBUJSUlCg8P5zO7Bo3VO0mu6Z++vfGtEt9M1Mn/nFRcyzjlTcpTiH9Igzw3AAC+ypn+ya3XELpl6tSp+tvf/qaPP/7YqYZGkvz9/dWrVy+dPHmy2scDAwMVGBjYEGECAAB4hMbsnSTX9E/3BNyjQ5MO6cjFI7ov8j6GQQAAuJhbfzJmjNHUqVO1adMmffjhh/rBD37g9HOUl5crPz9f0dHRjRAhAACA5/C23inEP0T92vZjGAQAgBu49QyhKVOmaO3atdqyZYtCQ0N1/vx5SVJ4eLiCg4MlSePHj1fbtm21cOFCSdKCBQvUv39/de7cWZcvX9Zrr72m06dPa+LEiW7LAwAAwBXonQAAQENx60BoxYoVkqSkpCSH7atWrdKECRMkSUVFRWrS5PaJTJcuXdKvf/1rnT9/Xi1atFCfPn20Z88e9ejRw1VhAwAAuAW9EwAAaCgec1FpV+EClQAAWAOf2Z6DWgAAYA3OfGZ7zL+dBwAAAAAAgGswEAIAAAAAAPAxDIQAAAAAAAB8jFsvKu0Oty6ZVFJS4uZIAABAbW59VvvY5Q49Ev0TAADW4Ez/5HMDoatXr0qSYmJi3BwJAAC4E1evXlV4eLi7w/Bp9E8AAFjLnfRPPvdfxioqKnTu3DmFhobKZrM1+vFKSkoUExOjr7/+2qv+K4e35iWRm1WRm/V4a14SuTUUY4yuXr2qNm3aOPwbdbieK/sn3j/WRG7W5K25eWteErlZlaf2Tz53hlCTJk3Url07lx83LCzM6/6oJe/NSyI3qyI36/HWvCRyawicGeQZ3NE/8f6xJnKzJm/NzVvzksjNqjytf+LrNgAAAAAAAB/DQAgAAAAAAMDHMBBqZIGBgZo7d64CAwPdHUqD8ta8JHKzKnKzHm/NSyI34G54898YuVkTuVmPt+YlkZtVeWpuPndRaQAAAAAAAF/HGUIAAAAAAAA+hoEQAAAAAACAj2EgBAAAAAAA4GMYCAEAAAAAAPgYBkJ3YcWKFUpISFBYWJjCwsI0YMAAbdu2rdZ93nvvPXXr1k1BQUGKj4/X3//+dxdF6xxnc8vMzJTNZnO4BQUFuTDi+nnllVdks9mUnp5e6zqr1O377iQ3q9Rt3rx5VeLs1q1brftYpWbO5maVmknS2bNnNXbsWN17770KDg5WfHy89u/fX+s+OTk56t27twIDA9W5c2dlZma6JlgnOZtbTk5OlbrZbDadP3/ehVHXrWPHjtXGOWXKlBr3scp7DZ7DW/snX+mdJPonq9SO/uk2q9RMon/6PvqnxsdA6C60a9dOr7zyig4cOKD9+/dryJAhGj58uI4ePVrt+j179mjMmDF6+umn9cUXX2jEiBEaMWKEjhw54uLI6+ZsbpIUFham4uJi++306dMujNh5n3/+ud58800lJCTUus5KdbvlTnOTrFO3nj17OsT56aef1rjWajVzJjfJGjW7dOmSBg0aJH9/f23btk1ffvmllixZohYtWtS4T2FhoVJSUvTII48oLy9P6enpmjhxonbs2OHCyOtWn9xuOX78uEPtIiMjXRDxnfv8888d4svOzpYkjRo1qtr1VnuvwTN4a//kC72TRP90i1VqR/90mxVqRv9UPfqnRmTQoFq0aGHeeeedah974oknTEpKisO2Bx980Dz77LOuCO2u1ZbbqlWrTHh4uGsDugtXr141cXFxJjs72wwePNhMnz69xrVWq5szuVmlbnPnzjX333//Ha+3Us2czc0qNZs1a5b54Q9/6NQ+L7zwgunZs6fDttTUVJOcnNyQod21+uT20UcfGUnm0qVLjRNUI5k+fbrp1KmTqaioqPZxK73X4Nm8tX/ypt7JGPqnW6xSO/qn26xSM/onR/RPjY8zhBpIeXm5srKy9O2332rAgAHVrtm7d68effRRh23Jycnau3evK0KstzvJTZJKS0vVoUMHxcTE1PmNmLtNmTJFKSkpVepRHavVzZncJOvUraCgQG3atFFsbKzS0tJUVFRU41qr1cyZ3CRr1Oz9999X3759NWrUKEVGRqpXr156++23a93HKnWrT263JCYmKjo6Wj/60Y+Um5vbyJHenRs3bmj16tV66qmnZLPZql1jlZrBc3lr/+SNvZNE//R9Vqkd/dNtVqgZ/VP16J8aDwOhu5Sfn69mzZopMDBQkyZN0qZNm9SjR49q154/f16tW7d22Na6dWuP+w3kLc7k1rVrV61cuVJbtmzR6tWrVVFRoYEDB+rMmTMujrpuWVlZOnjwoBYuXHhH661UN2dzs0rdHnzwQWVmZmr79u1asWKFCgsL9dBDD+nq1avVrrdSzZzNzSo1++qrr7RixQrFxcVpx44dmjx5sqZNm6Z33323xn1qqltJSYn++9//NnbId6w+uUVHR+tPf/qTNm7cqI0bNyomJkZJSUk6ePCgCyN3zubNm3X58mVNmDChxjVWeq/Bs3hr/+StvZNE//R9Vqkd/dNtVqkZ/ZMj+icXcPk5SV6mrKzMFBQUmP3795uMjAzTqlUrc/To0WrX+vv7m7Vr1zpse+ONN0xkZKQrQnWaM7lVduPGDdOpUycze/bsRo7SOUVFRSYyMtIcOnTIvq2u04KtUrf65FaZp9atskuXLpmwsLAaT8O3Ss2qU1dulXlqzfz9/c2AAQMctj333HOmf//+Ne4TFxdnXn75ZYdtW7duNZLMtWvXGiXO+qhPbtV5+OGHzdixYxsytAb12GOPmZ/+9Ke1rrHyew3u5a39kzf2TsbQP9XFk2v3ffRPt3lqzeif6kb/1LA4Q+guBQQEqHPnzurTp48WLlyo+++/X8uWLat2bVRUlC5cuOCw7cKFC4qKinJFqE5zJrfK/P391atXL508ebKRo3TOgQMHdPHiRfXu3Vt+fn7y8/PT7t27tXz5cvn5+am8vLzKPlapW31yq8xT61ZZ8+bN1aVLlxrjtErNqlNXbpV5as2io6OrfCvevXv3Wk/nrqluYWFhCg4ObpQ466M+uVWnX79+Hle3W06fPq2dO3dq4sSJta6z8nsN7uWt/ZM39k4S/VNdPLl230f/dJun1oz+qW70Tw2LgVADq6ioUFlZWbWPDRgwQLt27XLYlp2dXetvyz1JbblVVl5ervz8fEVHRzdyVM4ZOnSo8vPzlZeXZ7/17dtXaWlpysvLU9OmTavsY5W61Se3yjy1bpWVlpbq1KlTNcZplZpVp67cKvPUmg0aNEjHjx932HbixAl16NChxn2sUrf65FadvLw8j6vbLatWrVJkZKRSUlJqXWeVmsHzeWv/5A29k0T/VBdPrt330T/d5qk1o3+qG/1TA3P5OUleJCMjw+zevdsUFhaaw4cPm4yMDGOz2cwHH3xgjDFm3LhxJiMjw74+NzfX+Pn5mcWLF5tjx46ZuXPnGn9/f5Ofn++uFGrkbG7z5883O3bsMKdOnTIHDhwwo0ePNkFBQXd8mrQ7VT4t2Mp1q6yu3KxStxkzZpicnBxTWFhocnNzzaOPPmpatWplLl68aIyxds2czc0qNdu3b5/x8/MzL730kikoKDBr1qwxISEhZvXq1fY1GRkZZty4cfb7X331lQkJCTHPP/+8OXbsmHnjjTdM06ZNzfbt292RQo3qk9vrr79uNm/ebAoKCkx+fr6ZPn26adKkidm5c6c7UqhVeXm5ad++vZk1a1aVx6z8XoPn8Nb+yZd6J2Pon6xQO/on69WM/on+ydUYCN2Fp556ynTo0MEEBASYiIgIM3ToUPuHvjHffZg8+eSTDvts2LDBdOnSxQQEBJiePXuarVu3ujjqO+Nsbunp6aZ9+/YmICDAtG7d2vzkJz8xBw8edEPkzqv8oW/lulVWV25WqVtqaqqJjo42AQEBpm3btiY1NdWcPHnS/riVa+ZsblapmTHG/PWvfzX33XefCQwMNN26dTNvvfWWw+NPPvmkGTx4sMO2jz76yCQmJpqAgAATGxtrVq1a5bqAneBsbosWLTKdOnUyQUFBpmXLliYpKcl8+OGHLo76zuzYscNIMsePH6/ymJXfa/Ac3to/+VLvZAz9kxVqR//0pP2+VWpmDP0T/ZNr2YwxxvXnJQEAAAAAAMBduIYQAAAAAACAj2EgBAAAAAAA4GMYCAEAAAAAAPgYBkIAAAAAAAA+hoEQAAAAAACAj2EgBAAAAAAA4GMYCAEAAAAAAPgYBkIAPMpbb72lmJgYNWnSREuXLtW8efOUmJjo7rDqLSkpSenp6e4OAwAAeDH6JwD1wUAI8CETJkzQiBEjXH7czMxMNW/evM51JSUlmjp1qmbNmqWzZ8/qmWeeaZR4rN4kAQAA16F/+g79E+B9/NwdAADcUlRUpJs3byolJUXR0dHuDgcAAMDj0T8BqC/OEAJ8WFJSkqZNm6YXXnhBLVu2VFRUlObNm+ewxmazacWKFfrxj3+s4OBgxcbG6i9/+Yv98ZycHNlsNl2+fNm+LS8vTzabTf/617+Uk5OjX/3qV7py5YpsNptsNluVY0jffQsWHx8vSYqNjbXvX1lFRYUWLFigdu3aKTAwUImJidq+fbvDmlmzZqlLly4KCQlRbGys5syZo5s3b9qPM3/+fB06dMgeT2ZmZpXjfPDBBwoKCnLIS5KmT5+uIUOGSJL+/e9/a8yYMWrbtq1CQkIUHx+vdevW1fBq3349N2/e7LCtefPmDjF8/fXXeuKJJ9S8eXO1bNlSw4cPr/a1AAAArkf/RP8EeAsGQoCPe/fdd3XPPffoH//4h1599VUtWLBA2dnZDmvmzJmjkSNH6tChQ0pLS9Po0aN17NixO3r+gQMHaunSpQoLC1NxcbGKi4s1c+bMKutSU1O1c+dOSdK+fftUXFysmJiYKuuWLVumJUuWaPHixTp8+LCSk5P1+OOPq6CgwL4mNDRUmZmZ+vLLL7Vs2TK9/fbbev311+3HmTFjhnr27GmPJzU1tcpxhg4dqubNm2vjxo32beXl5Vq/fr3S0tIkSdevX1efPn20detWHTlyRM8884zGjRunffv23dFrU52bN28qOTlZoaGh+uSTT5Sbm6tmzZpp2LBhunHjRr2fFwAANBz6J/onwBswEAJ8XEJCgubOnau4uDiNHz9effv21a5duxzWjBo1ShMnTlSXLl304osvqm/fvvrDH/5wR88fEBCg8PBw2Ww2RUVFKSoqSs2aNauyLjg4WPfee68kKSIiQlFRUWratGmVdYsXL9asWbM0evRode3aVYsWLVJiYqKWLl1qXzN79mwNHDhQHTt21M9+9jPNnDlTGzZssB+nWbNm8vPzs8cTHBxc5ThNmzbV6NGjtXbtWvu2Xbt26fLlyxo5cqQkqW3btpo5c6YSExMVGxur5557TsOGDbMfqz7Wr1+viooKvfPOO4qPj1f37t21atUqFRUVKScnp97PCwAAGg79E/0T4A24hhDg4xISEhzuR0dH6+LFiw7bBgwYUOV+Xl5eY4dWRUlJic6dO6dBgwY5bB80aJAOHTpkv79+/XotX75cp06dUmlpqf73v/8pLCzM6eOlpaWpf//+OnfunNq0aaM1a9YoJSXFfoHH8vJyvfzyy9qwYYPOnj2rGzduqKysTCEhIfXO8dChQzp58qRCQ0Mdtl+/fl2nTp2q9/MCAICGQ/9UM/onwDoYCAE+zt/f3+G+zWZTRUXFHe/fpMl3JxoaY+zbbv3e3B327t2rtLQ0zZ8/X8nJyQoPD1dWVpaWLFni9HM98MAD6tSpk7KysjR58mRt2rTJ4bfqr732mpYtW6alS5cqPj5e99xzj9LT02s9Ndlmszm8VpLj61VaWqo+ffpozZo1VfaNiIhwOgcAANDw6J9qRv8EWAcDIQB1+uyzzzR+/HiH+7169ZJ0+0O2uLhYLVq0kKQq334FBASovLz8ruMICwtTmzZtlJubq8GDB9u35+bmql+/fpKkPXv2qEOHDvrd735nf/z06dP1jictLU1r1qxRu3bt1KRJE6WkpDgcd/jw4Ro7dqyk7y7YeOLECfXo0aPG54uIiFBxcbH9fkFBga5du2a/37t3b61fv16RkZH1+lYOAAB4Bvon+ifA03ENIQB1eu+997Ry5UqdOHFCc+fO1b59+zR16lRJUufOnRUTE6N58+apoKBAW7durfJtUseOHVVaWqpdu3bpm2++cfgAd9bzzz+vRYsWaf369Tp+/LgyMjKUl5en6dOnS5Li4uJUVFSkrKwsnTp1SsuXL9emTZuqxFNYWKi8vDx98803Kisrq/F4aWlpOnjwoF566SX94he/UGBgoP2xuLg4ZWdna8+ePTp27JieffZZXbhwodb4hwwZoj/+8Y/64osvtH//fk2aNMnhW8a0tDS1atVKw4cP1yeffKLCwkLl5ORo2rRpOnPmTH1eMgAA4Ab0T/RPgKdjIASgTvPnz1dWVpYSEhL05z//WevWrbN/i+Pv769169bpn//8pxISErRo0SL9/ve/d9h/4MCBmjRpklJTUxUREaFXX3213rFMmzZNv/3tbzVjxgzFx8dr+/btev/99xUXFydJevzxx/Wb3/xGU6dOVWJiovbs2aM5c+Y4PMfIkSM1bNgwPfLII4qIiKj1X5127txZ/fr10+HDh+3/HeOW2bNnq3fv3kpOTlZSUpKioqI0YsSIWuNfsmSJYmJi9NBDD+mXv/ylZs6c6fCb+ZCQEH388cdq3769fv7zn6t79+56+umndf36db7xAgDAQuif6J8AT2czlX+MCQDfY7PZtGnTpjo/qAEAAPAd+icAVsAZQgAAAAAAAD6GgRAAAAAAAICP4SdjAAAAAAAAPoYzhAAAAAAAAHwMAyEAAAAAAAAfw0AIAAAAAADAxzAQAgAAAAAA8DEMhAAAAAAAAHwMAyEAAAAAAAAfw0AIAAAAAADAxzAQAgAAAAAA8DEMhAAAAAAAAHzM/wPr81/kBjCJLwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -148,7 +145,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcoAAAHACAYAAAAiByi6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB7gUlEQVR4nO3dd1iT59cH8G/YhA2yQXYFRUTEgQvrwlW1tWodFVuto+5Vq611VrRqHbXugVpXrXXUWfWnVMXNMuJAQAENoCAQCDO53z94eSQyJJgQxvlcF1d57mfkJBUO9+YxxhgIIYQQUi41VQdACCGE1GaUKAkhhJBKUKIkhBBCKkGJkhBCCKkEJUpCCCGkEpQoCSGEkEpQoiSEEEIqQYmSEEIIqYSGqgOoaVKpFC9fvoSBgQF4PJ6qwyGEEKIijDGIRCLY2NhATa3iemODS5QvX76Evb29qsMghBBSSyQmJsLOzq7C8w0uURoYGAAo/mAMDQ1VHA0hhBBVycrKgr29PZcXKtLgEmVJc6uhoSElSkIIIe/thqPBPIQQQkglKFESQgghlaBESQghhFSiwfVRVgVjDEVFRZBIJKoOhRBSBerq6tDQ0KApX0QpKFG+o6CgAEKhEGKxWNWhEELkwOfzYW1tDS0tLVWHQuoZSpSlSKVSxMfHQ11dHTY2NtDS0qK/UAmp5RhjKCgowKtXrxAfHw83N7dKJ48TIi9KlKUUFBRAKpXC3t4efD5f1eEQQqpIV1cXmpqaeP78OQoKCqCjo6PqkEg9Qn92lYP+GiWk7qGfW6Is9C+LEEIIqQQlSkIIIaQSlChJrcPj8XD8+HFVh0EIIQAoUdYLPB6v0q9FixapOkRCCKmzaNRrPSAUCrnvDx8+jJ9++gmPHz/myvT19bnvGWOQSCTQ0KD/9YSQuocxhiJpEbKysmBqbFojU/ioRvkejDHk5OSo5IsxVqUYraysuC8jIyPweDzu+NGjRzAwMMDZs2fRqlUraGtr49q1axg9ejQGDhwo85zp06ejS5cu3LFUKkVQUBCcnJygq6uLFi1a4K+//qowjvnz56Nt27Zlylu0aIElS5YAAO7cuYMePXqgUaNGMDIygr+/P8LCwip85pUrV8Dj8ZCRkcGVRUREgMfj4dmzZ1zZtWvX0KlTJ+jq6sLe3h5Tp05FTk5O5R8cIaTOKZQU4nDsYWyL2Ya4F3E18ppUrXgPsVgsUyOrSdnZ2dDT01PIs77//nusXr0azs7OMDExqdI9QUFB+OOPP7Blyxa4ubnhv//+w8iRI2Fubg5/f/8y148YMQJBQUGIjY2Fi4sLAODBgweIiorC0aNHAQAikQiBgYH47bffwBjDmjVr0KdPH8TExLx3T7iKxMbGolevXli2bBl27dqFV69eYfLkyZg8eTJ2795drWcSQmofqVSK8TPG45/G/yBNnIbftH7D09lPwddU7rx3SpQNxJIlS9CjR48qX5+fn4/ly5fj4sWL8PPzAwA4Ozvj2rVr2Lp1a7mJslmzZmjRogUOHDiABQsWAAD279+Ptm3bwtXVFQDQtWtXmXu2bdsGY2NjhISEoF+/ftV6b0FBQRgxYgSmT58OAHBzc8OGDRvg7++PzZs30+RzQuowxhhEBSJEJUdh+y/bsVdnL/D/K4wKC4QQpArQxraNUmOgRPkefD4f2dnZKnttRfH19ZXr+qdPn0IsFpdJrgUFBWjZsmWF940YMQK7du3CggULwBjDwYMHMXPmTO58SkoKfvzxR1y5cgWpqamQSCQQi8VISEiQ7w2VEhkZiaioKOzfv58rY4xxSxJ6eHhU+9mEENUSFYjg/rs7hCIhTB1Mgdy35+wN7eFp4an0GFSaKB0dHfH8+fMy5d9++y1+//33cu85cuQIFixYgGfPnsHNzQ0rV65Enz59lBYjj8dTWPOnKr37HtTU1Mr0gRYWFnLfl/xxcPr0adja2spcp62tXeHrDBs2DHPnzkVYWBhyc3ORmJiIoUOHcucDAwORlpaG9evXw8HBAdra2vDz80NBQUG5zytZbaV0rKXjLIl1/PjxmDp1apn7GzduXGGshJDajTGGCGEEhKLiAYvpuencOVsDW4SND1N6syug4kR5584dma2sBAIBevTogcGDB5d7fWhoKIYNG4agoCD069cPBw4cwMCBAxEWFgZPT+X/VVGfmJubQyAQyJRFRERAU1MTANC0aVNoa2sjISGh3GbWitjZ2cHf3x/79+9Hbm4uevToAQsLC+789evXsWnTJu6Pm8TERLx+/brSOIHikb0lfasREREy1/j4+CA6Oppr3iWE1H2MMbzOeY3zSedhyjdFujhd5vyBQQfQiN+oRmJR6ahXc3NzmRGbp06dgouLS4W/mNevX49evXphzpw58PDwwNKlS+Hj44ONGzfWcOR1X9euXXH37l3s3bsXMTExWLhwoUziNDAwwOzZszFjxgzs2bMHsbGxCAsLw2+//YY9e/ZU+uwRI0bg0KFDOHLkCEaMGCFzzs3NDfv27cPDhw9x69YtjBgxArq6uhU+y9XVFfb29li0aBFiYmJw+vRprFmzRuaauXPnIjQ0FJMnT0ZERARiYmJw4sQJTJ48uRqfDCGkNsjIzYDXVi8sv7Qc6eJ0mKibwMnYCQDgZuoGXxv5upM+RK3poywoKMAff/yBmTNnVjgv5saNGzL9XQAQEBBAq7hUQ0BAABYsWIDvvvsOeXl5+PrrrzFq1Cjcv3+fu2bp0qUwNzdHUFAQ4uLiYGxsDB8fH8yfP7/SZ3/++eeYPHky1NXVy0xB2blzJ8aNGwcfHx/Y29tj+fLlmD17doXP0tTUxMGDBzFx4kR4eXmhdevWWLZsmUyrg5eXF0JCQvDDDz+gU6dOYIzBxcVFpsmXEFKKWAzcvQvk5RUf6+gATZsC0dHFZYo+lvM1RFlpGHPkJyQ7J3Mhv5G8wfEuwdBJFMJT3Rr8G3cBX1+gBnZ64rGqTtZTsj///BPDhw9HQkICbGxsyr1GS0sLe/bswbBhw7iyTZs2YfHixUhJSSn3nvz8fOTn53PHWVlZsLe3R2ZmJgwNDWWuzcvLQ3x8PJycnGikJCF1DP38VpFYDHh5AbGxsuUaGkBRkfKO33MNAyAy4eOaZT7G95YgyQhQgxqkkAIAXNKAqO3q4Oe97a6DiwsQFVXtZJmVlQUjI6Ny84FM2NV6uhLs3LkTvXv3rjBJVldQUBAWL16s0GcSQkidJRCUTZJA2aSm6OP3XCMy0EKTHwyRnP22FimFFBvPqsEzWYrWLwF+oUT2/tjY4vfTRrnTQ2rFyjzPnz/HxYsXMXbs2Eqvs7KyKlNzTElJgZWVVYX3zJs3D5mZmdxXYmKiQmImhJA6ydOzuCb2rneXtVT0cQXXMABZBlo46KUmkyQBwD4T+CpMCv/nAL+wnPtdXIrfj5LVihrl7t27YWFhgb59+1Z6nZ+fHy5dusRNLAeACxcucBPiy6OtrV3pdAZCCGlQ+Pzi5spa0kcpEtyDe9hXEIqEMk2ttlrmCJtxFfyBKRW/Rg31Uao8UUqlUuzevRuBgYFlFuoeNWoUbG1tERQUBACYNm0a/P39sWbNGvTt2xeHDh3C3bt3sW3bNlWETgghdROfD3TuXLb83TJFH5cqK1lxZ5f2Q26epBRSjG0zFsPdh6OtXdviOZL2Td7/TCVTeaK8ePEiEhIS8PXXX5c5l5CQwE04B4D27dvjwIED+PHHHzF//ny4ubnh+PHjNIeSEELqGFGBCE02NpFpbrXWtsaarmtgoGVQI7uCVJXKE2XPnj0r3CXjypUrZcoGDx5c4YIEhBBC6oaIFxFl+iQPfnEQhtoVjz5VlVoxmIcQQkjDwBiDOE+MdT+tg5X+24GYLiYuaG3bWoWRVUzlNUpCCCENR1p2Gn4X/I4Wk1qgr1FfJGUmobNV57d9krUQJUpSI7p06QJvb2+sW7dO1aEQQlTkxZsXcF3tijyt4pGw1jrWeDT9Ua3rk3wXNb3WE6NHjwaPxwOPx4OmpiacnJy45enqgkWLFsHb21vVYajUs2fPwOPxyiz6XhdcuXIFPj4+0NbWhqurK4KDg997/YABA2BtbQ09PT14e3vLbJMGFG/6PWjQIDg6OoLH49EfWXUUYwxZ+Vk4/+Q8XFa5cEkSAIR5Qjx6/ahWJ0mAEmW90qtXLwiFQsTFxWHt2rXYunUrFi5cqOqwGgTGGIrKW4mklpJIJJBKpWXKK9rurDLx8fHo27cvPv74Y0RERGD69OkYO3Yszp8/X+E9oaGh8PLywtGjRxEVFYWvvvoKo0aNwqlTp7hrxGIxnJ2dsWLFikoXFSG1W8l+kr0O9kK+dr7MORcTlxrZT/KDsQYmMzOTAWCZmZllzuXm5rLo6GiWm5urgsg+TGBgIBswYIBM2WeffcZatmzJHefl5bEpU6Ywc3Nzpq2tzTp06MBu377Nnd+9ezczMjKSecaxY8dY6X8mCxcuZC1atGB79+5lDg4OzNDQkA0dOpRlZWVx12RnZ7Mvv/yS6enpMSsrK7Z69Wrm7+/Ppk2bVm7su3fvZihe6pH72r17N2OMsefPn7P+/fszPT09ZmBgwAYPHsySk5Mr/Bzi4+MZAHb06FHWpUsXpqury7y8vFhoaKjMdVevXmUdO3ZkOjo6zM7Ojk2ZMoVlZ2dz5/fu3ctatWrF9PX1maWlJRs2bBhLSUnhzl++fJkBYGfOnGE+Pj5MU1OTXb58mUkkErZ8+XLm6OjIdHR0mJeXFzty5Ah3X3p6Ohs+fDhr1KgR09HRYa6urmzXrl2MMVbmM/D396/wfb4rLy+PzZo1i9nY2DA+n8/atGnDLl++LPMZGxkZsRMnTjAPDw+mrq7O4uPjmYODA1uyZAn78ssvmYGBAQsMDKzya5b47rvvWLNmzWTKhg4dygICAuR6Tp8+fdhXX31V7jkHBwe2du3aSu+vyz+/9ZVUKmUXn1xkWASZL9s1tuz80/MspyBHpfFVlg9KoxqlMonFwO3bxf+tYQKBAKGhodDS0uLKvvvuOxw9ehR79uxBWFgYXF1dERAQgPT09EqeVFZsbCyOHz+OU6dO4dSpUwgJCcGKFSu483PmzEFISAhOnDiBf//9F1euXEFYWFiFzxs6dChmzZqFZs2aQSgUQigUYujQoZBKpRgwYADS09MREhKCCxcuIC4urkq7gvzwww+YPXs2IiIi8NFHH2HYsGFcjS82Nha9evXCoEGDEBUVhcOHD+PatWsy23IVFhZi6dKliIyMxPHjx/Hs2TOMHj26zOt8//33WLFiBR4+fAgvLy8EBQVh79692LJlCx48eIAZM2Zg5MiRCAkJAQAsWLAA0dHROHv2LB4+fIjNmzejUaPiPfVu374NoHhusVAoxN9///3+/xn/b/Lkybhx4wYOHTqEqKgoDB48GL169UJMTAx3jVgsxsqVK7Fjxw48ePCA2yd09erVaNGiBcLDw7FgwQIAQLNmzaCvr1/hV+/evbnn3rhxA927d5eJJyAgADdu3Khy/ACQmZkJU1NTue4htRdjDBk5GXhW+AxmfDMAxX2SIaND8GTKE/R06VlrB++UUTN5u/aosRplTg5jbm6MAcX/zVHuX06BgYFMXV2d6enpMW1tbQaAqampsb/++osxVlzL09TUZPv37+fuKSgoYDY2NuyXX35hjFW9Rsnn82VqkHPmzGFt27ZljDEmEomYlpYW+/PPP7nzaWlpTFdXt8IaZclzW7RoIVP277//MnV1dZaQkMCVPXjwgAGQqQmXVlKj3LFjR5l7Hj58yBhjbMyYMWzcuHEy9129epWpqalV+P/+zp07DAATiUSMsbc1yuPHj3PX5OXlMT6fX6b2OmbMGDZs2DDGGGOffPJJhbWmktjDw8PLPV+R58+fM3V1dfbixQuZ8m7durF58+Yxxt7W2iMiImSucXBwYAMHDizzzGfPnrGYmJgKv5KSkrhr3dzc2PLly2XuP336NAPAxGJxld7D4cOHmZaWFhMIBOWepxpl3ZOVncX2Pd7HrNdYMywCMw8yZ6nZqaoOS0ZVa5Q06lVZBAKg5K/5mJgaWeH+448/xubNm5GTk4O1a9dCQ0MDgwYNAlBciyosLESHDh246zU1NdGmTRs8fPhQrtdxdHSEgYEBd2xtbY3U1FTudQoKCtC2bVvuvKmpKZo0aVLmOe/z8OFD2Nvbw97enitr2rQpjI2N8fDhQ7RuXfGcKy8vL5n4ACA1NRXu7u6IjIxEVFSUzOARxhikUini4+Ph4eGBe/fuYdGiRYiMjMSbN2+4/ryEhAQ0bdqUu8/X9+3msU+fPoVYLEaPHj1kYikoKEDLli0BABMnTsSgQYMQFhaGnj17YuDAgWjfvr3cn01p9+/fh0QiwUcffSRTnp+fDzMzM+5YS0tL5nMp7z2UcHBw+KCY5HH58mV89dVX2L59O5o1a1Zjr0sUi/3/knSCVAHcDNww4ssRcJjkwC1P9yr/FeIz4mGuZ67iSOVHiVJZPD0BN7fiJOnmViMr3Ovp6cHV1RUAsGvXLrRo0QI7d+7EmDFjqnS/mppamVWSCgsLy1ynqakpc8zj8codGKJKpWMsGVFXEmN2djbGjx+PqVOnlrmvcePGyMnJQUBAAAICArB//36Ym5sjISEBAQEBZQa76Onpcd9nZ2cDAE6fPg1bW1uZ60oW5u/duzeeP3+OM2fO4MKFC+jWrRsmTZqE1atXV/u9ZmdnQ11dHffu3YO6urrMOX19fe57XV3dckcXln4PJZo1a4bnz59X+JqdOnXC2bNnAVS8q4+hoSF0dXUrjT0kJASffPIJ1q5di1GjRlV6LandSgbtCEVC6ObpItc5F7j19nydGbhTDkqUysLnAxERxTVJT88aWeG+NDU1NcyfPx8zZ87E8OHD4eLiAi0tLVy/fp2rLRQWFuLOnTvcbizm5uYQiUTIycnhfnnKO1XBxcUFmpqauHXrFho3bgwAePPmDZ48eQJ/f/8K79PS0oJEIrvXnIeHBxITE5GYmMjVKqOjo5GRkSFTq5OXj48PoqOjuT8q3nX//n2kpaVhxYoV3OvevXv3vc9t2rQptLW1kZCQUOl7NTc3R2BgIAIDA9GpUyfMmTMHq1ev5vqT3/0c3qdly5aQSCRITU1Fp06d5Lq3ImfOnCn3j6QSpROgn58fzpw5I3P+fbv6AMVTRPr164eVK1di3LhxHxYwUTlBqoCrPebq5ALv7J29a8CuutMn+Q5KlMrE5yu9ubUygwcPxpw5c/D7779j9uzZmDhxIubMmQNTU1M0btwYv/zyC8RiMVfjbNu2Lfh8PubPn4+pU6fi1q1b750P9y59fX2MGTMGc+bMgZmZGSwsLPDDDz/ILG5fHkdHR8THxyMiIgJ2dnYwMDBA9+7d0bx5c4wYMQLr1q1DUVERvv32W/j7+5fbXFhVc+fORbt27TB58mSMHTsWenp6iI6OxoULF7Bx40Y0btwYWlpa+O233zBhwgQIBAIsXbr0vc81MDDA7NmzMWPGDEilUnTs2BGZmZm4fv06DA0NERgYiJ9++gmtWrVCs2bNkJ+fj1OnTsHDwwMAYGFhAV1dXZw7dw52dnbQ0dGBkZHRe1/3o48+wogRIzBq1CisWbMGLVu2xKtXr3Dp0iV4eXm9d/u68sjT9DphwgRs3LgR3333Hb7++mv873//w59//onTp09z12zcuBHHjh3DpUuXABQ3t/br1w/Tpk3DoEGDkJxcvOanlpYWN6CnoKAA0dHR3PcvXrxAREQE9PX1K/wjh6iOk74TrA2sIRQJYaVvBV4RD8K84sTpYuICX5vq/8yqXE10mNYmDWl6CGOMBQUFMXNzc5adnc1yc3PZlClTWKNGjcqdHsJY8eAdV1dXpqury/r168e2bdtW7vSQ0tauXcscHBy4Y5FIxEaOHMn4fD6ztLRkv/zyS6XTQxgrHggzaNAgZmxsrJDpIaUHxLx584YBkJkucfv2bdajRw+mr6/P9PT0mJeXF/v555+58wcOHGCOjo5MW1ub+fn5sZMnT8o8t2Qwz5s3b2ReXyqVsnXr1rEmTZowTU1NZm5uzgICAlhISAhjjLGlS5cyDw8Ppqury0xNTdmAAQNYXFwcd//27duZvb09U1NT46aHlLxWfHx8he+7oKCA/fTTT8zR0ZFpamoya2tr9umnn7KoqCjGWPkDtRir2iCZqrh8+TLz9vZmWlpazNnZmfv/V2LhwoUy/0YCAwPLTIfBO1NiSv5fVnZNaXX557euy8rKYj379GT7Hu9ji0IXsUWhi5hQJGQhz0JYyLMQlU8DqUhVB/PwGKtg6456KisrC0ZGRsjMzIShoewq9Xl5eYiPj4eTkxN0dHQqeAIhNWv37t1Yvnw5oqOjy/QPk7fo57fmMcaQIcrAkKFDELg+ELFpsdhyYwuSRclwNXVF5ITIWt3cWlk+KI2aXgmp5c6cOYPly5dTkiS1Bvv/Ea5Xnl7BrTe30OaHNphzag6SRW+3zXqa/hSCVAHa2Kqu+0lRKFESUssdOXJE1SEQIqO8TZff5WbqVmdHub6LEiUhhJBKsf9f2Pz2i9tQ56kjJyenwiTpYuKCXQN2wdfGt1Y3u8qDEiUhhJBKlcyRLEmOmnmaMDczx6ucV9w1TsZOCB4YXK8SZAlKlIQQQiolSBXI1CALdQohkUowv9t8dLTsCD0tvXqZIEtQoiSEEFIpTwtPWOlbySTL9Nx09HXoCz87v1q/n+SHUsjuIRkZGYp4DCGEkFqoIKcAqz5Zhfnd5sOUX7wghJupG7ytvOt9kgSqkShXrlyJw4cPc8dDhgyBmZkZbG1tERkZqdDgCCGEqFZSShK6jOgCAPC28cY/3f/BzTE3ETEhot42tb5L7kS5ZcsWbv3LCxcu4MKFCzh79ix69+6NOXPmKDxAQgghNatklOvhe4fh/KszHrR7gNFbRqNxVmP4efuhrV3bBpMkgWr0USYnJ3OJ8tSpUxgyZAh69uwJR0dHma2VCJHXokWLcPz48UoXYh89ejQyMjJw/PjxGouLkIZGZp7k/+dDiZEEPHNeg2hqfZfcNUoTExMkJiYCAM6dO8ftbM4Yk3vXA6I4r169wsSJE9G4cWNoa2vDysoKAQEBuH79OneNo6MjeLzif+h8Ph/NmzfHjh075H6tBw8eYNCgQdzz1q1bV+51L168wMiRI2FmZgZdXV00b968SrtwVGb9+vUyC7V36dKF2/2kvsjLy8OkSZNgZmYGfX19DBo0qMw2Vu9ijOGnn36CtbU1dHV10b17d8SU7If6/37++We0b98efD4fxsbGSnwHpK4oqTmGJoYipyCHK78ec73MPEl7Q/t6s4CAvOROlJ999hmGDx+OHj16IC0tDb179wYAhIeH04r+KjRo0CCEh4djz549ePLkCU6ePIkuXbogLS1N5rolS5ZAKBRCIBBg5MiR+Oabb7h9BatKLBbD2dkZK1asgJWVVbnXvHnzBh06dICmpibOnj2L6OhorFmzBiYmJtV+jwBgZGRUK3/Jv7tPJVC8XVZ19umcMWMG/vnnHxw5cgQhISF4+fIlPvvss0rv+eWXX7BhwwZs2bIFt27dgp6eHgICApCXlycT4+DBgzFx4kS5YyL1U8n8yA67OsB7qzdyCnKQnJqMn779CVb6b3+2bQ1sETY+rEE1t8qQd7X1goICtmrVKjZ16lQWFhbGlf/6669s+/bt8j6uxtXH3UNKdse4cuVKpdeVt1OEqakpmzFjRrVfu6LdJ+bOncs6duwo17NKdibZsmULs7OzY7q6umzw4MEsIyODu6b0Linl7UARHx/P0tPT2fDhw1mjRo2Yjo4Oc3V1Zbt27ZIrlqtXr7KOHTsyHR0dZmdnx6ZMmcKys7Nl3veSJUvYl19+yQwMDFhgYCC3Q8eJEyeYh4cHU1dXr3THj/JkZGQwTU1NduTIEa7s4cOHDAC7ceNGufdIpVJmZWXFVq1aJfMcbW1tdvDgwTLXV7STSF1XV39+Vel6wnWGReC+TkaeZH/G/sn+jP2TOXs6sz3/7WFX4q/U2t0/PlRVdw+Ru0apqamJ2bNnY/369WjZsiVXPmPGDIwdO1Yhybu+EBeKcfvFbYgLxUp9HX19fejr6+P48ePIz8+v0j1SqRRHjx7FmzdvuA2DFenkyZPw9fXF4MGDYWFhgZYtW2L79u3vve/p06f4888/8c8//+DcuXMIDw/Ht99+W+6169evh5+fH7755hsIhUIIhULY29tjwYIFiI6OxtmzZ/Hw4UNs3rwZjRo1qnLssbGx6NWrFwYNGoSoqCgcPnwY165dw+TJk2WuW716NVq0aIHw8HAsWLAAQHFte+XKldixYwcePHgACwsL7N+/n/t/VNHX1atXAQD37t1DYWEh16UBAO7u7mjcuDFu3LhRbrzx8fFITk6WucfIyAht27at8B5CgOL5kdYG1gAAR0NHZOpkIr8oH09fP8WRw0cwqtMo+Dv6N9ya5P+r1oID+/btw9atWxEXF4cbN27AwcEB69atg5OTEwYMGKDoGOskcaEY3lu8EZMeAzdTN6UOpdbQ0EBwcDC++eYbbNmyBT4+PvD398cXX3wBLy8vmWvnzp2LH3/8Efn5+SgqKoKpqalS/sCJi4vD5s2bMXPmTMyfPx937tzB1KlToaWlhcDAwArvy8vLw969e2FrawsA+O2339C3b1+sWbOmTDOvkZERtLS0wOfzZc4lJCSgZcuW3ObOjo6OcsUeFBSEESNGcH2fbm5u2LBhA/z9/bF582ZuC6euXbti1qxZ3H1Xr15FYWEhNm3ahBYtWnDl/fv3f+9At5L3m5ycDC0trTLNy5aWltzmxu8qKbe0tKzyPYQAAF+Tj1/6/YLEjETYG9sjvygfc0/PRZo4DbtMdyHSrXZvk1VT5K5Rlvzy6927NzIyMrgBPMbGxhUO6miIBKkCxKQXD6aISY+BIFWg1NcbNGgQXr58iZMnT6JXr164cuUKfHx8ZAa+AMCcOXMQERGB//3vf2jbti3Wrl2rlL5lqVQKHx8fLF++HC1btsS4ceO4RF6Zxo0bc0kDAPz8/CCVSvH48eMqv/bEiRNx6NAheHt747vvvkNoaKhcsUdGRiI4OFimxhcQEACpVIr4+HjuupJEXJqWllaZP04MDAzg6upa6Zeurq5cMRKiKNoa2nBt5Ir8onzMPDkTaeLicQ0l22SRaiTK3377Ddu3b8cPP/wAdXV1rtzX1xf3799XaHB1maeFJ9xM3QDU3HYzOjo66NGjBxYsWIDQ0FCMHj0aCxculLmmUaNGcHV1RadOnXDkyBFMnToV0dHRCo/F2toaTZs2lSnz8PBAQkKCwl/rXb1798bz588xY8YMvHz5Et26dcPs2bOrfH92djbGjx+PiIgI7isyMhIxMTFwcXHhrtPT0ytzr66ubpnh8/I0vVpZWaGgoKDMalcpKSkVDpwqKX93ZGxl9xACAPFJ8Xj6+imy8rIw9/RcZOVnceca8ijXd8nd9BofHy/TN1lCW1sbOTk55dzRMPE1+YiYEAFBqgCeFp4qab5o2rRppfMN7e3tMXToUMybNw8nTpxQ6Gt36NChTC3wyZMncHBwqPS+hIQEvHz5EjY2NgCAmzdvQk1NDU2aNCn3ei0trXKnJZmbmyMwMBCBgYHo1KkT5syZg9WrV1cpdh8fH0RHRyuspi1P02urVq2gqamJS5cuYdCgQQCAx48fIyEhAX5+fuXe6+TkBCsrK1y6dAne3t4Ainduv3XrFo1wJeVijCEmIQZeG72Qr58PM74ZV5MEAAs9i4Y9yvUdcidKJycnRERElPmFd+7cOXh4eCgssPqAr8mvkd2909LSMHjwYHz99dfw8vKCgYEB7t69i19++eW9fcbTpk2Dp6cn7t69W25TYnkKCgq4WmhBQQFevHiBiIgI6Ovrc8llxowZaN++PZYvX44hQ4bg9u3b2LZtG7Zt21bps3V0dBAYGIjVq1cjKysLU6dOxZAhQyqsGTk6OuLWrVt49uwZ9PX1YWpqikWLFqFVq1Zo1qwZ8vPzcerUKbn+bc6dOxft2rXD5MmTMXbsWOjp6SE6OhoXLlzAxo0bq/ycEgYGBjAwMKjStUZGRhgzZgxmzpwJU1NTGBoaYsqUKfDz80O7du2469zd3REUFIRPP/0UPB4P06dPx7Jly+Dm5gYnJycsWLAANjY2GDhwIHdPQkIC0tPTkZCQAIlEwi3s4OrqCn19fbnfF6mbGGN4lvQMR1OOIl+/ePBfmjgNdoZ2SMpKgr2hPcLGh6ERv+oD4Oo9eYfTbt++ndna2rJDhw4xPT09dvDgQbZs2TLu+9quPk4PycvLY99//z3z8fFhRkZGjM/nsyZNmrAff/yRicVi7rqKpnIEBASw3r17c8cA2O7duyt8vfj4+DLTMgAwf39/mev++ecf5unpybS1tZm7uzvbtm1bpe+jZHrIpk2bmI2NDdPR0WGff/45S09P564pPT2EMcYeP37M2rVrx3R1dbnpIUuXLmUeHh5MV1eXmZqasgEDBrC4uDjuHn9/fxYYGFhpLLdv32Y9evRg+vr6TE9Pj3l5ebGff/6ZO1/eZ6moaRe5ubns22+/ZSYmJozP57NPP/2UCYVCmWve/X8klUrZggULmKWlJdPW1mbdunVjjx8/lrmnvOk0ANjly5c/OObaoK7+/NYUqVTKMvMy2d93/2Y7Huxg86/OZ6a/mDIsAnPb4MZe5bxit5Ju1dupIOWp6vQQHmOMyZtc9+/fj0WLFiE2NhYAYGNjg8WLF2PMmDEfnrmVLCsrC0ZGRsjMzIShoaHMuby8PMTHx8PJyYkb2djQxMfH46OPPkJ0dDTc3NxUHY5SODg4YPHixRg9erSqQyEKRD+/lcvKz4L77+4QioRQgxqkKF4Mw9bAFhETIhpkDbKyfFBataaHjBgxAiNGjIBYLEZ2djYsLCyqHSipXc6cOYNx48bV2yT54MEDGBkZYdSoUaoOhZAawxjDhagLEIqEAMAlSQB4IXqBuDdxDTJRVtUHbdzM5/PB51Nnb30yadIkVYegVM2aNUNUVJSqwyCkxjDG8PTZU2ToZXCDdtShDgmKB8G5mLjQ6Nb3qFKibNmyZZVXjA8LC/uggAghhChO3LM43Cq8hQXnFiBNnAZrPWvcGHsDzzOfAwB8bXxpdOt7VClRlh45RwghpG54+PQheo7qibFrxnLNrsIcIVJyUtDZobOKo6s7qpQo3520TgghpPZijEEQI0Crra1QGFCIzdc3w5RvinRxeo0tgFKfVLuP8u7du3j48CGA4ontrVq1UlhQqlaNgcCEEBWjn9u37sfcx29xv6HQsBAAkJJTvGqTnaEdQseEUlOrnOROlElJSRg2bBiuX7/OLdyckZGB9u3b49ChQ7Czs1N0jDVGU1MTQPEOELT2JiF1i1hcvEtPyc9xQyV4LIDPNh9IDMuuWJWUlUQjXKtB7kQ5duxYFBYW4uHDh9yyYo8fP8ZXX32FsWPH4ty5cwoPsqaoq6vD2NgYqampAIpH9VZ1EBMhRDUYYxCLxUhNTYWxsbHMGtQNzf1H99F5YmdIusgmSVsDW7wQvaBm12qSe8EBXV1dhIaGllnv9d69e+jUqRP3V11t9b4JpowxJCcnl1mUmhBSuxkbG8PKyqpB/nHLGEPEowi02dEGRYZFgBTclhcuJi64OfYm4t7EqWzd6dpKaQsO2Nvbo7CwsEy5RCLhFrKuy3g8HqytrWFhYVHu+ySE1D6ampoNtibJGEP0k2icE50rTpIAoAZs7rMZTS2actM/qLm1+uROlKtWrcKUKVPw+++/c4to3717F9OmTavy7gx1gbq6eoP9wSOE1B0PHz9EtFY07I3tYW1gDaFICDdTN4zyHkW1RwWRu+nVxMQEYrEYRUVF0NAozrMl37+7P196erriIlWQqla1CSGkNmGMQVQggiBVAC8LL0ghxbGbx/Ddd99h+e7lSMpMQoGkAN1tu6OtXVtKklWgtKbXdevWfUhchBBCqkFUIOIWNXc2dkZOUQ5SslOAPsC4I+O49VsPmxxG1ERaplGR5E6UgYGByoiDEEJIJQSpAm51nbiMOJlzpRc5j30TC0GqoEb2wm0oqr3gQGpqKlJTUyGVSmXKvby8PjgoQgghsjwtPLk+SEgAlBpCocHTQBErHshDi5wrntyJ8t69ewgMDMTDhw/LrITB4/EgkZSd5EoIIeTD8DX5+KXfLwh9ForNNzZz5Zv7bMbnzT5H9KtoALTIuTLInSi//vprfPTRR9i5cycsLS0b5JwlQgipSYwxRN6PhLaBNto7tsfui7uRp5cnM7qVFjlXHrkTZVxcHI4ePQpXV1dlxEMIIaQUxhjuRd7DI/4jJL5OxOkfTuPp/qd4UfiCFhCoIXInym7duiEyMpISJSGEKAFjDFn5Wbj94jYKJYVIep4EdVt1LDi1oHjEaz9nmJiYwFbTVtWhNhhyJ8odO3YgMDAQAoEAnp6eZRYg7t+/v8KCI4SQhqZkGkhydjJXZqprivTc4nnpcRlxNKq1hsmdKG/cuIHr16/j7NmzZc7RYB5CCPkwglSBTJIEwCVJgEa1qoKavDdMmTIFI0eOhFAohFQqlfmiJEkIIR/G08ITVvpWFZ7fNWAX9UvWMLlrlGlpaZgxYwYsLS2VEQ8hhDRYjDEIIgVY9ckqxKbFokBSgJYGLfF9yPeIfRMLN1M3+Nr4qjrMBkfuRPnZZ5/h8uXLcHFxUUY8hBDS4JSs43r4ymGo2ashNSMVLmYu6GXZC2aGZujTtA8EqQIa5aoicifKjz76CPPmzcO1a9fQvHnzMoN5pk6dqrDgCCGkISi9jqv6LXVImATOxs74dOKn4PF44GvyafCOCsm9e4iTk1PFD+PxEBcXV+H52oB2DyGE1DYbT2/ElLtTypTfGnuLEqQSKW33kPj4+A8KjBBCSDHGGC5eu4hpl6YBRsVlGmoaKJIWwc3UjUa31hLVXhSdEEJI9TDGIGESXLtxDaEaoZAavd1c4tSwUzDRNaH+yFqkWokyKSkJJ0+eREJCAgoKCmTO/frrrwoJjBBC6iPGGN7kvcFvEb+hgBVgZ+hO7pyLiQs6OXSiBFnLyJ0oL126hP79+8PZ2RmPHj2Cp6cnnj17BsYYfHx8lBEjIYTUC4wxvBC9QIstLWQWEShBcyRrJ7kXHJg3bx5mz56N+/fvQ0dHB0ePHkViYiL8/f0xePBgZcRICCH1gqhABO+t3uUmSZojWXvJnSgfPnyIUaNGAQA0NDSQm5sLfX19LFmyBCtXrlR4gIQQUtcxxlAkLcLe83uRJk6TOedk7ISQ0SGImBBBtclaSu6mVz09Pa5f0traGrGxsWjWrBkA4PXr14qNjhBC6rCSnUBuJN3A1eSrgClgZWCFZFEyrPWssXvgbuqTrAPkTpTt2rXDtWvX4OHhgT59+mDWrFm4f/8+/v77b7Rr104ZMRJCSJ1U3k4g/Hw+zo0+h46OHaGnpafC6EhVyZ0of/31V2RnZwMAFi9ejOzsbBw+fBhubm404pUQQkopbycQsbYYJnomlCTrELkTpbOzM/e9np4etmzZotCACCGkriuZJ5nyIAVW+lYyyZK2yap75E6UiYmJ4PF4sLOzAwDcvn0bBw4cQNOmTTFu3DiFB0gIIXWNhElw7Nkx4CNglXPxTiBehl4w1TNFa9vW1CdZx8idKIcPH45x48bhyy+/RHJyMrp37w5PT0/s378fycnJ+Omnn5QRJyGE1BknzpxAtFk0AOD+5vvYu20vdLV1wePxVBwZqQ65p4cIBAK0aVO8SO+ff/6J5s2bIzQ0FPv370dwcLDcAbx48QIjR46EmZkZdHV10bx5c9y9e7fSe65cuQIfHx9oa2vD1dW1Wq9LCCHKsP/4fnx++XMs+ncRFv27COGtwgF1UJKsw+ROlIWFhdDW1gYAXLx4Ef379wcAuLu7QygUyvWsN2/eoEOHDtDU1MTZs2cRHR2NNWvWwMTEpMJ74uPj0bdvX3z88ceIiIjA9OnTMXbsWJw/f17et0IIIQojLhQj6EAQRv43Eii1EUVcRhwEqQLVBUY+mNxNr82aNcOWLVvQt29fXLhwAUuXLgUAvHz5EmZmZnI9a+XKlbC3t8fu3bu5ssq28QKALVu2wMnJCWvWrAEAeHh44Nq1a1i7di0CAgLkfDeEkFpPLAYEAsDZGYiOBvLyAB0doGnTqh8D8t8jx7E4JwNNbn2FJF46twtICRdDJ3g+yQAe/Ft74vb1BfjUT1pVcifKlStX4tNPP8WqVasQGBiIFi1aAABOnjzJNclW1cmTJxEQEIDBgwcjJCQEtra2+Pbbb/HNN99UeM+NGzfQvXt3mbKAgABMnz693Ovz8/ORn5/PHWdlZckVIyFEhcRiwNsbiIkBNDSAoqK35+Q9rs497zlmGhoQ6arhj2YSJPWSyLyUbSaw6wTQ8WUC+HkBFT5DFXHDxQWIiqJkWUVyJ8ouXbrg9evXyMrKkmkiHTduHPhyfuhxcXHYvHkzZs6cifnz5+POnTuYOnUqtLS0EBgYWO49ycnJsLS0lCmztLREVlYWcnNzoaurK3MuKCgIixcvlisuQkgtIRAUJ0mgbPKQ91gRzyidJAG8sNBBi2laMmu3OqUBwScB35cAvxAAJBU+QxVxAwBiY4s/WzkrNw2V3H2UAKCurl6mH9HR0REWFhZyPUcqlcLHxwfLly9Hy5YtMW7cOHzzzTcKnZs5b948ZGZmcl+JiYkKezYhRMk8PQE3t+LvNd75u17eY0U8o9SxyEAL3tO1yyxwHnxKDZ2flyTJ2hc3gOIapSfN5awqlW7cbG1tjaZNm8qUeXh44OjRoxXeY2VlhZSUFJmylJQUGBoalqlNAoC2tjY3+IgQUsfw+UBERK3roxTnZGDZ3V1IE5+QCddFxxa+10OBmGeK6U9UcNzUR1k9PMYYU9WLDx8+HImJibh69SpXNmPGDNy6dQuhoaHl3jN37lycOXMG9+/fl3lOeno6zp07997XzMrKgpGRETIzM2FoaPje6wkhpDRxoRguq1yQXJgMdZ46JEwCa31r7B5AC5zXNVXNB9VqelWUGTNm4ObNm1i+fDmePn2KAwcOYNu2bZg0aRJ3zbx587htvQBgwoQJiIuLw3fffYdHjx5h06ZN+PPPPzFjxgxVvAVCSAPCGMOa/WuQXFi8JJ2ESbC171bETIlBgGsAJcl6SqWJsnXr1jh27BgOHjwIT09PLF26FOvWrcOIESO4a4RCIRISErhjJycnnD59GhcuXECLFi2wZs0a7Nixg6aGEEKUijGGg0cOwqaNDcz4xVPh3EzdMLLFSFrgvJ6Tq+n19evX2LVrF27cuIHk5OK/qKysrNC+fXuMHj0a5ubmSgtUUajplRAiL3GhGKv2rYK5rzl+Ov8T0sRpsDOwQ/iEcDTiN1J1eKSaqpoPqpwo79y5g4CAAPD5fHTv3p2bopGSkoJLly5BLBbj/Pnz8PX1Vcw7UBJKlIQQeYgLxXD+xRkpRSlQgxqkkHLnbo29hTa2NMWirqpqPqjyqNcpU6Zg8ODB2LJlS5k1CxljmDBhAqZMmYIbN25UP2pCCKlllu5cipSi4pH2pZOkvaE9bZfVQFQ5UUZGRiI4OLjchX15PB5mzJiBli1bKjQ4QgipaYwxiApEEKQKEHomFCserwCMi89pqmmiUFoIe0N7hI0Po8E7DUSVE6WVlRVu374Nd3f3cs/fvn27zIo5hBBS14gKRHD/3R1CkbB4UR3jt+dODT8FYx1jeFp4UpJsQKqcKGfPno1x48bh3r176NatW5k+yu3bt2P16tVKC5QQQmqCIFVQnCQBQP1tub2hPTo27kgJsgGqcqKcNGkSGjVqhLVr12LTpk2QSIrXL1RXV0erVq0QHByMIUOGKC1QQgipCTfP3IQZ3wxp4jSoMTVIeVJqam3gqrUyT2FhIV6/fg0AaNSoETQ1NRUemLLQqFdCSGml+ySvnLyCH57+ABgD+lJ93J9+H6niVGpqracUPuq1NE1NTZiamnLfE0JIXVVRn2S2WjZSxak0/YPItzLPhQsX0KdPH5iYmIDP54PP58PExAR9+vTBxYsXlRUjIYQoBWMMkcmRFfZJ0vQPAsiRKPfs2YM+ffrAyMgIa9euxalTp3Dq1CmsXbsWxsbG6NOnD/bt26fMWAkhRKEkTILn+c9hbWANAFBjxb8SqU+SlFblPsqPPvoI06ZNk1mwvLRNmzZh7dq1iCnZZLWWoj5KQghQXJv8bfNvsO5ljfyifPzv4P+wYtYKPMt8Rn2SDYTCl7DT0dFBZGQkmjRpUu75x48fw9vbG7m5udWLuIZQoiSkYWOMQcIk+H3z7zDrYYbYtFgAwPSW02GkY6Ti6EhNUvhgnmbNmmHnzp345Zdfyj2/a9euMpswE0JIbSMqEOH3yN9h8bEF5vwzB8nZxRs87LuzD1ETo6gmScqocqJcs2YN+vXrh3PnzpW7KHpcXBxOnz6ttEAJIeRDiQvFcFnpgtfsNQy1DZGVn8Wdi30TC0GqgEa5kjKqnCi7dOkCgUCAzZs34+bNmzLbbPXu3RsTJkyAo6OjsuIkhBC5McaQlZ+F2y9uQ42nhr+O/IXXrHgOeFZ+FtShDgmKF09xMXGhUa6kXNVacKAuoz5KQhqOrPwsNNnYhGtetdCzQF5RnkxNcnOfzWhq0RS+Nr7U7NrAKHXBgdIKCwtp0QFCSK0kSBVwSRIAUnNSAQAaPA0UsSK4mbphlPcoSpCkUlWeR/nnn3+ioKCAO964cSMcHBygo6ODRo0aYcmSJUoJkBBC5FXS5JpTkANL/bK7GhWxIuzqvwsREyIoSZL3qnKNctiwYRAKhbCwsMDu3bsxZ84cfPfdd2jbti3Cw8MRFBQEGxsbjB07VpnxEkLIe5Vels5K3wrzu81H8rVkhPBDEPsmFm6mbhjqOZSSJKmSKifK0l2ZW7ZswZIlSzBnzhwAQJ8+fWBqaopNmzZRoiSEqFzprbKSs5ORdiMNO+buQG5RLgSpAlpQgMhFrrVeeTweACAuLg49e/aUOdezZ088ffpUcZERQkg15BTkYPuu7TJNrhe1LyK3KBd8TT7a2LahJEnkItdgnnPnzsHIyAg6OjoQi8Uy5/Ly8rhESgghqpBTkIPGyxsjnZcOU4kpV05zJMmHkCtRBgYGct//73//g5+fH3d88+ZNuLi4KC4yQgiRg1QqxZSfpyBdLR0AkJ6bDjtDOyRlJcHN1I3mSJJqq3KilEqllZ63tLREUFDQBwdECCHykkqlWLh0IToM7YCTp08iTZwGN1M3hI4JRdybOOqTJB/kg+dRlujXr5+iHkUIIe9VMgUkMiUSp3adgtcIL3x36jukidNgZ2iH0DGhaMRvhEb8RqoOldRxCkuUhBBSk0QFInhs8oBQJISZvhm+fvk1N9I1KSsJcW/iKEkShZBr1CshhNQGjDHcSrrFJcY0cRpWh6zmztO6rUSRqEZJCKkzGGMQFYhwM+kmRh0fJXsOb+d67xqwi/okicJQoiSE1BmlV9x5l6aaJgqlhXAzdYOvja8KoiP1FSVKQkidcffF3TJJ0tnEGbsH7EZT86Y0wpUohUITZdeuXfHxxx9j1qxZ4PPpHyohRHFyCnLwafCngHrxsbm6OQ6POIw2tm2gp6UHADR4hyiFQgfzNG7cGJcuXYK7u7siH0sIaeAkEglGfz8aWepv95E8MvIIPnb6mEuShCiLQmuUwcHBAIo3wySEkA/BzZNMjsT+9fvR65teuHz6MreYQGvb1qoOkTQQCkmUGRkZMDY25o4r2ymaEEKqovQ8SVNrUxw/e1xmMQHqhyQ1Re6m15UrV+Lw4cPc8ZAhQ2BmZgZbW1tERkYqNDhCSMPEGMPNxJvcwJ303HSkZqcCeLuYACE1Re5EuWXLFtjb2wMALly4gAsXLuDs2bPo3bs3tz8lIYR8iMy8TASeCCz3HC1wTmqa3E2vycnJXKI8deoUhgwZgp49e8LR0RFt27ZVeICEkIaDMYaCogJ89f1XSDZNljnnYuKCXQN2wdfGl5pdSY2Su0ZpYmKCxMREAMX7U3bv3h1A8T9wiUSi2OgIIQ1KRm4Gfg3/Ff3G94O1gTWA4nmSIaNDEDUxCp0dOlOSJDVO7hrlZ599huHDh8PNzQ1paWno3bs3ACA8PByurq4KD5AQUr+VjG69mXgTg/cOhkhDBDO+GZY0XgLv9t5oYdmCpoAQlZI7Ua5duxaOjo5ITEzEL7/8An19fQCAUCjEt99+q/AACSH1W+nRrSW/kdLEaQh6GYTHVo+pBklUjscYY++/rP7IysqCkZERMjMzaRoLIbXA1WdX0XlP53LP3Rp7C21s29RwRKShqGo+qNbKPPv27UPHjh1hY2OD58+fAwDWrVuHEydOVC9aQkiDUdLUGpoYCmGmEIt/XgwrAysAgKWeJWwNbAHQ6FZSe8jd9Lp582b89NNPmD59On7++WduAI+xsTHWrVuHAQMGKDxIQkj9UXoHEB7jgdkxWDErzO82H1rqWhjffDwSMhNocXNSa8hdo/ztt9+wfft2/PDDD1BXV+fKfX19cf/+fYUGRwipfwSpAm4hAcYr7vlJzk7G1htbsejfRei0uxMlSVKryJ0o4+Pj0bJlyzLl2trayMnJUUhQhJD6q4lJE1jpW8mU2RrYIk2cBgB4mv4UglSBKkIjpFxyJ0onJydERESUKT937hw8PDwUERMhpB5ijEGcJ8akiZMwof0EmXM7+++Eq2nx9DLqmyS1jdx9lDNnzsSkSZOQl5cHxhhu376NgwcPIigoCDt27FBGjISQOo4xBlGuCOeTz2PQ4kHIL8qHtYE1hCIh3Ezd0MmhEyInREKQKqBmV1LryJ0ox44dC11dXfz4448Qi8UYPnw4bGxssH79enzxxRfKiJEQUsfl5ufifPJ57tj0mSkeTXqEh68eorllcy4x0lQQUht90DxKsViM7OxsWFhYKDImpaJ5lITUDMYYRAUihCWFYf2C9Ri+bDh37lPHT6GhptDtcAmRW1XzwQf9S+Xz+eDzqYmEEFJW6Wkg1r7WGFQ0CNoa2qoOixC5yZ0onZycwOPxKjwfF0f7xBHSkJXUJHfc2cFNAxGKhAiJDYGFgQW01LUQYBsAQ21q0SF1g9yJcvr06TLHhYWFCA8Px7lz52g/SkIIRAUiNNnYBMnZb7fJUoMadtx+O9hv3519iJoYRYN2SJ0gd6KcNm1aueW///477t69+8EBEULqtnuJ92SSJABIIZU5jn0TC0GqgAbvkDqhWmu9lqd37944evSooh5HCKlDGGPIzMvExZiLWPH9CpkFBZyMneBk7CRzvYuJC82VJHWGwoad/fXXXzA1NVXU4wghdQRjDC9EL+C91Rtp4jRYt7fGsl7LkJSZhM5WndHWri0A4O7Lu8gryoOOhg58bXyp2ZXUGXInypYtW8oM5mGMITk5Ga9evcKmTZsUGhwhpPYTFYi4JAkUD9wpfF6IHwJ+gDpPnft90dmh/K20CKnt5E6UAwcOlDlWU1ODubk5unTpAnd3d0XFRQipI+4m3OWSJAAYahtiYKeBNE+S1Bu0cTMhRG4le0reTriNoDlBeOT/CEKREGo8NUiZFK6mroicEEnNq6RWU+iCA1lZWVV+YUo+hNR/ogIRPDZ5FC8m4G8N6WYpvg/6HiserADwdgcQGtVK6oMqJUpjY+NKFxkAiv/C5PF43EbOhJD667/Y/2QWE9ixcQe++PgL/CX8C0/Tn9IOIKReqVKivHz5srLjIITUYiWr7QhSBbDStMLgPYOB/29VNeWbom+HvtDT0qMdQEi9RH2UhJD3ysrP4tZt1cjXQJF2kcx56pMkdZHSF0UXi8VISEhAQUGBTLmXl1d1H0kIqaUEqQKuqbVIuwiQAFB/e576JEl9JneifPXqFb766iucPXu23PPUR0lI/VHS5Jr4OhGG2obIyv//gX3qwKY+m7DmxhrEvomlPklSr1VrUfSMjAzcunULXbp0wbFjx5CSkoJly5ZhzZo1yoiREKIi7y5wXjL9w83UDYHegQj0DqQ+SVLvyZ0o//e//+HEiRPw9fWFmpoaHBwc0KNHDxgaGiIoKAh9+/ZVRpyEEBW4GXtTZoFzKZNiZ/+d+MLzCy4xUnMrqe/kXhQ9JycHFhYWAAATExO8evUKANC8eXOEhYUpNjpCiMq8SH2BGXNmwFLfkitzMXGRSZKENARy1yibNGmCx48fw9HRES1atMDWrVvh6OiILVu2wNraWhkxEkJqEGMMCSkJcP/VHXlt8mAFK8zvNh/dbbujrV1bSpKkwanWfpRCYfHot4ULF6JXr17Yv38/tLS0EBwcrOj4CCE1iDGG5NfJCI4PRp5eHgAgOTsZfR36ws/O770LjxBSH8mdKEeOHMl936pVKzx//hyPHj1C48aN0ahRI4UGRwipGSWjW68+uYrn7Dk2XN3AnXMxcYG3lTclSdJgyZ0or127ho4dO3LHfD4fPj4+Cg2KEFKzRAUibkEBNahBCil3bteAXdTcSho0uQfzdO3aFU5OTpg/fz6io6OVERMhpIZdir7ELShQOknaG9rD18ZXVWERUivInShfvnyJWbNmISQkBJ6envD29saqVauQlJQk94svWrQIPB5P5ut9e1oeOXIE7u7u0NHRQfPmzXHmzBm5X5cQUowxhtikWHxx8AuuTINX3NBkb2iPsPFhVJskDZ7cibJRo0aYPHkyrl+/jtjYWAwePBh79uyBo6MjunbtKncAzZo1g1Ao5L6uXbtW4bWhoaEYNmwYxowZg/DwcAwcOBADBw6EQCCQ+3UJIYAwRYg/Ev9Agd7bpShPDT+FW2Nv4dHkR2jEp3EHhHzwougSiQRnz57FggULEBUVJdcSdosWLcLx48cRERFRpeuHDh2KnJwcnDp1iitr164dvL29sWXLlio9gxZFJ0onFgMCAeDsDERHA3l5gI4O0LTp22OgbJmij9/zGokvnmHc7/MQ/qkEKdkpAAAXHVtEjQoFP+ZZ7YkbAHx9AT7VbIliKX1R9OvXr2P//v3466+/kJeXhwEDBiAoKEju58TExMDGxgY6Ojrw8/NDUFAQGjduXO61N27cwMyZM2XKAgICcPz48Qqfn5+fj/z8fO5Ynk2oCZGbWAx4ewMxMYCGBlBUapeNd4/LK1P0cQXXvNYsQofxQGIPANlvT+3a9AL8H11qX9wuLkBUFCVLohJyN73OmzcPTk5O6Nq1KxISErB+/XokJydj37596NWrl1zPatu2LYKDg3Hu3Dls3rwZ8fHx6NSpE0QiUbnXJycnw9LSUqbM0tISycnJ5V4PAEFBQTAyMuK+7O3t5YqRELkIBMVJEij7i//d46pc86HH75QxAFm6amg5AUg0lr3MLQ3wFdbOuBEbW/zZEqICctco//vvP8yZMwdDhgz54HmTvXv35r738vJC27Zt4eDggD///BNjxoz5oGeXmDdvnkwtNCsri5IlUR5PT8DNrVbVKJmGBrJ01XDbofjHPXTbd0j6dxF33jYTOPA34PsS4BdW7ZkqqVF60u4kRDXkTpTXr19XRhwAAGNjY3z00Ud4+vRpueetrKyQkpIiU5aSkgIrK6sKn6mtrQ1tbW2FxklIhfh8ICKiVvVRilzt4X6wPbe4ucX1TTDlmyJdnA57bQuEzfgPjQamKKTfk/ooSX30wYN5FCk7OxuNGzfGokWLMHXq1DLnhw4dCrFYjH/++Ycra9++Pby8vGgwDyHlYIzhYvxF9NzXs8w5O0M7hI8Pp5GtpMGqaj6Qu49SkWbPno2QkBA8e/YMoaGh+PTTT6Guro5hw4YBAEaNGoV58+Zx10+bNg3nzp3DmjVr8OjRIyxatAh3797F5MmTVfUWCKl1GGPIys9CaGIokrOTMerYqHKvS8pKQtybuBqOjpC6p9qjXhUhKSkJw4YNQ1paGszNzdGxY0fcvHkT5ubmAICEhASoqb3N5e3bt8eBAwfw448/Yv78+XBzc8Px48fhSX0XhHBKL0dnzbdGsvjtYLcffH/AodhDiH0TCzdTN3ha0M8OIe9Tq5peawI1vZL6LjQxFB12deCOS/ojHQ0cIZgsAI/HgyBVAE8LT1p1hzRodaLplRCiOCVNrjkFOTKbLWelZOFQ70MQTBZAT0sPfE0+2ti2oSRJSBVVqenVxMSkylvspKenf1BAhJDqKd3kaqprypUXGRTBydYJelp6KoyOkLqrSoly3bp13PdpaWlYtmwZAgIC4OfnB6B4xZzz589jwYIFSgmSEPJ+glQBtwNIem461+RKfZGEfBi5+ygHDRqEjz/+uMxI040bN+LixYuVLidXG1AfJamvop5EIeCfAG6+pL2+PfYN2ofWtq2pmZWQciitj/L8+fPlLlXXq1cvXLx4Ud7HEUI+QEm/5P7Q/eg1uhe+bvs1dy4xOxG6mrqUJAn5QHInSjMzM5w4caJM+YkTJ2BmZqaQoAghVSMqEKHJxiYYeWEkhAFCrDqxCg6GDgBATa6EKIjc8ygXL16MsWPH4sqVK2jbti0A4NatWzh37hy2b9+u8AAJIeVjjOFM2BmuqRUACvULsfezvdDR0KHpH4QoiNyJcvTo0fDw8MCGDRvw999/AwA8PDxw7do1LnESQpSHMQZRgQhn7p1Bun46THVNkZ5bPNrcxcQFvja+lCAJUSBacICQOiYrP4ubBqLOU4eESWDFt0Lwp8Ho5NCJkiQhVaTUBQdiY2Px448/Yvjw4UhNTQUAnD17Fg8ePKhetISQKmGM4dSdU9w0EAmTAACSxckw0TWhJEmIEsidKENCQtC8eXPcunULR48eRXZ28fbokZGRWLhwocIDJIS8dff+XTzAA5jyixcU0FAr7j2hgTuEKI/cfZTff/89li1bhpkzZ8LAwIAr79q1KzZu3KjQ4Aghb92NvAu/PX6QGBXXIq31rHFj7A2k5KTQwB1ClEjuGuX9+/fx6aeflim3sLDA69evFRIUIeQtxhiiBFHo81UfLkkCgDBHiJScFFq3lRAlkztRGhsbQygUlikPDw+Hra2tQoIihLx1K+IWTotPI+iPIGjnaHPlLiYu1NxKSA2Qu+n1iy++wNy5c3HkyBHweDxIpVJcv34ds2fPxqhR5W8QSwiRH2MMN8JuwP+AP4oMi2DGN8PNb28ii5cFADQNhJAaIneiXL58OSZNmgR7e3tIJBI0bdoUEokEw4cPx48//qiMGAlpUBhjkDAJIqIicKHgAooMiwAAaeI0fHLsEzye/JgSJCE1qNrzKBMSEiAQCJCdnY2WLVvCzc1N0bEpBc2jJLVdkbQIx54dQ35RPub8M0dm5R0AuDX2FtrYtlFRdITUH1XNB3LXKEs0btwYjRs3ru7thJByMMYQFhGGfP18hD4LLZMkaRoIITWvSoly5syZVX7gr7/+Wu1gCKnvSpafE6QK0MKyhcxmyowx3A67DYGuAHNPzEWaOA0aahookhbBxcQFuwbson5JQlSgSokyPDxc5jgsLAxFRUVo0qQJAODJkydQV1dHq1atFB8hIfWIqEDELT/nauqKyAmR0NXQhYRJcOfeHUTrRWPmyZnIyi8esFMkLcKu/rsw1HMoJUhCVKRKifLy5cvc97/++isMDAywZ88emJiYAADevHmDr776Cp06dVJOlITUE4JUAbf83NP0pxCkCuBj7YNDTw8htigWG05v4JIkANgb2lOSJETF5B7MY2tri3///RfNmjWTKRcIBOjZsydevnyp0AAVjQbzEFUqvaB5SY0y5GYIvrz5JdLEaTLXWuhZ4MG3D9CI30hF0RJSvyltME9WVhZevXpVpvzVq1cQiUTyPo6QBoWvyccv/X5BYkYiJrWYhJDQEPQ53QfQk73O3tAeYePDKEkSUgvIvTLPp59+iq+++gp///03kpKSkJSUhKNHj2LMmDH47LPPlBEjIfWKtoY2XBu54uadm+hzQjZJ2hrYImR0CB5NfkRJkpBaQu4a5ZYtWzB79mwMHz4chYWFxQ/R0MCYMWOwatUqhQdISH1QMto1MjkS+UX50NbQxj2te4DR22ss9CwQMSGCEiQhtYzciZLP52PTpk1YtWoVYmNjAQAuLi7Q09N7z52ENFylR7taG1hjaa+lKJAUQDdXF7m6udTUSkgtVu0FB/T09ODl5aXIWAipd0pqkgfvH+RGuwpFQsw9XTxP0snKCcGfBtP8SEJqMbkTZU5ODlasWIFLly4hNTUVUqlU5nxcXJzCgiOkritdk1TnqUPCJDDUNuRGuMZnxkNHQ4eSJCG1mNyJcuzYsQgJCcGXX34Ja2tr8Hg8ZcRFSL1Qet6khElgpGOEzLxMbsUdWpKOkNpP7kR59uxZnD59Gh06dFBGPITUCyVNrjkFObAysEKyKBlmfDOuJkkr7hBSd8g9PcTExASmpqbKiIWQOo0xhqz8LIQmFi9m7v67O3r+0RNgwKKei9DmXhu4GLsAKF7cnJIkIXWD3DXKpUuX4qeffsKePXvA59MPOSFAcZJ8IXoB763eSBOnwc7AjmtyTc5Ohpa6Fo7sPgKeBg+CVAE8LTwpSRJSR8i9hF3Lli0RGxsLxhgcHR2hqakpcz4sLEyhASoaLWFHlCErPwvOG5xllqEraWo145vh1uhbcG7kTH36hNQiSlvCbuDAgR8SFyH1kiBVUCZJLglYgp/O/4Q0cRp6HeqFyAmRVIskpA6SO1EuXLhQGXEQUqd5WnjC2sAaQpEQprqmGO83Hkd/P4o0m+LkWbJTSBvbNiqOlBAiL7kH8xBCyipZ7HxRz0XQ0tDC8kvLEd80Hi4mbwfv0DQQQuomuWuUampqlfazSCSSDwqIkLqEMQYJk+DMuTPQdteGlroWkkXJAID4jHiEjA6BjoYODd4hpA6TO1EeO3ZM5riwsBDh4eHYs2cPFi9erLDACKkLJEyCQ08PIbFRIuyL7GFvbA9nE2fEvYmDm6kbLU1HSD0g96jXihw4cACHDx/GiRMnFPE4paFRr0SR9v69FzNjZyJNnAaDQgPEfx8PHS0dPHj1gGqRhNRyVc0HCuujbNeuHS5duqSoxxFS6+05sgeBNwK50a4iTRFiM2Ohp6WHNrZtKEkSUk9Ue/eQ0nJzc7FhwwbY2toq4nGE1DolS9IJUgRoZtEMp8+cxugbo2X2k7Q3tKcBO4TUQ3InShMTE5nBPIwxiEQi8Pl8/PHHHwoNjpDaovQuIKa6pujfrH+ZTZfDxodRLZKQekjuRLlu3TqZYzU1NZibm6Nt27YwMTFRVFyE1CqldwFJz01H8N1g8BgPjMdo02VC6jm5E2VgYKAy4iCkVvO08JTZ/QMAGI/RDiCENADV6qPMyMjAzp078fDhQwBAs2bN8PXXX8PIyOg9dxJSt5TMkzx98jRW9l2J7059h/TcdACAi4kLJUlCGgC5p4fcvXsXAQEB0NXVRZs2xctx3blzB7m5ufj333/h4+OjlEAVhaaHkKpijCFfko9/Ev7hyvKL8mGhZgFtDW20tm1NSZKQOqyq+UDuRNmpUye4urpi+/bt0NAorpAWFRVh7NixiIuLw3///fdhkSsZJUpSVUXSIhx79naBjcvrL2PdmnXQVNekXUAIqQeUlih1dXURHh4Od3d3mfLo6Gj4+vpCLBZXL+IaQomSVAVjDPsO7oOarxoSMxJhb2yPIc5DoKWhperQCCEKorRttgwNDZGQkFAmUSYmJsLAwED+SAmpZRhj2HtgL9Rbq+O7U99BKBLCjG+G7hO7w0rfStXhEUJqmNwr8wwdOhRjxozB4cOHkZiYiMTERBw6dAhjx47FsGHDlBEjIUrFGENWfhZCE0KRmZeJ4D+Cod5aHSFxIdyUkDRxGlpvbw1xYe1uMSGEKJ7cNcrVq1eDx+Nh1KhRKCoqAgBoampi4sSJWLFihcIDJETZSi8mYG1gjaW9lmLOP3OQnJ0sc11SVhLtKUlIAyRXopRIJLh58yYWLVqEoKAgxMbGAgBcXFzA59PoP1I3lV5MQCgS4l7SvTJJEqA9JQlpqORqelVXV0fPnj2RkZEBPp+P5s2bo3nz5pQkSZ3maeEJawNrAICVvhVM+CZwNHbkzjsZOyFkdAgiJkTQdBBCGiC5m149PT0RFxcHJycnZcRDiNKV9EneenELPPDw8H8P8Uu/X/Aw9SG23NiC5ZeWw9nEGedHnoeOhg7tKUlIAyd3oly2bBlmz56NpUuXolWrVtDT05M5T1MuSG1X0idZ0rxqyjfF0ryl2HpjK9LFxavuxL2Jg7GOMfVHEkLkn0eppva2tfbdXUR4PB4kEoniolMCmkdJQhND0WFXB5kyPeghBzncsb2hPR5NfkQ1SULqMaXNo7x8+fIHBUaIqpTsKZlTkANLfUukZKdw53KQAztDOyRlJXG7gVCSJIQA1UiU/v7+yoiDEKUrPQ3ESt8Kc7rMwc7bO5EuToebqRtCx4Qi7k0cPC08KUkSQjjV2j2EkLqkpCZ58P5BbhpIcnYyTHRN8GTSEzxNf4rmls3B1+TTnpKEkDIoUZJ6r3RNUp2nDgmTwBSm+NbrWxhqG6KtXVtVh0gIqcXkXsKOkLqiZBpI6ZqkhEnQX60/nn//HEY6RrQLCCHkvaqUKE+ePInCwkJlx0KIwjDG8EL0As4bnDHh9ASo89QBAGZ8M2ydsRX62voqjpAQUldUKVF++umnyMjIAFC8Ok9qaqoyYyLkg4kKRPDe6o00cRqA4pqkkY4R0sRp6LS7Ey1uTgipsiolSnNzc9y8eRPA2/mShNRmglQBlySB4nmSmXmZAICn6U8hSBWoKjRCSB1TpUQ5YcIEDBgwAOrq6uDxeLCysoK6unq5X4TUBqf2noIZ3wwAYAhDCKYK4GrqCoAWNyeEyKfKK/M8evQIT58+Rf/+/bF7924YGxuXe92AAQMUGZ/C0co89RdjDBImweLli7EsdRlgVpwkn85+CnM9c4gLxRCkCmieJCEEgBJW5nF3d4e7uzsWLlyIwYMH044hpNYomSd5K+kWrgivINU3FbhVfC4LWYjPiIe5njn4mnxau5UQIje551EuXLgQAPDq1Ss8fvwYANCkSROYm5srNjJCqkhUIEKTjU1k9pBUgxqkkFIzKyHkg8k9j1IsFuPrr7+GjY0NOnfujM6dO8PGxgZjxoyBWEwjCUnNE6QIymy0LIUUu/rvoj0kCSEfTO5EOWPGDISEhODkyZPIyMhARkYGTpw4gZCQEMyaNUsZMRJSoZyCHGzZuQWW+pYy5S4mLhjqOZSSJCHkg8m9zVajRo3w119/oUuXLjLlly9fxpAhQ/Dq1StFxqdwNJinfihZdcdphRPe8N7ASt8KX7f9Gh0tO0JPS482WyaEvJfSttkSi8WwtLQsU25hYUFNr6TGFEmLsC58Hd7w3gAoXuS8r0Nf+Nn50TxfQohCyd306ufnh4ULFyIvL48ry83NxeLFi+Hn56fQ4AgpD2MMM3+ciQ1XN3BlLiYu8LbypiRJCFE4uRPl+vXrcf36ddjZ2aFbt27o1q0b7O3tERoaivXr11c7kBUrVoDH42H69OmVXnfkyBG4u7tDR0cHzZs3x5kzZ6r9mqTuYYzh29nfYmPRRqTnpnPluwbsoqZWQohSyJ0oPT09ERMTg6CgIHh7e8Pb2xsrVqxATEwMmjVrVq0g7ty5g61bt8LLy6vS60JDQzFs2DCMGTMG4eHhGDhwIAYOHAiBgJYjawhyCnIwZM4QbGFbgFJrmtsb2sPXxld1gRFC6jW5B/MoWnZ2Nnx8fLBp0yYsW7YM3t7eWLduXbnXDh06FDk5OTh16hRX1q5dO3h7e2PLli1Vej0azFNDxGJAIACcnYHoaKCkqV5HB2ja9G1ZFY9fhV9Hk8tf4I12nszLWGgY40HbPWjk3V7uZ1b5WN64AcDXF6BFOQip1ZQ2mEfRJk2ahL59+6J79+5YtmxZpdfeuHEDM2fOlCkLCAjA8ePHK7wnPz8f+fn53HFWVtYHxUuqQCwGvL2BmBhAQwMoKpI9/27Ze45zdNTRaqIEb4xkH2OfCYRtyUCj3AFyP1PuY3nvcXEBoqIoWRJSD6g0UR46dAhhYWG4c+dOla5PTk4uM+LW0tISycnJFdwBBAUFYfHixR8UJ5GTQFCcJIGyyaa8svcc37OUILFUkrTNAA4cA3xfAvzC8u9R+LG898TGFn8ObWjJPELqOrn7KBUlMTER06ZNw/79+6Gjo6O015k3bx4yMzO5r8TERKW9Fvl/np6Am1vx9xrl/C32blkFx2JN4L/GwOj+b0/ZZgIRO9TQ+XmpJCnHM6t9LO89Li7FnwMhpM5TWY3y3r17SE1NhY+PD1cmkUjw33//YePGjcjPzy+zbZeVlRVSUlJkylJSUmBlZVXh62hra0NbW1uxwZPK8flARES1+yiZhwcy79/FRxcG45VOjsyjD3TZgEbzhymk35P6KAkhVVGtwTwZGRn466+/EBsbizlz5sDU1BRhYWGwtLSEra1tlZ4hEonw/PlzmbKvvvoK7u7umDt3LjzL+Wt86NChEIvF+Oeff7iy9u3bw8vLiwbz1CMFRQUIuhOERf8ukil3M3WjtVsJIQqjtME8UVFR6N69O4yMjPDs2TN88803MDU1xd9//42EhATs3bu3Ss8xMDAokwz19PRgZmbGlY8aNQq2trYICgoCAEybNg3+/v5Ys2YN+vbti0OHDuHu3bvYtm2bvG+D1FJSqRTfTPkGp5zejmx2MnZC8MBgWpaOEKIScvdRzpw5E6NHj0ZMTIxM32KfPn3w33//KTS4hIQECIVC7rh9+/Y4cOAAtm3bhhYtWuCvv/7C8ePHy619kronOz8b/b7th726e2UWEwgeGIzODp0pSRJCVELuplcjIyOEhYXBxcUFBgYGiIyMhLOzM54/f44mTZrILG1XG1HTa+1Ssrj5zcSbGLx3MEQaIpnz9ob2eDT5ESVJQojCKa3pVVtbu9y5iE+ePKHNm4ncRAUieGzygFAkLPOv0d7QHmHjwyhJEkJUSu6m1/79+2PJkiUoLCwem8/j8ZCQkIC5c+di0KBBCg+Q1E8lNckDUQeKk2QpTsZOCBkdgkeTH6ERv5GKIiSEkGJyN71mZmbi888/x927dyESiWBjY4Pk5GT4+fnhzJkz0NPTU1asCkFNr7VDVn4W3H93h1AkhBrUIIWUOxcyOgSdHTqrMDpCSEOgtKZXIyMjXLhwAdeuXUNUVBS3Vmv37t0/KGDSsNxKvMXVJKWQwkjHCJl5mXAzdaMFzgkhtYrKF0WvaVSjVC3GGF5kvsBHaz5CrkYuAMBKywrhU8LxPOM5mls2pz5JQkiNUFqNcsOGDeWW83g86OjowNXVFZ07dy6zqg4hAPBG/Abe2725JAkAh4YdgpW+Faz0K15hiRBCVEXuRLl27Vq8evUKYrEYJiYmAIA3b96Az+dDX18fqampcHZ2xuXLl2Fvb6/wgEndlSnORO/ZvZFmlcaV2Rvao7VtaxVGRQghlZN71Ovy5cvRunVrxMTEIC0tDWlpaXjy5Anatm2L9evXIyEhAVZWVpgxY4Yy4iV1DGMMmXmZOPvkLGx/tsVtq9tQ5xW3NtgZ2tH0D0JIrSd3H6WLiwuOHj0Kb29vmfLw8HAMGjQIcXFxCA0NxaBBg2RW1aktqI+yZpUe3Vra9k+2Y5jnMOhp1e5R0oSQ+ktpfZRCoRBF5ezVV1RUxO0LaWNjA5FIVOYa0vBEvIgokyRdTFwwvPlwqkkSQuoEuZteP/74Y4wfPx7h4eFcWXh4OCZOnIiuXbsCAO7fvw8nJyfFRUnqjJKFBEITQ5EuSsfaBWthxjeTuWbXgF2UJAkhdYbciXLnzp0wNTVFq1atuL0efX19YWpqip07dwIA9PX1sWbNGoUHS2o/UYEI7r+7o8OuDrBbYYcec3tgvN94NNIqXmGH5kkSQuqaas+jfPToEZ48eQIAaNKkCZo0aaLQwJSF+iiVKzQxFB12deCO1XhqkDIpnE2csXvAbtoqixBSayitj7KEu7s73N3dq3s7qadcDV1hxjdDmrh4CoiUFS9NF/cmDjoaOpQkCSF1TrUSZVJSEk6ePImEhAQUFBTInPv1118VEhipOxhjEBWIcC/xHn6d/ytWLlqJuafnIk2cBk01TRRKC+Fm6gZPC9o3lBBS98idKC9duoT+/fvD2dkZjx49gqenJ549ewbGGHx8fJQRI6nlSvolhSIhrNpawTfTF9taboOtuy1cTF0Q9yYOnhaeVJskhNRJcg/mmTdvHmbPno379+9DR0cHR48eRWJiIvz9/TF48GBlxEhqqZIRrjvu7OCmgCRnJ2PRv4sw9+FcNLdsjkb8Rmhj24aSJCGkzpI7UT58+BCjRo0CAGhoaCA3Nxf6+vpYsmQJVq5cqfAASe0lKhChycYmmHVpVplzT9OfQpAqUEFUhBCiWHInSj09Pa5f0traGrGxsdy5169fKy4yUuvdS7iH5OxkmTJbA1sAoD5JQki9IXcfZbt27XDt2jV4eHigT58+mDVrFu7fv4+///4b7dq1U0aMpJZhjCErJwsrZq+AVWcrLlm6mLjg5tib1CdJCKlX5J5HGRcXh+zsbHh5eSEnJwezZs1CaGgo3Nzc8Ouvv8LBwUFZsSoEzaOsvpLRrSGxIbiZfhNa6lqwM7JDUmYSOlt1Rlu7tpQcCSF1hlLmUUokEiQlJcHLywtAcTPsli1bPixSUmeU9EmWbm611bVF9LRoGGgZgMfjqTA6QghRDrn6KNXV1dGzZ0+8efNGWfGQWuz289tl+iRf5L7Ao9ePKEkSQuotuQfzeHp6Ii4uThmxkFqoZArIqehTmDl3Jiz1LWXOu5i40KAdQki9JvdgnmXLlmH27NlYunQpWrVqBT092f0Eqd+vfpFpbvUGeC942NB9Az766CPoaurS2q2EkHpP7kTZp08fAED//v1lmtsYY+DxeJBIJIqLjqgUYwyhcaEyza3MiKFti7ZoY9tGhZERQkjNkTtRXr58WRlxkFqkZHRraFwo4grjYKprivTcdADU1EoIaXjkTpT+/v7KiIPUIqXXblXnqUPCJDDXNse+z/ehk0MnamolhDQocg/mAYCrV69i5MiRaN++PV68eAEA2LdvH65du6bQ4IhqXHl8hVu7VcKKm9Jf5b+Cia4JJUlCSIMjd6I8evQoAgICoKuri7CwMOTn5wMAMjMzsXz5coUHSGoOYwwJKQkYsn8IV6bBK250oCXpCCENldyJctmyZdiyZQu2b98OTU1NrrxDhw4ICwuT61mbN2+Gl5cXDA0NYWhoCD8/P5w9e7bC64ODg8Hj8WS+dHR05H0LpAKv019jd9xu5PPzubJTw0/h1thbiJgQQbVJQkiDJHcf5ePHj9G5c+cy5UZGRsjIyJDrWXZ2dlixYgXc3NzAGMOePXswYMAAhIeHo1mzZuXeY2hoiMePH3PHNNFdMRKTE9Hjqx7I6J7BlbmYuFCfJCGkwZM7UVpZWeHp06dwdHSUKb927RqcnZ3letYnn3wic/zzzz9j8+bNuHnzZoWJksfjwcrKSq7XIZV7nPgYzTc2R2G7QiD7bfmuAbsoSRJCGjy5E+U333yDadOmYdeuXeDxeHj58iVu3LiB2bNnY8GCBdUORCKR4MiRI8jJyYGfn1+F12VnZ8PBwQFSqRQ+Pj5Yvnx5hUm1XhKLgbt3i79v2hSIjgby8gAdHbmPmYcHkkIvo9W14SjUl53/6qZjA9+4PEDvdfVeAwB8fQE+JVpCSN0md6L8/vvvIZVK0a1bN4jFYnTu3Bna2tqYPXs2pkyZIncA9+/fh5+fH/Ly8qCvr49jx46hadOm5V7bpEkT7Nq1C15eXsjMzMTq1avRvn17PHjwAHZ2duXek5+fzw04AopXi6+zxGLAywso2QNUQwMoKnp7Xs7jIn0+dv37HXJKJUnbTODA34Dvy5fgFwZ82Gu4uABRUZQsCSF1mtzbbJUoKCjA06dPkZ2djaZNm0JfX79aARQUFCAhIQGZmZn466+/sGPHDoSEhFSYLEsrLCyEh4cHhg0bhqVLl5Z7zaJFi7B48eIy5XVym63bt4G2bT/oEQyAyEALAnMGSxFDm9mG3GICtplAxBagUa4CYi1x6xbQhlbxIYTUPlXdZkvuRPnHH3/gs88+A19JtYTu3bvDxcUFW7durdL1gwcPhoaGBg4ePFju+fJqlPb29nUzUSqgRpmlqwb3RWbFiwlIAIn629Mhu4DOLz+slko1SkJIXaGU/SgBYMaMGZgwYQL69++PkSNHIiAgAOrq6u+/sYqkUqlMYquMRCLB/fv3ufVny6OtrQ1tbW1FhadafH5x4vmAPsr/nd8M4dOfAMgmSXstc/gG/wE09/mgfk/qoySE1Ddy1yiLiopw7tw5HDx4ECdOnACfz8fgwYMxYsQItG/fXq4XnzdvHnr37o3GjRtDJBLhwIEDWLlyJc6fP48ePXpg1KhRsLW1RVBQEABgyZIlaNeuHVxdXZGRkYFVq1bh+PHjuHfvXpWaaoGq/wVR3zDGEJsUi2a/NUOBXgGA4sUEilgR7A3tETY+DI34jVQcJSGE1Byl1Sg1NDTQr18/9OvXD2KxGMeOHcOBAwfw8ccfw87ODrElzYJVkJqailGjRkEoFMLIyAheXl5ckgSAhIQEqKm9XRPhzZs3+Oabb5CcnAwTExO0atUKoaGhVU6SDdkL4QvsT9rPJUmgeDEBE10TeFp40jQQQgipQLUH85R4/fo1Dh06hC1btuDhw4e1fputhlSjLNkF5N+ofzHr+1nI75OPlOwUAMWLCURNjKIESQhpsJRWowTA1ST379+PS5cuwd7eHsOGDcNff/1V7YCJ4slsutwZtJgAIYRUg9yJ8osvvsCpU6fA5/MxZMgQLFiwoNIFAojqnIs6J7Ppcgk3Uzf42viqICJCCKl75E6U6urq+PPPP8sd7SoQCODpSTtMqApjDFn5Wbj94jZeprzE2L/HAgZvzzsZOyF4YDB8bXypNkkIIVUkd6Lcv3+/zLFIJMLBgwexY8cO3Lt3r9b3UdZnJRsuc7XIUklyc5/NGOU9ihIkIYTIqVobNwPAf//9h8DAQFhbW2P16tXo2rUrbt68qcjYiJwEqYIKm1opSRJCSPXIVaNMTk5GcHAwdu7ciaysLAwZMgT5+fk4fvw4TdGoBTSzNWGqa8otSWevb48/Pv+DmloJIeQDVLlG+cknn6BJkyaIiorCunXr8PLlS/z222/KjI1UQUm/5MGbB9F+Z3uk56bDVNcUwT2D8XDKQ3R26ExJkhBCPkCVa5Rnz57F1KlTMXHiRLi5uSkzJiKHkn5JoUjI9Umm56bD3d4delp6qg2OEELqgSrXKK9duwaRSIRWrVqhbdu22LhxI16/fq3M2EglSmqSv17+tThJluJm6obmls1VFBkhhNQvVU6U7dq1w/bt2yEUCjF+/HgcOnQINjY2kEqluHDhAkQikTLjJO8oWUxg8a23W4g1NmiMkNEhiJgQQc2thBCiIB+0hN3jx4+xc+dO7Nu3DxkZGejRowdOnjypyPgUri4vYVeyJN3dl3fx38P/sPiO7D6bVwKvwN/RX0XREUJI3aK0/SjLI5FI8M8//2DXrl2UKJUoKz/r7ZJ0ANSgBimkAGjtVkIIkZdS13p9l7q6OgYOHIiBAwcq4nGkAu/Ok5RCiqCOQfBz8UNr29aUJAkhRAkUkihJzWBpTGaepKOhI6Z2nkoJkhBClKjaK/OQmiMuFGNvyF502deFmyd5sO9BPJj8gJIkIYQoGdUoazHGGFJyUtByU0sk5yYD/9+Enp6bDicrJ0qShBBSAyhR1mKiAhE8N3siLTdNppzmSRJCSM2hRFlLMcZw8tZJpInfJklrPWscGnyI1m4lhJAaRImyFmKMIUIQgfxG+TDjmyFNnAYbPRtEfhuJRvxGqg6PEEIaFBrMUwtFREUgTD0Mc0/P5ZJkxMQISpKEEKICVKOsZW7cvYF+E/oBQ4F0cfE0kJc5LxGfEQ9zPXMVR0cIIQ0PJcpaoGSB80NXD2HS2UmQfCIBxG/P2xvaw9PCU3UBEkJIA0aJshYQFYjgscmjeBcQI9lz9ob2CBsfRoN3CCFERShR1gJ/X/27zFZZTsZOCB4YTCNcCSFExWgwj4pdu3UNM76bAVO+qUx58MBgdHboTEmSEEJUjBKlCpT0Sa4/vR6dj3RGxoAM5LzOgY2+DYDiBQV8bXxVHCUhhBCAml5VomTT5eTsZMCguCyfn4+Dnx+EjoYOPC08qSZJCCG1BCXKGsQYg4RJcOjyIZntsoDiQTvUH0kIIbUPJcoawhjDm7w3+C3iNxToF8BS3xIp2SkAAFsDWxrZSgghtRQlyhoiKhCh2aZmXE1SN08XR4cfhZmBGW26TAghtRglyhrAGMOB/x2QaW7N1cmFnakd2ti2UWFkhBBC3kelo143b94MLy8vGBoawtDQEH5+fjh79myl9xw5cgTu7u7Q0dFB8+bNcebMmRqKtnrEhWJsPbMVUlspTHXfTgFxMXGh1XYIIaQOUGmN0s7ODitWrICbmxsYY9izZw8GDBiA8PBwNGvWrMz1oaGhGDZsGIKCgtCvXz8cOHAAAwcORFhYGDw9a1/SEReK0WRtEyTlJkH9njokTAIrPSsEDwxGJ4dO1NxKCCF1AI8xxlQdRGmmpqZYtWoVxowZU+bc0KFDkZOTg1OnTnFl7dq1g7e3N7Zs2VKl52dlZcHIyAiZmZkwNDSsfqBiMXD3bvH3TZsC0dFAXl7xsY4O0LQptgcvxricjWVuvdVqC9q0G/T2nv+/vsLjUs9EXBzg6QnwKckSQsiHqGo+qDV9lBKJBEeOHEFOTg78/PzKvebGjRuYOXOmTFlAQACOHz9e4XPz8/ORn5/PHWdlZX14sGIx4OUFxMYWH2toAEVFMpek8oHF4wAYFx9rSoBCdcAtDfD8bALAJsve8+4zynkmNDWBwkLAzQ2IiKBkSQghNUDlifL+/fvw8/NDXl4e9PX1cezYMTRt2rTca5OTk2FpaSlTZmlpieTk5HKvB4CgoCAsXrxYoTFDIHibJAGZhCbWBO5aA8MHAS9KLXB+6g/AuADwTAX4hQDwThJ8Nym+ewwUJ0kAiIkpjqENDQQihBBlU/kSdk2aNEFERARu3bqFiRMnIjAwENHR0Qp7/rx585CZmcl9JSYmfvhDPT0BF5e3xxrFf2+INQHvCYD/17JJ0j4D6ChUR5sXJUny7T3vPqPCY6C4RgkU1yhrYZ8sIYTURyqvUWppacHV1RUA0KpVK9y5cwfr16/H1q1by1xrZWWFlJQUmbKUlBRYWVlV+HxtbW1oa2srNmg+H4iK4voomYcHRA/CsPzaJsRITspcaq9ljrC+O8D/oX3V+ySpj5IQQmoNlSfKd0mlUpk+xdL8/Pxw6dIlTJ8+nSu7cOFChX2aSsXnA507AwBE+Vlocm80kiVvm4AdjRyx59M9ssvS/f/1HHmPAaBRow+NnBBCiBxUmijnzZuH3r17o3HjxhCJRDhw4ACuXLmC8+fPAwBGjRoFW1tbBAUFAQCmTZsGf39/rFmzBn379sWhQ4dw9+5dbNu2rcZjZ4xBVCCCIFWAS9culVm7dc+ne9DZoZxERwghpE5RaaJMTU3FqFGjIBQKYWRkBC8vL5w/fx49evQAACQkJEBN7W03avv27XHgwAH8+OOPmD9/Ptzc3HD8+HGVzKEUFYjg/rt78YbLEgDqb8+5mLjQNlmEEFJP1Lp5lMqmqHmUoYmh6LCrQ5nyzX02Y5T3KFpMgBBCarmq5gOVj3qtq+LuxcGMbwYA4DEegOINlylJEkJI/VLrBvPUBf+c+wejrowCM2Ew45shNDAUGYUZtOEyIYTUQ5Qoq0HbXhvMpLjFOk2chjcFb9DWrq2KoyKEEKIM1PRaDR0/6ghnY2cAxc2tzS2bqzgiQgghykI1ymrga/Jx/9v7EKQKqLmVEELqOUqU1cTX5NOmy4QQ0gBQ0yshhBBSCUqUhBBCSCUoURJCCCGVoERJCCGEVIISJSGEEFIJSpSEEEJIJShREkIIIZWgREkIIYRUghIlIYQQUglKlIQQQkglKFESQgghlaBESQghhFSCEiUhhBBSiQa3ewhjxRsuZ2VlqTgSQgghqlSSB0ryQkUaXKIUiUQAAHt7exVHQgghpDYQiUQwMjKq8DyPvS+V1jNSqRQvX76EgYEBeDye0l4nKysL9vb2SExMhKGhodJep6Ggz1Px6DNVLPo8FasmPk/GGEQiEWxsbKCmVnFPZIOrUaqpqcHOzq7GXs/Q0JB+aBSIPk/Fo89UsejzVCxlf56V1SRL0GAeQgghpBKUKAkhhJBKUKJUEm1tbSxcuBDa2tqqDqVeoM9T8egzVSz6PBWrNn2eDW4wDyGEECIPqlESQgghlaBESQghhFSCEiUhhBBSCUqUhBBCSCUoUSrY5s2b4eXlxU2S9fPzw9mzZ1UdVr2xYsUK8Hg8TJ8+XdWh1EmLFi0Cj8eT+XJ3d1d1WHXaixcvMHLkSJiZmUFXVxfNmzfH3bt3VR1WneXo6Fjm3yiPx8OkSZNUFlODW5lH2ezs7LBixQq4ubmBMYY9e/ZgwIABCA8PR7NmzVQdXp12584dbN26FV5eXqoOpU5r1qwZLl68yB1raNCvgep68+YNOnTogI8//hhnz56Fubk5YmJiYGJiourQ6qw7d+5AIpFwxwKBAD169MDgwYNVFhP9hCjYJ598InP8888/Y/Pmzbh58yYlyg+QnZ2NESNGYPv27Vi2bJmqw6nTNDQ0YGVlpeow6oWVK1fC3t4eu3fv5sqcnJxUGFHdZ25uLnO8YsUKuLi4wN/fX0URUdOrUkkkEhw6dAg5OTnw8/NTdTh12qRJk9C3b190795d1aHUeTExMbCxsYGzszNGjBiBhIQEVYdUZ508eRK+vr4YPHgwLCws0LJlS2zfvl3VYdUbBQUF+OOPP/D1118rdROL96EapRLcv38ffn5+yMvLg76+Po4dO4amTZuqOqw669ChQwgLC8OdO3dUHUqd17ZtWwQHB6NJkyYQCoVYvHgxOnXqBIFAAAMDA1WHV+fExcVh8+bNmDlzJubPn487d+5g6tSp0NLSQmBgoKrDq/OOHz+OjIwMjB49WqVx0Mo8SlBQUICEhARkZmbir7/+wo4dOxASEkLJshoSExPh6+uLCxcucH2TXbp0gbe3N9atW6fa4OqBjIwMODg44Ndff8WYMWNUHU6do6WlBV9fX4SGhnJlU6dOxZ07d3Djxg0VRlY/BAQEQEtLC//8849K46CmVyXQ0tKCq6srWrVqhaCgILRo0QLr169XdVh10r1795CamgofHx9oaGhAQ0MDISEh2LBhAzQ0NGQ6/Yn8jI2N8dFHH+Hp06eqDqVOsra2LvMHsIeHBzVnK8Dz589x8eJFjB07VtWhUNNrTZBKpcjPz1d1GHVSt27dcP/+fZmyr776Cu7u7pg7dy7U1dVVFFn9kJ2djdjYWHz55ZeqDqVO6tChAx4/fixT9uTJEzg4OKgoovpj9+7dsLCwQN++fVUdCiVKRZs3bx569+6Nxo0bQyQS4cCBA7hy5QrOnz+v6tDqJAMDA3h6esqU6enpwczMrEw5eb/Zs2fjk08+gYODA16+fImFCxdCXV0dw4YNU3VoddKMGTPQvn17LF++HEOGDMHt27exbds2bNu2TdWh1WlSqRS7d+9GYGBgrZi+pPoI6pnU1FSMGjUKQqEQRkZG8PLywvnz59GjRw9Vh0YIkpKSMGzYMKSlpcHc3BwdO3bEzZs3ywzJJ1XTunVrHDt2DPPmzcOSJUvg5OSEdevWYcSIEaoOrU67ePEiEhIS8PXXX6s6FAA0mIcQQgipFA3mIYQQQipBiZIQQgipBCVKQgghpBKUKAkhhJBKUKIkhBBCKkGJkhBCCKkEJUpCCCGkEpQoCanDtm3bBnt7e6ipqWHdunVYtGgRvL29VR1WtXXp0gXTp09XdRiEyKBESUgFRo8ejYEDB9b46wYHB8PY2Pi912VlZWHy5MmYO3cuXrx4gXHjxiklnrqefAn5ULSEHSF1VEJCAgoLC9G3b19YW1urOhxC6i2qURJSRV26dMHUqVPx3XffwdTUFFZWVli0aJHMNTweD5s3b0bv3r2hq6sLZ2dn/PXXX9z5K1eugMfjISMjgyuLiIgAj8fDs2fPcOXKFXz11VfIzMwEj8cDj8cr8xpAca2zefPmAABnZ2fu/ndJpVIsWbIEdnZ20NbWhre3N86dOydzzdy5c/HRRx+Bz+fD2dkZCxYsQGFhIfc6ixcvRmRkJBdPcHBwmdf5999/oaOjI/O+AGDatGno2rUrACAtLQ3Dhg2Dra0t+Hw+mjdvjoMHD1bwab/9PI8fPy5TZmxsLBNDYmIihgwZAmNjY5iammLAgAHlfhaEVBclSkLksGfPHujp6eHWrVv45ZdfsGTJEly4cEHmmgULFmDQoEGIjIzEiBEj8MUXX+Dhw4dVen779u2xbt06GBoaQigUQigUYvbs2WWuGzp0KC5evAgAuH37NoRCIezt7ctct379eqxZswarV69GVFQUAgIC0L9/f8TExHDXGBgYIDg4GNHR0Vi/fj22b9+OtWvXcq8za9YsNGvWjItn6NChZV6nW7duMDY2xtGjR7kyiUSCw4cPcwuE5+XloVWrVjh9+jQEAgHGjRuHL7/8Erdv367SZ1OewsJCBAQEwMDAAFevXsX169ehr6+PXr16oaCgoNrPJUQGI4SUKzAwkA0YMIA79vf3Zx07dpS5pnXr1mzu3LncMQA2YcIEmWvatm3LJk6cyBhj7PLlywwAe/PmDXc+PDycAWDx8fGMMcZ2797NjIyM3hvfu/cxxtjChQtZixYtuGMbGxv2888/l4n522+/rfC5q1atYq1atarwmRWZNm0a69q1K3d8/vx5pq2tLfNe39W3b182a9Ys7tjf359NmzaNOwbAjh07JnOPkZER2717N2OMsX379rEmTZowqVTKnc/Pz2e6urrs/Pnz742ZkKqgPkpC5ODl5SVzbG1tjdTUVJkyPz+/MscRERHKDq2MrKwsvHz5Eh06dJAp79ChAyIjI7njw4cPY8OGDYiNjUV2djaKiopgaGgo9+uNGDEC7dq1w8uXL2FjY4P9+/ejb9++3MAkiUSC5cuX488//8SLFy9QUFCA/Px88Pn8ar/HyMhIPH36FAYGBjLleXl5iI2NrfZzCSmNEiUhctDU1JQ55vF4kEqlVb5fTa24t4OV2t2upD9QFW7cuIERI0Zg8eLFCAgIgJGREQ4dOoQ1a9bI/azWrVvDxcUFhw4dwsSJE3Hs2DGZvsRVq1Zh/fr1WLduHZo3bw49PT1Mnz690iZSHo8n81kBsp9XdnY2WrVqhf3795e5l/bYJIpCiZIQBbt58yZGjRolc9yyZUsAb395C4VCmJiYAECZ2qaWlhYkEskHx2FoaAgbGxtcv34d/v7+XPn169fRpk0bAEBoaCgcHBzwww8/cOefP39e7XhGjBiB/fv3w87ODmpqaujbt6/M6w4YMAAjR44EUDzQ6MmTJ2jatGmFzzM3N4dQKOSOY2JiIBaLuWMfHx8cPnwYFhYW1aoFE1IVNJiHEAU7cuQIdu3ahSdPnmDhwoW4ffs2Jk+eDABwdXWFvb09Fi1ahJiYGJw+fbpM7c3R0RHZ2dm4dOkSXr9+LZMY5DVnzhysXLkShw8fxuPHj/H9998jIiIC06ZNAwC4ubkhISEBhw4dQmxsLDZs2IBjx46ViSc+Ph4RERF4/fo18vPzK3y9ESNGICwsDD///DM+//xzaGtrc+fc3Nxw4cIFhIaG4uHDhxg/fjxSUlIqjb9r167YuHEjwsPDcffuXUyYMEGmVj9ixAg0atQIAwYMwNWrVxEfH48rV65g6tSpSEpKqs5HRkgZlCgJUbDFixfj0KFD8PLywt69e3Hw4EGu1qSpqYmDBw/i0aNH8PLywsqVK7Fs2TKZ+9u3b48JEyZg6NChMDc3xy+//FLtWKZOnYqZM2di1qxZaN68Oc6dO4eTJ0/Czc0NANC/f3/MmDEDkydPhre3N0JDQ7FgwQKZZwwaNAi9evXCxx9/DHNz80qndLi6uqJNmzaIioriRruW+PHHH+Hj44OAgAB06dIFVlZW713QYc2aNbC3t0enTp0wfPhwzJ49W6ZPk8/n47///kPjxo3x2WefwcPDA2PGjEFeXh7VMInC8Ni7HQCEkGrj8Xg4duyYSlb0IYQoB9UoCSGEkEpQoiSEEEIqQaNeCVEg6skgpP6hGiUhhBBSCUqUhBBCSCUoURJCCCGVoERJCCGEVIISJSGEEFIJSpSEEEJIJShREkIIIZWgREkIIYRUghIlIYQQUon/A0vsOllURbMRAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcoAAAHACAYAAAAiByi6AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAe4FJREFUeJzt3XdYk+fXB/Bv2IQNskF2BUVExIEL68JVtbVqHRVbraPuVautdVa0ah217oFaV6111Fn1p1TFzTLiQEABDaAgEAgzud8/eHkkMiSYEMb5XBdXee5n5CQVDvfmMcYYCCGEEFIuNVUHQAghhNRmlCgJIYSQSlCiJIQQQipBiZIQQgipBCVKQgghpBKUKAkhhJBKUKIkhBBCKkGJkhBCCKmEhqoDqGlSqRQvX76EgYEBeDyeqsMhhBCiIowxiEQi2NjYQE2t4npjg0uUL1++hL29varDIIQQUkskJibCzs6uwvMNLlEaGBgAKP5gDA0NVRwNIYQQVcnKyoK9vT2XFyrS4BJlSXOroaEhJUpCCCHv7YajwTyEEEJIJShREkIIIZWgREkIIYRUosH1UVYFYwxFRUWQSCSqDoUQUgXq6urQ0NCgKV9EKShRvqOgoABCoRBisVjVoRBC5MDn82FtbQ0tLS1Vh0LqGUqUpUilUsTHx0NdXR02NjbQ0tKiv1AJqeUYYygoKMCrV68QHx8PNze3SiePEyIvSpSlFBQUQCqVwt7eHnw+X9XhEEKqSFdXF5qamnj+/DkKCgqgo6Oj6pBIPUJ/dpWD/holpO6hn1uiLPQvixBCCKkEJUpCCCGkEpQoSa3D4/Fw/PhxVYdBCCEAKFHWCzwer9KvRYsWqTpEQgips2jUaz0gFAq57w8fPoyffvoJjx8/5sr09fW57xljkEgk0NCg//WEkLqHMYYiaRGysrJgamxaI1P4qEb5Howx5OTkqOSLMValGK2srLgvIyMj8Hg87vjRo0cwMDDA2bNn0apVK2hra+PatWsYPXo0Bg4cKPOc6dOno0uXLtyxVCpFUFAQnJycoKurixYtWuCvv/6qMI758+ejbdu2ZcpbtGiBJUuWAADu3LmDHj16oFGjRjAyMoK/vz/CwsIqfOaVK1fA4/GQkZHBlUVERIDH4+HZs2dc2bVr19CpUyfo6urC3t4eU6dORU5OTuUfHCGkzimUFOJw7GFsi9mGuBdxNfKaVK14D7FYLFMjq0nZ2dnQ09NTyLO+//57rF69Gs7OzjAxManSPUFBQfjjjz+wZcsWuLm54b///sPIkSNhbm4Of3//MtePGDECQUFBiI2NhYuLCwDgwYMHiIqKwtGjRwEAIpEIgYGB+O2338AYw5o1a9CnTx/ExMS8d0+4isTGxqJXr15YtmwZdu3ahVevXmHy5MmYPHkydu/eXa1nEkJqH6lUivEzxuOfxv8gTZyG37R+w9PZT8HXVO68d0qUDcSSJUvQo0ePKl+fn5+P5cuX4+LFi/Dz8wMAODs749q1a9i6dWu5ibJZs2Zo0aIFDhw4gAULFgAA9u/fj7Zt28LV1RUA0LVrV5l7tm3bBmNjY4SEhKBfv37Vem9BQUEYMWIEpk+fDgBwc3PDhg0b4O/vj82bN9Pkc0LqMMYYRAUiRCVHYfsv27FXZy/w/yuMCguEEKQK0Ma2jVJjoET5Hnw+H9nZ2Sp7bUXx9fWV6/qnT59CLBaXSa4FBQVo2bJlhfeNGDECu3btwoIFC8AYw8GDBzFz5kzufEpKCn788UdcuXIFqampkEgkEIvFSEhIkO8NlRIZGYmoqCjs37+fK2OMcUsSenh4VPvZhBDVEhWI4P67O4QiIUwdTIHct+fsDe3haeGp9BhUmigdHR3x/PnzMuXffvstfv/993LvOXLkCBYsWIBnz57Bzc0NK1euRJ8+fZQWI4/HU1jzpyq9+x7U1NTK9IEWFhZy35f8cXD69GnY2trKXKetrV3h6wwbNgxz585FWFgYcnNzkZiYiKFDh3LnAwMDkZaWhvXr18PBwQHa2trw8/NDQUFBuc8rWW2ldKyl4yyJdfz48Zg6dWqZ+xs3blxhrISQ2o0xhghhBISi4gGL6bnp3DlbA1uEjQ9TerMroOJEeefOHZmtrAQCAXr06IHBgweXe31oaCiGDRuGoKAg9OvXDwcOHMDAgQMRFhYGT0/l/1VRn5ibm0MgEMiURUREQFNTEwDQtGlTaGtrIyEhodxm1orY2dnB398f+/fvR25uLnr06AELCwvu/PXr17Fp0ybuj5vExES8fv260jiB4pG9JX2rERERMtf4+PggOjqaa94lhNR9jDG8znmN80nnYco3Rbo4Xeb8gUEH0IjfqEZiUemoV3Nzc5kRm6dOnYKLi0uFv5jXr1+PXr16Yc6cOfDw8MDSpUvh4+ODjRs31nDkdV/Xrl1x9+5d7N27FzExMVi4cKFM4jQwMMDs2bMxY8YM7NmzB7GxsQgLC8Nvv/2GPXv2VPrsESNG4NChQzhy5AhGjBghc87NzQ379u3Dw4cPcevWLYwYMQK6uroVPsvV1RX29vZYtGgRYmJicPr0aaxZs0bmmrlz5yI0NBSTJ09GREQEYmJicOLECUyePLkanwwhpDbIyM2A11YvLL+0HOnidJiom8DJ2AkA4GbqBl8b+bqTPkSt6aMsKCjAH3/8gZkzZ1Y4L+bGjRsy/V0AEBAQQKu4VENAQAAWLFiA7777Dnl5efj6668xatQo3L9/n7tm6dKlMDc3R1BQEOLi4mBsbAwfHx/Mnz+/0md//vnnmDx5MtTV1ctMQdm5cyfGjRsHHx8f2NvbY/ny5Zg9e3aFz9LU1MTBgwcxceJEeHl5oXXr1li2bJlMq4OXlxdCQkLwww8/oFOnTmCMwcXFRabJlxBSilgM3L0L5OUVH+voAE2bAtHRxWWKPpbzNURZaRhz5CckOydzIb+RvMHxLsHQSRTCU90a/Bt3AV9foAZ2euKxqk7WU7I///wTw4cPR0JCAmxsbMq9RktLC3v27MGwYcO4sk2bNmHx4sVISUkp9578/Hzk5+dzx1lZWbC3t0dmZiYMDQ1lrs3Ly0N8fDycnJxopCQhdQz9/FaRWAx4eQGxsbLlGhpAUZHyjt9zDQMgMuHjmmU+xveWIMkIUIMapJACAFzSgKjt6uDnve2ug4sLEBVV7WSZlZUFIyOjcvOBTNjVeroS7Ny5E717964wSVZXUFAQFi9erNBnEkJInSUQlE2SQNmkpujj91wjMtBCkx8MkZz9thYphRQbz6rBM1mK1i8BfqFE9v7Y2OL300a500Nqxco8z58/x8WLFzF27NhKr7OysipTc0xJSYGVlVWF98ybNw+ZmZncV2JiokJiJoSQOsnTs7gm9q53l7VU9HEF1zAAWQZaOOilJpMkAcA+E/gqTAr/5wC/sJz7XVyK34+S1Yoa5e7du2FhYYG+fftWep2fnx8uXbrETSwHgAsXLnAT4sujra1d6XQGQghpUPj84ubKWtJHKRLcg3vYVxCKhDJNrbZa5gibcRX8gSkVv0YN9VGqPFFKpVLs3r0bgYGBZRbqHjVqFGxtbREUFAQAmDZtGvz9/bFmzRr07dsXhw4dwt27d7Ft2zZVhE4IIXUTnw907ly2/N0yRR+XKitZcWeX9kNunqQUUoxtMxbD3YejrV3b4jmS9k3e/0wlU3mivHjxIhISEvD111+XOZeQkMBNOAeA9u3b48CBA/jxxx8xf/58uLm54fjx4zSHkhBC6hhRgQhNNjaRaW611rbGmq5rYKBlUCO7glSVyhNlz549K9wl48qVK2XKBg8eXOGCBIQQQuqGiBcRZfokD35xEIbaFY8+VZVaMZiHEEJIw8AYgzhPjHU/rYOV/tuBmC4mLmht21qFkVVM5TVKQgghDUdadhp+F/yOFpNaoK9RXyRlJqGzVee3fZK1ECVKUiO6dOkCb29vrFu3TtWhEEJU5MWbF3Bd7Yo8reKRsNY61ng0/VGt65N8FzW91hOjR48Gj8cDj8eDpqYmnJycuOXp6oJFixbB29tb1WGo1LNnz8Dj8cos+l4XXLlyBT4+PtDW1oarqyuCg4Pfe/2AAQNgbW0NPT09eHt7y2yTBhRv+j1o0CA4OjqCx+PRH1l1FGMMWflZOP/kPFxWuXBJEgCEeUI8ev2oVidJgBJlvdKrVy8IhULExcVh7dq12Lp1KxYuXKjqsBoExhiKyluJpJaSSCSQSqVlyiva7qwy8fHx6Nu3Lz7++GNERERg+vTpGDt2LM6fP1/hPaGhofDy8sLRo0cRFRWFr776CqNGjcKpU6e4a8RiMZydnbFixYpKFxUhtVvJfpK9DvZCvna+zDkXE5ca2U/yg7EGJjMzkwFgmZmZZc7l5uay6Oholpubq4LIPkxgYCAbMGCATNlnn33GWrZsyR3n5eWxKVOmMHNzc6atrc06dOjAbt++zZ3fvXs3MzIyknnGsWPHWOl/JgsXLmQtWrRge/fuZQ4ODszQ0JANHTqUZWVlcddkZ2ezL7/8kunp6TErKyu2evVq5u/vz6ZNm1Zu7Lt372YoXuqR+9q9ezdjjLHnz5+z/v37Mz09PWZgYMAGDx7MkpOTK/wc4uPjGQB29OhR1qVLF6arq8u8vLxYaGiozHVXr15lHTt2ZDo6OszOzo5NmTKFZWdnc+f37t3LWrVqxfT19ZmlpSUbNmwYS0lJ4c5fvnyZAWBnzpxhPj4+TFNTk12+fJlJJBK2fPly5ujoyHR0dJiXlxc7cuQId196ejobPnw4a9SoEdPR0WGurq5s165djDFW5jPw9/ev8H2+Ky8vj82aNYvZ2NgwPp/P2rRpwy5fvizzGRsZGbETJ04wDw8Ppq6uzuLj45mDgwNbsmQJ+/LLL5mBgQELDAys8muW+O6771izZs1kyoYOHcoCAgLkek6fPn3YV199Ve45BwcHtnbt2krvr8s/v/WVVCplF59cZFgEmS/bNbbs/NPzLKcgR6XxVZYPSqMapTKJxcDt28X/rWECgQChoaHQ0tLiyr777jscPXoUe/bsQVhYGFxdXREQEID09PRKnlRWbGwsjh8/jlOnTuHUqVMICQnBihUruPNz5sxBSEgITpw4gX///RdXrlxBWFhYhc8bOnQoZs2ahWbNmkEoFEIoFGLo0KGQSqUYMGAA0tPTERISggsXLiAuLq5Ku4L88MMPmD17NiIiIvDRRx9h2LBhXI0vNjYWvXr1wqBBgxAVFYXDhw/j2rVrMttyFRYWYunSpYiMjMTx48fx7NkzjB49uszrfP/991ixYgUePnwILy8vBAUFYe/evdiyZQsePHiAGTNmYOTIkQgJCQEALFiwANHR0Th79iwePnyIzZs3o1Gj4j31bt++DaB4brFQKMTff//9/v8Z/2/y5Mm4ceMGDh06hKioKAwePBi9evVCTEwMd41YLMbKlSuxY8cOPHjwgNsndPXq1WjRogXCw8OxYMECAECzZs2gr69f4Vfv3r255964cQPdu3eXiScgIAA3btyocvwAkJmZCVNTU7nuIbUXYwwZORl4VvgMZnwzAMV9kiGjQ/BkyhP0dOlZawfvlFEzebv2qLEaZU4OY25ujAHF/81R7l9OgYGBTF1dnenp6TFtbW0GgKmpqbG//vqLMVZcy9PU1GT79+/n7ikoKGA2Njbsl19+YYxVvUbJ5/NlapBz5sxhbdu2ZYwxJhKJmJaWFvvzzz+582lpaUxXV7fCGmXJc1u0aCFT9u+//zJ1dXWWkJDAlT148IABkKkJl1ZSo9yxY0eZex4+fMgYY2zMmDFs3LhxMvddvXqVqampVfj//s6dOwwAE4lEjLG3Ncrjx49z1+Tl5TE+n1+m9jpmzBg2bNgwxhhjn3zySYW1ppLYw8PDyz1fkefPnzN1dXX24sULmfJu3bqxefPmMcbe1tojIiJkrnFwcGADBw4s88xnz56xmJiYCr+SkpK4a93c3Njy5ctl7j99+jQDwMRicZXew+HDh5mWlhYTCATlnqcaZd2TlZ3F9j3ex6zXWDMsAjMPMmep2amqDktGVWuUNOpVWQQCoOSv+ZiYGlnh/uOPP8bmzZuRk5ODtWvXQkNDA4MGDQJQXIsqLCxEhw4duOs1NTXRpk0bPHz4UK7XcXR0hIGBAXdsbW2N1NRU7nUKCgrQtm1b7rypqSmaNGlS5jnv8/DhQ9jb28Pe3p4ra9q0KYyNjfHw4UO0bl3xnCsvLy+Z+AAgNTUV7u7uiIyMRFRUlMzgEcYYpFIp4uPj4eHhgXv37mHRokWIjIzEmzdvuP68hIQENG3alLvP1/ft5rFPnz6FWCxGjx49ZGIpKChAy5YtAQATJ07EoEGDEBYWhp49e2LgwIFo37693J9Naffv34dEIsFHH30kU56fnw8zMzPuWEtLS+ZzKe89lHBwcPigmORx+fJlfPXVV9i+fTuaNWtWY69LFIv9/5J0glQB3AzcMOLLEXCY5MAtT/cq/xXiM+Jhrmeu4kjlR4lSWTw9ATe34iTp5lYjK9zr6enB1dUVALBr1y60aNECO3fuxJgxY6p0v5qaWplVkgoLC8tcp6mpKXPM4/HKHRiiSqVjLBlRVxJjdnY2xo8fj6lTp5a5r3HjxsjJyUFAQAACAgKwf/9+mJubIyEhAQEBAWUGu+jp6XHfZ2dnAwBOnz4NW1tbmetKFubv3bs3nj9/jjNnzuDChQvo1q0bJk2ahNWrV1f7vWZnZ0NdXR337t2Durq6zDl9fX3ue11d3XJHF5Z+DyWaNWuG58+fV/ianTp1wtmzZwFUvKuPoaEhdHV1K409JCQEn3zyCdauXYtRo0ZVei2p3UoG7QhFQujm6SLXORe49fZ8nRm4Uw5KlMrC5wMREcU1SU/PGlnhvjQ1NTXMnz8fM2fOxPDhw+Hi4gItLS1cv36dqy0UFhbizp073G4s5ubmEIlEyMnJ4X55yjtVwcXFBZqamrh16xYaN24MAHjz5g2ePHkCf3//Cu/T0tKCRCK715yHhwcSExORmJjI1Sqjo6ORkZEhU6uTl4+PD6Kjo7k/Kt51//59pKWlYcWKFdzr3r17973Pbdq0KbS1tZGQkFDpezU3N0dgYCACAwPRqVMnzJkzB6tXr+b6k9/9HN6nZcuWkEgkSE1NRadOneS6tyJnzpwp94+kEqUToJ+fH86cOSNz/n27+gDFU0T69euHlStXYty4cR8WMFE5QaqAqz3m6uQC7+ydvWvArrrTJ/kOSpTKxOcrvbm1MoMHD8acOXPw+++/Y/bs2Zg4cSLmzJkDU1NTNG7cGL/88gvEYjFX42zbti34fD7mz5+PqVOn4tatW++dD/cufX19jBkzBnPmzIGZmRksLCzwww8/yCxuXx5HR0fEx8cjIiICdnZ2MDAwQPfu3dG8eXOMGDEC69atQ1FREb799lv4+/uX21xYVXPnzkW7du0wefJkjB07Fnp6eoiOjsaFCxewceNGNG7cGFpaWvjtt98wYcIECAQCLF269L3PNTAwwOzZszFjxgxIpVJ07NgRmZmZuH79OgwNDREYGIiffvoJrVq1QrNmzZCfn49Tp07Bw8MDAGBhYQFdXV2cO3cOdnZ20NHRgZGR0Xtf96OPPsKIESMwatQorFmzBi1btsSrV69w6dIleHl5vXf7uvLI0/Q6YcIEbNy4Ed999x2+/vpr/O9//8Off/6J06dPc9ds3LgRx44dw6VLlwAUN7f269cP06ZNw6BBg5CcXLzmp5aWFjegp6CgANHR0dz3L168QEREBPT19Sv8I4eojpO+E6wNrCEUCWGlbwVeEQ/CvOLE6WLiAl+b6v/MqlxNdJjWJg1peghjjAUFBTFzc3OWnZ3NcnNz2ZQpU1ijRo3KnR7CWPHgHVdXV6arq8v69evHtm3bVu70kNLWrl3LHBwcuGORSMRGjhzJ+Hw+s7S0ZL/88kul00MYKx4IM2jQIGZsbKyQ6SGlB8S8efOGAZCZLnH79m3Wo0cPpq+vz/T09JiXlxf7+eefufMHDhxgjo6OTFtbm/n5+bGTJ0/KPLdkMM+bN29kXl8qlbJ169axJk2aME1NTWZubs4CAgJYSEgIY4yxpUuXMg8PD6arq8tMTU3ZgAEDWFxcHHf/9u3bmb29PVNTU+Omh5S8Vnx8fIXvu6CggP3000/M0dGRaWpqMmtra/bpp5+yqKgoxlj5A7UYq9ogmaq4fPky8/b2ZlpaWszZ2Zn7/1di4cKFMv9GAgMDy0yHwTtTYkr+X1Z2TWl1+ee3rsvKymI9+/Rk+x7vY4tCF7FFoYuYUCRkIc9CWMizEJVPA6lIVQfz8BirYOuOeiorKwtGRkbIzMyEoaHsKvV5eXmIj4+Hk5MTdHR0KngCITVr9+7dWL58OaKjo8v0D5O36Oe35jHGkCHKwJChQxC4PhCxabHYcmMLkkXJcDV1ReSEyFrd3FpZPiiNml4JqeXOnDmD5cuXU5IktQb7/xGuV55ewa03t9DmhzaYc2oOkkVvt816mv4UglQB2tiqrvtJUShRElLLHTlyRNUhECKjvE2X3+Vm6lZnR7m+ixIlIYSQSrH/X9j89ovbUOepIycnp8Ik6WLigl0DdsHXxrdWN7vKgxIlIYSQSpXMkSxJjpp5mjA3M8ernFfcNU7GTggeGFyvEmQJSpSEEEIqJUgVyNQgC3UKIZFKML/bfHS07Ag9Lb16mSBLUKIkhBBSKU8LT1jpW8kky/TcdPR16As/O79av5/kh1LI7iEZGRmKeAwhhJBaqCCnAKs+WYX53ebDlF+8IISbqRu8rbzrfZIEqpEoV65cicOHD3PHQ4YMgZmZGWxtbREZGanQ4AghhKhWUkoSuozoAgDwtvHGP93/wc0xNxExIaLeNrW+S+5EuWXLFm79ywsXLuDChQs4e/YsevfujTlz5ig8QEIIITWrZJTr4XuH4fyrMx60e4DRW0ajcVZj+Hn7oa1d2waTJIFq9FEmJydzifLUqVMYMmQIevbsCUdHR5mtlQiR16JFi3D8+PFKF2IfPXo0MjIycPz48RqLi5CGRmae5P/nQ4mRBDxzXoNoan2X3DVKExMTJCYmAgDOnTvH7WzOGJN71wOiOK9evcLEiRPRuHFjaGtrw8rKCgEBAbh+/Tp3jaOjI3i84n/ofD4fzZs3x44dO+R+rQcPHmDQoEHc89atW1fudS9evMDIkSNhZmYGXV1dNG/evEq7cFRm/fr1Mgu1d+nShdv9pL7Iy8vDpEmTYGZmBn19fQwaNKjMNlbvYozhp59+grW1NXR1ddG9e3fElOyH+v9+/vlntG/fHnw+H8bGxkp8B6SuKKk5hiaGIqcghyu/HnO9zDxJe0P7erOAgLzkTpSfffYZhg8fjh49eiAtLQ29e/cGAISHh9OK/io0aNAghIeHY8+ePXjy5AlOnjyJLl26IC0tTea6JUuWQCgUQiAQYOTIkfjmm2+4fQWrSiwWw9nZGStWrICVlVW517x58wYdOnSApqYmzp49i+joaKxZswYmJibVfo8AYGRkVCt/yb+7TyVQvF1WdfbpnDFjBv755x8cOXIEISEhePnyJT777LNK7/nll1+wYcMGbNmyBbdu3YKenh4CAgKQl5cnE+PgwYMxceJEuWMi9VPJ/MgOuzrAe6s3cgpykJyajJ++/QlW+m9/tm0NbBE2PqxBNbfKkHe19YKCArZq1So2depUFhYWxpX/+uuvbPv27fI+rsbVx91DSnbHuHLlSqXXlbdThKmpKZsxY0a1X7ui3Sfmzp3LOnbsKNezSnYm2bJlC7Ozs2O6urps8ODBLCMjg7um9C4p5e1AER8fz9LT09nw4cNZo0aNmI6ODnN1dWW7du2SK5arV6+yjh07Mh0dHWZnZ8emTJnCsrOzZd73kiVL2JdffskMDAxYYGAgt0PHiRMnmIeHB1NXV690x4/yZGRkME1NTXbkyBGu7OHDhwwAu3HjRrn3SKVSZmVlxVatWiXzHG1tbXbw4MEy11e0k0hdV1d/flXpesJ1hkXgvk5GnmR/xv7J/oz9kzl7OrM9/+1hV+Kv1NrdPz5UVXcPkbtGqampidmzZ2P9+vVo2bIlVz5jxgyMHTtWIcm7vhAXinH7xW2IC8VKfR19fX3o6+vj+PHjyM/Pr9I9UqkUR48exZs3b7gNgxXp5MmT8PX1xeDBg2FhYYGWLVti+/bt773v6dOn+PPPP/HPP//g3LlzCA8Px7ffflvutevXr4efnx+++eYbCIVCCIVC2NvbY8GCBYiOjsbZs2fx8OFDbN68GY0aNapy7LGxsejVqxcGDRqEqKgoHD58GNeuXcPkyZNlrlu9ejVatGiB8PBwLFiwAEBxbXvlypXYsWMHHjx4AAsLC+zfv5/7f1TR19WrVwEA9+7dQ2FhIdelAQDu7u5o3Lgxbty4UW688fHxSE5OlrnHyMgIbdu2rfAeQoDi+ZHWBtYAAEdDR2TqZCK/KB9PXz/FkcNHMKrTKPg7+jfcmuT/q9aCA/v27cPWrVsRFxeHGzduwMHBAevWrYOTkxMGDBig6BjrJHGhGN5bvBGTHgM3UzelDqXW0NBAcHAwvvnmG2zZsgU+Pj7w9/fHF198AS8vL5lr586dix9//BH5+fkoKiqCqampUv7AiYuLw+bNmzFz5kzMnz8fd+7cwdSpU6GlpYXAwMAK78vLy8PevXtha2sLAPjtt9/Qt29frFmzpkwzr5GREbS0tMDn82XOJSQkoGXLltzmzo6OjnLFHhQUhBEjRnB9n25ubtiwYQP8/f2xefNmbgunrl27YtasWdx9V69eRWFhITZt2oQWLVpw5f3793/vQLeS95ucnAwtLa0yzcuWlpbc5sbvKim3tLSs8j2EAABfk49f+v2CxIxE2BvbI78oH3NPz0WaOA27THch0q12b5NVU+SuUZb88uvduzcyMjK4ATzGxsYVDupoiASpAsSkFw+miEmPgSBVoNTXGzRoEF6+fImTJ0+iV69euHLlCnx8fGQGvgDAnDlzEBERgf/9739o27Yt1q5dq5S+ZalUCh8fHyxfvhwtW7bEuHHjuERemcaNG3NJAwD8/PwglUrx+PHjKr/2xIkTcejQIXh7e+O7775DaGioXLFHRkYiODhYpsYXEBAAqVSK+Ph47rqSRFyalpZWmT9ODAwM4OrqWumXrq6uXDESoijaGtpwbeSK/KJ8zDw5E2ni4nENJdtkkWokyt9++w3bt2/HDz/8AHV1da7c19cX9+/fV2hwdZmnhSfcTN0A1Nx2Mzo6OujRowcWLFiA0NBQjB49GgsXLpS5plGjRnB1dUWnTp1w5MgRTJ06FdHR0QqPxdraGk2bNpUp8/DwQEJCgsJf6129e/fG8+fPMWPGDLx8+RLdunXD7Nmzq3x/dnY2xo8fj4iICO4rMjISMTExcHFx4a7T09Mrc6+urm6Z4fPyNL1aWVmhoKCgzGpXKSkpFQ6cKil/d2RsZfcQAgDxSfF4+vopsvKyMPf0XGTlZ3HnGvIo13fJ3fQaHx8v0zdZQltbGzk5OeXc0TDxNfmImBABQaoAnhaeKmm+aNq0aaXzDe3t7TF06FDMmzcPJ06cUOhrd+jQoUwt8MmTJ3BwcKj0voSEBLx8+RI2NjYAgJs3b0JNTQ1NmjQp93otLa1ypyWZm5sjMDAQgYGB6NSpE+bMmYPVq1dXKXYfHx9ER0crrKYtT9Nrq1atoKmpiUuXLmHQoEEAgMePHyMhIQF+fn7l3uvk5AQrKytcunQJ3t7eAIp3br916xaNcCXlYowhJiEGXhu9kK+fDzO+GVeTBAALPYuGPcr1HXInSicnJ0RERJT5hXfu3Dl4eHgoLLD6gK/Jr5HdvdPS0jB48GB8/fXX8PLygoGBAe7evYtffvnlvX3G06ZNg6enJ+7evVtuU2J5CgoKuFpoQUEBXrx4gYiICOjr63PJZcaMGWjfvj2WL1+OIUOG4Pbt29i2bRu2bdtW6bN1dHQQGBiI1atXIysrC1OnTsWQIUMqrBk5Ojri1q1bePbsGfT19WFqaopFixahVatWaNasGfLz83Hq1Cm5/m3OnTsX7dq1w+TJkzF27Fjo6ekhOjoaFy5cwMaNG6v8nBIGBgYwMDCo0rVGRkYYM2YMZs6cCVNTUxgaGmLKlCnw8/NDu3btuOvc3d0RFBSETz/9FDweD9OnT8eyZcvg5uYGJycnLFiwADY2Nhg4cCB3T0JCAtLT05GQkACJRMIt7ODq6gp9fX253xepmxhjeJb0DEdTjiJfv3jwX5o4DXaGdkjKSoK9oT3CxoehEb/qA+DqPXmH027fvp3Z2tqyQ4cOMT09PXbw4EG2bNky7vvarj5OD8nLy2Pff/898/HxYUZGRozP57MmTZqwH3/8kYnFYu66iqZyBAQEsN69e3PHANju3bsrfL34+Pgy0zIAMH9/f5nr/vnnH+bp6cm0tbWZu7s727ZtW6Xvo2R6yKZNm5iNjQ3T0dFhn3/+OUtPT+euKT09hDHGHj9+zNq1a8d0dXW56SFLly5lHh4eTFdXl5mamrIBAwawuLg47h5/f38WGBhYaSy3b99mPXr0YPr6+kxPT495eXmxn3/+mTtf3mepqGkXubm57Ntvv2UmJiaMz+ezTz/9lAmFQplr3v1/JJVK2YIFC5ilpSXT1tZm3bp1Y48fP5a5p7zpNADY5cuXPzjm2qCu/vzWFKlUyjLzMtnfd/9mOx7sYPOvzmemv5gyLAJz2+DGXuW8YreSbtXbqSDlqer0EB5jjMmbXPfv349FixYhNjYWAGBjY4PFixdjzJgxH565lSwrKwtGRkbIzMyEoaGhzLm8vDzEx8fDycmJG9nY0MTHx+Ojjz5CdHQ03NzcVB2OUjg4OGDx4sUYPXq0qkMhCkQ/v5XLys+C++/uEIqEUIMapCheDMPWwBYREyIaZA2ysnxQWrWmh4wYMQIjRoyAWCxGdnY2LCwsqh0oqV3OnDmDcePG1dsk+eDBAxgZGWHUqFGqDoWQGsMYw4WoCxCKhADAJUkAeCF6gbg3cQ0yUVbVB23czOfzwedTZ299MmnSJFWHoFTNmjVDVFSUqsMgpMYwxvD02VNk6GVwg3bUoQ4JigfBuZi40OjW96hSomzZsmWVV4wPCwv7oIAIIYQoTtyzONwqvIUF5xYgTZwGaz1r3Bh7A88znwMAfG18aXTre1QpUZYeOUcIIaRuePj0IXqO6omxa8Zyza7CHCFSclLQ2aGziqOrO6qUKN+dtE4IIaT2YoxBECNAq62tUBhQiM3XN8OUb4p0cXqNLYBSn1S7j/Lu3bt4+PAhgOKJ7a1atVJYUKpWjYHAhBAVo5/bt+7H3Mdvcb+h0LAQAJCSU7xqk52hHULHhFJTq5zkTpRJSUkYNmwYrl+/zi3cnJGRgfbt2+PQoUOws7NTdIw1RlNTE0DxDhC09iYhdYtYXLxLT8nPcUMleCyAzzYfSAzLrliVlJVEI1yrQe5EOXbsWBQWFuLhw4fcsmKPHz/GV199hbFjx+LcuXMKD7KmqKurw9jYGKmpqQCKR/VWdRATIUQ1GGMQi8VITU2FsbGxzBrUDc39R/fReWJnSLrIJklbA1u8EL2gZtdqknvBAV1dXYSGhpZZ7/XevXvo1KkT91ddbfW+CaaMMSQnJ5dZlJoQUrsZGxvDysqqQf5xyxhDxKMItNnRBkWGRYAU3JYXLiYuuDn2JuLexKls3enaSmkLDtjb26OwsLBMuUQi4Rayrst4PB6sra1hYWFR7vskhNQ+mpqaDbYmyRhD9JNonBOdK06SAKAGbO6zGU0tmnLTP6i5tfrkTpSrVq3ClClT8Pvvv3OLaN+9exfTpk2r8u4MdYG6unqD/cEjhNQdDx8/RLRWNOyN7WFtYA2hSAg3UzeM8h5FtUcFkbvp1cTEBGKxGEVFRdDQKM6zJd+/uz9fenq64iJVkKpWtQkhpDZhjEFUIIIgVQAvCy9IIcWxm8fw3XffYfnu5UjKTEKBpADdbbujrV1bSpJVoLSm13Xr1n1IXIQQQqpBVCDiFjV3NnZGTlEOUrJTgD7AuCPjuPVbD5scRtREWqZRkeROlIGBgcqIgxBCSCUEqQJudZ24jDiZc6UXOY99EwtBqqBG9sJtKKq94EBqaipSU1MhlUplyr28vD44KEIIIbI8LTy5PkhIAJQaQqHB00ARKx7IQ4ucK57cifLevXsIDAzEw4cPy6yEwePxIJGUneRKCCHkw/A1+fil3y8IfRaKzTc2c+Wb+2zG580+R/SraAC0yLkyyJ0ov/76a3z00UfYuXMnLC0tG+ScJUIIqUmMMUTej4S2gTbaO7bH7ou7kaeXJzO6lRY5Vx65E2VcXByOHj0KV1dXZcRDCCGkFMYY7kXewyP+IyS+TsTpH07j6f6neFH4ghYQqCFyJ8pu3bohMjKSEiUhhCgBYwxZ+Vm4/eI2CiWFSHqeBHVbdSw4taB4xGs/Z5iYmMBW01bVoTYYcifKHTt2IDAwEAKBAJ6enmUWIO7fv7/CgiOEkIamZBpIcnYyV2aqa4r03OJ56XEZcTSqtYbJnShv3LiB69ev4+zZs2XO0WAeQgj5MIJUgUySBMAlSYBGtaqCmrw3TJkyBSNHjoRQKIRUKpX5oiRJCCEfxtPCE1b6VhWe3zVgF/VL1jC5a5RpaWmYMWMGLC0tlREPIYQ0WIwxCCIFWPXJKsSmxaJAUoCWBi3xfcj3iH0TCzdTN/ja+Ko6zAZH7kT52Wef4fLly3BxcVFGPIQQ0uCUrON6+MphqNmrITUjFS5mLuhl2Qtmhmbo07QPBKkCGuWqInInyo8++gjz5s3DtWvX0Lx58zKDeaZOnaqw4AghpCEovY6r+i11SJgEzsbO+HTip+DxeOBr8mnwjgrJvXuIk5NTxQ/j8RAXF1fh+dqAdg8hhNQ2G09vxJS7U8qU3xp7ixKkEilt95D4+PgPCowQQkgxxhguXruIaZemAUbFZRpqGiiSFsHN1I1Gt9YS1V4UnRBCSPUwxiBhEly7cQ2hGqGQGr3dXOLUsFMw0TWh/shapFqJMikpCSdPnkRCQgIKCgpkzv36668KCYwQQuojxhje5L3BbxG/oYAVYGfoTu6ci4kLOjl0ogRZy8idKC9duoT+/fvD2dkZjx49gqenJ549ewbGGHx8fJQRIyGE1AuMMbwQvUCLLS1kFhEoQXMkaye5FxyYN28eZs+ejfv370NHRwdHjx5FYmIi/P39MXjwYGXESAgh9YKoQATvrd7lJkmaI1l7yZ0oHz58iFGjRgEANDQ0kJubC319fSxZsgQrV65UeICEEFLXMcZQJC3C3vN7kSZOkznnZOyEkNEhiJgQQbXJWkruplc9PT2uX9La2hqxsbFo1qwZAOD169eKjY4QQuqwkp1AbiTdwNXkq4ApYGVghWRRMqz1rLF74G7qk6wD5E6U7dq1w7Vr1+Dh4YE+ffpg1qxZuH//Pv7++2+0a9dOGTESQkidVN5OIPx8Ps6NPoeOjh2hp6WnwuhIVcmdKH/99VdkZ2cDABYvXozs7GwcPnwYbm5uNOKVEEJKKW8nELG2GCZ6JpQk6xC5E6WzszP3vZ6eHrZs2aLQgAghpK4rmSeZ8iAFVvpWMsmStsmqe+ROlImJieDxeLCzswMA3L59GwcOHEDTpk0xbtw4hQdICCF1jYRJcOzZMeAjYJVz8U4gXoZeMNUzRWvb1tQnWcfInSiHDx+OcePG4csvv0RycjK6d+8OT09P7N+/H8nJyfjpp5+UESchhNQZJ86cQLRZNADg/ub72LttL3S1dcHj8VQcGakOuaeHCAQCtGlTvEjvn3/+iebNmyM0NBT79+9HcHCw3AG8ePECI0eOhJmZGXR1ddG8eXPcvXu30nuuXLkCHx8faGtrw9XVtVqvSwghyrD/+H58fvlzLPp3ERb9uwjhrcIBdVCSrMPkTpSFhYXQ1tYGAFy8eBH9+/cHALi7u0MoFMr1rDdv3qBDhw7Q1NTE2bNnER0djTVr1sDExKTCe+Lj49G3b198/PHHiIiIwPTp0zF27FicP39e3rdCCCEKIy4UI+hAEEb+NxIotRFFXEYcBKkC1QVGPpjcTa/NmjXDli1b0LdvX1y4cAFLly4FALx8+RJmZmZyPWvlypWwt7fH7t27ubLKtvECgC1btsDJyQlr1qwBAHh4eODatWtYu3YtAgIC5Hw3hJBaTywGBALA2RmIjgby8gAdHaBp06ofA/LfI8exOCcDTW59hSReOrcLSAkXQyd4PskAHvxbe+L29QX41E9aVXInypUrV+LTTz/FqlWrEBgYiBYtWgAATp48yTXJVtXJkycREBCAwYMHIyQkBLa2tvj222/xzTffVHjPjRs30L17d5mygIAATJ8+vdzr8/PzkZ+fzx1nZWXJFSMhRIXEYsDbG4iJATQ0gKKit+fkPa7OPe85ZhoaEOmq4Y9mEiT1ksi8lG0msOsE0PFlAvh5ARU+QxVxw8UFiIqiZFlFcifKLl264PXr18jKypJpIh03bhz4cn7ocXFx2Lx5M2bOnIn58+fjzp07mDp1KrS0tBAYGFjuPcnJybC0tJQps7S0RFZWFnJzc6GrqytzLigoCIsXL5YrLkJILSEQFCdJoGzykPdYEc8onSQBvLDQQYtpWjJrtzqlAcEnAd+XAL8QACQVPkMVcQMAYmOLP1s5KzcNldx9lACgrq5eph/R0dERFhYWcj1HKpXCx8cHy5cvR8uWLTFu3Dh88803Cp2bOW/ePGRmZnJfiYmJCns2IUTJPD0BN7fi7zXe+bte3mNFPKPUschAC97TtcsscB58Sg2dn5ckydoXN4DiGqUnzeWsKpVu3GxtbY2mTZvKlHl4eODo0aMV3mNlZYWUlBSZspSUFBgaGpapTQKAtrY2N/iIEFLH8PlARESt66MU52Rg2d1dSBOfkAnXRccWvtdDgZhniulPVHDc1EdZPTzGGFPViw8fPhyJiYm4evUqVzZjxgzcunULoaGh5d4zd+5cnDlzBvfv35d5Tnp6Os6dO/fe18zKyoKRkREyMzNhaGj43usJIaQ0caEYLqtckFyYDHWeOiRMAmt9a+weQAuc1zVVzQfVanpVlBkzZuDmzZtYvnw5nj59igMHDmDbtm2YNGkSd828efO4bb0AYMKECYiLi8N3332HR48eYdOmTfjzzz8xY8YMVbwFQkgDwhjDmv1rkFxYvCSdhEmwte9WxEyJQYBrACXJekqlibJ169Y4duwYDh48CE9PTyxduhTr1q3DiBEjuGuEQiESEhK4YycnJ5w+fRoXLlxAixYtsGbNGuzYsYOmhhBClIoxhoNHDsKmjQ3M+MVT4dxM3TCyxUha4Lyek6vp9fXr19i1axdu3LiB5OTiv6isrKzQvn17jB49Gubm5koLVFGo6ZUQIi9xoRir9q2Cua85fjr/E9LEabAzsEP4hHA04jdSdXikmqqaD6qcKO/cuYOAgADw+Xx0796dm6KRkpKCS5cuQSwW4/z58/D19VXMO1ASSpSEEHmIC8Vw/sUZKUUpUIMapJBy526NvYU2tjTFoq6qaj6o8qjXKVOmYPDgwdiyZUuZNQsZY5gwYQKmTJmCGzduVD9qQgipZZbuXIqUouKR9qWTpL2hPW2X1UBUOVFGRkYiODi43IV9eTweZsyYgZYtWyo0OEIIqWmMMYgKRBCkChB6JhQrHq8AjIvPaappolBaCHtDe4SND6PBOw1ElROllZUVbt++DXd393LP3759u8yKOYQQUteICkRw/90dQpGweFEd47fnTg0/BWMdY3haeFKSbECqnChnz56NcePG4d69e+jWrVuZPsrt27dj9erVSguUEEJqgiBVUJwkAUD9bbm9oT06Nu5ICbIBqnKinDRpEho1aoS1a9di06ZNkEiK1y9UV1dHq1atEBwcjCFDhigtUEIIqQk3z9yEGd8MaeI0qDE1SHlSampt4Kq1Mk9hYSFev34NAGjUqBE0NTUVHpiy0KhXQkhppfskr5y8gh+e/gAYA/pSfdyffh+p4lRqaq2nFD7qtTRNTU2Ymppy3xNCSF1VUZ9ktlo2UsWpNP2DyLcyz4ULF9CnTx+YmJiAz+eDz+fDxMQEffr0wcWLF5UVIyGEKAVjDJHJkRX2SdL0DwLIkSj37NmDPn36wMjICGvXrsWpU6dw6tQprF27FsbGxujTpw/27dunzFgJIUShJEyC5/nPYW1gDQBQY8W/EqlPkpRW5T7Kjz76CNOmTZNZsLy0TZs2Ye3atYgp2WS1lqI+SkIIUFyb/G3zb7DuZY38onz87+D/sGLWCjzLfEZ9kg2Ewpew09HRQWRkJJo0aVLu+cePH8Pb2xu5ubnVi7iGUKIkpGFjjEHCJPh98+8w62GG2LRYAMD0ltNhpGOk4uhITVL4YJ5mzZph586d+OWXX8o9v2vXrjKbMBNCSG0jKhDh98jfYfGxBeb8MwfJ2cUbPOy7sw9RE6OoJknKqHKiXLNmDfr164dz586Vuyh6XFwcTp8+rbRACSHkQ4kLxXBZ6YLX7DUMtQ2RlZ/FnYt9EwtBqoBGuZIyqpwou3TpAoFAgM2bN+PmzZsy22z17t0bEyZMgKOjo7LiJIQQuTHGkJWfhdsvbkONp4a/jvyF16x4DnhWfhbUoQ4JihdPcTFxoVGupFzVWnCgLqM+SkIajqz8LDTZ2IRrXrXQs0BeUZ5MTXJzn81oatEUvja+1OzawCh1wYHSCgsLadEBQkitJEgVcEkSAFJzUgEAGjwNFLEiuJm6YZT3KEqQpFJVnkf5559/oqCggDveuHEjHBwcoKOjg0aNGmHJkiVKCZAQQuRV0uSaU5ADS/2yuxoVsSLs6r8LERMiKEmS96pyjXLYsGEQCoWwsLDA7t27MWfOHHz33Xdo27YtwsPDERQUBBsbG4wdO1aZ8RJCyHuVXpbOSt8K87vNR/K1ZITwQxD7JhZupm4Y6jmUkiSpkionytJdmVu2bMGSJUswZ84cAECfPn1gamqKTZs2UaIkhKhc6a2ykrOTkXYjDTvm7kBuUS4EqQJaUIDIRa61Xnk8HgAgLi4OPXv2lDnXs2dPPH36VHGREUJINeQU5GD7ru0yTa4XtS8itygXfE0+2ti2oSRJ5CLXYJ5z587ByMgIOjo6EIvFMufy8vK4REoIIaqQU5CDxssbI52XDlOJKVdOcyTJh5ArUQYGBnLf/+9//4Ofnx93fPPmTbi4uCguMkIIkYNUKsWUn6cgXS0dAJCemw47QzskZSXBzdSN5kiSaqtyopRKpZWet7S0RFBQ0AcHRAgh8pJKpVi4dCE6DO2Ak6dPIk2cBjdTN4SOCUXcmzjqkyQf5IPnUZbo16+foh5FCCHvVTIFJDIlEqd2nYLXCC98d+o7pInTYGdoh9AxoWjEb4RG/EaqDpXUcQpLlIQQUpNEBSJ4bPKAUCSEmb4Zvn75NTfSNSkrCXFv4ihJEoWQa9QrIYTUBowx3Eq6xSXGNHEaVoes5s7Tuq1EkahGSQipMxhjEBWIcDPpJkYdHyV7Dm/neu8asIv6JInCUKIkhNQZpVfceZemmiYKpYVwM3WDr42vCqIj9RUlSkJInXH3xd0ySdLZxBm7B+xGU/OmNMKVKIVCE2XXrl3x8ccfY9asWeDz6R8qIURxcgpy8Gnwp4B68bG5ujkOjziMNrZtoKelBwA0eIcohUIH8zRu3BiXLl2Cu7u7Ih9LCGngJBIJRn8/Glnqb/eRPDLyCD52+phLkoQoi0JrlMHBwQCKN8MkhJAPwc2TTI7E/vX70eubXrh8+jK3mEBr29aqDpE0EApJlBkZGTA2NuaOK9spmhBCqqL0PElTa1McP3tcZjEB6ockNUXupteVK1fi8OHD3PGQIUNgZmYGW1tbREZGKjQ4QkjDxBjDzcSb3MCd9Nx0pGanAni7mAAhNUXuRLllyxbY29sDAC5cuIALFy7g7Nmz6N27N7c/JSGEfIjMvEwEnggs9xwtcE5qmtxNr8nJyVyiPHXqFIYMGYKePXvC0dERbdu2VXiAhJCGgzGGgqICfPX9V0g2TZY552Ligl0DdsHXxpeaXUmNkrtGaWJigsTERADF+1N2794dQPE/cIlEotjoCCENSkZuBn4N/xX9xveDtYE1gOJ5kiGjQxA1MQqdHTpTkiQ1Tu4a5WeffYbhw4fDzc0NaWlp6N27NwAgPDwcrq6uCg+QEFK/lYxuvZl4E4P3DoZIQwQzvhmWNF4C7/beaGHZgqaAEJWSO1GuXbsWjo6OSExMxC+//AJ9fX0AgFAoxLfffqvwAAkh9Vvp0a0lv5HSxGkIehmEx1aPqQZJVI7HGGPvv6z+yMrKgpGRETIzM2kaCyG1wNVnV9F5T+dyz90aewttbNvUcESkoahqPqjWyjz79u1Dx44dYWNjg+fPnwMA1q1bhxMnTlQvWkJIg1HS1BqaGAphphCLf14MKwMrAIClniVsDWwB0OhWUnvI3fS6efNm/PTTT5g+fTp+/vlnbgCPsbEx1q1bhwEDBig8SEJI/VF6BxAe44HZMVgxK8zvNh9a6loY33w8EjITaHFzUmvIXaP87bffsH37dvzwww9QV1fnyn19fXH//n2FBkcIqX8EqQJuIQHGK+75Sc5OxtYbW7Ho30XotLsTJUlSq8idKOPj49GyZcsy5dra2sjJyVFIUISQ+quJSRNY6VvJlNka2CJNnAYAeJr+FIJUgSpCI6RccidKJycnRERElCk/d+4cPDw8FBETIaQeYoxBnCfGpImTMKH9BJlzO/vvhKtp8fQy6psktY3cfZQzZ87EpEmTkJeXB8YYbt++jYMHDyIoKAg7duxQRoyEkDqOMQZRrgjnk89j0OJByC/Kh7WBNYQiIdxM3dDJoRMiJ0RCkCqgZldS68idKMeOHQtdXV38+OOPEIvFGD58OGxsbLB+/Xp88cUXyoiREFLH5ebn4nzyee7Y9JkpHk16hIevHqK5ZXMuMdJUEFIbfdA8SrFYjOzsbFhYWCgyJqWieZSE1AzGGEQFIoQlhWH9gvUYvmw4d+5Tx0+hoabQ7XAJkVtV88EH/Uvl8/ng86mJhBBSVulpINa+1hhUNAjaGtqqDosQucmdKJ2cnMDj8So8HxdH+8QR0pCV1CR33NnBTQMRioQIiQ2BhYEFtNS1EGAbAENtatEhdYPciXL69Okyx4WFhQgPD8e5c+doP0pCCEQFIjTZ2ATJ2W+3yVKDGnbcfjvYb9+dfYiaGEWDdkidIHeinDZtWrnlv//+O+7evfvBARFC6rZ7ifdkkiQASCGVOY59EwtBqoAG75A6oVprvZand+/eOHr0qKIeRwipQxhjyMzLxMWYi1jx/QqZBQWcjJ3gZOwkc72LiQvNlSR1hsKGnf31118wNTVV1OMIIXUEYwwvRC/gvdUbaeI0WLe3xrJey5CUmYTOVp3R1q4tAODuy7vIK8qDjoYOfG18qdmV1BlyJ8qWLVvKDOZhjCE5ORmvXr3Cpk2bFBocIaT2ExWIuCQJFA/cKXxeiB8CfoA6T537fdHZofyttAip7eROlAMHDpQ5VlNTg7m5Obp06QJ3d3dFxUUIqSPuJtzlkiQAGGobYmCngTRPktQbtHEzIURuJXtK3k64jaA5QXjk/whCkRBqPDVImRSupq6InBBJzaukVlPoggNZWVlVfmFKPoTUf6ICETw2eRQvJuBvDelmKb4P+h4rHqwA8HYHEBrVSuqDKiVKY2PjShcZAIr/wuTxeNxGzoSQ+uu/2P9kFhPYsXEHvvj4C/wl/AtP05/SDiCkXqlSorx8+bKy4yCE1GIlq+0IUgWw0rTC4D2Dgf9vVTXlm6Jvh77Q09KjHUBIvUR9lISQ98rKz+LWbdXI10CRdpHMeeqTJHWR0hdFF4vFSEhIQEFBgUy5l5dXdR9JCKmlBKkCrqm1SLsIkABQf3ue+iRJfSZ3onz16hW++uornD17ttzz1EdJSP1R0uSa+DoRhtqGyMr//4F96sCmPpuw5sYaxL6JpT5JUq9Va1H0jIwM3Lp1C126dMGxY8eQkpKCZcuWYc2aNcqIkRCiIu8ucF4y/cPN1A2B3oEI9A6kPklS78mdKP/3v//hxIkT8PX1hZqaGhwcHNCjRw8YGhoiKCgIffv2VUachBAVuBl7U2aBcymTYmf/nfjC8wsuMVJzK6nv5F4UPScnBxYWFgAAExMTvHr1CgDQvHlzhIWFKTY6QojKvEh9gRlzZsBS35IrczFxkUmShDQEctcomzRpgsePH8PR0REtWrTA1q1b4ejoiC1btsDa2loZMRJCahBjDAkpCXD/1R15bfJgBSvM7zYf3W27o61dW0qSpMGp1n6UQmHx6LeFCxeiV69e2L9/P7S0tBAcHKzo+AghNYgxhuTXyQiOD0aeXh4AIDk7GX0d+sLPzu+9C48QUh/JnShHjhzJfd+qVSs8f/4cjx49QuPGjdGoUSOFBkcIqRklo1uvPrmK5+w5NlzdwJ1zMXGBt5U3JUnSYMmdKK9du4aOHTtyx3w+Hz4+PgoNihBSs0QFIm5BATWoQQopd27XgF3U3EoaNLkH83Tt2hVOTk6YP38+oqOjlRETIaSGXYq+xC0oUDpJ2hvaw9fGV1VhEVIryJ0oX758iVmzZiEkJASenp7w9vbGqlWrkJSUJPeLL1q0CDweT+brfXtaHjlyBO7u7tDR0UHz5s1x5swZuV+XEFKMMYbYpFh8cfALrkyDV9zQZG9oj7DxYVSbJA2e3ImyUaNGmDx5Mq5fv47Y2FgMHjwYe/bsgaOjI7p27Sp3AM2aNYNQKOS+rl27VuG1oaGhGDZsGMaMGYPw8HAMHDgQAwcOhEAgkPt1CSGAMEWIPxL/QIHe26UoTw0/hVtjb+HR5EdoxKdxB4R88KLoEokEZ8+exYIFCxAVFSXXEnaLFi3C8ePHERERUaXrhw4dipycHJw6dYora9euHby9vbFly5YqPYMWRSdKJxYDAgHg7AxERwN5eYCODtC06dtjoGyZoo/f8xqJL55h3O/zEP6pBCnZKQAAFx1bRI0KBT/mWe2JGwB8fQE+1WyJYil9UfTr169j//79+Ouvv5CXl4cBAwYgKChI7ufExMTAxsYGOjo68PPzQ1BQEBo3blzutTdu3MDMmTNlygICAnD8+PEKn5+fn4/8/HzuWJ5NqAmRm1gMeHsDMTGAhgZQVGqXjXePyytT9HEF17zWLEKH8UBiDwDZb0/t2vQC/B9dal/cLi5AVBQlS6IScje9zps3D05OTujatSsSEhKwfv16JCcnY9++fejVq5dcz2rbti2Cg4Nx7tw5bN68GfHx8ejUqRNEIlG51ycnJ8PS0lKmzNLSEsnJyeVeDwBBQUEwMjLivuzt7eWKkRC5CATFSRIo+4v/3eOqXPOhx++UMQBZumpoOQFINJa9zC0N8BXWzrgRG1v82RKiAnLXKP/77z/MmTMHQ4YM+eB5k7179+a+9/LyQtu2beHg4IA///wTY8aM+aBnl5g3b55MLTQrK4uSJVEeT0/Aza1W1SiZhgaydNVw26H4xz1023dI+ncRd942EzjwN+D7EuAXVu2ZKqlRetLuJEQ15E6U169fV0YcAABjY2N89NFHePr0abnnrayskJKSIlOWkpICKyurCp+pra0NbW1thcZJSIX4fCAiolb1UYpc7eF+sD23uLnF9U0w5ZsiXZwOe20LhM34D40Gpiik35P6KEl99MGDeRQpOzsbjRs3xqJFizB16tQy54cOHQqxWIx//vmHK2vfvj28vLxoMA8h5WCM4WL8RfTc17PMOTtDO4SPD6eRraTBqmo+kLuPUpFmz56NkJAQPHv2DKGhofj000+hrq6OYcOGAQBGjRqFefPmcddPmzYN586dw5o1a/Do0SMsWrQId+/exeTJk1X1FgipdRhjyMrPQmhiKJKzkzHq2Khyr0vKSkLcm7gajo6Quqfao14VISkpCcOGDUNaWhrMzc3RsWNH3Lx5E+bm5gCAhIQEqKm9zeXt27fHgQMH8OOPP2L+/Plwc3PD8ePH4Ul9F4RwSi9HZ823RrL47WC3H3x/wKHYQ4h9Ews3Uzd4WtDPDiHvU6uaXmsCNb2S+i40MRQddnXgjkv6Ix0NHCGYLACPx4MgVQBPC09adYc0aHWi6ZUQojglTa45BTkymy1npWThUO9DEEwWQE9LD3xNPtrYtqEkSUgVVanp1cTEpMpb7KSnp39QQISQ6ind5Gqqa8qVFxkUwcnWCXpaeiqMjpC6q0qJct26ddz3aWlpWLZsGQICAuDn5wegeMWc8+fPY8GCBUoJkhDyfoJUAbcDSHpuOtfkSn2RhHwYufsoBw0ahI8//rjMSNONGzfi4sWLlS4nVxtQHyWpr6KeRCHgnwBuvqS9vj32DdqH1ratqZmVkHIorY/y/Pnz5S5V16tXL1y8eFHexxFCPkBJv+T+0P3oNboXvm77NXcuMTsRupq6lCQJ+UByJ0ozMzOcOHGiTPmJEydgZmamkKAIIVUjKhChycYmGHlhJIQBQqw6sQoOhg4AQE2uhCiI3PMoFy9ejLFjx+LKlSto27YtAODWrVs4d+4ctm/frvAACSHlY4zhTNgZrqkVAAr1C7H3s73Q0dCh6R+EKIjciXL06NHw8PDAhg0b8PfffwMAPDw8cO3aNS5xEkKUhzEGUYEIZ+6dQbp+Okx1TZGeWzza3MXEBb42vpQgCVEgWnCAkDomKz+LmwaizlOHhElgxbdC8KfB6OTQiZIkIVWk1AUHYmNj8eOPP2L48OFITU0FAJw9exYPHjyoXrSEkCphjOHUnVPcNBAJkwAAksXJMNE1oSRJiBLInShDQkLQvHlz3Lp1C0ePHkV2dvH26JGRkVi4cKHCAySEvHX3/l08wAOY8osXFNBQK+49oYE7hCiP3H2U33//PZYtW4aZM2fCwMCAK+/atSs2btyo0OAIIW/djbwLvz1+kBgV1yKt9axxY+wNpOSk0MAdQpRI7hrl/fv38emnn5Ypt7CwwOvXrxUSFCHkLcYYogRR6PNVHy5JAoAwR4iUnBRat5UQJZM7URobG0MoFJYpDw8Ph62trUKCIoS8dSviFk6LTyPojyBo52hz5S4mLtTcSkgNkLvp9YsvvsDcuXNx5MgR8Hg8SKVSXL9+HbNnz8aoUeVvEEsIkR9jDDfCbsD/gD+KDItgxjfDzW9vIouXBQA0DYSQGiJ3oly+fDkmTZoEe3t7SCQSNG3aFBKJBMOHD8ePP/6ojBgJaVAYY5AwCSKiInCh4AKKDIsAAGniNHxy7BM8nvyYEiQhNaja8ygTEhIgEAiQnZ2Nli1bws3NTdGxKQXNoyS1XZG0CMeeHUN+UT7m/DNHZuUdALg19hba2LZRUXSE1B9VzQdy1yhLNG7cGI0bN67u7YSQcjDGEBYRhnz9fIQ+Cy2TJGkaCCE1r0qJcubMmVV+4K+//lrtYAip70qWnxOkCtDCsoXMZsqMMdwOuw2BrgBzT8xFmjgNGmoaKJIWwcXEBbsG7KJ+SUJUoEqJMjw8XOY4LCwMRUVFaNKkCQDgyZMnUFdXR6tWrRQfISH1iKhAxC0/52rqisgJkdDV0IWESXDn3h1E60Vj5smZyMovHrBTJC3Crv67MNRzKCVIQlSkSony8uXL3Pe//vorDAwMsGfPHpiYmAAA3rx5g6+++gqdOnVSTpSE1BOCVAG3/NzT9KcQpArgY+2DQ08PIbYoFhtOb+CSJADYG9pTkiRExeQezGNra4t///0XzZo1kykXCATo2bMnXr58qdAAFY0G8xBVKr2geUmNMuRmCL68+SXSxGky11roWeDBtw/QiN9IRdESUr8pbTBPVlYWXr16Vab81atXEIlE8j6OkAaFr8nHL/1+QWJGIia1mISQ0BD0Od0H0JO9zt7QHmHjwyhJElILyL0yz6effoqvvvoKf//9N5KSkpCUlISjR49izJgx+Oyzz5QRIyH1iraGNlwbueLmnZvoc0I2Sdoa2CJkdAgeTX5ESZKQWkLuGuWWLVswe/ZsDB8+HIWFhcUP0dDAmDFjsGrVKoUHSEh9UDLaNTI5EvlF+dDW0MY9rXuA0dtrLPQsEDEhghIkIbWM3ImSz+dj06ZNWLVqFWJjYwEALi4u0NPTe8+dhDRcpUe7WhtYY2mvpSiQFEA3Vxe5urnU1EpILVbtBQf09PTg5eWlyFgIqXdKapIH7x/kRrsKRULMPV08T9LJygnBnwbT/EhCajG5E2VOTg5WrFiBS5cuITU1FVKpVOZ8XFycwoIjpK4rXZNU56lDwiQw1DbkRrjGZ8ZDR0OHkiQhtZjciXLs2LEICQnBl19+CWtra/B4PGXERUi9UHrepIRJYKRjhMy8TG7FHVqSjpDaT+5EefbsWZw+fRodOnRQRjyE1AslTa45BTmwMrBCsigZZnwzriZJK+4QUnfIPT3ExMQEpqamyoiFkDqNMYas/CyEJhYvZu7+uzt6/tETYMCinovQ5l4buBi7AChe3JySJCF1g9w1yqVLl+Knn37Cnj17wOfTDzkhQHGSfCF6Ae+t3kgTp8HOwI5rck3OToaWuhaO7D4CngYPglQBPC08KUkSUkfIvYRdy5YtERsbC8YYHB0doampKXM+LCxMoQEqGi1hR5QhKz8LzhucZZahK2lqNeOb4dboW3Bu5Ex9+oTUIkpbwm7gwIEfEhch9ZIgVVAmSS4JWIKfzv+ENHEaeh3qhcgJkVSLJKQOkjtRLly4UBlxEFKneVp4wtrAGkKREKa6phjvNx5Hfz+KNJvi5FmyU0gb2zYqjpQQIi+5B/MQQsoqWex8Uc9F0NLQwvJLyxHfNB4uJm8H79A0EELqJrlrlGpqapX2s0gkkg8KiJC6hDEGCZPgzLkz0HbXhpa6FpJFyQCA+Ix4hIwOgY6GDg3eIaQOkztRHjt2TOa4sLAQ4eHh2LNnDxYvXqywwAipCyRMgkNPDyGxUSLsi+xhb2wPZxNnxL2Jg5upGy1NR0g9IPeo14ocOHAAhw8fxokTJxTxOKWhUa9Ekfb+vRczY2ciTZwGg0IDxH8fDx0tHTx49YBqkYTUclXNBwrro2zXrh0uXbqkqMcRUuvtObIHgTcCudGuIk0RYjNjoaelhza2bShJElJPVHv3kNJyc3OxYcMG2NraKuJxhNQ6JUvSCVIEaGbRDKfPnMboG6Nl9pO0N7SnATuE1ENyJ0oTExOZwTyMMYhEIvD5fPzxxx8KDY6Q2qL0LiCmuqbo36x/mU2Xw8aHUS2SkHpI7kS5bt06mWM1NTWYm5ujbdu2MDExUVRchNQqpXcBSc9NR/DdYPAYD4zHaNNlQuo5uRNlYGCgMuIgpFbztPCU2f0DABiP0Q4ghDQA1eqjzMjIwM6dO/Hw4UMAQLNmzfD111/DyMjoPXcSUreUzJM8ffI0VvZdie9OfYf03HQAgIuJCyVJQhoAuaeH3L17FwEBAdDV1UWbNsXLcd25cwe5ubn4999/4ePjo5RAFYWmh5CqYowhX5KPfxL+4cryi/JhoWYBbQ1ttLZtTUmSkDqsqvlA7kTZqVMnuLq6Yvv27dDQKK6QFhUVYezYsYiLi8N///33YZErGSVKUlVF0iIce/Z2gY3L6y9j3Zp10FTXpF1ACKkHlJYodXV1ER4eDnd3d5ny6Oho+Pr6QiwWVy/iGkKJklQFYwz7Du6Dmq8aEjMSYW9sjyHOQ6CloaXq0AghCqK0bbYMDQ2RkJBQJlEmJibCwMBA/kgJqWUYY9h7YC/UW6vju1PfQSgSwoxvhu4Tu8NK30rV4RFCapjcK/MMHToUY8aMweHDh5GYmIjExEQcOnQIY8eOxbBhw5QRIyFKxRhDVn4WQhNCkZmXieA/gqHeWh0hcSHclJA0cRpab28NcWHtbjEhhCie3DXK1atXg8fjYdSoUSgqKgIAaGpqYuLEiVixYoXCAyRE2UovJmBtYI2lvZZizj9zkJydLHNdUlYS7SlJSAMkV6KUSCS4efMmFi1ahKCgIMTGxgIAXFxcwOfT6D9SN5VeTEAoEuJe0r0ySRKgPSUJaajkanpVV1dHz549kZGRAT6fj+bNm6N58+aUJEmd5mnhCWsDawCAlb4VTPgmcDR25M47GTshZHQIIiZE0HQQQhoguZtePT09ERcXBycnJ2XEQ4jSlfRJ3npxCzzw8PB/D/FLv1/wMPUhttzYguWXlsPZxBnnR56HjoYO7SlJSAMnd6JctmwZZs+ejaVLl6JVq1bQ09OTOU9TLkhtV9InWdK8aso3xdK8pdh6YyvSxcWr7sS9iYOxjjH1RxJC5J9Hqab2trX23V1EeDweJBKJ4qJTAppHSUITQ9FhVweZMj3oIQc53LG9oT0eTX5ENUlC6jGlzaO8fPnyBwVGiKqU7CmZU5ADS31LpGSncOdykAM7QzskZSVxu4FQkiSEANVIlP7+/sqIgxClKz0NxErfCnO6zMHO2zuRLk6Hm6kbQseEIu5NHDwtPClJEkI41do9hJC6pKQmefD+QW4aSHJ2Mkx0TfBk0hM8TX+K5pbNwdfk056ShJAyKFGSeq90TVKdpw4Jk8AUpvjW61sYahuirV1bVYdICKnF5F7CjpC6omQaSOmapIRJ0F+tP55//xxGOka0Cwgh5L2qlChPnjyJwsJCZcdCiMIwxvBC9ALOG5wx4fQEqPPUAQBmfDNsnbEV+tr6Ko6QEFJXVClRfvrpp8jIyABQvDpPamqqMmMi5IOJCkTw3uqNNHEagOKapJGOEdLEaei0uxMtbk4IqbIqJUpzc3PcvHkTwNv5koTUZoJUAZckgeJ5kpl5mQCAp+lPIUgVqCo0QkgdU6VEOWHCBAwYMADq6urg8XiwsrKCurp6uV+E1Aan9p6CGd8MAGAIQwimCuBq6gqAFjcnhMinyivzPHr0CE+fPkX//v2xe/duGBsbl3vdgAEDFBmfwtHKPPUXYwwSJsHi5YuxLHUZYFacJJ/OfgpzPXOIC8UQpAponiQhBIASVuZxd3eHu7s7Fi5ciMGDB9OOIaTWKJkneSvpFq4IryDVNxW4VXwuC1mIz4iHuZ45+Jp8WruVECI3uedRLly4EADw6tUrPH78GADQpEkTmJubKzYyQqpIVCBCk41NZPaQVIMapJBSMysh5IPJPY9SLBbj66+/ho2NDTp37ozOnTvDxsYGY8aMgVhMIwlJzROkCMpstCyFFLv676I9JAkhH0zuRDljxgyEhITg5MmTyMjIQEZGBk6cOIGQkBDMmjVLGTESUqGcghxs2bkFlvqWMuUuJi4Y6jmUkiQh5IPJvc1Wo0aN8Ndff6FLly4y5ZcvX8aQIUPw6tUrRcancDSYp34oWXXHaYUT3vDewErfCl+3/RodLTtCT0uPNlsmhLyX0rbZEovFsLS0LFNuYWFBTa+kxhRJi7AufB3e8N4AKF7kvK9DX/jZ+dE8X0KIQsnd9Orn54eFCxciLy+PK8vNzcXixYvh5+en0OAIKQ9jDDN/nIkNVzdwZS4mLvC28qYkSQhROLkT5fr163H9+nXY2dmhW7du6NatG+zt7REaGor169dXO5AVK1aAx+Nh+vTplV535MgRuLu7Q0dHB82bN8eZM2eq/Zqk7mGM4dvZ32Jj0Uak56Zz5bsG7KKmVkKIUsidKD09PRETE4OgoCB4e3vD29sbK1asQExMDJo1a1atIO7cuYOtW7fCy8ur0utCQ0MxbNgwjBkzBuHh4Rg4cCAGDhwIgYCWI2sIcgpyMGTOEGxhW4BSa5rbG9rD18ZXdYERQuo1uQfzKFp2djZ8fHywadMmLFu2DN7e3li3bl251w4dOhQ5OTk4deoUV9auXTt4e3tjy5YtVXo9GsxTQ8RiQCAAnJ2B6GigpKleRwdo2vRtWRWPX4VfR5PLX+CNdp7My1hoGONB2z1o5N1e7mdW+VjeuAHA1xegRTkIqdWUNphH0SZNmoS+ffuie/fuWLZsWaXX3rhxAzNnzpQpCwgIwPHjxyu8Jz8/H/n5+dxxVlbWB8VLqkAsBry9gZgYQEMDKCqSPf9u2XuOc3TU0WqiBG+MZB9jnwmEbclAo9wBcj9T7mN573FxAaKiKFkSUg+oNFEeOnQIYWFhuHPnTpWuT05OLjPi1tLSEsnJyRXcAQQFBWHx4sUfFCeRk0BQnCSBssmmvLL3HN+zlCCxVJK0zQAOHAN8XwL8wvLvUfixvPfExhZ/Dm1oyTxC6jq5+ygVJTExEdOmTcP+/fuho6OjtNeZN28eMjMzua/ExESlvRb5f56egJtb8fca5fwt9m5ZBcdiTeC/xsDo/m9P2WYCETvU0Pl5qSQpxzOrfSzvPS4uxZ8DIaTOU1mN8t69e0hNTYWPjw9XJpFI8N9//2Hjxo3Iz88vs22XlZUVUlJSZMpSUlJgZWVV4etoa2tDW1tbscGTyvH5QEREtfsomYcHMu/fxUcXBuOVTo7Mow902YBG84cppN+T+igJIVVRrcE8GRkZ+OuvvxAbG4s5c+bA1NQUYWFhsLS0hK2tbZWeIRKJ8Pz5c5myr776Cu7u7pg7dy48y/lrfOjQoRCLxfjnn3+4svbt28PLy4sG89QjBUUFCLoThEX/LpIpdzN1o7VbCSEKo7TBPFFRUejevTuMjIzw7NkzfPPNNzA1NcXff/+NhIQE7N27t0rPMTAwKJMM9fT0YGZmxpWPGjUKtra2CAoKAgBMmzYN/v7+WLNmDfr27YtDhw7h7t272LZtm7xvg9RSUqkU30z5Bqec3o5sdjJ2QvDAYFqWjhCiEnL3Uc6cOROjR49GTEyMTN9inz598N9//yk0uISEBAiFQu64ffv2OHDgALZt24YWLVrgr7/+wvHjx8utfZK6Jzs/G/2+7Ye9untlFhMIHhiMzg6dKUkSQlRC7qZXIyMjhIWFwcXFBQYGBoiMjISzszOeP3+OJk2ayCxtVxtR02vtUrK4+c3Emxi8dzBEGiKZ8/aG9ng0+RElSUKIwimt6VVbW7vcuYhPnjyhzZuJ3EQFInhs8oBQJCzzr9He0B5h48MoSRJCVEruptf+/ftjyZIlKCwsHpvP4/GQkJCAuXPnYtCgQQoPkNRPJTXJA1EHipNkKU7GTggZHYJHkx+hEb+RiiIkhJBicje9ZmZm4vPPP8fdu3chEolgY2OD5ORk+Pn54cyZM9DT01NWrApBTa+1Q1Z+Ftx/d4dQJIQa1CCFlDsXMjoEnR06qzA6QkhDoLSmVyMjI1y4cAHXrl1DVFQUt1Zr9+7dPyhg0rDcSrzF1SSlkMJIxwiZeZlwM3WjBc4JIbWKyhdFr2lUo1QtxhheZL7AR2s+Qq5GLgDASssK4VPC8TzjOZpbNqc+SUJIjVBajXLDhg3llvN4POjo6MDV1RWdO3cus6oOIQDwRvwG3tu9uSQJAIeGHYKVvhWs9CteYYkQQlRF7kS5du1avHr1CmKxGCYmJgCAN2/egM/nQ19fH6mpqXB2dsbly5dhb2+v8IBJ3ZUpzkTv2b2RZpXGldkb2qO1bWsVRkUIIZWTe9Tr8uXL0bp1a8TExCAtLQ1paWl48uQJ2rZti/Xr1yMhIQFWVlaYMWOGMuIldQxjDJl5mTj75Cxsf7bFbavbUOcVtzbYGdrR9A9CSK0ndx+li4sLjh49Cm9vb5ny8PBwDBo0CHFxcQgNDcWgQYNkVtWpLaiPsmaVHt1a2vZPtmOY5zDoadXuUdKEkPpLaX2UQqEQReXs1VdUVMTtC2ljYwORSFTmGtLwRLyIKJMkXUxcMLz5cKpJEkLqBLmbXj/++GOMHz8e4eHhXFl4eDgmTpyIrl27AgDu378PJycnxUVJ6oyShQRCE0ORLkrH2gVrYcY3k7lm14BdlCQJIXWG3Ily586dMDU1RatWrbi9Hn19fWFqaoqdO3cCAPT19bFmzRqFB0tqP1GBCO6/u6PDrg6wW2GHHnN7YLzfeDTSKl5hh+ZJEkLqmmrPo3z06BGePHkCAGjSpAmaNGmi0MCUhfoolSs0MRQddnXgjtV4apAyKZxNnLF7wG7aKosQUmsorY+yhLu7O9zd3at7O6mnXA1dYcY3Q5q4eAqIlBUvTRf3Jg46GjqUJAkhdU61EmVSUhJOnjyJhIQEFBQUyJz79ddfFRIYqTsYYxAViHAv8R5+nf8rVi5aibmn5yJNnAZNNU0USgvhZuoGTwvaN5QQUvfInSgvXbqE/v37w9nZGY8ePYKnpyeePXsGxhh8fHyUESOp5Ur6JYUiIazaWsE30xfbWm6DrbstXExdEPcmDp4WnlSbJITUSXIP5pk3bx5mz56N+/fvQ0dHB0ePHkViYiL8/f0xePBgZcRIaqmSEa477uzgpoAkZydj0b+LMPfhXDS3bI5G/EZoY9uGkiQhpM6SO1E+fPgQo0aNAgBoaGggNzcX+vr6WLJkCVauXKnwAEntJSoQocnGJph1aVaZc0/Tn0KQKlBBVIQQolhyJ0o9PT2uX9La2hqxsbHcudevXysuMlLr3Uu4h+TsZJkyWwNbAKA+SUJIvSF3H2W7du1w7do1eHh4oE+fPpg1axbu37+Pv//+G+3atVNGjKSWYYwhKycLK2avgFVnKy5Zupi44ObYm9QnSQipV+SeRxkXF4fs7Gx4eXkhJycHs2bNQmhoKNzc3PDrr7/CwcFBWbEqBM2jrL6S0a0hsSG4mX4TWupasDOyQ1JmEjpbdUZbu7aUHAkhdYZS5lFKJBIkJSXBy8sLQHEz7JYtWz4sUlJnlPRJlm5utdW1RfS0aBhoGYDH46kwOkIIUQ65+ijV1dXRs2dPvHnzRlnxkFrs9vPbZfokX+S+wKPXjyhJEkLqLbkH83h6eiIuLk4ZsZBaqGQKyKnoU5g5dyYs9S1lzruYuNCgHUJIvSb3YJ5ly5Zh9uzZWLp0KVq1agU9Pdn9BKnfr36RaW71BngveNjQfQM++ugj6Grq0tqthJB6T+5E2adPHwBA//79ZZrbGGPg8XiQSCSKi46oFGMMoXGhMs2tzIihbYu2aGPbRoWREUJIzZE7UV6+fFkZcZBapGR0a2hcKOIK42Cqa4r03HQA1NRKCGl45E6U/v7+yoiD1CKl125V56lDwiQw1zbHvs/3oZNDJ2pqJYQ0KHIP5gGAq1evYuTIkWjfvj1evHgBANi3bx+uXbum0OCIalx5fIVbu1XCipvSX+W/gomuCSVJQkiDI3eiPHr0KAICAqCrq4uwsDDk5+cDADIzM7F8+XKFB0hqDmMMCSkJGLJ/CFemwStudKAl6QghDZXciXLZsmXYsmULtm/fDk1NTa68Q4cOCAsLk+tZmzdvhpeXFwwNDWFoaAg/Pz+cPXu2wuuDg4PB4/FkvnR0dOR9C6QCr9NfY3fcbuTz87myU8NP4dbYW4iYEEG1SUJIgyR3H+Xjx4/RuXPnMuVGRkbIyMiQ61l2dnZYsWIF3NzcwBjDnj17MGDAAISHh6NZs2bl3mNoaIjHjx9zxzTRXTESkxPR46seyOiewZW5mLhQnyQhpMGTO1FaWVnh6dOncHR0lCm/du0anJ2d5XrWJ598InP8888/Y/Pmzbh582aFiZLH48HKykqu1yGVe5z4GM03Nkdhu0Ig+235rgG7KEkSQho8uRPlN998g2nTpmHXrl3g8Xh4+fIlbty4gdmzZ2PBggXVDkQikeDIkSPIycmBn59fhddlZ2fDwcEBUqkUPj4+WL58eYVJtV4Si4G7d4u/b9oUiI4G8vIAHR25j5mHB5JCL6PVteEo1Jed/+qmYwPfuDxA73X1XgMAfH0BPiVaQkjdJnei/P777yGVStGtWzeIxWJ07twZ2tramD17NqZMmSJ3APfv34efnx/y8vKgr6+PY8eOoWnTpuVe26RJE+zatQteXl7IzMzE6tWr0b59ezx48AB2dnbl3pOfn88NOAKKV4uvs8RiwMsLKNkDVEMDKCp6e17O4yJ9Pnb9+x1ySiVJ20zgwN+A78uX4BcGfNhruLgAUVGULAkhdZrc22yVKCgowNOnT5GdnY2mTZtCX1+/WgEUFBQgISEBmZmZ+Ouvv7Bjxw6EhIRUmCxLKywshIeHB4YNG4alS5eWe82iRYuwePHiMuV1cput27eBtm0/6BEMgMhACwJzBksRQ5vZhtxiAraZQMQWoFGuAmItcesW0IZW8SGE1D5V3WZL7kT5xx9/4LPPPgNfSbWE7t27w8XFBVu3bq3S9YMHD4aGhgYOHjxY7vnyapT29vZ1M1EqoEaZpasG90VmxYsJSACJ+tvTIbuAzi8/rJZKNUpCSF2hlP0oAWDGjBmYMGEC+vfvj5EjRyIgIADq6urvv7GKpFKpTGKrjEQiwf3797n1Z8ujra0NbW1tRYWnWnx+ceL5gD7K/53fDOHTnwDIJkl7LXP4Bv8BNPf5oH5P6qMkhNQ3ctcoi4qKcO7cORw8eBAnTpwAn8/H4MGDMWLECLRv316uF583bx569+6Nxo0bQyQS4cCBA1i5ciXOnz+PHj16YNSoUbC1tUVQUBAAYMmSJWjXrh1cXV2RkZGBVatW4fjx47h3716VmmqBqv8FUd8wxhCbFItmvzVDgV4BgOLFBIpYEewN7RE2PgyN+I1UHCUhhNQcpdUoNTQ00K9fP/Tr1w9isRjHjh3DgQMH8PHHH8POzg6xJc2CVZCamopRo0ZBKBTCyMgIXl5eXJIEgISEBKipvV0T4c2bN/jmm2+QnJwMExMTtGrVCqGhoVVOkg3ZC+EL7E/azyVJoHgxARNdE3haeNI0EEIIqUC1B/OUeP36NQ4dOoQtW7bg4cOHtX6brYZUoyzZBeTfqH8x6/tZyO+Tj5TsFADFiwlETYyiBEkIabCUVqMEwNUk9+/fj0uXLsHe3h7Dhg3DX3/9Ve2AieLJbLrcGbSYACGEVIPcifKLL77AqVOnwOfzMWTIECxYsKDSBQKI6pyLOiez6XIJN1M3+Nr4qiAiQgipe+ROlOrq6vjzzz/LHe0qEAjg6Uk7TKgKYwxZ+Vm4/eI2Xqa8xNi/xwIGb887GTsheGAwfG18qTZJCCFVJHei3L9/v8yxSCTCwYMHsWPHDty7d6/W91HWZyUbLnO1yFJJcnOfzRjlPYoSJCGEyKlaGzcDwH///YfAwEBYW1tj9erV6Nq1K27evKnI2IicBKmCCptaKUkSQkj1yFWjTE5ORnBwMHbu3ImsrCwMGTIE+fn5OH78OE3RqAU0szVhqmvKLUlnr2+PPz7/g5paCSHkA1S5RvnJJ5+gSZMmiIqKwrp16/Dy5Uv89ttvyoyNVEFJv+TBmwfRfmd7pOemw1TXFME9g/FwykN0duhMSZIQQj5AlWuUZ8+exdSpUzFx4kS4ubkpMyYih5J+SaFIyPVJpuemw93eHXpaeqoNjhBC6oEq1yivXbsGkUiEVq1aoW3btti4cSNev36tzNhIJUpqkr9e/rU4SZbiZuqG5pbNVRQZIYTUL1VOlO3atcP27dshFAoxfvx4HDp0CDY2NpBKpbhw4QJEIpEy4yTvKFlMYPGtt1uINTZojJDRIYiYEEHNrYQQoiAftITd48ePsXPnTuzbtw8ZGRno0aMHTp48qcj4FK4uL2FXsiTd3Zd38d/D/7D4juw+m1cCr8Df0V9F0RFCSN2itP0oyyORSPDPP/9g165dlCiVKCs/6+2SdADUoAYppABo7VZCCJGXUtd6fZe6ujoGDhyIgQMHKuJxpALvzpOUQoqgjkHwc/FDa9vWlCQJIUQJFJIoSc1gaUxmnqSjoSOmdp5KCZIQQpSo2ivzkJojLhRjb8hedNnXhZsnebDvQTyY/ICSJCGEKBnVKGsxxhhSclLQclNLJOcmA//fhJ6emw4nKydKkoQQUgMoUdZiogIRPDd7Ii03Taac5kkSQkjNoURZSzHGcPLWSaSJ3yZJaz1rHBp8iNZuJYSQGkSJshZijCFCEIH8Rvkw45shTZwGGz0bRH4biUb8RqoOjxBCGhQazFMLRURFIEw9DHNPz+WSZMTECEqShBCiAlSjrGVu3L2BfhP6AUOBdHHxNJCXOS8RnxEPcz1zFUdHCCENDyXKWqBkgfNDVw9h0tlJkHwiAcRvz9sb2sPTwlN1ARJCSANGibIWEBWI4LHJo3gXECPZc/aG9ggbH0aDdwghREUoUdYCf1/9u8xWWU7GTggeGEwjXAkhRMVoMI+KXbt1DTO+mwFTvqlMefDAYHR26ExJkhBCVIwSpQqU9EmuP70enY90RsaADOS8zoGNvg2A4gUFfG18VRwlIYQQgJpeVaJk0+Xk7GTAoLgsn5+Pg58fhI6GDjwtPKkmSQghtQQlyhrEGIOESXDo8iGZ7bKA4kE71B9JCCG1DyXKGsIYw5u8N/gt4jcU6BfAUt8SKdkpAABbA1sa2UoIIbUUJcoaIioQodmmZlxNUjdPF0eHH4WZgRltukwIIbUYJcoawBjDgf8dkGluzdXJhZ2pHdrYtlFhZIQQQt5HpaNeN2/eDC8vLxgaGsLQ0BB+fn44e/ZspfccOXIE7u7u0NHRQfPmzXHmzJkairZ6xIVibD2zFVJbKUx1304BcTFxodV2CCGkDlBpjdLOzg4rVqyAm5sbGGPYs2cPBgwYgPDwcDRr1qzM9aGhoRg2bBiCgoLQr18/HDhwAAMHDkRYWBg8PWtf0hEXitFkbRMk5SZB/Z46JEwCKz0rBA8MRieHTtTcSgghdQCPMcZUHURppqamWLVqFcaMGVPm3NChQ5GTk4NTp05xZe3atYO3tze2bNlSpednZWXByMgImZmZMDQ0rH6gYjFw927x902bAtHRQF5e8bGODtC0KbYHL8a4nI1lbr3VagvatBv09p7/v77C41LPRFwc4OkJ8CnJEkLIh6hqPqg1fZQSiQRHjhxBTk4O/Pz8yr3mxo0bmDlzpkxZQEAAjh8/XuFz8/PzkZ+fzx1nZWV9eLBiMeDlBcTGFh9raABFRTKXpPKBxeMAGBcfa0qAQnXALQ3w/GwCwCbL3vPuM8p5JjQ1gcJCwM0NiIigZEkIITVA5Yny/v378PPzQ15eHvT19XHs2DE0bdq03GuTk5NhaWkpU2ZpaYnk5ORyrweAoKAgLF68WKExQyB4myQBmYQm1gTuWgPDBwEvSi1wfuoPwLgA8EwF+IUA8E4SfDcpvnsMFCdJAIiJKY6hDQ0EIoQQZVP5EnZNmjRBREQEbt26hYkTJyIwMBDR0dEKe/68efOQmZnJfSUmJn74Qz09AReXt8caxX9viDUB7wmA/9eySdI+A+goVEebFyVJ8u097z6jwmOguEYJFNcoa2GfLCGE1Ecqr1FqaWnB1dUVANCqVSvcuXMH69evx9atW8tca2VlhZSUFJmylJQUWFlZVfh8bW1taGtrKzZoPh+IiuL6KJmHB0QPwrD82ibESE7KXGqvZY6wvjvA/6F91fskqY+SEEJqDZUnyndJpVKZPsXS/Pz8cOnSJUyfPp0ru3DhQoV9mkrF5wOdOwMARPlZaHJvNJIlb5uAHY0csefTPbLL0v3/9Rx5jwGgUaMPjZwQQogcVJoo582bh969e6Nx48YQiUQ4cOAArly5gvPnzwMARo0aBVtbWwQFBQEApk2bBn9/f6xZswZ9+/bFoUOHcPfuXWzbtq3GY2eMQVQggiBVgEvXLpVZu3XPp3vQ2aGcREcIIaROUWmiTE1NxahRoyAUCmFkZAQvLy+cP38ePXr0AAAkJCRATe1tN2r79u1x4MAB/Pjjj5g/fz7c3Nxw/PhxlcyhFBWI4P67e/GGyxIA6m/PuZi40DZZhBBST9S6eZTKpqh5lKGJoeiwq0OZ8s19NmOU9yhaTIAQQmq5quYDlY96ravi7sXBjG8GAOAxHoDiDZcpSRJCSP1S6wbz1AX/nPsHo66MAjNhMOObITQwFBmFGbThMiGE1EOUKKtB214bzKS4xTpNnIY3BW/Q1q6tiqMihBCiDNT0Wg0dP+oIZ2NnAMXNrc0tm6s4IkIIIcpCNcpq4Gvycf/b+xCkCqi5lRBC6jlKlNXE1+TTpsuEENIAUNMrIYQQUglKlIQQQkglKFESQgghlaBESQghhFSCEiUhhBBSCUqUhBBCSCUoURJCCCGVoERJCCGEVIISJSGEEFIJSpSEEEJIJShREkIIIZWgREkIIYRUghIlIYQQUokGt3sIY8UbLmdlZak4EkIIIapUkgdK8kJFGlyiFIlEAAB7e3sVR0IIIaQ2EIlEMDIyqvA8j70vldYzUqkUL1++hIGBAXg8ntJeJysrC/b29khMTIShoaHSXqehoM9T8egzVSz6PBWrJj5PxhhEIhFsbGygplZxT2SDq1GqqanBzs6uxl7P0NCQfmgUiD5PxaPPVLHo81QsZX+eldUkS9BgHkIIIaQSlCgJIYSQSlCiVBJtbW0sXLgQ2traqg6lXqDPU/HoM1Us+jwVqzZ9ng1uMA8hhBAiD6pREkIIIZWgREkIIYRUghIlIYQQUglKlIQQQkglKFEq2ObNm+Hl5cVNkvXz88PZs2dVHVa9sWLFCvB4PEyfPl3VodRJixYtAo/Hk/lyd3dXdVh12osXLzBy5EiYmZlBV1cXzZs3x927d1UdVp3l6OhY5t8oj8fDpEmTVBZTg1uZR9ns7OywYsUKuLm5gTGGPXv2YMCAAQgPD0ezZs1UHV6ddufOHWzduhVeXl6qDqVOa9asGS5evMgda2jQr4HqevPmDTp06ICPP/4YZ8+ehbm5OWJiYmBiYqLq0OqsO3fuQCKRcMcCgQA9evTA4MGDVRYT/YQo2CeffCJz/PPPP2Pz5s24efMmJcoPkJ2djREjRmD79u1YtmyZqsOp0zQ0NGBlZaXqMOqFlStXwt7eHrt37+bKnJycVBhR3Wdubi5zvGLFCri4uMDf319FEVHTq1JJJBIcOnQIOTk58PPzU3U4ddqkSZPQt29fdO/eXdWh1HkxMTGwsbGBs7MzRowYgYSEBFWHVGedPHkSvr6+GDx4MCwsLNCyZUts375d1WHVGwUFBfjjjz/w9ddfK3UTi/ehGqUS3L9/H35+fsjLy4O+vj6OHTuGpk2bqjqsOuvQoUMICwvDnTt3VB1Knde2bVsEBwejSZMmEAqFWLx4MTp16gSBQAADAwNVh1fnxMXFYfPmzZg5cybmz5+PO3fuYOrUqdDS0kJgYKCqw6vzjh8/joyMDIwePVqlcdDKPEpQUFCAhIQEZGZm4q+//sKOHTsQEhJCybIaEhMT4evriwsXLnB9k126dIG3tzfWrVun2uDqgYyMDDg4OODXX3/FmDFjVB1OnaOlpQVfX1+EhoZyZVOnTsWdO3dw48YNFUZWPwQEBEBLSwv//POPSuOgplcl0NLSgqurK1q1aoWgoCC0aNEC69evV3VYddK9e/eQmpoKHx8faGhoQENDAyEhIdiwYQM0NDRkOv2J/IyNjfHRRx/h6dOnqg6lTrK2ti7zB7CHhwc1ZyvA8+fPcfHiRYwdO1bVoVDTa02QSqXIz89XdRh1Urdu3XD//n2Zsq+++gru7u6YO3cu1NXVVRRZ/ZCdnY3Y2Fh8+eWXqg6lTurQoQMeP34sU/bkyRM4ODioKKL6Y/fu3bCwsEDfvn1VHQolSkWbN28eevfujcaNG0MkEuHAgQO4cuUKzp8/r+rQ6iQDAwN4enrKlOnp6cHMzKxMOXm/2bNn45NPPoGDgwNevnyJhQsXQl1dHcOGDVN1aHXSjBkz0L59eyxfvhxDhgzB7du3sW3bNmzbtk3VodVpUqkUu3fvRmBgYK2YvqT6COqZ1NRUjBo1CkKhEEZGRvDy8sL58+fRo0cPVYdGCJKSkjBs2DCkpaXB3NwcHTt2xM2bN8sMySdV07p1axw7dgzz5s3DkiVL4OTkhHXr1mHEiBGqDq1Ou3jxIhISEvD111+rOhQANJiHEEIIqRQN5iGEEEIqQYmSEEIIqQQlSkIIIaQSlCgJIYSQSlCiJIQQQipBiZIQQgipBCVKQgghpBKUKAmpw7Zt2wZ7e3uoqalh3bp1WLRoEby9vVUdVrV16dIF06dPV3UYhMigRElIBUaPHo2BAwfW+OsGBwfD2Nj4vddlZWVh8uTJmDt3Ll68eIFx48YpJZ66nnwJ+VC0hB0hdVRCQgIKCwvRt29fWFtbqzocQuotqlESUkVdunTB1KlT8d1338HU1BRWVlZYtGiRzDU8Hg+bN29G7969oaurC2dnZ/z111/c+StXroDH4yEjI4Mri4iIAI/Hw7Nnz3DlyhV89dVXyMzMBI/HA4/HK/MaQHGts3nz5gAAZ2dn7v53SaVSLFmyBHZ2dtDW1oa3tzfOnTsnc83cuXPx0Ucfgc/nw9nZGQsWLEBhYSH3OosXL0ZkZCQXT3BwcJnX+ffff6GjoyPzvgBg2rRp6Nq1KwAgLS0Nw4YNg62tLfh8Ppo3b46DBw9W8Gm//TyPHz8uU2ZsbCwTQ2JiIoYMGQJjY2OYmppiwIAB5X4WhFQXJUpC5LBnzx7o6enh1q1b+OWXX7BkyRJcuHBB5poFCxZg0KBBiIyMxIgRI/DFF1/g4cOHVXp++/btsW7dOhgaGkIoFEIoFGL27Nllrhs6dCguXrwIALh9+zaEQiHs7e3LXLd+/XqsWbMGq1evRlRUFAICAtC/f3/ExMRw1xgYGCA4OBjR0dFYv349tm/fjrVr13KvM2vWLDRr1oyLZ+jQoWVep1u3bjA2NsbRo0e5MolEgsOHD3MLhOfl5aFVq1Y4ffo0BAIBxo0bhy+//BK3b9+u0mdTnsLCQgQEBMDAwABXr17F9evXoa+vj169eqGgoKDazyVEBiOElCswMJANGDCAO/b392cdO3aUuaZ169Zs7ty53DEANmHCBJlr2rZtyyZOnMgYY+zy5csMAHvz5g13Pjw8nAFg8fHxjDHGdu/ezYyMjN4b37v3McbYwoULWYsWLbhjGxsb9vPPP5eJ+dtvv63wuatWrWKtWrWq8JkVmTZtGuvatSt3fP78eaatrS3zXt/Vt29fNmvWLO7Y39+fTZs2jTsGwI4dOyZzj5GREdu9ezdjjLF9+/axJk2aMKlUyp3Pz89nurq67Pz58++NmZCqoD5KQuTg5eUlc2xtbY3U1FSZMj8/vzLHERERyg6tjKysLLx8+RIdOnSQKe/QoQMiIyO548OHD2PDhg2IjY1FdnY2ioqKYGhoKPfrjRgxAu3atcPLly9hY2OD/fv3o2/fvtzAJIlEguXLl+PPP//EixcvUFBQgPz8fPD5/Gq/x8jISDx9+hQGBgYy5Xl5eYiNja32cwkpjRIlIXLQ1NSUOebxeJBKpVW+X02tuLeDldrdrqQ/UBVu3LiBESNGYPHixQgICICRkREOHTqENWvWyP2s1q1bw8XFBYcOHcLEiRNx7Ngxmb7EVatWYf369Vi3bh2aN28OPT09TJ8+vdImUh6PJ/NZAbKfV3Z2Nlq1aoX9+/eXuZf22CSKQomSEAW7efMmRo0aJXPcsmVLAG9/eQuFQpiYmABAmdqmlpYWJBLJB8dhaGgIGxsbXL9+Hf7+/lz59evX0aZNGwBAaGgoHBwc8MMPP3Dnnz9/Xu14RowYgf3798POzg5qamro27evzOsOGDAAI0eOBFA80OjJkydo2rRphc8zNzeHUCjkjmNiYiAWi7ljHx8fHD58GBYWFtWqBRNSFTSYhxAFO3LkCHbt2oUnT55g4cKFuH37NiZPngwAcHV1hb29PRYtWoSYmBicPn26TO3N0dER2dnZuHTpEl6/fi2TGOQ1Z84crFy5EocPH8bjx4/x/fffIyIiAtOmTQMAuLm5ISEhAYcOHUJsbCw2bNiAY8eOlYknPj4eEREReP36NfLz8yt8vREjRiAsLAw///wzPv/8c2hra3Pn3NzccOHCBYSGhuLhw4cYP348UlJSKo2/a9eu2LhxI8LDw3H37l1MmDBBplY/YsQINGrUCAMGDMDVq1cRHx+PK1euYOrUqUhKSqrOR0ZIGZQoCVGwxYsX49ChQ/Dy8sLevXtx8OBBrtakqamJgwcP4tGjR/Dy8sLKlSuxbNkymfvbt2+PCRMmYOjQoTA3N8cvv/xS7VimTp2KmTNnYtasWWjevDnOnTuHkydPws3NDQDQv39/zJgxA5MnT4a3tzdCQ0OxYMECmWcMGjQIvXr1wscffwxzc/NKp3S4urqiTZs2iIqK4ka7lvjxxx/h4+ODgIAAdOnSBVZWVu9d0GHNmjWwt7dHp06dMHz4cMyePVumT5PP5+O///5D48aN8dlnn8HDwwNjxoxBXl4e1TCJwvDYux0AhJBq4/F4OHbsmEpW9CGEKAfVKAkhhJBKUKIkhBBCKkGjXglRIOrJIKT+oRolIYQQUglKlIQQQkglKFESQgghlaBESQghhFSCEiUhhBBSCUqUhBBCSCUoURJCCCGVoERJCCGEVIISJSGEEFKJ/wNL7DpZVEWzEQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -223,7 +220,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvMAAAHACAYAAAAvA+dJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACL8klEQVR4nOzdd1jT19sG8DussBEUFBVnqKAorrqt1lFHrbZ1tE602lZr3QIuBBy4Z7XuXau2Wq2vs2rVqijWAYobRMUaREVIIMrKef/gRyoVlGBCCNyf68pV8l25Y4o+HJ7vORIhhAARERERERkdE0MHICIiIiKigmExT0RERERkpFjMExEREREZKRbzRERERERGisU8EREREZGRYjFPRERERGSkWMwTERERERkpFvNEREREREbKzNAB3oVarcajR49gZ2cHiURi6DhERERERDohhIBSqUT58uVhYpL3+LtRF/OPHj2Cm5uboWMQEREREelFbGwsKlasmOd+oy7m7ezsAGS9SXt7ewOnISIiIiLSDYVCATc3N029mxejLuazW2vs7e1ZzBMRERFRsfO2VnLeAEtEREREZKRYzBMRERERGSkW80RERERERsqoe+bzQwiBjIwMZGZmGjoKEeWDqakpzMzMON0sERFRPhTrYj4tLQ1yuRwqlcrQUYhIC9bW1nB1dYWFhYWhoxARERVpxbaYV6vViImJgampKcqXLw8LCwuO9BEVcUIIpKWl4cmTJ4iJiYG7u/sbF8ogIiIq6YptMZ+Wlga1Wg03NzdYW1sbOg4R5ZOVlRXMzc1x//59pKWlwdLS0tCRiIiIiqxiP+TFUT0i48PvWyIiovzhv5hEREREREaKxTwRERERkZFiMU96JZFIsGfPHkPHICIiIiqWWMwXMRKJ5I2PoKAgQ0ckIiIioiKi2M5mY6zkcrnm6x07dmDq1Km4deuWZputra3mayEEMjMzYWbGj5GIiIhIV4QQUKYpERkfCe+y3rCxsDF0pDyVqJF5IQRSUlIK/SGEyHfGcuXKaR4ODg6QSCSa5zdv3oSdnR0OHjyIBg0aQCqV4vTp0xg4cCA+/fTTHNcZPXo0WrdurXmuVqsxa9YsVK1aFVZWVvD29sbOnTvzzDFp0iQ0btz4te3e3t6YNm0aAODvv/9G+/btUaZMGTg4OKBVq1a4dOlSntc8ceIEJBIJEhMTNdvCw8MhkUhw7949zbbTp0+jZcuWsLKygpubG0aOHImUlJQ3/8ERERER6YgyTQmP5R5ovr456q6qC1V60V2AtEQV8yqVCra2toX+0PUKtBMmTMDs2bNx48YN1KlTJ1/nzJo1C5s3b8bKlStx7do1jBkzBv369cPJkydzPb5v3744f/48oqOjNduuXbuGK1euoE+fPgAApVIJHx8fnD59GufOnYO7uzs6d+4MpVJZ4PcWHR2Njh07onv37rhy5Qp27NiB06dP4/vvvy/wNYmIiIi0sfXIVsiVWd0SUQlRiIyPNHCivLE/wwhNmzYN7du3z/fxqampCAkJwdGjR9G0aVMAQLVq1XD69GmsWrUKrVq1eu2cWrVqwdvbGz///DMCAgIAAFu3bkXjxo0hk8kAAG3atMlxzurVq1GqVCmcPHkSXbp0KdB7mzVrFvr27YvRo0cDANzd3bF06VK0atUKK1as4AJCREREpDfXr1+Hv78//jj5B1yDXCFXylHZtjK8XLwMHS1PJaqYt7a2RnJyskFeV5caNmyo1fFRUVFQqVSv/QCQlpaGevXq5Xle3759sX79egQEBEAIgW3btmHs2LGa/Y8fP8aUKVNw4sQJxMfHIzMzEyqVCg8ePNDuDb0iIiICV65cwdatWzXbhBBQq9WIiYmBp6dnga9NRERElO3VvngXtQvmzpyLdevWQa1Ww9TUFF3vd0XXwV3RyqMVrM11W8vpUokq5iUSCWxsiu4NDPn13/dgYmLyWl9+enq65uvsH2D279+PChUq5DhOKpXm+Tq9e/eGv78/Ll26hBcvXiA2NhZffPGFZr+Pjw+ePXuGJUuWoHLlypBKpWjatCnS0tJyvV72qp6vZn01Z3bWb7/9FiNHjnzt/EqVKuWZlYiIiEgb2X3xcqUcJs9NoN6oBtTA559/jpCQENSoUcPQEfOlRBXzxZWzszMiI3P2coWHh8Pc3BwAULNmTUilUjx48CDXlpq8VKxYEa1atcLWrVvx4sULtG/fHi4uLpr9Z86cwY8//ojOnTsDAGJjY/H06dM35gSyZuxxdHTU5HxV/fr1cf36dU0rDxEREZGupaenY8bqGZq+eLWjGl5tvbAqYBWaNWtm4HTaKVE3wBZXbdq0wYULF7B582bcuXMHgYGBOYp7Ozs7jB8/HmPGjMGmTZsQHR2NS5cu4YcffsCmTZveeO2+ffti+/bt+PXXX9G3b98c+9zd3bFlyxbcuHEDYWFh6Nu3L6ysrPK8lkwmg5ubG4KCgnDnzh3s378fCxYsyHGMv78/QkND8f333yM8PBx37tzB77//zhtgiYiI6J0JIbB79254eXlhyeQlcLVzBQC4Wrji3O/njK6QB1jMFwsdOnRAQEAA/Pz88P7770OpVGLAgAE5jpk+fToCAgIwa9YseHp6omPHjti/fz+qVq36xmv36NEDz549g0qlem36y3Xr1uH58+eoX78++vfvj5EjR+YYuf8vc3NzbNu2DTdv3kSdOnUwZ84czJgxI8cxderUwcmTJ3H79m20bNkS9erVw9SpU1G+fHnt/lCIiIiIXhEaGooWLVrg888/x+3bt+Fg6QA/az+cHHASd8bdKdJzyb+JRGgzCXoRo1Ao4ODggKSkJNjb2+fY9/LlS8TExKBq1aqcAYXIyPD7l4iIdEEIgVtRtxA4NRC/bP8FAGBlZYVx48bB19f3tfqxKHlTnfsqjswTERERUbETHx+PUWNG4arpVfSY2QNWNlYYMmQIoqKiMH369CJdyGuDN8ASERERUbGhUqmwaNEizJkzB2kZaWj0XSPEJsbixJkTaOTdyNDxdI7FPBEREREZLSEEMkUmMjMz8dPmnzB16lQ8evQIANCoZSP47fODXCmHzEmGiJoRRXrO+IJgMU9ERERERitDnYE99/cAAIaPGI7UF6moWrUqQkJC4NbUDS02tgAARCVEITI+Eo0qFK/RefbMExEREZFRunDhAj7++GPN81KlSmHhwoW4ceMGvvzyS9R1rQuZU9baNe5O7vBy8TJUVL3hyDwRERERGZWYmBhMnjwZ27Ztg9RKigEZAxCbGIvzl8+jUtl/V4y3sbBBxNAIRMZHwsvFq9i12AAs5omIiIioiMvui3/+/Dlmh8zGsmXLkJaWBolEgh69e2j64tc7rUfE0Jx98dbm1sWuteZVbLMhIiIioiIt5UUKdt/bjRNJJ7B8xXKkpaWhXbt2uHjxIr4L+g5ypRzAv33xJQmLedJa69atMXr0aEPHICIiomJOrVbjp59+Qr169ZCakYqop1GoWacmDh8+jCNHjqBevXrwLutd7Pvi34TFfBE0cOBASCQSSCQSmJubo2rVqvDz88PLly8NHS1fgoKCULduXUPHMKh79+5BIpEgPDzc0FG0duLECdSvXx9SqRQymQwbN2586/HdunWDq6srbGxsULduXWzdujXHMWvWrEHLli3h6OgIR0dHtGvXDufPn9fjuyAiImN39OhRNGjQAP3798cD+QP47fPDpIOToOyjRIsPW2iOy+6LDxsShvCh4cWyL/5NWMwXUR07doRcLsfdu3exaNEirFq1CoGBgYaOVSIIIZCRkWHoGPmWmZkJtVr92va0tDStrxUTE4OPP/4YH374IcLDwzF69GgMGTIEhw8fzvOc0NBQ1KlTB7t27cKVK1cwaNAgDBgwAPv27dMcc+LECfTu3RvHjx/H2bNn4ebmho8++gj//POP1hmJiKh4EkIgQ52ByxGX0bFjR7Rv3x7h4eGwt7fHkElD/m2lef56K012X3xJK+QBAMKIJSUlCQAiKSnptX0vXrwQ169fFy9evDBAsnfj4+MjunXrlmPb559/LurVq6d5/vLlSzFixAjh7OwspFKpaN68uTh//rxm/4YNG4SDg0OOa+zevVu8+pEHBgYKb29vsXnzZlG5cmVhb28vvvjiC6FQKDTHJCcni/79+wsbGxtRrlw5MX/+fNGqVSsxatSoXLNv2LBBAMjx2LBhgxBCiPv374uuXbsKGxsbYWdnJ3r27Cni4uLy/HOIiYkRAMSuXbtE69athZWVlahTp44IDQ3NcdypU6dEixYthKWlpahYsaIYMWKESE5O1uzfvHmzaNCggbC1tRVly5YVvXv3Fo8fP9bsP378uAAgDhw4IOrXry/Mzc3F8ePHRWZmpggJCRFVqlQRlpaWok6dOuLXX3/VnJeQkCD69OkjypQpIywtLYVMJhPr168XQojX/gxatWqV5/v8r5cvX4px48aJ8uXLC2tra9GoUSNx/PjxHH/GDg4O4vfffxeenp7C1NRUxMTEiMqVK4tp06aJ/v37Czs7O+Hj45Pv18zm5+cnatWqlWPbF198ITp06KDVdTp37iwGDRqU5/6MjAxhZ2cnNm3alOt+Y/7+JSKigom5HyN+if5F/BL9i5BaSYW5ubkYNWqUePLkiUhOTRaypTKBIAj3pe4iJS3F0HH17k117qs4Mp9fKhVw/nzWfwtZZGQkQkNDYWFhodnm5+eHXbt2YdOmTbh06RJkMhk6dOiAhIQEra4dHR2NPXv2YN++fdi3bx9OnjyJ2bNna/b7+vri5MmT+P333/HHH3/gxIkTuHTpUp7X++KLLzBu3DjUqlULcrkccrkcX3zxBdRqNbp164aEhAScPHkSR44cwd27d/HFF1+8NePkyZMxfvx4hIeH47333kPv3r01I+fR0dHo2LEjunfvjitXrmDHjh04ffo0vv/+e8356enpmD59OiIiIrBnzx7cu3cPAwcOfO11JkyYgNmzZ+PGjRuoU6cOZs2ahc2bN2PlypW4du0axowZg379+uHkyZMAgICAAFy/fh0HDx7EjRs3sGLFCpQpUwYANC0kR48ehVwux2+//fb2D+N/vv/+e5w9exbbt2/HlStX0LNnT3Ts2BF37tzRHKNSqTBnzhysXbsW165dg4uLCwBg/vz58Pb2xuXLlxEQEAAAqFWrFmxtbfN8dOrUSXPds2fPol27djnydOjQAWfPns13fgBISkqCk5NTnvtVKhXS09PfeAwREZUMSUlJmDhxIrzremv64rt274obN25g8eLFKFOmTIlvpXmjQvrhQi8KbWQ+JUUId3chgKz/puj3p0EfHx9hamoqbGxshFQqFQCEiYmJ2LlzpxAia7Tc3NxcbN26VXNOWlqaKF++vJg7d64QIv8j89bW1jlG4n19fUXjxo2FEEIolUphYWEhfvnlF83+Z8+eCSsrqzxH5rOv6+3tnWPbH3/8IUxNTcWDBw80265duyYA5PiNwquyR+bXrl372jk3btwQQggxePBg8c033+Q479SpU8LExCTPz/7vv/8WAIRSqRRC/Dsyv2fPHs0xL1++FNbW1q/9FmDw4MGid+/eQgghPvnkkzxHn7OzX758Odf9ebl//74wNTUV//zzT47tbdu2FRMnThRC/Pvbj/Dw8BzHVK5cWXz66aevXfPevXvizp07eT4ePnyoOdbd3V2EhITkOH///v0CgFCpVPl6Dzt27BAWFhYiMjIyz2OGDRsmqlWrludnxJF5IqLiLzU1VSxZskSULl1aABAWdhbCdYGrQBCEbKmsRIy+v0l+R+Y5z3x+REYC2aOid+5kPW+k3/lKP/zwQ6xYsQIpKSlYtGgRzMzM0L17dwBZo9Hp6elo3ry55nhzc3M0atQIN27c0Op1qlSpAjs7O81zV1dXxMfHa14nLS0NjRs31ux3cnJCjRo1tH4/N27cgJubG9zc3DTbatasiVKlSuHGjRt4//338zy3Tp06OfIBQHx8PDw8PBAREYErV67kuOFSCAG1Wo2YmBh4enri4sWLCAoKQkREBJ4/f67pL3/w4AFq1qypOa9hw4aar6OioqBSqdC+ffscWdLS0lCvXj0AwLBhw9C9e3dcunQJH330ET799FM0a9ZM6z+bV129ehWZmZl47733cmxPTU1F6dKlNc8tLCxy/Lnk9h6yVa5c+Z0yaeP48eMYNGgQ1qxZg1q1auV6zOzZs7F9+3acOHEClpaWhZaNiIiKBrVajZ2/7cTUwKm4df0WAMDT0xNfBX4F35u+AP6dYrI4zw+vKyzm88PLC3B3zyrk3d2znuuZjY0NZLKsaZbWr18Pb29vrFu3DoMHD87X+SYmJhBC5NiWnp7+2nHm5uY5nkskklxvpjSkVzNKJBIA0GRMTk7Gt99+i5EjR752XqVKlZCSkoIOHTqgQ4cO2Lp1K5ydnfHgwQN06NDhtRtEbWxsNF8nJycDAPbv348KFSrkOE4qlQIAOnXqhPv37+PAgQM4cuQI2rZti+HDh2P+/PkFfq/JyckwNTXFxYsXYWpqmmOfra2t5msrKyvNn0Ve7yFbrVq1cP/+/Txfs2XLljh48CAAoFy5cnj8+HGO/Y8fP4a9vT2srKzemP3kyZP45JNPsGjRIgwYMCDXY+bPn4/Zs2fj6NGjuf4wQkRExdtff/2FSVMmYejaofDZ4IMf+/yIqf5TMWjQIKSqU7Fq1SpEJUSVyCkmC8rgxfw///wDf39/HDx4ECqVCjKZDBs2bMh1hNFgrK2B8PCsEXkvr6znhcjExASTJk3C2LFj0adPH1SvXh0WFhY4c+aMZtQ1PT0df//9t2b+d2dnZyiVSqSkpGgKPG2nSaxevTrMzc0RFhaGSpWylkZ+/vw5bt++jVatWuV5noWFBTIzM3Ns8/T0RGxsLGJjYzWj89evX0diYmKO0XFt1a9fH9evX9f84PNfV69exbNnzzB79mzN6164cOGt161ZsyakUikePHjwxvfq7OwMHx8f+Pj4oGXLlvD19cX8+fM19zf898/hberVq4fMzEzEx8ejZcuWWp2blwMHDuT6g1y2V4v0pk2b4sCBAzn2HzlyBE2bNn3ja5w4cQJdunTBnDlz8M033+R6zNy5czFz5kwcPny4aH1/ExGR3t24cQMTJkzA3r17YWFngbv77kKulKP6iOroO7AvzMzMYAYzRAyNQGR8JLxcvNgXn08GLeafP3+O5s2b48MPP8TBgwfh7OyMO3fuwNHR0ZCxcmdtrffWmjfp2bMnfH19sXz5cowfPx7Dhg2Dr68vnJycUKlSJcydOxcqlUozct+4cWNYW1tj0qRJGDlyJMLCwt46X/h/2draYvDgwfD19UXp0qXh4uKCyZMnw8TkzfdNV6lSBTExMQgPD0fFihVhZ2eHdu3aoXbt2ujbty8WL16MjIwMfPfdd2jVqtU7FXb+/v5o0qQJvv/+ewwZMgQ2Nja4fv06jhw5gmXLlqFSpUqwsLDADz/8gKFDhyIyMhLTp09/63Xt7Owwfvx4jBkzBmq1Gi1atEBSUhLOnDkDe3t7+Pj4YOrUqWjQoAFq1aqF1NRU7Nu3D56engAAFxcXWFlZ4dChQ6hYsSIsLS3h4ODw1td977330LdvXwwYMAALFixAvXr18OTJExw7dgx16tTBxx9/rPWfkTZtNkOHDsWyZcvg5+eHr776Cn/++Sd++eUX7N+/X3PMsmXLsHv3bhw7dgxAVmtNly5dMGrUKHTv3h1xcXEAsn6oy77Bdc6cOZg6dSp+/vlnVKlSRXNM9k24RERUPMnlcgQFBWHt2rVQq9UwNTVF1yFdsVO5EwAQnRido50me4pJ0kKhdPDnwd/fX7Ro0aLA55ekqSmFEGLWrFnC2dlZJCcnixcvXogRI0aIMmXK5Do1pRBZN7zKZDJhZWUlunTpIlavXp3r1JSvWrRokahcubLmuVKpFP369RPW1taibNmyYu7cuW+cmlKIrJtHu3fvLkqVKqWTqSlfvYn0+fPnAkCOqRrPnz8v2rdvL2xtbYWNjY2oU6eOmDlzpmb/zz//LKpUqSKkUqlo2rSp2Lt3b47rZt8A+/z58xyvr1arxeLFi0WNGjWEubm5cHZ2Fh06dBAnT54UQggxffp04enpKaysrISTk5Po1q2buHv3rub8NWvWCDc3N2FiYqKZmjL7tWJiYvJ832lpaWLq1KmiSpUqwtzcXLi6uorPPvtMXLlyRQiR+83NQmTdALto0aI8r5tfx48fF3Xr1hUWFhaiWrVqms8vW2BgYI7/R3x8fF6bihP/mY6zcuXKuR4TGBiYawZj/v4lIiIhFAqFmBQ4SVhWtxQwz/o7/9NPPxU3b94skdNMFkR+b4A1aDHv6ekpRo8eLXr06CGcnZ1F3bp1xerVq/N9fnEt5qn4Wr9+vZDJZCItLc3QUYo0fv8aoZQUIcLCcp/tqyD7dH294rCvqOQo7H1FJUdh7ysqObTcl5aWJlasWCFcKrgIyQgIBEFYjZeKIyeO5Dwt8YkIO7xepCQ+KVL5872vEBhFMS+VSoVUKhUTJ04Uly5dEqtWrRKWlpZi48aNuR7/8uVLkZSUpHnExsaymCej0qNHjxxTfVLu+P1rZN40fW9B9un6esVhX1HJwffN953HPrW7u9i7fbuoUaOGACCkFbIK+exHWNTJ4vO+C4lRFPPm5uaiadOmObaNGDFCNGnSJNfjAwMDc/1VPYt5ouKF379GJiws6x+87EdY2Lvt0/X1isO+opKD75vv+5V96rBzIt1KKtKtpEINiPf/V5eVKVNGbB43Urj/b2TefQRESujJt1+zCL23N+4rJEZRzFeqVEkMHjw4x7Yff/xRlC9fPtfjOTJPVDLw+9fIcFSSI7V83yXyfd+MuCx+if5F/BL9i7huJRVOlpZi8uTJWXVZSopI8aguwipApHhUL1bvu7AYRTHfu3fv126AHT169Guj9XlhzzxR8cTvXyOUksJ+YX3vKyo5CntfUclR2PuKSo5c9sXHx4vvv/9e2NjZiC23toiQsBDx9ZD+OVYUL47vu7Dlt5iXCCGEfufLydvff/+NZs2aITg4GL169cL58+fx9ddfY/Xq1ejbt+9bz1coFHBwcEBSUhLs7e1z7Hv58iViYmJQtWpVrjJJZGT4/UtEVPSoVCosXrwYs2fPhlKphIWdBUoHlYZcKYfMSYaIoRGcG16H3lTnvurNE4br2fvvv4/du3dj27Zt8PLywvTp07F48eJ8FfJEREREpF9CCKSmp2L9xvVwd3fH5MmToVQqUb9+fSzcshBypRwAEJUQhcj4SAOnLZl0smhUYmIiSpUqVaBzu3Tpgi5duugiBhERERHpiBACBw8fREK1BDyu+RhPlU9RuXJlhISE4Msvv8SLjBdY/GAxohKi4O7kDi8XL0NHLpG0LubnzJmDKlWq4IsvvgAA9OrVC7t27UK5cuVw4MABeHt76zwkEREREemHEALKNCUi4yPhXdYbNhY2uHjxIvz8/HD679OaVpoyvmVwafQlONllre5tY2GDiKERiIyPhJeLF1tsDETrNpuVK1fCzc0NAHDkyBEcOXIEBw8eRKdOneDr66vzgERERESkP8o0JTyWe6D5+ubwWuaFL/p9gYYNG+LPP/+EmauZppXmqfopohRROc61NrdGowqNWMgbkNbFfFxcnKaY37dvH3r16oWPPvoIfn5++Pvvv3UekIxTUFAQ6tat+8ZjBg4ciE8//bRQ8hAREVHuIuMjNQX7PeU9/HLiFwBA37598fe+vyFzkgEAW2mKKK2LeUdHR8TGxgIADh06hHbt2gHI+hVNZmambtOVUE+ePMGwYcNQqVIlSKVSlCtXDh06dMCZM2c0x1SpUgUSiQQSiQTW1taoXbs21q5dq/VrXbt2Dd27d9dcb/Hixbke988//6Bfv34oXbo0rKysULt2bVy4cKGgbxEAsGTJEmzcuFHzvHXr1hg9evQ7XbOoefnyJYYPH47SpUvD1tYW3bt3x+PHj994jhACU6dOhaurK6ysrNCuXTvcuXMnxzEzZ85Es2bNYG1tXeD7VYiIiF6+fImTv56Eq51r1oYEoJVnK1y8eBE//fQTarrXRMTQCIQNCUP40HCOwBdBWhfzn3/+Ofr06YP27dvj2bNn6NSpEwDg8uXLkMlkOg9YEnXv3h2XL1/Gpk2bcPv2bezduxetW7fGs2fPchw3bdo0yOVyREZGol+/fvj6669x8OBBrV5LpVKhWrVqmD17NsqVK5frMc+fP0fz5s1hbm6OgwcP4vr161iwYAEcHR0L/B4BwMHBoUgWomlpaa9ty8zMhFqt1vpaY8aMwf/93//h119/xcmTJ/Ho0SN8/vnnbzxn7ty5WLp0KVauXImwsDDY2NigQ4cOePnyZY6MPXv2xLBhw7TOREREpFarsXXrVnh4eCB4SjDmdpmLkE4h+K3Dbzj+x3HUr19fcyxbaYo4bSewT0tLE/PmzRMjR44Uly5d0mxfuHChWLNmjbaXeyfFcdGo58+fCwDixIkTbzyucuXKYtGiRTm2OTk5iTFjxhT4tXO7phBC+Pv7v7a419sEBgYKb29vsXLlSlGxYkVhZWUlevbsKRITEzXH+Pj4iG7dumm+xv+Wgc5+xMTEiISEBNGnTx9RpkwZYWlpKWQymVi/fr1WWU6dOiVatGghLC0tRcWKFcWIESNEcnJyjvc9bdo00b9/f2FnZyd8fHzEhg0bhIODg/j999+Fp6enMDU1FTExMVq9bmJiojA3Nxe//vqrZtuNGzcEAHH27Nlcz1Gr1aJcuXJi3rx5Oa4jlUrFtm3bXjs+O2dxY6zfv0RExuDo0aOiXr16mn9vK1SoIDZs2iBepr0UarXa0PHof/K7aJTWI/Pm5uYYP348lixZgnr16mm2jxkzBkOGDNHBjxdFkypdhfP/nIcqXaXX17G1tYWtrS327NmD1NTUfJ2jVquxa9cuPH/+HBYWFjrPtHfvXjRs2BA9e/aEi4sL6tWrhzVr1rz1vKioKPzyyy/4v//7Pxw6dAiXL1/Gd999l+uxS5YsQdOmTfH1119DLpdDLpfDzc0NAQEBuH79Og4ePIgbN25gxYoVKFOmTL6zR0dHo2PHjujevTuuXLmCHTt24PTp0/j+++9zHDd//nx4e3vj8uXLCAgIAJD1W4s5c+Zg7dq1uHbtGlxcXLB161bNZ5TX49SpUwCAixcvIj09XdOKBgAeHh6oVKkSzp49m2vemJgYxMXF5TjHwcEBjRs3zvMcIiIiIKtNU5GqQGhsKFLSUl7bF3E1Ap90+wTt2rXD5cuXYWdnh5CQENy+fRsDBwyE1FwKiURioPRUUAWaZ37Lli1YtWoV7t69i7Nnz6Jy5cpYvHgxqlatim7duuk6o8Gp0lWou7Iu7iTcgbuTu157xszMzLBx40Z8/fXXWLlyJerXr49WrVrhyy+/RJ06dXIc6+/vjylTpiA1NRUZGRlwcnLSyw9Ud+/exYoVKzB27FhMmjQJf//9N0aOHAkLCwv4+Pjked7Lly+xefNmVKhQAQDwww8/4OOPP8aCBQtea+lxcHCAhYUFrK2tc+x78OAB6tWrh4YNGwLIuldAG7NmzULfvn01vfju7u5YunQpWrVqhRUrVmhWF23Tpg3GjRunOe/UqVNIT0/Hjz/+mGO61a5du6Jx48ZvfM3s9xsXFwcLC4vXWonKli2LuLi4XM/N3l62bNl8n0NERAT8OyvNf1dkffjwIYKnB6PVuFZoNrkZ/jz1J4b0H4IpU6bA2dnZ0LHpHWk9Mp9d1HXq1AmJiYmam15LlSqV582Txi4yPhJ3ErJuQLyTcEfvK5x1794djx49wt69e9GxY0ecOHEC9evXz3GzKAD4+voiPDwcf/75Jxo3boxFixbp5b4FtVqN+vXrIyQkBPXq1cM333yj+WHjTSpVqqQpbAGgadOmUKvVuHXrVr5fe9iwYdi+fTvq1q0LPz8/hIaGapU9IiICGzduzDFy3qFDB6jVasTExGiOy/5h4VUWFhav/QBlZ2cHmUz2xoeVlZVWGYmIiHTh1VlpohKicO7uOUyaNAnu7u7YvG0z/Pb5YdLBSXCe4oxZ82exkC8mtC7mf/jhB6xZswaTJ0+GqampZnvDhg1x9epVnYYrKrxcvODu5A6g8KZlsrS0RPv27REQEIDQ0FAMHDgQgYGBOY4pU6YMZDIZWrZsiV9//RUjR47E9evXdZ7F1dUVNWvWzLHN09MTDx480Plr/VenTp1w//59jBkzBo8ePULbtm0xfvz4fJ+fnJyMb7/9FuHh4ZpHREQE7ty5g+rVq2uOs7Gxee1cKyur137dqE2bTbly5ZCWlobExMQc13j8+HGeNxtnb//vjDdvOoeIiAjIqleyZ6VxNnFGr9a9MGvWLLx8+RJebbw0hf595X29D0xS4dG6zSYmJiZHr3w2qVSKlJSUXM4wftbm1ggfGm7QFc5q1qyJPXv25Lnfzc0NX3zxBSZOnIjff/9dp6/dvHnz10bTb9++jcqVK7/xvAcPHuDRo0coX748AODcuXMwMTFBjRo1cj3ewsIi1+lNnZ2d4ePjAx8fH7Rs2RK+vr6YP39+vrLXr18f169f19lvLLRps2nQoAHMzc1x7NgxdO/eHQBw69YtPHjwAE2bNs313KpVq6JcuXI4duyYZp5+hUKBsLAwzlxDRERvZGVmhbld5iI2MRZB7YKQpkxDjRo1MGfOHLTt2Bb1VtdDVEIU54svZrQu5qtWrYrw8PDXCrlDhw7B09NTZ8GKmuxpmfTt2bNn6NmzJ7766ivUqVMHdnZ2uHDhAubOnfvW+xFGjRoFLy8vXLhwIde2kdykpaVpRvPT0tLwzz//IDw8HLa2tpoCeMyYMWjWrBlCQkLQq1cvnD9/HqtXr8bq1avfeG1LS0v4+Phg/vz5UCgUGDlyJHr16pXnCHOVKlUQFhaGe/fuwdbWFk5OTggKCkKDBg1Qq1YtpKamYt++fVr9f+bv748mTZrg+++/x5AhQ2BjY4Pr16/jyJEjWLZsWb6vk83Ozg52dnb5OtbBwQGDBw/G2LFj4eTkBHt7e4wYMQJNmzZFkyZNNMd5eHhg1qxZ+OyzzyCRSDB69GjMmDED7u7uqFq1KgICAlC+fPkcC2w9ePAACQkJePDgATIzMxEeHg4AkMlksLW11fp9ERGRcRBCQJmmRGR8JLzLesPGIus3y6dOncLEKRMxasMoyMrIUNapLCbPm4zBgwfDzCyr3IsYGmHQgUnSE22nyVmzZo2oUKGC2L59u7CxsRHbtm0TM2bM0HxdmIrj1JQvX74UEyZMEPXr1xcODg7C2tpa1KhRQ0yZMkWoVCrNcXlNI9mhQwfRqVMnzXMAYsOGDXm+XkxMzGtTQgIQrVq1ynHc//3f/wkvLy8hlUqFh4eHWL169RvfR/bUlD/++KMoX768sLS0FD169BAJCQmaY16dmlIIIW7duiWaNGkirKysNFNTTp8+XXh6egorKyvh5OQkunXrJu7evas5p1WrVsLHx+eNWc6fPy/at28vbG1thY2NjahTp46YOXOmZn9uf5a6mvLxxYsX4rvvvhOOjo7C2tpafPbZZ0Iul+c45r+fkVqtFgEBAaJs2bJCKpWKtm3bilu3buU4J7epPAGI48ePv3PmosBYv3+JiPQt6WWScF3gKhAEIVsqE5euXhLdunXT/DvgWMZRBE0PEgqFwtBR6R3ld2pKiRBCaPsDwNatWxEUFITo6GgAQPny5REcHIzBgwe/688WWlEoFHBwcEBSUhLs7e1z7Hv58iViYmJQtWpVzYwlJU1MTAzee+89XL9+He7u7oaOoxeVK1dGcHAwBg4caOgopEP8/iUiyl1obCiar2+ueW6yzgTqWDVMTU0xZMgQBAYGwtXV1YAJSVfeVOe+qkBTU/bt2xd9+/aFSqVCcnIyXFxcChyU9OfAgQP45ptvim0hf+3aNTg4OGDAgAGGjkJERFQoqthUgauda9bNrAmAOk6Nbt26YdasWcW63ZnyVqBiPpu1tTWsrdlzVVQNHz7c0BH0qlatWrhy5YqhYxAREeldRkYG1q1bh5mzZmLuH1k3ue7124s5R+fggw8+MHQ8MqB8FfP16tXL94pgly5deqdARERERJRFCIH/+7//g7+/P27evAkAmPn5TAQHBePMn2dgYqL1LONUzOSrmH91Fg0iIiIi0h8hBDJFJv7++2/4+/pr1i8pXbo0AgMD8e2338LCwsLAKamoyFcx/9/FioiIiIhIP25H38YVkyuAM3D+wnlYWlpizJgx8Pf3h4ODg6HjURFT4N/NXLhwAVu2bMGWLVtw8eJFXWbSqQJM1kNEBsbvWyIqCYQQUKQqEBobipS0FDx9+hSjRo1CwwYNkZqRiqinUfiy/5e4c+cOQkJCWMhTrrS+Afbhw4fo3bs3zpw5g1KlSgEAEhMT0axZM2zfvh0VK1bUdcYCMTc3BwCoVCpYWVkZOA0RaUOlUgH49/uYiKg4UqYp4bHcA3KlHKUlpZG2JA3KBCUs7Czgt88PcqUcMi8ZnMo6GToqFWFaF/NDhgxBeno6bty4gRo1agDIWqJ+0KBBGDJkCA4dOqTzkAVhamqKUqVKIT4+HkDWzDv5vYmXiAxDCAGVSoX4+HiUKlUKpqamho5ERPRORB4rtgLAlbgrWVNMAngmngFWWZOODJo6CCMjRgIAohKiEBkfWSir0JNx0nrRKCsrK4SGhqJevXo5tl+8eBEtW7bUjKgVhrdNpi+EQFxcHBITEwstExG9u1KlSqFcuXL8AZyIjJ4iVaEZfZc5yRAxNAJWZlY4fPgwJgZOxOMvHkOulMNcYY4V3iswqN8gvMh4gbqr6iIqIQruTu4IHxoOa3NOBV7S6G3RKDc3N6Snp7+2PTMzE+XLl9f2cnolkUjg6uoKFxeXXDMTUdFjbm7OEXkiKjYi4yM1o+9RCVHY+ddObJ61GceOHYPUSoq1W9YiNjEWg2sMhotD1iKcNhY2iBgagcj4SHi5eLGQpzfSupifN28eRowYgeXLl6Nhw4YAsm6GHTVqFObPn6/zgLpgamrK4oCIiIgKnZeLl2bFVrt0O/h08gHSAQsLCwwfNhwdSneAo8wRppKcdYq1uTVbayhftG6zcXR0hEqlQkZGBszMsn4WyP7axsYmx7EJCQm6S5qL/P76gYiIiMgQniY8xaGnhxCbGIugdkFIU6ahT58+mDFjBqpWrWroeFSE6a3NZvHixe+Si4iIiKjYS01NxbJlyzBvwTz8cPoHyMrI0KpZK8yaOQsNGjQwdDwqRrQu5n18fPSRg4iIiMjoqdVqbN++HZMnT8a9e/cgtZJq9u3fvx/mppxyl3RL62I+W3x8POLj46FWq3Nsr1OnzjuHIiIiIjIWQghkikz89ddf8Bvvp1lMs3z58pg+fTq6unXNun9Pwvv3SPe0LuYvXrwIHx8f3Lhx47VVGiUSCTIzM3UWjoiIiKiou3rtKm5Z3wIqAZHXI2FnZ4cJEyZg9OjRsLbmTDSkXybanvDVV1/hvffeQ2hoKO7evYuYmBjN4+7du/rISERERFTk/PPPPxgyZAiaNGmi2fbtt98iKioKkyZNYiFPhULrkfm7d+9i165dkMlk+shDREREVKQpFArMnTsXCxcuxIsXLyC1kiI1IxWxibGYPns67KWcYY8Kj9Yj823btkVERIQ+shARERG9MyEEFKkKhMaGIiUtRWfXTVIlYfyi8ahWoxpmzpyJFy9eoHnz5tj/x3747fPDpIOT0GB1A6jSVTp7TaK30Xpkfu3atfDx8UFkZCS8vLxgbp7zruyuXbvqLBwRERGRtpRpSngs94BcKYfMSYaIoRHvtIqqEALbdm7DwHMDkW6fDvQEZEdlmBcyD926dcPZh2chP/bvKq+R8ZFc8IkKjdbF/NmzZ3HmzBkcPHjwtX28AZaIiIgMLTI+EnKlborrM2fOwNfXF2cfnAW+/t/G0sCmg5vQrHIzAIB3WW/InGSISoiCu5M7vFy8dPE2iPJF6zabESNGoF+/fpDL5VCr1TkeLOSJiIjI0LxcvOBq5woAkDnJ8l1cv9qec/naZXz++edo0aIFzp49CyulFZyEEwDA3ckddcvX1ZxnY2GDiKERCBsShvCh4e/0WwAibUnEf+eXfAs7OzuEh4ejevXq+sqUb/ld5paIiIhKjgx1BrZHbUdsYiyGew/P9w2pilSFpj1HkiCBWCFgkmmCIUOGICgoCA5lHBAZHwkvFy8W7KR3+a1ztW6z+fzzz3H8+PEiUcwTERER5UZqJoWsjCzfRXdKSgr8FvlBnpnVniOcBFp83gKrpq5CzZo1NcexF56KGq2L+ffeew8TJ07E6dOnUbt27ddugB05cqTOwhERERHpU0ZGBjZs2ICpU6ciISUBrkGukCvlqGhVEYe3HOYIPBV5BZrNxtbWFidPnsTJkydz7JNIJCzmiYiIqMgTQmDfvn3w9/fHjRs3AABVq1ZFUIUgVG9SHXVd67KQJ6OgdTEfExOjjxxEREREeieEQNjfYZgyZQqOHTkGAHBycsLUqVMxdOhQSKVSAyck0o7Ws9kQERERGaPo6Gj0G9APsWVi8e3Kb2HvaI8JEyYgOjoao0aNYiFPRknrkXkAePjwIfbu3YsHDx4gLS0tx76FCxfqJBgRERGRLjx79gzTp0/Hjz/+CBMzE3wa/CkAICI8AlUqVTFoNqJ3pXUxf+zYMXTt2hXVqlXDzZs34eXlhXv37kEIgfr16+sjIxEREVEOQggo05SIjI+Ed1lv2FjY5HrcwoULETIjBElJSQCAjzt+rNlXsWLFQslKpE9at9lMnDgR48ePx9WrV2FpaYldu3YhNjYWrVq1Qs+ePfWRkYiIiCgHZZoSHss90Hx9c9RdVReqdJVm36uLWE6dOhVJSUnw9vbGH3/8gT179hggLZH+aF3M37hxAwMGDAAAmJmZ4cWLF7C1tcW0adMwZ84cnQckIiIi+q/I+EjIlVlzwkclRCEyPhIA8Mcff6BFixaa4ypWrIjNmzfj0qVLaN++PQAgNSMVUU+jcvwAQGSstG6zsbGx0fTJu7q6Ijo6GrVq1QIAPH36VLfpiIiIiHLh5eIFV7usOeFlTjJkyjPx0aCPcOTIEQDA8GbDMX78eFwJvwJr63+nmFSlq+C3zw9ypRzrw9YjYmgEp6Ako6Z1Md+kSROcPn0anp6e6Ny5M8aNG4erV6/it99+Q5MmTfSRkYiIiCgHa3NrzO0yF7GJsbix5gaaj2oOIQTMzc3x/fffY/LkyShduvRr5+U2os9VXcmYaV3ML1y4EMnJyQCA4OBgJCcnY8eOHXB3d+dMNkRERKQzb7rJNSkpCVIzKWRlZAjeGgwhBHr37o0ZM2agWrVqeV7Tu6w3ZE4yRCVEwd3JHV4uXoXxVoj0RiKEEIYOUVAKhQIODg5ISkqCvb29oeMQERGRDilSFfBY7qFppYkYGgFTtSl+/PFHzJ0/F0tPLQUArB62GrNmzkLDhg3zdV1VugqR8ZHwcvFiiw0VWfmtc7W+ATY2NhYPHz7UPD9//jxGjx6N1atXFywpERERUS7+2xKz8KeF8PT0xNixYxH3KA4ze8yE1U0rHD54ON+FPJDVotOoQiMW8lQsaF3M9+nTB8ePHwcAxMXFoV27djh//jwmT56MadOm6TwgERERlUzZN7kCgGWKJQK+DUBMTAxcXV2xdu1aXDh/AV06d4GJCRe0p5JL6//7IyMj0ahR1o0iv/zyC2rXro3Q0FBs3boVGzdu1HU+IiIiKuaEEFCkKhAaG4qUtBTN9vtR9zG3y1yEdAqBeqUatlJbTJ8+HXfu3MHgwYNhZlagheyJihWti/n09HRIpVIAwNGjR9G1a1cAgIeHB+RyuW7TERERUbH33wWgoh9E4+uvv0bjxo01N7l++9W3iI6OxpQpU2Bjk/tqr0QlkdbFfK1atbBy5UqcOnUKR44cQceOHQEAjx49ynUKKCIiIqI3+W9vfK0Pa2Ht2rV4kfICv076FV4ZXliyaAlcXFwMnJSo6NG6mJ8zZw5WrVqF1q1bo3fv3vD29gYA7N27V9N+Q0RERJRfNRxraHrjkQCkxqaiWbNmOHPmDH7Z/gs83/OERCIxbEiiIkrrZrPWrVvj6dOnUCgUcHR01Gz/5ptvcqywRkRERPQmQgjs3r0bAYEBmLsrawGozd9sRsiOEHz66acs4InyoUB3jpiamuYo5AGgSpUqushDREREJUBoaCh8fX0RGhoKqZVU0xt/KewSrKRWho5HZDR4GzgREREVmtu3b2PixIn47bffAADW1tYYN24c2pVpBztbO5hKTA2ckMi4sJgnIiIivXv8+DFmzpqJ9evXI0WZAhMTEwwePBhBQUEoX768oeMRGS2uskBERET5ltec8HlJSUnBjBkzULN2TbQc2RIbwjfg088/xZUrV7B69WoW8kTviCPzRERElG/Zc8LLlXLInGSIGBoBa/PXJ8DIyMjAxo0bMXXqVMjlckitpJp9v/76K8xMWIIQ6YJW30lPnz7F+vXrcfbsWcTFxQEAypUrh2bNmmHgwIFwdnbWS0giIiIqGv47J3xkfCQaVciamloIgQx1Bg4fPowJfhNw7do1AEDVqlUxa84spGakIjYxFqoKKthL7Q32HoiKE4kQQuTnwL///hsdOnSAtbU12rVrh7JlywLI6oE7duwYVCoVDh8+jIYNG+o18KsUCgUcHByQlJQEe3v+pUBERKRvilRFniPz5y+cx32n+wCA/l79YWNlg4CAAAwbNgypSM3XiD4RZclvnZvvYr5Jkybw9vbGypUrX5v3VQiBoUOH4sqVKzh79uy7JdcCi3kiIqLClaHOwPao7YhNjMVw7+Gwl9ojJiYGkydPxm97fsPa8LWITYzFs9+fYYrvFJQqVQoAEBobiubrm2uuEzYkTDOiT0Svy2+dm+82m4iICGzcuDHXBRwkEgnGjBmDevXqFSwtERERGY3sOeFfKl8iaGIQli1bhvT0dEjtpfDb55c1+l5Ohmk20zTneJf1hsxJhqiEKLg7ucPLxcuA74Co+Mh3MV+uXDmcP38eHh4eue4/f/68pvWGiIiIij8vLy88efwEANC+fXv0m9gPPn/5AHi9n97GwgYRQyMQGR8JLxcvttgQ6Ui+i/nx48fjm2++wcWLF9G2bdvXeubXrFmD+fPn6y0oERERGZZarca2bdtg2dQSQFYbgLe3N+bOnYuPPvoIKWkpmB45Pc/Rd2tza7bWEOlYvnvmAWDHjh1YtGgRLl68iMzMTACAqakpGjRogLFjx6JXr156C5ob9swTEREVjBACyjQlIuMj4V3WGzYWNm88/siRI/Dz88ONWzewJXILAOBF6Av07d0Xpqb/rtqqSldx9J1IB3R+A+yr0tPT8fTpUwBAmTJlYG5uXvCk74DFPBERUcG8aVaaV0VERMDf3x+HDx8GANjb22NywGQMGzYMtta2ud5LR0TvLr91boFWgDU3N4eTkxOcnJwMVsgTERFRweU2X3w2IQTuPbiHwV8PRr169XD48GGYm5tj9OjRiI6Oht94P9jZ2LGQJyoCtCrmjxw5gs6dO8PR0RHW1tawtraGo6MjOnfujKNHj+orIxEREemYl4sXXO1cAQAyJ5mmvz0pKQmTAybj9MvTkH0tg7mtOb744gvcuHEDixYtQpkyZQwZm4j+I983wG7atAlDhgxBjx49sGjRohw3wP7xxx/o3Lkz1q1bh/79++stLBEREemGtbk15naZq5kv3kyYYcmSJZg+fTqUaUqUdioNuVIOtwA3rB+9nv3vREVUvnvm33vvPYwaNQrDhw/Pdf+PP/6IRYsW4c6dOzoN+CbsmSciIsrbm25yzVBnYPe93QAA9UU1Jk2YhLt37wIAZK1liGodpTmWCzwRFT6d98w/ePAA7dq1y3N/27Zt8fDhQ+1SEhERkd4o05TwWO6B5uubo+6qulClq3I9zsfHB3fv3kW5cuWwevVqXNh/ATInGQBwgSeiIi7fxXytWrWwbt26PPevX78eNWvW1EkoIiIiend53eR6/fr1HNNJ29jaYNq0aYiKisLXX38NB2sHRAyNQNiQMIQPDWeLDVERlu+e+QULFqBLly44dOgQ2rVr99qiUXfv3sX+/fv1FpSIiIi0k32Ta/b0k6XVpfHNN99g3bp1MJeao/fc3gCAq1euony58jnO5QJPRMYh38V869atERkZiRUrVuDcuXOIi4sDAJQrVw6dOnXC0KFDUaVKFX3lJCIiIi29epNr8qFk1PGoA5Uqq9Wmc8fO8Er3gru7O0wlpm+5EhEVVQVaNKqo4A2wREREeXuR+gL7/tkHAOjv1R+pL1LRtGlTzJs3D82bNzdwOiJ6E70uGvWq9PT0d70EERER6ZAQAnv27EGjRv+2yVSrVg07d+7EmTNnWMgTFSP5LuZ/+eUXpKWlaZ4vW7YMlStXhqWlJcqUKYNp06bpJSARERHl39mzZ9GyZUt89tlniLwSidGtRuPx4ccIvxSO7t27c9VWomIm3z3zvXv3hlwuh4uLCzZs2ABfX1/4+fmhcePGuHz5MmbNmoXy5ctjyJAh+sxLRERErxBCIFNkIio6ClMmTsGuXbsAAFZWVhg7diz8/PzYikpUjOW7mH+1tX7lypWYNm0afH19AQCdO3eGk5MTfvzxRxbzREREhSguPg6nU04DpsC+A/tgYmKCQYMGITg4GBUqVDB0PCLSM6165rN/NXf37l189NFHOfZ99NFHiIqKyu00IiIi0jGVSoWZM2eidu3amm0dOnRAeHg41q5dy0KeqITI98g8ABw6dAgODg6wtLTUTG2V7eXLl+zDIyIi0rPMzExs3LgRU6dOxaNHjyC1kmr27dq1C2YmWv3TTkRGTqvveB8fH83Xf/75J5o2bap5fu7cOVSvXl13yYiIiAhAVqtrhjoDf/zxB/x9/XHt2jUAQOXKlREyOwSpGamITYyFqoIK9lL2xxOVJPku5tVq9Rv3ly1bFrNmzXrnQERERJTThUsXcM/xHlADiLobBUdHR0yZMgXDhw9HKlLhsdwDcqUc68PWI2JoBKzNrQ0dmYgKyTvPM5+tS5cu6NChg64uR0REVOLFxMSgb9++aNmypWbbqFGjEB0djbFjx0IqlSIyPhJypRwAEJUQhcj4SEPFJSID0FkxT0RERLqRkJCAcePGwcPDAz///HOOfTNnzoSjo6PmuXdZb8icZAAAdyd3eLl4FWpWIjIs3iVDRERURLx48QI/rvwRc+fORXxcPACgbdu2mD13NmIQk+s5NhY2iBgagcj4SHi5eLHFhqiE4cg8ERGRganVavz000+oU7cOKnWrhGVnlqF+w/o4dOgQjhw5grp1677xfGtzazSq0IiFPFEJxJF5IiIiAzp69Cj8/Pxw+fLlHNNMhoaGQmr+v+cij5OJqMRjMU9ERGQAV65cgb+/Pw4dOgQAsLe3x6QpkzT7TU1NDRWNiIyITtts2rRpg+nTp7+2oBQRERFlefjwIfp/1R/enb1x6NghmJmZYeTIkYiKisK4ceMMHY+IjIxOi/lKlSrh2LFj8PDw0OVliYiIjF5SUhImTZoEmacMP9n+BHwN2I63xaWrl7BkyRI4OzsbOiIRGSGdttls3LgRAKBQKHR5WSIiIqOVlpaGlStXYtq0aXj27BlQAUDprH3J0mS8sHth0HxEZNx0MjKfmJiY47m9PZeSJiKiki0lLQUhm0JQw6sGRo0ahWfPnsHDwwO/LPsF7k7uADgvPBG9O62L+Tlz5mDHjh2a57169ULp0qVRoUIFRERE6DQcERGRMTpy4gjKTCmDyfcm417He3Cp4IJVq1bh6tWr6PlpT4QPDUfYkDCEDw3P93SSqRmpiHoaBVU670sjon9pXcyvXLkSbm5uAIAjR47gyJEjOHjwIDp16gRfX1+dByQiIjIWN27cQLdu3fBRv4/w0uZl1sbSwI7jO/DNN9/AzCyru1XbeeFV6Sr47fPDpIOT0GB1Axb0RKShdc98XFycppjft28fevXqhY8++ghVqlRB48aNdR6QiIioqIuLi0NgYCDWrl0LtVoNE6kJ7DLskGSWBHcndzSq0uidrh8ZHwm5Ug4AiEqIQmR8JBpVeLdrElHxoPXIvKOjI2JjYwEAhw4dQrt27QAAQghkZmbqNh0REVERJYRAojIRwTOCIZPJsHr1aqjVanTr1g3Xwq/h0dRHWrfS5MW7rDdkTjIA7LMnopy0Hpn//PPP0adPH7i7u+PZs2fo1KkTAODy5cuQyWQ6D0hERFTUZGRkYN2GdXBq64SafWoiIyQDjRs3xrx589CyZUvNcboaPbexsEHE0AhExkfCy8XrnX84IKLiQ+tiftGiRahSpQpiY2Mxd+5c2NraAgDkcjm+++47nQckIiIqKoQQ2Lt3L/z9/XHvwT2sDV+L2MRYrN20Fn179IVEItHba2f32RMRvUoihBCGDlFQCoUCDg4OSEpK4nSYRESkV+fOnYOvry9Onz4NAChXuRwkIyWQK+WQOckQMTTinUfMM9QZ2H1vNwDgsyqfwcxEp8vBEJERyW+dW6B55rds2YIWLVqgfPnyuH//PgBg8eLF+P333wuWloiIqAgSQuBW1C182edLNG3aFKdPn4alpSUmTZqEzYc2v3ZTKhFRYdO6mF+xYgXGjh2LTp06ITExUXPTa6lSpbB48WJd5yMiIjKIJ0+eYMy4MbhicgXdZ3SHpbUlBg0ahDt37mDmzJloVq0Zb0olIoPTupj/4YcfsGbNGkyePBmmpqaa7Q0bNsTVq1d1Go6IiEjfhBBQpCoQGhuKlLQUqFQqzJo1CzKZDCtXrtQcd+7cOaxfvx4VK1YE8O9NqbqasSYbF4ciIm1o3YwXExODevXqvbZdKpUiJSVFJ6GIiIgKizJNCY/lHpAr5ShrVhYmq00gf5DVPtOoyb83nNaqVeu1c3V9U2r24lBypRzrw9brpA+fiIo3rUfmq1ativDw8Ne2Hzp0CJ6enrrIREREVGgiH/+7INPjjMeQZ8pRqVIl/PTTTzh16lThZsllcSgiojfRemR+7NixGD58OF6+fAkhBM6fP49t27Zh1qxZWLt2rT4yEhER6cWlS5cQODUQrm1cIVfKYZpoimmjpmHsiLGwtLREhjqjUPNkLw4VlRDFPnwiyheti/khQ4bAysoKU6ZMgUqlQp8+fVC+fHksWbIEX375pT4yEhER6dS9e/cwZcoUbN26FVIrKdYuzJovvk+lPqhcrrLBcnFxKCLSVoEmsO3bty/69u0LlUqF5ORkuLi46DoXERGRzgghkCkykZiYiDmz5mDp0qVIS0sDAHT/rDuamjfFlw2/hKnE9C1X0j8uDkVE2nin1Sisra1hbc1RAyIiKtpSXqTgYNxBAMAPy39AWloaPvzwQ8ybNw8NGjQwcDoiooLTupivWrXqG5ervnv37jsFIiIi0hW1Wo1t27YhaHoQQg6EAABq1qyJmdNnomPHjm/894yIyBhoXcyPHj06x/P09HRcvnwZhw4dgq+vr65yERERaUUIAWWaEpHxkfAu642w02Hw9fXFpUuXILWSao47e/YspObSN1wpp9SMVMQmxkJVQQV7ad5LqhMRGYLWxfyoUaNy3b58+XJcuHDhnQMREREVxKvzxdu8tEHKghQgHbCzs8PEyRM1RXlqhVRIkb9invO+E1FRp/U883np1KkTdu3apavLERERvea/q7W+6sT1E5o52lMsU2DqaooRI0YgOjoaw0cPh98+P0w6OAkNVjfI9+qqnPediIo6nRXzO3fuhJOTk64uR0RE9Jrs0ffm65uj7qq6UKWroFAoMGXKFPTv2B+udq4AANs0W1w+fBlLly6Fs7NzgYvy7HnfAXDedyIqkrRus6lXr16OG4aEEIiLi8OTJ0/w448/6jQcERHRq/5blE9dNhWbQjbh6dOnAADvg96YNm4aerfpDRsLG815BV2MifO+E1FRJxFCCG1OCA4OzvHcxMQEzs7OaN26NTw8PHQa7m0UCgUcHByQlJQEe3velEREVNwpUhWavnhzpTnSl6YD6UCNGjUwZ84cdO3aNc8ZalTpKhblRGQ08lvnal3MFyUs5omISpa/zvyFB84PEJsYi6B2QXC0dkRwcDAGDx4MM7N3WjqFiKhIyW+dm6+/+RQKRb5fmEU1ERHp2s2bNzFhwgQc+uMQtkRugayMDJP8JmHsqLGws7MzdDwiIoPJVzFfqlSpty6sIYSARCJBZmamToIRERHFxcUhODgYa9asQWZmJkxMTPDnwj8xedJk9Jjcg4s+EVGJl69i/vjx4/rOQUREBOB/00+mKLB0yVLMmTUHKSlZU1B27doVs2fPhqenp4ETEhEVHfkq5lu1aqXvHERERMjIyMD6jevh2MYRHr09kDEzA40aNcK8efPwwQcfGDoeEVGRU+C7hVQqFR48eIC0tLQc2+vUqfPOoYiIqGQRQmDfvn3w9/fH3Xt3sSVyCwBg8+bN6Nm9J9tpiIjyoHUx/+TJEwwaNAgHDx7MdT975omIKD+EEMgUmbhw4QL8ff3x119/AQBcK7giNSMVsYmxGP7JcBbyRERvoPUKsKNHj0ZiYiLCwsJgZWWFQ4cOYdOmTXB3d8fevXv1kZGIiIqhO3fvYPe93YgtE4uwv8NgaWmJCRMmIOxyGPz2+WHSwUlosLoBVOkqQ0clIiqytC7m//zzTyxcuBANGzaEiYkJKleujH79+mHu3LmYNWuWPjISEVEx8vTpU4wePRoN6jfQbOvXrx9u376NWbNmIfZlbI5VXiPjIw0VlYioyNO6mE9JSYGLiwsAwNHREU+ePAEA1K5dG5cuXdJtOiIiKjZevHiB2bNno3r16liyZAnS09M1+1auXAk3NzcAgHdZb8icZAAAdyd3eLl4GSQvEZEx0LpnvkaNGrh16xaqVKkCb29vrFq1ClWqVMHKlSvh6uqqj4xERGSkhBBIy0jDtm3bEDA5AA8fPgQA1K1bF3PmzUESkl47x8bCBhFDIxAZHwkvFy9Ym1sXdmwiIqOhdTE/atQoyOVZv/4MDAxEx44dsXXrVlhYWGDjxo26zkdEREbsj6N/QFFdAZsWNnjy7AkqVaqEmTNnok+fPlBDjd33dud6nrW5NRpVaFTIaYmIjI/WxXy/fv00Xzdo0AD379/HzZs3UalSJZQpU0an4YiIyDhdvnwZ/v7++Ov0X5ppJmfOnInhw4bD0tISAKBWqw0ZkYioWNC6Z/706dM5nltbW6N+/fos5ImICPfv38eAAQPQoEEDHDlyBBYWFpp9o0aN0hTy2VIzUhH1NIoz1hARFZDWxXybNm1QtWpVTJo0CdevX9dHJiIiMiJCCDxNeIoJkyagRo0a2LJlC4QQ6N279xsnRlClqzgFJRHRO9K6mH/06BHGjRuHkydPwsvLC3Xr1sW8efM0NzUREVHxI4SAIlWB0NhQpKSlaLanpqZiyQ9LcDzxOBoMaQCYAK1bt8bff/+Nn3/+GVWqVMnzmpHxkZyCkojoHWldzJcpUwbff/89zpw5g+joaPTs2RObNm1ClSpV0KZNG31kJCIiA1OmKeGx3APN1zdH3VV1kZyajG3btsHDwwMTJkzQHLdz5078+eefaNiw4VuvySkoiYjendY3wL6qatWqmDBhAry9vREQEICTJ0/qKhcRERUh/x1Ff7/L+7h59CYAoHLVyprjOnbsCIlEkq9rcgpKIqJ3p/XIfLYzZ87gu+++g6urK/r06QMvLy/s379fl9mIiKiI8HLxgqvd/9YSSQBunrwJOzs7zJgxAxFXIgp83ewpKFnIExEVjNYj8xMnTsT27dvx6NEjtG/fHkuWLEG3bt1gbc2/iImIiqNHjx5h2oxpmDt6LmITYzGj4wx89e1XCAgIgIuLCzLUGYaOSERUYmldzP/111/w9fVFr169OB0lEVExplAoMG/ePCxYsABqqNF2fFvIyshw4dwFeL7nmePY1IxUxCbGQlVBBXupvYESExGVPFoX82fOnNFHDiIiKiLS09OxevVqBAcH48mTJwCAZs2aofzj8mjcuDFMJaY5js+eYlKulGN92HpEDI3I0TbDQp+ISH8K3DNPRETFi1qtxq49u1C3fl18//33ePLkCd577z389ttvOH36NJo3bQ4zE7PXbnB90xSTnEueiEi/WMwTERFCQ0PRum1rqOuoEfR7ECpWqogff/wRkZGR+Oyzz944Q82bppjkXPJERPr1TlNTEhGRcbt9+zYmTpyI3377DVIrqWb7latX4GjvmK9rvGmKyexCPyohinPJExHpAYt5IqISRAiBTJGJ+Ph4zJw+E6tWrUJmZiZMTEwwcNBAzXF2tnZaXTd7isn/4lzyRET6xTYbIiIjJISAIlWB0NhQpKSl5Ps8RYoCu+/txhnVGazbsA6ZmZn45JNPcPXqVSz7YZlesnIueSIi/cnXyLyjo2O+V/RLSEh4p0BERPR2yjQlPJZ7QK6UQ+Yke20Gmf/KyMjAxo0bMSNkBuYdnQcAaNCgAUJmhKBVq1ZZx3C+eCIio5OvYn7x4sWar589e4YZM2agQ4cOaNq0KQDg7NmzOHz4MAICAvQSkoiIcsrtxtLc2lyEENi/fz/8/f1x/fp1SK2kmqki9/+xH6WsShVyciIi0iWJEEJoc0L37t3x4Ycf4vvvv8+xfdmyZTh69Cj27Nmjy3xvpFAo4ODggKSkJNjbc+5iIio5FKmKPEfms/viL168iAl+E3DixAkAgJOTEyYGTcTC9IW5npehzsDue7sBAJ9V+QxmJrytiojIUPJb52rdM3/48GF07Njxte0dO3bE0aNHtb0cEREVgLW5NeZ2mYuQTiG4+M3FHC02UTFR2B61HX+KPxF6MRRSqRT+/v6Ijo5Gs0+bcapIIqJiROthl9KlS+P333/HuHHjcmz//fffUbp0aZ0FIyKiN5OaSSErI9MU8tltkGs2r4H9ZHvIlXLYj7TH+a/Oo0a1GgAAb2tOFUlEVJxoXcwHBwdjyJAhOHHiBBo3bgwACAsLw6FDh7BmzRqdByQiojd78eIFflz2I2bNmoWkpCSYVzPXjL4rzBVIkiZpjuVUkURExYvWxfzAgQPh6emJpUuX4rfffgMAeHp64vTp05rinoiICk+9evUQfScaAODt7Y3gWcEYHzU+z9H3vOaEJyIi41Ogu5saN26MrVu36joLERHl07Fjx4DqWV8/fPgQbm5umDFjBvr27QtTU1O0T2/P0XciohKgQItGRUdHY8qUKejTpw/i4+MBAAcPHsS1a9d0Go6IiHKKiIhAhw4d0K1bN822adOm4datWxgwYABMTU0BcKEmIqKSQuti/uTJk6hduzbCwsKwa9cuJCcnA8j6ByYwMFDnAYmISqpXV3m9dfcWfHx8UK9ePfzxxx9QZ6hxbsU5tLJvBd9xvrCysjJ0XCIiMgCt22wmTJiAGTNmYOzYsbCzs9Nsb9OmDZYt089S4EREJdGrq7xKnksgtglAAF9++SVmzpyJatWqGToiEREZmNbF/NWrV/Hzzz+/tt3FxQVPnz7VSSgiopIuNTUVQT8GaWalEY4C9TrUw6qpq/D+++8bOB0RERUVWrfZlCpVCnK5/LXtly9fRoUKFXQSioiopFKr1dixYwc8PT2xPHA5XO1cAQDlpeVxatcpvRfyqRmpiHoaBVW6Sq+vQ0REuqF1Mf/ll1/C398fcXFxkEgkUKvVOHPmDMaPH48BAwboIyMRUbEmhECGOgPHTx5HkyZN8OWXXyImJgZONk6YZDcJf/n8hdtjb8PGwkavOVTpKvjt88Okg5PQYHUDFvREREZA6zabkJAQDB8+HG5ubsjMzETNmjWRmZmJPn36YMqUKfrISERUrEVej8RNq5uAG3Al8gpsbW3h5+eHsWPHwsZGvwV8jhzxkZq2nqiEKETGR3I+eiKiIk7rkXkLCwusWbMG0dHR2LdvH3766SfcvHkTW7Zs0UyJRkREb/fo0SN8/fXXORbc+/rrrxEVFYWAgIBCLeQBwLusN2ROMgDIdbEpIiIqegq0aBQAVKpUCZUqVdJlFiKiEkGpVGLevHlYsGABVCoVpFZSzb5FixbBzKTAfzW/ExsLG0QMjeBiU0RERiRf/2KMHTs23xdcuHBhgcMQERVnSaokhKwNwYY5G/Dk0RMAQNOmTTFn/hzEIc7A6bJkLzZFRETGIV/F/OXLl3M8v3TpEjIyMlCjRg0AwO3bt2FqaooGDRroPiERkZETQmDHbzswIHQA0u3Tge5A9SPVMXfmXHz22WfIFJnYfW+3oWMSEZERylcxf/z4cc3XCxcuhJ2dHTZt2gRHR0cAwPPnzzFo0CC0bNlSPymJiIzU2bNn4evrizP3zgBf/29jaWDzoc1oVrlZ1nNhsHhERGTktL4BdsGCBZg1a5amkAcAR0dHzJgxAwsWLNBpOCIiY3Xnzh306NEDzZo1w5kzZ2CpsISTcAKQdXNp3fJ1DRuQiIiKBa3vslIoFHjy5Mlr2588eQKlUqmTUERExureP/fgO88Xu1ftRubLTJiYmGDQoEEIDg6Go4sjby4lIiKd0rqY/+yzzzBo0CAsWLAAjRpl3SQVFhYGX19ffP755zoPSERkDFQqFeYsnIPpT6ZDOAnga6DjvY6YFzIPXl7/TvHIm0uJiEiXtC7mV65cifHjx6NPnz5IT0/PuoiZGQYPHox58+bpPCARUVGWmZmJjRs3YurUqXgkeZSjLz7YPxheFfI3V3tqRipiE2OhqqCCvdRef4GJiKhYkQghCnTrVUpKCqKjowEA1atXL/TFTYCslh8HBwckJSXB3p7/+BFR4RFC4ODBg/Dz88O1a9cAAJWqV0LaV2mIS4+Du5M7woeG56udRpGqgMdyD8iVcsicZIgYGsE2HCKiEi6/dW6BVyaxsbFBnTp1Cno6EZFREkLgwqULmDx5Mo4cPgIgaxKAgIAAfPfdd8g0ydS6Lz4yPhJypRwAEJUQhcj4SLbjEBFRvmg9m01KSgoCAgLQrFkzyGQyVKtWLceDiMjYCSGgSFUgNDYUKWkpmu0xMTEYMHAA7jnew9c/fg37Uvbw9fVFdHQ0xowZA6lUqll0SZuRde+y3pA5yQBkzXTj5ZK/1hwiIiKtR+aHDBmCkydPon///nB1dYVEItFHLiIig1GmKXO0vRzvdRwL5yzE8uXLITGVoMPkDohNjEXo36GoJav1zq9nY2GDiKERnOmGiIi0pnXPfKlSpbB//340b95cX5nyjT3zRKQPobGhaL7+37/jbLfZIvlWMgCg3cftcK3NNfa3ExGRXuW3ztW6zcbR0RFOTk7vFI6IqCirWaYmXO1cs54kAMl3k1G7dm0cOnQIwT8Gv9bfTkREZChaF/PTp0/H1KlToVKp9JGHiMigjh49io8+/Ahzu8xFSKcQVDlcBRvXbMTly5fRoUMHeJdjfzsRERUdWvfML1iwANHR0ShbtiyqVKkCc3PzHPsvXbqks3BERIXlypUr8PPzw+HDhyG1kkJqJoWsjAxXLl6BnY2d5jj2txMRUVGidTH/6aef6iEGEVHhEkIgU2Ti4cOHCA4MxqZNmyCEgLm5OYZ+MxQf2H2A0qVLw1Ri+tq52TPWEBERGVqBF40qCngDLBEV1LPEZ/gz4U8AQH+v/kh9kYpevXohJCQE1atXN3A6IiIq6fR2AywRkbHIbb74tLQ0LF26FLW9aiM1IxVRT6PQuEVjnDt3Djt27GAhT0RERkXrNhsTE5M3zi2fmZn5ToGIiHTlv/PFT3WeiqDJQbh79y4s7Czgt88va98nMtSuX9vQcYmIiLSmdTG/e/fuHM/T09Nx+fJlbNq0CcHBwToLRkT0riLjI3NMIzlgzgDgH6Bs2bIYNHUQZj+ZrdkXGR/JPngiIjI6Whfz3bp1e21bjx49UKtWLezYsQODBw/WSTAiondlkWgBVzvXrII+AbBOtoZ/sD/Gjh0LiYUEO1ftRFRCFKeYJCIio6V1MZ+XJk2a4JtvvtHV5YiI8kUIAWWaEpHxkfAu6w0bCxvI5XIEBQVhy9YtWH1pNWITY3Fv6z0E3wxGuXLlNOdyikkiIjJ2OinmX7x4gaVLl6JChQq6uBwRUb692hdfvVR1fPH8CyyZvwQpKVk3vO4J2INpwdPgudjztft9OMUkEREZO62LeUdHxxz/IAohoFQqYW1tjZ9++kmn4YiI3ubVvvjoxGiErA0BUrJ+Wzhv3jy0aNHCwAmJiIj0R+tifvHixTmem5iYwNnZGY0bN4ajo6OuchERvZUQAg8uPMjRF1/Vpirm/joX3bt3f+PMW0RERMWB1sW8j4+PPnIQEWnl3Llz8PX1xd8X/8ba8LWITYyF9G8pvp/3PSwsLAwdj4iIqFAUqGc+MTER69atw40bNwAAtWrVwldffQUHBwedhiMi+q87d+5g0qRJ2LlzJwDA0tISt7bewugxo+H0vhNH44mIqETRegXYCxcuoHr16li0aBESEhKQkJCAhQsXonr16rh06ZI+MhJRCSeEQFx8HEaPHY2aNWti586dkEgk+Oqrr3Dnzh1MD56O0qVKs5AnIqISRyKEENqc0LJlS8hkMqxZswZmZlkD+xkZGRgyZAju3r2Lv/76Sy9Bc6NQKODg4ICkpCTY29sX2usSUeFRqVRY8sMSyHrKAAD9vfqjTes2mDNnDmrX5qqtRERUPOW3ztW6mLeyssLly5fh4eGRY/v169fRsGFDqFSqgiUuABbzRMVXZmYmNm/ejICAADxNeIotkVsAAI73HNGuTTsDpyMiItKv/Na5WrfZ2Nvb48GDB69tj42NhZ2dnbaXIyLSEEIgPTMdBw8fRL169fDVV1/hn3/+gVslN80xrVu3NlxAIiKiIkbrYv6LL77A4MGDsWPHDsTGxiI2Nhbbt2/HkCFD0Lt3b31kJKIS4uLli9hzfw+S3ZNxO+o2SpUqhfnz5+PypctIzUhF1NMoqNIL77d/RERERZ3Ws9nMnz8fEokEAwYMQEZGBgDA3Nwcw4YNw+zZs3UekIiKv3v37mHKlCnY+dtOTTvNqFGj4O/rDycnJyhSFfDb5we5Uo71YesRMTQC1ubWBk5NRERkeFqNzGdmZuLcuXMICgrC8+fPER4ejvDwcCQkJGDRokWQSqX6yklERkQIAUWqAqGxoUhJS8nzuOfPn8PX1xc1atTA1q1bc+ybOXMmnJycAORc5TUqIQqR8ZH6C09ERGREtCrmTU1N8dFHHyExMRHW1taoXbs2ateuDWtrjpAR0b+UaUp4LPdA8/XNUXdV3RytMUIIJKuSsXBx1pS28+fPR1paGtq0aYNTp07l2k7jXdYbMqes2Wzcndzh5eJV6O+JiIioKNK6Z97Lywt3797VRxYiKibyGklXq9X4efvPOBh3EG5d3aB6qULt2rVx8OBBHD16FDW8asBvnx8mHZyEBqsbaAp6GwsbRAyNQNiQMIQPDWeLDRER0f9oXczPmDED48ePx759+yCXy6FQKHI8iIi8XLzgaucKAJA5yeDl4oU///wT77//PgYPHqw5bsWKFbh8+TI6duwIiUTyxnYaa3NrNKrQiIU8ERHRK7S+AbZz584AgK5du+ZYbVEIAYlEgszMTN2lIyKjZG1ujbld5iI2MRYfmn+IHt164ODBgwCA0s6lNcf1798fpiammufZ7TRRCVFspyEiIsoHrYv548eP6yMHERUzUjMpZGVkaFOnDV6kvICZmRm+++47TJw8EUcTjyI2MRaqCirYS/9dCCO7nSYyPhJeLl4chSciInoLrVeALUq4AixR0ZOUlIT5C+ejjk8dAEB/r/7o2qUrQkJCIJPJoEhVwGO5B+RKOWROMk4zSURElAu9rQBLRJSbtLQ0/PDDD5DJZJg3b55m+/Hjx/HLL79AJsuajYbTTBIREemO1m02RESvEkJg165dmDhxIqKiogAAHh4esLhmgc6dO8Osas6/ZtgXT0REpDss5olKACEElGlKRMZHwrusN2wsbHRyzVOhpzBp0iSc+esMAKBs2bIIDg7G4MGDYWaW+18v7IsnIiLSnXy12ezduxfp6en6zkJEevKmRZwK4ubNm+jxRQ88dn2MURtGwbGMI4KCghAVFYVvv/02z0I+G6eZJCIi0o18FfOfffYZEhMTAWStAhsfH6/PTESkY7rqU4+Li8OwYcPg5eWF/fv2a1ZrDbsYhsDAQNja2uoyNhEREb1Fvop5Z2dnnDt3DsC/88kTkfHIbRGnbEIIKFIVCI0NRUpaSq7nJycnIzg4GDKZDCtXrkRmZiY+6vKRZrXWzr93fufRfiIiItJevnrmhw4dim7dukEikUAikaBcuXJ5HstFo4iKnlcXcRruPTxHe0t2C05uU0Wmp6dj/cb1mDlzJmLvxwIAGjVqhHnz5sGsqhmar28O4N/R/kYVGhX+myMiIirB8lXMBwUF4csvv0RUVBS6du2KDRs2oFSpUnqORkS6lL2I03/71HNrwXm//PvYu3cvAgIDEPBbABa0XYCATwIwLXAaevbsCYlEgpS0FM5KQ0REZGD5ns3Gw8MDHh4eCAwMRM+ePWFtzRvXiIqD7Bac7JH5F/dfoFXvVjh16hSkVlLNcZcuXoK15b/f95yVhoiIyPC0npoyMDAQAPDkyRPcunULAFCjRg04OzvrNhkRFYpXW3Au/3AZrUe2BgBYWlpi7LixmuMsLCxyPZetNURERIaj9QqwKpUKX331FcqXL48PPvgAH3zwAcqXL4/BgwdDpeINcETG5tmzZ5oWnL279kIikWDgwIG4ffs2goODDR2PiIiI3kDrYn7MmDE4efIk9u7di8TERCQmJuL333/HyZMnMW7cOH1kJCI9ePHiBWbPng0vr3973du3b4/w8HBs2LABbm5uBkxHRERE+aF1m82uXbuwc+dOtG7dWrOtc+fOsLKyQq9evbBixQpd5iMiHcvMzMRPm39CQEAAHj58CACY33c+ZsyYgb179nLqWSIiIiOidTGvUqlQtmzZ17a7uLiwzYbICDRv3hwX/74IAKhUqRJCQkLQu3dvmJjk/ou61IxUxCbGQlVBBXupfWFGJSIiorfQus2madOmCAwMxMuXLzXbXrx4geDgYDRt2lSn4YhINyIiIjRfR0ZGolSpUpg3bx5u3bqFvn375lnIq9JVmoWhGqxuwIWhiIiIihiti/klS5bgzJkzqFixItq2bYu2bdvCzc0NoaGhWLJkiT4yElE+5LaS6/379zFgwAC0aNFCc9zIkSMRHR2N8ePHw9LS8o3XzG0OeiIiIio6JEIIoe1JKpUKW7duxc2bNwEAnp6e6Nu3L6ysrHQe8E0UCgUcHByQlJQEe3v++p9KNkWqQrOSa7VS1dD1n65YsXQFUlNTAQD9ffpj6tSpqF61er774lPSUlB3VV3NwlDhQ8M5nzwREVEhyG+dW6BivqhgMU/0r9DYUDRf3/zfDWsA/AN8+OGHmDdvHho0aFCg66rSVVwYioiIqJDlt87Vus2GiIoetVqN26dvw9XONWtDAuBZ2hP79+/HsWPHClzIA/8uDMVCnoiIqOjRejYbIipajh8/Dl9fX0Rej8Ta8LWITYyFw1UHfLvwW5iamho6HhEREekRi3kiI3Xt2jX4+/tj//79AAA7Ozs8+O0Bhn8/HPbv23O+eCIiohKAxTyRERFC4OGjh5gxYwbWrl4LtVoNMzMzDB06FAEBAXBxcTF0RCIiIipEBeqZT0xMxNq1azFx4kQkJCQAAC5duoR//vlHp+GI6F8KhQKBwYE4l3oO7XzbwVxqjh49euD69ev44YcfWMgTERGVQFqPzF+5cgXt2rWDg4MD7t27h6+//hpOTk747bff8ODBA2zevFkfOYmKHSEElGlKRMZHwrusN2wsbHI9Lj09HatXr0ZwcDAUyQpsGbAFAHDs2DE0b9o813OIiIioZNB6ZH7s2LEYOHAg7ty5k2PBmc6dO+Ovv/7SaTii4kyZpoTHcg80X98cdVfVzbG6qipdhbCHYfj5159Rq1YtfP/993jy5AlkMpnmmMaNGxsiNhERERUhWhfzf//9N7799tvXtleoUAFxcXE6CUVUEuS1uqoqXYUai2qgybom6HuqL+7cuwMXFxesWLECf//9tyEjExERURGjdTEvlUqhUChe23779m04OzvrJBRRSeDl4qWZF17mJIOXixdu3bqFzgM74+GLh1kHlQYGTxyMqKgoDB06FObm5gZMTEREREWN1sV8165dMW3aNKSnpwMAJBIJHjx4AH9/f3Tv3l3nAYmMmRACilQFQmNDkZKWkmOftbk15naZi5BOITj06SGMHzUetWrVwslfTwLPso6pal8VS6cshZ2dnea81IxURD2NytGWQ0RERCWTRAghtDkhKSkJPXr0wIULF6BUKlG+fHnExcWhadOmOHDgAGxscr+JTx/yu8wtkaEoUhXwWO4BuVIOmZMMEUMjNCupZqgzsPvebgDA0CZDkfAka2aoTz75BIEzApFZOhNeLl45Vl590/WIiIio+Mhvnav1bDYODg44cuQITp8+jStXriA5ORn169dHu3bt3ikwUXGUW198owqNkJGRgQ2bNqDUh6UAACnJKXj//fcxb948tGrVSuvrERERUclU4EWjWrRogRYtWugyC1Gxk90Xnz2SXsu5Fvbt2wd/f39Ex0RjS2TWNJObNm1Crx693rpqq3dZb8icZIhKiIK7kzu8XLwK420QERFREaV1Mb906dJct0skElhaWkImk+GDDz6AqanpO4cjMnbZffGxibFopm6Gjz/6GCdPngQAODk5QX5AjsGDB8O6h/VbC3kAsLGwQcTQCETGR77WgkNEREQlj9bF/KJFi/DkyROoVCo4OjoCAJ4/fw5ra2vY2toiPj4e1apVw/Hjx+Hm5qbzwETGRmomhayMDB28OiD1RSqkUilGjx6NCRMmoFSpUlpfz9rcmq01REREBKAAs9mEhITg/fffx507d/Ds2TM8e/YMt2/fRuPGjbFkyRI8ePAA5cqVw5gxY/SRl8hoPHv2DP7+/prnEokEPj4+uH37NmbPnl2gQp6IiIjoVVrPZlO9enXs2rULdevWzbH98uXL6N69O+7evYvQ0FB0794dcrlcl1lfw9lsqCh68eIFli5dilmzZuFl2ktNX7xMKUM973oGTkdERETGQG+z2cjlcmRkZLy2PSMjQ7MCbPny5aFUKrW9NJFRy8zMxE8//YQpU6bg4cOsRZ+8vb1hH22Ptm3bwlTC+0iIiIhIt7Rus/nwww/x7bff4vLly5ptly9fxrBhw9CmTRsAwNWrV1G1alXdpSQqwoQQOHzkMJo0a4KBAwfi4cOHcHNzw+bNm3Hp0iV0aN8BZiZm+brBlYiIiEgbWhfz69atg5OTExo0aACpVAqpVIqGDRvCyckJ69atAwDY2tpiwYIFOg9LVNSEh4fj408+hqK6An7b/OBc1hlz5szB7du30b9/f5iYaP0tRkRERJRvWvfMZ7t58yZu374NAKhRowZq1Kih02D5wZ55KixCCCjTlIiMj4R3WW88i3uGKVOm4KeffoKFpYWmL76VfSu4lHExcFoiIiIydnrrmc/m4eEBDw+Pgp5OZFSUaUp4LPeAXCmHo3BEyvwUpKWkAQB69uypOc7JyclQEYmIiKgEKlAx//DhQ+zduxcPHjxAWlpajn0LFy7USTCiouTyP5chV2bNzvRc8hwoBbRq2Arz5s1DvQb1sD1qO2ITY6GqoIK9lL8lIiIiosKhdTF/7NgxdO3aFdWqVcPNmzfh5eWFe/fuQQiB+vXr6yMjkcGo1Wr88ssvCJgZANdBrpAr5bBItsDPP/6Mzz/5HBKJBIpUBfz2+UGulGN92HpEDI3gyqxERERUKLS+O2/ixIkYP348rl69CktLS+zatQuxsbFo1apVjnYDoqJICAFFqgKhsaFISUt5474TJ06gcePG6N27N2KjYzG3y1yEdAqBPEiO7l27a2aniYyP1IzaRyVEITI+stDfFxEREZVMWo/M37hxA9u2bcs62cwML168gK2tLaZNm4Zu3bph2LBhOg9JpCuv9r7LnGQ5RtFf3WeTaoOU+SlAetbsTP7+/vik/Cewkdm8Nl+8d1lvyJxkiEqIgruTO7xcvAzx1oiIiKgE0rqYt7Gx0fTJu7q6Ijo6GrVq1QIAPH36VLfpiHQst1H0RhUaAQBOXj+p2ZciTYFJORMM/WQoAgMD4eKS9ww1NhY2iBgagcj4SHi5eLHFhoiIiAqN1sV8kyZNcPr0aXh6eqJz584YN24crl69it9++w1NmjTRR0YinfFy8YKrnatmZN7LxQtKpRJz587F0tVL4eqftc821RanDp5C3Vp183Vda3NrzQ8FRERERIVF62J+4cKFSE5OBgAEBwcjOTkZO3bsgLu7O2eyoSLP2twac7vMRWxiLL6p+Q02rtmIoKAgPHnyBADgtd8LgeMD0a9tP9hY2Bg4LREREdGbaVXMZ2Zm4uHDh6hTpw6ArJablStX6iUYkb5IzaSQlZGhVbNWuHb1GgDA3d0ds2fPxmeffaa5sZWIiIioqNNqNhtTU1N89NFHeP78ub7yEOnVubBzmq+joqLg7OyM5cuX49q1a/j8889ZyBMREZFR0XpqSi8vL9y9e1cfWYj05vbt2+jevTvatW2n2ebn74eoqCh89913MDc3N2A6IiIiooLRupifMWMGxo8fj3379kEul0OhUOR4EBUl8fHxGD58OGrWrInffvsN6anpODb/GJpImyB4ajDs7blaKxERERkviRBCaHOCicm/9f+rLQlCCEgkEmRmZuou3VsoFAo4ODggKSmJRRlpCCGgSFFg2Q/LMDtktuaG7S5dumD27NmaqVSJiIiIiqr81rlaz2Zz/PjxdwpGpE+ZmZnYsGkDHFo74L0v3kP69HQ0aNAA8+bNw4cffmjoeEREREQ6pfXIfFHCkXnKJoTAgQMH4O/vj6i7UVgbvhaxibEof7c8+vfqn+M3SkRERERFXX7r3AJVOKdOnUK/fv3QrFkz/PPPPwCALVu24PTp0wVLS/QOLly4gLZt26JLly64du0aHMo4wG+fHyYdnIQZT2bgZeZLQ0ckIiIi0guti/ldu3ahQ4cOsLKywqVLl5CamgoASEpKQkhIiM4DUsklhIAiVYHQ2FCkpKW8ti/qbhT6+/TH+++/j+PHj0MqlcLPzw9bDm2BXCkHAEQlRCEyPtIQ8YmIiIj0rkCz2axcuRJr1qzJMZ1f8+bNcenSJZ2Go5JNmaaEx3IPNF/fHHVX1YUqXQUASEhIgK+/Ly7jMroGdoWltSX69++PW7duYc6cOWguaw6ZkwwA4O7kDi8XL0O+DSIiIiK90foG2Fu3buGDDz54bbuDgwMSExN1kYkIABAZH5ljhP1i7EWc23UOISEheJH6AnWH1EVsYiyOnjiK5u8315xnY2GDiKERiIyPhJeLF6zNrQ31FoiIiIj0Sutivly5coiKikKVKlVybD99+jSqVaumq1xE8HLxgqudK+RKOcqZl0Ofdn3wMOYhAKBe43rw2+cHuVIOmZMMEXUjchTt1ubWaFShkaGiExERERUKrdtsvv76a4waNQphYWGQSCR49OgRtm7divHjx2PYsGH6yEgllLW5NeZ2mYuQTiFImJ2AhzEPUbFiRWzcuBFLdyxlXzwRERGVeFqPzE+YMAFqtRpt27aFSqXCBx98AKlUivHjx2PEiBH6yEjFnBACyjQlIuMj4V3WO6tNJiICkwMmw2exD2RlZLC3ssf4yeMxcuRIWFlZISUtBTInGaISotgXT0RERCVWgeeZT0tLQ1RUFJKTk1GzZk3Y2trqOttbcZ754kGRqoDHcg/IlXJUsa+C5lea4+dNP0MIAVt7WwwZMgSTJkyCs7NzjvNU6Sr2xRMREVGxpLcVYH/66Sd8/vnnsLa2Rs2aNd8pJBGQ80bXe4p7uHfkHiCAXr16ISQkBNWrV8/1PPbFExERUUmndc/8mDFj4OLigj59+uDAgQPIzMzURy4qZvKaMz4tLQ2he0LhaueatSEBaCZrhnPnzmHHjh15FvJEREREVICReblcjkOHDmHbtm3o1asXrK2t0bNnT/Tt2xfNmjXTR0YqBrLnjM+efSb823Ds270PkyZNwj/yf7A2fC1iE2Mhi5Ohx+IekEgkho5MREREVORpXcybmZmhS5cu6NKlC1QqFXbv3o2ff/4ZH374ISpWrIjo6Gh95CQj998549//+H3cOHoDQNZ0p6q/VBgzYAyk5lIW8kRERET5pHUx/ypra2t06NABz58/x/3793Hjxg1d5aJi5tU545EA3Dh5AzY2NvDz88PYsWMNcgM1ERERkbErUDGfPSK/detWHDt2DG5ubujduzd27typ63xUDMjlckybOQ1zR85FbGIspneYjoFDBiIwMBBly5Y1dDwiIiIio6V1Mf/ll19i3759sLa2Rq9evRAQEICmTZvqIxsZOaVSifnz52P+/PnIFJloM7YNZGVkuHjuIjxreBo6HhEREZHR07qYNzU1xS+//IIOHTrA1NQ0x77IyEh4eXHxnpIqe/Gn8EfhCD8UjpDgEDx+/BgA0KRJE5SVl0Wzps1gKjF9y5WIiIiIKD+0Lua3bt2a47lSqcS2bduwdu1aXLx4kVNVlmCKVAU8f/TU9MUjAZDJZJg1axa6d+/OG1uJiIiIdEzreeaz/fXXX/Dx8YGrqyvmz5+PNm3a4Ny5c7rMRkbk3LlzaPNlG82MNXACxs0Zh2vXrqFHD041SURERKQPWo3Mx8XFYePGjVi3bh0UCgV69eqF1NRU7Nmzh6vBllB37tzBpEmTsHPnTljYWcD1g6wZa6qVqoZp302DhbmFoSMSERERFVv5Hpn/5JNPUKNGDVy5cgWLFy/Go0eP8MMPP+gzGxVhT548wYgRI1CzZk3s3LkTEokE/Xr2w5+f/YkzX53BlWFXYG1ubeiYRERERMVavkfmDx48iJEjR2LYsGFwd3fXZyYqwlQqFeYumot5m+ZBdU8FZACdO3fG7NmzUbt2bUPHIyIiIipR8j0yf/r0aSiVSjRo0ACNGzfGsmXL8PTpU31moyIkMzMT69evR3WP6gh+HAxVXxWko6TY/8d+7N+/n4U8ERERkQHku5hv0qQJ1qxZA7lcjm+//Rbbt29H+fLloVarceTIESiVSq1fPCgoCBKJJMfDw8ND6+uQ/gghcODAAXh7e2Pw4MGIU8cBpbP2pdqmokzNMoYNSERERFSCaT2bjY2NDb766iucPn0aV69exbhx4zB79my4uLiga9euWgeoVasW5HK55nH69Gmtr0G6p0pXYdPRTWjdvjU+/vhjXLt2DY6Ojpg1ZhZkjjIAgLuTO7xcuK4AERERkaEUeGpKAKhRowbmzp2Lhw8fYtu2bQW6hpmZGcqVK6d5lCljRCO9KhVw/nzWf/W9rxBf6/qd6ygXWBYDzwzEqZp/wdzaHOPHj0d0dDQmjJuACJ+zCGu6HuEDQl+/ydWI33eR2ldUchSlfUUlR2HvKyo53raPiIgMQxhQYGCgsLa2Fq6urqJq1aqiT58+4v79+3ke//LlS5GUlKR5xMbGCgAiKSmpEFP/T0qKEO7uQgBZ/01J0d++QnqtZ8+eibFjxwqbyqYCQdA89pzaXqzfd5HbV1RyFKV9RSUH33fu+4iISOeSkpLyVecatJg/cOCA+OWXX0RERIQ4dOiQaNq0qahUqZJQKBS5Hh8YGCgAvPYwSDEfFpb1j1r2IyxMf/v08FrqsHMiyc5CnKlmLpLNIbaMGCFKlSolAIj65hDuI7IKefcRECmhJ4vN+zaKfUUlR1HaV1Ry8H3nvo+IiHTOKIr5/3r+/Lmwt7cXa9euzXU/R+Z191pJCXLhusBVIAiiykiJsDTP+sGodu3a4vDu3SLZo7oIqwCR4lGdo5J834bfV1Ry8H3nvo+IiHTOKIt5IYRo2LChmDBhQr6Oze+b1JuUlKzRqdz+UdP1vgKco1arRVKCXJw5vFYkP4/Pse+HPT/kaKVxrussNmzYIDIyMgr/ven4fReLfUUlR1HaV1RyFPa+opLjbfuIiEin8lvnSoQQwhC9+rlJTk5GpUqVEBQUhJEjR771eIVCAQcHByQlJcHe3r4QEhoXRaoCHss9IFfKIXOSIWJoBKJuRMHf3x9/nvkTpYNKQ66Uo7SkNG6OuokyDkZ08zERERFRMZbfOjffK8Dqw/jx4/HJJ5+gcuXKePToEQIDA2FqaorevXsbMlaxERkfCblSDgCISohCr+974cCaAxBCwMzMDJ//8zk+HvgxPqjxAWwsbAycloiIiIi0ZdBi/uHDh+jduzeePXsGZ2dntGjRAufOnYOzs7MhYxUbXi5ecLVzhVwph+S5BPs37AcE0LNnT4SEhEAmkxk6IhERERG9gyLVZqMtttnkLS0tDavWrIJje0fEJsYiqF0QGtdtjHnz5qFx48aGjkdEREREb5DfOvedFo2iokcIgV9//RU1a9aEr68vpGZSyMrIsOOnHTh58iQLeSIiIqJixKBtNqRbp06dgq+vL8LCwgAAZcuWRcKxBPj4+EBaVQqJRGLghERERESkSyzmjZwQAjdu3UDA1AD89utvAAAbGxv4+vpi3LhxsLW1NXBCIiIiItIXttkYsbi4OAwfORzXLK7hy9lfwtrWGt9++y3u3LmDwMBAFvJERERExRxH5o1QcnIyFixYgHnz5iFDnYFmI5ohNjEWJ0NPomHthoaOR0RERESFhMW8ERBCIFNkIiMjA5s2bEJgYCAeP34MAGjSugn89vlBrpRjvdN6RHhEwNrc2sCJiYiIiKgwsJg3AhnqDOy5vwcAMGrMKKS+SEX16tUxe/ZslG9UHs03NAeQtTBUZHwkGlVoZMC0RERERFRY2DNfxIWFhaFDhw5IzUhF1NMoOLo4YunSpbh+/Tp69OgB73LekDllLf7k7uQOLxcvAycmIiIiosLCRaOKqKioKEyaNAm//vorLOwsUDqoNORKOaqVqoar313N0UqjSlchMj4SXi5ebLEhIiIiKga4aJQREkLg8ZPHGDNuDGrWrIlff/0VEokEHQd0hFwpBwDcTbyLyPjIHOdZm1ujUYVGLOSJiIiIShgW80XEixcvMGfeHPyl/AvNhjeDiZkJOnbsiPDwcPy88Ge20hARERHRa3gDrIFlZmZiy5YtCAgIwJNnT7D207WITYzFr3t+xScffaI5LmJoBFtpiIiIiCgH9szrgRACyjQlIuMj4V3WGzYWNrkec/jwYfj5+eHq1asAgGqe1fBiyAvIlXLInGSIGMppJomIiIhKIvbMG5AyTQmP5R5ovr456q6qC1W6SrNPCIGLly+i08ed0KlTJ1y9ehWlSpXC/Pnzse7/1ml647OnmSQiIiIiyguLeT2IjI/MtSi/f/8+Bg0ehLsOdzF42WDYOdhh3LhxiI6Oxrhx4/C+2/vsjSciIiKifGPPvB54uXjB1c5V0y5TwbwCfH19sXTpUkhMJfh4yscAgMuXL6N61eqa82wsbNgbT0RERET5xmJeD6zNrTG3y1zEJsbCJNQEtT1q4/nz5wCAjzp+pDmucuXKuZ7LFVyJiIiIKD/YZqMHarUaUjMpZGVkCJwUiOfPn8PLywsHDhzAvn37DB2PiIiIiIoJFvM6dvz4cbRq1Urz3NXVFevWrUN4eDg6deoEiUSC1IxURD2NynFjLBERERGRtthmoyORkZHw9/fHgQMHILWSarZHRETA3vbf6YRU6Sr47fODXCnH+rD1nH6SiIiIiAqMxXwBCSGQKTLx6NEjBAcGY+PGjVCr1TAzM8PXg79GC5sWcHZ2hqnENMd5uc10wx55IiIiIioIFvMF9FzxHMeeHQMAbN22FWq1Gj169EBISAjc3d3zPM+7rDdkTjJEJURx+kkiIiIieics5gvoxIkTSPVMRWxiLN5v9j7mzZiHJk2avPU8Tj9JRERERLrCYr6A2nZoC88fPbPmku8mQ50GdfJ9LqefJCIiIiJd4Gw2BXTtybVcV3klIiIiIiosLOYLKLv3HQB734mIiIjIINhmU0DsfSciIiIiQ2Mx/w7Y+05EREREhsQ2GyIiIiIiI8VinoiIiIjISLGYJyIiIiIyUizmiYiIiIiMFIt5IiIiIiIjxWKeiIiIiMhIsZgnIiIiIjJSLOaJiIiIiIwUi3kiIiIiIiPFYp6IiIiIyEixmCciIiIiMlIs5omIiIiIjBSLeSIiIiIiI2Vm6ADvQggBAFAoFAZOQkRERESkO9n1bXa9mxejLuaVSiUAwM3NzcBJiIiIiIh0T6lUwsHBIc/9EvG2cr8IU6vVePToEezs7CCRSAwdp1hQKBRwc3NDbGws7O3tDR2H8sDPyTjwczIO/JyMAz8n48HPSjeEEFAqlShfvjxMTPLujDfqkXkTExNUrFjR0DGKJXt7e34DGgF+TsaBn5Nx4OdkHPg5GQ9+Vu/uTSPy2XgDLBERERGRkWIxT0RERERkpFjMUw5SqRSBgYGQSqWGjkJvwM/JOPBzMg78nIwDPyfjwc+qcBn1DbBERERERCUZR+aJiIiIiIwUi3kiIiIiIiPFYp6IiIiIyEixmCciIiIiMlIs5kuQoKAgSCSSHA8PD483nvPrr7/Cw8MDlpaWqF27Ng4cOFBIaUsubT+nNWvWoGXLlnB0dISjoyPatWuH8+fPF2Likqkg30/Ztm/fDolEgk8//VS/IalAn1NiYiKGDx8OV1dXSKVSvPfee/y7rxAU5LNavHgxatSoASsrK7i5uWHMmDF4+fJlISUuuf755x/069cPpUuXhpWVFWrXro0LFy688ZwTJ06gfv36kEqlkMlk2LhxY+GELQGMegVY0l6tWrVw9OhRzXMzs7z/FwgNDUXv3r0xa9YsdOnSBT///DM+/fRTXLp0CV5eXoURt8TS5nM6ceIEevfujWbNmsHS0hJz5szBRx99hGvXrqFChQqFEbfE0uZzynbv3j2MHz8eLVu21Gc0eoU2n1NaWhrat28PFxcX7Ny5ExUqVMD9+/dRqlSpQkhK2nxWP//8MyZMmID169ejWbNmuH37NgYOHAiJRIKFCxcWRtwS6fnz52jevDk+/PBDHDx4EM7Ozrhz5w4cHR3zPCcmJgYff/wxhg4diq1bt+LYsWMYMmQIXF1d0aFDh0JMXzyxmC9hzMzMUK5cuXwdu2TJEnTs2BG+vr4AgOnTp+PIkSNYtmwZVq5cqc+YJZ42n9PWrVtzPF+7di127dqFY8eOYcCAAfqIR/+jzecEAJmZmejbty+Cg4Nx6tQpJCYm6i8caWjzOa1fvx4JCQkIDQ2Fubk5AKBKlSp6TEev0uazCg0NRfPmzdGnTx8AWZ9T7969ERYWps+IJd6cOXPg5uaGDRs2aLZVrVr1jeesXLkSVatWxYIFCwAAnp6eOH36NBYtWsRiXgfYZlPC3LlzB+XLl0e1atXQt29fPHjwIM9jz549i3bt2uXY1qFDB5w9e1bfMUs8bT6n/1KpVEhPT4eTk5MeExKg/ec0bdo0uLi4YPDgwYWUkADtPqe9e/eiadOmGD58OMqWLQsvLy+EhIQgMzOzEBOXXNp8Vs2aNcPFixc1bYV3797FgQMH0Llz58KKWyLt3bsXDRs2RM+ePeHi4oJ69ephzZo1bzyH9YR+sZgvQRo3boyNGzfi0KFDWLFiBWJiYtCyZUsolcpcj4+Li0PZsmVzbCtbtizi4uIKI26Jpe3n9F/+/v4oX778a39xkm5p+zmdPn0a69ate+s/eqRb2n5Od+/exc6dO5GZmYkDBw4gICAACxYswIwZMwo5ecmj7WfVp08fTJs2DS1atIC5uTmqV6+O1q1bY9KkSYWcvGS5e/cuVqxYAXd3dxw+fBjDhg3DyJEjsWnTpjzPyaueUCgUePHihb4jF3+CSqznz58Le3t7sXbt2lz3m5ubi59//jnHtuXLlwsXF5fCiEf/87bP6VWzZs0Sjo6OIiIiohCS0ave9DkpFApRpUoVceDAAc02Hx8f0a1bt0JMSEK8/fvJ3d1duLm5iYyMDM22BQsWiHLlyhVWRPqft31Wx48fF2XLlhVr1qwRV65cEb/99ptwc3MT06ZNK+SkJYu5ublo2rRpjm0jRowQTZo0yfMcd3d3ERISkmPb/v37BQChUqn0krMkYc98CVaqVCm89957iIqKynV/uXLl8Pjx4xzbHj9+rFWPML27t31O2ebPn4/Zs2fj6NGjqFOnTiGlo2xv+pyio6Nx7949fPLJJ5ptarUaQFaP8K1bt1C9evVCy1qSve37ydXVFebm5jA1NdVs8/T0RFxcHNLS0mBhYVFYUUu8t31WAQEB6N+/P4YMGQIAqF27NlJSUvDNN99g8uTJMDFh84E+uLq6ombNmjm2eXp6YteuXXmek1c9YW9vDysrK73kLEn4f3oJlpycjOjoaLi6uua6v2nTpjh27FiObUeOHEHTpk0LIx79z9s+JwCYO3cupk+fjkOHDqFhw4aFmI6yvelz8vDwwNWrVxEeHq55dO3aFR9++CHCw8Ph5uZmgMQl09u+n5o3b46oqP9v7/5joq7/OIA/P/wyTg5IOXcIlwqcjdrdLn+tQCdaGzimtDDBLpytZrYRiGBQHjtAcWKwDquxpVN0IZzZcC020thusSNlroBaBIjUJd5yuqkxhxC8v380P+3TZQoF5315Pjb+eL/v/Xm/X+/P+5/XvT/v+3BR/rIFAL29vYiMjGQiP83ut1a3b9/2SNjvfgkTQkx5fDNVYmIienp6FHW9vb1YsGDBPa9hPjHFvP1ogKZPfn6+cDgcYmBgQDidTvHcc8+JiIgIcfXqVSGEEFlZWaKoqEhu73Q6RUBAgKisrBTd3d3CarWKwMBA8d1333lrCjPCRNdp//79IigoSJw6dUq43W7577fffvPWFGaEia7TX/GYzfSY6Dq5XC6hVqtFdna26OnpEZ9//rmYN2+e2Lt3r7emMGNMdK2sVqtQq9Wivr5eXLp0SZw5c0bExsaKTZs2eWsKM0J7e7sICAgQ5eXloq+vT9TV1QmVSiU+/vhjuU1RUZHIysqSy5cuXRIqlUrs2rVLdHd3iw8//FD4+/uL5uZmb0zh/w6P2cwgly9fxubNm3H9+nVoNBqsXLkS586dg0ajAQC4XC7FLkdCQgJOnDgBi8WCd955B3q9HqdPn+Y75qfYRNeppqYGIyMj2Lhxo6Ifq9WKkpKS6Qx9RpnoOpF3THSddDodvvjiC+Tl5cFoNCIqKgq5ubkoLCz01hRmjImulcVigSRJsFgsGBwchEajwfr161FeXu6tKcwIy5cvR2NjI95++22UlZVh0aJFsNlsMJvNchu32614E9GiRYvQ1NSEvLw8VFdXIzo6GocPH+ZrKf8jkhB8FkVERERE5Iu4bURERERE5KOYzBMRERER+Sgm80REREREPorJPBERERGRj2IyT0RERETko5jMExERERH5KCbzREREREQ+isk8EdEM89FHH0Gn08HPzw82mw0lJSUwmUzeDmvSkpKSsGPHDm+HQUTkFUzmiYj+Q1u3bsXzzz8/7ePW1tYiPDz8vu1u3bqF7OxsFBYWYnBwENu2bZuSeHz9CwIRka8I8HYAREQ0fVwuF0ZHR5GamorIyEhvh0NERP8Sd+aJiKZQUlIScnJy8NZbb2HOnDnQarUoKSlRtJEkCTU1NVi3bh2Cg4MRExODU6dOyZ87HA5IkoQbN27IdR0dHZAkCT/99BMcDgdeeeUV3Lx5E5IkQZIkjzGAP3bvDQYDACAmJka+/q/Gx8dRVlaG6OhozJo1CyaTCc3NzYo2hYWFWLx4MVQqFWJiYlBcXIzR0VF5nNLSUnR2dsrx1NbWeoxz5swZPPLII4p5AUBubi7Wrl0LALh+/To2b96MqKgoqFQqGAwG1NfX3+Nu/3k/T58+ragLDw9XxPDLL79g06ZNCA8Px5w5c5CWlva394KI6GHHZJ6IaIodO3YMs2fPxvnz53HgwAGUlZXh7NmzijbFxcVIT09HZ2cnzGYzMjMz0d3d/UD9JyQkwGazITQ0FG63G263GwUFBR7tMjIy8OWXXwIA2tvb4Xa7odPpPNpVV1ejqqoKlZWV6OrqQnJyMjZs2IC+vj65jVqtRm1tLX744QdUV1fj0KFDeO+99+Rx8vPz8eSTT8rxZGRkeIzz7LPPIjw8HJ9++qlcNzY2BrvdDrPZDAAYHh7G0qVL0dTUhO+//x7btm1DVlYW2tvbH+je/J3R0VEkJydDrVajtbUVTqcTISEhSElJwcjIyKT7JSLyBibzRERTzGg0wmq1Qq/XY8uWLVi2bBlaWloUbV588UW89tprWLx4Mfbs2YNly5bh/ffff6D+g4KCEBYWBkmSoNVqodVqERIS4tEuODgYc+fOBQBoNBpotVr4+/t7tKusrERhYSEyMzPx+OOPo6KiAiaTCTabTW5jsViQkJCAhQsXYv369SgoKMDJkyflcUJCQhAQECDHExwc7DGOv78/MjMzceLECbmupaUFN27cQHp6OgAgKioKBQUFMJlMiImJwZtvvomUlBR5rMmw2+0YHx/H4cOHYTAYEB8fj6NHj8LlcsHhcEy6XyIib+CZeSKiKWY0GhXlyMhIXL16VVH3zDPPeJQ7OjqmOjQPt27dwpUrV5CYmKioT0xMRGdnp1y22+04ePAg+vv7MTQ0hN9//x2hoaETHs9sNuPpp5/GlStXMH/+fNTV1SE1NVX+Me/Y2Bj27duHkydPYnBwECMjI7hz5w5UKtWk59jZ2YmLFy9CrVYr6oeHh9Hf3z/pfomIvIHJPBHRFAsMDFSUJUnC+Pj4A1/v5/fHQ1QhhFx393y6N3z99dcwm80oLS1FcnIywsLC0NDQgKqqqgn3tXz5csTGxqKhoQFvvPEGGhsbFWfb3333XVRXV8Nms8FgMGD27NnYsWPHPx6HkSRJca8A5f0aGhrC0qVLUVdX53GtRqOZ8ByIiLyJyTwR0UPg3Llz2LJli6L81FNPAfgzwXS73Xj00UcBwGPXPigoCGNjY/86jtDQUMyfPx9OpxOrV6+W651OJ1asWAEAaGtrw4IFC7B79275859//nnS8ZjNZtTV1SE6Ohp+fn5ITU1VjJuWloaXX34ZwB8/zu3t7cUTTzxxz/40Gg3cbrdc7uvrw+3bt+XykiVLYLfbMW/evEk9TSAiepjwzDwR0UPgk08+wZEjR9Db2wur1Yr29nZkZ2cDAOLi4qDT6VBSUoK+vj40NTV57IIvXLgQQ0NDaGlpwbVr1xTJ60Tt2rULFRUVsNvt6OnpQVFRETo6OpCbmwsA0Ov1cLlcaGhoQH9/Pw4ePIjGxkaPeAYGBtDR0YFr167hzp079xzPbDbjm2++QXl5OTZu3IhZs2bJn+n1epw9exZtbW3o7u7G66+/jl9//fUf41+7di0++OADfPvtt7hw4QK2b9+ueDpiNpsRERGBtLQ0tLa2YmBgAA6HAzk5Obh8+fJkbhkRkdcwmSciegiUlpaioaEBRqMRx48fR319vbz7HBgYiPr6evz4448wGo2oqKjA3r17FdcnJCRg+/btyMjIgEajwYEDByYdS05ODnbu3In8/HwYDAY0Nzfjs88+g16vBwBs2LABeXl5yM7OhslkQltbG4qLixV9pKenIyUlBWvWrIFGo/nH10nGxcVhxYoV6Orqkt9ic5fFYsGSJUuQnJyMpKQkaLXa+/5TrqqqKuh0OqxatQovvfQSCgoKFGfsVSoVvvrqKzz22GN44YUXEB8fj1dffRXDw8PcqScinyOJvx4sJCKiaSVJEhobG73yn2OJiMi3cWeeiIiIiMhHMZknIiIiIvJRfJsNEZGX8bQjERFNFnfmiYiIiIh8FJN5IiIiIiIfxWSeiIiIiMhHMZknIiIiIvJRTOaJiIiIiHwUk3kiIiIiIh/FZJ6IiIiIyEcxmSciIiIi8lFM5omIiIiIfNT/ACE0nxS7dXREAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvMAAAHACAYAAAAvA+dJAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAi/JJREFUeJzs3XdY09fbBvA7rLARFBQVZ6igKK66rdZRR622dbROtNpWa90CLgQcuGe17l2rtlqtr7Nq1aoo1gGKG0TFGkRFSCDKynn/4EcqFZRgQgjcn+vKVfJduWOKPhye7zkSIYQAEREREREZHRNDByAiIiIiooJhMU9EREREZKRYzBMRERERGSkW80RERERERorFPBERERGRkWIxT0RERERkpFjMExEREREZKRbzRERERERGyszQAd6FWq3Go0ePYGdnB4lEYug4REREREQ6IYSAUqlE+fLlYWKS9/i7URfzjx49gpubm6FjEBERERHpRWxsLCpWrJjnfqMu5u3s7ABkvUl7e3sDpyEiIiIi0g2FQgE3NzdNvZsXoy7ms1tr7O3tWcwTERERUbHztlZy3gBLRERERGSkWMwTERERERkpFvNEREREREbKqHvm80MIgYyMDGRmZho6ChHlg6mpKczMzDjdLBERUT4U62I+LS0NcrkcKpXK0FGISAvW1tZwdXWFhYWFoaMQEREVacW2mFer1YiJiYGpqSnKly8PCwsLjvQRFXFCCKSlpeHJkyeIiYmBu7v7GxfKICIiKumKbTGflpYGtVoNNzc3WFtbGzoOEeWTlZUVzM3Ncf/+faSlpcHS0tLQkYiIiIqsYj/kxVE9IuPD71siIqL84b+YRERERERGisU8EREREZGRYjFPeiWRSLBnzx5DxyAiIiIqlljMFzESieSNj6CgIENHJCIiIqIiotjOZmOs5HK55usdO3Zg6tSpuHXrlmabra2t5mshBDIzM2Fmxo+RiIiISFeEEFCmKREZHwnvst6wsbAxdKQ8laiReSEEUlJSCv0hhMh3xnLlymkeDg4OkEgkmuc3b96EnZ0dDh48iAYNGkAqleL06dMYOHAgPv300xzXGT16NFq3bq15rlarMWvWLFStWhVWVlbw9vbGzp0788wxadIkNG7c+LXt3t7emDZtGgDg77//Rvv27VGmTBk4ODigVatWuHTpUp7XPHHiBCQSCRITEzXbwsPDIZFIcO/ePc2206dPo2XLlrCysoKbmxtGjhyJlJSUN//BEREREemIMk0Jj+UeaL6+OequqgtVetFdgLREFfMqlQq2traF/tD1CrQTJkzA7NmzcePGDdSpUydf58yaNQubN2/GypUrce3aNYwZMwb9+vXDyZMncz2+b9++OH/+PKKjozXbrl27hitXrqBPnz4AAKVSCR8fH5w+fRrnzp2Du7s7OnfuDKVSWeD3Fh0djY4dO6J79+64cuUKduzYgdOnT+P7778v8DWJiIiItLH1yFbIlVndElEJUYiMjzRworyxP8MITZs2De3bt8/38ampqQgJCcHRo0fRtGlTAEC1atVw+vRprFq1Cq1atXrtnFq1asHb2xs///wzAgICAABbt25F48aNIZPJAABt2rTJcc7q1atRqlQpnDx5El26dCnQe5s1axb69u2L0aNHAwDc3d2xdOlStGrVCitWrOACQkRERKQ3169fh7+/P/44+Qdcg1whV8pR2bYyvFy8DB0tTyWqmLe2tkZycrJBXleXGjZsqNXxUVFRUKlUr/0AkJaWhnr16uV5Xt++fbF+/XoEBARACIFt27Zh7Nixmv2PHz/GlClTcOLECcTHxyMzMxMqlQoPHjzQ7g29IiIiAleuXMHWrVs124QQUKvViImJgaenZ4GvTURERJTt1b54F7UL5s6ci3Xr1kGtVsPU1BRd73dF18Fd0cqjFazNdVvL6VKJKuYlEglsbIruDQz59d/3YGJi8lpffnp6uubr7B9g9u/fjwoVKuQ4TiqV5vk6vXv3hr+/Py5duoQXL14gNjYWX3zxhWa/j48Pnj17hiVLlqBy5cqQSqVo2rQp0tLScr1e9qqer2Z9NWd21m+//RYjR4587fxKlSrlmZWIiIhIG9l98XKlHCbPTaDeqAbUwOeff46QkBDUqFHD0BHzpUQV88WVs7MzIiNz9nKFh4fD3NwcAFCzZk1IpVI8ePAg15aavFSsWBGtWrXC1q1b8eLFC7Rv3x4uLi6a/WfOnMGPP/6Izp07AwBiY2Px9OnTN+YEsmbscXR01OR8Vf369XH9+nVNKw8RERGRrqWnp2PG6hmavni1oxpebb2wKmAVmjVrZuB02ilRN8AWV23atMGFCxewefNm3LlzB4GBgTmKezs7O4wfPx5jxozBpk2bEB0djUuXLuGHH37Apk2b3njtvn37Yvv27fj111/Rt2/fHPvc3d2xZcsW3LhxA2FhYejbty+srKzyvJZMJoObmxuCgoJw584d7N+/HwsWLMhxjL+/P0JDQ/H9998jPDwcd+7cwe+//84bYImIiOidCSGwe/dueHl5YcnkJXC1cwUAuFq44tzv54yukAdYzBcLHTp0QEBAAPz8/PD+++9DqVRiwIABOY6ZPn06AgICMGvWLHh6eqJjx47Yv38/qlat+sZr9+jRA8+ePYNKpXpt+st169bh+fPnqF+/Pvr374+RI0fmGLn/L3Nzc2zbtg03b95EnTp1MGfOHMyYMSPHMXXq1MHJkydx+/ZttGzZEvXq1cPUqVNRvnx57f5QiIiIiF4RGhqKFi1a4PPPP8ft27fhYOkAP2s/nBxwEnfG3SnSc8m/iURoMwl6EaNQKODg4ICkpCTY29vn2Pfy5UvExMSgatWqnAGFyMjw+5eIiHRBCIFbUbcQODUQv2z/BQBgZWWFcePGwdfX97X6sSh5U537Ko7MExEREVGxEx8fj1FjRuGq6VX0mNkDVjZWGDJkCKKiojB9+vQiXchrgzfAEhEREVGxoVKpsGjRIsyZMwdpGWlo9F0jxCbG4sSZE2jk3cjQ8XSOxTwRERERGS0hBDJFJjIzM/HT5p8wdepUPHr0CADQqGUj+O3zg1wph8xJhoiaEUV6zviCYDFPREREREYrQ52BPff3AACGjxiO1BepqFq1KkJCQuDW1A0tNrYAAEQlRCEyPhKNKhSv0Xn2zBMRERGRUbpw4QI+/vhjzfNSpUph4cKFuHHjBr788kvUda0LmVPW2jXuTu7wcvEyVFS94cg8ERERERmVmJgYTJ48Gdu2bYPUSooBGQMQmxiL85fPo1LZf1eMt7GwQcTQCETGR8LLxavYtdgALOaJiIiIqIjL7ot//vw5ZofMxrJly5CWlgaJRIIevXto+uLXO61HxNCcffHW5tbFrrXmVWyzISIiIqIiLeVFCnbf240TSSewfMVypKWloV27drh48SK+C/oOcqUcwL998SUJi3nSWuvWrTF69GhDxyAiIqJiTq1W46effkK9evWQmpGKqKdRqFmnJg4fPowjR46gXr168C7rXez74t+ExXwRNHDgQEgkEkgkEpibm6Nq1arw8/PDy5cvDR0tX4KCglC3bl1DxzCoe/fuQSKRIDw83NBRtHbixAnUr18fUqkUMpkMGzdufOvx3bp1g6urK2xsbFC3bl1s3bo1xzFr1qxBy5Yt4ejoCEdHR7Rr1w7nz5/X47sgIiJjd/ToUTRo0AD9+/fHA/kD+O3zw6SDk6Dso0SLD1tojsvuiw8bEobwoeHFsi/+TVjMF1EdO3aEXC7H3bt3sWjRIqxatQqBgYGGjlUiCCGQkZFh6Bj5lpmZCbVa/dr2tLQ0ra8VExODjz/+GB9++CHCw8MxevRoDBkyBIcPH87znNDQUNSpUwe7du3ClStXMGjQIAwYMAD79u3THHPixAn07t0bx48fx9mzZ+Hm5oaPPvoI//zzj9YZiYioeBJCIEOdgcsRl9GxY0e0b98e4eHhsLe3x5BJQ/5tpXn+eitNdl98SSvkAQDCiCUlJQkAIikp6bV9L168ENevXxcvXrwwQLJ34+PjI7p165Zj2+effy7q1aunef7y5UsxYsQI4ezsLKRSqWjevLk4f/68Zv+GDRuEg4NDjmvs3r1bvPqRBwYGCm9vb7F582ZRuXJlYW9vL7744guhUCg0xyQnJ4v+/fsLGxsbUa5cOTF//nzRqlUrMWrUqFyzb9iwQQDI8diwYYMQQoj79++Lrl27ChsbG2FnZyd69uwp4uLi8vxziImJEQDErl27ROvWrYWVlZWoU6eOCA0NzXHcqVOnRIsWLYSlpaWoWLGiGDFihEhOTtbs37x5s2jQoIGwtbUVZcuWFb179xaPHz/W7D9+/LgAIA4cOCDq168vzM3NxfHjx0VmZqYICQkRVapUEZaWlqJOnTri119/1ZyXkJAg+vTpI8qUKSMsLS2FTCYT69evF0KI1/4MWrVqlef7/K+XL1+KcePGifLlywtra2vRqFEjcfz48Rx/xg4ODuL3338Xnp6ewtTUVMTExIjKlSuLadOmif79+ws7Ozvh4+OT79fM5ufnJ2rVqpVj2xdffCE6dOig1XU6d+4sBg0alOf+jIwMYWdnJzZt2pTrfmP+/iUiooKJuR8jfon+RfwS/YuQWkmFubm5GDVqlHjy5IlITk0WsqUygSAI96XuIiUtxdBx9e5Nde6rODKfXyoVcP581n8LWWRkJEJDQ2FhYaHZ5ufnh127dmHTpk24dOkSZDIZOnTogISEBK2uHR0djT179mDfvn3Yt28fTp48idmzZ2v2+/r64uTJk/j999/xxx9/4MSJE7h06VKe1/viiy8wbtw41KpVC3K5HHK5HF988QXUajW6deuGhIQEnDx5EkeOHMHdu3fxxRdfvDXj5MmTMX78eISHh+O9995D7969NSPn0dHR6NixI7p3744rV65gx44dOH36NL7//nvN+enp6Zg+fToiIiKwZ88e3Lt3DwMHDnztdSZMmIDZs2fjxo0bqFOnDmbNmoXNmzdj5cqVuHbtGsaMGYN+/frh5MmTAICAgABcv34dBw8exI0bN7BixQqUKVMGADQtJEePHoVcLsdvv/329g/jf77//nucPXsW27dvx5UrV9CzZ0907NgRd+7c0RyjUqkwZ84crF27FteuXYOLiwsAYP78+fD29sbly5cREBAAAKhVqxZsbW3zfHTq1Elz3bNnz6Jdu3Y58nTo0AFnz57Nd34ASEpKgpOTU577VSoV0tPT33gMERGVDElJSZg4cSK863pr+uK7du+KGzduYPHixShTpkyJb6V5o0L64UIvCm1kPiVFCHd3IYCs/6bo96dBHx8fYWpqKmxsbIRUKhUAhImJidi5c6cQImu03NzcXGzdulVzTlpamihfvryYO3euECL/I/PW1tY5RuJ9fX1F48aNhRBCKJVKYWFhIX755RfN/mfPngkrK6s8R+azr+vt7Z1j2x9//CFMTU3FgwcPNNuuXbsmAOT4jcKrskfm165d+9o5N27cEEIIMXjwYPHNN9/kOO/UqVPCxMQkz8/+77//FgCEUqkUQvw7Mr9nzx7NMS9fvhTW1tav/RZg8ODBonfv3kIIIT755JM8R5+zs1++fDnX/Xm5f/++MDU1Ff/880+O7W3bthUTJ04UQvz724/w8PAcx1SuXFl8+umnr13z3r174s6dO3k+Hj58qDnW3d1dhISE5Dh///79AoBQqVT5eg87duwQFhYWIjIyMs9jhg0bJqpVq5bnZ8SReSKi4i81NVUsWbJElC5dWgAQFnYWwnWBq0AQhGyprESMvr9JfkfmOc98fkRGAtmjonfuZD1vpN/5Sj/88EOsWLECKSkpWLRoEczMzNC9e3cAWaPR6enpaN68ueZ4c3NzNGrUCDdu3NDqdapUqQI7OzvNc1dXV8THx2teJy0tDY0bN9bsd3JyQo0aNbR+Pzdu3ICbmxvc3Nw022rWrIlSpUrhxo0beP/99/M8t06dOjnyAUB8fDw8PDwQERGBK1eu5LjhUggBtVqNmJgYeHp64uLFiwgKCkJERASeP3+u6S9/8OABatasqTmvYcOGmq+joqKgUqnQvn37HFnS0tJQr149AMCwYcPQvXt3XLp0CR999BE+/fRTNGvWTOs/m1ddvXoVmZmZeO+993JsT01NRenSpTXPLSwscvy55PYeslWuXPmdMmnj+PHjGDRoENasWYNatWrleszs2bOxfft2nDhxApaWloWWjYiIiga1Wo2dv+3E1MCpuHX9FgDA09MTXwV+Bd+bvgD+nWKyOM8Pryss5vPDywtwd88q5N3ds57rmY2NDWSyrGmW1q9fD29vb6xbtw6DBw/O1/kmJiYQQuTYlp6e/tpx5ubmOZ5LJJJcb6Y0pFczSiQSANBkTE5OxrfffouRI0e+dl6lSpWQkpKCDh06oEOHDti6dSucnZ3x4MEDdOjQ4bUbRG1sbDRfJycnAwD279+PChUq5DhOKpUCADp16oT79+/jwIEDOHLkCNq2bYvhw4dj/vz5BX6vycnJMDU1xcWLF2Fqappjn62treZrKysrzZ9FXu8hW61atXD//v08X7Nly5Y4ePAgAKBcuXJ4/Phxjv2PHz+Gvb09rKys3pj95MmT+OSTT7Bo0SIMGDAg12Pmz5+P2bNn4+jRo7n+MEJERMXbX3/9hUlTJmHo2qHw2eCDH/v8iKn+UzFo0CCkqlOxatUqRCVElcgpJgvK4MX8P//8A39/fxw8eBAqlQoymQwbNmzIdYTRYKytgfDwrBF5L6+s54XIxMQEkyZNwtixY9GnTx9Ur14dFhYWOHPmjGbUNT09HX///bdm/ndnZ2colUqkpKRoCjxtp0msXr06zM3NERYWhkqVspZGfv78OW7fvo1WrVrleZ6FhQUyMzNzbPP09ERsbCxiY2M1o/PXr19HYmJijtFxbdWvXx/Xr1/X/ODzX1evXsWzZ88we/ZszeteuHDhrdetWbMmpFIpHjx48Mb36uzsDB8fH/j4+KBly5bw9fXF/PnzNfc3/PfP4W3q1auHzMxMxMfHo2XLllqdm5cDBw7k+oNctleL9KZNm+LAgQM59h85cgRNmzZ942ucOHECXbp0wZw5c/DNN9/keszcuXMxc+ZMHD58uGh9fxMRkd7duHEDEyZMwN69e2FhZ4G7++5CrpSj+ojq6DuwL8zMzGAGM0QMjUBkfCS8XLzYF59PBi3mnz9/jubNm+PDDz/EwYMH4ezsjDt37sDR0dGQsXJnba331po36dmzJ3x9fbF8+XKMHz8ew4YNg6+vL5ycnFCpUiXMnTsXKpVKM3LfuHFjWFtbY9KkSRg5ciTCwsLeOl/4f9na2mLw4MHw9fVF6dKl4eLigsmTJ8PE5M33TVepUgUxMTEIDw9HxYoVYWdnh3bt2qF27dro27cvFi9ejIyMDHz33Xdo1arVOxV2/v7+aNKkCb7//nsMGTIENjY2uH79Oo4cOYJly5ahUqVKsLCwwA8//IChQ4ciMjIS06dPf+t17ezsMH78eIwZMwZqtRotWrRAUlISzpw5A3t7e/j4+GDq1Klo0KABatWqhdTUVOzbtw+enp4AABcXF1hZWeHQoUOoWLEiLC0t4eDg8NbXfe+999C3b18MGDAACxYsQL169fDkyRMcO3YMderUwccff6z1n5E2bTZDhw7FsmXL4Ofnh6+++gp//vknfvnlF+zfv19zzLJly7B7924cO3YMQFZrTZcuXTBq1Ch0794dcXFxALJ+qMu+wXXOnDmYOnUqfv75Z1SpUkVzTPZNuEREVDzJ5XIEBQVh7dq1UKvVMDU1RdchXbFTuRMAEJ0YnaOdJnuKSdJCoXTw58Hf31+0aNGiwOeXpKkphRBi1qxZwtnZWSQnJ4sXL16IESNGiDJlyuQ6NaUQWTe8ymQyYWVlJbp06SJWr16d69SUr1q0aJGoXLmy5rlSqRT9+vUT1tbWomzZsmLu3LlvnJpSiKybR7t37y5KlSqlk6kpX72J9Pnz5wJAjqkaz58/L9q3by9sbW2FjY2NqFOnjpg5c6Zm/88//yyqVKkipFKpaNq0qdi7d2+O62bfAPv8+fMcr69Wq8XixYtFjRo1hLm5uXB2dhYdOnQQJ0+eFEIIMX36dOHp6SmsrKyEk5OT6Natm7h7967m/DVr1gg3NzdhYmKimZoy+7ViYmLyfN9paWli6tSpokqVKsLc3Fy4urqKzz77TFy5ckUIkfvNzUJk3QC7aNGiPK+bX8ePHxd169YVFhYWolq1aprPL1tgYGCO/0d8fHxem4oT/5mOs3LlyrkeExgYmGsGY/7+JSIiIRQKhZgUOElYVrcUMM/6O//TTz8VN2/eLJHTTBZEfm+ANWgx7+npKUaPHi169OghnJ2dRd26dcXq1avzfX5xLeap+Fq/fr2QyWQiLS3N0FGKNH7/GqGUFCHCwnKf7asg+3R9veKwr6jkKOx9RSVHYe8rKjm03JeWliZWrFghXCq4CMkICARBWI2XiiMnjuQ8LfGJCDu8XqQkPilS+fO9rxAYRTEvlUqFVCoVEydOFJcuXRKrVq0SlpaWYuPGjbke//LlS5GUlKR5xMbGspgno9KjR48cU31S7vj9a2TeNH1vQfbp+nrFYV9RycH3zfedxz61u7vYu327qFGjhgAgpBWyCvnsR1jUyeLzvguJURTz5ubmomnTpjm2jRgxQjRp0iTX4wMDA3P9VT2LeaLihd+/RiYsLOsfvOxHWNi77dP19YrDvqKSg++b7/uVfeqwcyLdSirSraRCDYj3/1eXlSlTRmweN1K4/29k3n0EREroybdfswi9tzfuKyRGUcxXqlRJDB48OMe2H3/8UZQvXz7X4zkyT1Qy8PvXyHBUkiO1fN8l8n3fjLgsfon+RfwS/Yu4biUVTpaWYvLkyVl1WUqKSPGoLsIqQKR4VC9W77uwGEUx37t379dugB09evRro/V5Yc88UfHE718jlJLCfmF97ysqOQp7X1HJUdj7ikqOXPbFx8eL77//XtjY2Ygtt7aIkLAQ8fWQ/jlWFC+O77uw5beYlwghhH7ny8nb33//jWbNmiE4OBi9evXC+fPn8fXXX2P16tXo27fvW89XKBRwcHBAUlIS7O3tc+x7+fIlYmJiULVqVa4ySWRk+P1LRFT0qFQqLF68GLNnz4ZSqYSFnQVKB5WGXCmHzEmGiKERnBteh95U577qzROG69n777+P3bt3Y9u2bfDy8sL06dOxePHifBXyRERERKRfQgikpqdi/cb1cHd3x+TJk6FUKlG/fn0s3LIQcqUcABCVEIXI+EgDpy2ZdLJoVGJiIkqVKlWgc7t06YIuXbroIgYRERER6YgQAgcPH0RCtQQ8rvkYT5VPUblyZYSEhODLL7/Ei4wXWPxgMaISouDu5A4vFy9DRy6RtC7m58yZgypVquCLL74AAPTq1Qu7du1CuXLlcODAAXh7e+s8JBERERHphxACyjQlIuMj4V3WGzYWNrh48SL8/Pxw+u/TmlaaMr5lcGn0JTjZZa3ubWNhg4ihEYiMj4SXixdbbAxE6zablStXws3NDQBw5MgRHDlyBAcPHkSnTp3g6+ur84BEREREpD/KNCU8lnug+frm8FrmhS/6fYGGDRvizz//hJmrmaaV5qn6KaIUUTnOtTa3RqMKjVjIG5DWxXxcXJymmN+3bx969eqFjz76CH5+fvj77791HpCMU1BQEOrWrfvGYwYOHIhPP/20UPIQERFR7iLjIzUF+z3lPfxy4hcAQN++ffH3vr8hc5IBAFtpiiiti3lHR0fExsYCAA4dOoR27doByPoVTWZmpm7TlVBPnjzBsGHDUKlSJUilUpQrVw4dOnTAmTNnNMdUqVIFEokEEokE1tbWqF27NtauXav1a127dg3du3fXXG/x4sW5HvfPP/+gX79+KF26NKysrFC7dm1cuHChoG8RALBkyRJs3LhR87x169YYPXr0O12zqHn58iWGDx+O0qVLw9bWFt27d8fjx4/feI4QAlOnToWrqyusrKzQrl073LlzJ8cxM2fORLNmzWBtbV3g+1WIiIhevnyJk7+ehKuda9aGBKCVZytcvHgRP/30E2q610TE0AiEDQlD+NBwjsAXQVoX859//jn69OmD9u3b49mzZ+jUqRMA4PLly5DJZDoPWBJ1794dly9fxqZNm3D79m3s3bsXrVu3xrNnz3IcN23aNMjlckRGRqJfv374+uuvcfDgQa1eS6VSoVq1apg9ezbKlSuX6zHPnz9H8+bNYW5ujoMHD+L69etYsGABHB0dC/weAcDBwaFIFqJpaWmvbcvMzIRardb6WmPGjMH//d//4ddff8XJkyfx6NEjfP755288Z+7cuVi6dClWrlyJsLAw2NjYoEOHDnj58mWOjD179sSwYcO0zkRERKRWq7F161Z4eHggeEow5naZi5BOIfitw284/sdx1K9fX3MsW2mKOG0nsE9LSxPz5s0TI0eOFJcuXdJsX7hwoVizZo22l3snxXHRqOfPnwsA4sSJE288rnLlymLRokU5tjk5OYkxY8YU+LVzu6YQQvj7+7+2uNfbBAYGCm9vb7Fy5UpRsWJFYWVlJXr27CkSExM1x/j4+Ihu3bppvsb/loHOfsTExIiEhATRp08fUaZMGWFpaSlkMplYv369VllOnTolWrRoISwtLUXFihXFiBEjRHJyco73PW3aNNG/f39hZ2cnfHx8xIYNG4SDg4P4/fffhaenpzA1NRUxMTFavW5iYqIwNzcXv/76q2bbjRs3BABx9uzZXM9Rq9WiXLlyYt68eTmuI5VKxbZt2147PjtncWOs379ERMbg6NGjol69epp/bytUqCA2bNogXqa9FGq12tDx6H/yu2iU1iPz5ubmGD9+PJYsWYJ69eppto8ZMwZDhgzRwY8XRZMqXYXz/5yHKl2l19extbWFra0t9uzZg9TU1Hydo1arsWvXLjx//hwWFhY6z7R37140bNgQPXv2hIuLC+rVq4c1a9a89byoqCj88ssv+L//+z8cOnQIly9fxnfffZfrsUuWLEHTpk3x9ddfQy6XQy6Xw83NDQEBAbh+/ToOHjyIGzduYMWKFShTpky+s0dHR6Njx47o3r07rly5gh07duD06dP4/vvvcxw3f/58eHt74/LlywgICACQ9VuLOXPmYO3atbh27RpcXFywdetWzWeU1+PUqVMAgIsXLyI9PV3TigYAHh4eqFSpEs6ePZtr3piYGMTFxeU4x8HBAY0bN87zHCIiIiCrTVORqkBobChS0lJe2xdxNQKfdPsE7dq1w+XLl2FnZ4eQkBDcvn0bAwcMhNRcColEYqD0VFAFmmd+y5YtWLVqFe7evYuzZ8+icuXKWLx4MapWrYpu3brpOqPBqdJVqLuyLu4k3IG7k7tee8bMzMywceNGfP3111i5ciXq16+PVq1a4csvv0SdOnVyHOvv748pU6YgNTUVGRkZcHJy0ssPVHfv3sWKFSswduxYTJo0CX///TdGjhwJCwsL+Pj45Hney5cvsXnzZlSoUAEA8MMPP+Djjz/GggULXmvpcXBwgIWFBaytrXPse/DgAerVq4eGDRsCyLpXQBuzZs1C3759Nb347u7uWLp0KVq1aoUVK1ZoVhdt06YNxo0bpznv1KlTSE9Px48//phjutWuXbuicePGb3zN7PcbFxcHCwuL11qJypYti7i4uFzPzd5etmzZfJ9DREQE/DsrzX9XZH348CGCpwej1bhWaDa5Gf489SeG9B+CKVOmwNnZ2dCx6R1pPTKfXdR16tQJiYmJmpteS5UqlefNk8YuMj4SdxKybkC8k3BH7yucde/eHY8ePcLevXvRsWNHnDhxAvXr189xsygA+Pr6Ijw8HH/++ScaN26MRYsW6eW+BbVajfr16yMkJAT16tXDN998o/lh400qVaqkKWwBoGnTplCr1bh161a+X3vYsGHYvn076tatCz8/P4SGhmqVPSIiAhs3bswxct6hQweo1WrExMRojsv+YeFVFhYWr/0AZWdnB5lM9saHlZWVVhmJiIh04dVZaaISonDu7jlMmjQJ7u7u2LxtM/z2+WHSwUlwnuKMWfNnsZAvJrQu5n/44QesWbMGkydPhqmpqWZ7w4YNcfXqVZ2GKyq8XLzg7uQOoPCmZbK0tET79u0REBCA0NBQDBw4EIGBgTmOKVOmDGQyGVq2bIlff/0VI0eOxPXr13WexdXVFTVr1syxzdPTEw8ePND5a/1Xp06dcP/+fYwZMwaPHj1C27ZtMX78+Hyfn5ycjG+//Rbh4eGaR0REBO7cuYPq1atrjrOxsXntXCsrq9d+3ahNm025cuWQlpaGxMTEHNd4/PhxnjcbZ2//74w3bzqHiIgIyKpXsmelcTZxRq/WvTBr1iy8fPkSXm28NIX+feV9vQ9MUuHRus0mJiYmR698NqlUipSUlFzOMH7W5tYIHxpu0BXOatasiT179uS5383NDV988QUmTpyI33//Xaev3bx589dG02/fvo3KlSu/8bwHDx7g0aNHKF++PADg3LlzMDExQY0aNXI93sLCItfpTZ2dneHj4wMfHx+0bNkSvr6+mD9/fr6y169fH9evX9fZbyy0abNp0KABzM3NcezYMXTv3h0AcOvWLTx48ABNmzbN9dyqVauiXLlyOHbsmGaefoVCgbCwMM5cQ0REb2RlZoW5XeYiNjEWQe2CkKZMQ40aNTBnzhy07dgW9VbXQ1RCFOeLL2a0LuarVq2K8PDw1wq5Q4cOwdPTU2fBiprsaZn07dmzZ+jZsye++uor1KlTB3Z2drhw4QLmzp371vsRRo0aBS8vL1y4cCHXtpHcpKWlaUbz09LS8M8//yA8PBy2traaAnjMmDFo1qwZQkJC0KtXL5w/fx6rV6/G6tWr33htS0tL+Pj4YP78+VAoFBg5ciR69eqV5whzlSpVEBYWhnv37sHW1hZOTk4ICgpCgwYNUKtWLaSmpmLfvn1a/X/m7++PJk2a4Pvvv8eQIUNgY2OD69ev48iRI1i2bFm+r5PNzs4OdnZ2+TrWwcEBgwcPxtixY+Hk5AR7e3uMGDECTZs2RZMmTTTHeXh4YNasWfjss88gkUgwevRozJgxA+7u7qhatSoCAgJQvnz5HAtsPXjwAAkJCXjw4AEyMzMRHh4OAJDJZLC1tdX6fRERkXEQQkCZpkRkfCS8y3rDxiLrN8unTp3CxCkTMWrDKMjKyFDWqSwmz5uMwYMHw8wsq9yLGBph0IFJ0hNtp8lZs2aNqFChgti+fbuwsbER27ZtEzNmzNB8XZiK49SUL1++FBMmTBD169cXDg4OwtraWtSoUUNMmTJFqFQqzXF5TSPZoUMH0alTJ81zAGLDhg15vl5MTMxrU0ICEK1atcpx3P/93/8JLy8vIZVKhYeHh1i9evUb30f21JQ//vijKF++vLC0tBQ9evQQCQkJmmNenZpSCCFu3bolmjRpIqysrDRTU06fPl14enoKKysr4eTkJLp16ybu3r2rOadVq1bCx8fnjVnOnz8v2rdvL2xtbYWNjY2oU6eOmDlzpmZ/bn+Wupry8cWLF+K7774Tjo6OwtraWnz22WdCLpfnOOa/n5FarRYBAQGibNmyQiqVirZt24pbt27lOCe3qTwBiOPHj79z5qLAWL9/iYj0LellknBd4CoQBCFbKhOXrl4S3bp10/w74FjGUQRNDxIKhcLQUekd5XdqSokQQmj7A8DWrVsRFBSE6OhoAED58uURHByMwYMHv+vPFlpRKBRwcHBAUlIS7O3tc+x7+fIlYmJiULVqVc2MJSVNTEwM3nvvPVy/fh3u7u6GjqMXlStXRnBwMAYOHGjoKKRD/P4lIspdaGwomq9vrnluss4E6lg1TE1NMWTIEAQGBsLV1dWACUlX3lTnvqpAU1P27dsXffv2hUqlQnJyMlxcXAoclPTnwIED+Oabb4ptIX/t2jU4ODhgwIABho5CRERUKKrYVIGrnWvWzawJgDpOjW7dumHWrFnFut2Z8lagYj6btbU1rK3Zc1VUDR8+3NAR9KpWrVq4cuWKoWMQERHpXUZGBtatW4eZs2Zi7h9ZN7nu9duLOUfn4IMPPjB0PDKgfBXz9erVy/eKYJcuXXqnQERERESURQiB//u//4O/vz9u3rwJAJj5+UwEBwXjzJ9nYGKi9SzjVMzkq5h/dRYNIiIiItIfIQQyRSb+/vtv+Pv6a9YvKV26NAIDA/Htt9/CwsLCwCmpqMhXMf/fxYqIiIiISD9uR9/GFZMrgDNw/sJ5WFpaYsyYMfD394eDg4Oh41ERU+DfzVy4cAFbtmzBli1bcPHiRV1m0qkCTNZDRAbG71siKgmEEFCkKhAaG4qUtBQ8ffoUo0aNQsMGDZGakYqop1H4sv+XuHPnDkJCQljIU660vgH24cOH6N27N86cOYNSpUoBABITE9GsWTNs374dFStW1HXGAjE3NwcAqFQqWFlZGTgNEWlDpVIB+Pf7mIioOFKmKeGx3ANypRylJaWRtiQNygQlLOws4LfPD3KlHDIvGZzKOhk6KhVhWhfzQ4YMQXp6Om7cuIEaNWoAyFqiftCgQRgyZAgOHTqk85AFYWpqilKlSiE+Ph5A1sw7+b2Jl4gMQwgBlUqF+Ph4lCpVCqampoaORET0TkQeK7YCwJW4K1lTTAJ4Jp4BVlmTjgyaOggjI0YCAKISohAZH1koq9CTcdJ60SgrKyuEhoaiXr16ObZfvHgRLVu21IyoFYa3TaYvhEBcXBwSExMLLRMRvbtSpUqhXLly/AGciIyeIlWhGX2XOckQMTQCVmZWOHz4MCYGTsTjLx5DrpTDXGGOFd4rMKjfILzIeIG6q+oiKiEK7k7uCB8aDmtzTgVe0uht0Sg3Nzekp6e/tj0zMxPly5fX9nJ6JZFI4OrqChcXl1wzE1HRY25uzhF5Iio2IuMjNaPvUQlR2PnXTmyetRnHjh2D1EqKtVvWIjYxFoNrDIaLQ9YinDYWNogYGoHI+Eh4uXixkKc30rqYnzdvHkaMGIHly5ejYcOGALJuhh01ahTmz5+v84C6YGpqyuKAiIiICp2Xi5dmxVa7dDv4dPIB0gELCwsMHzYcHUp3gKPMEaaSnHWKtbk1W2soX7Rus3F0dIRKpUJGRgbMzLJ+Fsj+2sbGJsexCQkJukuai/z++oGIiIjIEJ4mPMWhp4cQmxiLoHZBSFOmoU+fPpgxYwaqVq1q6HhUhOmtzWbx4sXvkouIiIio2EtNTcWyZcswb8E8/HD6B8jKyNCqWSvMmjkLDRo0MHQ8Kka0LuZ9fHz0kYOIiIjI6KnVamzfvh2TJ0/GvXv3ILWSavbt378f5qaccpd0S+tiPlt8fDzi4+OhVqtzbK9Tp847hyIiIiIyFkIIZIpM/PXXX/Ab76dZTLN8+fKYPn06urp1zbp/T8L790j3tC7mL168CB8fH9y4ceO1VRolEgkyMzN1Fo6IiIioqLt67SpuWd8CKgGR1yNhZ2eHCRMmYPTo0bC25kw0pF8m2p7w1Vdf4b333kNoaCju3r2LmJgYzePu3bv6yEhERERU5Pzzzz8YMmQImjRpotn27bffIioqCpMmTWIhT4VC65H5u3fvYteuXZDJZPrIQ0RERFSkKRQKzJ07FwsXLsSLFy8gtZIiNSMVsYmxmD57OuylnGGPCo/WI/Nt27ZFRESEPrIQERERvTMhBBSpCoTGhiIlLUVn101SJWH8ovGoVqMaZs6ciRcvXqB58+bY/8d++O3zw6SDk9BgdQOo0lU6e02it9F6ZH7t2rXw8fFBZGQkvLy8YG6e867srl276iwcERERkbaUaUp4LPeAXCmHzEmGiKER77SKqhAC23Zuw8BzA5Funw70BGRHZZgXMg/dunXD2YdnIT/27yqvkfGRXPCJCo3WxfzZs2dx5swZHDx48LV9vAGWiIiIDC0yPhJypW6K6zNnzsDX1xdnH5wFvv7fxtLApoOb0KxyMwCAd1lvyJxkiEqIgruTO7xcvHTxNojyRes2mxEjRqBfv36Qy+VQq9U5HizkiYiIyNC8XLzgaucKAJA5yfJdXL/annP52mV8/vnnaNGiBc6ePQsrpRWchBMAwN3JHXXL19WcZ2Nhg4ihEQgbEobwoeHv9FsAIm1JxH/nl3wLOzs7hIeHo3r16vrKlG/5XeaWiIiISo4MdQa2R21HbGIshnsPz/cNqYpUhaY9R5IggVghYJJpgiFDhiAoKAgOZRwQGR8JLxcvFuykd/mtc7Vus/n8889x/PjxIlHMExEREeVGaiaFrIws30V3SkoK/Bb5QZ6Z1Z4jnARafN4Cq6auQs2aNTXHsReeihqti/n33nsPEydOxOnTp1G7du3XboAdOXKkzsIRERER6VNGRgY2bNiAqVOnIiElAa5BrpAr5ahoVRGHtxzmCDwVeQWazcbW1hYnT57EyZMnc+yTSCQs5omIiKjIE0Jg37598Pf3x40bNwAAVatWRVCFIFRvUh11XeuykCejoHUxHxMTo48cRERERHonhEDY32GYMmUKjh05BgBwcnLC1KlTMXToUEilUgMnJNKO1rPZEBERERmj6Oho9BvQD7FlYvHtym9h72iPCRMmIDo6GqNGjWIhT0ZJ65F5AHj48CH27t2LBw8eIC0tLce+hQsX6iQYERERkS48e/YM06dPx48//ggTMxN8GvwpACAiPAJVKlUxaDaid6V1MX/s2DF07doV1apVw82bN+Hl5YV79+5BCIH69evrIyMRERFRDkIIKNOUiIyPhHdZb9hY2OR63MKFCxEyIwRJSUkAgI87fqzZV7FixULJSqRPWrfZTJw4EePHj8fVq1dhaWmJXbt2ITY2Fq1atULPnj31kZGIiIgoB2WaEh7LPdB8fXPUXVUXqnSVZt+ri1hOnToVSUlJ8Pb2xh9//IE9e/YYIC2R/mhdzN+4cQMDBgwAAJiZmeHFixewtbXFtGnTMGfOHJ0HJCIiIvqvyPhIyJVZc8JHJUQhMj4SAPDHH3+gRYsWmuMqVqyIzZs349KlS2jfvj0AIDUjFVFPo3L8AEBkrLRus7GxsdH0ybu6uiI6Ohq1atUCADx9+lS36YiIiIhy4eXiBVe7rDnhZU4yZMoz8dGgj3DkyBEAwPBmwzF+/HhcCb8Ca+t/p5hUpavgt88PcqUc68PWI2JoBKegJKOmdTHfpEkTnD59Gp6enujcuTPGjRuHq1ev4rfffkOTJk30kZGIiIgoB2tza8ztMhexibG4seYGmo9qDiEEzM3N8f3332Py5MkoXbr0a+flNqLPVV3JmGldzC9cuBDJyckAgODgYCQnJ2PHjh1wd3fnTDZERESkM2+6yTUpKQlSMylkZWQI3hoMIQR69+6NGTNmoFq1anle07usN2ROMkQlRMHdyR1eLl6F8VaI9EYihBCGDlFQCoUCDg4OSEpKgr29vaHjEBERkQ4pUhXwWO6haaWJGBoBU7UpfvzxR8ydPxdLTy0FAKwethqzZs5Cw4YN83VdVboKkfGR8HLxYosNFVn5rXO1vgE2NjYWDx8+1Dw/f/48Ro8ejdWrVxcsKREREVEu/tsSs/CnhfD09MTYsWMR9ygOM3vMhNVNKxw+eDjfhTyQ1aLTqEIjFvJULGhdzPfp0wfHjx8HAMTFxaFdu3Y4f/48Jk+ejGnTpuk8IBEREZVM2Te5AoBliiUCvg1ATEwMXF1dsXbtWlw4fwFdOneBiQkXtKeSS+v/+yMjI9GoUdaNIr/88gtq166N0NBQbN26FRs3btR1PiIiIirmhBBQpCoQGhuKlLQUzfb7Ufcxt8tchHQKgXqlGrZSW0yfPh137tzB4MGDYWZWoIXsiYoVrYv59PR0SKVSAMDRo0fRtWtXAICHhwfkcrlu0xEREVGx998FoKIfROPrr79G48aNNTe5fvvVt4iOjsaUKVNgY5P7aq9EJZHWxXytWrWwcuVKnDp1CkeOHEHHjh0BAI8ePcp1CigiIiKiN/lvb3ytD2th7dq1eJHyAr9O+hVeGV5YsmgJXFxcDJyUqOjRupifM2cOVq1ahdatW6N3797w9vYGAOzdu1fTfkNERESUXzUca2h645EApMamolmzZjhz5gx+2f4LPN/zhEQiMWxIoiJK62az1q1b4+nTp1AoFHB0dNRs/+abb3KssEZERET0JkII7N69GwGBAZi7K2sBqM3fbEbIjhB8+umnLOCJ8qFAd46YmprmKOQBoEqVKrrIQ0RERCVAaGgofH19ERoaCqmVVNMbfynsEqykVoaOR2Q0eBs4ERERFZrbt29j4sSJ+O233wAA1tbWGDduHNqVaQc7WzuYSkwNnJDIuLCYJyIiIr17/PgxZs6aifXr1yNFmQITExMMHjwYQUFBKF++vKHjERktrrJARERE+ZbXnPB5SUlJwYwZM1Czdk20HNkSG8I34NPPP8WVK1ewevVqFvJE74gj80RERJRv2XPCy5VyyJxkiBgaAWvz1yfAyMjIwMaNGzF16lTI5XJIraSafb/++ivMTFiCEOmCVt9JT58+xfr163H27FnExcUBAMqVK4dmzZph4MCBcHZ21ktIIiIiKhr+Oyd8ZHwkGlXImppaCIEMdQYOHz6MCX4TcO3aNQBA1apVMWvOLKRmpCI2MRaqCirYS+0N9h6IihOJEELk58C///4bHTp0gLW1Ndq1a4eyZcsCyOqBO3bsGFQqFQ4fPoyGDRvqNfCrFAoFHBwckJSUBHt7/qVARESkb4pURZ4j8+cvnMd9p/sAgP5e/WFjZYOAgAAMGzYMqUjN14g+EWXJb52b72K+SZMm8Pb2xsqVK1+b91UIgaFDh+LKlSs4e/bsuyXXAot5IiKiwpWhzsD2qO2ITYzFcO/hsJfaIyYmBpMnT8Zve37D2vC1iE2MxbPfn2GK7xSUKlUKABAaG4rm65trrhM2JEwzok9Er8tvnZvvNpuIiAhs3Lgx1wUcJBIJxowZg3r16hUsLRERERmN7DnhXypfImhiEJYtW4b09HRI7aXw2+eXNfpeToZpNtM053iX9YbMSYaohCi4O7nDy8XLgO+AqPjIdzFfrlw5nD9/Hh4eHrnuP3/+vKb1hoiIiIo/Ly8vPHn8BADQvn179JvYDz5/+QB4vZ/exsIGEUMjEBkfCS8XL7bYEOlIvov58ePH45tvvsHFixfRtm3b13rm16xZg/nz5+stKBERERmWWq3Gtm3bYNnUEkBWG4C3tzfmzp2Ljz76CClpKZgeOT3P0Xdrc2u21hDpWL575gFgx44dWLRoES5evIjMzEwAgKmpKRo0aICxY8eiV69eeguaG/bMExERFYwQAso0JSLjI+Fd1hs2FjZvPP7IkSPw8/PDjVs3sCVyCwDgRegL9O3dF6am/67aqkpXcfSdSAd0fgPsq9LT0/H06VMAQJkyZWBubl7wpO+AxTwREVHBvGlWmldFRETA398fhw8fBgDY29tjcsBkDBs2DLbWtrneS0dE7y6/dW6BVoA1NzeHk5MTnJycDFbIExERUcHlNl98NiEE7j24h8FfD0a9evVw+PBhmJubY/To0YiOjobfeD/Y2dixkCcqArQq5o8cOYLOnTvD0dER1tbWsLa2hqOjIzp37oyjR4/qKyMRERHpmJeLF1ztXAEAMieZpr89KSkJkwMm4/TL05B9LYO5rTm++OIL3LhxA4sWLUKZMmUMGZuI/iPfN8Bu2rQJQ4YMQY8ePbBo0aIcN8D+8ccf6Ny5M9atW4f+/fvrLSwRERHphrW5NeZ2mauZL95MmGHJkiWYPn06lGlKlHYqDblSDrcAN6wfvZ7970RFVL575t977z2MGjUKw4cPz3X/jz/+iEWLFuHOnTs6Dfgm7JknIiLK25tucs1QZ2D3vd0AAPVFNSZNmIS7d+8CAGStZYhqHaU5lgs8ERU+nffMP3jwAO3atctzf9u2bfHw4UPtUhIREZHeKNOU8Fjugebrm6PuqrpQpatyPc7Hxwd3795FuXLlsHr1alzYfwEyJxkAcIEnoiIu38V8rVq1sG7dujz3r1+/HjVr1tRJKCIiInp3ed3kev369RzTSdvY2mDatGmIiorC119/DQdrB0QMjUDYkDCEDw1niw1REZbvnvkFCxagS5cuOHToENq1a/faolF3797F/v379RaUiIiItJN9k2v29JOl1aXxzTffYN26dTCXmqP33N4AgKtXrqJ8ufI5zuUCT0TGId/FfOvWrREZGYkVK1bg3LlziIuLAwCUK1cOnTp1wtChQ1GlShV95SQiIiItvXqTa/KhZNTxqAOVKqvVpnPHzvBK94K7uztMJaZvuRIRFVUFWjSqqOANsERERHl7kfoC+/7ZBwDo79UfqS9S0bRpU8ybNw/Nmzc3cDoiehO9Lhr1qvT09He9BBEREemQEAJ79uxBo0b/tslUq1YNO3fuxJkzZ1jIExUj+S7mf/nlF6SlpWmeL1u2DJUrV4alpSXKlCmDadOm6SUgERER5d/Zs2fRsmVLfPbZZ4i8EonRrUbj8eHHCL8Uju7du3PVVqJiJt89871794ZcLoeLiws2bNgAX19f+Pn5oXHjxrh8+TJmzZqF8uXLY8iQIfrMS0RERK8QQiBTZCIqOgpTJk7Brl27AABWVlYYO3Ys/Pz82IpKVIzlu5h/tbV+5cqVmDZtGnx9fQEAnTt3hpOTE3788UcW80RERIUoLj4Op1NOA6bAvgP7YGJigkGDBiE4OBgVKlQwdDwi0jOteuazfzV39+5dfPTRRzn2ffTRR4iKisrtNCIiItIxlUqFmTNnonbt2pptHTp0QHh4ONauXctCnqiEyPfIPAAcOnQIDg4OsLS01Extle3ly5fswyMiItKzzMxMbNy4EVOnTsWjR48gtZJq9u3atQtmJlr9005ERk6r73gfHx/N13/++SeaNm2qeX7u3DlUr15dd8mIiIgIQFara4Y6A3/88Qf8ff1x7do1AEDlypURMjsEqRmpiE2MhaqCCvZS9scTlST5LubVavUb95ctWxazZs1650BERESU04VLF3DP8R5QA4i6GwVHR0dMmTIFw4cPRypS4bHcA3KlHOvD1iNiaASsza0NHZmICsk7zzOfrUuXLujQoYOuLkdERFTixcTEoG/fvmjZsqVm26hRoxAdHY2xY8dCKpUiMj4ScqUcABCVEIXI+EhDxSUiA9BZMU9ERES6kZCQgHHjxsHDwwM///xzjn0zZ86Eo6Oj5rl3WW/InGQAAHcnd3i5eBVqViIyLN4lQ0REVES8ePECP678EXPnzkV8XDwAoG3btpg9dzZiEJPrOTYWNogYGoHI+Eh4uXixxYaohOHIPBERkYGp1Wr89NNPqFO3Dip1q4RlZ5ahfsP6OHToEI4cOYK6deu+8Xxrc2s0qtCIhTxRCcSReSIiIgM6evQo/Pz8cPny5RzTTIaGhkJq/r/nIo+TiajEYzFPRERkAFeuXIG/vz8OHToEALC3t8ekKZM0+01NTQ0VjYiMiE7bbNq0aYPp06e/tqAUERERZXn48CH6f9Uf3p29cejYIZiZmWHkyJGIiorCuHHjDB2PiIyMTov5SpUq4dixY/Dw8NDlZYmIiIxeUlISJk2aBJmnDD/Z/gR8DdiOt8Wlq5ewZMkSODs7GzoiERkhnbbZbNy4EQCgUCh0eVkiIiKjlZaWhpUrV2LatGl49uwZUAFA6ax9ydJkvLB7YdB8RGTcdDIyn5iYmOO5vT2XkiYiopItJS0FIZtCUMOrBkaNGoVnz57Bw8MDvyz7Be5O7gA4LzwRvTuti/k5c+Zgx44dmue9evVC6dKlUaFCBUREROg0HBERkTE6cuIIykwpg8n3JuNex3twqeCCVatW4erVq+j5aU+EDw1H2JAwhA8Nz/d0kqkZqYh6GgVVOu9LI6J/aV3Mr1y5Em5ubgCAI0eO4MiRIzh48CA6deoEX19fnQckIiIyFjdu3EC3bt3wUb+P8NLmZdbG0sCO4zvwzTffwMwsq7tV23nhVekq+O3zw6SDk9BgdQMW9ESkoXXPfFxcnKaY37dvH3r16oWPPvoIVapUQePGjXUekIiIqKiLi4tDYGAg1q5dC7VaDROpCewy7JBklgR3J3c0qtLona4fGR8JuVIOAIhKiEJkfCQaVXi3axJR8aD1yLyjoyNiY2MBAIcOHUK7du0AAEIIZGZm6jYdERFRESWEQKIyEcEzgiGTybB69Wqo1Wp069YN18Kv4dHUR1q30uTFu6w3ZE4yAOyzJ6KctB6Z//zzz9GnTx+4u7vj2bNn6NSpEwDg8uXLkMlkOg9IRERU1GRkZGDdhnVwauuEmn1qIiMkA40bN8a8efPQsmVLzXG6Gj23sbBBxNAIRMZHwsvF651/OCCi4kPrYn7RokWoUqUKYmNjMXfuXNja2gIA5HI5vvvuO50HJCIiKiqEENi7dy/8/f1x78E9rA1fi9jEWKzdtBZ9e/SFRCLR22tn99kTEb1KIoQQhg5RUAqFAg4ODkhKSuJ0mEREpFfnzp2Dr68vTp8+DQAoV7kcJCMlkCvlkDnJEDE04p1HzDPUGdh9bzcA4LMqn8HMRKfLwRCREclvnVugeea3bNmCFi1aoHz58rh//z4AYPHixfj9998LlpaIiKgIEkLgVtQtfNnnSzRt2hSnT5+GpaUlJk2ahM2HNr92UyoRUWHTuphfsWIFxo4di06dOiExMVFz02upUqWwePFiXecjIiIyiCdPnmDMuDG4YnIF3Wd0h6W1JQYNGoQ7d+5g5syZaFatGW9KJSKD07qY/+GHH7BmzRpMnjwZpqammu0NGzbE1atXdRqOiIhI34QQUKQqEBobipS0FKhUKsyaNQsymQwrV67UHHfu3DmsX78eFStWBPDvTam6mrEmGxeHIiJtaN2MFxMTg3r16r22XSqVIiUlRSehiIiICosyTQmP5R6QK+Uoa1YWJqtNIH+Q1T7TqMm/N5zWqlXrtXN1fVNq9uJQcqUc68PW66QPn4iKN61H5qtWrYrw8PDXth86dAienp66yERERFRoIh//uyDT44zHkGfKUalSJfz00084depU4WbJZXEoIqI30XpkfuzYsRg+fDhevnwJIQTOnz+Pbdu2YdasWVi7dq0+MhIREenFpUuXEDg1EK5tXCFXymGaaIppo6Zh7IixsLS0RIY6o1DzZC8OFZUQxT58IsoXrYv5IUOGwMrKClOmTIFKpUKfPn1Qvnx5LFmyBF9++aU+MhIREenUvXv3MGXKFGzduhVSKynWLsyaL75PpT6oXK6ywXJxcSgi0laBJrDt27cv+vbtC5VKheTkZLi4uOg6FxERkc4IIZApMpGYmIg5s+Zg6dKlSEtLAwB0/6w7mpo3xZcNv4SpxPQtV9I/Lg5FRNp4p9UorK2tYW3NUQMiIiraUl6k4GDcQQDAD8t/QFpaGj788EPMmzcPDRo0MHA6IqKC07qYr1q16huXq7579+47BSIiItIVtVqNbdu2IWh6EEIOhAAAatasiZnTZ6Jjx45v/PeMiMgYaF3Mjx49Osfz9PR0XL58GYcOHYKvr6+uchEREWlFCAFlmhKR8ZHwLuuNsNNh8PX1xaVLlyC1kmqOO3v2LKTm0jdcKafUjFTEJsZCVUEFe2neS6oTERmC1sX8qFGjct2+fPlyXLhw4Z0DERERFcSr88XbvLRByoIUIB2ws7PDxMkTNUV5aoVUSJG/Yp7zvhNRUaf1PPN56dSpE3bt2qWryxEREb3mv6u1vurE9ROaOdpTLFNg6mqKESNGIDo6GsNHD4ffPj9MOjgJDVY3yPfqqpz3nYiKOp0V8zt37oSTk5OuLkdERPSa7NH35uubo+6qulClq6BQKDBlyhT079gfrnauAADbNFtcPnwZS5cuhbOzc4GL8ux53wFw3nciKpK0brOpV69ejhuGhBCIi4vDkydP8OOPP+o0HBER0av+W5RPXTYVm0I24enTpwAA74PemDZuGnq36Q0bCxvNeQVdjInzvhNRUScRQghtTggODs7x3MTEBM7OzmjdujU8PDx0Gu5tFAoFHBwckJSUBHt73pRERFTcKVIVmr54c6U50pemA+lAjRo1MGfOHHTt2jXPGWpU6SoW5URkNPJb52pdzBclLOaJiEqWv878hQfODxCbGIugdkFwtHZEcHAwBg8eDDOzd1o6hYioSMlvnZuvv/kUCkW+X5hFNRER6drNmzcxYcIEHPrjELZEboGsjAyT/CZh7KixsLOzM3Q8IiKDyVcxX6pUqbcurCGEgEQiQWZmpk6CERERxcXFITg4GGvWrEFmZiZMTEzw58I/MXnSZPSY3IOLPhFRiZevYv748eP6zkFERATgf9NPpiiwdMlSzJk1BykpWVNQdu3aFbNnz4anp6eBExIRFR35KuZbtWql7xxERETIyMjA+o3r4djGER69PZAxMwONGjXCvHnz8MEHHxg6HhFRkVPgu4VUKhUePHiAtLS0HNvr1KnzzqGIiKhkEUJg37598Pf3x917d7ElcgsAYPPmzejZvSfbaYiI8qB1Mf/kyRMMGjQIBw8ezHU/e+aJiCg/hBDIFJm4cOEC/H398ddffwEAXCu4IjUjFbGJsRj+yXAW8kREb6D1CrCjR49GYmIiwsLCYGVlhUOHDmHTpk1wd3fH3r179ZGRiIiKoTt372D3vd2ILROLsL/DYGlpiQkTJiDschj89vlh0sFJaLC6AVTpKkNHJSIqsrQu5v/8808sXLgQDRs2hImJCSpXrox+/fph7ty5mDVrlj4yEhFRMfL06VOMHj0aDeo30Gzr168fbt++jVmzZiH2ZWyOVV4j4yMNFZWIqMjTuphPSUmBi4sLAMDR0RFPnjwBANSuXRuXLl3SbToiIio2Xrx4gdmzZ6N69epYsmQJ0tPTNftWrlwJNzc3AIB3WW/InGQAAHcnd3i5eBkkLxGRMdC6Z75GjRq4desWqlSpAm9vb6xatQpVqlTBypUr4erqqo+MRERkpIQQSMtIw7Zt2xAwOQAPHz4EANStWxdz5s1BEpJeO8fGwgYRQyMQGR8JLxcvWJtbF3ZsIiKjoXUxP2rUKMjlWb/+DAwMRMeOHbF161ZYWFhg48aNus5HRERG7I+jf0BRXQGbFjZ48uwJKlWqhJkzZ6JPnz5QQ43d93bnep61uTUaVWhUyGmJiIyP1sV8v379NF83aNAA9+/fx82bN1GpUiWUKVNGp+GIiMg4Xb58Gf7+/vjr9F+aaSZnzpyJ4cOGw9LSEgCgVqsNGZGIqFjQumf+9OnTOZ5bW1ujfv36LOSJiAj379/HgAED0KBBAxw5cgQWFhaafaNGjdIU8tlSM1IR9TSKM9YQERWQ1sV8mzZtULVqVUyaNAnXr1/XRyYiIjIiQgg8TXiKCZMmoEaNGtiyZQuEEOjdu/cbJ0ZQpas4BSUR0TvSuph/9OgRxo0bh5MnT8LLywt169bFvHnzNDc1ERFR8SOEgCJVgdDYUKSkpWi2p6amYskPS3A88TgaDGkAmACtW7fG33//jZ9//hlVqlTJ85qR8ZGcgpKI6B1pXcyXKVMG33//Pc6cOYPo6Gj07NkTmzZtQpUqVdCmTRt9ZCQiIgNTpinhsdwDzdc3R91VdZGcmoxt27bBw8MDEyZM0By3c+dO/Pnnn2jYsOFbr8kpKImI3p3WN8C+qmrVqpgwYQK8vb0REBCAkydP6ioXEREVIf8dRX+/y/u4efQmAKBy1cqa4zp27AiJRJKva3IKSiKid6f1yHy2M2fO4LvvvoOrqyv69OkDLy8v7N+/X5fZiIioiPBy8YKr3f/WEkkAbp68CTs7O8yYMQMRVyIKfN3sKShZyBMRFYzWI/MTJ07E9u3b8ejRI7Rv3x5LlixBt27dYG3Nv4iJiIqjR48eYdqMaZg7ei5iE2Mxo+MMfPXtVwgICICLiwsy1BmGjkhEVGJpXcz/9ddf8PX1Ra9evTgdJRFRMaZQKDBv3jwsWLAAaqjRdnxbyMrIcOHcBXi+55nj2NSMVMQmxkJVQQV7qb2BEhMRlTxaF/NnzpzRRw4iIioi0tPTsXr1agQHB+PJkycAgGbNmqH84/Jo3LgxTCWmOY7PnmJSrpRjfdh6RAyNyNE2w0KfiEh/CtwzT0RExYtarcauPbtQt35dfP/993jy5Anee+89/Pbbbzh9+jSaN20OMxOz125wfdMUk5xLnohIv1jMExERQkND0bpta6jrqBH0exAqVqqIH3/8EZGRkfjss8/eOEPNm6aY5FzyRET69U5TUxIRkXG7ffs2Jk6ciN9++w1SK6lm+5WrV+Bo75iva7xpisnsQj8qIYpzyRMR6QGLeSKiEkQIgUyRifj4eMycPhOrVq1CZmYmTExMMHDQQM1xdrZ2Wl03e4rJ/+Jc8kRE+sU2GyIiIySEgCJVgdDYUKSkpeT7PEWKArvv7cYZ1Rms27AOmZmZ+OSTT3D16lUs+2GZXrJyLnkiIv3J18i8o6Njvlf0S0hIeKdARET0dso0JTyWe0CulEPmJHttBpn/ysjIwMaNGzEjZAbmHZ0HAGjQoAFCZoSgVatWWcdwvngiIqOTr2J+8eLFmq+fPXuGGTNmoEOHDmjatCkA4OzZszh8+DACAgL0EpKIiHLK7cbS3NpchBDYv38//P39cf36dUitpJqpIvf/sR+lrEoVcnIiItIliRBCaHNC9+7d8eGHH+L777/PsX3ZsmU4evQo9uzZo8t8b6RQKODg4ICkpCTY23PuYiIqORSpijxH5rP74i9evIgJfhNw4sQJAICTkxMmBk3EwvSFuZ6Xoc7A7nu7AQCfVfkMZia8rYqIyFDyW+dq3TN/+PBhdOzY8bXtHTt2xNGjR7W9HBERFYC1uTXmdpmLkE4huPjNxRwtNlExUdgetR1/ij8RejEUUqkU/v7+iI6ORrNPm3GqSCKiYkTrYZfSpUvj999/x7hx43Js//3331G6dGmdBSMiojeTmkkhKyPTFPLZbZBrNq+B/WR7yJVy2I+0x/mvzqNGtRoAAG9rThVJRFScaF3MBwcHY8iQIThx4gQaN24MAAgLC8OhQ4ewZs0anQckIqI3e/HiBX5c9iNmzZqFpKQkmFcz14y+K8wVSJImaY7lVJFERMWL1sX8wIED4enpiaVLl+K3334DAHh6euL06dOa4p6IiApPvXr1EH0nGgDg7e2N4FnBGB81Ps/R97zmhCciIuNToLubGjdujK1bt+o6CxER5dOxY8eA6llfP3z4EG5ubpgxYwb69u0LU1NTtE9vz9F3IqISoECLRkVHR2PKlCno06cP4uPjAQAHDx7EtWvXdBqOiIhyioiIQIcOHdCtWzfNtmnTpuHWrVsYMGAATE1NAXChJiKikkLrYv7kyZOoXbs2wsLCsGvXLiQnJwPI+gcmMDBQ5wGJiEqqV1d5vXX3Fnx8fFCvXj388ccfUGeocW7FObSybwXfcb6wsrIydFwiIjIArdtsJkyYgBkzZmDs2LGws7PTbG/Tpg2WLdPPUuBERCXRq6u8Sp5LILYJQABffvklZs6ciWrVqhk6IhERGZjWxfzVq1fx888/v7bdxcUFT58+1UkoIqKSLjU1FUE/BmlmpRGOAvU61MOqqavw/vvvGzgdEREVFVq32ZQqVQpyufy17ZcvX0aFChV0EoqIqKRSq9XYsWMHPD09sTxwOVztXAEA5aXlcWrXKb0X8qkZqYh6GgVVukqvr0NERLqhdTH/5Zdfwt/fH3FxcZBIJFCr1Thz5gzGjx+PAQMG6CMjEVGxJoRAhjoDx08eR5MmTfDll18iJiYGTjZOmGQ3CX/5/IXbY2/DxsJGrzlU6Sr47fPDpIOT0GB1Axb0RERGQOs2m5CQEAwfPhxubm7IzMxEzZo1kZmZiT59+mDKlCn6yEhEVKxFXo/ETaubgBtwJfIKbG1t4efnh7Fjx8LGRr8FfI4c8ZGatp6ohChExkdyPnoioiJO65F5CwsLrFmzBtHR0di3bx9++ukn3Lx5E1u2bNFMiUZERG/36NEjfP311zkW3Pv6668RFRWFgICAQi3kAcC7rDdkTjIAyHWxKSIiKnoKtGgUAFSqVAmVKlXSZRYiohJBqVRi3rx5WLBgAVQqFaRWUs2+RYsWwcykwH81vxMbCxtEDI3gYlNEREYkX/9ijB07Nt8XXLhwYYHDEBEVZ0mqJISsDcGGORvw5NETAEDTpk0xZ/4cxCHOwOmyZC82RURExiFfxfzly5dzPL906RIyMjJQo0YNAMDt27dhamqKBg0a6D4hEZGRE0Jgx287MCB0ANLt04HuQPUj1TF35lx89tlnyBSZ2H1vt6FjEhGREcpXMX/8+HHN1wsXLoSdnR02bdoER0dHAMDz588xaNAgtGzZUj8piYiM1NmzZ+Hr64sz984AX/9vY2lg86HNaFa5WdZzYbB4RERk5LS+AXbBggWYNWuWppAHAEdHR8yYMQMLFizQaTgiImN1584d9OjRA82aNcOZM2dgqbCEk3ACkHVzad3ydQ0bkIiIigWt77JSKBR48uTJa9ufPHkCpVKpk1BERMbq3j/34DvPF7tX7Ubmy0yYmJhg0KBBCA4OhqOLI28uJSIindK6mP/ss88waNAgLFiwAI0aZd0kFRYWBl9fX3z++ec6D0hEZAxUKhXmLJyD6U+mQzgJ4Gug472OmBcyD15e/07xyJtLiYhIl7Qu5leuXInx48ejT58+SE9Pz7qImRkGDx6MefPm6TwgEVFRlpmZiY0bN2Lq1Kl4JHmUoy8+2D8YXhXyN1d7akYqYhNjoaqggr3UXn+BiYioWJEIIQp061VKSgqio6MBANWrVy/0xU2ArJYfBwcHJCUlwd6e//gRUeERQuDgwYPw8/PDtWvXAACVqldC2ldpiEuPg7uTO8KHhuernUaRqoDHcg/IlXLInGSIGBrBNhwiohIuv3VugVcmsbGxQZ06dQp6OhGRURJC4MKlC5g8eTKOHD4CIGsSgICAAHz33XfINMnUui8+Mj4ScqUcABCVEIXI+Ei24xARUb5oPZtNSkoKAgIC0KxZM8hkMlSrVi3Hg4jI2AkhoEhVIDQ2FClpKZrtMTExGDBwAO453sPXP34N+1L28PX1RXR0NMaMGQOpVKpZdEmbkXXvst6QOckAZM104+WSv9YcIiIirUfmhwwZgpMnT6J///5wdXWFRCLRRy4iIoNRpilztL0c73UcC+csxPLlyyExlaDD5A6ITYxF6N+hqCWr9c6vZ2Nhg4ihEZzphoiItKZ1z3ypUqWwf/9+NG/eXF+Z8o0980SkD6GxoWi+/t+/42y32SL5VjIAoN3H7XCtzTX2txMRkV7lt87Vus3G0dERTk5O7xSOiKgoq1mmJlztXLOeJADJd5NRu3ZtHDp0CME/Br/W305ERGQoWhfz06dPx9SpU6FSqfSRh4jIoI4ePYqPPvwIc7vMRUinEFQ5XAUb12zE5cuX0aFDB3iXY387EREVHVr3zC9YsADR0dEoW7YsqlSpAnNz8xz7L126pLNwRESF5cqVK/Dz88Phw4chtZJCaiaFrIwMVy5egZ2NneY49rcTEVFRonUx/+mnn+ohBhFR4RJCIFNk4uHDhwgODMamTZsghIC5uTmGfjMUH9h9gNKlS8NUYvraudkz1hARERlagReNKgp4AywRFdSzxGf4M+FPAEB/r/5IfZGKXr16ISQkBNWrVzdwOiIiKun0dgMsEZGxyG2++LS0NCxduhS1vWojNSMVUU+j0LhFY5w7dw47duxgIU9EREZF6zYbExOTN84tn5mZ+U6BiIh05b/zxU91noqgyUG4e/cuLOws4LfPL2vfJzLUrl/b0HGJiIi0pnUxv3v37hzP09PTcfnyZWzatAnBwcE6C0ZE9K4i4yNzTCM5YM4A4B+gbNmyGDR1EGY/ma3ZFxkfyT54IiIyOloX8926dXttW48ePVCrVi3s2LEDgwcP1kkwIqJ3ZZFoAVc716yCPgGwTraGf7A/xo4dC4mFBDtX7URUQhSnmCQiIqOldTGflyZNmuCbb77R1eWIiPJFCAFlmhKR8ZHwLusNGwsbyOVyBAUFYcvWLVh9aTViE2Nxb+s9BN8MRrly5TTncopJIiIydjop5l+8eIGlS5eiQoUKurgcEVG+vdoXX71UdXzx/Assmb8EKSlZN7zuCdiDacHT4LnY87X7fTjFJBERGTuti3lHR8cc/yAKIaBUKmFtbY2ffvpJp+GIiN7m1b746MRohKwNAVKyfls4b948tGjRwsAJiYiI9EfrYn7x4sU5npuYmMDZ2RmNGzeGo6OjrnIREb2VEAIPLjzI0Rdf1aYq5v46F927d3/jzFtERETFgdbFvI+Pjz5yEBFp5dy5c/D19cXfF//G2vC1iE2MhfRvKb6f9z0sLCwMHY+IiKhQFKhnPjExEevWrcONGzcAALVq1cJXX30FBwcHnYYjIvqvO3fuYNKkSdi5cycAwNLSEre23sLoMaPh9L4TR+OJiKhE0XoF2AsXLqB69epYtGgREhISkJCQgIULF6J69eq4dOmSPjISUQknhEBcfBxGjx2NmjVrYufOnZBIJPjqq69w584dTA+ejtKlSrOQJyKiEkcihBDanNCyZUvIZDKsWbMGZmZZA/sZGRkYMmQI7t69i7/++ksvQXOjUCjg4OCApKQk2NvbF9rrElHhUalUWPLDEsh6ygAA/b36o03rNpgzZw5q1+aqrUREVDzlt87Vupi3srLC5cuX4eHhkWP79evX0bBhQ6hUqoIlLgAW80TFV2ZmJjZv3oyAgAA8TXiKLZFbAACO9xzRrk07A6cjIiLSr/zWuVq32djb2+PBgwevbY+NjYWdnZ22lyMi0hBCID0zHQcPH0S9evXw1Vdf4Z9//oFbJTfNMa1btzZcQCIioiJG62L+iy++wODBg7Fjxw7ExsYiNjYW27dvx5AhQ9C7d299ZCSiEuLi5YvYc38Pkt2TcTvqNkqVKoX58+fj8qXLSM1IRdTTKKjSC++3f0REREWd1rPZzJ8/HxKJBAMGDEBGRgYAwNzcHMOGDcPs2bN1HpCIir979+5hypQp2PnbTk07zahRo+Dv6w8nJycoUhXw2+cHuVKO9WHrETE0Atbm1gZOTUREZHhajcxnZmbi3LlzCAoKwvPnzxEeHo7w8HAkJCRg0aJFkEql+spJREZECAFFqgKhsaFISUvJ87jnz5/D19cXNWrUwNatW3PsmzlzJpycnADkXOU1KiEKkfGR+gtPRERkRLQq5k1NTfHRRx8hMTER1tbWqF27NmrXrg1ra46QEdG/lGlKeCz3QPP1zVF3Vd0crTFCCCSrkrFwcdaUtvPnz0daWhratGmDU6dO5dpO413WGzKnrNls3J3c4eXiVejviYiIqCjSumfey8sLd+/e1UcWIiom8hpJV6vV+Hn7zzgYdxBuXd2geqlC7dq1cfDgQRw9ehQ1vGrAb58fJh2chAarG2gKehsLG0QMjUDYkDCEDw1niw0REdH/aF3Mz5gxA+PHj8e+ffsgl8uhUChyPIiIvFy84GrnCgCQOcng5eKFP//8E++//z4GDx6sOW7FihW4fPkyOnbsCIlE8sZ2GmtzazSq0IiFPBER0Su0vgG2c+fOAICuXbvmWG1RCAGJRILMzEzdpSMio2Rtbo25XeYiNjEWH5p/iB7deuDgwYMAgNLOpTXH9e/fH6Ympprn2e00UQlRbKchIiLKB62L+ePHj+sjBxEVM1IzKWRlZGhTpw1epLyAmZkZvvvuO0ycPBFHE48iNjEWqgoq2Ev/XQgju50mMj4SXi5eHIUnIiJ6C61XgC1KuAIsUdGTlJSE+Qvno45PHQBAf6/+6NqlK0JCQiCTyaBIVcBjuQfkSjlkTjJOM0lERJQLva0AS0SUm7S0NPzwww+QyWSYN2+eZvvx48fxyy+/QCbLmo2G00wSERHpjtZtNkRErxJCYNeuXZg4cSKioqIAAB4eHrC4ZoHOnTvDrGrOv2bYF09ERKQ7LOaJSgAhBJRpSkTGR8K7rDdsLGx0cs1ToacwadIknPnrDACgbNmyCA4OxuDBg2FmlvtfL+yLJyIi0p18tdns3bsX6enp+s5CRHrypkWcCuLmzZvo8UUPPHZ9jFEbRsGxjCOCgoIQFRWFb7/9Ns9CPhunmSQiItKNfBXzn332GRITEwFkrQIbHx+vz0xEpGO66lOPi4vDsGHD4OXlhf379mtWaw27GIbAwEDY2trqMjYRERG9Rb6KeWdnZ5w7dw7Av/PJE5HxyG0Rp2xCCChSFQiNDUVKWkqu5ycnJyM4OBgymQwrV65EZmYmPurykWa11s6/d37n0X4iIiLSXr565ocOHYpu3bpBIpFAIpGgXLlyeR7LRaOIip5XF3Ea7j08R3tLdgtOblNFpqenY/3G9Zg5cyZi78cCABo1aoR58+bBrKoZmq9vDuDf0f5GFRoV/psjIiIqwfJVzAcFBeHLL79EVFQUunbtig0bNqBUqVJ6jkZEupS9iNN/+9Rza8F5v/z72Lt3LwICAxDwWwAWtF2AgE8CMC1wGnr27AmJRIKUtBTOSkNERGRg+Z7NxsPDAx4eHggMDETPnj1hbc0b14iKg+wWnOyR+Rf3X6BV71Y4deoUpFZSzXGXLl6CteW/3/eclYaIiMjwtJ6aMjAwEADw5MkT3Lp1CwBQo0YNODs76zYZERWKV1twLv9wGa1HtgYAWFpaYuy4sZrjLCwscj2XrTVERESGo/UKsCqVCl999RXKly+PDz74AB988AHKly+PwYMHQ6XiDXBExubZs2eaFpy9u/ZCIpFg4MCBuH37NoKDgw0dj4iIiN5A62J+zJgxOHnyJPbu3YvExEQkJibi999/x8mTJzFu3Dh9ZCQiPXjx4gVmz54NL69/e93bt2+P8PBwbNiwAW5ubgZMR0RERPmhdZvNrl27sHPnTrRu3VqzrXPnzrCyskKvXr2wYsUKXeYjIh3LzMzET5t/QkBAAB4+fAgAmN93PmbMmIG9e/Zy6lkiIiIjonUxr1KpULZs2de2u7i4sM2GyAg0b94cF/++CACoVKkSQkJC0Lt3b5iY5P6LutSMVMQmxkJVQQV7qX1hRiUiIqK30LrNpmnTpggMDMTLly812168eIHg4GA0bdpUp+GISDciIiI0X0dGRqJUqVKYN28ebt26hb59++ZZyKvSVZqFoRqsbsCFoYiIiIoYrYv5JUuW4MyZM6hYsSLatm2Ltm3bws3NDaGhoViyZIk+MhJRPuS2kuv9+/cxYMAAtGjRQnPcyJEjER0djfHjx8PS0vKN18xtDnoiIiIqOiRCCKHtSSqVClu3bsXNmzcBAJ6enujbty+srKx0HvBNFAoFHBwckJSUBHt7/vqfSjZFqkKzkmu1UtXQ9Z+uWLF0BVJTUwEA/X36Y+rUqahetXq+++JT0lJQd1VdzcJQ4UPDOZ88ERFRIchvnVugYr6oYDFP9K/Q2FA0X9/83w1rAPwDfPjhh5g3bx4aNGhQoOuq0lVcGIqIiKiQ5bfO1brNhoiKHrVajdunb8PVzjVrQwLgWdoT+/fvx7FjxwpcyAP/LgzFQp6IiKjo0Xo2GyIqWo4fPw5fX19EXo/E2vC1iE2MhcNVB3y78FuYmpoaOh4RERHpEYt5IiN17do1+Pv7Y//+/QAAOzs7PPjtAYZ/Pxz279tzvngiIqISgMU8kRERQuDho4eYMWMG1q5eC7VaDTMzMwwdOhQBAQFwcXExdEQiIiIqRAXqmU9MTMTatWsxceJEJCQkAAAuXbqEf/75R6fhiOhfCoUCgcGBOJd6Du1828Fcao4ePXrg+vXr+OGHH1jIExERlUBaj8xfuXIF7dq1g4ODA+7du4evv/4aTk5O+O233/DgwQNs3rxZHzmJih0hBJRpSkTGR8K7rDdsLGxyPS49PR2rV69GcHAwFMkKbBmwBQBw7NgxNG/aPNdziIiIqGTQemR+7NixGDhwIO7cuZNjwZnOnTvjr7/+0mk4ouJMmaaEx3IPNF/fHHVX1c2xuqoqXYWwh2H4+defUatWLXz//fd48uQJZDKZ5pjGjRsbIjYREREVIVoX83///Te+/fbb17ZXqFABcXFxOglFVBLktbqqKl2FGotqoMm6Juh7qi/u3LsDFxcXrFixAn///bchIxMREVERo3UxL5VKoVAoXtt++/ZtODs76yQUUUng5eKlmRde5iSDl4sXbt26hc4DO+Phi4dZB5UGBk8cjKioKAwdOhTm5uYGTExERERFjdbFfNeuXTFt2jSkp6cDACQSCR48eAB/f390795d5wGJjJkQAopUBUJjQ5GSlpJjn7W5NeZ2mYuQTiE49OkhjB81HrVq1cLJX08Cz7KOqWpfFUunLIWdnZ3mvNSMVEQ9jcrRlkNEREQlk0QIIbQ5ISkpCT169MCFCxegVCpRvnx5xMXFoWnTpjhw4ABsbHK/iU8f8rvMLZGhKFIV8FjuAblSDpmTDBFDIzQrqWaoM7D73m4AwNAmQ5HwJGtmqE8++QSBMwKRWToTXi5eOVZefdP1iIiIqPjIb52r9Ww2Dg4OOHLkCE6fPo0rV64gOTkZ9evXR7t27d4pMFFxlFtffKMKjZCRkYENmzag1IelAAApySl4//33MW/ePLRq1Urr6xEREVHJVOBFo1q0aIEWLVroMgtRsZPdF589kl7LuRb27dsHf39/RMdEY0tk1jSTmzZtQq8evd66aqt3WW/InGSISoiCu5M7vFy8CuNtEBERURGldTG/dOnSXLdLJBJYWlpCJpPhgw8+gKmp6TuHIzJ22X3xsYmxaKZuho8/+hgnT54EADg5OUF+QI7BgwfDuof1Wwt5ALCxsEHE0AhExke+1oJDREREJY/WxfyiRYvw5MkTqFQqODo6AgCeP38Oa2tr2NraIj4+HtWqVcPx48fh5uam88BExkZqJoWsjAwdvDog9UUqpFIpRo8ejQkTJqBUqVJaX8/a3JqtNURERASgALPZhISE4P3338edO3fw7NkzPHv2DLdv30bjxo2xZMkSPHjwAOXKlcOYMWP0kZfIaDx79gz+/v6a5xKJBD4+Prh9+zZmz55doEKeiIiI6FVaz2ZTvXp17Nq1C3Xr1s2x/fLly+jevTvu3r2L0NBQdO/eHXK5XJdZX8PZbKgoevHiBZYuXYpZs2bhZdpLTV+8TClDPe96Bk5HRERExkBvs9nI5XJkZGS8tj0jI0OzAmz58uWhVCq1vTSRUcvMzMRPP/2EKVOm4OHDrEWfvL29YR9tj7Zt28JUwvtIiIiISLe0brP58MMP8e233+Ly5cuabZcvX8awYcPQpk0bAMDVq1dRtWpV3aUkKsKEEDh85DCaNGuCgQMH4uHDh3Bzc8PmzZtx6dIldGjfAWYmZvm6wZWIiIhIG1oX8+vWrYOTkxMaNGgAqVQKqVSKhg0bwsnJCevWrQMA2NraYsGCBToPS1TUhIeH4+NPPoaiugJ+2/zgXNYZc+bMwe3bt9G/f3+YmGj9LUZERESUb1r3zGe7efMmbt++DQCoUaMGatSoodNg+cGeeSosQggo05SIjI+Ed1lvPIt7hilTpuCnn36ChaWFpi++lX0ruJRxMXBaIiIiMnZ665nP5uHhAQ8Pj4KeTmRUlGlKeCz3gFwph6NwRMr8FKSlpAEAevbsqTnOycnJUBGJiIioBCpQMf/w4UPs3bsXDx48QFpaWo59Cxcu1EkwoqLk8j+XIVdmzc70XPIcKAW0atgK8+bNQ70G9bA9ajtiE2OhqqCCvZS/JSIiIqLCoXUxf+zYMXTt2hXVqlXDzZs34eXlhXv37kEIgfr16+sjI5HBqNVq/PLLLwiYGQDXQa6QK+WwSLbAzz/+jM8/+RwSiQSKVAX89vlBrpRjfdh6RAyN4MqsREREVCi0vjtv4sSJGD9+PK5evQpLS0vs2rULsbGxaNWqVY52A6KiSAgBRaoCobGhSElLeeO+EydOoHHjxujduzdio2Mxt8tchHQKgTxIju5du2tmp4mMj9SM2kclRCEyPrLQ3xcRERGVTFqPzN+4cQPbtm3LOtnMDC9evICtrS2mTZuGbt26YdiwYToPSaQrr/a+y5xkOUbRX91nk2qDlPkpQHrW7Ez+/v74pPwnsJHZvDZfvHdZb8icZIhKiIK7kzu8XLwM8daIiIioBNK6mLexsdH0ybu6uiI6Ohq1atUCADx9+lS36Yh0LLdR9EYVGgEATl4/qdmXIk2BSTkTDP1kKAIDA+HikvcMNTYWNogYGoHI+Eh4uXixxYaIiIgKjdbFfJMmTXD69Gl4enqic+fOGDduHK5evYrffvsNTZo00UdGIp3xcvGCq52rZmTey8ULSqUSc+fOxdLVS+Hqn7XPNtUWpw6eQt1adfN1XWtza80PBURERESFRetifuHChUhOTgYABAcHIzk5GTt27IC7uztnsqEiz9rcGnO7zEVsYiy+qfkNNq7ZiKCgIDx58gQA4LXfC4HjA9GvbT/YWNgYOC0RERHRm2lVzGdmZuLhw4eoU6cOgKyWm5UrV+olGJG+SM2kkJWRoVWzVrh29RoAwN3dHbNnz8Znn32mubGViIiIqKjTajYbU1NTfPTRR3j+/Lm+8hDp1bmwc5qvo6Ki4OzsjOXLl+PatWv4/PPPWcgTERGRUdF6akovLy/cvXtXH1mI9Ob27dvo3r072rVtp9nm5++HqKgofPfddzA3NzdgOiIiIqKC0bqYnzFjBsaPH499+/ZBLpdDoVDkeBAVJfHx8Rg+fDhq1qyJ3377Demp6Tg2/xiaSJsgeGow7O25WisREREZL4kQQmhzgonJv/X/qy0JQghIJBJkZmbqLt1bKBQKODg4ICkpiUUZaQghoEhRYNkPyzA7ZLbmhu0uXbpg9uzZmqlUiYiIiIqq/Na5Ws9mc/z48XcKRqRPmZmZ2LBpAxxaO+C9L95D+vR0NGjQAPPmzcOHH35o6HhEREREOqX1yHxRwpF5yiaEwIEDB+Dv74+ou1FYG74WsYmxKH+3PPr36p/jN0pERERERV1+69wCVTinTp1Cv3790KxZM/zzzz8AgC1btuD06dMFS0v0Di5cuIC2bduiS5cuuHbtGhzKOMBvnx8mHZyEGU9m4GXmS0NHJCIiItILrYv5Xbt2oUOHDrCyssKlS5eQmpoKAEhKSkJISIjOA1LJJYSAIlWB0NhQpKSlvLYv6m4U+vv0x/vvv4/jx49DKpXCz88PWw5tgVwpBwBEJUQhMj7SEPGJiIiI9K5As9msXLkSa9asyTGdX/PmzXHp0iWdhqOSTZmmhMdyDzRf3xx1V9WFKl0FAEhISICvvy8u4zK6BnaFpbUl+vfvj1u3bmHOnDloLmsOmZMMAODu5A4vFy9Dvg0iIiIivdH6Bthbt27hgw8+eG27g4MDEhMTdZGJCAAQGR+ZY4T9YuxFnNt1DiEhIXiR+gJ1h9RFbGIsjp44iubvN9ecZ2Nhg4ihEYiMj4SXixesza0N9RaIiIiI9ErrYr5cuXKIiopClSpVcmw/ffo0qlWrpqtcRPBy8YKrnSvkSjnKmZdDn3Z98DDmIQCgXuN68NvnB7lSDpmTDBF1I3IU7dbm1mhUoZGhohMREREVCq3bbL7++muMGjUKYWFhkEgkePToEbZu3Yrx48dj2LBh+shIJZS1uTXmdpmLkE4hSJidgIcxD1GxYkVs3LgRS3csZV88ERERlXhaj8xPmDABarUabdu2hUqlwgcffACpVIrx48djxIgR+shIxZwQAso0JSLjI+Fd1jurTSYiApMDJsNnsQ9kZWSwt7LH+MnjMXLkSFhZWSElLQUyJxmiEqLYF09EREQlVoHnmU9LS0NUVBSSk5NRs2ZN2Nra6jrbW3Ge+eJBkaqAx3IPyJVyVLGvguZXmuPnTT9DCAFbe1sMGTIEkyZMgrOzc47zVOkq9sUTERFRsaS3FWB/+uknfP7557C2tkbNmjXfKSQRkPNG13uKe7h35B4ggF69eiEkJATVq1fP9Tz2xRMREVFJp3XP/JgxY+Di4oI+ffrgwIEDyMzM1EcuKmbymjM+LS0NoXtC4WrnmrUhAWgma4Zz585hx44deRbyRERERFSAkXm5XI5Dhw5h27Zt6NWrF6ytrdGzZ0/07dsXzZo100dGKgay54zPnn0m/Ntw7Nu9D5MmTcI/8n+wNnwtYhNjIYuTocfiHpBIJIaOTERERFTkaV3Mm5mZoUuXLujSpQtUKhV2796Nn3/+GR9++CEqVqyI6OhofeQkI/ffOePf//h93Dh6A0DWdKeqv1QYM2AMpOZSFvJERERE+aR1Mf8qa2trdOjQAc+fP8f9+/dx48YNXeWiYubVOeORANw4eQM2Njbw8/PD2LFjDXIDNREREZGxK1Axnz0iv3XrVhw7dgxubm7o3bs3du7cqet8VAzI5XJMmzkNc0fORWxiLKZ3mI6BQwYiMDAQZcuWNXQ8IiIiIqOldTH/5ZdfYt++fbC2tkavXr0QEBCApk2b6iMbGTmlUon58+dj/vz5yBSZaDO2DWRlZLh47iI8a3gaOh4RERGR0dO6mDc1NcUvv/yCDh06wNTUNMe+yMhIeHlx8Z6SKnvxp/BH4Qg/FI6Q4BA8fvwYANCkSROUlZdFs6bNYCoxfcuViIiIiCg/tC7mt27dmuO5UqnEtm3bsHbtWly8eJFTVZZgilQFPH/01PTFIwGQyWSYNWsWunfvzhtbiYiIiHRM63nms/3111/w8fGBq6sr5s+fjzZt2uDcuXO6zEZG5Ny5c2jzZRvNjDVwAsbNGYdr166hRw9ONUlERESkD1qNzMfFxWHjxo1Yt24dFAoFevXqhdTUVOzZs4erwZZQd+7cwaRJk7Bz505Y2FnA9YOsGWuqlaqGad9Ng4W5haEjEhERERVb+R6Z/+STT1CjRg1cuXIFixcvxqNHj/DDDz/oMxsVYU+ePMGIESNQs2ZN7Ny5ExKJBP169sOfn/2JM1+dwZVhV2Btbm3omERERETFWr5H5g8ePIiRI0di2LBhcHd312cmKsJUKhXmLpqLeZvmQXVPBWQAnTt3xuzZs1G7dm1DxyMiIiIqUfI9Mn/69GkolUo0aNAAjRs3xrJly/D06VN9ZqMiJDMzE+vXr0d1j+oIfhwMVV8VpKOk2P/Hfuzfv5+FPBEREZEB5LuYb9KkCdasWQO5XI5vv/0W27dvR/ny5aFWq3HkyBEolUqtXzwoKAgSiSTHw8PDQ+vrkP4IIXDgwAF4e3tj8ODBiFPHAaWz9qXapqJMzTKGDUhERERUgmk9m42NjQ2++uornD59GlevXsW4ceMwe/ZsuLi4oGvXrloHqFWrFuRyueZx+vRpra9BuqdKV2HT0U1o3b41Pv74Y1y7dg2Ojo6YNWYWZI4yAIC7kzu8XLiuABEREZGhFHhqSgCoUaMG5s6di4cPH2Lbtm0FuoaZmRnKlSuneZQpY0QjvSoVcP581n/1va8QX+v6nesoF1gWA88MxKmaf8Hc2hzjx49HdHQ0JoybgAifswhruh7hA0Jfv8nViN93kdpXVHIUpX1FJUdh7ysqOd62j4iIDEMYUGBgoLC2thaurq6iatWqok+fPuL+/ft5Hv/y5UuRlJSkecTGxgoAIikpqRBT/09KihDu7kIAWf9NSdHfvkJ6rWfPnomxY8cKm8qmAkHQPPac2l6s33eR21dUchSlfUUlB9937vuIiEjnkpKS8lXnGrSYP3DggPjll19ERESEOHTokGjatKmoVKmSUCgUuR4fGBgoALz2MEgxHxaW9Y9a9iMsTH/79PBa6rBzIsnOQpypZi6SzSG2jBghSpUqJQCI+uYQ7iOyCnn3ERApoSeLzfs2in1FJUdR2ldUcvB9576PiIh0ziiK+f96/vy5sLe3F2vXrs11P0fmdfdaSQly4brAVSAIospIibA0z/rBqHbt2uLw7t0i2aO6CKsAkeJRnaOSfN+G31dUcvB9576PiIh0ziiLeSGEaNiwoZgwYUK+js3vm9SblJSs0anc/lHT9b4CnKNWq0VSglycObxWJD+Pz7Hvhz0/5Gilca7rLDZs2CAyMjIK/73p+H0Xi31FJUdR2ldUchT2vqKS4237iIhIp/Jb50qEEMIQvfq5SU5ORqVKlRAUFISRI0e+9XiFQgEHBwckJSXB3t6+EBIaF0WqAh7LPSBXyiFzkiFiaASibkTB398ff575E6WDSkOulKO0pDRujrqJMg5GdPMxERERUTGW3zo33yvA6sP48ePxySefoHLlynj06BECAwNhamqK3r17GzJWsREZHwm5Ug4AiEqIQq/ve+HAmgMQQsDMzAyf//M5Ph74MT6o8QFsLGwMnJaIiIiItGXQYv7hw4fo3bs3nj17BmdnZ7Ro0QLnzp2Ds7OzIWMVG14uXnC1c4VcKYfkuQT7N+wHBNCzZ0+EhIRAJpMZOiIRERERvYMi1WajLbbZ5C0tLQ2r1qyCY3tHxCbGIqhdEBrXbYx58+ahcePGho5HRERERG+Q3zr3nRaNoqJHCIFff/0VNWvWhK+vL6RmUsjKyLDjpx04efIkC3kiIiKiYsSgbTakW6dOnYKvry/CwsIAAGXLlkXCsQT4+PhAWlUKiURi4IREREREpEss5o2cEAI3bt1AwNQA/PbrbwAAGxsb+Pr6Yty4cbC1tTVwQiIiIiLSF7bZGLG4uDgMHzkc1yyu4cvZX8La1hrffvst7ty5g8DAQBbyRERERMUcR+aNUHJyMhYsWIB58+YhQ52BZiOaITYxFidDT6Jh7YaGjkdEREREhYTFvBEQQiBTZCIjIwObNmxCYGAgHj9+DABo0roJ/Pb5Qa6UY73TekR4RMDa3NrAiYmIiIioMLCYNwIZ6gzsub8HADBqzCikvkhF9erVMXv2bJRvVB7NNzQHkLUwVGR8JBpVaGTAtERERERUWNgzX8SFhYWhQ4cOSM1IRdTTKDi6OGLp0qW4fv06evToAe9y3pA5ZS3+5O7kDi8XLwMnJiIiIqLCwkWjiqioqChMmjQJv/76KyzsLFA6qDTkSjmqlaqGq99dzdFKo0pXITI+El4uXmyxISIiIioGuGiUERJC4PGTxxgzbgxq1qyJX3/9FRKJBB0HdIRcKQcA3E28i8j4yBznWZtbo1GFRizkiYiIiEoYFvNFxIsXLzBn3hz8pfwLzYY3g4mZCTp27Ijw8HD8vPBnttIQERER0Wt4A6yBZWZmYsuWLQgICMCTZ0+w9tO1iE2Mxa97fsUnH32iOS5iaARbaYiIiIgoB/bM64EQAso0JSLjI+Fd1hs2Fja5HnP48GH4+fnh6tWrAIBqntXwYsgLyJVyyJxkiBjKaSaJiIiISiL2zBuQMk0Jj+UeaL6+OequqgtVukqzTwiBi5cvotPHndCpUydcvXoVpUqVwvz587Hu/9ZpeuOzp5kkIiIiIsoLi3k9iIyPzLUov3//PgYNHoS7DncxeNlg2DnYYdy4cYiOjsa4cePwvtv77I0nIiIionxjz7weeLl4wdXOVdMuU8G8Anx9fbF06VJITCX4eMrHAIDLly+jetXqmvNsLGzYG09ERERE+cZiXg+sza0xt8tcxCbGwiTUBLU9auP58+cAgI86fqQ5rnLlyrmeyxVciYiIiCg/2GajB2q1GlIzKWRlZAicFIjnz5/Dy8sLBw4cwL59+wwdj4iIiIiKCRbzOnb8+HG0atVK89zV1RXr1q1DeHg4OnXqBIlEgtSMVEQ9jcpxYywRERERkbbYZqMjkZGR8Pf3x4EDByC1kmq2R0REwN723+mEVOkq+O3zg1wpx/qw9Zx+koiIiIgKjMV8AQkhkCky8ejRIwQHBmPjxo1Qq9UwMzPD14O/RgubFnB2doapxDTHebnNdMMeeSIiIiIqCBbzBfRc8RzHnh0DAGzdthVqtRo9evRASEgI3N3d8zzPu6w3ZE4yRCVEcfpJIiIiInonLOYL6MSJE0j1TEVsYizeb/Y+5s2YhyZNmrz1PE4/SURERES6wmK+gNp2aAvPHz2z5pLvJkOdBnXyfS6nnyQiIiIiXeBsNgV07cm1XFd5JSIiIiIqLCzmCyi79x0Ae9+JiIiIyCDYZlNA7H0nIiIiIkNjMf8O2PtORERERIbENhsiIiIiIiPFYp6IiIiIyEixmCciIiIiMlIs5omIiIiIjBSLeSIiIiIiI8VinoiIiIjISLGYJyIiIiIyUizmiYiIiIiMFIt5IiIiIiIjxWKeiIiIiMhIsZgnIiIiIjJSLOaJiIiIiIwUi3kiIiIiIiNlZugA70IIAQBQKBQGTkJEREREpDvZ9W12vZsXoy7mlUolAMDNzc3ASYiIiIiIdE+pVMLBwSHP/RLxtnK/CFOr1Xj06BHs7OwgkUgMHadYUCgUcHNzQ2xsLOzt7Q0dh/LAz8k48HMyDvycjAM/J+PBz0o3hBBQKpUoX748TEzy7ow36pF5ExMTVKxY0dAxiiV7e3t+AxoBfk7GgZ+TceDnZBz4ORkPflbv7k0j8tl4AywRERERkZFiMU9EREREZKRYzFMOUqkUgYGBkEqlho5Cb8DPyTjwczIO/JyMAz8n48HPqnAZ9Q2wREREREQlGUfmiYiIiIiMFIt5IiIiIiIjxWKeiIiIiMhIsZgnIiIiIjJSLOZLkKCgIEgkkhwPDw+PN57z66+/wsPDA5aWlqhduzYOHDhQSGlLLm0/pzVr1qBly5ZwdHSEo6Mj2rVrh/Pnzxdi4pKpIN9P2bZv3w6JRIJPP/1UvyGpQJ9TYmIihg8fDldXV0ilUrz33nv8u68QFOSzWrx4MWrUqAErKyu4ublhzJgxePnyZSElLrn++ecf9OvXD6VLl4aVlRVq166NCxcuvPGcEydOoH79+pBKpZDJZNi4cWPhhC0BjHoFWNJerVq1cPToUc1zM7O8/xcIDQ1F7969MWvWLHTp0gU///wzPv30U1y6dAleXl6FEbfE0uZzOnHiBHr37o1mzZrB0tISc+bMwUcffYRr166hQoUKhRG3xNLmc8p27949jB8/Hi1bttRnNHqFNp9TWloa2rdvDxcXF+zcuRMVKlTA/fv3UapUqUJIStp8Vj///DMmTJiA9evXo1mzZrh9+zYGDhwIiUSChQsXFkbcEun58+do3rw5PvzwQxw8eBDOzs64c+cOHB0d8zwnJiYGH3/8MYYOHYqtW7fi2LFjGDJkCFxdXdGhQ4dCTF88sZgvYczMzFCuXLl8HbtkyRJ07NgRvr6+AIDp06fjyJEjWLZsGVauXKnPmCWeNp/T1q1bczxfu3Ytdu3ahWPHjmHAgAH6iEf/o83nBACZmZno27cvgoODcerUKSQmJuovHGlo8zmtX78eCQkJCA0Nhbm5OQCgSpUqekxHr9LmswoNDUXz5s3Rp08fAFmfU+/evREWFqbPiCXenDlz4Obmhg0bNmi2Va1a9Y3nrFy5ElWrVsWCBQsAAJ6enjh9+jQWLVrEYl4H2GZTwty5cwfly5dHtWrV0LdvXzx48CDPY8+ePYt27drl2NahQwecPXtW3zFLPG0+p/9SqVRIT0+Hk5OTHhMSoP3nNG3aNLi4uGDw4MGFlJAA7T6nvXv3omnTphg+fDjKli0LLy8vhISEIDMzsxATl1zafFbNmjXDxYsXNW2Fd+/exYEDB9C5c+fCilsi7d27Fw0bNkTPnj3h4uKCevXqYc2aNW88h/WEfrGYL0EaN26MjRs34tChQ1ixYgViYmLQsmVLKJXKXI+Pi4tD2bJlc2wrW7Ys4uLiCiNuiaXt5/Rf/v7+KF++/Gt/cZJuafs5nT59GuvWrXvrP3qkW9p+Tnfv3sXOnTuRmZmJAwcOICAgAAsWLMCMGTMKOXnJo+1n1adPH0ybNg0tWrSAubk5qlevjtatW2PSpEmFnLxkuXv3LlasWAF3d3ccPnwYw4YNw8iRI7Fp06Y8z8mrnlAoFHjx4oW+Ixd/gkqs58+fC3t7e7F27dpc95ubm4uff/45x7bly5cLFxeXwohH//O2z+lVs2bNEo6OjiIiIqIQktGr3vQ5KRQKUaVKFXHgwAHNNh8fH9GtW7dCTEhCvP37yd3dXbi5uYmMjAzNtgULFohy5coVVkT6n7d9VsePHxdly5YVa9asEVeuXBG//fabcHNzE9OmTSvkpCWLubm5aNq0aY5tI0aMEE2aNMnzHHd3dxESEpJj2/79+wUAoVKp9JKzJGHPfAlWqlQpvPfee4iKisp1f7ly5fD48eMc2x4/fqxVjzC9u7d9Ttnmz5+P2bNn4+jRo6hTp04hpaNsb/qcoqOjce/ePXzyySeabWq1GkBWj/CtW7dQvXr1Qstakr3t+8nV1RXm5uYwNTXVbPP09ERcXBzS0tJgYWFRWFFLvLd9VgEBAejfvz+GDBkCAKhduzZSUlLwzTffYPLkyTAxYfOBPri6uqJmzZo5tnl6emLXrl15npNXPWFvbw8rKyu95CxJ+H96CZacnIzo6Gi4urrmur9p06Y4duxYjm1HjhxB06ZNCyMe/c/bPicAmDt3LqZPn45Dhw6hYcOGhZiOsr3pc/Lw8MDVq1cRHh6ueXTt2hUffvghwsPD4ebmZoDEJdPbvp+aN2+OqKj/b+/+Y6Ku/ziAPz/8Mk4OSDl3CJcKnI3a3S5/rUAnWhs4prQwwS6crWa2EYhgUB47QHFisA6rsaVTdCGc2XAtNtLYbrEjZa6AWgSI1CXecrqpMYcQvL9/ND/t02UKBed9eT42/ni/7/15v1/vz/uf170/7/twUf6yBQC9vb2IjIxkIj/N7rdWt2/f9kjY734JE0JMeXwzVWJiInp6ehR1vb29WLBgwT2vYT4xxbz9aICmT35+vnA4HGJgYEA4nU7x3HPPiYiICHH16lUhhBBZWVmiqKhIbu90OkVAQICorKwU3d3dwmq1isDAQPHdd995awozwkTXaf/+/SIoKEicOnVKuN1u+e+3337z1hRmhImu01/xmM30mOg6uVwuoVarRXZ2tujp6RGff/65mDdvnti7d6+3pjBjTHStrFarUKvVor6+Xly6dEmcOXNGxMbGik2bNnlrCjNCe3u7CAgIEOXl5aKvr0/U1dUJlUolPv74Y7lNUVGRyMrKksuXLl0SKpVK7Nq1S3R3d4sPP/xQ+Pv7i+bmZm9M4f8Oj9nMIJcvX8bmzZtx/fp1aDQarFy5EufOnYNGowEAuFwuxS5HQkICTpw4AYvFgnfeeQd6vR6nT5/mO+an2ETXqaamBiMjI9i4caOiH6vVipKSkukMfUaZ6DqRd0x0nXQ6Hb744gvk5eXBaDQiKioKubm5KCws9NYUZoyJrpXFYoEkSbBYLBgcHIRGo8H69etRXl7urSnMCMuXL0djYyPefvttlJWVYdGiRbDZbDCbzXIbt9uteBPRokWL0NTUhLy8PFRXVyM6OhqHDx/mayn/I5IQfBZFREREROSLuG1EREREROSjmMwTEREREfkoJvNERERERD6KyTwRERERkY9iMk9ERERE5KOYzBMRERER+Sgm80REREREPorJPBHRDPPRRx9Bp9PBz88PNpsNJSUlMJlM3g5r0pKSkrBjxw5vh0FE5BVM5omI/kNbt27F888/P+3j1tbWIjw8/L7tbt26hezsbBQWFmJwcBDbtm2bknh8/QsCEZGvCPB2AERENH1cLhdGR0eRmpqKyMhIb4dDRET/EnfmiYimUFJSEnJycvDWW29hzpw50Gq1KCkpUbSRJAk1NTVYt24dgoODERMTg1OnTsmfOxwOSJKEGzduyHUdHR2QJAk//fQTHA4HXnnlFdy8eROSJEGSJI8xgD927w0GAwAgJiZGvv6vxsfHUVZWhujoaMyaNQsmkwnNzc2KNoWFhVi8eDFUKhViYmJQXFyM0dFReZzS0lJ0dnbK8dTW1nqMc+bMGTzyyCOKeQFAbm4u1q5dCwC4fv06Nm/ejKioKKhUKhgMBtTX19/jbv95P0+fPq2oCw8PV8Twyy+/YNOmTQgPD8ecOXOQlpb2t/eCiOhhx2SeiGiKHTt2DLNnz8b58+dx4MABlJWV4ezZs4o2xcXFSE9PR2dnJ8xmMzIzM9Hd3f1A/SckJMBmsyE0NBRutxtutxsFBQUe7TIyMvDll18CANrb2+F2u6HT6TzaVVdXo6qqCpWVlejq6kJycjI2bNiAvr4+uY1arUZtbS1++OEHVFdX49ChQ3jvvffkcfLz8/Hkk0/K8WRkZHiM8+yzzyI8PByffvqpXDc2Nga73Q6z2QwAGB4extKlS9HU1ITvv/8e27ZtQ1ZWFtrb2x/o3vyd0dFRJCcnQ61Wo7W1FU6nEyEhIUhJScHIyMik+yUi8gYm80REU8xoNMJqtUKv12PLli1YtmwZWlpaFG1efPFFvPbaa1i8eDH27NmDZcuW4f3333+g/oOCghAWFgZJkqDVaqHVahESEuLRLjg4GHPnzgUAaDQaaLVa+Pv7e7SrrKxEYWEhMjMz8fjjj6OiogImkwk2m01uY7FYkJCQgIULF2L9+vUoKCjAyZMn5XFCQkIQEBAgxxMcHOwxjr+/PzIzM3HixAm5rqWlBTdu3EB6ejoAICoqCgUFBTCZTIiJicGbb76JlJQUeazJsNvtGB8fx+HDh2EwGBAfH4+jR4/C5XLB4XBMul8iIm/gmXkioilmNBoV5cjISFy9elVR98wzz3iUOzo6pjo0D7du3cKVK1eQmJioqE9MTERnZ6dcttvtOHjwIPr7+zE0NITff/8doaGhEx7PbDbj6aefxpUrVzB//nzU1dUhNTVV/jHv2NgY9u3bh5MnT2JwcBAjIyO4c+cOVCrVpOfY2dmJixcvQq1WK+qHh4fR398/6X6JiLyByTwR0RQLDAxUlCVJwvj4+ANf7+f3x0NUIYRcd/d8ujd8/fXXMJvNKC0tRXJyMsLCwtDQ0ICqqqoJ97V8+XLExsaioaEBb7zxBhobGxVn2999911UV1fDZrPBYDBg9uzZ2LFjxz8eh5EkSXGvAOX9GhoawtKlS1FXV+dxrUajmfAciIi8ick8EdFD4Ny5c9iyZYui/NRTTwH4M8F0u9149NFHAcBj1z4oKAhjY2P/Oo7Q0FDMnz8fTqcTq1evluudTidWrFgBAGhra8OCBQuwe/du+fOff/550vGYzWbU1dUhOjoafn5+SE1NVYyblpaGl19+GcAfP87t7e3FE088cc/+NBoN3G63XO7r68Pt27fl8pIlS2C32zFv3rxJPU0gInqY8Mw8EdFD4JNPPsGRI0fQ29sLq9WK9vZ2ZGdnAwDi4uKg0+lQUlKCvr4+NDU1eeyCL1y4EENDQ2hpacG1a9cUyetE7dq1CxUVFbDb7ejp6UFRURE6OjqQm5sLANDr9XC5XGhoaEB/fz8OHjyIxsZGj3gGBgbQ0dGBa9eu4c6dO/ccz2w245tvvkF5eTk2btyIWbNmyZ/p9XqcPXsWbW1t6O7uxuuvv45ff/31H+Nfu3YtPvjgA3z77be4cOECtm/frng6YjabERERgbS0NLS2tmJgYAAOhwM5OTm4fPnyZG4ZEZHXMJknInoIlJaWoqGhAUajEcePH0d9fb28+xwYGIj6+nr8+OOPMBqNqKiowN69exXXJyQkYPv27cjIyIBGo8GBAwcmHUtOTg527tyJ/Px8GAwGNDc347PPPoNerwcAbNiwAXl5ecjOzobJZEJbWxuKi4sVfaSnpyMlJQVr1qyBRqP5x9dJxsXFYcWKFejq6pLfYnOXxWLBkiVLkJycjKSkJGi12vv+U66qqirodDqsWrUKL730EgoKChRn7FUqFb766is89thjeOGFFxAfH49XX30Vw8PD3KknIp8jib8eLCQiomklSRIaGxu98p9jiYjIt3FnnoiIiIjIRzGZJyIiIiLyUXybDRGRl/G0IxERTRZ35omIiIiIfBSTeSIiIiIiH8VknoiIiIjIRzGZJyIiIiLyUUzmiYiIiIh8FJN5IiIiIiIfxWSeiIiIiMhHMZknIiIiIvJRTOaJiIiIiHzU/wAhNJ8Uu3V0RAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -308,7 +305,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvMAAAHACAYAAAAvA+dJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACGfElEQVR4nOzdd1iT198G8DtM2YKKoKKi4GSIG/fGPereWne1jspQK4KoqAiuuurEWme1qHWPiooDB4LiQhAFFTd7Q573D1/ykypIMCEE7s91cTU55xl3SGm/OTnPeUSCIAggIiIiIiKlo6LoAEREREREVDgs5omIiIiIlBSLeSIiIiIiJcVinoiIiIhISbGYJyIiIiJSUizmiYiIiIiUFIt5IiIiIiIlxWKeiIiIiEhJqSk6wPcQi8V49eoV9PT0IBKJFB2HiIiIiEgmBEFAYmIiKlWqBBWVvMfflbqYf/XqFczMzBQdg4iIiIhILqKjo1GlSpU8+5W6mNfT0wPw6UXq6+srOA0RERERkWwkJCTAzMxMUu/mRamL+ZypNfr6+izmiYiIiKjE+dZUcl4AS0RERESkpFjMExEREREpKRbzRERERERKSqnnzBeEIAjIyspCdna2oqMQUQGoqqpCTU2Ny80SEREVQIku5jMyMhATE4OUlBRFRyEiKWhra8PU1BQaGhqKjkJERFSsldhiXiwWIzIyEqqqqqhUqRI0NDQ40kdUzAmCgIyMDLx79w6RkZGwtLTM90YZREREpV2JLeYzMjIgFothZmYGbW1tRcchogLS0tKCuro6nj9/joyMDJQpU0bRkYiIiIqtEj/kxVE9IuXDv1siIqKC4f8xiYiIiIiUFIt5IiIiIiIlxWKe5EokEuHw4cOKjkFERERUIrGYL2ZEIlG+P+7u7oqOSERERETFRIldzUZZxcTESB7v378fCxYswOPHjyVturq6kseCICA7OxtqanwbiYiIiGRFEARkC9lISk6Cga5BsV7evFSNzAuCgOTk5CL/EQShwBlNTEwkPwYGn/7lyXn+6NEj6Onp4eTJk2jUqBE0NTUREBCAMWPGoG/fvrmOM3PmTLRr107yXCwWY+nSpTA3N4eWlhZsbW1x8ODBPHPMmzcPzZo1+6Ld1tYWHh4eAICbN2+ic+fOKF++PAwMDNC2bVsEBQXleUx/f3+IRCLExcVJ2oKDgyESifDs2TNJW0BAAFq3bg0tLS2YmZlh+vTpSE5Ozv8XR0RERCQjIfdC4PfMD2ffnUWWOEvRcfJVqor5lJQU6OrqFvmPrO9AO2fOHCxbtgwPHz6EjY1NgfZZunQp/vjjD2zatAn379/HrFmzMGLECFy8ePGr2w8fPhw3btxARESEpO3+/fu4e/cuhg0bBgBITEzE6NGjERAQgOvXr8PS0hLdu3dHYmJioV9bREQEunbtiv79++Pu3bvYv38/AgICMG3atEIfk4iIiKggXrx4gbFjx8Le3l7S9uTJEwUm+jbOz1BCHh4e6Ny5c4G3T09Ph6enJ86dOyf5l7NGjRoICAjA77//jrZt236xT/369WFra4s9e/bA1dUVALB79240a9YMFhYWAIAOHTrk2mfz5s0oW7YsLl68iJ49exbqtS1duhTDhw/HzJkzAQCWlpZYu3Yt2rZti40bN/IGQkRERCRzCQkJ8PLywsqVK5GamgpNLU1JX61atRSY7NtKVTGvra2NpKQkhZxXlho3bizV9uHh4UhJSfniA0BGRgbs7Ozy3G/48OHYvn07XF1dIQgC9u7di19++UXS/+bNG8yfPx/+/v54+/YtsrOzkZKSgqioKOle0GdCQkJw9+5d7N69W9ImCALEYjEiIyNRt27dQh+biIiIKIcgCEjLSIPvTl+4zXfDu3fvAACtWrWCl7cXXuCFghMWTKkq5kUiEXR0dBQd47v99zWoqKh8MS8/MzNT8jjnA8zx48dRuXLlXNtpamoiL0OHDoWLiwuCgoKQmpqK6OhoDB48WNI/evRofPjwAWvWrEG1atWgqakJe3t7ZGRkfPV4OXf1/Dzr5zlzsk6aNAnTp0//Yv+qVavmmZWIiIiooARBwJF/jiDTKhPlO5VHwswE1KpVC8uXL0efPn2QLWTjxTMW81REKlSogNDQ0FxtwcHBUFdXBwDUq1cPmpqaiIqK+uqUmrxUqVIFbdu2xe7du5GamorOnTvD2NhY0n/lyhVs2LAB3bt3BwBER0fj/fv3+eYEPq3YY2hoKMn5uYYNG+LBgweSqTxEREREsnTz5k04Ojoi8GYgdoXuAgD4rPTBxHETJbUTCr52icKVqgtgS6oOHTrg1q1b+OOPP/DkyRO4ubnlKu719PTg6OiIWbNmYefOnYiIiEBQUBB+++037Ny5M99jDx8+HPv27cNff/2F4cOH5+qztLTErl278PDhQwQGBmL48OHQ0tLK81gWFhYwMzODu7s7njx5guPHj8PHxyfXNi4uLrh69SqmTZuG4OBgPHnyBEeOHOEFsERERPRdIiMjMXToUDRt2hSXLl2CZpn/zU6YNHHS/wp5JcNivgRwcHCAq6srnJ2d0aRJEyQmJmLUqFG5tlm0aBFcXV2xdOlS1K1bF127dsXx48dhbm6e77EHDBiADx8+ICUl5YvlL7dt24bY2Fg0bNgQI0eOxPTp03ON3P+Xuro69u7di0ePHsHGxgbLly/H4sWLc21jY2ODixcvIiwsDK1bt4adnR0WLFiASpUqSfdLISIiolJPEAS8//geznOcUadOHezbtw8ikQijR49GSHCIouPJhEiQZhH0YiYhIQEGBgaIj4+Hvr5+rr60tDRERkbC3NycK6AQKRn+/RIR0fdKT0/Hhk0bUKVXFQDASKuRaN2yNVasWIEGDRogS5wFv2d+AIB+1ftBTeV/s8/z6ysq+dW5n+PIPBERERGVGIIgYP/+/ahbty7mzp0raffz88OZM2fQoEEDxYWTAxbzRERERFQiXL58Gc2bN8eQIUMQGRkJExMTSV/nzp0hEokUmE4+WMwTERERkdISBAEPHz/EgMED0KZNG9y4cQM6Ojrw8PBAyN2SMS8+PyzmiYiIiEgpvX37FtNnTkeoeigGLx0MLR0tTJo0CeHh4XB1dYWOtvLfX+hbuM48ERERESmVlJQUrF69GsuWLUNGVgbazGgDALhx4was6lkpOF3RYjFPRERERMWaIAjIFrKRnZ2Nvbv3Yv78+Xj58iUAoHmL5pLt6tSpo6iICsNpNkRERERUrGUL2fB75oej0Ucx+afJePnyJapWrYrdu3fj4sWLio6nUCzmiYiIiKjYunfvHvr16yd5rq+vDy8vLzx+/BjDhg2DikrpLmdL96unQmnXrh1mzpyp6BhERERUgr18+RLjxo1DgwYNcPbsWUl7aGgonJyceFPB/8divhgaM2YMRCIRRCIR1NXVYW5uDmdnZ6SlpSk6WoG4u7uXuBsySOvZs2cQiUQIDg5WdBSp+fv7o2HDhtDU1ISFhQV8fX2/uX2fPn1gamoKHR0dNGjQALt37861zZYtW9C6dWsYGhrC0NAQnTp1wo0bN+T4KoiISNkIgoAscRZiE2Lh6uoKS0tLbN++HWKxONfIvJGRkQJTFj8s5ouprl27IiYmBk+fPsWqVavw+++/w83NTdGxSgVBEJCVlaXoGAWWnZ0NsVj8RXtGRobUx4qMjESPHj3Qvn17BAcHY+bMmRg/fjxOnz6d5z5Xr16FjY0NDh06hLt372Ls2LEYNWoUjh07JtnG398fQ4cOxYULF3Dt2jWYmZmhS5cukouXiIiI0jPT4ffMD+fen8MKnxVITU1FixYtcPXqVezatUvR8YotFvPFlKamJkxMTGBmZoa+ffuiU6dOub5iSk9Px/Tp02FsbIwyZcqgVatWuHnzpqTf19cXZcuWzXXMw4cP57rzWc4I+q5du1C9enUYGBhgyJAhSExMlGyTnJyMUaNGQVdXF6ampvDx8ck3t6+vLxYuXIiQkBDJtws5I7tRUVHo06cPdHV1oa+vj0GDBuHNmzd5HitndPvvv/9G+/btoa2tDVtbW1y7di3XdgEBAWjdujW0tLRgZmaG6dOnIzk5WdK/a9cuNG7cGHp6ejAxMcGwYcPw9u1bSb+/vz9EIhFOnjyJRo0aQVNTEwEBARCLxVi6dCnMzc2hpaUFW1tbHDx4ULJfbGwshg8fjgoVKkBLSwuWlpbYsWMHAMDc3BwAYGdnB5FIhHbt2uX7e/tceno6HB0dUblyZejo6KBZs2bw9/fP9TsuW7Ysjh49inr16kFTUxNRUVGoXr06Fi1ahFGjRkFfXx8TJ04s8DlzbNq0Cebm5vDx8UHdunUxbdo0DBgwAKtWrcpzn3nz5mHRokVo0aIFatasiRkzZqBr1674+++/Jdvs3r0bP/30Exo0aIA6depg69atEIvFOH/+vNQZiYioZBEEAf/88w+aNWsmaatRowYOHTqEgIAA2NvbKzBd8cdivqBSUoAbNz79s4iFhobi6tWr0NDQkLQ5Ozvj0KFD2LlzJ4KCgmBhYQEHBwd8/PhRqmNHRETg8OHDOHbsGI4dO4aLFy9i2bJlkn4nJydcvHgRR44cwZkzZ+Dv74+goKA8jzd48GDMnj0b9evXR0xMDGJiYjB48GCIxWL06dMHHz9+xMWLF3H27Fk8ffoUgwcP/mbGX3/9FY6OjggODkatWrUwdOhQych5REQEunbtiv79++Pu3bvYv38/AgICMG3aNMn+mZmZWLRoEUJCQnD48GE8e/YMY8aM+eI8c+bMwbJly/Dw4UPY2Nhg6dKl+OOPP7Bp0ybcv38fs2bNwogRIyRXzbu6uuLBgwc4efIkHj58iI0bN6J8+fIAIJlCcu7cOcTExOQqbL9l2rRpuHbtGvbt24e7d+9i4MCB6Nq1K548eSLZJiUlBcuXL8fWrVtx//59GBsbAwC8vb1ha2uLO3fuwNXVFQBQv3596Orq5vnTrVs3yXGvXbuGTp065crj4ODwxQeob4mPj8/3a9CUlBRkZmbyq1IiolLu1q1baN++PXr37o3Hjx/nav/hhx9yDUJSHgQlFh8fLwAQ4uPjv+hLTU0VHjx4IKSmpn7/iZKTBcHSUhCAT/9MTv7+Y+Zj9OjRgqqqqqCjoyNoamoKAAQVFRXh4MGDgiAIQlJSkqCuri7s3r1bsk9GRoZQqVIlwcvLSxAEQdixY4dgYGCQ67h+fn7C52+5m5uboK2tLSQkJEjanJychGbNmgmCIAiJiYmChoaGcODAAUn/hw8fBC0tLWHGjBl55ndzcxNsbW1ztZ05c0ZQVVUVoqKiJG33798XAAg3btz46nEiIyMFAMLWrVu/2Ofhw4eCIAjCuHHjhIkTJ+ba7/Lly4KKikqe7/3NmzcFAEJiYqIgCIJw4cIFAYBw+PBhyTZpaWmCtra2cPXq1Vz7jhs3Thg6dKggCILQq1cvYezYsflmv3Pnzlf78/L8+XNBVVVVePnyZa72jh07CnPnzhUE4dN7C0AIDg7OtU21atWEvn37fnHMZ8+eCU+ePMnz58WLF5JtLS0tBU9Pz1z7Hz9+XAAgpKSkFOg17N+/X9DQ0BBCQ0Pz3GbKlClCjRo18nyPZPr3S0RExYpYLBbCn4YLI0ePFAAIAARNTU1h3vx5woGIA8KBiANCZnZmrn0yszOLTV9Rya/O/RxvGlUQoaFAzqjokyefnjdtKtdTtm/fHhs3bkRycjJWrVoFNTU19O/fH8Cn0ejMzEy0bNlSsr26ujqaNm2Khw8fSnWe6tWrQ09PT/Lc1NRUMgUlIiICGRkZub72MjIyQu3ataV+PQ8fPoSZmRnMzMwkbfXq1UPZsmXx8OFDNGnSJM99bWxscuUDPt2+uU6dOggJCcHdu3dzXXApCALEYjEiIyNRt25d3L59G+7u7ggJCUFsbKxkfnlUVBTq1asn2a9x48aSx+Hh4UhJSUHnzp1zZcnIyICdnR0AYMqUKejfvz+CgoLQpUsX9O3bFy1atJD6d/O5e/fuITs7G7Vq1crVnp6ejnLlykmea2ho5Pq9fO015KhWrdp3ZZLGhQsXMHbsWGzZsgX169f/6jbLli3Dvn374O/vz5UIiIhKmdjYWCzzWobGExqj14JeOHDgAAYNGITFixejUpVK8Hvmp+iISofFfEFYWQGWlp8KeUvLT8/lTEdHBxYWFgCA7du3w9bWFtu2bcO4ceMKtL+KigoEQcjVlpmZ+cV26urquZ6LRKKvXkypSJ9nzPm6LSdjUlISJk2ahOnTp3+xX9WqVZGcnAwHBwc4ODhg9+7dqFChAqKiouDg4PDFBaI6OjqSx0lJSQCA48ePo3Llyrm209TUBAB069YNz58/x4kTJ3D27Fl07NgRU6dOhbe3d6Ffa1JSElRVVXH79m2oqqrm6tPV1ZU81tLS+upXj5+/hhz169fH8+fP8zxn69atcfLkSQCAiYnJF9cxvHnzBvr6+tDS0so3+8WLF9GrVy+sWrUKo0aN+uo23t7eWLZsGc6dO/fVDyNERFQyZWRkYMOGDVi0aBGSU5Oxa8KnC1oDAgLQuOGngagssfIsPlGcKLyYf/nyJVxcXHDy5EmkpKTAwsICO3bs+OoIo8JoawPBwZ9G5K2sPj0vQioqKpg3bx5++eUXDBs2DDVr1oSGhgauXLkiGXXNzMzEzZs3Jeu/V6hQAYmJiUhOTpYUeNIuk1izZk2oq6sjMDAQVatWBfDpE3VYWBjatm2b534aGhrIzs7O1Va3bl1ER0cjOjpaMjr/4MEDxMXF5Rodl1bDhg3x4MEDyQef/7p37x4+fPiAZcuWSc5769atbx738wtL83utFSpUwOjRozF69Gi0bt0aTk5O8Pb2llzf8N/fw7fY2dkhOzsbb9++RevWraXaNy8nTpz46ge5HJ8X6fb29jhx4kSu/rNnz37z4iN/f3/07NkTy5cvz/PCWy8vLyxZsgSnT58uXn/fREQkN4Ig4ODBg5gzZw6ePn0KAGjQsIGkv7QvZS0LCr0ANjY2Fi1btoS6ujpOnjyJBw8ewMfHB4aGhoqM9XXa2p+m1hRxIZ9j4MCBUFVVxfr166Gjo4MpU6bAyckJp06dwoMHDzBhwgSkpKRIRu6bNWsGbW1tzJs3DxEREdizZ8831wv/L11dXYwbNw5OTk74999/ERoaijFjxnzzTmvVq1dHZGQkgoOD8f79e6Snp6NTp06wtrbG8OHDERQUhBs3bmDUqFFo27btdxV2Li4uuHr1KqZNm4bg4GA8efIER44ckVwAW7VqVWhoaOC3337D06dPcfToUSxatOibx9XT04OjoyNmzZqFnTt3IiIiAkFBQfjtt9+wc+dOAMCCBQtw5MgRhIeH4/79+zh27Bjq1q0LADA2NoaWlhZOnTqFN2/eID4+vkCvp1atWhg+fDhGjRqFv//+G5GRkbhx4waWLl2K48ePF+p3VK1aNVhYWOT58/k3D5MnT8bTp0/h7OyMR48eYcOGDThw4ABmzZol2WbdunXo2LGj5PmFCxfQo0cPTJ8+Hf3798fr16/x+vXrXBdjL1++HK6urti+fTuqV68u2SbnGxAiIipZBEHA5auX0aZ9GwwaNAhPnz6FiYkJtmzZIvWiCpQ/hRbzy5cvh5mZGXbs2IGmTZvC3NwcXbp0Qc2aNRUZq1hSU1PDtGnT4OXlheTkZCxbtgz9+/fHyJEj0bBhQ4SHh+P06dOSD0JGRkb4888/ceLECVhbW2Pv3r1wd3eX+rwrVqxA69at0atXL3Tq1AmtWrVCo0aN8t2nf//+6Nq1K9q3b48KFSpg7969EIlEOHLkCAwNDdGmTRt06tQJNWrUwP79+wvz65CwsbHBxYsXERYWhtatW8POzg4LFixApUqVAHwaOff19cVff/2FevXqYdmyZQWeBrNo0SK4urpi6dKlqFu3Lrp27Yrjx49Llp3U0NDA3LlzYWNjgzZt2kBVVRX79u0D8On9Wrt2LX7//XdUqlQJffr0AfC/ZTCfPXuW53l37NiBUaNGYfbs2ahduzb69u2LmzdvSr4dkSdzc3McP34cZ8+eha2tLXx8fLB161Y4ODhItnn//j0iIiIkz3fu3ImUlBQsXboUpqamkp8ffvhBss3GjRuRkZGBAQMG5Nrme6YkUTGT34pfhemT9fFKQl9xyVHUfcUlRyH7BEFAQuxrXD2zDclx7wrUV5h9ilNfWFgYBg0dhOfln6O7V3eYGOvD3d0dT548wfjx46Gmpob0rHSEvw9HSvz7XMfMq7249RUr8rsG99vq1q0rzJw5UxgwYIBQoUIFoUGDBsLmzZvz3D4tLU2Ij4+X/ERHRxfNajZEMrJ9+3bBwsJCyMjIUHSUYo1/v0omvxW/CtMn6+OVhL7ikoOvW+q++I8xgqmPqQB3CBazNYTkuHff7CvMPsWh71n4Q2HatGmCmpqaoK+n8Vmfeol63UWloKvZKHRk/unTp9i4cSMsLS1x+vRpTJkyBdOnT5dMY/ivpUuXwsDAQPLz+cooRMrgxIkT8PT0/OLCYyKl9rUVv76nT9bHKwl9xSUHX7fUfaE3jyMmMQYAEK6XgdDAf77ZV5h9ikPfDw52WLduHbKystCzff3P+jJL1Osudorow8VXqaurC/b29rnafv75Z6F58+Zf3Z4j80SlA/9+lQxHYzlCzdddKkfmYz+8lPRVmw6hjDoEOzs74fz580JS7FvBYraGAHcIlr/kHpnPq68w+yiir6gUdGReocV81apVhXHjxuVq27Bhg1CpUqUC7V9kN40ioiLFv18llJwsCIGBX7+pXmH6ZH28ktBXXHIUdV9xyVHIvszsTGHX412CZ6CnEP8xpkB9hdmnqPvOnj0rNGnWRNJXt3Z1YdeuXUJ2dvb/fiVx74TA09u/Wgjn1VeYfRTRVxQKWsyLBOE/i5F/w86dO1G+fHn06NEDAODs7IzNmzejXr162Lt3r1Q3qBk2bBiio6Nx+fJlSdusWbMQGBiIq1evfnP/hIQEGBgYID4+Hvr6+rn60tLSEBkZCXNzc96YhkjJ8O+XiEqKLHGW5EZI/ar3g5qK2jf7CrNPUfU9evAIzs7OOHnyJDS1NLEr9NN68V0rdoWezv9uQknfL78693NSz5n39PSUrEt97do1rF+/Hl5eXihfvnyu5esKYtasWbh+/To8PT0RHh6OPXv2YPPmzZg6daq0sYiIiIhIjqZNmwZbW1ucPHkSampqmDRhEtrotUG/6v2gq6377QOQXEh906jo6GjJDXoOHz6M/v37Y+LEiWjZsiXatWsn1bGaNGkCPz8/zJ07Fx4eHjA3N8fq1asxfPhwaWMRERERkYwlJf/vfiC+vr4Qi8Xo378/li5dCktLSwUmoxxSj8zr6uriw4cPAIAzZ86gc+fOAIAyZcogNTVV6gA9e/bEvXv3kJaWhocPH2LChAlSH4OIiIiIZCcrKwubN2+GjbWNpK1ps6a4cuUKDh48yEK+GJF6ZL5z584YP3487OzsEBYWhu7duwMA7t+/j+rVq8s6HxEREREVEUEQcPz4cTg7O+PBgwcAgAW9F8BjoQf8z/t/8y7wVPSkfkfWr18Pe3t7vHv3DocOHUK5cuUAALdv38bQoUNlHpCIiIiIikaPHj3Qs2dPPHjwAEZGRli9ejVCgkIwsP9AFvLFlNQj82XLlsW6deu+aF+4cKFMAlHx5+7ujsOHDyM4ODjPbcaMGYO4uDgcPny4yHIRERGR9KKjoyWPL126BE1NTcyYMQNz585F2bJlFReMCqRQH7EuX76MESNGoEWLFnj58iUAYNeuXQgICJBpuNLq3bt3mDJlCqpWrQpNTU2YmJjAwcEBV65ckWxTvXp1iEQiiEQiaGtrw9raGlu3bpX6XFu2bEHr1q1haGgIQ0NDdOrUCTdu3Pju17BmzRr4+vpKnrdr1w4zZ8787uMWJ2lpaZg6dSrKlSsHXV1d9O/fH2/evMl3H0EQsGDBApiamkJLSwudOnXCk5y7Bn7m+PHjaNasGbS0tGBoaIi+ffvK6VUQEVFpFRcXBxcXFzRo0EDSNmTIEDx+/BjLly9nIa8kpC7mDx06BAcHB2hpaSEoKAjp6ekAgPj4eHh6eso8YGnUv39/3LlzBzt37kRYWBiOHj2Kdu3aSS48zuHh4YGYmBiEhoZixIgRmDBhAk6ePCnVufz9/TF06FBcuHAB165dg5mZGbp06SL5kFZYBgYGxfI/AhkZGV+0ZWdnQywWS32sWbNm4Z9//sFff/2Fixcv4tWrV/jhhx/y3cfLywtr167Fpk2bEBgYCB0dHTg4OCAtLU2yzaFDhzBy5EiMHTsWISEhuHLlCoYNGyZ1PiIioq/JyMjAmjVrYGFhAS8vLyTEJWDLT1tQPbY6dmzbIdU9g6gYkPZuVA0aNBB27twpCIIg6OrqChEREYIgCEJQUJBQsWJFaQ/3XUriHWBjY2MFAIK/v3++21WrVk1YtWpVrjYjIyNh1qxZ33X+rKwsQU9PT/Ief42bm5tga2srbNq0SahSpYqgpaUlDBw4UIiLi5NsM3r0aKFPnz6SxwBy/URGRgofP34Uhg0bJpQvX14oU6aMYGFhIWzfvl2qvJcvXxZatWollClTRqhSpYrw888/C0lJSZL+atWqCR4eHsLIkSMFPT09YfTo0cKOHTsEAwMD4ciRI0LdunUFVVVVITIyUqrzxsXFCerq6sJff/0laXv48KEAQLh27dpX9xGLxYKJiYmwYsWKXMfR1NQU9u7dKwiCIGRmZgqVK1cWtm7dKlWekkZZ/36JiP4rMztTOBBxQDgQcUDIzM4sUF9h9pGmr079OpL/H9erV084duyYIBaLZfzK6XsV9A6wUo/MP378GG3atPmi3cDAAHFxcYX/VFHMpWSm4MbLG0jJTJHreXR1daGrq4vDhw9LvvX4FrFYjEOHDiE2NhYaGhrfdf6UlBRkZmbCyMgo3+3Cw8Nx4MAB/PPPPzh16hTu3LmDn3766avbrlmzBvb29pgwYQJiYmIQExMDMzMzuLq64sGDBzh58iQePnyIjRs3onz58gXOGhERga5du6J///64e/cu9u/fj4CAAEybNi3Xdt7e3rC1tcWdO3fg6uoqeZ3Lly/H1q1bcf/+fRgbG2P37t2S339ePzl3K759+zYyMzPRqVMnyXnq1KmDqlWr4tq1a1/NGxkZidevX+fax8DAAM2aNZPsExQUhJcvX0JFRQV2dnYwNTVFt27dEBoaWuDfCxER0X9dD7wueRz5NBIVK1bE77//jpCQEPTo0QMikUiB6eh7SH0BrImJCcLDw79YhjIgIAA1atSQVa5iJSUzBQ02NcCTj09gaWSJ4MnB0FbXlsu51NTU4OvriwkTJmDTpk1o2LAh2rZtiyFDhsDGxibXti4uLpg/fz7S09ORlZUFIyMjjB8//rvO7+LigkqVKuUqOL8mLS0Nf/zxBypXrgwA+O2339CjRw/4+PjAxMQk17YGBgbQ0NCAtrZ2rr6oqCjY2dmhcePGACD10qZLly7F8OHDJXPxLS0tsXbtWrRt2xYbN25EmTJlAAAdOnTA7NmzJftdvnwZmZmZ2LBhA2xtbSXtvXv3RrNmzfI9Z87rff36NTQ0NL6YSlSxYkW8fv36q/vmtFesWDHPfZ4+fQrg00XGK1euRPXq1eHj44N27dohLCzsmx+yiIiIPhceHo45c+bg2Ilj2BW6CwAwZ+4cOM5yhK4u79paEkg9Mj9hwgTMmDEDgYGBEIlEePXqFXbv3g1HR0dMmTJFHhkVLvRtKJ58/HSR4pOPTxD6Vr6jpP3798erV69w9OhRdO3aFf7+/mjYsGGuC0oBwMnJCcHBwfj333/RrFkzrFq1SnJ33sJYtmwZ9u3bBz8/P0khnJeqVatKClsAsLe3h1gsxuPHjwt8vilTpmDfvn1o0KABnJ2dcfXqVanyhoSEwNfXN9fIuYODA8RiMSIjIyXb5XxY+JyGhsYXH4709PRgYWGR74+WlpZUGaWVM3f/119/Rf/+/dGoUSPs2LEDIpEIf/31l1zPTUREJceHDx8wY8YM1K1bF4cOHUJmeibOe59Hc83mcJvvxkK+BJF6ZH7OnDkQi8Xo2LEjUlJS0KZNG2hqasLR0RE///yzPDIqnJWxFSyNLCUj81bGVnI/Z5kyZdC5c2d07twZrq6uGD9+PNzc3DBmzBjJNuXLl5cUmX/99Resra3RuHFj1KtXT+rzeXt7Y9myZTh37twXRa68dOvWDc+fP8eJEydw9uxZdOzYEVOnToW3t3eB9k9KSsKkSZMwffr0L/qqVq0qeayjo/NFv5aW1hdfKe7evRuTJk3K95wnT55E69atYWJigoyMDMTFxeUanX/z5s0X30zkyGl/8+YNTE1Nc+2Ts5JATvvn76GmpiZq1KiBqKiofLMRERHlsLKywvu37wF8+v+tl5cXrKzkX79Q0ZO6mBeJRPj111/h5OSE8PBwJCUloV69eiX6E562ujaCJwcj9G0orIyt5DbFJj/16tXLd812MzMzDB48GHPnzsWRI0ekOraXlxeWLFmC06dPf3UU+2uioqLw6tUrVKpUCQBw/fp1qKiooHbt2l/dXkNDA9nZ2V+0V6hQAaNHj8bo0aPRunVrODk5FbiYb9iwIR48ePBd30Z8TpppNo0aNYK6ujrOnz+P/v37A/h0PUlUVBTs7e2/uq+5uTlMTExw/vx5SfGekJCAwMBAybdajRo1gqamJh4/foxWrVoBADIzM/Hs2TOuLkBERHkSi8XYt28fNJtrAgASExPRoEEDeHt7o2PHjgpOR/IkdTGfQ0NDo1AjwMpKW10bTSs3lft5Pnz4gIEDB+LHH3+EjY0N9PT0cOvWLXh5eaFPnz757jtjxgxYWVnh1q1bBS7Kly9fjgULFmDPnj2oXr26ZO52zrSVvJQpUwajR4+Gt7c3EhISMH36dAwaNCjPUenq1asjMDAQz549g66uLoyMjODu7o5GjRqhfv36SE9Px7Fjx1C3bt0C5QY+ze9v3rw5pk2bhvHjx0NHRwcPHjzA2bNnv3pjs2/R09ODnp5egbY1MDDAuHHj8Msvv8DIyAj6+vr4+eefYW9vj+bNm0u2q1OnDpYuXYp+/fpBJBJh5syZWLx4MSwtLWFubg5XV1dUqlRJso68vr4+Jk+eDDc3N5iZmaFatWpYsWIFAGDgwIFSvyYiIir5/v33Xzg5OeH+w/uSefGbN2/GiGEjeNfWUqBAxfy31s7+3N9//13oMPSpiM6Z/x4REYHMzEyYmZlhwoQJmDdvXr771qtXD126dMGCBQtw4sQJAJ++SdmxY0eu6Tmf27hxIzIyMjBgwIBc7W5ubnB3d8/zXBYWFvjhhx/QvXt3fPz4ET179sSGDRvy3N7R0RGjR49GvXr1kJqaisjISGhoaGDu3Ll49uwZtLS00Lp1a+zbt0+yT7t27VC9evUvrhXIYWNjg4sXL+LXX39F69atIQgCatasicGDB+eZQ5ZWrVoFFRUV9O/fH+np6XBwcPjid/D48WPEx8dLnjs7OyM5ORkTJ05EXFwcWrVqhVOnTuW6RmHFihVQU1PDyJEjkZqaimbNmuHff/+FoaFhkbwuIiJSDo8ePcIc5zk4fvw4gE8DQk8PPcVPP/0E3eG6XKGmlBAJgiB8a6OxY8cW+IA7duz4rkDSSEhIgIGBAeLj46Gvr5+rLy0tDZGRkTA3N//mxZwlVWRkJGrVqoUHDx7A0tJS0XGkVq1aNSxcuDDPDyJUcvHvl4hKiixxFvye+QEA+lXvBzUVtW/2FXSf0TajkZqcCjU1NUyePBkLFixAhQoViuR1kfzlV+d+rkAj80VZoJPsnDhxAhMnTlTKQv7+/fswMDDAqFGjFB2FiIioWEhKSsLKNStRd+inKalisRj9+vXDsmXLUKtWLQWnI0Up9Jz5t2/fSpYhrF27NoyNjWUWimRj6tSpio5QaPXr18fdu3cVHYOIiEjhsrOzsWPHDri6uiI2Pha7hn6aF3/m7Bm0afnljTypdJG6mE9ISMDUqVOxb98+yeokqqqqGDx4MNavXw8DAwOZhyQiIiIqjU6fPg0XJxfcv38fAD7doPMO0LdvX6iZF3pMlkqQQt00KjAwEMeOHUNcXBzi4uJw7Ngx3Lp165trdBMRERFRwfXv3x/379+HoaEhVq1ahQcPHmBg/4FQV1XnBa4EoBDF/LFjx7B9+3Y4ODhAX18f+vr6cHBwwJYtW/DPP//IIyMRERFRqRAVFYUJEyZInmtoaMDR0RERERGYOXMmNDU1FZiOiiOpv58pV67cV6fSGBgYFMul8wqwWA8RFTP8uyWi0iY+IR7ey72xatUqpKenY+/evRg4cCBC7oTA3Nxc0fGoGJO6mJ8/fz5++eUX7Nq1S3KDoNevX8PJyQmurq4yD1hY6urqAICUlBRoaWkpOA0RSSMlJQXA//6OiYhKOhtrG7x68QoA0LZtW6xYsQJNmjRRcCpSBlIX8xs3bkR4eDiqVq2KqlWrAvj0lZCmpibevXuH33//XbJtUFCQ7JJKSVVVFWXLlsXbt28BANra2pxbRlTMCYKAlJQUvH37FmXLloWqqqqiIxERyYUgCDhy9Ahg8+n5hw8fUKdOHSxfvhy9evVizUIFJnUxn3PbeWWQ881BTkFPRMqhbNmykr9fIqKS5vr163B0dMStoFvYFfppmcnVa1Zj/NjxUFPjCjUkHan/jXFzc5NHDrkQiUQwNTWFsbExMjMzFR2HiApAXV2dI/JEVCI9jXyK+XPn46+//gIAaGlp4d6ue5g1axbKji/L0XgqlO/6+JeUlASxWJyrLb/bzSqKqqoqiwMiIiJSqEYNGyEpIQkikQhjx46Fh4cHKleurOhYpOSkXpoyMjISPXr0gI6OjmQFG0NDQ5QtW7ZYrmZDREREpAhpaWlYvXq15HlmZiYcHBwQHByMbdu2sZAnmZB6ZH7EiBEQBAHbt29HxYoV+ZUQERER0WfEYjH27duHefPm4fXb19jV99O8+CNHjsChs4OC01FJI3UxHxISgtu3b6N27dryyENERESktC5evPjp4tZbtwAAlStXRnJAMoYOHQoNcw0Fp6OSSOppNk2aNEF0dLQ8shAREREpHUEQcP/hffww4Ae0a9cOt27dgq6uLpYsWYKwsDCMGTUGmuqanM1AciH1yPzWrVsxefJkvHz5ElZWVl/c1MXGxkZm4YiIiIiKszdv3sBjiQfazWyHoV5Dcfr0aYwZNQZubm4wNjZWdDwqBaQu5t+9e4eIiAiMHTtW0iYSiSAIAkQiEbKzs2UakIiIiKi4SU5OxsqVK+Hl5YXM7Ey0m9kOAHDz5k3Uq1NPseGoVJG6mP/xxx9hZ2eHvXv38gJYIiIiKlWys7Oxc+dOuLq64tWrVwCAFq1aSPpr1aqlqGhUSkldzD9//hxHjx6FhYWFPPIQERERFTuCIOD02dP49ddfEXQrCABQvXp1LF26FD8M+AFHoo4oOCGVVlJfANuhQweEhITIIwsRERFRsRMSEoIevXog0SIRc/bPgbGJMXx8fPDo0SMMGTIEKipSl1NEMiP1yHyvXr0wa9Ys3Lt3D9bW1l9cANu7d2+ZhSMiIiJSlBcvXmD+/Pn4448/oFFGA2Px6XrB0NBQVChXQcHpiD6RupifPHkyAMDDw+OLPl4AS0RERMouISEBy5cvx8qVK5GWlgYA6N+/v6Sfd7yn4kTq74XEYnGePyzkiYiISFllZGRgw+8bUM+qHjw9PZGWloZWrVrh+vXr2Llzp6LjEX0VJ3kRERFRqSYIAg4fPoyGjRuiQucKWOW/CvWt68PPzw+XLl1Cs2bNFB2RKE9ST7MBPq2tevHiRURFRSEjIyNX3/Tp02USjIiIiEjeAgMD4eTkhMuXL0NTS1PSfvPmTWhpaikwGVHBSF3M37lzB927d0dKSgqSk5NhZGSE9+/fQ1tbG8bGxizmiYiIqNgSBAHZQjYin0XCdZ4r9u/fDwAoU6YMHJ0cJdv9d4EPouJK6mk2s2bNQq9evRAbGwstLS1cv34dz58/R6NGjeDt7S2PjEREREQy8f7je/g980MwgnH46GGIRCKMHj0aYWFhcHNzU3Q8IqlJXcwHBwdj9uzZUFFRgaqqKtLT02FmZgYvLy/MmzdPHhmJiIiIvkt6ejp8fHxgbW0taWvfvj2CgoLg6+sLMzMzBaYjKjypp9moq6tLbo5gbGyMqKgo1K1bFwYGBoiOjpZ5QCIiIqLCEgQB+/fvx7x58xAZGZlrXvzRo0ehrsrpNKTcpC7m7ezscPPmTVhaWqJt27ZYsGAB3r9/j127dsHKykoeGYmIiIgKLGde/JUrV+A02wk3b94EAFSqVAmLliySbCcSiRQVkUhmpJ5m4+npCVNTUwDAkiVLYGhoiClTpuDdu3fYvHmzzAMSERERSeNR2CP4PfPD28pvcTf0LnR0dODh4YGwsDCMGjVK0fGIZErqkfnGjRtLHhsbG+PUqVMyDURERERUGG/fvsXChQvh+4cvfEN8AQA/jvsRC35dABMTEwBAljhLgQmJZE/qYj41NRWCIEBbWxsA8Pz5c/j5+aFevXro0qWLzAMSERER5SclJQWrVq3C8uXLkZiYmGte/No1a6GmUqjb6hApBamn2fTp0wd//PEHACAuLg5NmzaFj48P+vTpg40bN8o8IBEREdF/CYKA9Mx0+P7hi1q1amH+/PlITExE48aNcfLkSUXHIyoyUhfzQUFBaN26NQDg4MGDMDExwfPnz/HHH39g7dq1Mg9IRERE9F9nzp3B0eij0Gmlg/cf36NatWrYs2cPAgMDJXUKUWkgdTGfkpICPT09AMCZM2fwww8/QEVFBc2bN8fz589lHpCIiIgox927d+Hg4IA+ffpI2pYsWYJHjx5h6NChkuWziUoLqf+Nt7CwwOHDhxEdHY3Tp09L5sm/ffsW+vr6Mg9IRERE9PLlS/z4449o0KABzpw5A3X1/60PP2PGDJQpU0aB6YgUR+pifsGCBXB0dET16tXRrFkz2NvbA/g0Sm9nZyfzgERERFQ6CYKA2IRYLHBfAEtLS+zYsQOCIGDQoEG4HXRb0fGIigWpi/kBAwYgKioKt27dyrUsZceOHbFq1SqZhiMiIqLSKTMzE5u2bMK59+dgPcoaYojRsmVLXLt2Dfv370cN8xqKjkhULBRqrSYTExPJeq05mjZtKpNAREREVHoJgoCjR4/CxcUFz6KeYVfoLgDAnr170K93P961leg/eJUIERERFQs3b95Eu3bt0LdvXzx+/BjlypWT9PXu1ZuFPNFXsJgnIiIiuRMEAQnpCbgafRXJGcm5+iIjIzFy9Ei0btsaly5dQpkyZTB37lzcvXdXQWmJlAeLeSIiIpK7xIxE1FlfBy23t0SD3xsgJTMFsbGxcHR0hK2dLXq79cau0F34cfyPCAsLg6enJwz0DRQdm6jY4/2NiYiISO5C34YiJjEGABD+MRzz1szDH55/IDY2FppampLtfv/9d6ipsDwhKiip/loyMjJw+PBhXLt2Da9fvwbw6WLYFi1aoE+fPtDQ0JBLSCIiIlJuVsZWMNUzRUxiDNQT1bFmyRogE7CyssLyFcuRjORvH4SIvlDgaTbh4eGoW7cuRo8ejTt37kAsFkMsFuPOnTsYNWoU6tevj/DwcHlmJSIiIiUVfCsYXj294NnNE6LNIpiWN8XWrVsRHBwsuQHl16RnpSP8fThSMlOKMC2R8ihwMT9lyhRYW1vjzZs38Pf3x/79+7F//374+/vjzZs3qF+/PqZOnSrPrERERPQf+V1Yml9fUQkLC0O/fv3QpXMXaKppwqK8Bea7zMeTJ08wbtw4qKqq5rlvSmYKnI85Y97JeWi0uRELeqKvKHAxf+XKFSxevBj6+vpf9Onr62PRokW4fPmyTMMRERFR/r52YWlB+gpb6Bd0v3fv3mHatGmoX78+Dh8+jMz0TPy78l+00GqB+fPmQ0dH55vn+u88+9C3oQXOSVRaFLiYL1u2LJ49e5Zn/7Nnz1C2bFkZRCIiIqLP5VdA51fw5teXX6Gfn2/t9yHhA35a8hNq1K6B9evXIysrCz179sS9e/ewcd1GVDatXOD14m0r2sLCyAIAYGlkCStjqwLtR1SaFPgC2PHjx2PUqFFwdXVFx44dUbFiRQDAmzdvcP78eSxevBg///yz3IISERGVVjkFdExiDCyMLBAyOQTa6toAcl9YamFkkavgza/va4V+08rfvpt7XvuJxWJs3bkVU+9NRZZBFjACaHC9AVYuX4n27dsX6nXraOggZHIIQt+GwsrYSvKaieh/ClzMe3h4QEdHBytWrMDs2bMln6oFQYCJiQlcXFzg7Owst6BERESlVX6Ft7a6Nrx6eiE6LhpTbafmKnjz68uv0M/P1/Y7d+4cnJycEPwuGJjw/xuWAzYe2ojmZs2/67Vrq2sX6EMGUWkl1dKULi4ucHFxwdOnT/HmzRsAn5amNDc3l0s4IiKi4koQBCRmJCL0bShsK9pCR+Pbc8AL61uFd86FpV8buc6rL79CPz+f79devT369+6PU6dOAQD0y+lDQ6SB98J7WBpZwsbEppCvWHHSs9IRHReNlMop0Nf88jpBouKmUHdlqFGjBmrUqCHrLEREREojv6kvhZXXB4TCFt7fkt+HgILs18GmA1KTU6GmpoapU6di/vz50DbQLvbTYvIq2HNWz4lJjMH2wO0yeU+J5K3AF8ACwIMHD/DTTz/Bzs4OpqamMDU1hZ2dHX766Sc8ePBAXhmJiIiKnfwuLi3scpH5XVxa2MJblpKSkrB4yWLJc7FYjAEDBuDhw4dYvXo1ypcvL5kWI23OolpPPr/lLr9n9Ryuh0+KUuCR+ZMnT6Jv375o2LAh+vTpk+sC2LNnz6Jhw4Y4cuQIHBwc5BaWiIiouMhv6kt+o/b59RX2olRZ++83BJoqmti2bRvc3NwQlxCHXcN3AQDOnT+HVvatvvt8RTkint/vOGf1nPCP4V9dPYcj+lQcFbiYnzNnDlxcXODh4fFFn7u7O9zd3eHk5MRinoiISoX8pr7kVzDm11fYi1Jl7fMPHJU0K0Fvtx4ehz4GAFhYWEAUIkKf3n2gZl6o2bpfkMeHmLwK7/wK9vxWz8mvYC8uH8KodCrwNJuwsDAMHz48z/6hQ4fiyZMnMglFRESkDPKa+pJTlAPIc7nIr/XlfEDw7OaJ2xNvK2x09/Pi9FX6KzyOfYxy5cphzZo1uH//Pgb0GwB1VfUCrxf/LbJeTz6/qTQ5BXvg+EAETw7+6oXBX5smlN8UHK6HT4pU4I/U1atXx/Hjx1G7du2v9h8/fhzVqlWTWTAiIiJlVdjlIgHFz41//vw51i9cD1OrT98QiGJFmDViFlznuMrt5pCyXk/+WyPlhVnusrAj+kTyJtU688OGDYO/vz86der0xU2jTp06hT179sgtKBERkTIpzHKRihQXFwdPT0+sXbsWUAG2Bm9FdFw0ehv1Rn2L+nI/vyzXk//W3PfC+FbBzvXwSVEKXMwPHDgQlStXxtq1a+Hj44PXr18D+LTOvL29Pfz9/WFvby+3oERERCQfGzZswEK3hfj48SMAoH379qidWBtDGg+BqkhVwenylte8eHmNlLNgp+JIqitXWrRogRYtWsgrCxERERURQRAkj52dnZGemo569erBy8sL3bt3l9l8eHn51goyLLyptJBqnfkc8fHxePz4MR4/foz4+HhZZyIiIiI5unr1Kjp26ih5bmxsjM2bNyMkJAQ9evQo9oU88H1rwhOVJFIV81u3bkW9evVgZGSEevXqoW7dupLH27Ztk1dGIiIikoEnT55gwIABaNmyJW4E3pC03713FxMmTICammyWmiwKXEGG6JMC/9WuWLEC7u7umD59OhwcHHJdAHvmzBnMmDEDsbGxcHR0lFtYIiIiKhxHR0es/209srKyoKKigpHDR6K5ZnOYmpoW63nxeeEKMkSfFLiYX7duHXbs2IFBgwblaq9bty7atWsHW1tbODk5sZgnIiIqJlJTUyWPN23ahKysLHTv3h3Lly+HlZXyj2RzXjyRFNNs3r59C2tr6zz7ra2t8f79e5mEIiIiosITi8X4888/YWdnJ2mzsbHBuXPncPz48RJRyBPRJwUu5ps0aYJly5YhKyvri77s7GwsX74cTZo0kWk4IiIiks6///6LJk2aYOTIkYh4EoE5DnOQejUV165cQ8eOHb99ACJSKlJNs3FwcICJiQnatGmTa878pUuXoKGhgTNnzsgtKBEREeVvwIABOOJ3BACgr6+PuXPnYsaMGdDS0lJwMiKSlwIX8zY2NggLC8Off/6J69ev4+nTpwA+3TRq8eLFGDZsGPT19b9xFCIiIpKlnJs4AsCpU6egpqaGyZMnY8GCBahQoYICkxFRUZBqDSo9PT1MmTIFU6ZMkVceIiIiKoCkpCT4+Phgzbo1+D3wdwBA7969sdhjMWrVqqXgdERUVAp106ivyczMRFRUlKwOR0RERF+RlZWFLVu2wNLSEu7u7oh9H4u1P65FxZiK2L93Pwt5olJGZneHePDgARo2bIjs7GxZHZKIiIj+w97eHsFBwQCAGjVqYNmyZRgwYIBS3LWViGRPZiPzREREJB/BwcGSxw8fPoSRkRFWrVqFBw8eYODAgSzkiUqxAo/MN2zYMN/+z29MQURERN8vKioK8+fPx4GDB7ArdBcAYMaMGZjjPAeGhoYKTkdExUGBi/kHDx5gyJAhMDc3/2p/TEwMwsLCZBaMiIioNHNzc4PPCh+kp6cDAP7x+Adubm4Y4MkpNUT0PwUu5q2srNCsWbM8V7IJDg7Gli1bZBaMiIiotMnMzJQ89vH5VMi3a9cOK1asQOPGjRWYjIiKqwLPmW/ZsiUeP36cZ7+enh7atGkjk1BERESliSAIOHToEBo1aiRpq1WrFo4ePYp///2XhTwR5anAI/Nr1qzJt79mzZq4cOHCdwciIiIqTa5duwZHR0dcvXoVmlqakvYbN26gjEYZBSYjImUgs6UpiYiISDojRozA/r37AQDa2tqYPXs2OpXvBD1dPaiKVBWcjoiUAYt5IiKiIvThwwfJ48OHD0NFRQVjx46Fh4cHKlWqpMBkRKSMuM48ERFREUhLS4OXlxesra0lbZ07d0ZwcDC2bt3KQp6ICoUj80RERHIkFouxe+9uzJs3D1FRUbnmxfv5+UFNhf8rJqLC439BiIiI5KhNmzYIvBYIAKhSpQoWL16M3ma9oaqqynnxRPTdWMwTERHJ2KNHj4D/X4gmODgYenp6mDt3LmbOnAktLS3FhiOiEkWmc+Y7dOiARYsWISUlRZaHJSIiUgqvX7/GpEmT0LRpU0nbxIkTER4ejrlz57KQJyKZk2kxX7VqVZw/fx516tSR5WGJiIiKteSUZHh4eMDCwgKbN29GanIq9s/dD6tMK6xZtQbGxsaKjkhEJZRMp9n4+voCABISEmR5WCIiomLN1sYWzyOfAwCaNm0Kb29vtG7dWsGpiKg0kMnIfFxcXK7n+vr6sjgsERFRsSQIAs6cOSN5/vr1a5ibm2Pfvn24fv06C3kiKjJSF/PLly/H/v37Jc8HDRqEcuXKoXLlyggJCZFpOCIiouImODgYXbp0wQ8//CBpW7ZsGR4+fIjBgwdDJBIpMB0RlTZSF/ObNm2CmZkZAODs2bM4e/YsTp48iW7dusHJyUnmAYmIiIqD6OhojB49Gg0bNsS5c+cgZAu4ufkm2pdtjxk/z4Cmpua3D0JEJGNSz5l//fq1pJg/duwYBg0ahC5duqB69epo1qyZzAMSEREpiiAI+Bj/EatWroLPCh+kpaUBAIYMGQJPT0+Ym5srOCERlXZSj8wbGhoiOjoaAHDq1Cl06tQJwKf/4GVnZ8s2HRERkYJkZmZi/ab1+Pfjv7AdYwtBJKBNmza4ceMG9u7dy0KeiIoFqYv5H374AcOGDUPnzp3x4cMHdOvWDQBw584dWFhYyDwgERFRURIEAX5+fqhfvz4cZztK2vfv3w9/f380adJEgemIiHKTeprNqlWrUL16dURHR8PLywu6uroAgJiYGPz0008yD0hERFRUAgMD4ejoiICAAABAZbPKkr4ePXrw4lYiKnZEgiAIig5RWAkJCTAwMEB8fDyXwyQiokIRBAHhkeFwW+CGvbv3AgC0tLTwyy+/4BenX3D+w3kAQL/q/aCmItPbsxAR5amgdW6h1pnftWsXWrVqhUqVKuH58083yVi9ejWOHDlSuLREREQK8PHjRzi5OCEYwejn0Q9ltMtg7NixCAsLw+LFi6Gvx4EiIirepC7mN27ciF9++QXdunVDXFyc5KLXsmXLYvXq1bLOR0REJHNpaWnw9vZGzZo1sW7dOkn71atXsX37dlSpUkWB6YiICk7qYv63337Dli1b8Ouvv0JVVVXS3rhxY9y7d0+m4YiIiGRJLBZj7969qFu3LpycnBAXFwcrKytJv7W1tQLTERFJT+piPjIyEnZ2dl+0a2pqIjk5WSahiIiIZEkQBPhf8kerNq0wbNgwPHv2DJUqVcKOHTtw5coVRccjIio0qYt5c3NzBAcHf9F+6tQp1K1bVxaZiIiIZObRo0foP6g/3lV5h1l/zIJRBSMsXrwYT548wZgxY3J9y0xEpGykviz/l19+wdSpU5GWlgZBECQ3z1i6dCm2bt0qj4xERERSe/PmDdzd3bFlyxaoaahh6PKhAIB7d++hkkklBacjIpINqYv58ePHQ0tLC/Pnz0dKSgqGDRuGSpUqYc2aNRgyZIg8MhIREX2TIAjIFrKRkpKCtavXYvny5UhKSgIA9O7RW7KdsbGxoiISEclcoRbMHT58OIYPH46UlBQkJSXxP4xERKRwGVkZOBp9FACw2HMx0lPT0aRJE6xYsQItW7eE3zM/BSckIpK9Qq0zn0NbW5uFPBERKdzp06fRokULyXOzqmbYs2cPrl+/jrZt2yowGRGRfEk9Mm9ubp7v7ayfPn36XYGIiIgKKiQkBE5OTjh79iw0tTQl7XeC7kBXW1eByYiIiobUxfzMmTNzPc/MzMSdO3dw6tQpODk5ySoXERHRF3Lmxb98+RLuC9yxc+dOCIIAdXV1TJs2TbJdmTJlFJiSiKjoSF3Mz5gx46vt69evx61bt747EBERUV5iE2Jx/sN5AMDe/XshCAIGDRoET09PVDOvxnnxRFTqfNec+c9169YNhw4dktXhiIiIJDIzM7FhwwbYWNtI2uzt7XH9+nXs378fNWvWVGA6IiLFKdRqNl9z8OBBGBkZyepwREREEAQBR48ehYuLCx4/fpxrXvyZM2egrqquwHRERIondTFvZ2eX6wJYQRDw+vVrvHv3Dhs2bJBpOCIiKn1y5sXfvn0bzo7OuHTpEgCgfPnycF/kLtkuv8UYiIhKC6mL+b59++Z6rqKiggoVKqBdu3aoU6eOrHIREVEpFREZgTu4A5QDAm8GokyZMpg1axZcXFygo6fDefFERJ+Ruph3c3OTRw4iIirlYmNjsWTJEmzeuhnbgrYBAIYNG4aFbgthZmYGAMgSZykyIhFRsVOgYj4hIaHAB9TX1y90GCIiKn3S09OxYcMGLFq0CLGxsbnmxW/evBlqKjK7vIuIqMQp0H8hy5Yt+825iYIgQCQSITs7WybBiIioZBOLxTj490G4LnBF2MMwAICVlRWWr1iOZCQrOB0RkXIoUDF/4cIFeecgIqJS5PLly5j761zM8J2BxccWw6mTE1x/dcWYMWMgiATOiyciKqACFfNt27aVdw4iIlIwQRCQmJGI0LehsK1oCx0NHZmfIywsDC4uLjh8+HCu6TQhd0NgoGsAgPPiiYikUeiJiCkpKYiKikJGRkaudhsbmzz2ICKi4iwxIxF11tdBTGIMLIwsEDI5BNrq2jI59rt377Bw4UL8/vvvyMrKgoqKCn4c96OkX0db9h8ciIhKA6mL+Xfv3mHs2LE4efLkV/s5Z56ISDmFvg1FTGIMACD8YzhC34aiaeWm39wvvxH95ORkrF23Fj4+Pvjw7gMAoGfPnli+fDlq1alVqOk06VnpiI6LRkrlFOhrctEFIirdVKTdYebMmYiLi0NgYCC0tLRw6tQp7Ny5E5aWljh69Kg8MhIRKT1BEJCQnoCr0VeRnFE8L+60MraCqZ4pAMDCyAJWxlYF2i9nRL/l9pZo8HsDpGSmIDs7Gzt37oRNAxtYDLTAxusb0cy+Gf7991/8888/qFevXqEypmSmwPmYM+adnIdGmxshJTOlUMchIioppB6Z//fff3HkyBE0btwYKioqqFatGjp37gx9fX0sXboUPXr0kEdOIiKlJs8pLLKira4Nr55eiI6LxlTbqQXO998R/e3HtmPrwq0ICQnJNS/+0qVL0FDT+K6Mhf32gIiopJJ6ZD45ORnGxsYAAENDQ7x79w4AYG1tjaCgINmmIyIqIb5WhOYoTqP2mmqasChvIdUHjc9H9HXSdPDz4J8REhICAwMDLF68WLKdiorU/8v5gm1FW1gYWQAALI0sC/ztwbekZ6Uj/H04R/qJSOlI/V/W2rVr4/HjxwAAW1tb/P7773j58iU2bdoEU1NTmQckIlIW+RXl+U1h+do0FWUS/z4eXj294NnNE5nrM6EOdcyYMQMRERGYOXOmTAtlHQ0dhEwOQeD4QARPDpbJtxucukNEykzqYn7GjBmIifk0uuTm5oaTJ0+iatWqWLt2LTw9PWUekIhIWeRXlOdMYfHs5onbE2/nKkLzG7UvzhITE7FgwQLY2NpIRvR/6PUDHj58iNWrV6NcuXJyKZS11bXRtHJTmU1TUtbfPxERUIhifsSIERgzZgwAoFGjRnj+/Dlu3ryJ6OhoDB48WNb5iIiUxreKwrymsOQ1al+cpt98niU+JR6bNm2CpaUlFi1ahLgPcVg/fj0qv62MPX/uQc2aNSX7KUOh/K2pO5yCQ0TFmdQXwAYEBKBVq1aS59ra2mjYsKFMQxERFVf5LcOYU5TnXORa0PnceV14Wpwumv08i0aiBjLWZgCZgKWlJZYtW4Z+/fpBJBJ9sV9OoRz+MVymc9xlKWfqTujbUFgZW+X6Hed8sxCTGIPtgduL5YXLRFS6ST0y36FDB5ibm2PevHl48OCBPDIRERVbhZ1K8y1fG7UvTqPahy4fkmTJ0MuAvqU+fvvtN9y/fx8//PDDVwt5oPBz3As7Gl7Y/fKaulOc3gMioq+Ruph/9eoVZs+ejYsXL8LKygoNGjTAihUr8OLFC3nkIyIqVgo7laYw8rtoNr8pOLKcnvPs2TMMGzYMk3+YLMliKBji0cVHmDZtGtTV1b95jPzmuH+t+C7sPPtv7VeYQl9eq+cQEcmK1MV8+fLlMW3aNFy5cgUREREYOHAgdu7cierVq6NDhw7yyEhEVGwU9sZKhZHfSH9+3xDk11fQQj8uLg5OTk6oXbs29u7di8ykTHR80BF+PfwQPS8apuW/f/WyvIrvwo6G57dfYT8gyGP1HCIiWZJ6zvznzM3NMWfOHNja2sLV1RUXL16UVS4iomKpsDdWKqy8Rvrzu3lSfn0FnYdvbW2N169eA/g0vdLb2xt2dnYyfW155SzsPPv89vuem03lfLNARFQcFfoOHleuXMFPP/0EU1NTDBs2DFZWVjh+/LgssxERFUuynEpTWPl9Q5BfX16j14Ig4O+//5ZsFxsbi/r16+P48eM4d+6czAt5IO8pLIUdDc9vP06XIaKSSuqR+blz52Lfvn149eoVOnfujDVr1qBPnz7Q1uZXj0RERSW/bwjy6/vaijsBAQFwdHRE8N1g7ArdBQBYt24dxowaAzW17/oCN1/5rSJT2NHwvPbL71xERMpM6v9KX7p0CU5OThg0aBDKly8vj0xERFQA+X1DkFff54W+g64DRgweAT8/v0992tp4uPchpk+fDoOxBnmuUCNLRTmFhdNliKgkkrqYv3LlijxyEBFREckp9Ns0aIPkxGSoqKhg3LhxWLhwIUxNv//CViIiKjqFnjNPRETKJTU1Fd7e3pLnWVlZ6NGjB+7evYvNmzezkCciUkIs5omISjixWIw//vgDtWvXhru7u6T9+PHjOHbsGOrXr6+4cERE9F3kd2UTEREpnL+/P5xmOyE4OBgAULVqVaRfT8egQYOgbv7tGz4REVHxxmKeiKgE69mzJ9JT06Gvr4958+Zh+vTp0NLSUnQsIiKSEU6zISIqQWJiYjBt2jTJczU1Nfz888+IiIiAi4sLC3kiohKmQCPzhoaGBV6i7OPHj98ViIiIpJeUlARvb2+sWLEC2UI2Ojp2BADcun0LdSzrKDgdERHJS4GK+dWrV0sef/jwAYsXL4aDgwPs7e0BANeuXcPp06fh6uoql5BERJS37du3w83VDa9fvwYA2Nvbw/SNKZo3aw5VkaqC0xERkTwVqJgfPXq05HH//v3h4eGR62vc6dOnY926dTh37hxmzZol+5RERJSLIAiSx9OnT0d6ajpq1qyJZcuWoX///kVywyciIlI8qefMnz59Gl27dv2ivWvXrjh37pxMQhERUd6CgoLQo0cPyXNDQ0OsWbMGDx48wIABA1jIExGVIlIX8+XKlcORI0e+aD9y5AjKlSsnk1BERPSl58+fY8SIEWjUqBHOnj6L8Y3G4/bW23gQ+gDTp0+HhoaGoiMSEVERk3ppyoULF2L8+PHw9/dHs2bNAACBgYE4deoUtmzZIvOAREQEuLq6YpXPKqSnpwMAhg8fjiVLlqBatWoKTkZERIokdTE/ZswY1K1bF2vXrsXff/8NAKhbty4CAgIkxT0REX2/jIwMyeNVqz4V8u3atYO3tzcaNWqkwGRERFRcFOqmUc2aNcPu3btlnYWIiPDp4tZDhw5hgfsCLDy6EABQu3ZtLFm0BD169OCceCIikijUTaMiIiIwf/58DBs2DG/fvgUAnDx5Evfv35dpOCKi0iYwMBAtW7bEwIED8fD+Q8zuMBsfz3/ErRu30LNnTxbyRESUi9TF/MWLF2FtbY3AwEAcOnQISUlJAICQkBC4ubnJPCARUWnSsWNHXLt2Ddra2liwYAHu37uPSRMmQV1dXdHRiIioGJK6mJ8zZw4WL16Ms2fP5lo5oUOHDrh+/bpMwxERlXTv37+Hk5OT5LmKigrGjx+PJ0+eYOHChdDT01NgOiIiKu6knjN/79497Nmz54t2Y2NjvH//XiahiIhKurS0NKxduxaenp5Iy0hDi6ktAADXr1+HjZWNgtMREZGykLqYL1u2LGJiYmBubp6r/c6dO6hcubLMghERlVT79u3Dr3N/RVRUFACgQYMGKBtZFu3bt4eqSFXB6YiISJlIPc1myJAhcHFxwevXryESiSAWi3HlyhU4Ojpi1KhR8shIRFSijB8/HlFRUahSpQp27tyJ27dvo3PHzlBTUeMFrkREJBWpi3lPT0/UqVMHZmZmSEpKQr169dCmTRu0aNEC8+fPl0dGIiKl9uDBAwwYMEDyXFdXF56enggLC8OoUaOgolKohcWIiIikn2ajoaGBLVu2wNXVFaGhoUhKSoKdnR0sLS3lkY+ISGm9fv0abm5u2Lp1K9Q11THcezgAIDQ0FCbGJgpOR0REJUGhbhoFAFWrVkXVqlVlmYWIqMTwXOoJr6VeSE5OBgB079odVllWsLSw5Lx4IiKSmQIV87/88kuBD7hy5cpChyEiUmbZ2dmSx55LPJGemo6mTZvCx8cHrVq1UmAyIiIqqQpUzN+5cyfX86CgIGRlZaF27doAgLCwMKiqqqJRo0ayT0hEVMwJgoBTp07hV9dfMffAXABAterV4OHmgUGDBvGiViIikpsCFfMXLlyQPF65ciX09PSwc+dOGBoaAgBiY2MxduxYtG7dWj4piYiKqTt37sDJyQnnz5+HppampD3odhB0tHQUmIyIiEoDkSAIgjQ7VK5cGWfOnEH9+vVztYeGhqJLly549eqVTAPmJyEhAQYGBoiPj4e+vn6RnZeISq8scRb8nvkBAE56noTvdl8IggANDQ1Mnz4dLnNdULZsWaiKVDkiT0REhVbQOlfqC2ATEhLw7t27L9rfvXuHxMREaQ9HRKRU4hPiJY/37NkDQRAwdOhQLFmy5Iub6REREcmb1Isb9+vXD2PHjsXff/+NFy9e4MWLFzh06BDGjRuHH374QR4ZiYgULjMzE+vWrYONtY2krVWrVrhx4wb27NnDQp6IiBRC6mk2KSkpcHR0xPbt25GZmQkAUFNTw7hx47BixQro6BTdHFFOsyEieRMEAYcPH4aLiwuePHkCALC2tcaiRYvQq0cv3vCJiIjkoqB1rtTFfI7k5GREREQAAGrWrFmkRXwOFvNEJA+CICBbyMaNGzfg7OiMK1euAACMjY2xcOFCjB8/Hmpqhb5NBxER0TfJbc58Dh0dHdjY2Hx7QyIiJfPk6ROEiEIAY+BW0C1oaWlh9uzZcHZ2hp6enqLjERERSUj9/XBycjJcXV3RokULWFhYoEaNGrl+iIiU1YcPHzBr1iw0avi/e2aMGjUKT548waJFi1jIExFRsSP1yPz48eNx8eJFjBw5Eqamplx6jYiUXlpaGn777TcsWbIE8fHxudaL37BhA9RUOKWGiIiKJ6n/D3Xy5EkcP34cLVu2lEceIqIiIQgCMrMzcfDgQcybMw/Pnz8HANja2sLL2wvxiP/GEYiIiBRP6mk2hoaGMDIykkcWIqIi43/JH0eijkC9qTpev32NypUrw9fXF7dv30aHDh0UHY+IiKhApC7mFy1ahAULFiAlJUUeeYiI5Orhw4fo1asXunXrJmlzc3NDWFgYRo8eDVVVVQWmIyIiko7U02x8fHwQERGBihUronr16lBXV8/VHxQUJLNwRESy8vr1a7i7u2Pr1q3Izs6Gtq62pM/JyYnz4omISClJ/X+vvn37yiEGEZHsCYKAhOQE/Lb2NyzzXIbk5GQAn/475rnME6EIVXBCIiKi7yN1Me/m5iaPHEREMpWdnQ3fP3yh31YftYfURtbiLDRp0gQ+Pj5o3bo1ssRZCH3GYp6IiJQb70NORCWKIAg4deoU7OzsMHXqVEm7r68vrl+/jtatWyswHRERkWxJPTKvoqKS79ry2dnZ3xWIiKiwgoOD4eTkhHPnzgEAKppWlPQNGDAAKiocvyAiopJF6mLez88v1/PMzEzcuXMHO3fuxMKFC2UWjIioIARBQNSLKHh4eGDHth0QBAEaGhqYNm0a5sybA/94f0VHJCIikhupi/k+ffp80TZgwADUr18f+/fvx7hx42QSjIjoWxISErDCZwVsRtug69yu2L17N/r16QdPT0+Ym5sjS5wF3vuJiIhKMpl959y8eXOcP39eVocjIspTZmYm1q9fDwsLC6xYsULS7u/vj71798Lc3FyB6YiIiIqOTBZWTk1Nxdq1a1G5cmVZHI6IKBdBEJAtZEMQBBz75xjmuMxBWFgYAMDKxkqyXePGjRUVkYiISCGkLuYNDQ1zXQArCAISExOhra2NP//8U6bhiIgAIFvIht+zT9frjBw2Eump6ahQoQLc3d0xdtxYHHt5TMEJiYiIFEPqYn716tW5nquoqKBChQpo1qwZDA0NZZWLiAgA8PTpU7i6uaLvwr4AAM0ymnD8xRHOzs7Q19f/NC+eiIiolJK6mB89erQ8chAR5fLx40csXrwY69atg4qaiqSYvxtyF9XMqik2HBERUTFRqDnzcXFx2LZtGx4+fAgAqF+/Pn788UcYGBjINBwRlS6CICAlLQW///47Fi1chLi4OABAty7dJNvw2hwiIqL/kXo1m1u3bqFmzZpYtWoVPn78iI8fP2LlypWoWbMmgoKC5JGRiEoBsViMfQf24UTMCZj1NkNqeiqsra1x6tQpHD16VNHxiIiIiiWpi/lZs2ahd+/eePbsGf7++2/8/fffiIyMRM+ePTFz5kw5RCSiku7SpUto3rw5xo4dK2nbsGED7ty5AwcHBwUmIyIiKt6knmZz69YtbNmyBWpq/9tVTU0Nzs7OXBaOiKTy6NEjuLi4SEbejSoYSfpGjRoFVRVVRUUjIiJSClKPzOvr6yMqKuqL9ujoaOjp6ckkFBGVXIIgIOZNDKbNmAYrKyscPXoUqqqqmDx5Mu7dvafoeEREREpF6mJ+8ODBGDduHPbv34/o6GhER0dj3759GD9+PIYOHSqPjERUQqSkpGDp8qUISA5A2xltoaahht69eyM0NBQbN26EsbGxoiMSEREpFamn2Xh7e0MkEmHUqFHIyvq0vrO6ujqmTJmCZcuWyTwgESm/7Oxs7Nq1C/Pnz8f7j++xa9AuAMCpU6fQrk07xYYjIiJSYlIV89nZ2bh+/Trc3d2xdOlSREREAABq1qwJbW1tuQQkIuV25swZODk54e7duwAAi9oWkr5WrVopKhYREVGJINU0G1VVVXTp0gVxcXHQ1taGtbU1rK2tWcgTUS6CICD4bjB69u4JBwcH3L17FwYGBlixYgXuBN1RdDwiIqISQ+o581ZWVnj69Kk8shBRCfDy5UtMnDwRT3SfYPTq0dDV18XMmTMREREBR0dHlClTRtERiYiISgypi/nFixfD0dERx44dQ0xMDBISEnL9EFHplJiYCFdXV1haWmLXrl2S9ttBt7Fq1SqUK1dOgemIiIhKJqkvgO3evTsAoHfv3hCJRJJ2QRAgEomQnZ0tu3REVOxlZWVhy5YtcHd3x9u3bwEAbdu3lfTXMK+hqGhEREQlntTF/IULF+SRg4iUjFgsxj/H/4GrqyvuhXxaH97S0hLLli1Drz69cPj5YcUGJCIiKgWkLubbtm377Y2IqFgRBAGJGYkIfRsK24q20NHQ+a7j3bp1C3PmzcGkTZPg+rcrZradibkuczFp0iSoq6sjS5wlo+RERESUH6nnzBOR4giCgIT0BFyNvorkjOQC75eYkYg66+ug5faWaPB7A6RkphTq/M+ePcOwYcPQpEkTBAQESNrv3ruLadOmQV1dvVDHVZT0rHSEvw8v9O+DiIhI0VjMEymRwhbloW9DEZMYAwAI/xiO0LehUp03NjYWTk5OqF27Nvbu3QuRSIRhw4ZJ+g30DaQ6Xn6KqsBOyUyB8zFnzDs5D402N2JBT0RESonFPNF3KuxoeWH2K2xRbmVsBVM9UwCAhZEFrIytCpQjLS0Nq9euRt36deHt7Y2MjAx07NgRt2/fxubNmwt0bmkUZYH9vR9wiIiIioMCFfNHjx5FZmamvLMQKaXCjpbntV9+xXV+RXl+tNW14dXTC57dPHF74m1oq//vRm9fyyEIAg4cOADbhrao3LMyfgv4DQ0aNsCJEydw9uxZ2NnZFei80pJHgZ3XSL9tRVtYGH26G62lkWWBf5dERETFSYGK+X79+iEuLg7Ap7vA5iw/R1Ra5Fdg51eAFma//D4c5FeUf4ummiYsylt8sc9/c/x55k/Y29tj8ODBeP7suaQYPn/pPLp165ZrSVpZk3WBnd9Iv46GDkImhyBwfCCCJwdL9bskIiIqLgpUzFeoUAHXr18H8L/15IlKk/wK7PxGywuz37dGp/Mqygvr8xy66bqY1G8SAgMDoaOjA8d5jpJiuNn2Zl+Mbst6fnt+BXZhzvWt36W2ujaaVm7KQp6IiJRWgYr5yZMno0+fPlBVVYVIJIKJiQlUVVW/+kNUEuVXFOY3Wl6Y/Qo7laawc/dT4lMkOTLWZUAlWwUTJ05EeHg4uo/unmd+ec1v/1qB/a1zcSoNERGVVgVaZ97d3R1DhgxBeHg4evfujR07dqBs2bJyjkZUfOQU2DGJMV8tsPMaLS/MfjlFfnRcNKbaTi3wqHHOtwA55wqZHJLvvqmpqVi9ejV8Vvlg4/WNsChvgW6dumHJoiWoX78+AEAvQw8WRhYI/xj+RTH8tQ8qTSs3LVDW9Kx0RMdFI6VyCvQ19b+5fX7nyin0YxJjsD1we67XnTPSH/o2FFbGVhyBJyKiEqfAN42qU6cO6tSpAzc3NwwcOBDa2vyfIpUehS2wC7tfYabSFLS4FovF2LlrJ+bPn48XL14AAHxG+GDJkiXwO+SXaxpdfsVwzqj31wr9/ORXfOclv3N963XnjPQTERGVRFLfAdbNzQ0A8O7dOzx+/BgAULt2bVSoUEG2yYiKmcLOVZf1HPe8fOtbgBytWrXCzcCbAICqVavC09MTQ4cOhYrK12fd5VUMF3bUuzAj+vL4UEFERFQSSF3Mp6SkYNq0adi1axeys7MBfFrhZtSoUfjtt984Yk+kIPl9C/DgwQPg/5/evXsXBgYGmDdvHqZPn44yZcp81znzKsTzmkpT2OJb1h8qiIiISgKpbxo1a9YsXLx4EUePHkVcXBzi4uJw5MgRXLx4EbNnz5ZHRiIqoP9+C/Dq1SuMHz8ezZs3l2wzZcoUhIeHw9nZ+bsK+fwU9ZKQ8liVpqjuREtERPQ9pC7mDx06hG3btqFbt27Q19eHvr4+unfvji1btuDgwYPyyEhEUkpKToKbmxssLS2xbds2pCan4uCvB2GdbY2V3itRvnx5uZ5f2ZeELMo70RIREX2PQk2zqVix4hftxsbGSEnh//CIigMbaxtEP48GANjb28Pb2xstWrQosvMr+zz271mph4iIqChJPTJvb28PNzc3pKWlSdpSU1OxcOFC2NvbyzQcERWMIAg4efKk5Pnbt29hYWGBgwcP4sqVK0VayAPKf3dVrk9PRETKQuqR+TVr1sDBwQFVqlSBra0tACAkJARlypTB6dOnZR6QiPJ3+/ZtODo64lrgNewK3QUAWLFiBSZNmAQNDQ2F5VLmJSF5US0RESkLqYt5KysrPHnyBLt378ajR48AAEOHDsXw4cOhpaUl84BE9HXPnz/HgvkLsGfPHgCApqYm7my/g9mzZ8PoJ6Nc68WT9JT5wwgREZUeUhfzAKCtrY0JEybIOgsRSaFhw4ZIiEsAAIwYMQKLFy9GtWrVFJyKiIiIipLUc+aJSDEyMjKwfv16yfP09HR06NABt2/fxq5du1jIExERlUIs5omKOUEQ8Ndff6Fu3bpwcXGRtB86dAjnzp1Dw4YNFZiOiIiIFKlQ02yIqGhcu34NzrOdcf36dQCAiYkJ4i7EYeTIkdA01+S8eCIiolKOxTxRMda5U2ekp6ZDW1sbTk5OcHR0hK6urqJjERERUTFRqGk2cXFx2Lp1K+bOnYuPHz8CAIKCgvDy5UuZhiMqbd6/fw9HR0fJcxUVFUyYMAHh4eFwd3dnIU9ERES5SD0yf/fuXXTq1AkGBgZ49uwZJkyYACMjI/z999+IiorCH3/8IY+cRCVaamoqNqzbAE9PT6RnpqPltJYAgMDAQFjXt1ZwOiIiIiqupC7mf/nlF4wZMwZeXl7Q09OTtHfv3h3Dhg2TaTii0sLOzg4RTyIAAA0aNIDhM0O0a9cOqiJVBScjIiKi4kzqaTY3b97EpEmTvmivXLkyXr9+LZNQRKXBxYsXJY9fvHgBMzMz/PHHH7h9+zY6degENRU1XuBKRERE+ZK6mNfU1ERCQsIX7WFhYahQoYJMQhGVZPfv30ePHj3Qo0cPSdvChQvx+PFjjBw5EioqXDGWiIiICkbqqqF3797w8PBAZmYmAEAkEiEqKgouLi7o37+/zAMSlRSvX7/GxIkTYWNjgxMnTiA7MxtX1l1Ba93WcHZ0hpaWlqIjEhERkZKRes68j48PBgwYAGNjY6SmpqJt27Z4/fo17O3tsWTJEnlkJCoRbGxtEPs+FgDwww8/YNmyZbC0tFRwKiIiIlJmUhfzBgYGOHv2LAICAnD37l0kJSWhYcOG6NSpkzzyESmtrKws7Ni5A2XblwUApCSnoHnz5vD29kbLli0VG46IiIhKhELfNKpVq1Zo1aqVLLMQlQiCIODEiRNwdnZGRGQEdoXuAgDs2rULA34YwItaiYiISGakLubXrl371XaRSIQyZcrAwsICbdq0gaoql9Sj0ic4OBguTi74999/AQBGRkZ4dfwVJkyYAC1zLRbyREREJFNSF/OrVq3Cu3fvkJKSAkNDQwBAbGwstLW1oauri7dv36JGjRq4cOECzMzMZB6YqDhr1aoV0lPToaGhgRkzZmDu3LmSvxMiIiIiWZN6NRtPT080adIET548wYcPH/DhwweEhYWhWbNmWLNmDaKiomBiYoJZs2bJIy9RsRIfH48FCxbkahs2bBgeP34MLy8vFvJEREQkVyJBEARpdqhZsyYOHTqEBg0a5Gq/c+cO+vfvj6dPn+Lq1avo378/YmJiZJn1CwkJCTAwMEB8fDz09fXlei4q3bLEWfB75gcA6Fe9H8RZYmzatAkeHh5ISkmSzIuv9rEamjZuqsioREREVAIUtM6VeppNTEwMsrKyvmjPysqS3AG2UqVKSExMlPbQRErh8JHDmOs8F+Hh4QCAOnXqQPOBJrp16wY180JfU05EREQkNamn2bRv3x6TJk3CnTt3JG137tzBlClT0KFDBwDAvXv3YG5uLruURMXIiOEjEB4ejooVK2LTpk24d+8eevfsDXVVdV7gSkREREVK6mJ+27ZtMDIyQqNGjaCpqQlNTU00btwYRkZG2LZtGwBAV1cXPj4+Mg9LpAjh4eEYMWKE5HkZrTJwdXXFkydPMGnSJKipcTSeiIiIFEPqOfM5Hj16hLCwMABA7dq1Ubt2bZkGKwjOmSd5+vDhAxYtWoQNGzZARU1FMi++mUYzVK1SVcHpiIiIqCST25z5HHXq1EGdOnUKuztRsZWWlobffvsNS5YsQXx8PACga8euqJVcC/Xr14eqiPdQICIiouKhUMX8ixcvcPToUURFRSEjIyNX38qVK2USjKioZWdnY9+BfXBf6I7wx58ubrW1tcWKFSvQuXNnBacjIiIi+pLUxfz58+fRu3dv1KhRA48ePYKVlRWePXsGQRDQsGFDeWQkkrsLFy5g3vx5+GXXL/A84QmXLi5wc3XDiBEjeDdjIiIiKrakvgB27ty5cHR0xL1791CmTBkcOnQI0dHRaNu2LQYOHCiPjERy8+DBA/Tq1QsdOnTItUJTcHAwRo8ezUKeiIiIijWpi/mHDx9i1KhRAAA1NTWkpqZCV1cXHh4eWL58ucwDEsmSIAjIEmfhZcxLTJo0CdbW1jh27BhUVVUxceJEyXba2toKTElERERUMFIX8zo6OpJ58qampoiIiJD0vX//XnbJiOQgITkBfs/8cDX1Knbu2gmxWIy+ffvi/v37vN6DiIiIlI7UxXzz5s0REBAAAOjevTtmz56NJUuW4Mcff0Tz5s1lHpBIFrKzs7Ft2zbY2thK2ho3boxLly7Bz89PIUurEhEREX0vqS+AXblyJZKSkgAACxcuRFJSEvbv3w9LS0uObFKxIwgCTp06BWdnZ4SGhkJTS1PSd+HCBairqiswHREREdH3kaqYz87OxosXL2BjYwPg05SbTZs2ySUYUWEJgoBsIRt3796Fi5MLzp07BwAwNDSEq5urZDuRSKSoiEREREQyIdU0G1VVVXTp0gWxsbHyykP03aJeRMHvmR8i9CNw+cplaGhoYPbs2YiIiMDPP/+s6HhEREREMiP1nHkrKys8ffpUHlmIvktCQgLmzZsHG1sbSduAAQPw6NEjeHt7w9DQUIHpiIiIiGRP6mJ+8eLFcHR0xLFjxxATE4OEhIRcP0RFLTMzE+vXr4eFhQWWLl2K9LR0SZ+vry/Mzc0VmI6IiIhIfqS+ALZ79+4AgN69e+eacywIAkQiEbKzs2WXjigPOevFHzt2DHOc5yAsLAwAULt2bSzzWoZMZCo4IREREZH8SV3MX7hwQR45iKRy/cZ1vKjwArAGnkc/R4UKFbBw4UKMHz8eIlUR/J75KToiERERkdxJXcy3bdtWHjmICuTp06eYO3cujvxzBLtCdwEAnJ2d4fiLI/T19QEAWeIsRUYkIiIiKjJSz5kHgMuXL2PEiBFo0aIFXr58CQDYtWuX5GZSRLL28eNH/PLLL6hTpw4OHDiQa4rXggULJIU8ERERUWkidTF/6NAhODg4QEtLC0FBQUhP/3SxYXx8PDw9PWUekEovQRCQnJqMlatXombNmli1ahUyMzPRpUsXXL16VdHxiIiIiBSuUKvZbNq0CVu2bIG6+v/untmyZUsEBQXJNByVXmKxGPsO7MOJmBMw622G1PRU2NjY4PTp0zh9+jSsra0VHZGIiIhI4aQu5h8/fow2bdp80W5gYIC4uDhZZKJS7uLFi2jWrBnGjh0radu0aROCgoLQpUsXBSYjIiIiKl6kLuZNTEwQHh7+RXtAQABq1Kghk1BUOj169Ah9+vRBu3btcOvWLejo6kj6RowYAVVVVQWmIyIiIip+pC7mJ0yYgBkzZiAwMBAikQivXr3C7t274ejoiClTpsgjI5Vwr1+/xtTpU9GoSSMcPXoUqqqq+OmnnxB6L1TR0YiIiIiKNamXppwzZw7EYjE6duyIlJQUtGnTBpqamnB0dMTPP/8sj4xUQqWkpGDlypVYtXYVNl3fhHYz22HfnH1Y4rEEderU+bTEZLKiUxIREREVX1IX8yKRCL/++iucnJwQHh6OpKQk1KtXD7q6uvLIRyVQdnY2du7cCVdXV7x69QqaWpqSvv379kNNRep/LYmIiIhKJamn2fz5559ISUmBhoYG6tWrh6ZNm7KQp28SBAFZ4iycOnMKdnZ2GDduHF69eoXq1avD19dX0fGIiIiIlJLUxfysWbNgbGyMYcOG4cSJE8jOzpZHLiphgu8Gw++ZHxItEhEWHoayZcvC29sbjx49woABAxQdj4iIiEgpSV3Mx8TEYN++fRCJRBg0aBBMTU0xdepU3sSHvurFixcYO3YsWrRoIWn7+eefERERgdmzZ0NTUzOfvYmIiIgoP1IX82pqaujZsyd2796Nt2/fYtWqVXj27Bnat2+PmjVryiMjKaGEhAT8+uuvqFWrFnx9fSEIgqRv6dKlMDIyUmA6IiIiopLhu6401NbWhoODA2JjY/H8+XM8fPhQVrlICQmCgLSMNOzw3QF3V3e8e/cOANCqVSt4eXvhBV4oOCERERFRySL1yDzwaUnB3bt3o3v37qhcuTJWr16Nfv364f79+7LOR0pCEAQc+ecIjr08hgqdKyAhKQG1atWCn58fLl26hCZNmig6IhEREVGJI/XI/JAhQ3Ds2DFoa2tj0KBBcHV1hb29vTyykZK4ceMGHB0dcePWDewK3QUA8Fnpg4njJkJdXf3TRkI+ByAiIiKiQpG6mFdVVcWBAwfg4OAAVVXVXH2hoaGwsrKSWTgq3iIjIzFv3jzs27cPAKBvqC/pmzRxEteLJyIiIpIzqafZ5EyvySnkExMTsXnzZjRt2hS2trYyD0jFiyAIePfhHZxcnFCnTh3JykajR49GSHCIouMRERERlSqFmjMPAJcuXcLo0aNhamoKb29vdOjQAdevX5dlNipm0tPTsXrtavjH+6PppKYQqYrQqVMnBAUFwdfXF1WqVFF0RCIiIqJSRap5EK9fv4avry+2bduGhIQEDBo0COnp6Th8+DDq1asnr4ykYIIg4MCBA5g7dy5evX6FXb0+zYv38/ND1y5dIRKJFJyQiIiIqHQq8Mh8r169ULt2bdy9exerV6/Gq1ev8Ntvv33Xyd3d3SESiXL91KlT57uOSbJ1+fJlNG/eHEOGDEFkZCRMTEwkfZ07d2YhT0RERKRABS7mT548iXHjxmHhwoXo0aPHFxe/Flb9+vURExMj+QkICJDJcanwBEHAw7CHGDB4ANq0aYMbN25AR0cHHh4eCLnLefFERERExUWBi/mAgAAkJiaiUaNGaNasGdatW4f3799/dwA1NTWYmJhIfsqXL//dxywKgiAgIfY1rp7ZhuS4d3LtK8pzvXv3DjNmzcBt3Eaj2Y1QVl8TkyZNQnh4OFxdXaGjrYP0rHSEvw9HSvyX77+s+4ryXN/qQ0oKcOPGp3/Ku68oz6UsfcUlR1H3FZcc3+ojIiLFEKSUlJQkbNu2TWjZsqWgrq4uqKioCKtXrxYSEhKkPZTg5uYmaGtrC6ampoK5ubkwbNgw4fnz53lun5aWJsTHx0t+oqOjBQBCfHy81Of+XvEfYwRTH1MB7hAsZmsIyXHv5NZXFOd69+q5sGTJEkFPT0/Q19OQ9NX8RV2ur03Rr7ugfUJysiBYWgoC8Omfycny6yvKcylLX3HJwdf99T4iIpK5+Pj4AtW5Uq9mo6Ojgx9//BEBAQG4d+8eZs+ejWXLlsHY2Bi9e/eW6ljNmjWDr68vTp06hY0bNyIyMhKtW7dGYmLiV7dfunQpDAwMJD9mZmbSxpeZ0JvHEZMYAwAI18tAaOA/cusrinP17dIAv/76KxITE9GmkZmkL0I/U66vTdGvu6B9CA0Fnjz59PjJk0/P5dVXlOdSlr7ikoOv++t9RESkOLL45JCVlSX4+fkJvXr1+q7jxMbGCvr6+sLWrVu/2s+Refmcq9p0CGXUIVStWlXYvXu3kPDhtWAxW0OAOwTL/4zMJ8W+LbK+ojzXt/o4GssRar5ujswTERWlgo7My6SYl6XGjRsLc+bMKdC2BX2R8pCZnSnserxL8Az0FOI/xsi1T9bHu3v3rtCzd09JX5VK5QQvLy8hNTVVsk1y3Dsh8PT23AWtAvqKS45PncmCEBj49SJG1n1FeS5l6SsuOYq6r7jk+FYfERHJVEHrXJEgCIJivxv4n6SkJFStWhXu7u6YPn36N7dPSEiAgYEB4uPjoa+vXwQJ/ydLnAW/Z34AgH7V+0FNRU1ufbI63puYN1iwYAF8fX2hrqmOXaGf1otvq98WxuWNZfFrISIiIiIZKGidK9VNo2TN0dERvXr1QrVq1fDq1Su4ublBVVUVQ4cOVWSsEsljkQe8l3sjNTUVANC7Z2/YCraoYV4DqiLZLDNKREREREVLocX8ixcvMHToUHz48AEVKlRAq1atcP36dVSoUEGRsUqMrKwsyWOv5V5IT01HixYt4O3tDXt7ewUmIyIiIiJZkHo1G1nat28fXr16hfT0dLx48QL79u1DzZo1FRmpRBAEAf/88w+aNm0qaatRowYOHTqEgIAAFvJEREREJYRCR+ZJ9m7dugVHR0dcvHgRADCjzQzMmzcPd27fgaampoLTEREREZEssZgvQX788Ufs2vnpolZNTU3MnDkTc+fOhYGBgYKTEREREZE8sJhXcvHx8ZLHBw4cAACMHDkSixcvRtWqVRUVi4iIiIiKgELnzFPhZWRkYPXq1bCyspK0tW3bFrdv38Yff/zBQp6IiIioFGAxr2QEQcBff/2FunXrYtasWXj96jU8B3pC+7E2Th4/iYYNGyo6IhEREREVEU6zUTIdOnZAwMUAAICJiQkWLVqEMWPGQE2NbyURERFRacMKUAmER4QD/39fp5s3bkJbWxvOzs6YPXs2dHV1FRuOiIiIiBSG02yKsXfv3uHnn39G40aNJW1jxo5BeHg43NzcWMgTERERlXIs5ospHx8fWFhYYN26dUhOTMafs/9EndQ62LhuI0xNTRUdj4iIiIiKAU6zKUbEYrHksZubG9JT02FnZwdvb2906NBBgcmIiIiIqDjiyHwxcf78ebRu3VryvEqVKvjjjz9w69YtFvJERERE9FUcmVew0NBQODs74+TJk9DU0pS037lzB3o6egpMRkRERETFHYt5BZo2bRq2/L4FYrEYampqmDh+Ilrrtkb58uWhKlJVdDwiIiIiKuZYzBexpOQkyWNfX1+IxWL88MMPWLZsGSwtLRWYjIiIiIiUDefMF5GsrCxs3rwZtja2krYmTZsgICAAhw4dYiFPRERERFLjyLycCYKA48ePw9nZGQ8ePMg1L/7f8/9CXVVdgemIiIiISJmxmJezHj164OzpswAAIyMjLFiwAD0q9YCGhgbnxRMRERHRd2ExLwdRUVGSx5cuXYKmpiZmzJiBuXPnomzZsooLRkREREQlCufMy1BcXBxcXFxgZ2cnaRs8eDAeP36M5cuXs5AnIiIiIpliMS8DGRkZWLNmDSwsLODl5YWEuARsnrIZ1T5Wg+92X1SrVk3REYmIiIioBOI0Gxlo1LgRHt1/BACoW7cuvLy80KNHD4hEIgUnIyIiIqKSjCPzhXTv3j3J48inkahYsSI2bdqEu3fvomfPnizkiYiIiEjuODJfSGKxWPJ4ztw5mD1zNvT09BSYiIiIiIhKG47MF1LDBg2ReCkRzTWbw22+Gwt5IiIiIipyHJkvJJFIhB/H/KjoGERERERUinFknoiIiIhISbGYJyIiIiJSUizmiYiIiIiUFIt5IiIiIiIlxWKeiIiIiEhJsZgnIiIiIlJSLOaJiIiIiJQUi3kiIiIiIiXFYp6IiIiISEmxmCciIiIiUlIs5omIiIiIlBSLeSIiIiIiJcVinoiIiIhISbGYJyIiIiJSUmqKDvA9BEEAACQkJCg4CRERERGR7OTUtzn1bl6UuphPTEwEAJiZmSk4CRERERGR7CUmJsLAwCDPfpHwrXK/GBOLxXj16hX09PQgEokUHadESEhIgJmZGaKjo6Gvr6/oOJQHvk/Kge+TcuD7pBz4PikPvleyIQgCEhMTUalSJaio5D0zXqlH5lVUVFClShVFxyiR9PX1+QeoBPg+KQe+T8qB75Ny4PukPPhefb/8RuRz8AJYIiIiIiIlxWKeiIiIiEhJsZinXDQ1NeHm5gZNTU1FR6F88H1SDnyflAPfJ+XA90l58L0qWkp9ASwRERERUWnGkXkiIiIiIiXFYp6IiIiISEmxmCciIiIiUlIs5omIiIiIlBSL+VLE3d0dIpEo10+dOnXy3eevv/5CnTp1UKZMGVhbW+PEiRNFlLb0kvZ92rJlC1q3bg1DQ0MYGhqiU6dOuHHjRhEmLp0K8/eUY9++fRCJROjbt698Q1Kh3qe4uDhMnToVpqam0NTURK1atfjfviJQmPdq9erVqF27NrS0tGBmZoZZs2YhLS2tiBKXXi9fvsSIESNQrlw5aGlpwdraGrdu3cp3H39/fzRs2BCampqwsLCAr69v0YQtBZT6DrAkvfr16+PcuXOS52pqef8rcPXqVQwdOhRLly5Fz549sWfPHvTt2xdBQUGwsrIqirilljTvk7+/P4YOHYoWLVqgTJkyWL58Obp06YL79++jcuXKRRG31JLmfcrx7NkzODo6onXr1vKMRp+R5n3KyMhA586dYWxsjIMHD6Jy5cp4/vw5ypYtWwRJSZr3as+ePZgzZw62b9+OFi1aICwsDGPGjIFIJMLKlSuLIm6pFBsbi5YtW6J9+/Y4efIkKlSogCdPnsDQ0DDPfSIjI9GjRw9MnjwZu3fvxvnz5zF+/HiYmprCwcGhCNOXTCzmSxk1NTWYmJgUaNs1a9aga9eucHJyAgAsWrQIZ8+exbp167Bp0yZ5xiz1pHmfdu/enev51q1bcejQIZw/fx6jRo2SRzz6f9K8TwCQnZ2N4cOHY+HChbh8+TLi4uLkF44kpHmftm/fjo8fP+Lq1atQV1cHAFSvXl2O6ehz0rxXV69eRcuWLTFs2DAAn96noUOHIjAwUJ4RS73ly5fDzMwMO3bskLSZm5vnu8+mTZtgbm4OHx8fAEDdunUREBCAVatWsZiXAU6zKWWePHmCSpUqoUaNGhg+fDiioqLy3PbatWvo1KlTrjYHBwdcu3ZN3jFLPWnep/9KSUlBZmYmjIyM5JiQAOnfJw8PDxgbG2PcuHFFlJAA6d6no0ePwt7eHlOnTkXFihVhZWUFT09PZGdnF2Hi0kua96pFixa4ffu2ZFrh06dPceLECXTv3r2o4pZKR48eRePGjTFw4EAYGxvDzs4OW7ZsyXcf1hPyxWK+FGnWrBl8fX1x6tQpbNy4EZGRkWjdujUSExO/uv3r169RsWLFXG0VK1bE69eviyJuqSXt+/RfLi4uqFSp0hf/4STZkvZ9CggIwLZt2775Pz2SLWnfp6dPn+LgwYPIzs7GiRMn4OrqCh8fHyxevLiIk5c+0r5Xw4YNg4eHB1q1agV1dXXUrFkT7dq1w7x584o4eeny9OlTbNy4EZaWljh9+jSmTJmC6dOnY+fOnXnuk1c9kZCQgNTUVHlHLvkEKrViY2MFfX19YevWrV/tV1dXF/bs2ZOrbf369YKxsXFRxKP/96336XNLly4VDA0NhZCQkCJIRp/L731KSEgQqlevLpw4cULSNnr0aKFPnz5FmJAE4dt/T5aWloKZmZmQlZUlafPx8RFMTEyKKiL9v2+9VxcuXBAqVqwobNmyRbh7967w999/C2ZmZoKHh0cRJy1d1NXVBXt7+1xtP//8s9C8efM897G0tBQ8PT1ztR0/flwAIKSkpMglZ2nCOfOlWNmyZVGrVi2Eh4d/td/ExARv3rzJ1fbmzRup5gjT9/vW+5TD29sby5Ytw7lz52BjY1NE6ShHfu9TREQEnj17hl69eknaxGIxgE9zhB8/foyaNWsWWdbS7Ft/T6amplBXV4eqqqqkrW7dunj9+jUyMjKgoaFRVFFLvW+9V66urhg5ciTGjx8PALC2tkZycjImTpyIX3/9FSoqnHwgD6ampqhXr16utrp16+LQoUN57pNXPaGvrw8tLS255CxN+G96KZaUlISIiAiYmpp+td/e3h7nz5/P1Xb27FnY29sXRTz6f996nwDAy8sLixYtwqlTp9C4ceMiTEc58nuf6tSpg3v37iE4OFjy07t3b7Rv3x7BwcEwMzNTQOLS6Vt/Ty1btkR4eLjkwxYAhIWFwdTUlIV8EfvWe5WSkvJFwZ7zIUwQBLnnK61atmyJx48f52oLCwtDtWrV8tyH9YScKfqrASo6s2fPFvz9/YXIyEjhypUrQqdOnYTy5csLb9++FQRBEEaOHCnMmTNHsv2VK1cENTU1wdvbW3j48KHg5uYmqKurC/fu3VPUSygVpH2fli1bJmhoaAgHDx4UYmJiJD+JiYmKegmlgrTv039xmk3RkPZ9ioqKEvT09IRp06YJjx8/Fo4dOyYYGxsLixcvVtRLKDWkfa/c3NwEPT09Ye/evcLTp0+FM2fOCDVr1hQGDRqkqJdQKty4cUNQU1MTlixZIjx58kTYvXu3oK2tLfz555+SbebMmSOMHDlS8vzp06eCtra24OTkJDx8+FBYv369oKqqKpw6dUoRL6HE4TSbUuTFixcYOnQoPnz4gAoVKqBVq1a4fv06KlSoAACIiorKNcrRokUL7NmzB/Pnz8e8efNgaWmJw4cPc415OZP2fdq4cSMyMjIwYMCAXMdxc3ODu7t7UUYvVaR9n0gxpH2fzMzMcPr0acyaNQs2NjaoXLkyZsyYARcXF0W9hFJD2vdq/vz5EIlEmD9/Pl6+fIkKFSqgV69eWLJkiaJeQqnQpEkT+Pn5Ye7cufDw8IC5uTlWr16N4cOHS7aJiYnJtRKRubk5jh8/jlmzZmHNmjWoUqUKtm7dymUpZUQkCPwuioiIiIhIGXHYiIiIiIhISbGYJyIiIiJSUizmiYiIiIiUFIt5IiIiIiIlxWKeiIiIiEhJsZgnIiIiIlJSLOaJiIiIiJQUi3kiolJm8+bNMDMzg4qKClavXg13d3c0aNBA0bEKrV27dpg5c6aiYxARKQSLeSIiGRozZgz69u1b5Of19fVF2bJlv7ldQkICpk2bBhcXF7x8+RITJ06USx5l/4BARKQs1BQdgIiIik5UVBQyMzPRo0cPmJqaKjoOERF9J47MExHJUbt27TB9+nQ4OzvDyMgIJiYmcHd3z7WNSCTCxo0b0a1bN2hpaaFGjRo4ePCgpN/f3x8ikQhxcXGStuDgYIhEIjx79gz+/v4YO3Ys4uPjIRKJIBKJvjgH8Gn03traGgBQo0YNyf7/JRaL4eHhgSpVqkBTUxMNGjTAqVOncm3j4uKCWrVqQVtbGzVq1ICrqysyMzMl51m4cCFCQkIkeXx9fb84z5kzZ1CmTJlcrwsAZsyYgQ4dOgAAPnz4gKFDh6Jy5crQ1taGtbU19u7dm8dv+3+/z8OHD+dqK1u2bK4M0dHRGDRoEMqWLQsjIyP06dPnq78LIqLijsU8EZGc7dy5Ezo6OggMDISXlxc8PDxw9uzZXNu4urqif//+CAkJwfDhwzFkyBA8fPiwQMdv0aIFVq9eDX19fcTExCAmJgaOjo5fbDd48GCcO3cOAHDjxg3ExMTAzMzsi+3WrFkDHx8feHt74+7du3BwcEDv3r3x5MkTyTZ6enrw9fXFgwcPsGbNGmzZsgWrVq2SnGf27NmoX7++JM/gwYO/OE/Hjh1RtmxZHDp0SNKWnZ2N/fv3Y/jw4QCAtLQ0NGrUCMePH0doaCgmTpyIkSNH4saNGwX63XxNZmYmHBwcoKenh8uXL+PKlSvQ1dVF165dkZGRUejjEhEpAot5IiI5s7GxgZubGywtLTFq1Cg0btwY58+fz7XNwIEDMX78eNSqVQuLFi1C48aN8dtvvxXo+BoaGjAwMIBIJIKJiQlMTEygq6v7xXZaWlooV64cAKBChQowMTGBqqrqF9t5e3vDxcUFQ4YMQe3atbF8+XI0aNAAq1evlmwzf/58tGjRAtWrV0evXr3g6OiIAwcOSM6jq6sLNTU1SR4tLa0vzqOqqoohQ4Zgz549krbz588jLi4O/fv3BwBUrlwZjo6OaNCgAWrUqIGff/4ZXbt2lZyrMPbv3w+xWIytW7fC2toadevWxY4dOxAVFQV/f/9CH5eISBE4Z56ISM5sbGxyPTc1NcXbt29ztdnb23/xPDg4WN7RvpCQkIBXr16hZcuWudpbtmyJkJAQyfP9+/dj7dq1iIiIQFJSErKysqCvry/1+YYPH47mzZvj1atXqFSpEnbv3o0ePXpILubNzs6Gp6cnDhw4gJcvXyIjIwPp6enQ1tYu9GsMCQlBeHg49PT0crWnpaUhIiKi0MclIlIEFvNERHKmrq6e67lIJIJYLC7w/ioqn75EFQRB0pYzP10Rrl27huHDh2PhwoVwcHCAgYEB9u3bBx8fH6mP1aRJE9SsWRP79u3DlClT4Ofnl2tu+4oVK7BmzRqsXr0a1tbW0NHRwcyZM/OdDiMSiXL9roDcv6+kpCQ0atQIu3fv/mLfChUqSP0aiIgUicU8EVExcP36dYwaNSrXczs7OwD/KzBjYmJgaGgIAF+M2mtoaCA7O/u7c+jr66NSpUq4cuUK2rZtK2m/cuUKmjZtCgC4evUqqlWrhl9//VXS//z580LnGT58OHbv3o0qVapARUUFPXr0yHXePn36YMSIEQA+XZz7f+3dMUhqURzH8Z9DBM7daFEavENBEg4OgVAtNRVUEOjYkIMYloFDUUENBi3R3NCi0iAIQiBBFDhElLRUSggRhOAoUlNveoIv6vEcXh34frbD5Z57uNOP//lzTrlc1uDg4KfzWZall5eX1rhSqajZbLbGPp9PmUxGvb29He0mAMBPQs88APwAx8fHOjw8VLlc1sbGhi4vLxWJRCRJHo9HLpdLm5ubqlQqyufzH6rg/f39ajQaOj09Vb1ebwuv/2p1dVXJZFKZTEYPDw9KJBIqlUpaWlqSJNm2raenJ6XTaT0+Pmp/f1/ZbPbDeqrVqkqlkur1ut7e3j79XigU0vX1tXZ2djQ3N6fu7u7WM9u2VSgUVCwWdXd3p8XFRdVqtS/XPz4+roODA93c3Ojq6krhcLhtdyQUCqmnp0fT09O6uLhQtVrV2dmZotGonp+fO/llAPBtCPMA8ANsbW0pnU7L6/Xq6OhIqVSqVX3u6upSKpXS/f29vF6vksmktre3294fGRlROBzW/Py8LMvS7u5ux2uJRqNaXl7WysqKhoaGdHJyolwuJ9u2JUlTU1OKxWKKRCIaHh5WsVjU+vp62xyzs7OanJzU2NiYLMv68jhJj8cjv9+v29vb1ik2v62trcnn82liYkKjo6Pq6+v766Vce3t7crlcCgQCCgaDisfjbT32TqdT5+fncrvdmpmZ0cDAgBYWFvT6+kqlHoBxHO9/NhYCAP4rh8OhbDb7LTfHAgDMRmUeAAAAMBRhHgAAADAUp9kAwDej2xEA0Ckq8wAAAIChCPMAAACAoQjzAAAAgKEI8wAAAIChCPMAAACAoQjzAAAAgKEI8wAAAIChCPMAAACAoQjzAAAAgKF+AXweXIAyt9GkAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvMAAAHACAYAAAAvA+dJAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAhnxJREFUeJzs3XdYk9ffBvA7TNmCiqCiouBkiBv3xj3q3lp3tY7KUCuCqKgIrrrqxFpntah1j4qKAweC4kIQBRU3e0Oe9w9f8pMqSDAhBO7PdXE1OecZd0hpvzk5z3lEgiAIICIiIiIipaOi6ABERERERFQ4LOaJiIiIiJQUi3kiIiIiIiXFYp6IiIiISEmxmCciIiIiUlIs5omIiIiIlBSLeSIiIiIiJcVinoiIiIhISakpOsD3EIvFePXqFfT09CASiRQdh4iIiIhIJgRBQGJiIipVqgQVlbzH35W6mH/16hXMzMwUHYOIiIiISC6io6NRpUqVPPuVupjX09MD8OlF6uvrKzgNEREREZFsJCQkwMzMTFLv5kWpi/mcqTX6+vos5omIiIioxPnWVHJeAEtEREREpKRYzBMRERERKSkW80RERERESkqp58wXhCAIyMrKQnZ2tqKjEFEBqKqqQk1NjcvNEhERFUCJLuYzMjIQExODlJQURUchIiloa2vD1NQUGhoaio5CRERUrJXYYl4sFiMyMhKqqqqoVKkSNDQ0ONJHVMwJgoCMjAy8e/cOkZGRsLS0zPdGGURERKVdiS3mMzIyIBaLYWZmBm1tbUXHIaIC0tLSgrq6Op4/f46MjAyUKVNG0ZGIiIiKrRI/5MVRPSLlw79bIiKiguH/MYmIiIiIlBSLeSIiIiIiJcVinuRKJBLh8OHDio5BREREVCKxmC9mRCJRvj/u7u6KjkhERERExUSJXc1GWcXExEge79+/HwsWLMDjx48lbbq6upLHgiAgOzsbamp8G4mIiIhkRRAEZAvZSEpOgoGuQbFe3rxUjcwLgoDk5OQi/xEEocAZTUxMJD8GBp/+5cl5/ujRI+jp6eHkyZNo1KgRNDU1ERAQgDFjxqBv3765jjNz5ky0a9dO8lwsFmPp0qUwNzeHlpYWbG1tcfDgwTxzzJs3D82aNfui3dbWFh4eHgCAmzdvonPnzihfvjwMDAzQtm1bBAUF5XlMf39/iEQixMXFSdqCg4MhEonw7NkzSVtAQABat24NLS0tmJmZYfr06UhOTs7/F0dEREQkIyH3QuD3zA9n351FljhL0XHyVaqK+ZSUFOjq6hb5j6zvQDtnzhwsW7YMDx8+hI2NTYH2Wbp0Kf744w9s2rQJ9+/fx6xZszBixAhcvHjxq9sPHz4cN27cQEREhKTt/v37uHv3LoYNGwYASExMxOjRoxEQEIDr16/D0tIS3bt3R2JiYqFfW0REBLp27Yr+/fvj7t272L9/PwICAjBt2rRCH5OIiIioIF68eIGxY8fC3t5e0vbkyRMFJvo2zs9QQh4eHujcuXOBt09PT4enpyfOnTsn+ZezRo0aCAgIwO+//462bdt+sU/9+vVha2uLPXv2wNXVFQCwe/duNGvWDBYWFgCADh065Npn8+bNKFu2LC5evIiePXsW6rUtXboUw4cPx8yZMwEAlpaWWLt2Ldq2bYuNGzfyBkJEREQkcwkJCfDy8sLKlSuRmpoKTS1NSV+tWrUUmOzbSlUxr62tjaSkJIWcV5YaN24s1fbh4eFISUn54gNARkYG7Ozs8txv+PDh2L59O1xdXSEIAvbu3YtffvlF0v/mzRvMnz8f/v7+ePv2LbKzs5GSkoKoqCjpXtBnQkJCcPfuXezevVvSJggCxGIxIiMjUbdu3UIfm4iIiCiHIAhIy0iD705fuM13w7t37wAArVq1gpe3F17ghYITFkypKuZFIhF0dHQUHeO7/fc1qKiofDEvPzMzU/I45wPM8ePHUbly5VzbaWpqIi9Dhw6Fi4sLgoKCkJqaiujoaAwePFjSP3r0aHz48AFr1qxBtWrVoKmpCXt7e2RkZHz1eDl39fw86+c5c7JOmjQJ06dP/2L/qlWr5pmViIiIqKAEQcCRf44g0yoT5TuVR8LMBNSqVQvLly9Hnz59kC1k48UzFvNURCpUqIDQ0NBcbcHBwVBXVwcA1KtXD5qamoiKivrqlJq8VKlSBW3btsXu3buRmpqKzp07w9jYWNJ/5coVbNiwAd27dwcAREdH4/379/nmBD6t2GNoaCjJ+bmGDRviwYMHkqk8RERERLJ08+ZNODo6IvBmIHaF7gIA+Kz0wcRxEyW1Ewq+donClaoLYEuqDh064NatW/jjjz/w5MkTuLm55Sru9fT04OjoiFmzZmHnzp2IiIhAUFAQfvvtN+zcuTPfYw8fPhz79u3DX3/9heHDh+fqs7S0xK5du/Dw4UMEBgZi+PDh0NLSyvNYFhYWMDMzg7u7O548eYLjx4/Dx8cn1zYuLi64evUqpk2bhuDgYDx58gRHjhzhBbBERET0XSIjIzF06FA0bdoUly5dgmaZ/81OmDRx0v8KeSXDYr4EcHBwgKurK5ydndGkSRMkJiZi1KhRubZZtGgRXF1dsXTpUtStWxddu3bF8ePHYW5unu+xBwwYgA8fPiAlJeWL5S+3bduG2NhYNGzYECNHjsT06dNzjdz/l7q6Ovbu3YtHjx7BxsYGy5cvx+LFi3NtY2Njg4sXLyIsLAytW7eGnZ0dFixYgEqVKkn3SyEiIqJSTxAEvP/4Hs5znFGnTh3s27cPIpEIo0ePRkhwiKLjyYRIkGYR9GImISEBBgYGiI+Ph76+fq6+tLQ0REZGwtzcnCugECkZ/v0SEdH3Sk9Px4ZNG1ClVxUAwEirkWjdsjVWrFiBBg0aIEucBb9nfgCAftX7QU3lf7PP8+srKvnVuZ/jyDwRERERlRiCIGD//v2oW7cu5s6dK2n38/PDmTNn0KBBA8WFkwMW80RERERUIly+fBnNmzfHkCFDEBkZCRMTE0lf586dIRKJFJhOPljMExEREZHSEgQBDx8/xIDBA9CmTRvcuHEDOjo68PDwQMjdkjEvPj8s5omIiIhIKb19+xbTZ05HqHooBi8dDC0dLUyaNAnh4eFwdXWFjrby31/oW7jOPBEREREplZSUFKxevRrLli1DRlYG2sxoAwC4ceMGrOpZKThd0WIxT0RERETFmiAIyBaykZ2djb2792L+/Pl4+fIlAKB5i+aS7erUqaOoiArDaTZEREREVKxlC9nwe+aHo9FHMfmnyXj58iWqVq2K3bt34+LFi4qOp1As5omIiIio2Lp37x769esnea6vrw8vLy88fvwYw4YNg4pK6S5nS/erp0Jp164dZs6cqegYREREVIK9fPkS48aNQ4MGDXD27FlJe2hoKJycnHhTwf/HYr4YGjNmDEQiEUQiEdTV1WFubg5nZ2ekpaUpOlqBuLu7l7gbMkjr2bNnEIlECA4OVnQUqfn7+6Nhw4bQ1NSEhYUFfH19v7l9nz59YGpqCh0dHTRo0AC7d+/Otc2WLVvQunVrGBoawtDQEJ06dcKNGzfk+CqIiEjZCIKALHEWYhNi4erqCktLS2zfvh1isTjXyLyRkZECUxY/LOaLqa5duyImJgZPnz7FqlWr8Pvvv8PNzU3RsUoFQRCQlZWl6BgFlp2dDbFY/EV7RkaG1MeKjIxEjx490L59ewQHB2PmzJkYP348Tp8+nec+V69ehY2NDQ4dOoS7d+9i7NixGDVqFI4dOybZxt/fH0OHDsWFCxdw7do1mJmZoUuXLpKLl4iIiNIz0+H3zA/n3p/DCp8VSE1NRYsWLXD16lXs2rVL0fGKLRbzxZSmpiZMTExgZmaGvn37olOnTrm+YkpPT8f06dNhbGyMMmXKoFWrVrh586ak39fXF2XLls11zMOHD+e681nOCPquXbtQvXp1GBgYYMiQIUhMTJRsk5ycjFGjRkFXVxempqbw8fHJN7evry8WLlyIkJAQybcLOSO7UVFR6NOnD3R1daGvr49BgwbhzZs3eR4rZ3T777//Rvv27aGtrQ1bW1tcu3Yt13YBAQFo3bo1tLS0YGZmhunTpyM5OVnSv2vXLjRu3Bh6enowMTHBsGHD8PbtW0m/v78/RCIRTp48iUaNGkFTUxMBAQEQi8VYunQpzM3NoaWlBVtbWxw8eFCyX2xsLIYPH44KFSpAS0sLlpaW2LFjBwDA3NwcAGBnZweRSIR27drl+3v7XHp6OhwdHVG5cmXo6OigWbNm8Pf3z/U7Llu2LI4ePYp69epBU1MTUVFRqF69OhYtWoRRo0ZBX18fEydOLPA5c2zatAnm5ubw8fFB3bp1MW3aNAwYMACrVq3Kc5958+Zh0aJFaNGiBWrWrIkZM2aga9eu+PvvvyXb7N69Gz/99BMaNGiAOnXqYOvWrRCLxTh//rzUGYmIqGQRBAH//PMPmjVrJmmrUaMGDh06hICAANjb2yswXfHHYr6gUlKAGzc+/bOIhYaG4urVq9DQ0JC0OTs749ChQ9i5cyeCgoJgYWEBBwcHfPz4UapjR0RE4PDhwzh27BiOHTuGixcvYtmyZZJ+JycnXLx4EUeOHMGZM2fg7++PoKCgPI83ePBgzJ49G/Xr10dMTAxiYmIwePBgiMVi9OnTBx8/fsTFixdx9uxZPH36FIMHD/5mxl9//RWOjo4IDg5GrVq1MHToUMnIeUREBLp27Yr+/fvj7t272L9/PwICAjBt2jTJ/pmZmVi0aBFCQkJw+PBhPHv2DGPGjPniPHPmzMGyZcvw8OFD2NjYYOnSpfjjjz+wadMm3L9/H7NmzcKIESMkV827urriwYMHOHnyJB4+fIiNGzeifPnyACCZQnLu3DnExMTkKmy/Zdq0abh27Rr27duHu3fvYuDAgejatSuePHki2SYlJQXLly/H1q1bcf/+fRgbGwMAvL29YWtrizt37sDV1RUAUL9+fejq6ub5061bN8lxr127hk6dOuXK4+Dg8MUHqG+Jj4/P92vQlJQUZGZm8qtSIqJS7tatW2jfvj169+6Nx48f52r/4Ycfcg1CUh4EJRYfHy8AEOLj47/oS01NFR48eCCkpqZ+/4mSkwXB0lIQgE//TE7+/mPmY/To0YKqqqqgo6MjaGpqCgAEFRUV4eDBg4IgCEJSUpKgrq4u7N69W7JPRkaGUKlSJcHLy0sQBEHYsWOHYGBgkOu4fn5+wudvuZubm6CtrS0kJCRI2pycnIRmzZoJgiAIiYmJgoaGhnDgwAFJ/4cPHwQtLS1hxowZeeZ3c3MTbG1tc7WdOXNGUFVVFaKioiRt9+/fFwAIN27c+OpxIiMjBQDC1q1bv9jn4cOHgiAIwrhx44SJEyfm2u/y5cuCiopKnu/9zZs3BQBCYmKiIAiCcOHCBQGAcPjwYck2aWlpgra2tnD16tVc+44bN04YOnSoIAiC0KtXL2Hs2LH5Zr9z585X+/Py/PlzQVVVVXj58mWu9o4dOwpz584VBOHTewtACA4OzrVNtWrVhL59+35xzGfPnglPnjzJ8+fFixeSbS0tLQVPT89c+x8/flwAIKSkpBToNezfv1/Q0NAQQkND89xmypQpQo0aNfJ8j2T690tERMWKWCwWwp+GCyNHjxQACAAETU1NYd78ecKBiAPCgYgDQmZ2Zq59MrMzi01fUcmvzv0cbxpVEKGhQM6o6JMnn543bSrXU7Zv3x4bN25EcnIyVq1aBTU1NfTv3x/Ap9HozMxMtGzZUrK9uro6mjZtiocPH0p1nurVq0NPT0/y3NTUVDIFJSIiAhkZGbm+9jIyMkLt2rWlfj0PHz6EmZkZzMzMJG316tVD2bJl8fDhQzRp0iTPfW1sbHLlAz7dvrlOnToICQnB3bt3c11wKQgCxGIxIiMjUbduXdy+fRvu7u4ICQlBbGysZH55VFQU6tWrJ9mvcePGksfh4eFISUlB586dc2XJyMiAnZ0dAGDKlCno378/goKC0KVLF/Tt2xctWrSQ+nfzuXv37iE7Oxu1atXK1Z6eno5y5cpJnmtoaOT6vXztNeSoVq3ad2WSxoULFzB27Fhs2bIF9evX/+o2y5Ytw759++Dv78+VCIiISpnY2Fgs81qGxhMao9eCXjhw4AAGDRiExYsXo1KVSvB75qfoiEqHxXxBWFkBlpafCnlLy0/P5UxHRwcWFhYAgO3bt8PW1hbbtm3DuHHjCrS/iooKBEHI1ZaZmfnFdurq6rmei0Sir15MqUifZ8z5ui0nY1JSEiZNmoTp06d/sV/VqlWRnJwMBwcHODg4YPfu3ahQoQKioqLg4ODwxQWiOjo6ksdJSUkAgOPHj6Ny5cq5ttPU1AQAdOvWDc+fP8eJEydw9uxZdOzYEVOnToW3t3ehX2tSUhJUVVVx+/ZtqKqq5urT1dWVPNbS0vrqV4+fv4Yc9evXx/Pnz/M8Z+vWrXHy5EkAgImJyRfXMbx58wb6+vrQ0tLKN/vFixfRq1cvrFq1CqNGjfrqNt7e3li2bBnOnTv31Q8jRERUMmVkZGDDhg1YtGgRklOTsWvCpwtaAwIC0Ljhp4GoLLHyLD5RnCi8mH/58iVcXFxw8uRJpKSkwMLCAjt27PjqCKPCaGsDwcGfRuStrD49L0IqKiqYN28efvnlFwwbNgw1a9aEhoYGrly5Ihl1zczMxM2bNyXrv1eoUAGJiYlITk6WFHjSLpNYs2ZNqKurIzAwEFWrVgXw6RN1WFgY2rZtm+d+GhoayM7OztVWt25dREdHIzo6WjI6/+DBA8TFxeUaHZdWw4YN8eDBA8kHn/+6d+8ePnz4gGXLlknOe+vWrW8e9/MLS/N7rRUqVMDo0aMxevRotG7dGk5OTvD29pZc3/Df38O32NnZITs7G2/fvkXr1q2l2jcvJ06c+OoHuRyfF+n29vY4ceJErv6zZ89+8+Ijf39/9OzZE8uXL8/zwlsvLy8sWbIEp0+fLl5/30REJDeCIODgwYOYM2cOnj59CgBo0LCBpL+0L2UtCwq9ADY2NhYtW7aEuro6Tp48iQcPHsDHxweGhoaKjPV12tqfptYUcSGfY+DAgVBVVcX69euho6ODKVOmwMnJCadOncKDBw8wYcIEpKSkSEbumzVrBm1tbcybNw8RERHYs2fPN9cL/y9dXV2MGzcOTk5O+PfffxEaGooxY8Z8805r1atXR2RkJIKDg/H+/Xukp6ejU6dOsLa2xvDhwxEUFIQbN25g1KhRaNu27XcVdi4uLrh69SqmTZuG4OBgPHnyBEeOHJFcAFu1alVoaGjgt99+w9OnT3H06FEsWrTom8fV09ODo6MjZs2ahZ07dyIiIgJBQUH47bffsHPnTgDAggULcOTIEYSHh+P+/fs4duwY6tatCwAwNjaGlpYWTp06hTdv3iA+Pr5Ar6dWrVoYPnw4Ro0ahb///huRkZG4ceMGli5diuPHjxfqd1StWjVYWFjk+fP5Nw+TJ0/G06dP4ezsjEePHmHDhg04cOAAZs2aJdlm3bp16Nixo+T5hQsX0KNHD0yfPh39+/fH69ev8fr161wXYy9fvhyurq7Yvn07qlevLtkm5xsQIiIqWQRBwOWrl9GmfRsMGjQIT58+hYmJCbZs2SL1ogqUP4UW88uXL4eZmRl27NiBpk2bwtzcHF26dEHNmjUVGatYUlNTw7Rp0+Dl5YXk5GQsW7YM/fv3x8iRI9GwYUOEh4fj9OnTkg9CRkZG+PPPP3HixAlYW1tj7969cHd3l/q8K1asQOvWrdGrVy906tQJrVq1QqNGjfLdp3///ujatSvat2+PChUqYO/evRCJRDhy5AgMDQ3Rpk0bdOrUCTVq1MD+/fsL8+uQsLGxwcWLFxEWFobWrVvDzs4OCxYsQKVKlQB8Gjn39fXFX3/9hXr16mHZsmUFngazaNEiuLq6YunSpahbty66du2K48ePS5ad1NDQwNy5c2FjY4M2bdpAVVUV+/btA/Dp/Vq7di1+//13VKpUCX369AHwv2Uwnz17lud5d+zYgVGjRmH27NmoXbs2+vbti5s3b0q+HZEnc3NzHD9+HGfPnoWtrS18fHywdetWODg4SLZ5//49IiIiJM937tyJlJQULF26FKamppKfH374QbLNxo0bkZGRgQEDBuTa5numJFExk9+KX4Xpk/XxSkJfcclR1H3FJUch+wRBQELsa1w9sw3Jce8K1FeYfYpTX1hYGAYNHYTn5Z+ju1d3mBjrw93dHU+ePMH48eOhpqaG9Kx0hL8PR0r8+1zHzKu9uPUVK/K7Bvfb6tatK8ycOVMYMGCAUKFCBaFBgwbC5s2b89w+LS1NiI+Pl/xER0cXzWo2RDKyfft2wcLCQsjIyFB0lGKNf79KJr8VvwrTJ+vjlYS+4pKDr1vqvviPMYKpj6kAdwgWszWE5Lh33+wrzD7Foe9Z+ENh2rRpgpqamqCvp/FZn3qJet1FpaCr2Sh0ZP7p06fYuHEjLC0tcfr0aUyZMgXTp0+XTGP4r6VLl8LAwEDy8/nKKETK4MSJE/D09PziwmMipfa1Fb++p0/WxysJfcUlB1+31H2hN48jJjEGABCul4HQwH++2VeYfYpD3w8Odli3bh2ysrLQs339z/oyS9TrLnaK6MPFV6mrqwv29va52n7++WehefPmX92eI/NEpQP/fpUMR2M5Qs3XXSpH5mM/vJT0VZsOoYw6BDs7O+H8+fNCUuxbwWK2hgB3CJa/5B6Zz6uvMPsooq+oFHRkXqHFfNWqVYVx48blatuwYYNQqVKlAu1fZDeNIqIixb9fJZScLAiBgV+/qV5h+mR9vJLQV1xyFHVfcclRyL7M7Exh1+NdgmegpxD/MaZAfYXZp6j7zp49KzRp1kTSV7d2dWHXrl1Cdnb2/34lce+EwNPbv1oI59VXmH0U0VcUClrMiwThP4uRf8POnTtRvnx59OjRAwDg7OyMzZs3o169eti7d69UN6gZNmwYoqOjcfnyZUnbrFmzEBgYiKtXr35z/4SEBBgYGCA+Ph76+vq5+tLS0hAZGQlzc3PemIZIyfDvl4hKiixxluRGSP2q94Oaito3+wqzT1H1PXrwCM7Ozjh58iQ0tTSxK/TTevFdK3aFns7/bkJJ3y+/OvdzUs+Z9/T0lKxLfe3aNaxfvx5eXl4oX758ruXrCmLWrFm4fv06PD09ER4ejj179mDz5s2YOnWqtLGIiIiISI6mTZsGW1tbnDx5Empqapg0YRLa6LVBv+r9oKut++0DkFxIfdOo6OhoyQ16Dh8+jP79+2PixIlo2bIl2rVrJ9WxmjRpAj8/P8ydOxceHh4wNzfH6tWrMXz4cGljEREREZGMJSX/734gvr6+EIvF6N+/P5YuXQpLS0sFJqMcUo/M6+rq4sOHDwCAM2fOoHPnzgCAMmXKIDU1VeoAPXv2xL1795CWloaHDx9iwoQJUh+DiIiIiGQnKysLmzdvho21jaStabOmuHLlCg4ePMhCvhiRemS+c+fOGD9+POzs7BAWFobu3bsDAO7fv4/q1avLOh8RERERFRFBEHD8+HE4OzvjwYMHAIAFvRfAY6EH/M/7f/Mu8FT0pH5H1q9fD3t7e7x79w6HDh1CuXLlAAC3b9/G0KFDZR6QiIiIiIpGjx490LNnTzx48ABGRkZYvXo1QoJCMLD/QBbyxZTUI/Nly5bFunXrvmhfuHChTAJR8efu7o7Dhw8jODg4z23GjBmDuLg4HD58uMhyERERkfSio6Mljy9dugRNTU3MmDEDc+fORdmyZRUXjAqkUB+xLl++jBEjRqBFixZ4+fIlAGDXrl0ICAiQabjS6t27d5gyZQqqVq0KTU1NmJiYwMHBAVeuXJFsU716dYhEIohEImhra8Pa2hpbt26V+lxbtmxB69atYWhoCENDQ3Tq1Ak3btz47tewZs0a+Pr6Sp63a9cOM2fO/O7jFidpaWmYOnUqypUrB11dXfTv3x9v3rzJdx9BELBgwQKYmppCS0sLnTp1wpOcuwZ+5vjx42jWrBm0tLRgaGiIvn37yulVEBFRaRUXFwcXFxc0aNBA0jZkyBA8fvwYy5cvZyGvJKQu5g8dOgQHBwdoaWkhKCgI6enpAID4+Hh4enrKPGBp1L9/f9y5cwc7d+5EWFgYjh49inbt2kkuPM7h4eGBmJgYhIaGYsSIEZgwYQJOnjwp1bn8/f0xdOhQXLhwAdeuXYOZmRm6dOki+ZBWWAYGBsXyPwIZGRlftGVnZ0MsFkt9rFmzZuGff/7BX3/9hYsXL+LVq1f44Ycf8t3Hy8sLa9euxaZNmxAYGAgdHR04ODggLS1Nss2hQ4cwcuRIjB07FiEhIbhy5QqGDRsmdT4iIqKvycjIwJo1a2BhYQEvLy8kxCVgy09bUD22OnZs2yHVPYOoGJD2blQNGjQQdu7cKQiCIOjq6goRERGCIAhCUFCQULFiRWkP911K4h1gY2NjBQCCv79/vttVq1ZNWLVqVa42IyMjYdasWd91/qysLEFPT0/yHn+Nm5ubYGtrK2zatEmoUqWKoKWlJQwcOFCIi4uTbDN69GihT58+kscAcv1ERkYKHz9+FIYNGyaUL19eKFOmjGBhYSFs375dqryXL18WWrVqJZQpU0aoUqWK8PPPPwtJSUmS/mrVqgkeHh7CyJEjBT09PWH06NHCjh07BAMDA+HIkSNC3bp1BVVVVSEyMlKq88bFxQnq6urCX3/9JWl7+PChAEC4du3aV/cRi8WCiYmJsGLFilzH0dTUFPbu3SsIgiBkZmYKlStXFrZu3SpVnpJGWf9+iYj+KzM7UzgQcUA4EHFAyMzOLFBfYfaRpq9O/TqS/x/Xq1dPOHbsmCAWi2X8yul7FfQOsFKPzD9+/Bht2rT5ot3AwABxcXGF/1RRzKVkpuDGyxtIyUyR63l0dXWhq6uLw4cPS771+BaxWIxDhw4hNjYWGhoa33X+lJQUZGZmwsjIKN/twsPDceDAAfzzzz84deoU7ty5g59++umr265Zswb29vaYMGECYmJiEBMTAzMzM7i6uuLBgwc4efIkHj58iI0bN6J8+fIFzhoREYGuXbuif//+uHv3Lvbv34+AgABMmzYt13be3t6wtbXFnTt34OrqKnmdy5cvx9atW3H//n0YGxtj9+7dkt9/Xj85dyu+ffs2MjMz0alTJ8l56tSpg6pVq+LatWtfzRsZGYnXr1/n2sfAwADNmjWT7BMUFISXL19CRUUFdnZ2MDU1Rbdu3RAaGlrg3wsREdF/XQ+8Lnkc+TQSFStWxO+//46QkBD06NEDIpFIgenoe0h9AayJiQnCw8O/WIYyICAANWrUkFWuYiUlMwUNNjXAk49PYGlkieDJwdBW15bLudTU1ODr64sJEyZg06ZNaNiwIdq2bYshQ4bAxsYm17YuLi6YP38+0tPTkZWVBSMjI4wfP/67zu/i4oJKlSrlKji/Ji0tDX/88QcqV64MAPjtt9/Qo0cP+Pj4wMTEJNe2BgYG0NDQgLa2dq6+qKgo2NnZoXHjxgAg9dKmS5cuxfDhwyVz8S0tLbF27Vq0bdsWGzduRJkyZQAAHTp0wOzZsyX7Xb58GZmZmdiwYQNsbW0l7b1790azZs3yPWfO6339+jU0NDS+mEpUsWJFvH79+qv75rRXrFgxz32ePn0K4NNFxitXrkT16tXh4+ODdu3aISws7JsfsoiIiD4XHh6OOXPm4NiJY9gVugsAMGfuHDjOcoSuLu/aWhJIPTI/YcIEzJgxA4GBgRCJRHj16hV2794NR0dHTJkyRR4ZFS70bSiefPx0keKTj08Q+la+o6T9+/fHq1evcPToUXTt2hX+/v5o2LBhrgtKAcDJyQnBwcH4999/0axZM6xatUpyd97CWLZsGfbt2wc/Pz9JIZyXqlWrSgpbALC3t4dYLMbjx48LfL4pU6Zg3759aNCgAZydnXH16lWp8oaEhMDX1zfXyLmDgwPEYjEiIyMl2+V8WPichobGFx+O9PT0YGFhke+PlpaWVBmllTN3/9dff0X//v3RqFEj7NixAyKRCH/99Zdcz01ERCXHhw8fMGPGDNStWxeHDh1CZnomznufR3PN5nCb78ZCvgSRemR+zpw5EIvF6NixI1JSUtCmTRtoamrC0dERP//8szwyKpyVsRUsjSwlI/NWxlZyP2eZMmXQuXNndO7cGa6urhg/fjzc3NwwZswYyTbly5eXFJl//fUXrK2t0bhxY9SrV0/q83l7e2PZsmU4d+7cF0WuvHTr1g3Pnz/HiRMncPbsWXTs2BFTp06Ft7d3gfZPSkrCpEmTMH369C/6qlatKnmso6PzRb+WltYXXynu3r0bkyZNyvecJ0+eROvWrWFiYoKMjAzExcXlGp1/8+bNF99M5Mhpf/PmDUxNTXPtk7OSQE775++hpqYmatSogaioqHyzERER5bCyssL7t+8BfPr/rZeXF6ys5F+/UNGTupgXiUT49ddf4eTkhPDwcCQlJaFevXol+hOetro2gicHI/RtKKyMreQ2xSY/9erVy3fNdjMzMwwePBhz587FkSNHpDq2l5cXlixZgtOnT391FPtroqKi8OrVK1SqVAkAcP36daioqKB27dpf3V5DQwPZ2dlftFeoUAGjR4/G6NGj0bp1azg5ORW4mG/YsCEePHjwXd9GfE6aaTaNGjWCuro6zp8/j/79+wP4dD1JVFQU7O3tv7qvubk5TExMcP78eUnxnpCQgMDAQMm3Wo0aNYKmpiYeP36MVq1aAQAyMzPx7Nkzri5ARER5EovF2LdvHzSbawIAEhMT0aBBA3h7e6Njx44KTkfyJHUxn0NDQ6NQI8DKSltdG00rN5X7eT58+ICBAwfixx9/hI2NDfT09HDr1i14eXmhT58++e47Y8YMWFlZ4datWwUuypcvX44FCxZgz549qF69umTuds60lbyUKVMGo0ePhre3NxISEjB9+nQMGjQoz1Hp6tWrIzAwEM+ePYOuri6MjIzg7u6ORo0aoX79+khPT8exY8dQt27dAuUGPs3vb968OaZNm4bx48dDR0cHDx48wNmzZ796Y7Nv0dPTg56eXoG2NTAwwLhx4/DLL7/AyMgI+vr6+Pnnn2Fvb4/mzZtLtqtTpw6WLl2Kfv36QSQSYebMmVi8eDEsLS1hbm4OV1dXVKpUSbKOvL6+PiZPngw3NzeYmZmhWrVqWLFiBQBg4MCBUr8mIiIq+f799184OTnh/sP7knnxmzdvxohhI3jX1lKgQMX8t9bO/tzff/9d6DD0qYjOmf8eERGBzMxMmJmZYcKECZg3b16++9arVw9dunTBggULcOLECQCfvknZsWNHruk5n9u4cSMyMjIwYMCAXO1ubm5wd3fP81wWFhb44Ycf0L17d3z8+BE9e/bEhg0b8tze0dERo0ePRr169ZCamorIyEhoaGhg7ty5ePbsGbS0tNC6dWvs27dPsk+7du1QvXr1L64VyGFjY4OLFy/i119/RevWrSEIAmrWrInBgwfnmUOWVq1aBRUVFfTv3x/p6elwcHD44nfw+PFjxMfHS547OzsjOTkZEydORFxcHFq1aoVTp07lukZhxYoVUFNTw8iRI5GamopmzZrh33//haGhYZG8LiIiUg6PHj3CHOc5OH78OIBPA0JPDz3FTz/9BN3hulyhppQQCYIgfGujsWPHFviAO3bs+K5A0khISICBgQHi4+Ohr6+fqy8tLQ2RkZEwNzf/5sWcJVVkZCRq1aqFBw8ewNLSUtFxpFatWjUsXLgwzw8iVHLx75eISooscRb8nvkBAPpV7wc1FbVv9hV0n9E2o5GanAo1NTVMnjwZCxYsQIUKFYrkdZH85Vfnfq5AI/NFWaCT7Jw4cQITJ05UykL+/v37MDAwwKhRoxQdhYiIqFhISkrCyjUrUXfopympYrEY/fr1w7Jly1CrVi0FpyNFKfSc+bdv30qWIaxduzaMjY1lFopkY+rUqYqOUGj169fH3bt3FR2DiIhI4bKzs7Fjxw64uroiNj4Wu4Z+mhd/5uwZtGn55Y08qXSRuphPSEjA1KlTsW/fPsnqJKqqqhg8eDDWr18PAwMDmYckIiIiKo1Onz4NFycX3L9/HwA+3aDzDtC3b1+omRd6TJZKkELdNCowMBDHjh1DXFwc4uLicOzYMdy6deuba3QTERERUcH1798f9+/fh6GhIVatWoUHDx5gYP+BUFdV5wWuBKAQxfyxY8ewfft2ODg4QF9fH/r6+nBwcMCWLVvwzz//yCMjERERUakQFRWFCRMmSJ5raGjA0dERERERmDlzJjQ1NRWYjoojqb+fKVeu3Fen0hgYGBTLpfMKsFgPERUz/LslotImPiEe3su9sWrVKqSnp2Pv3r0YOHAgQu6EwNzcXNHxqBiTupifP38+fvnlF+zatUtyg6DXr1/DyckJrq6uMg9YWOrq6gCAlJQUaGlpKTgNEUkjJSUFwP/+jomISjobaxu8evEKANC2bVusWLECTZo0UXAqUgZSF/MbN25EeHg4qlatiqpVqwL49JWQpqYm3r17h99//12ybVBQkOySSklVVRVly5bF27dvAQDa2tqcW0ZUzAmCgJSUFLx9+xZly5aFqqqqoiMREcmFIAg4cvQIYPPp+YcPH1CnTh0sX74cvXr1Ys1CBSZ1MZ9z23llkPPNQU5BT0TKoWzZspK/XyKikub69etwdHTEraBb2BX6aZnJ1WtWY/zY8VBT4wo1JB2p/41xc3OTRw65EIlEMDU1hbGxMTIzMxUdh4gKQF1dnSPyRFQiPY18ivlz5+Ovv/4CAGhpaeHernuYNWsWyo4vy9F4KpTv+viXlJQEsVicqy2/280qiqqqKosDIiIiUqhGDRshKSEJIpEIY8eOhYeHBypXrqzoWKTkpF6aMjIyEj169ICOjo5kBRtDQ0OULVu2WK5mQ0RERKQIaWlpWL16teR5ZmYmHBwcEBwcjG3btrGQJ5mQemR+xIgREAQB27dvR8WKFfmVEBEREdFnxGIx9u3bh3nz5uH129fY1ffTvPgjR47AobODgtNRSSN1MR8SEoLbt2+jdu3a8shDREREpLQuXrz46eLWW7cAAJUrV0ZyQDKGDh0KDXMNBaejkkjqaTZNmjRBdHS0PLIQERERKR1BEHD/4X38MOAHtGvXDrdu3YKuri6WLFmCsLAwjBk1BprqmpzNQHIh9cj81q1bMXnyZLx8+RJWVlZf3NTFxsZGZuGIiIiIirM3b97AY4kH2s1sh6FeQ3H69GmMGTUGbm5uMDY2VnQ8KgWkLubfvXuHiIgIjB07VtImEokgCAJEIhGys7NlGpCIiIiouElOTsbKlSvh5eWFzOxMtJvZDgBw8+ZN1KtTT7HhqFSRupj/8ccfYWdnh7179/ICWCIiIipVsrOzsXPnTri6uuLVq1cAgBatWkj6a9WqpahoVEpJXcw/f/4cR48ehYWFhTzyEBERERU7giDg9NnT+PXXXxF0KwgAUL16dSxduhQ/DPgBR6KOKDghlVZSXwDboUMHhISEyCMLERERUbETEhKCHr16INEiEXP2z4GxiTF8fHzw6NEjDBkyBCoqUpdTRDIj9ch8r169MGvWLNy7dw/W1tZfXADbu3dvmYUjIiIiUpQXL15g/vz5+OOPP6BRRgNj8el6wdDQUFQoV0HB6Yg+kbqYnzx5MgDAw8Pjiz5eAEtERETKLiEhAcuXL8fKlSuRlpYGAOjfv7+kn3e8p+JE6u+FxGJxnj8s5ImIiEhZZWRkYMPvG1DPqh48PT2RlpaGVq1a4fr169i5c6ei4xF9FSd5ERERUakmCAIOHz6Mho0bokLnCljlvwr1revDz88Ply5dQrNmzRQdkShPUk+zAT6trXrx4kVERUUhIyMjV9/06dNlEoyIiIhI3gIDA+Hk5ITLly9DU0tT0n7z5k1oaWopMBlRwUhdzN+5cwfdu3dHSkoKkpOTYWRkhPfv30NbWxvGxsYs5omIiKjYEgQB2UI2Ip9FwnWeK/bv3w8AKFOmDBydHCXb/XeBD6LiSuppNrNmzUKvXr0QGxsLLS0tXL9+Hc+fP0ejRo3g7e0tj4xEREREMvH+43v4PfNDMIJx+OhhiEQijB49GmFhYXBzc1N0PCKpSV3MBwcHY/bs2VBRUYGqqirS09NhZmYGLy8vzJs3Tx4ZiYiIiL5Leno6fHx8YG1tLWlr3749goKC4OvrCzMzMwWmIyo8qafZqKurS26OYGxsjKioKNStWxcGBgaIjo6WeUAiIiKiwhIEAfv378e8efMQGRmZa1780aNHoa7K6TSk3KQu5u3s7HDz5k1YWlqibdu2WLBgAd6/f49du3bByspKHhmJiIiICixnXvyVK1fgNNsJN2/eBABUqlQJi5YskmwnEokUFZFIZqSeZuPp6QlTU1MAwJIlS2BoaIgpU6bg3bt32Lx5s8wDEhEREUnjUdgj+D3zw9vKb3E39C50dHTg4eGBsLAwjBo1StHxiGRK6pH5xo0bSx4bGxvj1KlTMg1EREREVBhv377FwoUL4fuHL3xDfAEAP477EQt+XQATExMAQJY4S4EJiWRP6mI+NTUVgiBAW1sbAPD8+XP4+fmhXr166NKli8wDEhEREeUnJSUFq1atwvLly5GYmJhrXvzaNWuhplKo2+oQKQWpp9n06dMHf/zxBwAgLi4OTZs2hY+PD/r06YONGzfKPCARERHRfwmCgPTMdPj+4YtatWph/vz5SExMROPGjXHy5ElFxyMqMlIX80FBQWjdujUA4ODBgzAxMcHz58/xxx9/YO3atTIPSERERPRfZ86dwdHoo9BppYP3H9+jWrVq2LNnDwIDAyV1ClFpIHUxn5KSAj09PQDAmTNn8MMPP0BFRQXNmzfH8+fPZR6QiIiIKMfdu3fh4OCAPn36SNqWLFmCR48eYejQoZLls4lKC6n/jbewsMDhw4cRHR2N06dPS+bJv337Fvr6+jIPSERERPTy5Uv8+OOPaNCgAc6cOQN19f+tDz9jxgyUKVNGgemIFEfqYn7BggVwdHRE9erV0axZM9jb2wP4NEpvZ2cn84BERERUOgmCgNiEWCxwXwBLS0vs2LEDgiBg0KBBuB10W9HxiIoFqYv5AQMGICoqCrdu3cq1LGXHjh2xatUqmYYjIiKi0ikzMxObtmzCuffnYD3KGmKI0bJlS1y7dg379+9HDfMaio5IVCwUaq0mExMTyXqtOZo2bSqTQERERFR6CYKAo0ePwsXFBc+inmFX6C4AwJ69e9Cvdz/etZXoP3iVCBERERULN2/eRLt27dC3b188fvwY5cqVk/T17tWbhTzRV7CYJyIiIrkTBAEJ6Qm4Gn0VyRnJufoiIyMxcvRItG7bGpcuXUKZMmUwd+5c3L13V0FpiZQHi3kiIiKSu8SMRNRZXwctt7dEg98bICUzBbGxsXB0dIStnS16u/XGrtBd+HH8jwgLC4OnpycM9A0UHZuo2OP9jYmIiEjuQt+GIiYxBgAQ/jEc89bMwx+efyA2NhaaWpqS7X7//XeoqbA8ISooqf5aMjIycPjwYVy7dg2vX78G8Oli2BYtWqBPnz7Q0NCQS0giIiJSblbGVjDVM0VMYgzUE9WxZskaIBOwsrLC8hXLkYzkbx+EiL5Q4Gk24eHhqFu3LkaPHo07d+5ALBZDLBbjzp07GDVqFOrXr4/w8HB5ZiUiIiIlFXwrGF49veDZzROizSKYljfF1q1bERwcLLkB5dekZ6Uj/H04UjJTijAtkfIocDE/ZcoUWFtb482bN/D398f+/fuxf/9++Pv7482bN6hfvz6mTp0qz6xERET0H/ldWJpfX1EJCwtDv3790KVzF2iqacKivAXmu8zHkydPMG7cOKiqqua5b0pmCpyPOWPeyXlotLkRC3qiryhwMX/lyhUsXrwY+vr6X/Tp6+tj0aJFuHz5skzDERERUf6+dmFpQfoKW+gXdL93795h2rRpqF+/Pg4fPozM9Ez8u/JftNBqgfnz5kNHR+eb5/rvPPvQt6EFzklUWhS4mC9btiyePXuWZ/+zZ89QtmxZGUQiIiKiz+VXQOdX8ObXl1+hn59v7fch4QN+WvITatSugfXr1yMrKws9e/bEvXv3sHHdRlQ2rVzg9eJtK9rCwsgCAGBpZAkrY6sC7UdUmhT4Atjx48dj1KhRcHV1RceOHVGxYkUAwJs3b3D+/HksXrwYP//8s9yCEhERlVY5BXRMYgwsjCwQMjkE2uraAHJfWGphZJGr4M2v72uFftPK376be177icVibN25FVPvTUWWQRYwAmhwvQFWLl+J9u3bF+p162joIGRyCELfhsLK2ErymonofwpczHt4eEBHRwcrVqzA7NmzJZ+qBUGAiYkJXFxc4OzsLLegREREpVV+hbe2uja8enohOi4aU22n5ip48+vLr9DPz9f2O3fuHJycnBD8LhiY8P8blgM2HtqI5mbNv+u1a6trF+hDBlFpJdXSlC4uLnBxccHTp0/x5s0bAJ+WpjQ3N5dLOCIiouJKEAQkZiQi9G0obCvaQkfj23PAC+tbhXfOhaVfG7nOqy+/Qj8/n+/XXr09+vfuj1OnTgEA9MvpQ0OkgffCe1gaWcLGxKaQr1hx0rPSER0XjZTKKdDX/PI6QaLiplB3ZahRowZq1Kgh6yxERERKI7+pL4WV1weEwhbe35Lfh4CC7NfBpgNSk1OhpqaGqVOnYv78+dA20C7202LyKthzVs+JSYzB9sDtMnlPieStwBfAAsCDBw/w008/wc7ODqampjA1NYWdnR1++uknPHjwQF4ZiYiIip38Li4t7HKR+V1cWtjCW5aSkpKweMliyXOxWIwBAwbg4cOHWL16NcqXLy+ZFiNtzqJaTz6/5S6/Z/UcrodPilLgkfmTJ0+ib9++aNiwIfr06ZPrAtizZ8+iYcOGOHLkCBwcHOQWloiIqLjIb+pLfqP2+fUV9qJUWfvvNwSaKprYtm0b3NzcEJcQh13DdwEAzp0/h1b2rb77fEU5Ip7f7zhn9Zzwj+FfXT2HI/pUHBW4mJ8zZw5cXFzg4eHxRZ+7uzvc3d3h5OTEYp6IiEqF/Ka+5Fcw5tdX2ItSZe3zDxyVNCtBb7ceHoc+BgBYWFhAFCJCn959oGZeqNm6X5DHh5i8Cu/8Cvb8Vs/Jr2AvLh/CqHQq8DSbsLAwDB8+PM/+oUOH4smTJzIJRUREpAzymvqSU5QDyHO5yK/15XxA8OzmidsTbytsdPfz4vRV+is8jn2McuXKYc2aNbh//z4G9BsAdVX1Aq8X/y2yXk8+v6k0OQV74PhABE8O/uqFwV+bJpTfFByuh0+KVOCP1NWrV8fx48dRu3btr/YfP34c1apVk1kwIiIiZVXY5SIBxc+Nf/78OdYvXA9Tq0/fEIhiRZg1YhZc57jK7eaQsl5P/lsj5YVZ7rKwI/pE8ibVOvPDhg2Dv78/OnXq9MVNo06dOoU9e/bILSgREZEyKcxykYoUFxcHT09PrF27FlABtgZvRXRcNHob9UZ9i/pyP78s15P/1tz3wvhWwc718ElRClzMDxw4EJUrV8batWvh4+OD169fA/i0zry9vT38/f1hb28vt6BEREQkHxs2bMBCt4X4+PEjAKB9+/aonVgbQxoPgapIVcHp8pbXvHh5jZSzYKfiSKorV1q0aIEWLVrIKwsREREVEUEQJI+dnZ2RnpqOevXqwcvLC927d5fZfHh5+dYKMiy8qbSQap35HPHx8Xj8+DEeP36M+Ph4WWciIiIiObp69So6duooeW5sbIzNmzcjJCQEPXr0KPaFPPB9a8ITlSRSFfNbt25FvXr1YGRkhHr16qFu3bqSx9u2bZNXRiIiIpKBJ0+eYMCAAWjZsiVuBN6QtN+9dxcTJkyAmppslposClxBhuiTAv/VrlixAu7u7pg+fTocHBxyXQB75swZzJgxA7GxsXB0dJRbWCIiIiocR0dHrP9tPbKysqCiooKRw0eiuWZzmJqaFut58XnhCjJEnxS4mF+3bh127NiBQYMG5WqvW7cu2rVrB1tbWzg5ObGYJyIiKiZSU1Mljzdt2oSsrCx0794dy5cvh5WV8o9kc148kRTTbN6+fQtra+s8+62trfH+/XuZhCIiIqLCE4vF+PPPP2FnZydps7Gxwblz53D8+PESUcgT0ScFLuabNGmCZcuWISsr64u+7OxsLF++HE2aNJFpOCIiIpLOv//+iyZNmmDkyJGIeBKBOQ5zkHo1FdeuXEPHjh2/fQAiUipSTbNxcHCAiYkJ2rRpk2vO/KVLl6ChoYEzZ87ILSgRERHlb8CAATjidwQAoK+vj7lz52LGjBnQ0tJScDIikpcCF/M2NjYICwvDn3/+ievXr+Pp06cAPt00avHixRg2bBj09fW/cRQiIiKSpZybOALAqVOnoKamhsmTJ2PBggWoUKGCApMRUVGQag0qPT09TJkyBVOmTJFXHiIiIiqApKQk+Pj4YM26Nfg98HcAQO/evbHYYzFq1aql4HREVFQKddOor8nMzERUVJSsDkdERERfkZWVhS1btsDS0hLu7u6IfR+LtT+uRcWYiti/dz8LeaJSRmZ3h3jw4AEaNmyI7OxsWR2SiIiI/sPe3h7BQcEAgBo1amDZsmUYMGCAUty1lYhkT2Yj80RERCQfwcHBkscPHz6EkZERVq1ahQcPHmDgwIEs5IlKsQKPzDds2DDf/s9vTEFERETfLyoqCvPnz8eBgwewK3QXAGDGjBmY4zwHhoaGCk5HRMVBgYv5Bw8eYMiQITA3N/9qf0xMDMLCwmQWjIiIqDRzc3ODzwofpKenAwD+8fgHbm5uGODJKTVE9D8FLuatrKzQrFmzPFeyCQ4OxpYtW2QWjIiIqLTJzMyUPPbx+VTIt2vXDitWrEDjxo0VmIyIiqsCz5lv2bIlHj9+nGe/np4e2rRpI5NQREREpYkgCDh06BAaNWokaatVqxaOHj2Kf//9l4U8EeWpwCPza9asybe/Zs2auHDhwncHIiIiKk2uXbsGR0dHXL16FZpampL2GzduoIxGGQUmIyJlILOlKYmIiEg6I0aMwP69+wEA2tramD17NjqV7wQ9XT2oilQVnI6IlAGLeSIioiL04cMHyePDhw9DRUUFY8eOhYeHBypVqqTAZESkjLjOPBERURFIS0uDl5cXrK2tJW2dO3dGcHAwtm7dykKeiAqFI/NERERyJBaLsXvvbsybNw9RUVG55sX7+flBTYX/KyaiwuN/QYiIiOSoTZs2CLwWCACoUqUKFi9ejN5mvaGqqsp58UT03VjMExERydijR4+A/1+IJjg4GHp6epg7dy5mzpwJLS0txYYjohJFpnPmO3TogEWLFiElJUWWhyUiIlIKr1+/xqRJk9C0aVNJ28SJExEeHo65c+eykCcimZNpMV+1alWcP38ederUkeVhiYiIirXklGR4eHjAwsICmzdvRmpyKvbP3Q+rTCusWbUGxsbGio5IRCWUTKfZ+Pr6AgASEhJkeVgiIqJizdbGFs8jnwMAmjZtCm9vb7Ru3VrBqYioNJDJyHxcXFyu5/r6+rI4LBERUbEkCALOnDkjef769WuYm5tj3759uH79Ogt5IioyUhfzy5cvx/79+yXPBw0ahHLlyqFy5coICQmRaTgiIqLiJjg4GF26dMEPP/wgaVu2bBkePnyIwYMHQyQSKTAdEZU2UhfzmzZtgpmZGQDg7NmzOHv2LE6ePIlu3brByclJ5gGJiIiKg+joaIwePRoNGzbEuXPnIGQLuLn5JtqXbY8ZP8+Apqbmtw9CRCRjUs+Zf/36taSYP3bsGAYNGoQuXbqgevXqaNasmcwDEhERKYogCPgY/xGrVq6CzwofpKWlAQCGDBkCT09PmJubKzghEZV2Uo/MGxoaIjo6GgBw6tQpdOrUCcCn/+BlZ2fLNh0REZGCZGZmYv2m9fj347+wHWMLQSSgTZs2uHHjBvbu3ctCnoiKBamL+R9++AHDhg1D586d8eHDB3Tr1g0AcOfOHVhYWMg8IBERUVESBAF+fn6oX78+HGc7Str3798Pf39/NGnSRIHpiIhyk3qazapVq1C9enVER0fDy8sLurq6AICYmBj89NNPMg9IRERUVAIDA+Ho6IiAgAAAQGWzypK+Hj168OJWIip2RIIgCIoOUVgJCQkwMDBAfHw8l8MkIqJCEQQB4ZHhcFvghr279wIAtLS08Msvv+AXp19w/sN5AEC/6v2gpiLT27MQEeWpoHVuodaZ37VrF1q1aoVKlSrh+fNPN8lYvXo1jhw5Uri0RERECvDx40c4uTghGMHo59EPZbTLYOzYsQgLC8PixYuhr8eBIiIq3qQu5jdu3IhffvkF3bp1Q1xcnOSi17Jly2L16tWyzkdERCRzaWlp8Pb2Rs2aNbFu3TpJ+9WrV7F9+3ZUqVJFgemIiApO6mL+t99+w5YtW/Drr79CVVVV0t64cWPcu3dPpuGIiIhkSSwWY+/evahbty6cnJwQFxcHKysrSb+1tbUC0xERSU/qYj4yMhJ2dnZftGtqaiI5OVkmoYiIiGRJEAT4X/JHqzatMGzYMDx79gyVKlXCjh07cOXKFUXHIyIqNKmLeXNzcwQHB3/RfurUKdStW1cWmYiIiGTm0aNH6D+oP95VeYdZf8yCUQUjLF68GE+ePMGYMWNyfctMRKRspL4s/5dffsHUqVORlpYGQRAkN89YunQptm7dKo+MREREUnvz5g3c3d2xZcsWqGmoYejyoQCAe3fvoZJJJQWnIyKSDamL+fHjx0NLSwvz589HSkoKhg0bhkqVKmHNmjUYMmSIPDISERF9kyAIyBaykZKSgrWr12L58uVISkoCAPTu0VuynbGxsaIiEhHJXKEWzB0+fDiGDx+OlJQUJCUl8T+MRESkcBlZGTgafRQAsNhzMdJT09GkSROsWLECLVu3hN8zPwUnJCKSvUKtM59DW1ubhTwRESnc6dOn0aJFC8lzs6pm2LNnD65fv462bdsqMBkRkXxJPTJvbm6e7+2snz59+l2BiIiICiokJAROTk44e/YsNLU0Je13gu5AV1tXgcmIiIqG1MX8zJkzcz3PzMzEnTt3cOrUKTg5OckqFxER0Rdy5sW/fPkS7gvcsXPnTgiCAHV1dUybNk2yXZkyZRSYkoio6EhdzM+YMeOr7evXr8etW7e+OxAREVFeYhNicf7DeQDA3v17IQgCBg0aBE9PT1Qzr8Z58URU6nzXnPnPdevWDYcOHZLV4YiIiCQyMzOxYcMG2FjbSNrs7e1x/fp17N+/HzVr1lRgOiIixSnUajZfc/DgQRgZGcnqcERERBAEAUePHoWLiwseP36ca178mTNnoK6qrsB0RESKJ3Uxb2dnl+sCWEEQ8Pr1a7x79w4bNmyQaTgiIip9cubF3759G86Ozrh06RIAoHz58nBf5C7ZLr/FGIiISgupi/m+ffvmeq6iooIKFSqgXbt2qFOnjqxyERFRKRURGYE7uAOUAwJvBqJMmTKYNWsWXFxcoKOnw3nxRESfkbqYd3Nzk0cOIiIq5WJjY7FkyRJs3roZ24K2AQCGDRuGhW4LYWZmBgDIEmcpMiIRUbFToGI+ISGhwAfU19cvdBgiIip90tPTsWHDBixatAixsbG55sVv3rwZaioyu7yLiKjEKdB/IcuWLfvNuYmCIEAkEiE7O1smwYiIqGQTi8U4+PdBuC5wRdjDMACAlZUVlq9YjmQkKzgdEZFyKFAxf+HCBXnnICKiUuTy5cuY++tczPCdgcXHFsOpkxNcf3XFmDFjIIgEzosnIiqgAhXzbdu2lXcOIiJSMEEQkJiRiNC3obCtaAsdDR2ZnyMsLAwuLi44fPhwruk0IXdDYKBrAIDz4omIpFHoiYgpKSmIiopCRkZGrnYbG5s89iAiouIsMSMRddbXQUxiDCyMLBAyOQTa6toyOfa7d++wcOFC/P7778jKyoKKigp+HPejpF9HW/YfHIiISgOpi/l3795h7NixOHny5Ff7OWeeiEg5hb4NRUxiDAAg/GM4Qt+Gomnlpt/cL78R/eTkZKxdtxY+Pj748O4DAKBnz55Yvnw5atWpVajpNOlZ6YiOi0ZK5RToa3LRBSIq3VSk3WHmzJmIi4tDYGAgtLS0cOrUKezcuROWlpY4evSoPDISESk9QRCQkJ6Aq9FXkZxRPC/utDK2gqmeKQDAwsgCVsZWBdovZ0S/5faWaPB7A6RkpiA7Oxs7d+6ETQMbWAy0wMbrG9HMvhn+/fdf/PPPP6hXr16hMqZkpsD5mDPmnZyHRpsbISUzpVDHISIqKaQemf/3339x5MgRNG7cGCoqKqhWrRo6d+4MfX19LF26FD169JBHTiIipSbPKSyyoq2uDa+eXoiOi8ZU26kFzvffEf3tx7Zj68KtCAkJyTUv/tKlS9BQ0/iujIX99oCIqKSSemQ+OTkZxsbGAABDQ0O8e/cOAGBtbY2goCDZpiMiKiG+VoTmKE6j9ppqmrAobyHVB43PR/R10nTw8+CfERISAgMDAyxevFiynYqK1P/L+YJtRVtYGFkAACyNLAv87cG3pGelI/x9OEf6iUjpSP1f1tq1a+Px48cAAFtbW/z+++94+fIlNm3aBFNTU5kHJCJSFvkV5flNYfnaNBVlEv8+Hl49veDZzROZ6zOhDnXMmDEDERERmDlzpkwLZR0NHYRMDkHg+EAETw6WybcbnLpDRMpM6mJ+xowZiIn5NLrk5uaGkydPomrVqli7di08PT1lHpCISFnkV5TnTGHx7OaJ2xNv5ypC8xu1L84SExOxYMEC2NjaSEb0f+j1Ax4+fIjVq1ejXLlycimUtdW10bRyU5lNU1LW3z8REVCIYn7EiBEYM2YMAKBRo0Z4/vw5bt68iejoaAwePFjW+YiIlMa3isK8prDkNWpfnKbffJ4lPiUemzZtgqWlJRYtWoS4D3FYP349Kr+tjD1/7kHNmjUl+ylDofytqTucgkNExZnUF8AGBASgVatWkufa2tpo2LChTEMRERVX+S3DmFOU51zkWtD53HldeFqcLpr9PItGogYy1mYAmYClpSWWLVuGfv36QSQSfbFfTqEc/jFcpnPcZSln6k7o21BYGVvl+h3nfLMQkxiD7YHbi+WFy0RUukk9Mt+hQweYm5tj3rx5ePDggTwyEREVW4WdSvMtXxu1L06j2ocuH5JkydDLgL6lPn777Tfcv38fP/zww1cLeaDwc9wLOxpe2P3ymrpTnN4DIqKvkbqYf/XqFWbPno2LFy/CysoKDRo0wIoVK/DixQt55CMiKlYKO5WmMPK7aDa/KTiynJ7z7NkzDBs2DJN/mCzJYigY4tHFR5g2bRrU1dW/eYz85rh/rfgu7Dz7b+1XmEJfXqvnEBHJitTFfPny5TFt2jRcuXIFERERGDhwIHbu3Inq1aujQ4cO8shIRFRsFPbGSoWR30h/ft8Q5NdX0EI/Li4OTk5OqF27Nvbu3YvMpEx0fNARfj38ED0vGqblv3/1sryK78KOhue3X2E/IMhj9RwiIlmSes7858zNzTFnzhzY2trC1dUVFy9elFUuIqJiqbA3ViqsvEb687t5Un59BZ2Hb21tjdevXgP4NL3S29sbdnZ2Mn1teeUs7Dz7/Pb7nptN5XyzQERUHBX6Dh5XrlzBTz/9BFNTUwwbNgxWVlY4fvy4LLMRERVLspxKU1j5fUOQX19eo9eCIODvv/+WbBcbG4v69evj+PHjOHfunMwLeSDvKSyFHQ3Pbz9OlyGikkrqkfm5c+di3759ePXqFTp37ow1a9agT58+0NbmV49EREUlv28I8uv72oo7AQEBcHR0RPDdYOwK3QUAWLduHcaMGgM1te/6Ajdf+a0iU9jR8Lz2y+9cRETKTOr/Sl+6dAlOTk4YNGgQypcvL49MRERUAPl9Q5BX3+eFvoOuA0YMHgE/P79PfdraeLj3IaZPnw6DsQZ5rlAjS0U5hYXTZYioJJK6mL9y5Yo8chARURHJKfTbNGiD5MRkqKioYNy4cVi4cCFMTb//wlYiIio6hZ4zT0REyiU1NRXe3t6S51lZWejRowfu3r2LzZs3s5AnIlJCLOaJiEo4sViMP/74A7Vr14a7u7uk/fjx4zh27Bjq16+vuHBERPRd5HdlExERKZy/vz+cZjshODgYAFC1alWkX0/HoEGDoG7+7Rs+ERFR8cZinoioBOvZsyfSU9Ohr6+PefPmYfr06dDS0lJ0LCIikhFOsyEiKkFiYmIwbdo0yXM1NTX8/PPPiIiIgIuLCwt5IqISpkAj84aGhgVeouzjx4/fFYiIiKSXlJQEb29vrFixAtlCNjo6dgQA3Lp9C3Us6yg4HRERyUuBivnVq1dLHn/48AGLFy+Gg4MD7O3tAQDXrl3D6dOn4erqKpeQRESUt+3bt8PN1Q2vX78GANjb28P0jSmaN2sOVZGqgtMREZE8FaiYHz16tORx//794eHhketr3OnTp2PdunU4d+4cZs2aJfuURESUiyAIksfTp09Hemo6atasiWXLlqF///5FcsMnIiJSPKnnzJ8+fRpdu3b9or1r1644d+6cTEIREVHegoKC0KNHD8lzQ0NDrFmzBg8ePMCAAQNYyBMRlSJSF/PlypXDkSNHvmg/cuQIypUrJ5NQRET0pefPn2PEiBFo1KgRzp4+i/GNxuP21tt4EPoA06dPh4aGhqIjEhFREZN6acqFCxdi/Pjx8Pf3R7NmzQAAgYGBOHXqFLZs2SLzgEREBLi6umKVzyqkp6cDAIYPH44lS5agWrVqCk5GRESKJHUxP2bMGNStWxdr167F33//DQCoW7cuAgICJMU9ERF9v4yMDMnjVas+FfLt2rWDt7c3GjVqpMBkRERUXBTqplHNmjXD7t27ZZ2FiIjw6eLWQ4cOYYH7Aiw8uhAAULt2bSxZtAQ9evTgnHgiIpIo1E2jIiIiMH/+fAwbNgxv374FAJw8eRL379+XaTgiotImMDAQLVu2xMCBA/Hw/kPM7jAbH89/xK0bt9CzZ08W8kRElIvUxfzFixdhbW2NwMBAHDp0CElJSQCAkJAQuLm5yTwgEVFp0rFjR1y7dg3a2tpYsGAB7t+7j0kTJkFdXV3R0YiIqBiSupifM2cOFi9ejLNnz+ZaOaFDhw64fv26TMMREZV079+/h5OTk+S5iooKxo8fjydPnmDhwoXQ09NTYDoiIirupJ4zf+/ePezZs+eLdmNjY7x//14moYiISrq0tDSsXbsWnp6eSMtIQ4upLQAA169fh42VjYLTERGRspC6mC9btixiYmJgbm6eq/3OnTuoXLmyzIIREZVU+/btw69zf0VUVBQAoEGDBigbWRbt27eHqkhVwemIiEiZSD3NZsiQIXBxccHr168hEokgFotx5coVODo6YtSoUfLISERUoowfPx5RUVGoUqUKdu7cidu3b6Nzx85QU1HjBa5ERCQVqYt5T09P1KlTB2ZmZkhKSkK9evXQpk0btGjRAvPnz5dHRiIipfbgwQMMGDBA8lxXVxeenp4ICwvDqFGjoKJSqIXFiIiIpJ9mo6GhgS1btsDV1RWhoaFISkqCnZ0dLC0t5ZGPiEhpvX79Gm5ubti6dSvUNdUx3Hs4ACA0NBQmxiYKTkdERCVBoW4aBQBVq1ZF1apVZZmFiKjE8FzqCa+lXkhOTgYAdO/aHVZZVrC0sOS8eCIikpkCFfO//PJLgQ+4cuXKQochIlJm2dnZkseeSzyRnpqOpk2bwsfHB61atVJgMiIiKqkKVMzfuXMn1/OgoCBkZWWhdu3aAICwsDCoqqqiUaNGsk9IRFTMCYKAU6dO4VfXXzH3wFwAQLXq1eDh5oFBgwbxolYiIpKbAhXzFy5ckDxeuXIl9PT0sHPnThgaGgIAYmNjMXbsWLRu3Vo+KYmIiqk7d+7AyckJ58+fh6aWpqQ96HYQdLR0FJiMiIhKA5EgCII0O1SuXBlnzpxB/fr1c7WHhoaiS5cuePXqlUwD5ichIQEGBgaIj4+Hvr5+kZ2XiEqvLHEW/J75AQBOep6E73ZfCIIADQ0NTJ8+HS5zXVC2bFmoilQ5Ik9ERIVW0DpX6gtgExIS8O7duy/a3717h8TERGkPR0SkVOIT4iWP9+zZA0EQMHToUCxZsuSLm+kRERHJm9SLG/fr1w9jx47F33//jRcvXuDFixc4dOgQxo0bhx9++EEeGYmIFC4zMxPr1q2DjbWNpK1Vq1a4ceMG9uzZw0KeiIgUQuppNikpKXB0dMT27duRmZkJAFBTU8O4ceOwYsUK6OgU3RxRTrMhInkTBAGHDx+Gi4sLnjx5AgCwtrXGokWL0KtHL97wiYiI5KKgda7UxXyO5ORkREREAABq1qxZpEV8DhbzRCQPgiAgW8jGjRs34OzojCtXrgAAjI2NsXDhQowfPx5qaoW+TQcREdE3yW3OfA4dHR3Y2Nh8e0MiIiXz5OkThIhCAGPgVtAtaGlpYfbs2XB2doaenp6i4xEREUlI/f1wcnIyXF1d0aJFC1hYWKBGjRq5foiIlNWHDx8wa9YsNGr4v3tmjBo1Ck+ePMGiRYtYyBMRUbEj9cj8+PHjcfHiRYwcORKmpqZceo2IlF5aWhp+++03LFmyBPHx8bnWi9+wYQPUVDilhoiIiiep/w918uRJHD9+HC1btpRHHiKiIiEIAjKzM3Hw4EHMmzMPz58/BwDY2trCy9sL8Yj/xhGIiIgUT+ppNoaGhjAyMpJHFiKiIuN/yR9Hoo5Avak6Xr99jcqVK8PX1xe3b99Ghw4dFB2PiIioQKQu5hctWoQFCxYgJSVFHnmIiOTq4cOH6NWrF7p16yZpc3NzQ1hYGEaPHg1VVVUFpiMiIpKO1NNsfHx8EBERgYoVK6J69epQV1fP1R8UFCSzcEREsvL69Wu4u7tj69atyM7OhrautqTPycmJ8+KJiEgpSf1/r759+8ohBhGR7AmCgITkBPy29jcs81yG5ORkAJ/+O+a5zBOhCFVwQiIiou8jdTHv5uYmjxxERDKVnZ0N3z98od9WH7WH1EbW4iw0adIEPj4+aN26NbLEWQh9xmKeiIiUG+9DTkQliiAIOHXqFOzs7DB16lRJu6+vL65fv47WrVsrMB0REZFsST0yr6Kiku/a8tnZ2d8ViIiosIKDg+Hk5IRz584BACqaVpT0DRgwACoqHL8gIqKSRepi3s/PL9fzzMxM3LlzBzt37sTChQtlFoyIqCAEQUDUiyh4eHhgx7YdEAQBGhoamDZtGubMmwP/eH9FRyQiIpIbqYv5Pn36fNE2YMAA1K9fH/v378e4ceNkEoyI6FsSEhKwwmcFbEbboOvcrti9ezf69ekHT09PmJubI0ucBd77iYiISjKZfefcvHlznD9/XlaHIyLKU2ZmJtavXw8LCwusWLFC0u7v74+9e/fC3NxcgemIiIiKjkwWVk5NTcXatWtRuXJlWRyOiCgXQRCQLWRDEAQc++cY5rjMQVhYGADAysZKsl3jxo0VFZGIiEghpC7mDQ0Nc10AKwgCEhMToa2tjT///FOm4YiIACBbyIbfs0/X64wcNhLpqemoUKEC3N3dMXbcWBx7eUzBCYmIiBRD6mJ+9erVuZ6rqKigQoUKaNasGQwNDWWVi4gIAPD06VO4urmi78K+AADNMppw/MURzs7O0NfX/zQvnoiIqJSSupgfPXq0PHIQEeXy8eNHLF68GOvWrYOKmoqkmL8bchfVzKopNhwREVExUag583Fxcdi2bRsePnwIAKhfvz5+/PFHGBgYyDQcEZUugiAgJS0Fv//+OxYtXIS4uDgAQLcu3STb8NocIiKi/5F6NZtbt26hZs2aWLVqFT5+/IiPHz9i5cqVqFmzJoKCguSRkYhKAbFYjH0H9uFEzAmY9TZDanoqrK2tcerUKRw9elTR8YiIiIolqYv5WbNmoXfv3nj27Bn+/vtv/P3334iMjETPnj0xc+ZMOUQkopLu0qVLaN68OcaOHStp27BhA+7cuQMHBwcFJiMiIirepJ5mc+vWLWzZsgVqav/bVU1NDc7OzlwWjoik8ujRI7i4uEhG3o0qGEn6Ro0aBVUVVUVFIyIiUgpSj8zr6+sjKirqi/bo6Gjo6enJJBQRlVyCICDmTQymzZgGKysrHD16FKqqqpg8eTLu3b2n6HhERERKRepifvDgwRg3bhz279+P6OhoREdHY9++fRg/fjyGDh0qj4xEVEKkpKRg6fKlCEgOQNsZbaGmoYbevXsjNDQUGzduhLGxsaIjEhERKRWpp9l4e3tDJBJh1KhRyMr6tL6zuro6pkyZgmXLlsk8IBEpv+zsbOzatQvz58/H+4/vsWvQLgDAqVOn0K5NO8WGIyIiUmJSFfPZ2dm4fv063N3dsXTpUkRERAAAatasCW1tbbkEJCLldubMGTg5OeHu3bsAAIvaFpK+Vq1aKSoWERFRiSDVNBtVVVV06dIFcXFx0NbWhrW1NaytrVnIE1EugiAg+G4wevbuCQcHB9y9excGBgZYsWIF7gTdUXQ8IiKiEkPqOfNWVlZ4+vSpPLIQUQnw8uVLTJw8EU90n2D06tHQ1dfFzJkzERERAUdHR5QpU0bREYmIiEoMqYv5xYsXw9HREceOHUNMTAwSEhJy/RBR6ZSYmAhXV1dYWlpi165dkvbbQbexatUqlCtXToHpiIiISiapL4Dt3r07AKB3794QiUSSdkEQIBKJkJ2dLbt0RFTsZWVlYcuWLXB3d8fbt28BAG3bt5X01zCvoahoREREJZ7UxfyFCxfkkYOIlIxYLMY/x/+Bq6sr7oV8Wh/e0tISy5YtQ68+vXD4+WHFBiQiIioFpC7m27Zt++2NiKhYEQQBiRmJCH0bCtuKttDR0Pmu4926dQtz5s3BpE2T4Pq3K2a2nYm5LnMxadIkqKurI0ucJaPkRERElB+p58wTkeIIgoCE9ARcjb6K5IzkAu+XmJGIOuvroOX2lmjwewOkZKYU6vzPnj3DsGHD0KRJEwQEBEja7967i2nTpkFdXb1Qx1WU9Kx0hL8PL/Tvg4iISNFYzBMpkcIW5aFvQxGTGAMACP8YjtC3oVKdNzY2Fk5OTqhduzb27t0LkUiEYcOGSfoN9A2kOl5+iqrATslMgfMxZ8w7OQ+NNjdiQU9EREqJxTzRdyrsaHlh9itsUW5lbAVTPVMAgIWRBayMrQqUIy0tDavXrkbd+nXh7e2NjIwMdOzYEbdv38bmzZsLdG5pFGWB/b0fcIiIiIqDAhXzR48eRWZmpryzECmlwo6W57VffsV1fkV5frTVteHV0wue3Txxe+JtaKv/70ZvX8shCAIOHDgA24a2qNyzMn4L+A0NGjbAiRMncPbsWdjZ2RXovNKSR4Gd10i/bUVbWBh9uhutpZFlgX+XRERExUmBivl+/fohLi4OwKe7wOYsP0dUWuRXYOdXgBZmv/w+HORXlH+LppomLMpbfLHPf3P8eeZP2NvbY/DgwXj+7LmkGD5/6Ty6deuWa0laWZN1gZ3fSL+Ohg5CJocgcHwggicHS/W7JCIiKi4KVMxXqFAB169fB/C/9eSJSpP8Cuz8RssLs9+3RqfzKsoL6/Mcuum6mNRvEgIDA6GjowPHeY6SYrjZ9mZfjG7Len57fgV2Yc71rd+ltro2mlZuykKeiIiUVoGK+cmTJ6NPnz5QVVWFSCSCiYkJVFVVv/pDVBLlVxTmN1pemP0KO5WmsHP3U+JTJDky1mVAJVsFEydORHh4OLqP7p5nfnnNb/9agf2tc3EqDRERlVYFWmfe3d0dQ4YMQXh4OHr37o0dO3agbNmyco5GVHzkFNgxiTFfLbDzGi0vzH45RX50XDSm2k4t8KhxzrcAOecKmRyS776pqalYvXo1fFb5YOP1jbAob4FunbphyaIlqF+/PgBAL0MPFkYWCP8Y/kUx/LUPKk0rNy1Q1vSsdETHRSOlcgr0NfW/uX1+58op9GMSY7A9cHuu150z0h/6NhRWxlYcgSciohKnwDeNqlOnDurUqQM3NzcMHDgQ2tr8nyKVHoUtsAu7X2Gm0hS0uBaLxdi5ayfmz5+PFy9eAAB8RvhgyZIl8Dvkl2saXX7FcM6o99cK/fzkV3znJb9zfet154z0ExERlURS3wHWzc0NAPDu3Ts8fvwYAFC7dm1UqFBBtsmIipnCzlWX9Rz3vHzrW4AcrVq1ws3AmwCAqlWrwtPTE0OHDoWKytdn3eVVDBd21LswI/ry+FBBRERUEkhdzKekpGDatGnYtWsXsrOzAXxa4WbUqFH47bffOGJPpCD5fQvw4MED4P+f3r17FwYGBpg3bx6mT5+OMmXKfNc58yrE85pKU9jiW9YfKoiIiEoCqW8aNWvWLFy8eBFHjx5FXFwc4uLicOTIEVy8eBGzZ8+WR0YiKqD/fgvw6tUrjB8/Hs2bN5dsM2XKFISHh8PZ2fm7Cvn8FPWSkPJYlaao7kRLRET0PaQu5g8dOoRt27ahW7du0NfXh76+Prp3744tW7bg4MGD8shIRFJKSk6Cm5sbLC0tsW3bNqQmp+LgrwdhnW2Nld4rUb58ebmeX9mXhCzKO9ESERF9j0JNs6lYseIX7cbGxkhJ4f/wiIoDG2sbRD+PBgDY29vD29sbLVq0KLLzK/s89u9ZqYeIiKgoST0yb29vDzc3N6SlpUnaUlNTsXDhQtjb28s0HBEVjCAIOHnypOT527dvYWFhgYMHD+LKlStFWsgDyn93Va5PT0REykLqkfk1a9bAwcEBVapUga2tLQAgJCQEZcqUwenTp2UekIjyd/v2bTg6OuJa4DXsCt0FAFixYgUmTZgEDQ0NheVS5iUheVEtEREpC6mLeSsrKzx58gS7d+/Go0ePAABDhw7F8OHDoaWlJfOARPR1z58/x4L5C7Bnzx4AgKamJu5sv4PZs2fD6CejXOvFk/SU+cMIERGVHlIX8wCgra2NCRMmyDoLEUmhYcOGSIhLAACMGDECixcvRrVq1RScioiIiIqS1HPmiUgxMjIysH79esnz9PR0dOjQAbdv38auXbtYyBMREZVCLOaJijlBEPDXX3+hbt26cHFxkbQfOnQI586dQ8OGDRWYjoiIiBSpUNNsiKhoXLt+Dc6znXH9+nUAgImJCeIuxGHkyJHQNNfkvHgiIqJSjsU8UTHWuVNnpKemQ1tbG05OTnB0dISurq6iYxEREVExUahpNnFxcdi6dSvmzp2Ljx8/AgCCgoLw8uVLmYYjKm3ev38PR0dHyXMVFRVMmDAB4eHhcHd3ZyFPREREuUg9Mn/37l106tQJBgYGePbsGSZMmAAjIyP8/fffiIqKwh9//CGPnEQlWmpqKjas2wBPT0+kZ6aj5bSWAIDAwEBY17dWcDoiIiIqrqQu5n/55ReMGTMGXl5e0NPTk7R3794dw4YNk2k4otLCzs4OEU8iAAANGjSA4TNDtGvXDqoiVQUnIyIiouJM6mk2N2/exKRJk75or1y5Ml6/fi2TUESlwcWLFyWPX7x4ATMzM/zxxx+4ffs2OnXoBDUVNV7gSkRERPmSupjX1NREQkLCF+1hYWGoUKGCTEIRlWT3799Hjx490KNHD0nbwoUL8fjxY4wcORIqKlwxloiIiApG6qqhd+/e8PDwQGZmJgBAJBIhKioKLi4u6N+/v8wDEpUUr1+/xsSJE2FjY4MTJ04gOzMbV9ZdQWvd1nB2dIaWlpaiIxIREZGSkXrOvI+PDwYMGABjY2Okpqaibdu2eP36Nezt7bFkyRJ5ZCQqEWxsbRD7PhYA8MMPP2DZsmWwtLRUcCoiIiJSZlIX8wYGBjh79iwCAgJw9+5dJCUloWHDhujUqZM88hEpraysLOzYuQNl25cFAKQkp6B58+bw9vZGy5YtFRuOiIiISoRC3zSqVatWaNWqlSyzEJUIgiDgxIkTcHZ2RkRkBHaF7gIA7Nq1CwN+GMCLWomIiEhmpC7m165d+9V2kUiEMmXKwMLCAm3atIGqKpfUo9InODgYLk4u+PfffwEARkZGeHX8FSZMmAAtcy0W8kRERCRTUhfzq1atwrt375CSkgJDQ0MAQGxsLLS1taGrq4u3b9+iRo0auHDhAszMzGQemKg4a9WqFdJT06GhoYEZM2Zg7ty5kr8TIiIiIlmTejUbT09PNGnSBE+ePMGHDx/w4cMHhIWFoVmzZlizZg2ioqJgYmKCWbNmySMvUbESHx+PBQsW5GobNmwYHj9+DC8vLxbyREREJFciQRAEaXaoWbMmDh06hAYNGuRqv3PnDvr374+nT5/i6tWr6N+/P2JiYmSZ9QsJCQkwMDBAfHw89PX15XouKt2yxFnwe+YHAOhXvR/EWWJs2rQJHh4eSEpJksyLr/axGpo2bqrIqERERFQCFLTOlXqaTUxMDLKysr5oz8rKktwBtlKlSkhMTJT20ERK4fCRw5jrPBfh4eEAgDp16kDzgSa6desGNfNCX1NOREREJDWpp9m0b98ekyZNwp07dyRtd+7cwZQpU9ChQwcAwL1792Bubi67lETFyIjhIxAeHo6KFSti06ZNuHfvHnr37A11VXVe4EpERERFSupiftu2bTAyMkKjRo2gqakJTU1NNG7cGEZGRti2bRsAQFdXFz4+PjIPS6QI4eHhGDFihOR5Ga0ycHV1xZMnTzBp0iSoqXE0noiIiBRD6jnzOR49eoSwsDAAQO3atVG7dm2ZBisIzpknefrw4QMWLVqEDRs2QEVNRTIvvplGM1StUlXB6YiIiKgkk9uc+Rx16tRBnTp1Crs7UbGVlpaG3377DUuWLEF8fDwAoGvHrqiVXAv169eHqoj3UCAiIqLioVDF/IsXL3D06FFERUUhIyMjV9/KlStlEoyoqGVnZ2PfgX1wX+iO8MefLm61tbXFihUr0LlzZwWnIyIiIvqS1MX8+fPn0bt3b9SoUQOPHj2ClZUVnj17BkEQ0LBhQ3lkJJK7CxcuYN78efhl1y/wPOEJly4ucHN1w4gRI3g3YyIiIiq2pL4Adu7cuXB0dMS9e/dQpkwZHDp0CNHR0Wjbti0GDhwoj4xEcvPgwQP06tULHTp0yLVCU3BwMEaPHs1CnoiIiIo1qYv5hw8fYtSoUQAANTU1pKamQldXFx4eHli+fLnMAxLJkiAIyBJn4WXMS0yaNAnW1tY4duwYVFVVMXHiRMl22traCkxJREREVDBSF/M6OjqSefKmpqaIiIiQ9L1//152yYjkICE5AX7P/HA19Sp27toJsViMvn374v79+7zeg4iIiJSO1MV88+bNERAQAADo3r07Zs+ejSVLluDHH39E8+bNZR6QSBays7Oxbds22NrYStoaN26MS5cuwc/PTyFLqxIRERF9L6kvgF25ciWSkpIAAAsXLkRSUhL2798PS0tLjmxSsSMIAk6dOgVnZ2eEhoZCU0tT0nfhwgWoq6orMB0RERHR95GqmM/OzsaLFy9gY2MD4NOUm02bNsklGFFhCYKAbCEbd+/ehYuTC86dOwcAMDQ0hKubq2Q7kUikqIhEREREMiHVNBtVVVV06dIFsbGx8spD9N2iXkTB75kfIvQjcPnKZWhoaGD27NmIiIjAzz//rOh4RERERDIj9Zx5KysrPH36VB5ZiL5LQkIC5s2bBxtbG0nbgAED8OjRI3h7e8PQ0FCB6YiIiIhkT+pifvHixXB0dMSxY8cQExODhISEXD9ERS0zMxPr16+HhYUFli5divS0dEmfr68vzM3NFZiOiIiISH6kvgC2e/fuAIDevXvnmnMsCAJEIhGys7Nll44oDznrxR87dgxznOcgLCwMAFC7dm0s81qGTGQqOCERERGR/EldzF+4cEEeOYikcv3Gdbyo8AKwBp5HP0eFChWwcOFCjB8/HiJVEfye+Sk6IhEREZHcSV3Mt23bVh45iArk6dOnmDt3Lo78cwS7QncBAJydneH4iyP09fUBAFniLEVGJCIiIioyUs+ZB4DLly9jxIgRaNGiBV6+fAkA2LVrl+RmUkSy9vHjR/zyyy+oU6cODhw4kGuK14IFCySFPBEREVFpInUxf+jQITg4OEBLSwtBQUFIT/90sWF8fDw8PT1lHpBKL0EQkJyajJWrV6JmzZpYtWoVMjMz0aVLF1y9elXR8YiIiIgUrlCr2WzatAlbtmyBuvr/7p7ZsmVLBAUFyTQclV5isRj7DuzDiZgTMOtthtT0VNjY2OD06dM4ffo0rK2tFR2RiIiISOGkLuYfP36MNm3afNFuYGCAuLg4WWSiUu7ixYto1qwZxo4dK2nbtGkTgoKC0KVLFwUmIyIiIipepC7mTUxMEB4e/kV7QEAAatSoIZNQVDo9evQIffr0Qbt27XDr1i3o6OpI+kaMGAFVVVUFpiMiIiIqfqQu5idMmIAZM2YgMDAQIpEIr169wu7du+Ho6IgpU6bIIyOVcK9fv8bU6VPRqEkjHD16FKqqqvjpp58Qei9U0dGIiIiIijWpl6acM2cOxGIxOnbsiJSUFLRp0waamppwdHTEzz//LI+MVEKlpKRg5cqVWLV2FTZd34R2M9th35x9WOKxBHXq1Pm0xGSyolMSERERFV9SF/MikQi//vornJycEB4ejqSkJNSrVw+6urryyEclUHZ2Nnbu3AlXV1e8evUKmlqakr79+/ZDTUXqfy2JiIiISiWpp9n8+eefSElJgYaGBurVq4emTZuykKdvEgQBWeIsnDpzCnZ2dhg3bhxevXqF6tWrw9fXV9HxiIiIiJSS1MX8rFmzYGxsjGHDhuHEiRPIzs6WRy4qYYLvBsPvmR8SLRIRFh6GsmXLwtvbG48ePcKAAQMUHY+IiIhIKUldzMfExGDfvn0QiUQYNGgQTE1NMXXqVN7Eh77qxYsXGDt2LFq0aCFp+/nnnxEREYHZs2dDU1Mzn72JiIiIKD9SF/Nqamro2bMndu/ejbdv32LVqlV49uwZ2rdvj5o1a8ojIymhhIQE/Prrr6hVqxZ8fX0hCIKkb+nSpTAyMlJgOiIiIqKS4buuNNTW1oaDgwNiY2Px/PlzPHz4UFa5SAkJgoC0jDTs8N0Bd1d3vHv3DgDQqlUreHl74QVeKDghERERUcki9cg88GlJwd27d6N79+6oXLkyVq9ejX79+uH+/fuyzkdKQhAEHPnnCI69PIYKnSsgISkBtWrVgp+fHy5duoQmTZooOiIRERFRiSP1yPyQIUNw7NgxaGtrY9CgQXB1dYW9vb08spGSuHHjBhwdHXHj1g3sCt0FAPBZ6YOJ4yZCXV3900ZCPgcgIiIiokKRuphXVVXFgQMH4ODgAFVV1Vx9oaGhsLKyklk4Kt4iIyMxb9487Nu3DwCgb6gv6Zs0cRLXiyciIiKSM6mn2eRMr8kp5BMTE7F582Y0bdoUtra2Mg9IxYsgCHj34R2cXJxQp04dycpGo0ePRkhwiKLjEREREZUqhZozDwCXLl3C6NGjYWpqCm9vb3To0AHXr1+XZTYqZtLT07F67Wr4x/uj6aSmEKmK0KlTJwQFBcHX1xdVqlRRdEQiIiKiUkWqeRCvX7+Gr68vtm3bhoSEBAwaNAjp6ek4fPgw6tWrJ6+MpGCCIODAgQOYO3cuXr1+hV29Ps2L9/PzQ9cuXSESiRSckIiIiKh0KvDIfK9evVC7dm3cvXsXq1evxqtXr/Dbb79918nd3d0hEoly/dSpU+e7jkmydfnyZTRv3hxDhgxBZGQkTExMJH2dO3dmIU9ERESkQAUu5k+ePIlx48Zh4cKF6NGjxxcXvxZW/fr1ERMTI/kJCAiQyXGp8ARBwMOwhxgweADatGmDGzduQEdHBx4eHgi5y3nxRERERMVFgYv5gIAAJCYmolGjRmjWrBnWrVuH9+/ff3cANTU1mJiYSH7Kly//3ccsCoIgICH2Na6e2YbkuHdy7SvKc7179w4zZs3AbdxGo9mNUFZfE5MmTUJ4eDhcXV2ho62D9Kx0hL8PR0r8l++/rPuK8lzf6kNKCnDjxqd/yruvKM+lLH3FJUdR9xWXHN/qIyIixRCklJSUJGzbtk1o2bKloK6uLqioqAirV68WEhISpD2U4ObmJmhrawumpqaCubm5MGzYMOH58+d5bp+WlibEx8dLfqKjowUAQnx8vNTn/l7xH2MEUx9TAe4QLGZrCMlx7+TWVxTnevfqubBkyRJBT09P0NfTkPTV/EVdrq9N0a+7oH1CcrIgWFoKAvDpn8nJ8usrynMpS19xycHX/fU+IiKSufj4+ALVuVKvZqOjo4Mff/wRAQEBuHfvHmbPno1ly5bB2NgYvXv3lupYzZo1g6+vL06dOoWNGzciMjISrVu3RmJi4le3X7p0KQwMDCQ/ZmZm0saXmdCbxxGTGAMACNfLQGjgP3LrK4pz9e3SAL/++isSExPRppGZpC9CP1Our03Rr7ugfQgNBZ48+fT4yZNPz+XVV5TnUpa+4pKDr/vrfUREpDiy+OSQlZUl+Pn5Cb169fqu48TGxgr6+vrC1q1bv9rPkXn5nKvadAhl1CFUrVpV2L17t5Dw4bVgMVtDgDsEy/+MzCfFvi2yvqI817f6OBrLEWq+bo7MExEVpYKOzMukmJelxo0bC3PmzCnQtgV9kfKQmZ0p7Hq8S/AM9BTiP8bItU/Wx7t7967Qs3dPSV+VSuUELy8vITU1VbJNctw7IfD09twFrQL6ikuOT53JghAY+PUiRtZ9RXkuZekrLjmKuq+45PhWHxERyVRB61yRIAiCYr8b+J+kpCRUrVoV7u7umD59+je3T0hIgIGBAeLj46Gvr18ECf8nS5wFv2d+AIB+1ftBTUVNbn2yOt6bmDdYsGABfH19oa6pjl2hn9aLb6vfFsbljWXxayEiIiIiGShonSvVTaNkzdHREb169UK1atXw6tUruLm5QVVVFUOHDlVkrBLJY5EHvJd7IzU1FQDQu2dv2Aq2qGFeA6oi2SwzSkRERERFS6HF/IsXLzB06FB8+PABFSpUQKtWrXD9+nVUqFBBkbFKjKysLMljr+VeSE9NR4sWLeDt7Q17e3sFJiMiIiIiWZB6NRtZ2rdvH169eoX09HS8ePEC+/btQ82aNRUZqUQQBAH//PMPmjZtKmmrUaMGDh06hICAABbyRERERCWEQkfmSfZu3boFR0dHXLx4EQAwo80MzJs3D3du34GmpqaC0xERERGRLLGYL0F+/PFH7Nr56aJWTU1NzJw5E3PnzoWBgYGCkxERERGRPLCYV3Lx8fGSxwcOHAAAjBw5EosXL0bVqlUVFYuIiIiIioBC58xT4WVkZGD16tWwsrKStLVt2xa3b9/GH3/8wUKeiIiIqBRgMa9kBEHAX3/9hbp162LWrFl4/eo1PAd6QvuxNk4eP4mGDRsqOiIRERERFRFOs1EyHTp2QMDFAACAiYkJFi1ahDFjxkBNjW8lERERUWnDClAJhEeEA/9/X6ebN25CW1sbzs7OmD17NnR1dRUbjoiIiIgUhtNsirF3797h559/RuNGjSVtY8aOQXh4ONzc3FjIExEREZVyLOaLKR8fH1hYWGDdunVITkzGn7P/RJ3UOti4biNMTU0VHY+IiIiIigFOsylGxGKx5LGbmxvSU9NhZ2cHb29vdOjQQYHJiIiIiKg44sh8MXH+/Hm0bt1a8rxKlSr4448/cOvWLRbyRERERPRVHJlXsNDQUDg7O+PkyZPQ1NKUtN+5cwd6OnoKTEZERERExR2LeQWaNm0atvy+BWKxGGpqapg4fiJa67ZG+fLloSpSVXQ8IiIiIirmWMwXsaTkJMljX19fiMVi/PDDD1i2bBksLS0VmIyIiIiIlA3nzBeRrKwsbN68GbY2tpK2Jk2bICAgAIcOHWIhT0RERERS48i8nAmCgOPHj8PZ2RkPHjzINS/+3/P/Ql1VXYHpiIiIiEiZsZiXsx49euDs6bMAACMjIyxYsAA9KvWAhoYG58UTERER0XdhMS8HUVFRkseXLl2CpqYmZsyYgblz56Js2bKKC0ZEREREJQrnzMtQXFwcXFxcYGdnJ2kbPHgwHj9+jOXLl7OQJyIiIiKZYjEvAxkZGVizZg0sLCzg5eWFhLgEbJ6yGdU+VoPvdl9Uq1ZN0RGJiIiIqATiNBsZaNS4ER7dfwQAqFu3Lry8vNCjRw+IRCIFJyMiIiKikowj84V07949yePIp5GoWLEiNm3ahLt376Jnz54s5ImIiIhI7jgyX0hisVjyeM7cOZg9czb09PQUmIiIiIiIShuOzBdSwwYNkXgpEc01m8NtvhsLeSIiIiIqchyZLySRSIQfx/yo6BhEREREVIpxZJ6IiIiISEmxmCciIiIiUlIs5omIiIiIlBSLeSIiIiIiJcVinoiIiIhISbGYJyIiIiJSUizmiYiIiIiUFIt5IiIiIiIlxWKeiIiIiEhJsZgnIiIiIlJSLOaJiIiIiJQUi3kiIiIiIiXFYp6IiIiISEmxmCciIiIiUlJqig7wPQRBAAAkJCQoOAkRERERkezk1Lc59W5elLqYT0xMBACYmZkpOAkRERERkewlJibCwMAgz36R8K1yvxgTi8V49eoV9PT0IBKJFB2nREhISICZmRmio6Ohr6+v6DiUB75PyoHvk3Lg+6Qc+D4pD75XsiEIAhITE1GpUiWoqOQ9M16pR+ZVVFRQpUoVRccokfT19fkHqAT4PikHvk/Kge+TcuD7pDz4Xn2//Ebkc/ACWCIiIiIiJcVinoiIiIhISbGYp1w0NTXh5uYGTU1NRUehfPB9Ug58n5QD3yflwPdJefC9KlpKfQEsEREREVFpxpF5IiIiIiIlxWKeiIiIiEhJsZgnIiIiIlJSLOaJiIiIiJQUi/lSxN3dHSKRKNdPnTp18t3nr7/+Qp06dVCmTBlYW1vjxIkTRZS29JL2fdqyZQtat24NQ0NDGBoaolOnTrhx40YRJi6dCvP3lGPfvn0QiUTo27evfENSod6nuLg4TJ06FaamptDU1EStWrX4374iUJj3avXq1ahduza0tLRgZmaGWbNmIS0trYgSl14vX77EiBEjUK5cOWhpacHa2hq3bt3Kdx9/f380bNgQmpqasLCwgK+vb9GELQWU+g6wJL369evj3Llzkudqann/K3D16lUMHToUS5cuRc+ePbFnzx707dsXQUFBsLKyKoq4pZY075O/vz+GDh2KFi1aoEyZMli+fDm6dOmC+/fvo3LlykURt9SS5n3K8ezZMzg6OqJ169byjEafkeZ9ysjIQOfOnWFsbIyDBw+icuXKeP78OcqWLVsESUma92rPnj2YM2cOtm/fjhYtWiAsLAxjxoyBSCTCypUriyJuqRQbG4uWLVuiffv2OHnyJCpUqIAnT57A0NAwz30iIyPRo0cPTJ48Gbt378b58+cxfvx4mJqawsHBoQjTl0ws5ksZNTU1mJiYFGjbNWvWoGvXrnBycgIALFq0CGfPnsW6deuwadMmecYs9aR5n3bv3p3r+datW3Ho0CGcP38eo0aNkkc8+n/SvE8AkJ2djeHDh2PhwoW4fPky4uLi5BeOJKR5n7Zv346PHz/i6tWrUFdXBwBUr15djunoc9K8V1evXkXLli0xbNgwAJ/ep6FDhyIwMFCeEUu95cuXw8zMDDt27JC0mZub57vPpk2bYG5uDh8fHwBA3bp1ERAQgFWrVrGYlwFOsyllnjx5gkqVKqFGjRoYPnw4oqKi8tz22rVr6NSpU642BwcHXLt2Td4xSz1p3qf/SklJQWZmJoyMjOSYkADp3ycPDw8YGxtj3LhxRZSQAOnep6NHj8Le3h5Tp05FxYoVYWVlBU9PT2RnZxdh4tJLmveqRYsWuH37tmRa4dOnT3HixAl07969qOKWSkePHkXjxo0xcOBAGBsbw87ODlu2bMl3H9YT8sVivhRp1qwZfH19cerUKWzcuBGRkZFo3bo1EhMTv7r969evUbFixVxtFStWxOvXr4sibqkl7fv0Xy4uLqhUqdIX/+Ek2ZL2fQoICMC2bdu++T89ki1p36enT5/i4MGDyM7OxokTJ+Dq6gofHx8sXry4iJOXPtK+V8OGDYOHhwdatWoFdXV11KxZE+3atcO8efOKOHnp8vTpU2zcuBGWlpY4ffo0pkyZgunTp2Pnzp157pNXPZGQkIDU1FR5Ry75BCq1YmNjBX19fWHr1q1f7VdXVxf27NmTq239+vWCsbFxUcSj//et9+lzS5cuFQwNDYWQkJAiSEafy+99SkhIEKpXry6cOHFC0jZ69GihT58+RZiQBOHbf0+WlpaCmZmZkJWVJWnz8fERTExMiioi/b9vvVcXLlwQKlasKGzZskW4e/eu8PfffwtmZmaCh4dHESctXdTV1QV7e/tcbT///LPQvHnzPPextLQUPD09c7UdP35cACCkpKTIJWdpwjnzpVjZsmVRq1YthIeHf7XfxMQEb968ydX25s0bqeYI0/f71vuUw9vbG8uWLcO5c+dgY2NTROkoR37vU0REBJ49e4ZevXpJ2sRiMYBPc4QfP36MmjVrFlnW0uxbf0+mpqZQV1eHqqqqpK1u3bp4/fo1MjIyoKGhUVRRS71vvVeurq4YOXIkxo8fDwCwtrZGcnIyJk6ciF9//RUqKpx8IA+mpqaoV69erra6devi0KFDee6TVz2hr68PLS0tueQsTfhveimWlJSEiIgImJqafrXf3t4e58+fz9V29uxZ2NvbF0U8+n/fep8AwMvLC4sWLcKpU6fQuHHjIkxHOfJ7n+rUqYN79+4hODhY8tO7d2+0b98ewcHBMDMzU0Di0ulbf08tW7ZEeHi45MMWAISFhcHU1JSFfBH71nuVkpLyRcGe8yFMEAS55yutWrZsicePH+dqCwsLQ7Vq1fLch/WEnCn6qwEqOrNnzxb8/f2FyMhI4cqVK0KnTp2E8uXLC2/fvhUEQRBGjhwpzJkzR7L9lStXBDU1NcHb21t4+PCh4ObmJqirqwv37t1T1EsoFaR9n5YtWyZoaGgIBw8eFGJiYiQ/iYmJinoJpYK079N/cZpN0ZD2fYqKihL09PSEadOmCY8fPxaOHTsmGBsbC4sXL1bUSyg1pH2v3NzcBD09PWHv3r3C06dPhTNnzgg1a9YUBg0apKiXUCrcuHFDUFNTE5YsWSI8efJE2L17t6CtrS38+eefkm3mzJkjjBw5UvL86dOngra2tuDk5CQ8fPhQWL9+vaCqqiqcOnVKES+hxOE0m1LkxYsXGDp0KD58+IAKFSqgVatWuH79OipUqAAAiIqKyjXK0aJFC+zZswfz58/HvHnzYGlpicOHD3ONeTmT9n3auHEjMjIyMGDAgFzHcXNzg7u7e1FGL1WkfZ9IMaR9n8zMzHD69GnMmjULNjY2qFy5MmbMmAEXFxdFvYRSQ9r3av78+RCJRJg/fz5evnyJChUqoFevXliyZImiXkKp0KRJE/j5+WHu3Lnw8PCAubk5Vq9ejeHDh0u2iYmJybUSkbm5OY4fP45Zs2ZhzZo1qFKlCrZu3cplKWVEJAj8LoqIiIiISBlx2IiIiIiISEmxmCciIiIiUlIs5omIiIiIlBSLeSIiIiIiJcVinoiIiIhISbGYJyIiIiJSUizmiYiIiIiUFIt5IqJSZvPmzTAzM4OKigpWr14Nd3d3NGjQQNGxCq1du3aYOXOmomMQESkEi3kiIhkaM2YM+vbtW+Tn9fX1RdmyZb+5XUJCAqZNmwYXFxe8fPkSEydOlEseZf+AQESkLNQUHYCIiIpOVFQUMjMz0aNHD5iamio6DhERfSeOzBMRyVG7du0wffp0ODs7w8jICCYmJnB3d8+1jUgkwsaNG9GtWzdoaWmhRo0aOHjwoKTf398fIpEIcXFxkrbg4GCIRCI8e/YM/v7+GDt2LOLj4yESiSASib44B/Bp9N7a2hoAUKNGDcn+/yUWi+Hh4YEqVapAU1MTDRo0wKlTp3Jt4+Liglq1akFbWxs1atSAq6srMjMzJedZuHAhQkJCJHl8fX2/OM+ZM2dQpkyZXK8LAGbMmIEOHToAAD58+IChQ4eicuXK0NbWhrW1Nfbu3ZvHb/t/v8/Dhw/naitbtmyuDNHR0Rg0aBDKli0LIyMj9OnT56u/CyKi4o7FPBGRnO3cuRM6OjoIDAyEl5cXPDw8cPbs2VzbuLq6on///ggJCcHw4cMxZMgQPHz4sEDHb9GiBVavXg19fX3ExMQgJiYGjo6OX2w3ePBgnDt3DgBw48YNxMTEwMzM7Ivt1qxZAx8fH3h7e+Pu3btwcHBA79698eTJE8k2enp68PX1xYMHD7BmzRps2bIFq1atkpxn9uzZqF+/viTP4MGDvzhPx44dUbZsWRw6dEjSlp2djf3792P48OEAgLS0NDRq1AjHjx9HaGgoJk6ciJEjR+LGjRsF+t18TWZmJhwcHKCnp4fLly/jypUr0NXVRdeuXZGRkVHo4xIRKQKLeSIiObOxsYGbmxssLS0xatQoNG7cGOfPn8+1zcCBAzF+/HjUqlULixYtQuPGjfHbb78V6PgaGhowMDCASCSCiYkJTExMoKur+8V2WlpaKFeuHACgQoUKMDExgaqq6hfbeXt7w8XFBUOGDEHt2rWxfPlyNGjQAKtXr5ZsM3/+fLRo0QLVq1dHr1694OjoiAMHDkjOo6urCzU1NUkeLS2tL86jqqqKIUOGYM+ePZK28+fPIy4uDv379wcAVK5cGY6OjmjQoAFq1KiBn3/+GV27dpWcqzD2798PsViMrVu3wtraGnXr1sWOHTsQFRUFf3//Qh+XiEgROGeeiEjObGxscj03NTXF27dvc7XZ29t/8Tw4OFje0b6QkJCAV69eoWXLlrnaW7ZsiZCQEMnz/fv3Y+3atYiIiEBSUhKysrKgr68v9fmGDx+O5s2b49WrV6hUqRJ2796NHj16SC7mzc7OhqenJw4cOICXL18iIyMD6enp0NbWLvRrDAkJQXh4OPT09HK1p6WlISIiotDHJSJSBBbzRERypq6unuu5SCSCWCwu8P4qKp++RBUEQdKWMz9dEa5du4bhw4dj4cKFcHBwgIGBAfbt2wcfHx+pj9WkSRPUrFkT+/btw5QpU+Dn55drbvuKFSuwZs0arF69GtbW1tDR0cHMmTPznQ4jEoly/a6A3L+vpKQkNGrUCLt37/5i3woVKkj9GoiIFInFPBFRMXD9+nWMGjUq13M7OzsA/yswY2JiYGhoCABfjNpraGggOzv7u3Po6+ujUqVKuHLlCtq2bStpv3LlCpo2bQoAuHr1KqpVq4Zff/1V0v/8+fNC5xk+fDh2796NKlWqQEVFBT169Mh13j59+mDEiBEAPl2c+3/t3TFIalEcx/GfQwTO3WhRGrxDQRIODoFQLTUVVBDo2JCDGJaBQ1FBDQYt0dzQotIgCEIgQRQ4RJS0VEoIEYTgKFJTb3qCL+rxHF4d+H62w+Wee7jTj//5c065XNbg4OCn81mWpZeXl9a4Uqmo2Wy2xj6fT5lMRr29vR3tJgDAT0LPPAD8AMfHxzo8PFS5XNbGxoYuLy8ViUQkSR6PRy6XS5ubm6pUKsrn8x+q4P39/Wo0Gjo9PVW9Xm8Lr/9qdXVVyWRSmUxGDw8PSiQSKpVKWlpakiTZtq2npyel02k9Pj5qf39f2Wz2w3qq1apKpZLq9bre3t4+/V4oFNL19bV2dnY0Nzen7u7u1jPbtlUoFFQsFnV3d6fFxUXVarUv1z8+Pq6DgwPd3Nzo6upK4XC4bXckFAqpp6dH09PTuri4ULVa1dnZmaLRqJ6fnzv5ZQDwbQjzAPADbG1tKZ1Oy+v16ujoSKlUqlV97urqUiqV0v39vbxer5LJpLa3t9veHxkZUTgc1vz8vCzL0u7ubsdriUajWl5e1srKioaGhnRycqJcLifbtiVJU1NTisViikQiGh4eVrFY1Pr6etscs7Ozmpyc1NjYmCzL+vI4SY/HI7/fr9vb29YpNr+tra3J5/NpYmJCo6Oj6uvr++ulXHt7e3K5XAoEAgoGg4rH42099k6nU+fn53K73ZqZmdHAwIAWFhb0+vpKpR6AcRzvfzYWAgD+K4fDoWw2+y03xwIAzEZlHgAAADAUYR4AAAAwFKfZAMA3o9sRANApKvMAAACAoQjzAAAAgKEI8wAAAIChCPMAAACAoQjzAAAAgKEI8wAAAIChCPMAAACAoQjzAAAAgKEI8wAAAIChfgF8HlyAMrfRpAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -384,7 +381,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvMAAAHACAYAAAAvA+dJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACGA0lEQVR4nOzdd1gUxx8G8PeOcnREBUVFQEHFAvZuLNGo0Vhi7D0a04wVe8HejZpij6L+rFFRo7Em9m4UFCsgCiqWWOj1bn5/EDdeqIcHy8H7eR7C3czO7Hd3JXyZm51VCCEEiIiIiIjI4CjlDoCIiIiIiHKGyTwRERERkYFiMk9EREREZKCYzBMRERERGSgm80REREREBorJPBERERGRgWIyT0RERERkoJjMExEREREZKGO5A3gfGo0GT548gbW1NRQKhdzhEBERERHphRAC0dHRKFWqFJTKjMffDTqZf/LkCZycnOQOg4iIiIgoV4SHh6NMmTIZ1ht0Mm9tbQ0g9SBtbGxkjoaIiIiISD+ioqLg5OQk5bsZMehk/u3UGhsbGybzRERERFTgZDWVnDfAEhEREREZKCbzREREREQGisk8EREREZGBMug589khhEBKSgrUarXcoRAVOiYmJjAyMpI7DCIiogKrQCfzSUlJiIiIQFxcnNyhEBVKCoUCZcqUgZWVldyhEBERFUgFNpnXaDQIDQ2FkZERSpUqBVNTUz5YiigPCSHw4sULPHr0CO7u7hyhJyIiygUFNplPSkqCRqOBk5MTLCws5A6HqFCyt7fHgwcPkJyczGSeiIgoFxT4G2Aze/wtEeUufhpGRESUu5jpEhEREREZKCbzREREREQGisk85SqFQoE9e/bIHQYRERFRgcRkPp9RKBSZfk2bNk3uEImIiIgonyiwq9kYqoiICOn19u3bMXXqVNy9e1cqe3e9biEE1Go1jI15GYmIiIj0RQgBtVAjJjYGtla2+XpBh0I1Mi+EQGxsbJ5/CSGyHWPJkiWlL1vb1H88b9/fuXMH1tbWOHjwIGrVqgWVSoUzZ85gwIAB6NSpk1Y/I0aMQLNmzaT3Go0Gc+fOhaurK8zNzeHl5YWdO3dmGMfEiRNRr169NOVeXl6YMWMGAODy5cto1aoVihcvDltbWzRt2hRXr17NsM8TJ05AoVDgzZs3Upm/vz8UCgUePHgglZ05cwZNmjSBubk5nJycMGzYMMTGxmZ+4oiIiIj0JOBGAPwe+OHoi6NI0aTIHU6mClUyHxcXBysrqzz/0vcTaMePH4958+bh9u3b8PT0zFabuXPnYuPGjVi5ciVu3ryJkSNHok+fPjh58mS62/fu3RuXLl1CSEiIVHbz5k1cv34dvXr1AgBER0ejf//+OHPmDC5cuAB3d3d8/PHHiI6OzvGxhYSEoE2bNujSpQuuX7+O7du348yZMxg6dGiO+yQiIiLKjkePHmHgwIFo0KCBVBYUFCRjRFnj/AwDNGPGDLRq1Srb2ycmJmLOnDk4duyY9I+zXLlyOHPmDFatWoWmTZumaVOlShV4eXlhy5YtmDJlCgBg8+bNqFevHtzc3AAALVq00GqzevVqFClSBCdPnkT79u1zdGxz585F7969MWLECACAu7s7fvjhBzRt2hQrVqyAmZlZjvolIiIiykhUVBQWLFiA77//HvHx8VCZq6S6ChUqyBhZ1gpVMm9hYYGYmBhZ9qtPtWvX1mn74OBgxMXFpfkDICkpCTVq1MiwXe/evbFu3TpMmTIFQghs3boVo0aNkuqfPXuGyZMn48SJE3j+/DnUajXi4uIQFham2wG9IyAgANevX8fmzZulMiEENBoNQkND4eHhkeO+iYiIiN4SQiAhKQG+G3zhM9kHL168AAA0btwYCxYtwCM8kjnC7ClUybxCoYClpaXcYby3/x6DUqlMMy8/OTlZev32D5gDBw6gdOnSWtupVCpkpGfPnhg3bhyuXr2K+Ph4hIeHo3v37lJ9//798fLlSyxbtgzOzs5QqVRo0KABkpKS0u3v7dN434313Tjfxvrll19i2LBhadqXLVs2w1iJiIiIsksIgb2/7UVy1WQUb1kcUSOiUKFCBcyfPx8dO3aEWqjx6AGTecoj9vb2CAwM1Crz9/eHiYkJAKBy5cpQqVQICwtLd0pNRsqUKYOmTZti8+bNiI+PR6tWreDg4CDVnz17FsuXL8fHH38MAAgPD8fff/+daZxA6oo9dnZ2UpzvqlmzJm7duiVN5SEiIiLSp8uXL8Pb2xsXL1/EpsBNAIDF3y/GkEFDpNwJ2V+7RHaF6gbYgqpFixa4cuUKNm7ciKCgIPj4+Ggl99bW1vD29sbIkSOxYcMGhISE4OrVq/jxxx+xYcOGTPvu3bs3tm3bhl9//RW9e/fWqnN3d8emTZtw+/ZtXLx4Eb1794a5uXmGfbm5ucHJyQnTpk1DUFAQDhw4gMWLF2ttM27cOJw7dw5Dhw6Fv78/goKCsHfvXt4AS0RERO8lNDQUPXv2RN26dXHq1CmozP6dnfDlkC//TeQNDJP5AqB169aYMmUKxo4dizp16iA6Ohr9+vXT2mbmzJmYMmUK5s6dCw8PD7Rp0wYHDhyAq6trpn1/9tlnePnyJeLi4tIsf/nLL7/g9evXqFmzJvr27Ythw4Zpjdz/l4mJCbZu3Yo7d+7A09MT8+fPx6xZs7S28fT0xMmTJ3Hv3j00adIENWrUwNSpU1GqVCndTgoREREVekII/P3qb4wdPxaVKlXCtm3boFAo0L9/fwT4B8gdnl4ohC6LoOczUVFRsLW1RWRkJGxsbLTqEhISEBoaCldXV66AQiQT/hwSEZFcEhMTsXzlcpT5pAwAoG/VvmjSqAkWLlyI6tWrI0WTAr8HfgCAzi6dYaz8d/Z5ZnV5JbM8910cmSciIiKiAkMIge3bt8PDwwMTJkyQyv38/HDkyBFUr15dvuByAZN5IiIiIioQTp8+jfr166NHjx4IDQ1FyZIlpbpWrVpBoVDIGF3uYDJPRERERAZLCIHbd2/js+6f4YMPPsClS5dgaWmJGTNmIOB6wZgXnxkm80RERERkkJ4/f45hI4Yh0CQQ3ed2h7mlOb788ksEBwdjypQpsLQw/OcLZYXrzBMRERGRQYmLi8PSpUsxb948JKUk4YPhHwAALl26hKqVq8ocXd5iMk9ERERE+ZoQAmqhhlqtxtbNWzF58mQ8fvwYAFC/YX1pu0qVKskVomw4zYaIiIiI8jW1UMPvgR/2he/DV998hcePH6Ns2bLYvHkzTp48KXd4smIyT0RERET51o0bN9C5c2fpvY2NDRYsWIC7d++iV69eUCoLdzpbuI+ecmTatGlZrtE6YMCANE+MJSIiIsqux48fY9CgQahevTqOHj0qlQcGBmLMmDF8GOE/mMznQy9evMDXX3+NsmXLQqVSoWTJkmjdujXOnj0rbePi4gKFQgGFQgELCwtUq1YNa9eu1Xlfa9asQZMmTWBnZwc7Ozu0bNkSly5deu9jWLZsGXx9faX3zZo1w4gRI9673/wkISEB3377LYoVKwYrKyt06dIFz549y7SNEAJTp06Fo6MjzM3N0bJlSwQFBaXZ7sCBA6hXrx7Mzc1hZ2fHP4yIiKjAE0IgRZOC11GvMWXKFLi7u2PdunXQaDRaI/NFixaVMcr8h8l8PtSlSxdcu3YNGzZswL1797Bv3z40a9YML1++1NpuxowZiIiIQGBgIPr06YMvvvgCBw8e1GlfJ06cQM+ePXH8+HGcP38eTk5O+Oijj6SbSnLK1tYWRYoUea8+ckNSUlKaMrVaDY1Go3NfI0eOxG+//YZff/0VJ0+exJMnT/Dpp59m2mbBggX44YcfsHLlSly8eBGWlpZo3bo1EhISpG127dqFvn37YuDAgQgICMDZs2fRq1cvneMjIiIyJInJifB74Idjfx/DwsULER8fj4YNG+LcuXPYtGmT3OHlX8KARUZGCgAiMjIyTV18fLy4deuWiI+PlyGynHv9+rUAIE6cOJHpds7OzmLJkiVaZUWLFhUjR458r/2npKQIa2trsWHDhgy38fHxEV5eXmLlypWiTJkywtzcXHTt2lW8efNG2qZ///6iY8eO0msAWl+hoaHi1atXolevXqJ48eLCzMxMuLm5iXXr1ukU7+nTp0Xjxo2FmZmZKFOmjPjuu+9ETEyMVO/s7CxmzJgh+vbtK6ytrUX//v3F+vXrha2trdi7d6/w8PAQRkZGIjQ0VKf9vnnzRpiYmIhff/1VKrt9+7YAIM6fP59uG41GI0qWLCkWLlyo1Y9KpRJbt24VQgiRnJwsSpcuLdauXatTPPmVof4cEhFR3tFoNGLfvn3Cs7qn2BGyQ+wI2SE8qniIXbt2CY1GI4QQIlmdLNUlq5O12ud1XV7JLM99F0fmsykuOQ6XHl9CXHJcru7HysoKVlZW2LNnDxITE7PVRqPRYNeuXXj9+jVMTU3fa/9xcXFITk7O8iOs4OBg7NixA7/99hsOHTqEa9eu4Ztvvkl322XLlqFBgwb44osvEBERgYiICDg5OWHKlCm4desWDh48iNu3b2PFihUoXrx4tmMNCQlBmzZt0KVLF1y/fh3bt2/HmTNnMHToUK3tFi1aBC8vL1y7dg1TpkyRjnP+/PlYu3Ytbt68CQcHB2zevFk6/xl9nT59GgDw119/ITk5GS1btpT2U6lSJZQtWxbnz59PN97Q0FA8ffpUq42trS3q1asntbl69SoeP34MpVKJGjVqwNHREW3btkVgYGC2zwsREZGhuHLlCpo3b44OHTrg7t27WuWffvopFAqFjNEZBq4znw1xyXGovrI6gl4Fwb2oO/y/8oeFiUWu7MvY2Bi+vr744osvsHLlStSsWRNNmzZFjx494OnpqbXtuHHjMHnyZCQmJiIlJQVFixbF4MGD32v/48aNQ6lSpbQSzvQkJCRg48aNKF26NADgxx9/RLt27bB48WKULFlSa1tbW1uYmprCwsJCqy4sLAw1atRA7dq1AaTeB6CLuXPnonfv3tJcfHd3d/zwww9o2rQpVqxYId0Y06JFC4wePVpqd/r0aSQnJ2P58uXw8vKSyjt06IB69eplus+3x/v06VOYmpqmmUpUokQJPH36NN22b8tLlCiRYZv79+8DSL3J+Pvvv4eLiwsWL16MZs2a4d69e5wnSEREBk8IgfsP7mP69OnYtCF1+oxKpdL6Xf2+g5OFCUfmsyHweSCCXqXepBj0KgiBz3N3lLRLly548uQJ9u3bhzZt2uDEiROoWbOm1g2lADBmzBj4+/vjzz//RL169bBkyRK4ubnleL/z5s3Dtm3b4Ofnl+Ud4mXLlpUSWwBo0KABNBqN1l/VWfn666+xbds2VK9eHWPHjsW5c+d0ijcgIAC+vr5aI+etW7eGRqNBaGiotN3bPxbeZWpqmuaPI2tra7i5uWX6ZW5urlOMuno7d3/SpEno0qULatWqhfXr10OhUODXX3/N1X0TERHlttevX2P8xPG4Kq7ik6mfQGWuQt++fXHv3j1Mnz5d7vAMEpP5bKjqUBXuRd0BAO5F3VHVIfcfE2xmZoZWrVphypQpOHfuHAYMGAAfHx+tbYoXLw43Nzc0adIEv/76K4YNG4Zbt27laH+LFi3CvHnzcOTIkTRJbm5p27YtHj58iJEjR+LJkyf48MMP4e3tne32MTEx+PLLL+Hv7y99BQQEICgoCOXLl5e2s7S0TNPW3Nw8zUd3ukyzKVmyJJKSkvDmzRutPp49e5bmk4m33pb/d8Wbd9s4OjoCACpXrizVq1QqlCtXDmFhYdk5LURERPlOUlISli5dCjc3NyxbtkwqP3PmDDZu3IiyZcvKGJ1hkz2Zf/z4Mfr06YNixYrB3Nwc1apVw5UrV+QOS4uFiQX8v/LHxcEXc3WKTWYqV66M2NjYDOudnJzQvXt3TJgwQee+FyxYgJkzZ+LQoUPpjmKnJywsDE+ePJHeX7hwAUqlEhUrVkx3e1NTU6jV6jTl9vb26N+/P/73v/9h6dKlWL16dbbjrlmzJm7dupXuCHpOPp7r0KGD1h8G6X29PT+1atWCiYkJ/vjjD6n93bt3ERYWhgYNGqTbv6urK0qWLKnVJioqChcvXpTa1KpVCyqVSusTjuTkZDx48ADOzs46HxMREZGchBD49ddf4eHhgZEjR+LVq1fw8PCQ6rN6bg1lTdY5869fv0ajRo3QvHlzHDx4EPb29ggKCoKdnZ2cYaXLwsQCdUvXzfX9vHz5El27dsXnn38OT09PWFtb48qVK1iwYAE6duyYadvhw4ejatWquHLlSraT8vnz52Pq1KnYsmULXFxcpLnbb0eiM2JmZob+/ftj0aJFiIqKwrBhw9CtW7cMR6VdXFxw8eJFPHjwAFZWVihatCimTZuGWrVqoUqVKkhMTMT+/fu1fsCzMm7cONSvXx9Dhw7F4MGDYWlpiVu3buHo0aP46aefst3PW9bW1rC2ts7Wtra2thg0aBBGjRqFokWLwsbGBt999x0aNGiA+vXrS9tVqlQJc+fORefOnaFQKDBixAjMmjUL7u7ucHV1xZQpU1CqVClpHXkbGxt89dVX8PHxgZOTE5ydnbFw4UIAQNeuXXU+JqI88+gREBQEuLsDZcq8f52++ysIdfklDh637nUPHgKhDwFXZ8DFOXt1OWmTj+qEEPDftxdnNm3GxlOncP/Fc5QsWRIzZ85En359cObSZhR/GgvgIVDu30/T7Z5EpVue3+rylbxYWicj48aNE40bN85x+4K4NGVCQoIYP368qFmzprC1tRUWFhaiYsWKYvLkySIuLk7aLr2lKYUQonXr1qJt27bSewBi/fr1Ge7P2dk5zbKRAISPj0+Gbd4uTbl8+XJRqlQpYWZmJj777DPx6tUraZt3l6YUQoi7d++K+vXrC3Nzc2lpypkzZwoPDw9hbm4uihYtKjp27Cju378vtWnatKno379/pufr0qVLolWrVsLKykpYWloKT09PMXv27EzP09ulKd9XfHy8+Oabb4SdnZ2wsLAQnTt3FhEREVrb/Pf8azQaMWXKFFGiRAmhUqnEhx9+KO7evavVJikpSYwePVo4ODgIa2tr0bJlSxEYGPje8crBUH8OSUdr1wqhVAoBpH5/d2nVnNTpu7+CUJdf4uBx61yn2b5LaP64IMSJy6nft+/Osi4nbfJT3d27d8Wf33ynVXdt4lQRHR0thBBCvW1nuu0yKs9vdXklu0tTKoQQQq4/JCpXrozWrVvj0aNHOHnyJEqXLo1vvvkGX3zxRbrbJyYmai3XGBUVBScnJ0RGRsLGxkZr24SEBISGhsLV1bXQPu43NDQUFSpUwK1bt+Du7i53ODpzdnbG9OnTMWDAALlDoRziz2Eh8OgR4OwMvPvgNSMj4MGD1Ne61p0/D9Svr7/+CkJdYT0nBeG4U9QQ959CYWQkVQm1GopyqZ9ip1tnoYSI0+jWJh/VLdq1Cbt27cL5LXsK5nH/95OJXBQVFQVbW9t089x3yTrN5v79+1ixYgVGjRqFiRMn4vLlyxg2bBhMTU3Rv3//NNvPnTuXdzrr4Pfff8eQIUMMMpG/efMmbG1t0a9fP7lDIaLMBAVpJzEAoFYDwcGAELrXnTmj3/4KQl1hPScF4riVUBhp32enMDICHoQBQqRfFxwChVN53drko7rH586jgWNprUS4QB13Hibz2SVrMq/RaFC7dm3MmTMHAFCjRg0EBgZi5cqV6SbzEyZMwKhRo6T3b0fmKX3ffvut3CHkWJUqVXD9+nW5wyCirLi7A0pl2lHJt8vk6lrXuLF++ysIdYX1nBSE485wZD515ZZ069zKQcSpdWuTj+r+trTA8OHDU7croMed38i6mo2jo6PWEnwA4OHhkeESfCqVCjY2NlpfREQkozJlgNWrU5MXIPX7qlWp5Tmpq1NHv/0VhLrCek4KwnG7OEO8eATxz2puQq2G4u8nqaO7GdXVr6N7GxnqjgUH4cCG1Vp19y+dxsZTJ1Gn62dQ/P0kwz7TratfR/c2ctTlQ7LOme/VqxfCw8OltbsBYOTIkbh48WK2HiCU2VwiztUlkh9/DguRR49SpxW4uaW/yoeudfruryDU5Zc4eNw61aVoUnDi3AYUfxqHqjU/hvE7q6JkVJeTNnlVdycuHmPHjsXBgwehMldh/5GfUfxpHNyrfAhLD+0BWjx4+M/UlLLpr4KTXl1O2shRlweyO2de1mT+8uXLaNiwIaZPn45u3brh0qVL+OKLL7B69Wr07t07y/ZM5onyN/4cElFhl6JJgd8DPwBAZ5fOMFYaZ1mXkzZ5UffHoj+wZtUaaDQaGBsb45tvvsHEyRNRrFgxGCmM0jyMkd5PdpN5WafZ1KlTB35+fti6dSuqVq2KmTNnYunSpdlK5ImIiIgod8XExkivfX19odFo0KVLF9y6dQvLli1DCfsSMFYaM5GXkexPgG3fvj1u3LiBhIQE3L59O8NlKYmIiIgob6SkpGD16tXwrOYpldWtVxdnz57Fzp07DXKlvIJK9mSeiIiIiPIHIQQOHDgALy8vfPnllwh/GI6pHaYC14ATf5xAw4YN5Q6R/kPWpSmJiIiIKP9o164djh4+CgAoWrQopk6diq+//hqmpqYyR0YZ4cg86axZs2YYMWKE3GEQERGRHoSHh0uvT506BZVKhbFjxyIkJATDhw9nIp/PMZnPhwYMGACFQgGFQgETExO4urpi7NixSEhIkDu0bJk2bRqqV68udxiyevDgARQKBfz9/eUOhYiIKF1v3rzBuHHjtH5n9+jRA3fv3sX8+fNRpEgR2WKj7GMyn0+1adMGERERuH//PpYsWYJVq1bBx8dH7rAKBSEEUlJS5A6DiIgoVyQlJWHZsmVwc3PDggULEPUmCmu+WQOX1y5Y/8t6ODvnz4cjUfqYzGfXo0fA8eOp3/OASqVCyZIl4eTkhE6dOqFly5Y4evSoVJ+YmIhhw4bBwcEBZmZmaNy4MS5fvizV+/r6pvmLes+ePVpLR70dQd+0aRNcXFxga2uLHj16IDo6WtomNjYW/fr1g5WVFRwdHbF48eJM4/b19cX06dMREBAgfbrg6+sLAAgLC0PHjh1hZWUFGxsbdOvWDc+ePcuwr7ej27t370bz5s1hYWEBLy8vnD9/Xmu7M2fOoEmTJjA3N4eTkxOGDRuG2NhYqX7Tpk2oXbs2rK2tUbJkSfTq1QvPnz+X6k+cOAGFQoGDBw+iVq1aUKlUOHPmDDQaDebOnQtXV1eYm5vDy8sLO3fulNq9fv0avXv3hr29PczNzeHu7o7169cDAFxdXQEANWrUgEKhQLNmzTI9b0RERHmlVu1aGDFiBF6+fInKlStj//79OHzwMOrUqsMlJg0Qk/ns+OUXwNkZaNEi9fsvv+Tp7gMDA3Hu3DmtOWtjx47Frl27sGHDBly9ehVubm5o3bo1Xr16pVPfISEh2LNnD/bv34/9+/fj5MmTmDdvnlQ/ZswYnDx5Env37sWRI0dw4sQJXL16NcP+unfvjtGjR6NKlSqIiIhAREQEunfvDo1Gg44dO+LVq1c4efIkjh49ivv376N79+5Zxjhp0iR4e3vD398fFSpUQM+ePaWR85CQELRp0wZdunTB9evXsX37dpw5cwZDhw6V2icnJ2PmzJkICAjAnj178ODBAwwYMCDNfsaPH4958+bh9u3b8PT0xNy5c7Fx40asXLkSN2/exMiRI9GnTx+cPHkSADBlyhTcunULBw8exO3bt7FixQoUL14cAHDp0iUAwLFjxxAREYHdu3dnfTGIiIhyyYWLF6TXofdDUaJECaxatQoBAQFo164dk3hDJgxYZGSkACAiIyPT1MXHx4tbt26J+Pj499tJeLgQSqUQwL9fRkap5bmkf//+wsjISFhaWgqVSiUACKVSKXbu3CmEECImJkaYmJiIzZs3S22SkpJEqVKlxIIFC4QQQqxfv17Y2tpq9evn5yfeveQ+Pj7CwsJCREVFSWVjxowR9erVE0IIER0dLUxNTcWOHTuk+pcvXwpzc3MxfPjwDOP38fERXl5eWmVHjhwRRkZGIiwsTCq7efOmACAuXbqUbj+hoaECgFi7dm2aNrdv3xZCCDFo0CAxZMgQrXanT58WSqUyw2t/+fJlAUBER0cLIYQ4fvy4ACD27NkjbZOQkCAsLCzEuXPntNoOGjRI9OzZUwghxCeffCIGDhyYaezXrl1Lt76w0NvPIRGRgUpWJ4sdITvEjpAdIlmdnK26nLTJqC4oKEh06dJFqMxVUp3PDB/pdyDlX5nlue/iyHxWgoIAjUa7TK0GgoNzdbfNmzeHv78/Ll68iP79+2PgwIHo0qULgNTR6OTkZDRq1Eja3sTEBHXr1sXt27d12o+Liwusra2l946OjtIUlJCQECQlJaFevXpSfdGiRVGxYkWdj+f27dtwcnKCk5OTVFa5cmUUKVIky5g9Pf99YIWjoyMASDEGBATA19cXVlZW0lfr1q2h0WgQGhoKAPjrr7/wySefoGzZsrC2tkbTpk0BpE77eVft2rWl18HBwYiLi0OrVq20+t64cSNCQkIAAF9//TW2bduG6tWrY+zYsTh37pzO54WIiCg3vHz5EsOHD4eHhwd27dqF5MRk/LHoD9RX1YfPZB9YWVnJHSLpCdeZz4q7O6BUaif0RkaAm1uu7tbS0hJu/+xj3bp18PLywi+//IJBgwZlq71SqYQQQqssOTk5zXYmJiZa7xUKBTT//eNFZu/G+PZjwLcxxsTE4Msvv8SwYcPStCtbtixiY2PRunVrtG7dGps3b4a9vT3CwsLQunVrJCUlaW1vaWkpvY6JSX189YEDB1C6dGmt7VQqFQCgbdu2ePjwIX7//XccPXoUH374Ib799lssWrRID0dNRESUc1WrVsXfz/8GkPr7asGCBahatarMUVFu4Mh8VsqUAVavTk3ggdTvq1allucRpVKJiRMnYvLkyYiPj0f58uVhamqKs2fPStskJyfj8uXLqFy5MgDA3t4e0dHRWjeC6rpMYvny5WFiYoKLFy9KZa9fv8a9e/cybWdqagq1Wq1V5uHhgfDwcK21bG/duoU3b95IMedEzZo1cevWLbi5uaX5MjU1xZ07d/Dy5UvMmzcPTZo0QaVKlbRufs1I5cqVoVKpEBYWlqbfdz9dsLe3R//+/fG///0PS5cuxerVq6VzACDNeSAiIsoNGo0G27Ztk95HR0ejevXqOHbsGH7//Xcm8gUYk/nsGDQIePAgdTWbBw9S3+exrl27wsjICD///DMsLS3x9ddfY8yYMTh06BBu3bqFL774AnFxcdLIfb169WBhYYGJEyciJCQEW7ZskVaVyS4rKysMGjQIY8aMwZ9//onAwEAMGDAASmXm/2xcXFwQGhoKf39//P3330hMTETLli1RrVo19O7dG1evXsWlS5fQr18/NG3aVGt6i67GjRuHc+fOYejQofD390dQUBD27t0r3QBbtmxZmJqa4scff8T9+/exb98+zJw5M8t+ra2t4e3tjZEjR2LDhg0ICQnB1atX8eOPP2LDhg0AgKlTp2Lv3r0IDg7GzZs3sX//fnh4eAAAHBwcYG5ujkOHDuHZs2eIjIzM8TESERFl5s8//0SdOnUwePBgqWz16tX466+/8OGHH8oYGeUFJvPZVaYM0KxZno7Iv8vY2BhDhw7FggULEBsbi3nz5qFLly7o27cvatasieDgYBw+fBh2dnYAUue2/+9//8Pvv/+OatWqYevWrZg2bZrO+124cCGaNGmCTz75BC1btkTjxo1Rq1atTNt06dIFbdq0QfPmzWFvb4+tW7dCoVBg7969sLOzwwcffICWLVuiXLly2L59e05Oh8TT0xMnT57EvXv30KRJE9SoUQNTp05FqVKlAKSOnPv6+uLXX39F5cqVMW/evGxPg5k5cyamTJmCuXPnwsPDA23atMGBAwekZSdNTU0xYcIEeHp64oMPPoCRkZE0KmJsbIwffvgBq1atQqlSpdCxY8f3Ok4iIqL/unPnDtq3b48PP/wQV69ehcpEhfu77qNNiTbo27tvloNvVDAoxH8nVhuQqKgo2NraIjIyEjY2Nlp1CQkJCA0NhaurK8zMzGSKkKhw488hERV2KZoU+D3wAwB0dukMY6VxlnXZbdPfsz/iY+NhbGyMr776ClOnToW9vX2eHBflvszy3HfxTzYiIiIiAxATE4M5c+dI7zUaDTp37oybN2/ixx9/ZCJfSDGZJyIiIsrH1Go11q5dC3d3d8yZ/W8yf+ToEezevRsVKlSQMTqSG5emJCIiIsqnDh8+jHFjxuHmzZsAgHLlygHXgE6dOsHYlWkcMZknIiIiyre6dOmCxPhE2NnZYerUqfj666+l550QAZxmQ0RERJRvhIWF4YsvvpDem5qawtvbGyEhIRgxYgQTeUqDI/NEREREMouMisSi+YuwZMkSJCYmYuvWrejatSsCrgVISyITpYfJPBEREZHMPKt54smjJwCApk2bYuHChahTp47MUZEh4DQbIiIiojwmhMDefXul9y9fvkSlSpWwd+9eHD9+nIk8ZRuTeSIiIqI8dOHCBTRp0gS9e/WWypYuW4obN26gQ4cOUCgUMkZHhobJPOmsWbNmGDFihNxhFChTpkzBkCFD5A5DZ/Xr18euXbvkDoOIyCDcD72Pbt26oUGDBjh79iyUUOLGphtoWbwlvhz8JYyNOfuZdMdkPh8aMGAAFAoFFAoFTExM4OrqirFjxyIhIUHu0LJl2rRpqF69utxhyOrBgwdQKBTw9/fPctunT59i2bJlmDRpkk77ePtv5N2vbdu25TDitHx9fdP0b2ZmprXN5MmTMX78eGg0Gr3tl4iooKpVsxZ+/fVXKBQKfP755wgKCsIMnxmws7HjaDzlGJP5fKpNmzaIiIjA/fv3sWTJEqxatQo+Pj5yh1UoCCGQkpKSZ/tbu3YtGjZsCGdnZ53brl+/HhEREdJXp06d9BqbjY2NVv8PHz7Uqm/bti2io6Nx8OBBve6XiKggSEhIwNKlS6X3ycnJaN26Nfz9/fHLL7+gdOnS8gVHBQaT+exKTAJeR6V+zwMqlQolS5aEk5MTOnXqhJYtW+Lo0aP/hpOYiGHDhsHBwQFmZmZo3LgxLl++LNX7+vqiSJEiWn3u2bNH6y//tyPomzZtgouLC2xtbdGjRw9ER0dL28TGxqJfv36wsrKCo6MjFi9enGncvr6+mD59OgICAqTRXF9fXwCpa+d27NgRVlZWsLGxQbdu3fDs2bMM+3o7ur179240b94cFhYW8PLywvnz57W2O3PmDJo0aQJzc3M4OTlh2LBhiI2Nleo3bdqE2rVrw9raGiVLlkSvXr3w/Plzqf7EiRNQKBQ4ePAgatWqBZVKhTNnzkCj0WDu3LlwdXWFubk5vLy8sHPnTqnd69ev0bt3b9jb28Pc3Bzu7u5Yv349AEjLiNWoUQMKhQLNmjXL8Di3bduGTz75RKssq32/VaRIEZQsWVL6+u/IeUbeXvtVq1bByckJFhYW6NatGyIjI7W2UygUWv2XKFFCq97IyAgff/yxXj8RICIydBqNBlu2bEGlSpUwefJkqXzv3r04dOgQPD09ZYyOChom89kR8QK4cB24fi/1e8SLPN19YGAgzp07B1NTU6ls7Nix2LVrFzZs2ICrV6/Czc0NrVu3xqtXr3TqOyQkBHv27MH+/fuxf/9+nDx5EvPmzZPqx4wZg5MnT2Lv3r04cuQITpw4gatXr2bYX/fu3TF69GhUqVJFGs3t3r07NBoNOnbsiFevXuHkyZM4evQo7t+/j+7du2cZ46RJk+Dt7Q1/f39UqFABPXv2lEbOQ0JC0KZNG3Tp0gXXr1/H9u3bcebMGQwdOlRqn5ycjJkzZyIgIAB79uzBgwcPMGDAgDT7GT9+PObNm4fbt2/D09MTc+fOxcaNG7Fy5UrcvHkTI0eORJ8+fXDy5EkAqfPcb926hYMHD+L27dtYsWIFihcvDgC4dOkSAODYsWOIiIjA7t270z22V69e4datW6hdu7ZWeVb7fuvbb79F8eLFUbduXaxbtw5CiCzP51vBwcHYsWMHfvvtNxw6dAjXrl3DN998o7VNTEwMnJ2d4eTkhI4dO0qPE39X3bp1cfr06Wzvl4ioIDt58iTq1auH3r174+HDhyhetDhiz8Sig1MHfNTyI7nDo4JIGLDIyEgBQERGRqapi4+PF7du3RLx8fHvt5OERCFOXE77lZD4fv1mon///sLIyEhYWloKlUolAAilUil27twphBAiJiZGmJiYiM2bN0ttkpKSRKlSpcSCBQuEEEKsX79e2NraavXr5+cn3r3kPj4+wsLCQkRFRUllY8aMEfXq1RNCCBEdHS1MTU3Fjh07pPqXL18Kc3NzMXz48Azj9/HxEV5eXlplR44cEUZGRiIsLEwqu3nzpgAgLl26lG4/oaGhAoBYu3Ztmja3b98WQggxaNAgMWTIEK12p0+fFkqlMsNrf/nyZQFAREdHCyGEOH78uAAg9uzZI22TkJAgLCwsxLlz57TaDho0SPTs2VMIIcQnn3wiBg4cmGns165dS7f+rWvXrgkAWuclO/sWQogZM2aIM2fOiKtXr4p58+YJlUolli1blun+3vLx8RFGRkbi0aNHUtnBgweFUqkUERERQgghzp07JzZs2CCuXbsmTpw4Idq3by9sbGxEeHi4Vl979+4VSqVSqNXqNPvR288hEVE+ptFoROCtQNG5S2cBQAAQVlZWYvbs2SI2Nlbu8MhAZZbnvou3TWclLoObTuMTAJVp+nV60Lx5c6xYsQKxsbFYsmQJjI2N0aVLFwCpo9HJyclo1KiRtL2JiQnq1q2L27dv67QfFxcXWFtbS+8dHR2lKSghISFISkpCvXr1pPqiRYuiYsWKOh/P7du34eTkBCcnJ6mscuXKKFKkCG7fvp3perrvfhzp6OgIAHj+/DkqVaqEgIAAXL9+HZs3b5a2EUJAo9EgNDQUHh4e+OuvvzBt2jQEBATg9evX0s2aYWFhqFy5stTu3dHx4OBgxMXFoVWrVlqxJCUloUaNGgCAr7/+Gl26dMHVq1fx0UcfoVOnTmjYsKFO5yU+Ph4AtKbHZGffQOonA2/VqFEDsbGxWLhwIYYNG5atfZctW1ZrvmaDBg2g0Whw9+5dlCxZEg0aNECDBg2k+oYNG8LDwwOrVq3CzJkzpXJzc3NoNBokJibC3Nw8m0dORFQwPHv2DDNmz0CzEc3Qc0FPHD58GAP6DYCPjw8cHBzkDo8KASbzWbHIYA6yefbmJueUpaUl3NzcAADr1q2Dl5cXfvnlFwwaNChb7ZVKZZopF8nJyWm2MzEx0XqvUCjy3cok78b4ds7/2xhjYmLw5ZdfppvAli1bFrGxsWjdujVat26NzZs3w97eHmFhYWjdujWSkrTvf7C0tJRex8TEAAAOHDiQ5gYllUoFIPXmz4cPH+L333/H0aNH8eGHH+Lbb7/FokWLsn1sb6flvH79Gvb29tned3rq1auHmTNnIjExMdPtcsrExAQ1atRAcHCwVvmrV69gaWnJRJ6ICpXY2Fh8//33WLBgAZLVyWg2ohkA4PLly6hcqXLmjYn0iHPms6IyBSr8Z5WRCs65Oir/X0qlEhMnTsTkyZMRHx+P8uXLw9TUFGfPnpW2SU5OTv0fyD8jzfb29oiOjta6ETQ7yyS+q3z58jAxMcHFixelstevX+PevXuZtjM1NYVardYq8/DwQHh4OMLDw6WyW7du4c2bN1qj47qqWbMmbt26BTc3tzRfpqamuHPnDl6+fIl58+ahSZMmqFSpktbNrxmpXLkyVCoVwsLC0vT77qcL9vb26N+/P/73v/9h6dKlWL16tXQOAKQ5D/9Vvnx52NjY4NatWzrv+7/8/f1hZ2eX7UQ+LCwMT548kd5fuHABSqUyw09e1Go1bty4IX068lZgYKDWJwZERAWZWq3GunXrUKFCBUydOhUxMTGoVauWVF+hQgUZo6PCiCPz2eFoDxS1TZ1aY26Wp4n8W127dsWYMWPw888/w9vbG19//TXGjBmDokWLomzZsliwYAHi4uKkkft69erBwsICEydOxLBhw3Dx4kVpVZnssrKywqBBgzBmzBgUK1YMDg4OmDRpEpTKzP8GdHFxQWhoKPz9/VGmTBlYW1ujZcuWqFatGnr37o2lS5ciJSUF33zzDZo2bZrm5k9djBs3DvXr18fQoUMxePBgWFpa4tatWzh69Ch++uknlC1bFqampvjxxx/x1VdfITAwUGuKSEasra3h7e2NkSNHQqPRoHHjxoiMjMTZs2dhY2OD/v37Y+rUqahVqxaqVKmCxMRE7N+/Hx4eHgAABwcHmJub49ChQyhTpgzMzMxga2ubZj9KpRItW7bEmTNnpGUls7Pv3377Dc+ePUP9+vVhZmaGo0ePYs6cOfD29s72uTMzM0P//v2xaNEiREVFYdiwYejWrRtKliwJAJgxYwbq168PNzc3vHnzBgsXLsTDhw8xePBgrX5Onz6Njz7iTV1EVLAJIXD46GFMmjQJV6+kLgTh4uKCuXPn4tPPPsXesL0yR0iFVl5M4M8teXIDrAz69+8vOnbsmKZ87ty5wt7eXsTExIj4+Hjx3XffieLFiwuVSiUaNWqU5kZSPz8/4ebmJszNzUX79u3F6tWr09wA+98bVZcsWSKcnZ2l99HR0aJPnz7CwsJClChRQixYsEA0bdo00xtgExISRJcuXUSRIkUEALF+/XohhBAPHz4UHTp0EJaWlsLa2lp07dpVPH36NMN+0ruJ9PXr1wKAOH78uFR26dIl0apVK2FlZSUsLS2Fp6enmD17tlS/ZcsW4eLiIlQqlWjQoIHYt2+fVr9vb4B9/fq11v41Go1YunSpqFixojAxMRH29vaidevW4uTJk0IIIWbOnCk8PDyEubm5KFq0qOjYsaO4f/++1H7NmjXCyclJKJVK0bRp0wyP8/fffxelS5fWuoE0q30fPHhQVK9eXTpmLy8vsXLlynRvQk3P22u/fPlyUapUKWFmZiY+++wz8erVK2mbESNGiLJlywpTU1NRokQJ8fHHH4urV69q9fPo0SNhYmKS5qbYtwz555CI6C1/f3/Rtl1bsSNkh9gRskM4lHQQixcvFgkJCUIIIZLVyVJdsjpZ5mipoMjuDbAKIXRYyy6fiYqKgq2tLSIjI2FjY6NVl5CQgNDQULi6umZ77W0iOQghUK9ePYwcORI9e/bMk31OmzYNe/bs0Xnq1X+NGzcOr1+/lqYX/Rd/DonIkD169AiTJ0/Gxo0bYWpmik2BmwAAzWybwb6YvbRdiiYFfg/8AACdXTrDWMmJD/T+Mstz38U580QyUygUWL16dZ4+dVZfHBwcsjVtiYjIkERFRWHSpElwd3fHhg0bIISQVpQDADs7OxmjI9LGPx2J8oHq1aujevXqeuuvSpUqePjwYbp1q1at0tt+Ro8erbe+iIjklpSUhLXr12LO7Dl4HP4YANC4cWMsWrQIterUkkbfifITJvNEBdDvv/+e7lKkAFCiRAlYW1tj2rRpeRsUEVE+JYTA3r17MXnqZPjs8cGSVkswvdN0zJoxCx07doRCoUCKxvA+PaXCgck8UQHk7Oyc9UZERISLFy9izJgxOH36NFTm/y7te/nyZZir+PwMyv84Z56IiIgKDSEEUjQpCLofhB49eqB+/fo4ffo0zMzMMGbMGGm7/z5UkSi/KvDJvAEv1kNk8PjzR0T5zd+v/obfAz/4wx979u2BQqFA//79ce/ePfj4+MgdHpHOCmwy//Yv6ri4OJkjISq8kpKSAABGRkYyR0JEhV1iYiIWL16MatWqSWXNmzfH1atX4evrm+kTtonyswI7Z97IyAhFihTB8+fPAQAWFhZQKBQyR0VUeGg0Grx48QIWFhYwNi6w/6shonxOCIHt27dj4sSJCA0N1ZoXv2/fPpgYcToNGbYC/Rv27WPp3yb0RJS3lEolypYtyz+kiShPCSGgFmqcPXsWY0aPweXLlwEApUqVwszZ/z4bg/9vooKgQCfzCoUCjo6OcHBwyHCZPiLKPaamplAqC+xsPiLKp+7cu4NAk0CgNHA98DosLS0xbtw4jBo1CipzFdeLpwKlQCfzbxkZGXHOLhERUQH3/PlzTJ8+Hb4bfeEb4AsA+HzQ55g6aar0aT3Xi6eCplAk80RERFRwxcXFYcmSJZg/fz6io6O15sX/sOwHGCuZ7lDBxc+/iYiIyOAIIZCYnAjfjb6oUKECJk+ejOjoaNSuXRsHDx6UOzyiPMNknoiIiAzOkWNHsC98HywbW+LvV3/D2dkZW7ZswcWLF9GkSRO5wyPKM0zmiYiIyGBcv34drVu3RseOHaWy2bNn486dO+jZsydvuqdCh//iiYiIKN97/PgxPv/8c1SvXh1HjhyRHg4JAMOHD4eZmZmM0RHJh8k8ERER5UtCCLyOeo2p06bC3d0d69evhxAC3bp1w19X/5I7PKJ8gck8ERER5TvJyclYuWYljv19DNX6VYMGGjRq1Ajnz5/H9u3bUc61nNwhEuULTOaJiIgo3xBCYO/evahWrRpGjhgplW/ZugWnT59G/fr1ZYyOKP9hMk9ERET5wuXLl9GsWTN06tQJd+/eRbFixaS6Dp90gEKhkDE6ovyJyTwRERHJKjQ0FH3790WTpk1w6tQpmJmZYcKECbh+47rcoRHle0zmiYiISBavX7+Gt7c3vGp4oYNPB2wK3ITPB3+Oe/fuYc6cObC1sZU7RKJ8j883JiIiojyVmJiI5cuXY+bMmXj9+jVU5iqpbtWqVTBWMj0hyi6OzBMREVGuE0IgWZ2M7b9uh4eHB0aNGoXXr1+jatWq2L17t9zhERksJvNERESU606fO409D/dAWUuJJ0+fwNHREWvXroW/vz8++ugjucMjMlhM5omIiCjX3Lt3D507d8ZHrf5N2CdNmoSgoCAMGjQIRkZGMkZHZPiYzBMREeVzQghEJUbhXPg5xCbF5ts+3/XixQsMHToUVapUwZ49e6BU/ptyTJgwAZaWlnrfp5wSUxIR/Hcw4pLj5A6FChkm80RERDmQ28nwu6KTolHp50potK4Rqq+qrpeEMTf6FEIgOjYa8xbMQ/ny5fHzzz8jJSUF7du3x6VLl967//wqLjkOY/ePxcSDE1FrdS0m9JSnmMwTERHlQHRSNJqvboRJu4ehzboWaRO4xCTgdVTq9//SsS7weSCUSWo0K1IL8bFRCHwe+N770nefGo0GG/+3EUfDDsCpSREUL2aDmjVr4s8//8Rvv/2GSpUqwTzFCPYJZun2mVFdTtrkdV2W55IoFymEEELuIHIqKioKtra2iIyMhI2NjdzhEBFRIRJ88wJcXyhgpDCCWqjxsIQC5TzqplZGvADuPfx34wrOgKN9lnXiyQsg6CEUAAQAxT918eHhMA2JgJFCCbXQIMWtNFRlSr/XvvTZ57GbARgzZgzqliuH5d+Nk/pMLl8KZk5lAADqJ8+gDAqDAgqtY8usTv3kGRRBYVDq0CY7dfruMzH8MYxDHqd/LolyKLt5LkfmiYiIdJWYhPJ/G8NIkXrzppHCCK7PlakjtolJ2skukPo+O3X/JPIAUhP6ew+BqBiY3X8GI4Xyn30poQqJkNqIHO4rsz51iV99JxQDevXGi8dPsHzoWO0+7//bpzIoHIp/jk7xnz7TrYuKgTIoHMp3ykVWbbJZp+8+Vfcj0j+XRHmAT2UgIiLSVVyClHS/pQCA+ITUIfX0ZKMu3T6jYtKUZ9Ymp/vKbrv/MlIqUbGsMzp36gwjpfbKNAoosrW/dOvSOe53z3FOz0lu9Jmu+ARAZZpBJZH+MJknIiLSlYVZ6lSL/5abmwFAmjoBQPFPXboya2djlcW+hDRiLL3PRhw5iT82NhbmQkCp+LdWrdFg7eb/wdXFBbhwXbdjyyyWdI47+/Hn/jl5ty5dmdUR6RGn2RAREelKZQqNuxM0/wzLCiB1XrnKFFCZIqR4ClKEGgCQItQIddBIdajgrN3XO+3+26eigjNgY5XpvhLKlZT2pRZqJJUvla04dIk/pFgKVvmuR/nKHvj6x3ladSnupeFasUKWx6ZzLDZWUFRwlga+pfMhHXcJreNOLO8o1SWVKwV1Bucksz4zP88Z7y/D4ybKAxyZJyIiygFRshgOxpyFVYoJGrt+CGNzC6nOwa0y6v3ZCNYaU6hVxjjc6Pi/DR3tgaK2qdMwzM20kr6M+sxsXyalHbEv5izi37xBhypdYW1TLFtxZDf+GHUyYtYn4W7gXQDAkedX4XKhA9zMyyA4/hF2u/+Guiid5bE5uldD89MtYJSYArXKBIcb/Zl1LI72UPzTn+I//V1DOLpd6JxuHCqn0oi3s8KDiLtwcawEcytbrfOfUZ+xxczRfNfn/56vhsdhkY39ZXbcRLmNyTwREVEOxRurEW+sTpO8WZhYYGTrcQh/E45vvb6Fhcm/ibIQAtFIQGB0ILwsvGAJ02z1mVE5AKhVRjAtUUw7ac0ijuzGP63lNCRFJ6FYsWKYOnUq+n7eF3XX18XJV1fhXtQdVR2qagfzdrT6PyxNLXF40HEEPg9EVYeq2Y4lo/68SnjB3NImwzjMrWzh4V43TbvM+gx8HoirrwK13tctXTdb+8uoT6LcxmSeiIgoF6iMVXAr7pYmaX37sKaI6Ai4FXVDwFcBabbJizgy8vDhQ0ydNhXtp7SHW3E3mBmZYeS4kRg/fjyKFCkCAAj4KiDDpDwzFiYWUnL8vixNLXMcR0a8SnjBragbgl8Fp0nYc2N/RPrAZJ6IiCgPBT4PRER0BAAg+FWw1uivnN68eYM5c+bghx9+AJRA+yntAQDXrl1DOZdyWtvqMyl/KzElEeFvwhFXOg42quw9O0bfcWSVsOfGcRO9LybzREREeaiqQ1U4WjtKI/NppmvIYPny5ZjuMx2vXr0CADRv3hwur11Qo0YNaS393BSXHIex+8ciIjoC6y6uy/VPKzLDhJ0MDZN5IiKiPGRhYoEF7RdkOI89r7z7APixY8ciMT4RlStXxoIFC/Dxxx9DoUh3ZfVckV8/rSAyBFyakoiIKI/pOo9d386dO4cPW34ovXdwcMDq1asREBCAdu3a5WkiD/w7Vx1A+jeXElGGODJPRERUSAQFBWHChAnYtWsXVOYqqfz6jesoYl1Etrh4cylRzjGZJyIiKgS8vb3x848/IyUlBUqlEn1790V9VX04Ojrmybz4rHCuOlHOMJknIiIqoOLj46XXK1euREpKCj7++GPMnz8fVatyKgtRQcA580RERAWMRqPB//73P9SoUUMq8/T0xLFjx3DgwAEm8kQFCJN5IiKiAuTPP/9EnTp10LdvX4QEhWB86/GIPxeP82fP48MPP8y6AyIyKJxmQ0REVEB89tln2Ou3FwBgY2ODCRMmYPjw4TA3N5c5MiLKLUzmiYiIDNjTp0+l14cOHYKxsTG++uorTJ06Ffb29jJGRkR5gdNsiIiIDFBMTAymT58OTy9PqaxDhw64efMmfvzxRybyRIUEk3kiIiIDkpKSgjVr1sDd3R3Tpk3D679f44fPf0CJiBLYvnU7KlSoIHeIRJSHOM2GiIjIgDRo0AD+V/0BAOXKlcO8efPw2Wef5flTW4kof9DLyPybN2/00Q0RERGlw9/fX3p9+/ZtFC1aFEuWLMGtW7fQtWtXJvJEhZjOyfz8+fOxfft26X23bt1QrFgxlC5dGgEBAXoNjoiIqDALCwtDv3790LhxY6ls+PDhCA4OxogRI6BSqWSMjojyA52T+ZUrV8LJyQkAcPToURw9ehQHDx5E27ZtMWbMGL0HSEREVBj5+PigQoUK2LRpExLjE/HbjN9QU1ET8+bMg52dndzhEVE+ofOc+adPn0rJ/P79+9GtWzd89NFHcHFxQb169fQeIBERUWGRnJwsvV68eDESExPRrFkzLFy4ELVr15YxMiLKr3Qembezs0N4eDiA1PVsW7ZsCQAQQkCtVus3OiIiokJACIFdu3ahVq1aUlmFChWwb98+/Pnnn0zkiShDOo/Mf/rpp+jVqxfc3d3x8uVLtG3bFgBw7do1uLm56T1AIiKiguz8+fPw9vbGuXPnoDL/dw78pUuXYGZqJmNkRGQIdE7mlyxZAhcXF4SHh2PBggWwsrICAEREROCbb77Re4BEREQFVZ8+fbB9a+qiEhYWFhg9ejRaFm8JaytrGCmMZI6OiAyBzsm8iYkJvL2905SPHDlSLwEREREVZC9fvpRe79mzB0qlEgMHDsSMGTNQqlQpGSMjIkOUo3XmN23ahMaNG6NUqVJ4+PAhAGDp0qXYu3evXoMjIiIqKBISErBgwQJUq1ZNKmvVqhX8/f2xdu1aJvJElCM6J/MrVqzAqFGj0LZtW7x580a66bVIkSJYunSpvuMjIiIyaBqNBps3b0bFihUxbtw4REVFSXV+fn5ayT0Rka50TuZ//PFHrFmzBpMmTYKR0b/z+WrXro0bN27oNTgiIiJD98EHH6BPnz4ICwtDmTJlsGrFKnRw6oDOLp05L56I3pvOc+ZDQ0NRo0aNNOUqlQqxsbF6CYqIiMiQ3blzB/hnIRp/f39YW1tjwoQJGDFiBMzNzeUNjogKFJ1H5l1dXeHv75+m/NChQ/Dw8NBHTERERAbp6dOn+PLLL1G3bl2pbMiQIQgODsaECROYyBOR3uk8Mj9q1Ch8++23SEhIgBACly5dwtatWzF37lysXbs2N2IkIiLK12LjYrHs+2VYsGCB9Cn19gnbMXPGTHy25DMoFAqZIySigkrnZH7w4MEwNzfH5MmTERcXh169eqFUqVJYtmwZevTokRsxEhER5Wtenl54GJq6ulvdunWxaNEiNGnSROaoiKgwUAghRE4bx8XFISYmBg4ODvqMKduioqJga2uLyMhI2NjYyBIDEREVPkIIHDx8ELEVUkfh+1bti1IlS2Hu3Lno1q0bR+KJ6L1lN8/N0Trzb1lYWMiWyBMREcnB398fH330ET799FOpbN68ebh9+za6d+/ORJ6I8pTO02xcXV0z/R/V/fv33ysgIiKi/Cg8PByTJ0/Gpk2bIISAqakpLq++jLFjx6LYd8WYxBORLHRO5keMGKH1Pjk5GdeuXcOhQ4cwZswYfcVFREQkOyEEXkW+wpLvl2DxwsVISEgAAPTo0QNz5syBq6urzBESUWGnczI/fPjwdMt//vlnXLly5b0DIiIiyg+Sk5Oxau0qlGhdAl4DvCAWCXzwwQdYtGgR6tSpI3d4REQA3nPO/Lvatm2LXbt26as7IiIiWQgh4OfnhypVqsB7tLdUvn37dpw4cYKJPBHlK3pL5nfu3ImiRYvqqzsiIqI8d/HiRXzwwQf49NNPERQUhOLFi0t17dq147x4Isp3dJ5mU6NGDa3/mQkh8PTpU7x48QLLly/Xa3BERES5TQiB4NBg+Ez1wdbNWwEA5ubmGDVqFEaNGYU/Xv4hc4RERBnTOZnv1KmT1nulUgl7e3s0a9YMlSpV0ldcREREue7Vq1eYM28O6n1VD51ndIafnx96du+JGTNmoEyZMkjRpAAv5Y6SiChjOifzPj4+uREHERFRnklISMBPP/2E2bNnIz4xHvW+qgcAOHfuHGp41ZA5OiKi7MtWMh8VFZXtDvkkViIiyq80Gg22b9+OiRMn4sGDBwCAWnVqSfXVqlWTKTIiopzJVjJfpEiRLG/6EUJAoVBArVbrJTAiIiJ9EULg5OmTmDhxIs6fPQ8AKFWqFGbPno2evXtiX/g+mSMkIsqZbCXzx48fz+04iIiIcsWdO3cwccpE9JzfEyM3jsTd+ncxavgojBw5EhYWFqnz4omIDFS2kvmmTZvmdhxERER69ezZM0ybNg1r1qyBsakxes7vCQC4cf0GSpUsJXN0RET6ofMNsG/FxcUhLCwMSUlJWuWenp7vHRQREZGuhBBQCzXi4uLww9IfMH/+fMTExAAAOrTrIG3n4OAgV4hERHqnczL/4sULDBw4EAcPHky3nnPmiYhIDkkpSdLc91lzZiExPhF16tTBwoUL0ahJI/g98JM5QiIi/dP5CbAjRozAmzdvcPHiRZibm+PQoUPYsGED3N3dsW8fbyAiIqK8d/jwYTRs2FB671TWCVu2bMGFCxc4VZSICjSdR+b//PNP7N27F7Vr14ZSqYSzszNatWoFGxsbzJ07F+3atcuNOImIiNIICAjAmDFjcPToUajMVVL5tavXYGVhJWNkRER5Q+eR+djYWGm+oZ2dHV68eAEgdW3eq1ev6jc6IiKidwghkKJJwcPwhxg4cCBq1KiBo0ePwsTEBEOHDpW2MzMzkzFKIqK8o3MyX7FiRdy9excA4OXlhVWrVuHx48dYuXIlHB0d9R4gERHRW6+jXsPvgR8uJV/C1u1bIYRAt27dcPv2bcybN0/u8IiI8pzOyfzw4cMREREBAPDx8cHBgwdRtmxZ/PDDD5gzZ47eAyQiIkpOTsby5cvhWe3fFdMaNGiACxcuYPv27ShfvryM0RERyUfnOfN9+vSRXteqVQsPHz7EnTt3ULZsWRQvXlyvwRERUeEmhMC+ffswbtw43L17V2te/JEjR2BiZCJjdERE8tN5ZP7MmTNa7y0sLFCzZk0m8kREpBdv58VfvHwRzZo1Q6dOnXD37l0UL14ci79fLG2nUChkjJKIKH/QOZlv0aIFXF1dMXHiRNy6dSs3YiIiokIsJDQEfg/8EFYsDBcvX4SZmRkmTJiA4OBgfDnkS7nDIyLKV3RO5p88eYLRo0fj5MmTqFq1KqpXr46FCxfi0aNHuREfEREVEq9fv4a3tzdq1qwplfXq1Qv37t3DnDlzYGtrK2N0RET5k87JfPHixTF06FCcPXsWISEh6Nq1KzZs2AAXFxe0aNEiN2IkIso3hBCISozCufBziE2KlTucAiExMRFLlixB+fLlsXjxYiQlJUl1q1evhpOTk4zRERHlbzon8+9ydXXF+PHjMW/ePFSrVg0nT57UV1xERPlSdFI0Kv1cCY3WNUL1VdURlxwnd0gGS6PRYMfOHfCs4YlRo0bh9evXqFq1Knbv3i13aEREBiPHyfzZs2fxzTffwNHREb169ULVqlVx4MABfcZGRJTvBD4PRER06vK8wa+CEfg8UOaIDNPp06fxQbMPoKipwKz9s+Ds6oy1a9fC398fH330kdzhEREZDJ2XppwwYQK2bduGJ0+eoFWrVli2bBk6duwICwuL3IiPiChfqepQFY7WjoiIjoBbUTdUdagqd0gG5d69exg3bhz27NmjtcxkwPUA2FqlzolP0aTIFR4RkcHROZk/deoUxowZg27dunE5SiIqdCxMLLCg/QKEvwnHt17fwsKEAxnZ8eLFC0yfPh2rVq1CSkoKlEolPh/0uVRvaWEpY3RERIZL52T+7NmzuREHEZHBUBmr4FbcjYl8NsTGxuKHn37A4sWL8fLFSwBA+/btMX/+fFSoVAF+D/xkjpCIyLC91w2wRERE6VGr1diwYQM8q3vCrasbVlxYgXoN6uHPP//Eb7/9hsqVK8sdIhFRgaDzyDwREVFmjh07Bm9vbwQEBGjNiz916hRMjU1ljIyIqODhyDwRkZ4Ywhr0uRVjXHIctpzcgo/afYRWrVohICAAtra2mDVrlrSNUslfOURE+saReSIiPXm7Bv3blW4CvgrI1rx6IQSik6IR+DwQXiW8YGmaezeD5jTGzISEhaDm6pqIMokCygPG5sb4dsi3mDJlCmztbDOdF5+YkojwN+GIKx0HG5XNe8WRWwwhRiIqvDhMQkSkI/MUI9gnmAGJSVrlgc8DoUxSo1mRWoiPjUq7Bn1iEvA6Kk276KRoNF/dCJN2D0ObdS20H0SVQZuc1uU0xvTqoqOjMXXqVFRpXgXWVmZoVqQWSpdywPbj27F06VIUK1Ys0/MVlxyHJYfn48j5XWi3vpXWcWfUJq/rMouRiCg/UAghRFYb2dnZQaFQZKvDV69evXdQ2RUVFQVbW1tERkbCxoajJUSU+9RPnkEZFAYFFBAAFBWcAUd7AEB8eDhMQyJgpFBCLTRIcSsNVZnSqQ0jXgD3Hv7b0Tvtgm9egOsLBYwURlALNR6WUKCcR12IJy+AoIdQAGn2ldO6nMb4bp0AcPLJA/QYORTPnj3D5590wOpRE/+JX7vPzM5XRsedWZus6hRBYVDmoJ2uMRIR5bbs5rnZmmazdOlS6fXLly8xa9YstG7dGg0aNAAAnD9/HocPH8aUKVPeL2oiovwsMQnKoHAokDq4oQBSE9yiqQ87Mrv/DApF6geeRgoljEIiAPt/kuF3k+T/tCv/tzHejpcYKYzg+hxA6RgpIX+7L3HvIRT/tMlpXU5jFPe0+2xcwgnGGoHGdeth7ajJ0oDPf/vM7HxldNyZtdGl7t3jzmmf6cZYLglQ8UZeIsofspXM9+/fX3rdpUsXzJgxA0OHDpXKhg0bhp9++gnHjh3DyJEj9R8lEVF+EJcgJbRa4hMAgUzr0pVBOwUARMWkX55ZmxzU5TRGYyMj/Dh/IT755BMoboZku11mdRkd93v1l4N22eqTyTwR5RM6z5k/fPgw2rRpk6a8TZs2OHbsmF6CIiLKlyzM0s95zc2yrEtXZu1srNKUi0za5LQuqxjD/36BoWO9odao0/TZuVcPGFtncLNuTs+JjRXEf1oJiGz1l9PjztF1IyLKJ3RO5osVK4a9e/emKd+7d690sxMRUYGkMoXG3Qmaf9I/AaTOK1eZZlmHCs7afWXVzsYqTbkikzY5rXs3DuHuLCW2AsCOgEtwq1IZP69dg29/XoAUkZrQq4UaSeUdc35smbWzsUJSuVJQa+2rlNQmoVwJrTgS34lDUUE7/uwed46uGxFRPqHz0pTTp0/H4MGDceLECdSrVw8AcPHiRRw6dAhr1qzRe4BERPmJKFkMB2POwirFBI1dP4SxuUW26uBonzoPOz4hdWT3nYQwo3Y53VdO66KLqdB810BYa0wR+vQJwhY/BZKBFi1aoME3HeByoQPczMsgOP4Rdrv/hrooneNjy6ydyqk04u2s8CDiLlwcK8HcylZqcg3h6Hahc4ZxKP7pT5FOHHsjjyP+zRt0qNIV1jbFtOpyct2IiPIDnZP5AQMGwMPDAz/88AN2794NAPDw8MCZM2ek5J6IqCCLN1Yj3lidbmKXWZ002qtDnzndl651Qgj8tP0nXH31z1KVZoBrPVf8NOEntG3bFnHJcZh1cxZOvroK96LuqOpQ9b2PLbN25la28HBPu2qMVwkvmFva6BxHXHIchh4clbq+/pXFadbXz+l1IyKSW44eGlWvXj1s3rxZ37EQEZEMzpw5A29vb1y7dQ2O0xwRER0BB2MH+B/xh4156nJolqaWCPgqAIHPA1HVoep7P2gqp3IaR+DzQERERwAAgl8FI/B5IOqW5hKTRGT4cvTQqJCQEEyePBm9evXC8+fPAQAHDx7EzZs39RocEVFBIYRAVGIUzoWfQ2xSrNzhAACCgoPw6aefokmTJrh48SKM1cb4PO5zHOt5DPfH3JcS+bcsTCxQt3Rd2RL594nDq4QX3Iq6AUD6I/pERAZK55H5kydPom3btmjUqBFOnTqFWbNmwcHBAQEBAfjll1+wc+fO3IiTiMigRSdFo9LPlVKneRR1SzPNQw51atdBbHQslEolBg0ahOnTp8PR0VHv+0lMSUT4m3DElY6DjUqeB/xlNaKfH2IkIsoJnUfmx48fj1mzZuHo0aMwNf13DmGLFi1w4cIFvQZHRFRQpDfNI6/Fx8dj0aJF0vuUlBS0a9cO169fx+rVq3MlkY9LjsPY/WMx8eBE1FpdC3HJcXrfR3ZlNKKfn2IkItKVzsn8jRs30Llz5zTlDg4O+Pvvv/USFBFRQVPVoSocrVOTZbeibnk6zUOj0WDjxo2oWLEipk2bJpUfOHAA+/fvR5UqVXJt3/nhj5isGEKMREQZ0TmZL1KkCCIiItKUX7t2DaVLl9ZLUEREBY2FiQUWtF+AOW3n4K8hf+XZFJsTJ06gVq1a6N+/P8LDw1HCvgQSLySiY9mOaNGsRa7v3xDmqhtCjEREGdF5znyPHj0wbtw4/Prrr1AoFNBoNDh79iy8vb3Rr1+/3IiRiKhAUBmr4FbcLU/nyrdv3x6J8YmwsbHBxIkTMWzYMJibm+fZ/vPLKjiZMYQYiYgyovPI/Jw5c1CpUiU4OTkhJiYGlStXxgcffICGDRti8uTJuREjERFlU0REBIYOHSq9NzY2xnfffYeQkBCMGzcuTxP5t/LLKjiZMYQYiYjSo/PIvKmpKdasWYMpU6YgMDAQMTExqFGjBtzd3XMjPiIiyoaYmBgsWrQICxcuhFqo8aH3hwCAK39dQSX3SjJHR0REuSVHD40CgLJly6Js2bL6jIWIiHJg3bp18Jnig6dPnwIAGjRoAMdnjqhfrz6MFEYyR0dERLkpW8n8qFGjst3h999/n+NgiIgoe4QQ0uthw4YhMT4R5cuXx7x589ClSxcoFAoZoyMiorySrWT+2rVrWu+vXr2KlJQUVKxYEQBw7949GBkZoVatWvqPkIiItFy9ehXjJ47HF8u/AADY2dlhwrwJ+Oqrr7Se/0FERAVftpL548ePS6+///57WFtbY8OGDbCzswMAvH79GgMHDkSTJk1yJ0oiIsLDhw8xadIkbN68GQBwsdZFfP3117gVeEv6/zERERUuOs+ZX7x4MY4cOaL1i8POzg6zZs3CRx99hNGjR+s1QCIiAqZMmYIli5cgMTERANC7d2/Mnj0bzs7OMkdGRERy0jmZj4qKwosXL9KUv3jxAtHR0XoJioiIgKSkJOn1kiWpiXyzZs2waNEiTmskIiIAOVhnvnPnzhg4cCB2796NR48e4dGjR9i1axcGDRqETz/9NDdiJCIqVIQQ2LlzJ2rXri2VVaxYEb/99hv+/PNPJvJERCTReWR+5cqV8Pb2Rq9evZCcnJzaibExBg0ahIULF+o9QCKiwuTixYsYM3oMzp8/DwAY3WI0Jk2ahCuXrsDExETm6IiIKL/ROZm3sLDA8uXLsXDhQoSEhAAAypcvD0tLS70HR0RU2Hz44YdIjE+EhYUFvL294e3tDWtra7nDIiKifCrHD42ytLSEp6enPmMhIip0/v77b8yeOxsNv20IAFAqlRg8eDCmT5+OUqVKyRwdERHldzon87GxsZg3bx7++OMPPH/+HBqNRqv+/v37eguOiKigSkhIwA8//IA5c+YgISlBSuYvXLgAz6ocKCEiouzROZkfPHgwTp48ib59+8LR0ZFPGSQi0tG2bdswacIkhIWFAQCqV6+OIqFF0Lx5cxgpjGSOjoiIDInOyfzBgwdx4MABNGrUKDfiISIq8AYPHozE+ESUKVMGs2fPRp8+faBU6ry4GBERke5LU9rZ2aFo0aK5EQsRUYF069YtfPbZZ9J7KysrzJkzB/fu3UO/fv2YyBMRUY7p/Btk5syZmDp1KuLi4nIjHiKiAuPp06f48ssvUa1aNRw6dEgqDwwMxIQJE2Bubi5jdEREVBDoPM1m8eLFCAkJQYkSJeDi4pJm3eOrV6/qLTgiIkM1Z+4cLJi7ALGxsQCAj9t8jKopVeHu5s558UREpDc6J/OdOnXKhTCIiAyfWq2WXs+ZPQeJ8YmoW7cuFi9ejMaNG8sYGRERFVQ6J/M+Pj65EQcRkcESQuDQoUOYNGUSJuyYAABwdnHGDJ8Z6NatG1f9IiKiXJPjh0YRERFw7do1jBkzBn/88QdU5iqp/OpfV2FpzidjExFR7tI5mVcqlZmOMr37MTMRUUE2ZMgQ+K7zhRACpqam+O7b79C8SHMUKVKE8+KJiChP6JzM+/n5ab1PTk7GtWvXsGHDBkyfPl1vgRER5UeRUZHS6y1btkAIgZ49e2L27NlwdXWVMTIiIiqMdE7mO3bsmKbss88+Q5UqVbB9+3YMGjRIL4EREeUnycnJWLVqFebOn4ulJ5cCABo3boy5s+eiTp068gZHRESFlt6eVFK/fn388ccf+uqOiChfEELAz88PVapUwXfffYcnj55g5qczYXrTFEcOHWEiT0REstLLDbDx8fH44YcfULp0aX10R0QkKyEE1EKNS5cuYaz3WJw9exYA4ODggOnTp2Pw4MEwNub6AUREJD+dfxvZ2dlp3QArhEB0dDQsLCzwv//9T6/BERHJIeh+EAIUAYADcOXqFZibm2P06NEYO3YsrK2t5Q6PiIhIonMyv3TpUq33SqUS9vb2qFevHuzs7PQVFxFRnnv58iVmzZqFtevWYt21dQCAfv36wWeKDz95JCKifEnnZL5///65EQcRkWwSEhLw448/Yvbs2YiMjNRaL3758uUwVnJKDRER5U85+g315s0b/PLLL7h9+zYAoEqVKvj8889ha2ur1+CIiHKLEALJ6mTs3LkTE8dPxMOHDwEAXl5eWLBoASIRmUUPRERE8tN5NZsrV66gfPnyWLJkCV69eoVXr17h+++/R/ny5XH16tXciJGISO9OnDqBvWF7YVLXBE+fP0Xp0qXh6+uLv/76Cy1atJA7PCIiomzROZkfOXIkOnTogAcPHmD37t3YvXs3QkND0b59e4wYMSIXQiQi0p/bt2/jk08+Qdu2baUyHx8f3Lt3D/3794eREZ/cSkREhkPnaTZXrlzBmjVrtJZlMzY2xtixY1G7dm29BkdEpC9Pnz7FtGnTsHbtWqjValhYWUh1Y8aM4bx4IiIySDqPzNvY2CAsLCxNeXh4OJdsI6J8RQiByJhIzJozC25ubli1ahXUajU6deqEK1euyB0eERHRe9M5me/evTsGDRqE7du3Izw8HOHh4di2bRsGDx6Mnj175kaMREQ6U6vVWOe7DkeeH0HFHhWRoklBnTp1cOrUKfj5+cHd3V3uEImIiN6bzp8rL1q0CAqFAv369UNKSgoAwMTEBF9//TXmzZun9wCJiHQhhMDhw4cxduxY3Au+h02BmwAAvr6+6PZZNyiVOo9hEBER5Vs6J/OmpqZYtmwZ5s6di5CQEABA+fLlYWFhgfj4eL0HSESUXf7+/hgzZgyOHTsGACjhWEKq++yzz5jIExFRgZPj32wWFhaoVq0aqlWrBiMjI3z//fdwdXXVZ2xERFkSQuBh+EMM+mIQatasiWPHjsHU1BSjRo3CjRs35A6PiIgoV2U7mU9MTMSECRNQu3ZtNGzYEHv27AEArF+/Hq6urliyZAlGjhyZW3ESEaURFRWFqdOm4lLyJbSZ0AamZqbo0aMH7ty5g8WLF8POzk7uEImIiHJVtqfZTJ06FatWrULLli1x7tw5dO3aFQMHDsSFCxfw/fffo2vXrlyfmYjyRHJyMlavXo3p06cjKiYKm/qnzos/ceIE6tetL3N0REREeSfbyfyvv/6KjRs3okOHDggMDISnpydSUlIQEBAAhUKRmzESUSEnhIBaqCGEwP7f9mP8uPG4d+8eAKCqZ1VpOz7rgoiICptsT7N59OgRatWqBQCoWrUqVCoVRo4cyUSeiHKdWqjh98APex7uQc9ePXHv3j3Y29vj559/xqVLl+QOj4iISDbZTubVajVMTU2l98bGxrCyssqVoIiI3rp//z769+8vvVeZqTBp0iQEBwfjm2++gYmJiYzRERERySvb02yEEBgwYABUKhUAICEhAV999RUsLS21ttu9e7d+IySiQunVq1eYNWsWfvrpJyiNleg0vRMA4HrAdTg7OcsbHBERUT6R7WT+3ZExAOjTp4/egyGiwk0IgbiEOKxatQozp8/EmzdvAABtP2orbVO6dGmZoiMiIsp/sp3Mr1+/PjfjIKJCTqPRYPuv22FcxxhOHZwQPzEe1apVw8KFC/Fhqw/h98BP7hCJiIjyHT4OkYhkd+rUKdSvXx8DBw6UypYvX45r166hdevWMkZGRESUvzGZJyLZ3LlzBx07dkTTpk1x+fJlWFr9ew9Ov379+OwKIiKiLDCZJ6I8JYRAxLMIDB0+FFWrVsW+fftgZGSEr776Cjeu35A7PCIiIoPCZJ6I8kxcXBzmzp+LM7Fn0HR4UxibGksPoluxYgUcHBzkDpGIiMigMJknolynVqvh6+uLChUqYMaMGVL5oUOHsHfvXlSqVEnG6IiIiAwXk3kiylVHjhxBzZo1MXDgQDx+/BhOZZ2QmJKI4L+DUbNeTbnDIyIiMmhM5olI74QQ8L/uj/Yd2qN169a4fv06bG1tsXDhQpy9eBZj94/FxIMTUWt1LcQlx8kdLhERkcFiMk9EevX48WMM+WoIgqyC0H9pf1jZWGHEiBEICQmBt7c3gqOCEREdAQAIfhWMwOeBMkdMRERkuJjME5FeREdHY8qUKXB3d8emTZuk8r+u/oUlS5agWLFiAACvEl5wK+oGAHAv6o6qDlVliZeIiKggyPYTYImI0pOSkoI1a9Zg2rRpeP78OQCgafOmUn0513Ja21uaWiLgqwAEPg9EVYeqsDCxyNN4iYiIChKOzBMZECEEohKjcC78HGKTYmWNRaPRYO9ve1Gzdk188803eP78Odzd3bFr1y4cPXo007YWJhaoW7ouE3kiIqL3xGSeSCYZJeaZJezRSdGo9HMlNFrXCNVXVZft5tErV67gozYfIalKEqbsnoJSZUrhxx9/xM2bN/Hpp59CoVBIK9bwBlciIqLcw2k2RDJ5m5hHREfAragbAr4KgIWJRYblABD4PDDNzaN1S9fNs5gfPHiAiRMnYuvWrVCZq/AlvgQAXL9xHcWKFJO2i0uOw9j9YxERHYF1F9dpHQMRERHpD0fmibJBCIHoqJcIvHcecdFv9FIX+DwQyiQ1mhWphfjYKGlVl4zKAaCqQ1XULFoVzYrUQuMSdbVuHs1sXwCAxCTgdVTq92zG+LZddPgTzJoyFRUrVsTWrVuhUCjQq1cvmKcYwT7BDLYq82wdW1axAJD6/G9dRuXvU2eUqEbSs5eIj4nUqR0REVF+oRBCCLmDyKmoqCjY2toiMjISNjY2codDBVh8eDhMQyJgpFBCLTRIcSsNVZnSuVKXWRv1k2dQBIVBCQUEAEUFZ8DRPst9IeIFcO/hvweUzXbJYU9gdP8xlAoF1Go1hiyeg4eJsVi4cCE8S5SCMigMinRiSQx/DOOQxzrHon7yLN0+MyrPrE1WdVmd54zaERER5YXs5rmcZkOUlcQkmN1/CoUi9YMsI4USypAngH1qcpfzumdadUYhEYCNbfrl/7RRBoVDAQUApP733kOgqG2W+9JKnrPRThQvjv379+PjYk5QKv+pMzLC2jGTgfqeUCgUEBeuZxiL6n4EkMExZBZLusdnaZ7pcee0LrPzlWE7lSmIiIjyEybzRFmJS5ASu7cUUADxCYDAe9SlIyom/fLM2mRjX+nKpN03nw/G7du38cnSldp1CgWQkJhlLJntL/NY0vFe5ySzOh2vTXwCk3kiIsp3mMwTZcXCLHWqxX/Lzc0AQL91Nla5sq90ZdAuRa3GvmNHYGFuAY3QQKn499YaAQFFBu0EINVltj9dYgHwzzkRWsl3duPQ1znJ8tiIiIhkwhtgibKiMoXG3Qmaf4aVBZA6z1tlqv86G6tc2RcqOGsf0zt1UY52UrsUtRpffz8X7Tp3wqmL55FcvjTUQg0AUAs1ksqXktqFFE9Byj91KUKNUAdNtvaXWV1G5ySpXKkcxZHTc5Jhn0RERPkMR+aJskGULIaDMWdhlWKCxq4fwtjcItfqcmNfcLRPnfMdn5A6+qwyRXx8PJYuXYrFSxbD98xqWKWYYNO8HRg1fzaqVKkiNY23s8KDiLtwcawEcyvbf7t0r4bmp1vAKDEFapUJDjf6M9P9Zacutpg5mu/6HNYaU6hVxjjc8DgsAKicSucoDlGyGPZGHkf8mzfoUKUrrG2KZSuOTI+NiIgoH2EyT5RN8cZqxBur0x2h1XedvvsTQiAaCQiMDkQ1s2rYvWErJk+ejEePHgEAZg1YgNmzZ2Ptho2p8+LfYW5lCw/3tGvZW5pa4vCg4wh8HoiqDlXTriP/dgQ8PRnUBT4PxNVXgVrv366jn5M44pLjMPTgqNQ1+68sTrvefQZxZHlsRERE+QSTeaJC4N0HUaliVUhcmggkA2XLlsWcOXPQs2dPadUaXViYWOj1oVVeJbzgVtQNwa+C4V7UXWsd/ZzE8T4P2dL3sREREeUGJvNEhcBvF3+TktpEy0RYulpi6qCpGDZsGMzM8s+NnZamlgj4KkBvI+I5/eOAiIjIUDCZJyrAnjx5gqlTp2Lzzs1wnOqIiOgIFFEXQcCJAJR1LCt3eOnS54i4vv84ICIiym+YzBMVQDGxMViyaAkWLVqEuLg4AECDKw3Q/bvuaFerHSxNLWWOMO9wugwRERVkTOaJCiDPap4IfxgOAGjQoAEWLVqEhg0byhwVERER6RvXmScqAIQQOHjwoPT++fPncHNzw86dO3H27Fkm8kRERAUUk3kiA/fXX3+hRYsW6Nq1q1S2cOFC3Lx5E126dEmz1CQREREVHEzmiQzUw4cP0bt3b9SuXRsnTpwANMC1ddfQwq4Fhn4zFKamfGIpERFRQcc580QGqmbNmoh6EwUA6NOnD2bNmgVnZ2eZoyIiIqK8xJF5IgORlJSEn3/+WXqfmJiIFi1a4K+//sKmTZuYyBMRERVCTOaJ8jkhBH799Vd4eHhg3LhxUvmuXbtw7Ngx1KxZU8boiIiISE6cZkOUj52/cB5jR4/FhQsXAAAlS5bEm+Nv0LdvX6hcVby5lYiIqJBjMk+Uj7Vq2QqJ8YmwsLDAmDFj4O3tDSsrK7nDIiIionyC02yI8pG///4b3t7e0nulUokvvvgCwcHBmDZtGhN5IiIi0sKReaJ8ID4+Hst/Wo45c+YgMTkRjYY2AgBcvHgR1apUkzk6IiIiyq+YzBPlAzVq1EBIUAgAoHr16rB7YIdmzZrBSGEkc2RERESUn3GaDZFMTp48Kb1+9OgRnJycsHHjRvz1119o2aIljJXGvMGViIiIMsVkniiP3bx5E+3atUO7du2ksunTp+Pu3bvo27cvlEr+WBIREVH2MGsgyiNPnz7FkCFD4Onpid9//x3qZDXO/nQWTayaYKz3WJibm8sdIhERERkYzpknyiOeXp54/fdrAMCnn36KefPmwd3dXeaoiIiIyJBxZJ4ol6SkpGD9+vXS+7jYONSvXx9nzpzBrl27mMgTERHRe2MyT6RnQggcOHAAXl5e+O6776TyTZs24dy5c2jUqJGM0REREVFBwmk2RHrk7++PcWPG4c8//wQAFC1aFE8OPMEXX3wBc1dzrk5DREREesVknkiPGjdujMT4RJiammL48OGYMGEC7Ozs5A6LiIiICihOsyF6D5GRkZg6dapWWa9evXD37l0sWLCAiTwRERHlKibzRDmQlJSEH374AeXLl8f3338vlZ86dQqbN2+Gi4uLfMERERFRocFpNkQ62rN3DyaMnYDg4GAAQKVKlaC6pULbtm1h7MofKSIiIso7zDyIdNSndx8kxieiRIkSmD59OgYNGgRjY/4oERERUd7jNBuiLAQHB6NPnz7SezNzM0yZMgVBQUH48ssvmcgTERGRbJiFEGXg5cuXmDlzJpYvXw6lsRJdZnUBAFwPuI6yZcrKHB0RERERk3miNBISEvDjjz9i9uzZiIyMBAC0+bANKsRWQJUqVWCkMJI5QiIiIqJUTOaJ/qFWq7FtxzZMmz4NwXdTb2718vLCwoUL0apVK5mjIyIiIkqLc+aJABw/fhyNP2gM03qmmPP7HLiWd4Wvry/++usvJvJERESUb3Fkngq1W7duYdy4cdi/fz9U5iqp3N/fHzZWNjJGRkRERJQ1jsxToSKEQIomBY8jHuPLL79EtWrVsH//fhgZGWHIkCHSdhYWFjJGSURERJQ9TOapUImKjYLfAz+ciz+HDZs2QKPRoFOnTrh586bWk1yJiIiIDAGTeSoU1Go1fvnlF3h5eklltWvXxqlTp+Dn54eKFSvKGB0RERFRznDOPBVoQggcOnQIY8eORWBgoNa8+OPHj8PEyETG6IiIiIjeD5N5KnCEEFALNa5fv45xY8bh2LFjAAA7OztM8ZkibadQKOQKkYiIiEgvOM2GCpywR2Hwe+CHEJsQnD57Gqamphg9ejRCQkLw3XffyR0eERERkd4wmacCIyoqChMnToSnl6dU9tlnn+HOnTtYtGgR7OzsZIyOiIiISP84zYYMXnJyMlavXo3p06fjxYsXWvPifX19YazkP3MiIiIqmDgyTwZJCIFkdTL89vqhatWqGDp0KF68eIGKFSti27ZtcodHRERElCeYzJNBunDpAvY83IOUail4GP4Q9vb2WL58OW7cuIH27dvLHR4RERFRnmAyTwbl/v376N69O5o3by6VjR07FsHBwfj6669hYsKlJomIiKjw4GRiMgivXr3CrFmz8NNPPyE5ORlmFmZS3dSpUzkvnoiIiAoljsxTviWEQGx8LL5f+j3Kly+PJUuWIDk5GR999BHOnTsnd3hEREREsmMyT/mSRqPBth3b8HvE73Dq4IT4xHh4enri8OHDOHz4MKpVqyZ3iERERESyYzJP+c7JkydRr149DBw4UCpbuXIlrl69io8++kjGyIiIiIjyFybzlG/cuXMHHTt2RLNmzXDlyhVYWllKdX369IGRkZGM0RERERHlP0zmSXZPnz7Ft8O+Ra06tbBv3z4YGRnhm2++QeCNQLlDIyIiIsrXmMyTbOLi4jBr1ixU8ayCZiOawTfAF592/RSBgYH4+eefYW9vL3eIRERERPka1/OjPKdWq7FhwwZMmTIFT548gcpcJdVt37ady0wSERERZRNH5ilPCCGQoknBoSOHUKNGDQwaNAhPnjyBi4sLfH195Q6PiIiIyCAxmac84X/dH34P/BDtFo17wfdQpEgRLFq0CHfu3MFnn30md3hEREREBonJPOWqR48eYeDAgWjYsKFU9t133yEkJASjR4+GSqXKpDURERERZYaTkylXREVFYf78+ViyZAni4+O15sXPnTuX8+KJiIiI9IAj86Q3QgjEJ8Zj+arlcHNzw5w5cxAfH4/GjRvj+PHjcodHREREVOAwmSe9EEJg7297sf/xfti3skdUTBQqVKgAPz8/nDp1CnXq1JE7RCIiIqICh8k8vbdLly6hadOm6NGjh1S2+PvFCAwMRKdOnaBQKGSMjoiIiKjgYjJPORYaGoqePXuiXr16OH36NFRm/86L/3LIlzAxMZExOiIiIqKCj8k86UQIgRcvX2DMuDGoVKkStm3bBoVCgf79+yPAP0Du8IiIiIgKFSbzlG2JiYlY+sNSnIg8gbpf1oXCSIGWLVvi6tWr8PX1RZkyZeQOkYiIiKhQYTJPWRJCYPv27fDw8MCECROkcj8/Pxw5cgTVq1eXLzgiIiKiQkzWZH7atGlQKBRaX5UqVZIzJPqP06dPo379+ujRowdCQ0NRsmRJqa5Vq1a8uZWIiIhIRrKPzFepUgURERHS15kzZ+QOKfsePASOn0r9ntt1ebgvIQRCT57A+oGfY1SXz3Dp0iVYWlpixowZCLgeALsnUXC/GpFun/quy8t9ZVWHR4+A48dTv+d2XV7uy1Dq8ksceV2XX+LIqo6IiOQhZOTj4yO8vLxy3D4yMlIAEJGRkfoLKps023cJzR8XhDhxOfX79t25VpeX+3r+/Lk4P3qcVt3ZkWNERESEEEII9badGfap77q83FdWdWLtWiGUSiGA1O9r1+ZeXV7uy1Dq8kscPO7064iISO+ym+cqhBBCrj8kpk2bhoULF8LW1hZmZmZo0KAB5s6di7Jly6a7fWJiIhITE6X3UVFRcHJyQmRkJGxsbPIqbODBQ4j7T6EwMpKKhFoNRbnUKSh6rbNQQsRp8mRf608exAbfDTixflveHFs+Oe4s64yNAGdnQKOR6mBkBDx4kPpan3XnzwP16+fNvgylrrCeE0M5bt74TkSUK6KiomBra5tlnmuchzGlUa9ePfj6+qJixYqIiIjA9OnT0aRJEwQGBsLa2jrN9nPnzsX06dNliPQ/Qh9CYWShVaQwMgIehAFC6LcuOAQKp/J5sq/r+35DzaLFtBLaXD22fHLcWdelaCcxAKBWA8HBgBD6rTtzJu/2ZSh1hfWcGMpxM5knIpKVrMl827Ztpdeenp6oV68enJ2dsWPHDgwaNCjN9hMmTMCoUaOk929H5vOcq3MGo7ipnyjotc6tHEScOk/2FZKSjG++/TZ1u7w4tnxy3FnWGRsBSmXaUUk3t9TX+qxr3Djv9mUodYX1nBjScRMRkWxkvwH2XUWKFEGFChUQHBycbr1KpYKNjY3WlyxcnCFePIJQqwH8k/T9/QRwcdZ/Xf06et/Xjego/LFjo1Zd4Ikj+PXyJbT96kso/n6SYZ95Vle/Tv6Iw8U5deRx9erU5AVI/b5qVWq5vuvq1Mm7fRlKXWE9J4Zy3EREJCtZ58z/V0xMDMqWLYtp06Zh2LBhWW6f3blEuSFFk4IT5zag+NM4VK35MYzLlc+1On3190xlhqlTp8LX1xcmKhPsP/Izij+NQ1m3xihavYb2AT54mDrFxKVsakIrV11+iQNIXcEjODh1NPK/SYy+6/JyX4ZSl1/i4HGnX0dERHqV3TxX1mTe29sbn3zyCZydnfHkyRP4+PjA398ft27dgr29fZbt5U7m/R74AQA6u3SGsdI41+r00d+NTTewaP4ixMfHAwC6du2KWXNnoZxrORgpjLhePBEREVE+YhA3wD569Ag9e/bEy5cvYW9vj8aNG+PChQvZSuQpaykpKdLrBfMXIDE+EQ0bNsSiRYvQoEEDGSMjIiIiIn2Qdc78tm3b8OTJEyQmJuLRo0fYtm0bypcvn3VDypQQAr/99hvq1q0rlZUrVw67du3CmTNnmMgTERERFRCyjsyT/l25cgXe3t44efIkAGD4B8MxceJEXPvrGlQqlczREREREZE+MZkvQD7//HNs2rAJQOrKPyNGjMCECRNga2src2RERERElBuYzBu4yMhI6fWOHTsAAH379sWsWbMyfJIuERERERUM+Wqdecq+pKQkLF26FFWrVpXKmjZtir/++gsbN25kIk9ERERUCDCZNzBCCPz666/w8PDAyJEj8fTJU8zpOgcWdy1w8MBB1KxZU+4QiYiIiCiPcJqNgWnxYQucOXkGAFCyZEnMnDkTAwYMgLExLyURERFRYcMM0AAEhwQD/zxF/fKly7CwsMDYsWMxevRoWFlZyRscEREREcmG02zysRcvXuC7775D7Vq1pbIBAwcgODgYPj4+TOSJiIiICjkm8/nU4sWL4ebmhp9++gmx0bH43+j/oVJ8Jaz4aQUcHR3lDo+IiIiI8gFOs8lHNBqN9NrHxweJ8YmoUaMGFi1ahBYtWsgYGRERERHlRxyZzyf++OMPNGnSRHpfpkwZbNy4EVeuXGEiT0RERETp4si8zAIDAzF27FgcPHgQKnOVVH7t2jVYW1rLGBkRERER5XdM5mU0dOhQrFm1BhqNBsbGxhgyeAiaWDVB8eLFYaQwkjs8IiIiIsrnmMznsZjYGOm1r68vNBoNPv30U8ybNw/u7u4yRkZEREREhoZz5vNISkoKVq9eDS9PL6msTt06OHPmDHbt2sVEnoiIiIh0xpH5XCaEwIEDBzB27FjcunVLa178n3/8CRMjExmjIyIiIiJDxmQ+l7Vr1w5HDx8FABQtWhRTp05Fu1LtYGpqynnxRERERPRemMzngrCwMOn1qVOnoFKpMHz4cEyYMAFFihSRLzAiIiIiKlA4Z16P3rx5g3HjxqFGjRpSWffu3XH37l3Mnz+fiTwRERER6RWTeT1ISkrCsmXL4ObmhgULFiDqTRRWf70azq+c4bvOF87OznKHSEREREQFEKfZ6EGt2rVw5+YdAICHhwcWLFiAdu3aQaFQyBwZERERERVkHJnPoRs3bkivQ++HokSJEli5ciWuX7+O9u3bM5EnIiIiolzHkfkc0mg00uvxE8Zj9IjRsLa2ljEiIiIiIipsODKfQzWr10T0qWjUV9WHz2QfJvJERERElOc4Mp9DCoUCnw/4XO4wiIiIiKgQ48g8EREREZGBYjJPRERERGSgmMwTERERERkoJvNERERERAaKyTwRERERkYFiMk9EREREZKCYzBMRERERGSgm80REREREBorJPBERERGRgWIyT0RERERkoJjMExEREREZKCbzREREREQGisk8EREREZGBYjJPRERERGSgjOUO4H0IIQAAUVFRMkdCRERERKQ/b/Pbt/luRgw6mY+OjgYAODk5yRwJEREREZH+RUdHw9bWNsN6hcgq3c/HNBoNnjx5AmtraygUCrnDKRCioqLg5OSE8PBw2NjYyB0OZYDXyTDwOhkGXifDwOtkOHit9EMIgejoaJQqVQpKZcYz4w16ZF6pVKJMmTJyh1Eg2djY8AfQAPA6GQZeJ8PA62QYeJ0MB6/V+8tsRP4t3gBLRERERGSgmMwTERERERkoJvOkRaVSwcfHByqVSu5QKBO8ToaB18kw8DoZBl4nw8FrlbcM+gZYIiIiIqLCjCPzREREREQGisk8EREREZGBYjJPRERERGSgmMwTERERERkoJvOFyLRp06BQKLS+KlWqlGmbX3/9FZUqVYKZmRmqVauG33//PY+iLbx0vU5r1qxBkyZNYGdnBzs7O7Rs2RKXLl3Kw4gLp5z8PL21bds2KBQKdOrUKXeDpBxdpzdv3uDbb7+Fo6MjVCoVKlSowP/35YGcXKulS5eiYsWKMDc3h5OTE0aOHImEhIQ8irjwevz4Mfr06YNixYrB3Nwc1apVw5UrVzJtc+LECdSsWRMqlQpubm7w9fXNm2ALAYN+AizprkqVKjh27Jj03tg4438C586dQ8+ePTF37ly0b98eW7ZsQadOnXD16lVUrVo1L8IttHS5TidOnEDPnj3RsGFDmJmZYf78+fjoo49w8+ZNlC5dOi/CLbR0uU5vPXjwAN7e3mjSpEluhkbv0OU6JSUloVWrVnBwcMDOnTtRunRpPHz4EEWKFMmDSEmXa7VlyxaMHz8e69atQ8OGDXHv3j0MGDAACoUC33//fV6EWyi9fv0ajRo1QvPmzXHw4EHY29sjKCgIdnZ2GbYJDQ1Fu3bt8NVXX2Hz5s34448/MHjwYDg6OqJ169Z5GH3BxGS+kDE2NkbJkiWzte2yZcvQpk0bjBkzBgAwc+ZMHD16FD/99BNWrlyZm2EWerpcp82bN2u9X7t2LXbt2oU//vgD/fr1y43w6B+6XCcAUKvV6N27N6ZPn47Tp0/jzZs3uRccSXS5TuvWrcOrV69w7tw5mJiYAABcXFxyMTp6ly7X6ty5c2jUqBF69eoFIPU69ezZExcvXszNEAu9+fPnw8nJCevXr5fKXF1dM22zcuVKuLq6YvHixQAADw8PnDlzBkuWLGEyrwecZlPIBAUFoVSpUihXrhx69+6NsLCwDLc9f/48WrZsqVXWunVrnD9/PrfDLPR0uU7/FRcXh+TkZBQtWjQXIyRA9+s0Y8YMODg4YNCgQXkUIQG6Xad9+/ahQYMG+Pbbb1GiRAlUrVoVc+bMgVqtzsOICy9drlXDhg3x119/SdMK79+/j99//x0ff/xxXoVbKO3btw+1a9dG165d4eDggBo1amDNmjWZtmE+kbuYzBci9erVg6+vLw4dOoQVK1YgNDQUTZo0QXR0dLrbP336FCVKlNAqK1GiBJ4+fZoX4RZaul6n/xo3bhxKlSqV5n+cpF+6XqczZ87gl19+yfKXHumXrtfp/v372LlzJ9RqNX7//XdMmTIFixcvxqxZs/I48sJH12vVq1cvzJgxA40bN4aJiQnKly+PZs2aYeLEiXkceeFy//59rFixAu7u7jh8+DC+/vprDBs2DBs2bMiwTUb5RFRUFOLj43M75IJPUKH1+vVrYWNjI9auXZtuvYmJidiyZYtW2c8//ywcHBzyIjz6R1bX6V1z584VdnZ2IiAgIA8io3dldp2ioqKEi4uL+P3336Wy/v37i44dO+ZhhCRE1j9P7u7uwsnJSaSkpEhlixcvFiVLlsyrEOkfWV2r48ePixIlSog1a9aI69evi927dwsnJycxY8aMPI60cDExMRENGjTQKvvuu+9E/fr1M2zj7u4u5syZo1V24MABAUDExcXlSpyFCefMF2JFihRBhQoVEBwcnG59yZIl8ezZM62yZ8+e6TRHmN5fVtfprUWLFmHevHk4duwYPD098yg6eiuz6xQSEoIHDx7gk08+kco0Gg2A1DnCd+/eRfny5fMs1sIsq58nR0dHmJiYwMjISCrz8PDA06dPkZSUBFNT07wKtdDL6lpNmTIFffv2xeDBgwEA1apVQ2xsLIYMGYJJkyZBqeTkg9zg6OiIypUra5V5eHhg165dGbbJKJ+wsbGBubl5rsRZmPBfeiEWExODkJAQODo6plvfoEED/PHHH1plR48eRYMGDfIiPPpHVtcJABYsWICZM2fi0KFDqF27dh5GR29ldp0qVaqEGzduwN/fX/rq0KEDmjdvDn9/fzg5OckQceGU1c9To0aNEBwcLP2xBQD37t2Do6MjE/k8ltW1iouLS5Owv/0jTAiR6/EVVo0aNcLdu3e1yu7duwdnZ+cM2zCfyGVyfzRAeWf06NHixIkTIjQ0VJw9e1a0bNlSFC9eXDx//lwIIUTfvn3F+PHjpe3Pnj0rjI2NxaJFi8Tt27eFj4+PMDExETdu3JDrEAoFXa/TvHnzhKmpqdi5c6eIiIiQvqKjo+U6hEJB1+v0X5xmkzd0vU5hYWHC2tpaDB06VNy9e1fs379fODg4iFmzZsl1CIWGrtfKx8dHWFtbi61bt4r79++LI0eOiPLly4tu3brJdQiFwqVLl4SxsbGYPXu2CAoKEps3bxYWFhbif//7n7TN+PHjRd++faX39+/fFxYWFmLMmDHi9u3b4ueffxZGRkbi0KFDchxCgcNpNoXIo0eP0LNnT7x8+RL29vZo3LgxLly4AHt7ewBAWFiY1ihHw4YNsWXLFkyePBkTJ06Eu7s79uzZwzXmc5mu12nFihVISkrCZ599ptWPj48Ppk2blpehFyq6XieSh67XycnJCYcPH8bIkSPh6emJ0qVLY/jw4Rg3bpxch1Bo6HqtJk+eDIVCgcmTJ+Px48ewt7fHJ598gtmzZ8t1CIVCnTp14OfnhwkTJmDGjBlwdXXF0qVL0bt3b2mbiIgIrZWIXF1dceDAAYwcORLLli1DmTJlsHbtWi5LqScKIfhZFBERERGRIeKwERERERGRgWIyT0RERERkoJjMExEREREZKCbzREREREQGisk8EREREZGBYjJPRERERGSgmMwTERERERkoJvNERIXM6tWr4eTkBKVSiaVLl2LatGmoXr263GHlWLNmzTBixAi5wyAikgWTeSIiPRowYAA6deqU5/v19fVFkSJFstwuKioKQ4cOxbhx4/D48WMMGTIkV+Ix9D8QiIgMhbHcARARUd4JCwtDcnIy2rVrB0dHR7nDISKi98SReSKiXNSsWTMMGzYMY8eORdGiRVGyZElMmzZNaxuFQoEVK1agbdu2MDc3R7ly5bBz506p/sSJE1AoFHjz5o1U5u/vD4VCgQcPHuDEiRMYOHAgIiMjoVAooFAo0uwDSB29r1atGgCgXLlyUvv/0mg0mDFjBsqUKQOVSoXq1avj0KFDWtuMGzcOFSpUgIWFBcqVK4cpU6YgOTlZ2s/06dMREBAgxePr65tmP0eOHIGZmZnWcQHA8OHD0aJFCwDAy5cv0bNnT5QuXRoWFhaoVq0atm7dmsHZ/vd87tmzR6usSJEiWjGEh4ejW7duKFKkCIoWLYqOHTumey6IiPI7JvNERLlsw4YNsLS0xMWLF7FgwQLMmDEDR48e1dpmypQp6NKlCwICAtC7d2/06NEDt2/fzlb/DRs2xNKlS2FjY4OIiAhERETA29s7zXbdu3fHsWPHAACXLl1CREQEnJyc0my3bNkyLF68GIsWLcL169fRunVrdOjQAUFBQdI21tbW8PX1xa1bt7Bs2TKsWbMGS5YskfYzevRoVKlSRYqne/fuafbz4YcfokiRIti1a5dUplarsX37dvTu3RsAkJCQgFq1auHAgQMIDAzEkCFD0LdvX1y6dClb5yY9ycnJaN26NaytrXH69GmcPXsWVlZWaNOmDZKSknLcLxGRHJjMExHlMk9PT/j4+MDd3R39+vVD7dq18ccff2ht07VrVwwePBgVKlTAzJkzUbt2bfz444/Z6t/U1BS2trZQKBQoWbIkSpYsCSsrqzTbmZubo1ixYgAAe3t7lCxZEkZGRmm2W7RoEcaNG4cePXqgYsWKmD9/PqpXr46lS5dK20yePBkNGzaEi4sLPvnkE3h7e2PHjh3SfqysrGBsbCzFY25unmY/RkZG6NGjB7Zs2SKV/fHHH3jz5g26dOkCAChdujS8vb1RvXp1lCtXDt999x3atGkj7Ssntm/fDo1Gg7Vr16JatWrw8PDA+vXrERYWhhMnTuS4XyIiOXDOPBFRLvP09NR67+joiOfPn2uVNWjQIM17f3//3A4tjaioKDx58gSNGjXSKm/UqBECAgKk99u3b8cPP/yAkJAQxMTEICUlBTY2Njrvr3fv3qhfvz6ePHmCUqVKYfPmzWjXrp10M69arcacOXOwY8cOPH78GElJSUhMTISFhUWOjzEgIADBwcGwtrbWKk9ISEBISEiO+yUikgOTeSKiXGZiYqL1XqFQQKPRZLu9Upn6IaoQQip7Oz9dDufPn0fv3r0xffp0tG7dGra2tti2bRsWL16sc1916tRB+fLlsW3bNnz99dfw8/PTmtu+cOFCLFu2DEuXLkW1atVgaWmJESNGZDodRqFQaJ0rQPt8xcTEoFatWti8eXOatvb29jofAxGRnJjMExHlAxcuXEC/fv203teoUQPAvwlmREQE7OzsACDNqL2pqSnUavV7x2FjY4NSpUrh7NmzaNq0qVR+9uxZ1K1bFwBw7tw5ODs7Y9KkSVL9w4cPcxxP7969sXnzZpQpUwZKpRLt2rXT2m/Hjh3Rp08fAKk35967dw+VK1fOsD97e3tE/L+9uwdpJAjDOP6kEMHaiE3EYrewMEgKC0HQNFopqCCYMoUpQsQvsFBMQIsVbMTawiYJKQKCIIggBlKIJMHGjyALIoiwpUhS3VUXyMl5XIozA/9fNyy7O0z18M7LzOtrY1ytVvXx8dEYh0IhZbNZ9fT0tLSbAADthJ55AGgDuVxOR0dHenx81Pb2tq6vrxWPxyVJlmUpEAgomUyqWq3q9PT0UxW8v79f7+/vuri4kOd5TeH1X62vr8txHGWzWT08PGhjY0OVSkVLS0uSJNu29fz8rEwmo6enJx0cHCifz3+aj+u6qlQq8jxP9Xr9j/+LRCIqlUra3d3V3NycOjs7G89s29b5+bmKxaLu7u60uLiot7e3L+cfDod1eHiocrmsm5sbxWKxpt2RSCSi7u5uTU9Pq1AoyHVdXV5eKpFI6OXlpZUlA4BvQ5gHgDaQSqWUyWQUDAZ1fHysdDrdqD53dHQonU7r/v5ewWBQjuNoZ2en6f2RkRHFYjHNz8/L7/drb2+v5bkkEgmtrKxodXVVg4ODOjs708nJiWzbliRNTU1peXlZ8XhcQ0NDKhaL2traavrG7OysJicnNT4+Lr/f/+VxkpZlaXh4WLe3t41TbH7Z3NxUKBTSxMSExsbG1Nvb+9dLufb39xUIBDQ6OqqFhQWtra019dh3dXXp6upKfX19mpmZ0cDAgKLRqGq1GpV6AMbx/fi9sRAA8F/5fD7l8/lvuTkWAGA2KvMAAACAoQjzAAAAgKE4zQYAvhndjgCAVlGZBwAAAAxFmAcAAAAMRZgHAAAADEWYBwAAAAxFmAcAAAAMRZgHAAAADEWYBwAAAAxFmAcAAAAMRZgHAAAADPUTGBAmbMaJVXUAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvMAAAHACAYAAAAvA+dJAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAhgNJREFUeJzs3XdYFMcfBvD3jnJ0RAVFRUBBxQL2bizRqNFYYuw9GtOMFXvB3o2aYo+i/qxRUaOxJvZuFBQrIAoqlljo9W5+fxA3XqiHB8vB+3kewt3Mzux3dyV8mZudVQghBIiIiIiIyOAo5Q6AiIiIiIhyhsk8EREREZGBYjJPRERERGSgmMwTERERERkoJvNERERERAaKyTwRERERkYFiMk9EREREZKCYzBMRERERGShjuQN4HxqNBk+ePIG1tTUUCoXc4RARERER6YUQAtHR0ShVqhSUyozH3w06mX/y5AmcnJzkDoOIiIiIKFeEh4ejTJkyGdYbdDJvbW0NIPUgbWxsZI6GiIiIiEg/oqKi4OTkJOW7GTHoZP7t1BobGxsm80RERERU4GQ1lZw3wBIRERERGSgm80REREREBorJPBERERGRgTLoOfPZIYRASkoK1Gq13KEQFTomJiYwMjKSOwwiIqICq0An80lJSYiIiEBcXJzcoRAVSgqFAmXKlIGVlZXcoRARERVIBTaZ12g0CA0NhZGREUqVKgVTU1M+WIooDwkh8OLFCzx69Aju7u4coSciIsoFBTaZT0pKgkajgZOTEywsLOQOh6hQsre3x4MHD5CcnMxknoiIKBcU+BtgM3v8LRHlLn4aRkRElLuY6RIRERERGSgm80REREREBorJPOUqhUKBPXv2yB0GERERUYHEZD6fUSgUmX5NmzZN7hCJiIiIKJ8osKvZGKqIiAjp9fbt2zF16lTcvXtXKnt3vW4hBNRqNYyNeRmJiIiI9EUIAbVQIyY2BrZWtvl6QYdCNTIvhEBsbGyefwkhsh1jyZIlpS9b29R/PG/f37lzB9bW1jh48CBq1aoFlUqFM2fOYMCAAejUqZNWPyNGjECzZs2k9xqNBnPnzoWrqyvMzc3h5eWFnTt3ZhjHxIkTUa9evTTlXl5emDFjBgDg8uXLaNWqFYoXLw5bW1s0bdoUV69ezbDPEydOQKFQ4M2bN1KZv78/FAoFHjx4IJWdOXMGTZo0gbm5OZycnDBs2DDExsZmfuKIiIiI9CTgRgD8Hvjh6IujSNGkyB1OpgpVMh8XFwcrK6s8/9L3E2jHjx+PefPm4fbt2/D09MxWm7lz52Ljxo1YuXIlbt68iZEjR6JPnz44efJkutv37t0bly5dQkhIiFR28+ZNXL9+Hb169QIAREdHo3///jhz5gwuXLgAd3d3fPzxx4iOjs7xsYWEhKBNmzbo0qULrl+/ju3bt+PMmTMYOnRojvskIiIiyo5Hjx5h4MCBaNCggVQWFBQkY0RZ4/wMAzRjxgy0atUq29snJiZizpw5OHbsmPSPs1y5cjhz5gxWrVqFpk2bpmlTpUoVeHl5YcuWLZgyZQoAYPPmzahXrx7c3NwAAC1atNBqs3r1ahQpUgQnT55E+/btc3Rsc+fORe/evTFixAgAgLu7O3744Qc0bdoUK1asgJmZWY76JSIiIspIVFQUFixYgO+//x7x8fFQmaukugoVKsgYWdYKVTJvYWGBmJgYWfarT7Vr19Zp++DgYMTFxaX5AyApKQk1atTIsF3v3r2xbt06TJkyBUIIbN26FaNGjZLqnz17hsmTJ+PEiRN4/vw51Go14uLiEBYWptsBvSMgIADXr1/H5s2bpTIhBDQaDUJDQ+Hh4ZHjvomIiIjeEkIgISkBvht84TPZBy9evAAANG7cGAsWLcAjPJI5wuwpVMm8QqGApaWl3GG8t/8eg1KpTDMvPzk5WXr99g+YAwcOoHTp0lrbqVQqZKRnz54YN24crl69ivj4eISHh6N79+5Sff/+/fHy5UssW7YMzs7OUKlUaNCgAZKSktLt7+3TeN+N9d0438b65ZdfYtiwYWnaly1bNsNYiYiIiLJLCIG9v+1FctVkFG9ZHFEjolChQgXMnz8fHTt2hFqo8egBk3nKI/b29ggMDNQq8/f3h4mJCQCgcuXKUKlUCAsLS3dKTUbKlCmDpk2bYvPmzYiPj0erVq3g4OAg1Z89exbLly/Hxx9/DAAIDw/H33//nWmcQOqKPXZ2dlKc76pZsyZu3bolTeUhIiIi0qfLly/D29sbFy9fxKbATQCAxd8vxpBBQ6TcCdlfu0R2heoG2IKqRYsWuHLlCjZu3IigoCD4+PhoJffW1tbw9vbGyJEjsWHDBoSEhODq1av48ccfsWHDhkz77t27N7Zt24Zff/0VvXv31qpzd3fHpk2bcPv2bVy8eBG9e/eGubl5hn25ubnByckJ06ZNQ1BQEA4cOIDFixdrbTNu3DicO3cOQ4cOhb+/P4KCgrB3717eAEtERETvJTQ0FD179kTdunVx6tQpqMz+nZ3w5ZAv/03kDQyT+QKgdevWmDJlCsaOHYs6deogOjoa/fr109pm5syZmDJlCubOnQsPDw+0adMGBw4cgKura6Z9f/bZZ3j58iXi4uLSLH/5yy+/4PXr16hZsyb69u2LYcOGaY3c/5eJiQm2bt2KO3fuwNPTE/Pnz8esWbO0tvH09MTJkydx7949NGnSBDVq1MDUqVNRqlQp3U4KERERFXpCCPz96m+MHT8WlSpVwrZt26BQKNC/f38E+AfIHZ5eKIQui6DnM1FRUbC1tUVkZCRsbGy06hISEhAaGgpXV1eugEIkE/4cEhGRXBITE7F85XKU+aQMAKBv1b5o0qgJFi5ciOrVqyNFkwK/B34AgM4unWGs/Hf2eWZ1eSWzPPddHJknIiIiogJDCIHt27fDw8MDEyZMkMr9/Pxw5MgRVK9eXb7gcgGTeSIiIiIqEE6fPo369eujR48eCA0NRcmSJaW6Vq1aQaFQyBhd7mAyT0REREQGSwiB23dv47Pun+GDDz7ApUuXYGlpiRkzZiDgesGYF58ZJvNEREREZJCeP3+OYSOGIdAkEN3ndoe5pTm+/PJLBAcHY8qUKbC0MPznC2WF68wTERERkUGJi4vD0qVLMW/ePCSlJOGD4R8AAC5duoSqlavKHF3eYjJPRERERPmaEAJqoYZarcbWzVsxefJkPH78GABQv2F9abtKlSrJFaJsOM2GiIiIiPI1tVDD74Ef9oXvw1fffIXHjx+jbNmy2Lx5M06ePCl3eLJiMk9ERERE+daNGzfQuXNn6b2NjQ0WLFiAu3fvolevXlAqC3c6W7iPnnJk2rRpWa7ROmDAgDRPjCUiIiLKrsePH2PQoEGoXr06jh49KpUHBgZizJgxfBjhP5jM50MvXrzA119/jbJly0KlUqFkyZJo3bo1zp49K23j4uIChUIBhUIBCwsLVKtWDWvXrtV5X2vWrEGTJk1gZ2cHOzs7tGzZEpcuXXrvY1i2bBl8fX2l982aNcOIESPeu9/8JCEhAd9++y2KFSsGKysrdOnSBc+ePcu0jRACU6dOhaOjI8zNzdGyZUsEBQWl2e7AgQOoV68ezM3NYWdnxz+MiIiowBNCIEWTgtdRrzFlyhS4u7tj3bp10Gg0WiPzRYsWlTHK/IfJfD7UpUsXXLt2DRs2bMC9e/ewb98+NGvWDC9fvtTabsaMGYiIiEBgYCD69OmDL774AgcPHtRpXydOnEDPnj1x/PhxnD9/Hk5OTvjoo4+km0pyytbWFkWKFHmvPnJDUlJSmjK1Wg2NRqNzXyNHjsRvv/2GX3/9FSdPnsSTJ0/w6aefZtpmwYIF+OGHH7By5UpcvHgRlpaWaN26NRISEqRtdu3ahb59+2LgwIEICAjA2bNn0atXL53jIyIiMiSJyYnwe+CHY38fw8LFCxEfH4+GDRvi3Llz2LRpk9zh5V/CgEVGRgoAIjIyMk1dfHy8uHXrloiPj5chspx7/fq1ACBOnDiR6XbOzs5iyZIlWmVFixYVI0eOfK/9p6SkCGtra7Fhw4YMt/Hx8RFeXl5i5cqVokyZMsLc3Fx07dpVvHnzRtqmf//+omPHjtJrAFpfoaGh4tWrV6JXr16iePHiwszMTLi5uYl169bpFO/p06dF48aNhZmZmShTpoz47rvvRExMjFTv7OwsZsyYIfr27Susra1F//79xfr164Wtra3Yu3ev8PDwEEZGRiI0NFSn/b5580aYmJiIX3/9VSq7ffu2ACDOnz+fbhuNRiNKliwpFi5cqNWPSqUSW7duFUIIkZycLEqXLi3Wrl2rUzz5laH+HBIRUd7RaDRi3759wrO6p9gRskPsCNkhPKp4iF27dgmNRiOEECJZnSzVJauTtdrndV1eySzPfRdH5rMpLjkOlx5fQlxyXK7ux8rKClZWVtizZw8SExOz1Uaj0WDXrl14/fo1TE1N32v/cXFxSE5OzvIjrODgYOzYsQO//fYbDh06hGvXruGbb75Jd9tly5ahQYMG+OKLLxAREYGIiAg4OTlhypQpuHXrFg4ePIjbt29jxYoVKF68eLZjDQkJQZs2bdClSxdcv34d27dvx5kzZzB06FCt7RYtWgQvLy9cu3YNU6ZMkY5z/vz5WLt2LW7evAkHBwds3rxZOv8ZfZ0+fRoA8NdffyE5ORktW7aU9lOpUiWULVsW58+fTzfe0NBQPH36VKuNra0t6tWrJ7W5evUqHj9+DKVSiRo1asDR0RFt27ZFYGBgts8LERGRobhy5QqaN2+ODh064O7du1rln376KRQKhYzRGQauM58NcclxqL6yOoJeBcG9qDv8v/KHhYlFruzL2NgYvr6++OKLL7By5UrUrFkTTZs2RY8ePeDp6am17bhx4zB58mQkJiYiJSUFRYsWxeDBg99r/+PGjUOpUqW0Es70JCQkYOPGjShdujQA4Mcff0S7du2wePFilCxZUmtbW1tbmJqawsLCQqsuLCwMNWrUQO3atQGk3gegi7lz56J3797SXHx3d3f88MMPaNq0KVasWCHdGNOiRQuMHj1aanf69GkkJydj+fLl8PLykso7dOiAevXqZbrPt8f79OlTmJqapplKVKJECTx9+jTdtm/LS5QokWGb+/fvA0i9yfj777+Hi4sLFi9ejGbNmuHevXucJ0hERAZPCIH7D+5j+vTp2LQhdfqMSqXS+l39voOThQlH5rMh8Hkggl6l3qQY9CoIgc9zd5S0S5cuePLkCfbt24c2bdrgxIkTqFmzptYNpQAwZswY+Pv7488//0S9evWwZMkSuLm55Xi/8+bNw7Zt2+Dn55flHeJly5aVElsAaNCgATQajdZf1Vn5+uuvsW3bNlSvXh1jx47FuXPndIo3ICAAvr6+WiPnrVu3hkajQWhoqLTd2z8W3mVqaprmjyNra2u4ubll+mVubq5TjLp6O3d/0qRJ6NKlC2rVqoX169dDoVDg119/zdV9ExER5bbXr19j/MTxuCqu4pOpn0BlrkLfvn1x7949TJ8+Xe7wDBKT+Wyo6lAV7kXdAQDuRd1R1SH3HxNsZmaGVq1aYcqUKTh37hwGDBgAHx8frW2KFy8ONzc3NGnSBL/++iuGDRuGW7du5Wh/ixYtwrx583DkyJE0SW5uadu2LR4+fIiRI0fiyZMn+PDDD+Ht7Z3t9jExMfjyyy/h7+8vfQUEBCAoKAjly5eXtrO0tEzT1tzcPM1Hd7pMsylZsiSSkpLw5s0brT6ePXuW5pOJt96W/3fFm3fbODo6AgAqV64s1atUKpQrVw5hYWHZOS1ERET5TlJSEpYuXQo3NzcsW7ZMKj9z5gw2btyIsmXLyhidYZM9mX/8+DH69OmDYsWKwdzcHNWqVcOVK1fkDkuLhYkF/L/yx8XBF3N1ik1mKleujNjY2AzrnZyc0L17d0yYMEHnvhcsWICZM2fi0KFD6Y5ipycsLAxPnjyR3l+4cAFKpRIVK1ZMd3tTU1Oo1eo05fb29ujfvz/+97//YenSpVi9enW2465ZsyZu3bqV7gh6Tj6e69Chg9YfBul9vT0/tWrVgomJCf744w+p/d27dxEWFoYGDRqk27+rqytKliyp1SYqKgoXL16U2tSqVQsqlUrrE47k5GQ8ePAAzs7OOh8TERGRnIQQ+PXXX+Hh4YGRI0fi1atX8PDwkOqzem4NZU3WOfOvX79Go0aN0Lx5cxw8eBD29vYICgqCnZ2dnGGly8LEAnVL1831/bx8+RJdu3bF559/Dk9PT1hbW+PKlStYsGABOnbsmGnb4cOHo2rVqrhy5Uq2k/L58+dj6tSp2LJlC1xcXKS5229HojNiZmaG/v37Y9GiRYiKisKwYcPQrVu3DEelXVxccPHiRTx48ABWVlYoWrQopk2bhlq1aqFKlSpITEzE/v37tX7AszJu3DjUr18fQ4cOxeDBg2FpaYlbt27h6NGj+Omnn7Ldz1vW1tawtrbO1ra2trYYNGgQRo0ahaJFi8LGxgbfffcdGjRogPr160vbVapUCXPnzkXnzp2hUCgwYsQIzJo1C+7u7nB1dcWUKVNQqlQpaR15GxsbfPXVV/Dx8YGTkxOcnZ2xcOFCAEDXrl11PiaiPPPoERAUBLi7A2XKvH+dvvsrCHX5JQ4et+51Dx4CoQ8BV2fAxTl7dTlpk4/qhBDw37cXZzZtxsZTp3D/xXOULFkSM2fORJ9+fXDm0mYUfxoL4CFQ7t9P0+2eRKVbnt/q8pW8WFonI+PGjRONGzfOcfuCuDRlQkKCGD9+vKhZs6awtbUVFhYWomLFimLy5MkiLi5O2i69pSmFEKJ169aibdu20nsAYv369Rnuz9nZOc2ykQCEj49Phm3eLk25fPlyUapUKWFmZiY+++wz8erVK2mbd5emFEKIu3fvivr16wtzc3NpacqZM2cKDw8PYW5uLooWLSo6duwo7t+/L7Vp2rSp6N+/f6bn69KlS6JVq1bCyspKWFpaCk9PTzF79uxMz9PbpSnfV3x8vPjmm2+EnZ2dsLCwEJ07dxYRERFa2/z3/Gs0GjFlyhRRokQJoVKpxIcffiju3r2r1SYpKUmMHj1aODg4CGtra9GyZUsRGBj43vHKwVB/DklHa9cKoVQKAaR+f3dp1ZzU6bu/glCXX+Lgcetcp9m+S2j+uCDEicup37fvzrIuJ23yU93du3fFn998p1V3beJUER0dLYQQQr1tZ7rtMirPb3V5JbtLUyqEEEKuPyQqV66M1q1b49GjRzh58iRKly6Nb775Bl988UW62ycmJmot1xgVFQUnJydERkbCxsZGa9uEhASEhobC1dW10D7uNzQ0FBUqVMCtW7fg7u4udzg6c3Z2xvTp0zFgwAC5Q6Ec4s9hIfDoEeDsDLz74DUjI+DBg9TXutadPw/Ur6+//gpCXWE9JwXhuFPUEPefQmFkJFUJtRqKcqmfYqdbZ6GEiNPo1iYf1S3atQm7du3C+S17CuZx//eTiVwUFRUFW1vbdPPcd8k6zeb+/ftYsWIFRo0ahYkTJ+Ly5csYNmwYTE1N0b9//zTbz507l3c66+D333/HkCFDDDKRv3nzJmxtbdGvXz+5QyGizAQFaScxAKBWA8HBgBC61505o9/+CkJdYT0nBeK4lVAYad9npzAyAh6EAUKkXxccAoVTed3a5KO6x+fOo4Fjaa1EuEAddx4m89klazKv0WhQu3ZtzJkzBwBQo0YNBAYGYuXKlekm8xMmTMCoUaOk929H5il93377rdwh5FiVKlVw/fp1ucMgoqy4uwNKZdpRybfL5Opa17ixfvsrCHWF9ZwUhOPOcGQ+deWWdOvcykHEqXVrk4/q/ra0wPDhw1O3K6DHnd/IupqNo6Oj1hJ8AODh4ZHhEnwqlQo2NjZaX0REJKMyZYDVq1OTFyD1+6pVqeU5qatTR7/9FYS6wnpOCsJxuzhDvHgE8c9qbkKthuLvJ6mjuxnV1a+jexsZ6o4FB+HAhtVadfcvncbGUydRp+tnUPz9JMM+062rX0f3NnLU5UOyzpnv1asXwsPDpbW7AWDkyJG4ePFith4glNlcIs7VJZIffw4LkUePUqcVuLmlv8qHrnX67q8g1OWXOHjcOtWlaFJw4twGFH8ah6o1P4bxO6uiZFSXkzZ5VXcnLh5jx47FwYMHoTJXYf+Rn1H8aRzcq3wISw/tAVo8ePjP1JSy6a+Ck15dTtrIUZcHsjtnXtZk/vLly2jYsCGmT5+Obt264dKlS/jiiy+wevVq9O7dO8v2TOaJ8jf+HBJRYZeiSYHfAz8AQGeXzjBWGmdZl5M2eVH3x6I/sGbVGmg0GhgbG+Obb77BxMkTUaxYMRgpjNI8jJHeT3aTeVmn2dSpUwd+fn7YunUrqlatipkzZ2Lp0qXZSuSJiIiIKHfFxMZIr319faHRaNClSxfcunULy5YtQwn7EjBWGjORl5HsT4Bt3749bty4gYSEBNy+fTvDZSmJiIiIKG+kpKRg9erV8KzmKZXVrVcXZ8+exc6dOw1ypbyCSvZknoiIiIjyByEEDhw4AC8vL3z55ZcIfxiOqR2mAteAE3+cQMOGDeUOkf5D1qUpiYiIiCj/aNeuHY4ePgoAKFq0KKZOnYqvv/4apqamMkdGGeHIPOmsWbNmGDFihNxhEBERkR6Eh4dLr0+dOgWVSoWxY8ciJCQEw4cPZyKfzzGZz4cGDBgAhUIBhUIBExMTuLq6YuzYsUhISJA7tGyZNm0aqlevLncYsnrw4AEUCgX8/f3lDoWIiChdb968wbhx47R+Z/fo0QN3797F/PnzUaRIEdlio+xjMp9PtWnTBhEREbh//z6WLFmCVatWwcfHR+6wCgUhBFJSUuQOg4iIKFckJSVh2bJlcHNzw4IFCxD1JgprvlkDl9cuWP/Lejg758+HI1H6mMxn16NHwPHjqd/zgEqlQsmSJeHk5IROnTqhZcuWOHr0qFSfmJiIYcOGwcHBAWZmZmjcuDEuX74s1fv6+qb5i3rPnj1aS0e9HUHftGkTXFxcYGtrix49eiA6OlraJjY2Fv369YOVlRUcHR2xePHiTOP29fXF9OnTERAQIH264OvrCwAICwtDx44dYWVlBRsbG3Tr1g3Pnj3LsK+3o9u7d+9G8+bNYWFhAS8vL5w/f15ruzNnzqBJkyYwNzeHk5MThg0bhtjYWKl+06ZNqF27NqytrVGyZEn06tULz58/l+pPnDgBhUKBgwcPolatWlCpVDhz5gw0Gg3mzp0LV1dXmJubw8vLCzt37pTavX79Gr1794a9vT3Mzc3h7u6O9evXAwBcXV0BADVq1IBCoUCzZs0yPW9ERER5pVbtWhgxYgRevnyJypUrY//+/Th88DDq1KrDJSYNEJP57PjlF8DZGWjRIvX7L7/k6e4DAwNx7tw5rTlrY8eOxa5du7BhwwZcvXoVbm5uaN26NV69eqVT3yEhIdizZw/279+P/fv34+TJk5g3b55UP2bMGJw8eRJ79+7FkSNHcOLECVy9ejXD/rp3747Ro0ejSpUqiIiIQEREBLp37w6NRoOOHTvi1atXOHnyJI4ePYr79++je/fuWcY4adIkeHt7w9/fHxUqVEDPnj2lkfOQkBC0adMGXbp0wfXr17F9+3acOXMGQ4cOldonJydj5syZCAgIwJ49e/DgwQMMGDAgzX7Gjx+PefPm4fbt2/D09MTcuXOxceNGrFy5Ejdv3sTIkSPRp08fnDx5EgAwZcoU3Lp1CwcPHsTt27exYsUKFC9eHABw6dIlAMCxY8cQERGB3bt3Z30xiIiIcsmFixek16H3Q1GiRAmsWrUKAQEBaNeuHZN4QyYMWGRkpAAgIiMj09TFx8eLW7duifj4+PfbSXi4EEqlEMC/X0ZGqeW5pH///sLIyEhYWloKlUolAAilUil27twphBAiJiZGmJiYiM2bN0ttkpKSRKlSpcSCBQuEEEKsX79e2NraavXr5+cn3r3kPj4+wsLCQkRFRUllY8aMEfXq1RNCCBEdHS1MTU3Fjh07pPqXL18Kc3NzMXz48Azj9/HxEV5eXlplR44cEUZGRiIsLEwqu3nzpgAgLl26lG4/oaGhAoBYu3Ztmja3b98WQggxaNAgMWTIEK12p0+fFkqlMsNrf/nyZQFAREdHCyGEOH78uAAg9uzZI22TkJAgLCwsxLlz57TaDho0SPTs2VMIIcQnn3wiBg4cmGns165dS7e+sNDbzyERkYFKVieLHSE7xI6QHSJZnZytupy0yaguKChIdOnSRajMVVKdzwwf6Xcg5V+Z5bnv4sh8VoKCAI1Gu0ytBoKDc3W3zZs3h7+/Py5evIj+/ftj4MCB6NKlC4DU0ejk5GQ0atRI2t7ExAR169bF7du3ddqPi4sLrK2tpfeOjo7SFJSQkBAkJSWhXr16Un3RokVRsWJFnY/n9u3bcHJygpOTk1RWuXJlFClSJMuYPT3/fWCFo6MjAEgxBgQEwNfXF1ZWVtJX69atodFoEBoaCgD466+/8Mknn6Bs2bKwtrZG06ZNAaRO+3lX7dq1pdfBwcGIi4tDq1attPreuHEjQkJCAABff/01tm3bhurVq2Ps2LE4d+6czueFiIgoN7x8+RLDhw+Hh4cHdu3aheTEZPyx6A/UV9WHz2QfWFlZyR0i6QnXmc+KuzugVGon9EZGgJtbru7W0tISbv/sY926dfDy8sIvv/yCQYMGZau9UqmEEEKrLDk5Oc12JiYmWu8VCgU0//3jRWbvxvj2Y8C3McbExODLL7/EsGHD0rQrW7YsYmNj0bp1a7Ru3RqbN2+Gvb09wsLC0Lp1ayQlJWltb2lpKb2OiUl9fPWBAwdQunRpre1UKhUAoG3btnj48CF+//13HD16FB9++CG+/fZbLFq0SA9HTURElHNVq1bF38//BpD6+2rBggWoWrWqzFFRbuDIfFbKlAFWr05N4IHU76tWpZbnEaVSiYkTJ2Ly5MmIj49H+fLlYWpqirNnz0rbJCcn4/Lly6hcuTIAwN7eHtHR0Vo3guq6TGL58uVhYmKCixcvSmWvX7/GvXv3Mm1namoKtVqtVebh4YHw8HCttWxv3bqFN2/eSDHnRM2aNXHr1i24ubml+TI1NcWdO3fw8uVLzJs3D02aNEGlSpW0bn7NSOXKlaFSqRAWFpam33c/XbC3t0f//v3xv//9D0uXLsXq1aulcwAgzXkgIiLKDRqNBtu2bZPeR0dHo3r16jh27Bh+//13JvIFGJP57Bg0CHjwIHU1mwcPUt/nsa5du8LIyAg///wzLC0t8fXXX2PMmDE4dOgQbt26hS+++AJxcXHSyH29evVgYWGBiRMnIiQkBFu2bJFWlckuKysrDBo0CGPGjMGff/6JwMBADBgwAEpl5v9sXFxcEBoaCn9/f/z9999ITExEy5YtUa1aNfTu3RtXr17FpUuX0K9fPzRt2lRreouuxo0bh3PnzmHo0KHw9/dHUFAQ9u7dK90AW7ZsWZiamuLHH3/E/fv3sW/fPsycOTPLfq2treHt7Y2RI0diw4YNCAkJwdWrV/Hjjz9iw4YNAICpU6di7969CA4Oxs2bN7F//354eHgAABwcHGBubo5Dhw7h2bNniIyMzPExEhERZebPP/9EnTp1MHjwYKls9erV+Ouvv/Dhhx/KGBnlBSbz2VWmDNCsWZ6OyL/L2NgYQ4cOxYIFCxAbG4t58+ahS5cu6Nu3L2rWrIng4GAcPnwYdnZ2AFLntv/vf//D77//jmrVqmHr1q2YNm2azvtduHAhmjRpgk8++QQtW7ZE48aNUatWrUzbdOnSBW3atEHz5s1hb2+PrVu3QqFQYO/evbCzs8MHH3yAli1boly5cti+fXtOTofE09MTJ0+exL1799CkSRPUqFEDU6dORalSpQCkjpz7+vri119/ReXKlTFv3rxsT4OZOXMmpkyZgrlz58LDwwNt2rTBgQMHpGUnTU1NMWHCBHh6euKDDz6AkZGRNCpibGyMH374AatWrUKpUqXQsWPH9zpOIiKi/7pz5w7at2+PDz/8EFevXoXKRIX7u+6jTYk26Nu7b5aDb1QwKMR/J1YbkKioKNja2iIyMhI2NjZadQkJCQgNDYWrqyvMzMxkipCocOPPIREVdimaFPg98AMAdHbpDGOlcZZ12W3T37M/4mPjYWxsjK+++gpTp06Fvb19nhwX5b7M8tx38U82IiIiIgMQExODOXPnSO81Gg06d+6Mmzdv4scff2QiX0gxmSciIiLKx9RqNdauXQt3d3fMmf1vMn/k6BHs3r0bFSpUkDE6khuXpiQiIiLKpw4fPoxxY8bh5s2bAIBy5coB14BOnTrB2JVpHDGZJyIiIsq3unTpgsT4RNjZ2WHq1Kn4+uuvpeedEAGcZkNERESUb4SFheGLL76Q3puamsLb2xshISEYMWIEE3lKgyPzRERERDKLjIrEovmLsGTJEiQmJmLr1q3o2rUrAq4FSEsiE6WHyTwRERGRzDyreeLJoycAgKZNm2LhwoWoU6eOzFGRIeA0GyIiIqI8JoTA3n17pfcvX75EpUqVsHfvXhw/fpyJPGUbk3kiIiKiPHThwgU0adIEvXv1lsqWLluKGzduoEOHDlAoFDJGR4aGyTzprFmzZhgxYoTcYRQoU6ZMwZAhQ+QOQ2f169fHrl275A6DiMgg3A+9j27duqFBgwY4e/YslFDixqYbaFm8Jb4c/CWMjTn7mXTHZD4fGjBgABQKBRQKBUxMTODq6oqxY8ciISFB7tCyZdq0aahevbrcYcjqwYMHUCgU8Pf3z3Lbp0+fYtmyZZg0aZJO+3j7b+Tdr23btuUw4rR8fX3T9G9mZqa1zeTJkzF+/HhoNBq97ZeIqKCqVbMWfv31VygUCnz++ecICgrCDJ8ZsLOx42g85RiT+XyqTZs2iIiIwP3797FkyRKsWrUKPj4+codVKAghkJKSkmf7W7t2LRo2bAhnZ2ed265fvx4RERHSV6dOnfQam42NjVb/Dx8+1Kpv27YtoqOjcfDgQb3ul4ioIEhISMDSpUul98nJyWjdujX8/f3xyy+/oHTp0vIFRwUGk/nsSkwCXkelfs8DKpUKJUuWhJOTEzp16oSWLVvi6NGj/4aTmIhhw4bBwcEBZmZmaNy4MS5fvizV+/r6okiRIlp97tmzR+sv/7cj6Js2bYKLiwtsbW3Ro0cPREdHS9vExsaiX79+sLKygqOjIxYvXpxp3L6+vpg+fToCAgKk0VxfX18AqWvnduzYEVZWVrCxsUG3bt3w7NmzDPt6O7q9e/duNG/eHBYWFvDy8sL58+e1tjtz5gyaNGkCc3NzODk5YdiwYYiNjZXqN23ahNq1a8Pa2holS5ZEr1698Pz5c6n+xIkTUCgUOHjwIGrVqgWVSoUzZ85Ao9Fg7ty5cHV1hbm5Oby8vLBz506p3evXr9G7d2/Y29vD3Nwc7u7uWL9+PQBIy4jVqFEDCoUCzZo1y/A4t23bhk8++USrLKt9v1WkSBGULFlS+vrvyHlG3l77VatWwcnJCRYWFujWrRsiIyO1tlMoFFr9lyhRQqveyMgIH3/8sV4/ESAiMnQajQZbtmxBpUqVMHnyZKl87969OHToEDw9PWWMjgoaJvPZEfECuHAduH4v9XvEizzdfWBgIM6dOwdTU1OpbOzYsdi1axc2bNiAq1evws3NDa1bt8arV6906jskJAR79uzB/v37sX//fpw8eRLz5s2T6seMGYOTJ09i7969OHLkCE6cOIGrV69m2F/37t0xevRoVKlSRRrN7d69OzQaDTp27IhXr17h5MmTOHr0KO7fv4/u3btnGeOkSZPg7e0Nf39/VKhQAT179pRGzkNCQtCmTRt06dIF169fx/bt23HmzBkMHTpUap+cnIyZM2ciICAAe/bswYMHDzBgwIA0+xk/fjzmzZuH27dvw9PTE3PnzsXGjRuxcuVK3Lx5EyNHjkSfPn1w8uRJAKnz3G/duoWDBw/i9u3bWLFiBYoXLw4AuHTpEgDg2LFjiIiIwO7du9M9tlevXuHWrVuoXbu2VnlW+37r22+/RfHixVG3bl2sW7cOQogsz+dbwcHB2LFjB3777TccOnQI165dwzfffKO1TUxMDJydneHk5ISOHTtKjxN/V926dXH69Ols75eIqCA7efIk6tWrh969e+Phw4coXrQ4Ys/EooNTB3zU8iO5w6OCSBiwyMhIAUBERkamqYuPjxe3bt0S8fHx77eThEQhTlxO+5WQ+H79ZqJ///7CyMhIWFpaCpVKJQAIpVIpdu7cKYQQIiYmRpiYmIjNmzdLbZKSkkSpUqXEggULhBBCrF+/Xtja2mr16+fnJ9695D4+PsLCwkJERUVJZWPGjBH16tUTQggRHR0tTE1NxY4dO6T6ly9fCnNzczF8+PAM4/fx8RFeXl5aZUeOHBFGRkYiLCxMKrt586YAIC5dupRuP6GhoQKAWLt2bZo2t2/fFkIIMWjQIDFkyBCtdqdPnxZKpTLDa3/58mUBQERHRwshhDh+/LgAIPbs2SNtk5CQICwsLMS5c+e02g4aNEj07NlTCCHEJ598IgYOHJhp7NeuXUu3/q1r164JAFrnJTv7FkKIGTNmiDNnzoirV6+KefPmCZVKJZYtW5bp/t7y8fERRkZG4tGjR1LZwYMHhVKpFBEREUIIIc6dOyc2bNggrl27Jk6cOCHat28vbGxsRHh4uFZfe/fuFUqlUqjV6jT70dvPIRFRPqbRaETgrUDRuUtnAUAAEFZWVmL27NkiNjZW7vDIQGWW576Lt01nJS6Dm07jEwCVafp1etC8eXOsWLECsbGxWLJkCYyNjdGlSxcAqaPRycnJaNSokbS9iYkJ6tati9u3b+u0HxcXF1hbW0vvHR0dpSkoISEhSEpKQr169aT6okWLomLFijofz+3bt+Hk5AQnJyeprHLlyihSpAhu376d6Xq6734c6ejoCAB4/vw5KlWqhICAAFy/fh2bN2+WthFCQKPRIDQ0FB4eHvjrr78wbdo0BAQE4PXr19LNmmFhYahcubLU7t3R8eDgYMTFxaFVq1ZasSQlJaFGjRoAgK+//hpdunTB1atX8dFHH6FTp05o2LChTuclPj4eALSmx2Rn30DqJwNv1ahRA7GxsVi4cCGGDRuWrX2XLVtWa75mgwYNoNFocPfuXZQsWRINGjRAgwYNpPqGDRvCw8MDq1atwsyZM6Vyc3NzaDQaJCYmwtzcPJtHTkRUMDx79gwzZs9AsxHN0HNBTxw+fBgD+g2Aj48PHBwc5A6PCgEm81mxyGAOsnn25ibnlKWlJdzc3AAA69atg5eXF3755RcMGjQoW+2VSmWaKRfJyclptjMxMdF6r1Ao8t3KJO/G+HbO/9sYY2Ji8OWXX6abwJYtWxaxsbFo3bo1Wrdujc2bN8Pe3h5hYWFo3bo1kpK073+wtLSUXsfExAAADhw4kOYGJZVKBSD15s+HDx/i999/x9GjR/Hhhx/i22+/xaJFi7J9bG+n5bx+/Rr29vbZ3nd66tWrh5kzZyIxMTHT7XLKxMQENWrUQHBwsFb5q1evYGlpyUSeiAqV2NhYfP/991iwYAGS1cloNqIZAODy5cuoXKly5o2J9Ihz5rOiMgUq/GeVkQrOuToq/19KpRITJ07E5MmTER8fj/Lly8PU1BRnz56VtklOTk79H8g/I8329vaIjo7WuhE0O8skvqt8+fIwMTHBxYsXpbLXr1/j3r17mbYzNTWFWq3WKvPw8EB4eDjCw8Olslu3buHNmzdao+O6qlmzJm7dugU3N7c0X6amprhz5w5evnyJefPmoUmTJqhUqZLWza8ZqVy5MlQqFcLCwtL0++6nC/b29ujfvz/+97//YenSpVi9erV0DgCkOQ//Vb58edjY2ODWrVs67/u//P39YWdnl+1EPiwsDE+ePJHeX7hwAUqlMsNPXtRqNW7cuCF9OvJWYGCg1icGREQFmVqtxrp161ChQgVMnToVMTExqFWrllRfoUIFGaOjwogj89nhaA8UtU2dWmNulqeJ/Ftdu3bFmDFj8PPPP8Pb2xtff/01xowZg6JFi6Js2bJYsGAB4uLipJH7evXqwcLCAhMnTsSwYcNw8eJFaVWZ7LKyssKgQYMwZswYFCtWDA4ODpg0aRKUysz/BnRxcUFoaCj8/f1RpkwZWFtbo2XLlqhWrRp69+6NpUuXIiUlBd988w2aNm2a5uZPXYwbNw7169fH0KFDMXjwYFhaWuLWrVs4evQofvrpJ5QtWxampqb48ccf8dVXXyEwMFBrikhGrK2t4e3tjZEjR0Kj0aBx48aIjIzE2bNnYWNjg/79+2Pq1KmoVasWqlSpgsTEROzfvx8eHh4AAAcHB5ibm+PQoUMoU6YMzMzMYGtrm2Y/SqUSLVu2xJkzZ6RlJbOz799++w3Pnj1D/fr1YWZmhqNHj2LOnDnw9vbO9rkzMzND//79sWjRIkRFRWHYsGHo1q0bSpYsCQCYMWMG6tevDzc3N7x58wYLFy7Ew4cPMXjwYK1+Tp8+jY8+4k1dRFSwCSFw+OhhTJo0CVevpC4E4eLigrlz5+LTzz7F3rC9MkdIhVZeTODPLXlyA6wM+vfvLzp27JimfO7cucLe3l7ExMSI+Ph48d1334nixYsLlUolGjVqlOZGUj8/P+Hm5ibMzc1F+/btxerVq9PcAPvfG1WXLFkinJ2dpffR0dGiT58+wsLCQpQoUUIsWLBANG3aNNMbYBMSEkSXLl1EkSJFBACxfv16IYQQDx8+FB06dBCWlpbC2tpadO3aVTx9+jTDftK7ifT169cCgDh+/LhUdunSJdGqVSthZWUlLC0thaenp5g9e7ZUv2XLFuHi4iJUKpVo0KCB2Ldvn1a/b2+Aff36tdb+NRqNWLp0qahYsaIwMTER9vb2onXr1uLkyZNCCCFmzpwpPDw8hLm5uShatKjo2LGjuH//vtR+zZo1wsnJSSiVStG0adMMj/P3338XpUuX1rqBNKt9Hzx4UFSvXl06Zi8vL7Fy5cp0b0JNz9trv3z5clGqVClhZmYmPvvsM/Hq1StpmxEjRoiyZcsKU1NTUaJECfHxxx+Lq1evavXz6NEjYWJikuam2LcM+eeQiOgtf39/0bZdW7EjZIfYEbJDOJR0EIsXLxYJCQlCCCGS1clSXbI6WeZoqaDI7g2wCiF0WMsun4mKioKtrS0iIyNhY2OjVZeQkIDQ0FC4urpme+1tIjkIIVCvXj2MHDkSPXv2zJN9Tps2DXv27NF56tV/jRs3Dq9fv5amF/0Xfw6JyJA9evQIkydPxsaNG2FqZopNgZsAAM1sm8G+mL20XYomBX4P/AAAnV06w1jJiQ/0/jLLc9/FOfNEMlMoFFi9enWePnVWXxwcHLI1bYmIyJBERUVh0qRJcHd3x4YNGyCEkFaUAwA7OzsZoyPSxj8difKB6tWro3r16nrrr0qVKnj48GG6datWrdLbfkaPHq23voiI5JaUlIS169dizuw5eBz+GADQuHFjLFq0CLXq1JJG34nyEybzRAXQ77//nu5SpABQokQJWFtbY9q0aXkbFBFRPiWEwN69ezF56mT47PHBklZLML3TdMyaMQsdO3aEQqFAisbwPj2lwoHJPFEB5OzsnPVGRESEixcvYsyYMTh9+jRU5v8u7Xv58mWYq/j8DMr/OGeeiIiICg0hBFI0KQi6H4QePXqgfv36OH36NMzMzDBmzBhpu/8+VJEovyrwybwBL9ZDZPD480dE+c3fr/6G3wM/+MMfe/btgUKhQP/+/XHv3j34+PjIHR6RzgpsMv/2L+q4uDiZIyEqvJKSkgAARkZGMkdCRIVdYmIiFi9ejGrVqkllzZs3x9WrV+Hr65vpE7aJ8rMCO2feyMgIRYoUwfPnzwEAFhYWUCgUMkdFVHhoNBq8ePECFhYWMDYusP+rIaJ8TgiB7du3Y+LEiQgNDdWaF79v3z6YGHE6DRm2Av0b9u1j6d8m9ESUt5RKJcqWLcs/pIkoTwkhoBZqnD17FmNGj8Hly5cBAKVKlcLM2f8+G4P/b6KCoEAn8wqFAo6OjnBwcMhwmT4iyj2mpqZQKgvsbD4iyqfu3LuDQJNAoDRwPfA6LC0tMW7cOIwaNQoqcxXXi6cCpUAn828ZGRlxzi4REVEB9/z5c0yfPh2+G33hG+ALAPh80OeYOmmq9Gk914ungqZQJPNERERUcMXFxWHJkiWYP38+oqOjtebF/7DsBxgrme5QwcXPv4mIiMjgCCGQmJwI342+qFChAiZPnozo6GjUrl0bBw8elDs8ojzDZJ6IiIgMzpFjR7AvfB8sG1vi71d/w9nZGVu2bMHFixfRpEkTucMjyjNM5omIiMhgXL9+Ha1bt0bHjh2lstmzZ+POnTvo2bMnb7qnQof/4omIiCjfe/z4MT7//HNUr14dR44ckR4OCQDDhw+HmZmZjNERyYfJPBEREeVLQgi8jnqNqdOmwt3dHevXr4cQAt26dcNfV/+SOzyifIHJPBEREeU7ycnJWLlmJY79fQzV+lWDBho0atQI58+fx/bt21HOtZzcIRLlC0zmiYiIKN8QQmDv3r2oVq0aRo4YKZVv2boFp0+fRv369WWMjij/YTJPRERE+cLly5fRrFkzdOrUCXfv3kWxYsWkug6fdIBCoZAxOqL8ick8ERERySo0NBR9+/dFk6ZNcOrUKZiZmWHChAm4fuO63KER5XtM5omIiEgWr1+/hre3N7xqeKGDTwdsCtyEzwd/jnv37mHOnDmwtbGVO0SifI/PNyYiIqI8lZiYiOXLl2PmzJl4/fo1VOYqqW7VqlUwVjI9IcoujswTERFRrhNCIFmdjO2/boeHhwdGjRqF169fo2rVqti9e7fc4REZLCbzRERElOtOnzuNPQ/3QFlLiSdPn8DR0RFr166Fv78/PvroI7nDIzJYTOaJiIgo19y7dw+dO3fGR63+TdgnTZqEoKAgDBo0CEZGRjJGR2T4mMwTERHlc0IIRCVG4Vz4OcQmxebbPt/14sULDB06FFWqVMGePXugVP6bckyYMAGWlpZ636ecElMSEfx3MOKS4+QOhQoZJvNEREQ5kNvJ8Luik6JR6edKaLSuEaqvqq6XhDE3+hRCIDo2GvMWzEP58uXx888/IyUlBe3bt8elS5feu//8Ki45DmP3j8XEgxNRa3UtJvSUp5jMExER5UB0UjSar26ESbuHoc26FmkTuMQk4HVU6vf/0rEu8HkglElqNCtSC/GxUQh8Hvje+9J3nxqNBhv/txFHww7AqUkRFC9mg5o1a+LPP//Eb7/9hkqVKsE8xQj2CWbp9plRXU7a5HVdlueSKBcphBBC7iByKioqCra2toiMjISNjY3c4RARUSESfPMCXF8oYKQwglqo8bCEAuU86qZWRrwA7j38d+MKzoCjfZZ14skLIOghFAAEAMU/dfHh4TANiYCRQgm10CDFrTRUZUq/17702eexmwEYM2YM6pYrh+XfjZP6TC5fCmZOZQAA6ifPoAwKgwIKrWPLrE795BkUQWFQ6tAmO3X67jMx/DGMQx6nfy6Jcii7eS5H5omIiHSVmITyfxvDSJF686aRwgiuz5WpI7aJSdrJLpD6Pjt1/yTyAFIT+nsPgagYmN1/BiOF8p99KaEKiZDaiBzuK7M+dYlffScUA3r1xovHT7B86FjtPu//26cyKByKf45O8Z8+062LioEyKBzKd8pFVm2yWafvPlX3I9I/l0R5gE9lICIi0lVcgpR0v6UAgPiE1CH19GSjLt0+o2LSlGfWJqf7ym67/zJSKlGxrDM6d+oMI6X2yjQKKLK1v3Tr0jnud89xTs9JbvSZrvgEQGWaQSWR/jCZJyIi0pWFWepUi/+Wm5sBQJo6AUDxT126MmtnY5XFvoQ0Yiy9z0YcOYk/NjYW5kJAqfi3Vq3RYO3m/8HVxQW4cF23Y8sslnSOO/vx5/45ebcuXZnVEekRp9kQERHpSmUKjbsTNP8MywogdV65yhRQmSKkeApShBoAkCLUCHXQSHWo4Kzd1zvt/tunooIzYGOV6b4SypWU9qUWaiSVL5WtOHSJP6RYClb5rkf5yh74+sd5WnUp7qXhWrFClsemcyw2VlBUcJYGvqXzIR13Ca3jTizvKNUllSsFdQbnJLM+Mz/PGe8vw+MmygMcmSciIsoBUbIYDsachVWKCRq7fghjcwupzsGtMur92QjWGlOoVcY43Oj4vw0d7YGitqnTMMzNtJK+jPrMbF8mpR2xL+Ys4t+8QYcqXWFtUyxbcWQ3/hh1MmLWJ+Fu4F0AwJHnV+FyoQPczMsgOP4Rdrv/hrooneWxObpXQ/PTLWCUmAK1ygSHG/2ZdSyO9lD805/iP/1dQzi6Xeicbhwqp9KIt7PCg4i7cHGsBHMrW63zn1GfscXM0XzX5/+er4bHYZGN/WV23ES5jck8ERFRDsUbqxFvrE6TvFmYWGBk63EIfxOOb72+hYXJv4myEALRSEBgdCC8LLxgCdNs9ZlROQCoVUYwLVFMO2nNIo7sxj+t5TQkRSehWLFimDp1Kvp+3hd119fFyVdX4V7UHVUdqmoH83a0+j8sTS1xeNBxBD4PRFWHqtmOJaP+vEp4wdzSJsM4zK1s4eFeN027zPoMfB6Iq68Ctd7XLV03W/vLqE+i3MZknoiIKBeojFVwK+6WJml9+7CmiOgIuBV1Q8BXAWm2yYs4MvLw4UNMnTYV7ae0h1txN5gZmWHkuJEYP348ihQpAgAI+Cogw6Q8MxYmFlJy/L4sTS1zHEdGvEp4wa2oG4JfBadJ2HNjf0T6wGSeiIgoDwU+D0REdAQAIPhVsNbor5zevHmDOXPm4IcffgCUQPsp7QEA165dQzmXclrb6jMpfysxJRHhb8IRVzoONqrsPTtG33FklbDnxnETvS8m80RERHmoqkNVOFo7SiPzaaZryGD58uWY7jMdr169AgA0b94cLq9dUKNGDWkt/dwUlxyHsfvHIiI6Ausursv1Tysyw4SdDA2TeSIiojxkYWKBBe0XZDiPPa+8+wD4sWPHIjE+EZUrV8aCBQvw8ccfQ6FId2X1XJFfP60gMgRcmpKIiCiP6TqPXd/OnTuHD1t+KL13cHDA6tWrERAQgHbt2uVpIg/8O1cdQPo3lxJRhjgyT0REVEgEBQVhwoQJ2LVrF1TmKqn8+o3rKGJdRLa4eHMpUc4xmSciIioEvL298fOPPyMlJQVKpRJ9e/dFfVV9ODo65sm8+KxwrjpRzjCZJyIiKqDi4+Ol1ytXrkRKSgo+/vhjzJ8/H1WrcioLUUHAOfNEREQFjEajwf/+9z/UqFFDKvP09MSxY8dw4MABJvJEBQiTeSIiogLkzz//RJ06ddC3b1+EBIVgfOvxiD8Xj/Nnz+PDDz/MugMiMiicZkNERFRAfPbZZ9jrtxcAYGNjgwkTJmD48OEwNzeXOTIiyi1M5omIiAzY06dPpdeHDh2CsbExvvrqK0ydOhX29vYyRkZEeYHTbIiIiAxQTEwMpk+fDk8vT6msQ4cOuHnzJn788Ucm8kSFBJN5IiIiA5KSkoI1a9bA3d0d06ZNw+u/X+OHz39AiYgS2L51OypUqCB3iESUhzjNhoiIyIA0aNAA/lf9AQDlypXDvHnz8Nlnn+X5U1uJKH/Qy8j8mzdv9NENERERpcPf3196ffv2bRQtWhRLlizBrVu30LVrVybyRIWYzsn8/PnzsX37dul9t27dUKxYMZQuXRoBAQF6DY6IiKgwCwsLQ79+/dC4cWOpbPjw4QgODsaIESOgUqlkjI6I8gOdk/mVK1fCyckJAHD06FEcPXoUBw8eRNu2bTFmzBi9B0hERFQY+fj4oEKFCti0aRMS4xPx24zfUFNRE/PmzIOdnZ3c4RFRPqHznPmnT59Kyfz+/fvRrVs3fPTRR3BxcUG9evX0HiAREVFhkZycLL1evHgxEhMT0axZMyxcuBC1a9eWMTIiyq90Hpm3s7NDeHg4gNT1bFu2bAkAEEJArVbrNzoiIqJCQAiBXbt2oVatWlJZhQoVsG/fPvz5559M5IkoQzqPzH/66afo1asX3N3d8fLlS7Rt2xYAcO3aNbi5uek9QCIiooLs/Pnz8Pb2xrlz56Ay/3cO/KVLl2BmaiZjZERkCHRO5pcsWQIXFxeEh4djwYIFsLKyAgBERETgm2++0XuAREREBVWfPn2wfWvqohIWFhYYPXo0WhZvCWsraxgpjGSOjogMgc7JvImJCby9vdOUjxw5Ui8BERERFWQvX76UXu/ZswdKpRIDBw7EjBkzUKpUKRkjIyJDlKN15jdt2oTGjRujVKlSePjwIQBg6dKl2Lt3r16DIyIiKigSEhKwYMECVKtWTSpr1aoV/P39sXbtWibyRJQjOifzK1aswKhRo9C2bVu8efNGuum1SJEiWLp0qb7jIyIiMmgajQabN29GxYoVMW7cOERFRUl1fn5+Wsk9EZGudE7mf/zxR6xZswaTJk2CkdG/8/lq166NGzdu6DU4IiIiQ/fBBx+gT58+CAsLQ5kyZbBqxSp0cOqAzi6dOS+eiN6bznPmQ0NDUaNGjTTlKpUKsbGxegmKiIjIkN25cwf4ZyEaf39/WFtbY8KECRgxYgTMzc3lDY6IChSdR+ZdXV3h7++fpvzQoUPw8PDQR0xEREQG6enTp/jyyy9Rt25dqWzIkCEIDg7GhAkTmMgTkd7pPDI/atQofPvtt0hISIAQApcuXcLWrVsxd+5crF27NjdiJCIiytdi42Kx7PtlWLBggfQp9fYJ2zFzxkx8tuQzKBQKmSMkooJK52R+8ODBMDc3x+TJkxEXF4devXqhVKlSWLZsGXr06JEbMRIREeVrXp5eeBiaurpb3bp1sWjRIjRp0kTmqIioMFAIIUROG8fFxSEmJgYODg76jCnboqKiYGtri8jISNjY2MgSAxERFT5CCBw8fBCxFVJH4ftW7YtSJUth7ty56NatG0fiiei9ZTfPzdE6829ZWFjIlsgTERHJwd/fHx999BE+/fRTqWzevHm4ffs2unfvzkSeiPKUztNsXF1dM/0f1f37998rICIiovwoPDwckydPxqZNmyCEgKmpKS6vvoyxY8ei2HfFmMQTkSx0TuZHjBih9T45ORnXrl3DoUOHMGbMGH3FRUREJDshBF5FvsKS75dg8cLFSEhIAAD06NEDc+bMgaurq8wRElFhp3MyP3z48HTLf/75Z1y5cuW9AyIiIsoPkpOTsWrtKpRoXQJeA7wgFgl88MEHWLRoEerUqSN3eEREAN5zzvy72rZti127dumrOyIiIlkIIeDn54cqVarAe7S3VL59+3acOHGCiTwR5St6S+Z37tyJokWL6qs7IiKiPHfx4kV88MEH+PTTTxEUFITixYtLde3ateO8eCLKd3SeZlOjRg2t/5kJIfD06VO8ePECy5cv12twREREuU0IgeDQYPhM9cHWzVsBAObm5hg1ahRGjRmFP17+IXOEREQZ0zmZ79Spk9Z7pVIJe3t7NGvWDJUqVdJXXERERLnu1atXmDNvDup9VQ+dZ3SGn58fenbviRkzZqBMmTJI0aQAL+WOkogoYzon8z4+PrkRBxERUZ5JSEjATz/9hNmzZyM+MR71vqoHADh37hxqeNWQOToiouzLVjIfFRWV7Q75JFYiIsqvNBoNtm/fjokTJ+LBgwcAgFp1akn11apVkykyIqKcyVYyX6RIkSxv+hFCQKFQQK1W6yUwIiIifRFC4OTpk5g4cSLOnz0PAChVqhRmz56Nnr17Yl/4PpkjJCLKmWwl88ePH8/tOIiIiHLFnTt3MHHKRPSc3xMjN47E3fp3MWr4KIwcORIWFhap8+KJiAxUtpL5pk2b5nYcREREevXs2TNMmzYNa9asgbGpMXrO7wkAuHH9BkqVLCVzdERE+qHzDbBvxcXFISwsDElJSVrlnp6e7x0UERGRroQQUAs14uLi8MPSHzB//nzExMQAADq06yBt5+DgIFeIRER6p3My/+LFCwwcOBAHDx5Mt55z5omISA5JKUnS3PdZc2YhMT4RderUwcKFC9GoSSP4PfCTOUIiIv3T+QmwI0aMwJs3b3Dx4kWYm5vj0KFD2LBhA9zd3bFvH28gIiKivHf48GE0bNhQeu9U1glbtmzBhQsXOFWUiAo0nUfm//zzT+zduxe1a9eGUqmEs7MzWrVqBRsbG8ydOxft2rXLjTiJiIjSCAgIwJgxY3D06FGozFVS+bWr12BlYSVjZEREeUPnkfnY2FhpvqGdnR1evHgBIHVt3qtXr+o3OiIioncIIZCiScHD8IcYOHAgatSogaNHj8LExARDhw6VtjMzM5MxSiKivKNzMl+xYkXcvXsXAODl5YVVq1bh8ePHWLlyJRwdHfUeIBER0Vuvo17D74EfLiVfwtbtWyGEQLdu3XD79m3MmzdP7vCIiPKczsn88OHDERERAQDw8fHBwYMHUbZsWfzwww+YM2eO3gMkIiJKTk7G8uXL4Vnt3xXTGjRogAsXLmD79u0oX768jNEREclH5znzffr0kV7XqlULDx8+xJ07d1C2bFkUL15cr8EREVHhJoTAvn37MG7cONy9e1drXvyRI0dgYmQiY3RERPLTeWT+zJkzWu8tLCxQs2ZNJvJERKQXb+fFX7x8Ec2aNUOnTp1w9+5dFC9eHIu/Xyxtp1AoZIySiCh/0DmZb9GiBVxdXTFx4kTcunUrN2IiIqJCLCQ0BH4P/BBWLAwXL1+EmZkZJkyYgODgYHw55Eu5wyMiyld0TuafPHmC0aNH4+TJk6hatSqqV6+OhQsX4tGjR7kRHxERFRKvX7+Gt7c3atasKZX16tUL9+7dw5w5c2BraytjdERE+ZPOyXzx4sUxdOhQnD17FiEhIejatSs2bNgAFxcXtGjRIjdiJCLKN4QQiEqMwrnwc4hNipU7nAIhMTERS5YsQfny5bF48WIkJSVJdatXr4aTk5OM0RER5W86J/PvcnV1xfjx4zFv3jxUq1YNJ0+e1FdcRET5UnRSNCr9XAmN1jVC9VXVEZccJ3dIBkuj0WDHzh3wrOGJUaNG4fXr16hatSp2794td2hERAYjx8n82bNn8c0338DR0RG9evVC1apVceDAAX3GRkSU7wQ+D0REdOryvMGvghH4PFDmiAzT6dOn8UGzD6CoqcCs/bPg7OqMtWvXwt/fHx999JHc4RERGQydl6acMGECtm3bhidPnqBVq1ZYtmwZOnbsCAsLi9yIj4goX6nqUBWO1o6IiI6AW1E3VHWoKndIBuXevXsYN24c9uzZo7XMZMD1ANhapc6JT9GkyBUeEZHB0TmZP3XqFMaMGYNu3bpxOUoiKnQsTCywoP0ChL8Jx7de38LChAMZ2fHixQtMnz4dq1atQkpKCpRKJT4f9LlUb2lhKWN0RESGS+dk/uzZs7kRBxGRwVAZq+BW3I2JfDbExsbih59+wOLFi/HyxUsAQPv27TF//nxUqFQBfg/8ZI6QiMiwvdcNsEREROlRq9XYsGEDPKt7wq2rG1ZcWIF6Derhzz//xG+//YbKlSvLHSIRUYGg88g8ERFRZo4dOwZvb28EBARozYs/deoUTI1NZYyMiKjg4cg8EZGeGMIa9LkVY1xyHLac3IKP2n2EVq1aISAgALa2tpg1a5a0jVLJXzlERPrGkXkiIj15uwb925VuAr4KyNa8eiEEopOiEfg8EF4lvGBpmns3g+Y0xsyEhIWg5uqaiDKJAsoDxubG+HbIt5gyZQps7WwznRefmJKI8DfhiCsdBxuVzXvFkVsMIUYiKrw4TEJEpCPzFCPYJ5gBiUla5YHPA6FMUqNZkVqIj41KuwZ9YhLwOipNu+ikaDRf3QiTdg9Dm3UttB9ElUGbnNblNMb06qKjozF16lRUaV4F1lZmaFakFkqXcsD249uxdOlSFCtWLNPzFZcchyWH5+PI+V1ot76V1nFn1Cav6zKLkYgoP1AIIURWG9nZ2UGhUGSrw1evXr13UNkVFRUFW1tbREZGwsaGoyVElPvUT55BGRQGBRQQABQVnAFHewBAfHg4TEMiYKRQQi00SHErDVWZ0qkNI14A9x7+29E77YJvXoDrCwWMFEZQCzUellCgnEddiCcvgKCHUABp9pXTupzG+G6dAHDyyQP0GDkUz549w+efdMDqURP/iV+7z8zOV0bHnVmbrOoUQWFQ5qCdrjESEeW27Oa52Zpms3TpUun1y5cvMWvWLLRu3RoNGjQAAJw/fx6HDx/GlClT3i9qIqL8LDEJyqBwKJA6uKEAUhPcoqkPOzK7/wwKReoHnkYKJYxCIgD7f5Lhd5Pk/7Qr/7cx3o6XGCmM4PocQOkYKSF/uy9x7yEU/7TJaV1OYxT3tPtsXMIJxhqBxnXrYe2oydKAz3/7zOx8ZXTcmbXRpe7d485pn+nGWC4JUPFGXiLKH7KVzPfv31963aVLF8yYMQNDhw6VyoYNG4affvoJx44dw8iRI/UfJRFRfhCXICW0WuITAIFM69KVQTsFAETFpF+eWZsc1OU0RmMjI/w4fyE++eQTKG6GZLtdZnUZHfd79ZeDdtnqk8k8EeUTOs+ZP3z4MNq0aZOmvE2bNjh27JhegiIiypcszNLPec3NsqxLV2btbKzSlItM2uS0LqsYw/9+gaFjvaHWqNP02blXDxhbZ3Czbk7PiY0VxH9aCYhs9ZfT487RdSMiyid0TuaLFSuGvXv3pinfu3evdLMTEVGBpDKFxt0Jmn/SPwGkzitXmWZZhwrO2n1l1c7GKk25IpM2Oa17Nw7h7iwltgLAjoBLcKtSGT+vXYNvf16AFJGa0KuFGknlHXN+bJm1s7FCUrlSUGvtq5TUJqFcCa04Et+JQ1FBO/7sHneOrhsRUT6h89KU06dPx+DBg3HixAnUq1cPAHDx4kUcOnQIa9as0XuARET5iShZDAdjzsIqxQSNXT+EsblFturgaJ86Dzs+IXVk952EMKN2Od1XTuuii6nQfNdAWGtMEfr0CcIWPwWSgRYtWqDBNx3gcqED3MzLIDj+EXa7/4a6KJ3jY8usncqpNOLtrPAg4i5cHCvB3MpWanIN4eh2oXOGcSj+6U+RThx7I48j/s0bdKjSFdY2xbTqcnLdiIjyA52T+QEDBsDDwwM//PADdu/eDQDw8PDAmTNnpOSeiKggizdWI95YnW5il1mdNNqrQ5853ZeudUII/LT9J1x99c9SlWaAaz1X/DThJ7Rt2xZxyXGYdXMWTr66Cvei7qjqUPW9jy2zduZWtvBwT7tqjFcJL5hb2ugcR1xyHIYeHJW6vv6VxWnW18/pdSMikluOHhpVr149bN68Wd+xEBGRDM6cOQNvb29cu3UNjtMcEREdAQdjB/gf8YeNeepyaJamlgj4KgCBzwNR1aHqez9oKqdyGkfg80BEREcAAIJfBSPweSDqluYSk0Rk+HL00KiQkBBMnjwZvXr1wvPnzwEABw8exM2bN/UaHBFRQSGEQFRiFM6Fn0NsUqzc4QAAgoKD8Omnn6JJkya4ePEijNXG+DzucxzreQz3x9yXEvm3LEwsULd0XdkS+feJw6uEF9yKugFA+iP6REQGSueR+ZMnT6Jt27Zo1KgRTp06hVmzZsHBwQEBAQH45ZdfsHPnztyIk4jIoEUnRaPSz5VSp3kUdUszzUMOdWrXQWx0LJRKJQYNGoTp06fD0dFR7/tJTElE+JtwxJWOg41Kngf8ZTWinx9iJCLKCZ1H5sePH49Zs2bh6NGjMDX9dw5hixYtcOHCBb0GR0RUUKQ3zSOvxcfHY9GiRdL7lJQUtGvXDtevX8fq1atzJZGPS47D2P1jMfHgRNRaXQtxyXF630d2ZTSin59iJCLSlc7J/I0bN9C5c+c05Q4ODvj777/1EhQRUUFT1aEqHK1Tk2W3om55Os1Do9Fg48aNqFixIqZNmyaVHzhwAPv370eVKlVybd/54Y+YrBhCjEREGdE5mS9SpAgiIiLSlF+7dg2lS5fWS1BERAWNhYkFFrRfgDlt5+CvIX/l2RSbEydOoFatWujfvz/Cw8NRwr4EEi8komPZjmjRrEWu798Q5qobQoxERBnRec58jx49MG7cOPz6669QKBTQaDQ4e/YsvL290a9fv9yIkYioQFAZq+BW3C1P58q3b98eifGJsLGxwcSJEzFs2DCYm5vn2f7zyyo4mTGEGImIMqLzyPycOXNQqVIlODk5ISYmBpUrV8YHH3yAhg0bYvLkybkRIxERZVNERASGDh0qvTc2NsZ3332HkJAQjBs3Lk8T+bfyyyo4mTGEGImI0qPzyLypqSnWrFmDKVOmIDAwEDExMahRowbc3d1zIz4iIsqGmJgYLFq0CAsXLoRaqPGh94cAgCt/XUEl90oyR0dERLklRw+NAoCyZcuibNmy+oyFiIhyYN26dfCZ4oOnT58CABo0aADHZ46oX68+jBRGMkdHRES5KVvJ/KhRo7Ld4ffff5/jYIiIKHuEENLrYcOGITE+EeXLl8e8efPQpUsXKBQKGaMjIqK8kq1k/tq1a1rvr169ipSUFFSsWBEAcO/ePRgZGaFWrVr6j5CIiLRcvXoV4yeOxxfLvwAA2NnZYcK8Cfjqq6+0nv9BREQFX7aS+ePHj0uvv//+e1hbW2PDhg2ws7MDALx+/RoDBw5EkyZNcidKIiLCw4cPMWnSJGzevBkAcLHWRXz99de4FXhL+v8xEREVLjrPmV+8eDGOHDmi9YvDzs4Os2bNwkcffYTRo0frNUAiIgKmTJmCJYuXIDExEQDQu3dvzJ49G87OzjJHRkREctI5mY+KisKLFy/SlL948QLR0dF6CYqIiICkpCTp9ZIlqYl8s2bNsGjRIk5rJCIiADlYZ75z584YOHAgdu/ejUePHuHRo0fYtWsXBg0ahE8//TQ3YiQiKlSEENi5cydq164tlVWsWBG//fYb/vzzTybyREQk0XlkfuXKlfD29kavXr2QnJyc2omxMQYNGoSFCxfqPUAiosLk4sWLGDN6DM6fPw8AGN1iNCZNmoQrl67AxMRE5uiIiCi/0TmZt7CwwPLly7Fw4UKEhIQAAMqXLw9LS0u9B0dEVNh8+OGHSIxPhIWFBby9veHt7Q1ra2u5wyIionwqxw+NsrS0hKenpz5jISIqdP7++2/MnjsbDb9tCABQKpUYPHgwpk+fjlKlSskcHRER5Xc6J/OxsbGYN28e/vjjDzx//hwajUar/v79+3oLjoiooEpISMAPP/yAOXPmICEpQUrmL1y4AM+qHCghIqLs0TmZHzx4ME6ePIm+ffvC0dGRTxkkItLRtm3bMGnCJISFhQEAqlevjiKhRdC8eXMYKYxkjo6IiAyJzsn8wYMHceDAATRq1Cg34iEiKvAGDx6MxPhElClTBrNnz0afPn2gVOq8uBgREZHuS1Pa2dmhaNGiuRELEVGBdOvWLXz22WfSeysrK8yZMwf37t1Dv379mMgTEVGO6fwbZObMmZg6dSri4uJyIx4iogLj6dOn+PLLL1GtWjUcOnRIKg8MDMSECRNgbm4uY3RERFQQ6DzNZvHixQgJCUGJEiXg4uKSZt3jq1ev6i04IiJDNWfuHCyYuwCxsbEAgI/bfIyqKVXh7ubOefFERKQ3OifznTp1yoUwiIgMn1qtll7PmT0HifGJqFu3LhYvXozGjRvLGBkRERVUOifzPj4+uREHEZHBEkLg0KFDmDRlEibsmAAAcHZxxgyfGejWrRtX/SIiolyT44dGERERcO3aNYwZMwZ//PEHVOYqqfzqX1dhac4nYxMRUe7SOZlXKpWZjjK9+zEzEVFBNmTIEPiu84UQAqampvju2+/QvEhzFClShPPiiYgoT+iczPv5+Wm9T05OxrVr17BhwwZMnz5db4EREeVHkVGR0ustW7ZACIGePXti9uzZcHV1lTEyIiIqjHRO5jt27Jim7LPPPkOVKlWwfft2DBo0SC+BERHlJ8nJyVi1ahXmzp+LpSeXAgAaN26MubPnok6dOvIGR0REhZbenlRSv359/PHHH/rqjogoXxBCwM/PD1WqVMF3332HJ4+eYOanM2F60xRHDh1hIk9ERLLSyw2w8fHx+OGHH1C6dGl9dEdEJCshBNRCjUuXLmGs91icPXsWAODg4IDp06dj8ODBMDbm+gFERCQ/nX8b2dnZad0AK4RAdHQ0LCws8L///U+vwRERySHofhACFAGAA3Dl6hWYm5tj9OjRGDt2LKytreUOj4iISKJzMr906VKt90qlEvb29qhXrx7s7Oz0FRcRUZ57+fIlZs2ahbXr1mLdtXUAgH79+sFnig8/eSQionxJ52S+f//+uREHEZFsEhIS8OOPP2L27NmIjIzUWi9++fLlMFZySg0REeVPOfoN9ebNG/zyyy+4ffs2AKBKlSr4/PPPYWtrq9fgiIhyixACyepk7Ny5ExPHT8TDhw8BAF5eXliwaAEiEZlFD0RERPLTeTWbK1euoHz58liyZAlevXqFV69e4fvvv0f58uVx9erV3IiRiEjvTpw6gb1he2FS1wRPnz9F6dKl4evri7/++gstWrSQOzwiIqJs0TmZHzlyJDp06IAHDx5g9+7d2L17N0JDQ9G+fXuMGDEiF0IkItKf27dv45NPPkHbtm2lMh8fH9y7dw/9+/eHkRGf3EpERIZD52k2V65cwZo1a7SWZTM2NsbYsWNRu3ZtvQZHRKQvT58+xbRp07B27Vqo1WpYWFlIdWPGjOG8eCIiMkg6j8zb2NggLCwsTXl4eDiXbCOifEUIgciYSMyaMwtubm5YtWoV1Go1OnXqhCtXrsgdHhER0XvTOZnv3r07Bg0ahO3btyM8PBzh4eHYtm0bBg8ejJ49e+ZGjEREOlOr1Vjnuw5Hnh9BxR4VkaJJQZ06dXDq1Cn4+fnB3d1d7hCJiIjem86fKy9atAgKhQL9+vVDSkoKAMDExARff/015s2bp/cAiYh0IYTA4cOHMXbsWNwLvodNgZsAAL6+vuj2WTcolTqPYRAREeVbOifzpqamWLZsGebOnYuQkBAAQPny5WFhYYH4+Hi9B0hElF3+/v4YM2YMjh07BgAo4VhCqvvss8+YyBMRUYGT499sFhYWqFatGqpVqwYjIyN8//33cHV11WdsRERZEkLgYfhDDPpiEGrWrIljx47B1NQUo0aNwo0bN+QOj4iIKFdlO5lPTEzEhAkTULt2bTRs2BB79uwBAKxfvx6urq5YsmQJRo4cmVtxEhGlERUVhanTpuJS8iW0mdAGpmam6NGjB+7cuYPFixfDzs5O7hCJiIhyVban2UydOhWrVq1Cy5Ytce7cOXTt2hUDBw7EhQsX8P3336Nr165cn5mI8kRycjJWr16N6dOnIyomCpv6p86LP3HiBOrXrS9zdERERHkn28n8r7/+io0bN6JDhw4IDAyEp6cnUlJSEBAQAIVCkZsxElEhJ4SAWqghhMD+3/Zj/LjxuHfvHgCgqmdVaTs+64KIiAqbbE+zefToEWrVqgUAqFq1KlQqFUaOHMlEnohynVqo4ffAD3se7kHPXj1x79492Nvb4+eff8alS5fkDo+IiEg22U7m1Wo1TE1NpffGxsawsrLKlaCIiN66f/8++vfvL71XmakwadIkBAcH45tvvoGJiYmM0REREckr29NshBAYMGAAVCoVACAhIQFfffUVLC0ttbbbvXu3fiMkokLp1atXmDVrFn766ScojZXoNL0TAOB6wHU4OznLGxwREVE+ke1k/t2RMQDo06eP3oMhosJNCIG4hDisWrUKM6fPxJs3bwAAbT9qK21TunRpmaIjIiLKf7KdzK9fvz434yCiQk6j0WD7r9thXMcYTh2cED8xHtWqVcPChQvxYasP4ffAT+4QiYiI8h0+DpGIZHfq1CnUr18fAwcOlMqWL1+Oa9euoXXr1jJGRkRElL8xmSci2dy5cwcdO3ZE06ZNcfnyZVha/XsPTr9+/fjsCiIioiwwmSeiPCWEQMSzCAwdPhRVq1bFvn37YGRkhK+++go3rt+QOzwiIiKDwmSeiPJMXFwc5s6fizOxZ9B0eFMYmxpLD6JbsWIFHBwc5A6RiIjIoDCZJ6Jcp1ar4evriwoVKmDGjBlS+aFDh7B3715UqlRJxuiIiIgMF5N5IspVR44cQc2aNTFw4EA8fvwYTmWdkJiSiOC/g1GzXk25wyMiIjJoTOaJSO+EEPC/7o/2HdqjdevWuH79OmxtbbFw4UKcvXgWY/ePxcSDE1FrdS3EJcfJHS4REZHBYjJPRHr1+PFjDPlqCIKsgtB/aX9Y2VhhxIgRCAkJgbe3N4KjghERHQEACH4VjMDngTJHTEREZLiYzBORXkRHR2PKlClwd3fHpk2bpPK/rv6FJUuWoFixYgAArxJecCvqBgBwL+qOqg5VZYmXiIioIMj2E2CJiNKTkpKCNWvWYNq0aXj+/DkAoGnzplJ9OddyWttbmloi4KsABD4PRFWHqrAwscjTeImIiAoSjswTGRAhBKISo3Au/Bxik2JljUWj0WDvb3tRs3ZNfPPNN3j+/Dnc3d2xa9cuHD16NNO2FiYWqFu6LhN5IiKi98RknkgmGSXmmSXs0UnRqPRzJTRa1wjVV1WX7ebRK1eu4KM2HyGpShKm7J6CUmVK4ccff8TNmzfx6aefQqFQSCvW8AZXIiKi3MNpNkQyeZuYR0RHwK2oGwK+CoCFiUWG5QAQ+Dwwzc2jdUvXzbOYHzx4gIkTJ2Lr1q1QmavwJb4EAFy/cR3FihSTtotLjsPY/WMRER2BdRfXaR0DERER6Q9H5omyQQiB6KiXCLx3HnHRb/RSF/g8EMokNZoVqYX42ChpVZeMygGgqkNV1CxaFc2K1ELjEnW1bh7NbF8AgMQk4HVU6vdsxvi2XXT4E8yaMhUVK1bE1q1boVAo0KtXL5inGME+wQy2KvNsHVtWsQCQ+vxvXUbl71NnlKhG0rOXiI+J1KkdERFRfqEQQgi5g8ipqKgo2NraIjIyEjY2NnKHQwVYfHg4TEMiYKRQQi00SHErDVWZ0rlSl1kb9ZNnUASFQQkFBABFBWfA0T7LfSHiBXDv4b8HlM12yWFPYHT/MZQKBdRqNYYsnoOHibFYuHAhPEuUgjIoDIp0YkkMfwzjkMc6x6J+8izdPjMqz6xNVnVZneeM2hEREeWF7Oa5nGZDlJXEJJjdfwqFIvWDLCOFEsqQJ4B9anKX87pnWnVGIRGAjW365f+0UQaFQwEFAKT+995DoKhtlvvSSp6z0U4UL479+/fj42JOUCr/qTMywtoxk4H6nlAoFBAXrmcYi+p+BJDBMWQWS7rHZ2me6XHntC6z85VhO5UpiIiI8hMm80RZiUuQEru3FFAA8QmAwHvUpSMqJv3yzNpkY1/pyqTdN58Pxu3bt/HJ0pXadQoFkJCYZSyZ7S/zWNLxXuckszodr018ApN5IiLKd5jME2XFwix1qsV/y83NAEC/dTZWubKvdGXQLkWtxr5jR2BhbgGN0ECp+PfWGgEBRQbtBCDVZbY/XWIB8M85EVrJd3bj0Nc5yfLYiIiIZMIbYImyojKFxt0Jmn+GlQWQOs9bZar/OhurXNkXKjhrH9M7dVGOdlK7FLUaX38/F+06d8Kpi+eRXL401EINAFALNZLKl5LahRRPQco/dSlCjVAHTbb2l1ldRuckqVypHMWR03OSYZ9ERET5DEfmibJBlCyGgzFnYZVigsauH8LY3CLX6nJjX3C0T53zHZ+QOvqsMkV8fDyWLl2KxUsWw/fMalilmGDTvB0YNX82qlSpIjWNt7PCg4i7cHGsBHMr23+7dK+G5qdbwCgxBWqVCQ43+jPT/WWnLraYOZrv+hzWGlOoVcY43PA4LAConErnKA5Rshj2Rh5H/Js36FClK6xtimUrjkyPjYiIKB9hMk+UTfHGasQbq9MdodV3nb77E0IgGgkIjA5ENbNq2L1hKyZPnoxHjx4BAGYNWIDZs2dj7YaNqfPi32FuZQsP97Rr2VuaWuLwoOMIfB6Iqg5V064j/3YEPD0Z1AU+D8TVV4Fa79+uo5+TOOKS4zD04KjUNfuvLE673n0GcWR5bERERPkEk3miQuDdB1GpYlVIXJoIJANly5bFnDlz0LNnT2nVGl1YmFjo9aFVXiW84FbUDcGvguFe1F1rHf2cxPE+D9nS97ERERHlBibzRIXAbxd/k5LaRMtEWLpaYuqgqRg2bBjMzPLPjZ2WppYI+CpAbyPiOf3jgIiIyFAwmScqwJ48eYKpU6di887NcJzqiIjoCBRRF0HAiQCUdSwrd3jp0ueIuL7/OCAiIspvmMwTFUAxsTFYsmgJFi1ahLi4OABAgysN0P277mhXqx0sTS1ljjDvcLoMEREVZEzmiQogz2qeCH8YDgBo0KABFi1ahIYNG8ocFREREekb15knKgCEEDh48KD0/vnz53Bzc8POnTtx9uxZJvJEREQFFJN5IgP3119/oUWLFujatatUtnDhQty8eRNdunRJs9QkERERFRxM5okM1MOHD9G7d2/Url0bJ06cADTAtXXX0MKuBYZ+MxSmpnxiKRERUUHHOfNEBqpmzZqIehMFAOjTpw9mzZoFZ2dnmaMiIiKivMSReSIDkZSUhJ9//ll6n5iYiBYtWuCvv/7Cpk2bmMgTEREVQkzmifI5IQR+/fVXeHh4YNy4cVL5rl27cOzYMdSsWVPG6IiIiEhOnGZDlI+dv3AeY0ePxYULFwAAJUuWxJvjb9C3b1+oXFW8uZWIiKiQYzJPlI+1atkKifGJsLCwwJgxY+Dt7Q0rKyu5wyIiIqJ8gtNsiPKRv//+G97e3tJ7pVKJL774AsHBwZg2bRoTeSIiItLCkXmifCA+Ph7Lf1qOOXPmIDE5EY2GNgIAXLx4EdWqVJM5OiIiIsqvmMwT5QM1atRASFAIAKB69eqwe2CHZs2awUhhJHNkRERElJ9xmg2RTE6ePCm9fvToEZycnLBx40b89ddfaNmiJYyVxrzBlYiIiDLFZJ4oj928eRPt2rVDu3btpLLp06fj7t276Nu3L5RK/lgSERFR9jBrIMojT58+xZAhQ+Dp6Ynff/8d6mQ1zv50Fk2smmCs91iYm5vLHSIREREZGM6ZJ8ojnl6eeP33awDAp59+innz5sHd3V3mqIiIiMiQcWSeKJekpKRg/fr10vu42DjUr18fZ86cwa5du5jIExER0XtjMk+kZ0IIHDhwAF5eXvjuu++k8k2bNuHcuXNo1KiRjNERERFRQcJpNkR65O/vj3FjxuHPP/8EABQtWhRPDjzBF198AXNXc65OQ0RERHrFZJ5Ijxo3bozE+ESYmppi+PDhmDBhAuzs7OQOi4iIiAooTrMheg+RkZGYOnWqVlmvXr1w9+5dLFiwgIk8ERER5Som80Q5kJSUhB9++AHly5fH999/L5WfOnUKmzdvhouLi3zBERERUaHBaTZEOtqzdw8mjJ2A4OBgAEClSpWguqVC27ZtYezKHykiIiLKO8w8iHTUp3cfJMYnokSJEpg+fToGDRoEY2P+KBEREVHe4zQboiwEBwejT58+0nszczNMmTIFQUFB+PLLL5nIExERkWyYhRBl4OXLl5g5cyaWL18OpbESXWZ1AQBcD7iOsmXKyhwdEREREZN5ojQSEhLw448/Yvbs2YiMjAQAtPmwDSrEVkCVKlVgpDCSOUIiIiKiVEzmif6hVquxbcc2TJs+DcF3U29u9fLywsKFC9GqVSuZoyMiIiJKi3PmiQAcP34cjT9oDNN6ppjz+xy4lneFr68v/vrrLybyRERElG9xZJ4KtVu3bmHcuHHYv38/VOYqqdzf3x82VjYyRkZERESUNY7MU6EihECKJgWPIx7jyy+/RLVq1bB//34YGRlhyJAh0nYWFhYyRklERESUPUzmqVCJio2C3wM/nIs/hw2bNkCj0aBTp064efOm1pNciYiIiAwBk3kqFNRqNX755Rd4eXpJZbVr18apU6fg5+eHihUryhgdERERUc5wzjwVaEIIHDp0CGPHjkVgYKDWvPjjx4/DxMhExuiIiIiI3g+TeSpwhBBQCzWuX7+OcWPG4dixYwAAOzs7TPGZIm2nUCjkCpGIiIhILzjNhgqcsEdh8HvghxCbEJw+exqmpqYYPXo0QkJC8N1338kdHhEREZHeMJmnAiMqKgoTJ06Ep5enVPbZZ5/hzp07WLRoEezs7GSMjoiIiEj/OM2GDF5ycjJWr16N6dOn48WLF1rz4n19fWGs5D9zIiIiKpg4Mk8GSQiBZHUy/Pb6oWrVqhg6dChevHiBihUrYtu2bXKHR0RERJQnmMyTQbpw6QL2PNyDlGopeBj+EPb29li+fDlu3LiB9u3byx0eERERUZ5gMk8G5f79++jevTuaN28ulY0dOxbBwcH4+uuvYWLCpSaJiIio8OBkYjIIr169wqxZs/DTTz8hOTkZZhZmUt3UqVM5L56IiIgKJY7MU74lhEBsfCy+X/o9ypcvjyVLliA5ORkfffQRzp07J3d4RERERLJjMk/5kkajwbYd2/B7xO9w6uCE+MR4eHp64vDhwzh8+DCqVasmd4hEREREsmMyT/nOyZMnUa9ePQwcOFAqW7lyJa5evYqPPvpIxsiIiIiI8hcm85Rv3LlzBx07dkSzZs1w5coVWFpZSnV9+vSBkZGRjNERERER5T9M5kl2T58+xbfDvkWtOrWwb98+GBkZ4ZtvvkHgjUC5QyMiIiLK15jMk2zi4uIwa9YsVPGsgmYjmsE3wBefdv0UgYGB+Pnnn2Fvby93iERERET5GtfzozynVquxYcMGTJkyBU+ePIHKXCXVbd+2nctMEhEREWUTR+YpTwghkKJJwaEjh1CjRg0MGjQIT548gYuLC3x9feUOj4iIiMggMZmnPOF/3R9+D/wQ7RaNe8H3UKRIESxatAh37tzBZ599Jnd4RERERAaJyTzlqkePHmHgwIFo2LChVPbdd98hJCQEo0ePhkqlyqQ1EREREWWGk5MpV0RFRWH+/PlYsmQJ4uPjtebFz507l/PiiYiIiPSAI/OkN0IIxCfGY/mq5XBzc8OcOXMQHx+Pxo0b4/jx43KHR0RERFTgMJknvRBCYO9ve7H/8X7Yt7JHVEwUKlSoAD8/P5w6dQp16tSRO0QiIiKiAofJPL23S5cuoWnTpujRo4dUtvj7xQgMDESnTp2gUChkjI6IiIio4GIyTzkWGhqKnj17ol69ejh9+jRUZv/Oi/9yyJcwMTGRMToiIiKigo/JPOlECIEXL19gzLgxqFSpErZt2waFQoH+/fsjwD9A7vCIiIiIChUm85RtiYmJWPrDUpyIPIG6X9aFwkiBli1b4urVq/D19UWZMmXkDpGIiIioUGEyT1kSQmD79u3w8PDAhAkTpHI/Pz8cOXIE1atXly84IiIiokJM1mR+2rRpUCgUWl+VKlWSMyT6j9OnT6N+/fro0aMHQkNDUbJkSamuVatWvLmViIiISEayj8xXqVIFERER0teZM2fkDin7HjwEjp9K/Z7bdXm4LyEEQk+ewPqBn2NUl89w6dIlWFpaYsaMGQi4HgC7J1FwvxqRbp/6rsvLfWVVh0ePgOPHU7/ndl1e7stQ6vJLHHldl1/iyKqOiIjkIWTk4+MjvLy8ctw+MjJSABCRkZH6CyqbNNt3Cc0fF4Q4cTn1+/bduVaXl/t6/vy5OD96nFbd2ZFjREREhBBCCPW2nRn2qe+6vNxXVnVi7VohlEohgNTva9fmXl1e7stQ6vJLHDzu9OuIiEjvspvnKoQQQq4/JKZNm4aFCxfC1tYWZmZmaNCgAebOnYuyZcumu31iYiISExOl91FRUXByckJkZCRsbGzyKmzgwUOI+0+hMDKSioRaDUW51Ckoeq2zUELEafJkX+tPHsQG3w04sX5b3hxbPjnuLOuMjQBnZ0CjkepgZAQ8eJD6Wp91588D9evnzb4Mpa6wnhNDOW7e+E5ElCuioqJga2ubZZ5rnIcxpVGvXj34+vqiYsWKiIiIwPTp09GkSRMEBgbC2to6zfZz587F9OnTZYj0P0IfQmFkoVWkMDICHoQBQui3LjgECqfyebKv6/t+Q82ixbQS2lw9tnxy3FnXpWgnMQCgVgPBwYAQ+q07cybv9mUodYX1nBjKcTOZJyKSlazJfNu2baXXnp6eqFevHpydnbFjxw4MGjQozfYTJkzAqFGjpPdvR+bznKtzBqO4qZ8o6LXOrRxEnDpP9hWSkoxvvv02dbu8OLZ8ctxZ1hkbAUpl2lFJN7fU1/qsa9w47/ZlKHWF9ZwY0nETEZFsZL8B9l1FihRBhQoVEBwcnG69SqWCjY2N1pcsXJwhXjyCUKsB/JP0/f0EcHHWf139Onrf143oKPyxY6NWXeCJI/j18iW0/epLKP5+kmGfeVZXv07+iMPFOXXkcfXq1OQFSP2+alVqub7r6tTJu30ZSl1hPSeGctxERCQrWefM/1dMTAzKli2LadOmYdiwYVlun925RLkhRZOCE+c2oPjTOFSt+TGMy5XPtTp99fdMZYapU6fC19cXJioT7D/yM4o/jUNZt8YoWr2G9gE+eJg6xcSlbGpCK1ddfokDSF3BIzg4dTTyv0mMvuvycl+GUpdf4uBxp19HRER6ld08V9Zk3tvbG5988gmcnZ3x5MkT+Pj4wN/fH7du3YK9vX2W7eVO5v0e+AEAOrt0hrHSONfq9NHfjU03sGj+IsTHxwMAunbtillzZ6GcazkYKYy4XjwRERFRPmIQN8A+evQIPXv2xMuXL2Fvb4/GjRvjwoUL2UrkKWspKSnS6wXzFyAxPhENGzbEokWL0KBBAxkjIyIiIiJ9kHXO/LZt2/DkyRMkJibi0aNH2LZtG8qXL591Q8qUEAK//fYb6tatK5WVK1cOu3btwpkzZ5jIExERERUQso7Mk/5duXIF3t7eOHnyJABg+AfDMXHiRFz76xpUKpXM0RERERGRPjGZL0A+//xzbNqwCUDqyj8jRozAhAkTYGtrK3NkRERERJQbmMwbuMjISOn1jh07AAB9+/bFrFmzMnySLhEREREVDPlqnXnKvqSkJCxduhRVq1aVypo2bYq//voLGzduZCJPREREVAgwmTcwQgj8+uuv8PDwwMiRI/H0yVPM6ToHFnctcPDAQdSsWVPuEImIiIgoj3CajYFp8WELnDl5BgBQsmRJzJw5EwMGDICxMS8lERERUWHDDNAABIcEA/88Rf3ypcuwsLDA2LFjMXr0aFhZWckbHBERERHJhtNs8rEXL17gu+++Q+1ataWyAQMHIDg4GD4+PkzkiYiIiAo5JvP51OLFi+Hm5oaffvoJsdGx+N/o/6FSfCWs+GkFHB0d5Q6PiIiIiPIBTrPJRzQajfTax8cHifGJqFGjBhYtWoQWLVrIGBkRERER5Uccmc8n/vjjDzRp0kR6X6ZMGWzcuBFXrlxhIk9ERERE6eLIvMwCAwMxduxYHDx4ECpzlVR+7do1WFtayxgZEREREeV3TOZlNHToUKxZtQYajQbGxsYYMngImlg1QfHixWGkMJI7PCIiIiLK55jM57GY2Bjpta+vLzQaDT799FPMmzcP7u7uMkZGRERERIaGc+bzSEpKClavXg0vTy+prE7dOjhz5gx27drFRJ6IiIiIdMaR+VwmhMCBAwcwduxY3Lp1S2te/J9//AkTIxMZoyMiIiIiQ8ZkPpe1a9cORw8fBQAULVoUU6dORbtS7WBqasp58URERET0XpjM54KwsDDp9alTp6BSqTB8+HBMmDABRYoUkS8wIiIiIipQOGdej968eYNx48ahRo0aUln37t1x9+5dzJ8/n4k8EREREekVk3k9SEpKwrJly+Dm5oYFCxYg6k0UVn+9Gs6vnOG7zhfOzs5yh0hEREREBRCn2ehBrdq1cOfmHQCAh4cHFixYgHbt2kGhUMgcGREREREVZByZz6EbN25Ir0Pvh6JEiRJYuXIlrl+/jvbt2zORJyIiIqJcx5H5HNJoNNLr8RPGY/SI0bC2tpYxIiIiIiIqbDgyn0M1q9dE9Klo1FfVh89kHybyRERERJTnODKfQwqFAp8P+FzuMIiIiIioEOPIPBERERGRgWIyT0RERERkoJjMExEREREZKCbzREREREQGisk8EREREZGBYjJPRERERGSgmMwTERERERkoJvNERERERAaKyTwRERERkYFiMk9EREREZKCYzBMRERERGSgm80REREREBorJPBERERGRgWIyT0RERERkoIzlDuB9CCEAAFFRUTJHQkRERESkP2/z27f5bkYMOpmPjo4GADg5OckcCRERERGR/kVHR8PW1jbDeoXIKt3PxzQaDZ48eQJra2soFAq5wykQoqKi4OTkhPDwcNjY2MgdDmWA18kw8DoZBl4nw8DrZDh4rfRDCIHo6GiUKlUKSmXGM+MNemReqVSiTJkycodRINnY2PAH0ADwOhkGXifDwOtkGHidDAev1fvLbET+Ld4AS0RERERkoJjMExEREREZKCbzpEWlUsHHxwcqlUruUCgTvE6GgdfJMPA6GQZeJ8PBa5W3DPoGWCIiIiKiwowj80REREREBorJPBERERGRgWIyT0RERERkoJjMExEREREZKCbzhci0adOgUCi0vipVqpRpm19//RWVKlWCmZkZqlWrht9//z2Poi28dL1Oa9asQZMmTWBnZwc7Ozu0bNkSly5dysOIC6ec/Dy9tW3bNigUCnTq1Cl3g6QcXac3b97g22+/haOjI1QqFSpUqMD/9+WBnFyrpUuXomLFijA3N4eTkxNGjhyJhISEPIq48Hr8+DH69OmDYsWKwdzcHNWqVcOVK1cybXPixAnUrFkTKpUKbm5u8PX1zZtgCwGDfgIs6a5KlSo4duyY9N7YOON/AufOnUPPnj0xd+5ctG/fHlu2bEGnTp1w9epVVK1aNS/CLbR0uU4nTpxAz5490bBhQ5iZmWH+/Pn46KOPcPPmTZQuXTovwi20dLlObz148ADe3t5o0qRJboZG79DlOiUlJaFVq1ZwcHDAzp07Ubp0aTx8+BBFihTJg0hJl2u1ZcsWjB8/HuvWrUPDhg1x7949DBgwAAqFAt9//31ehFsovX79Go0aNULz5s1x8OBB2NvbIygoCHZ2dhm2CQ0NRbt27fDVV19h8+bN+OOPPzB48GA4OjqidevWeRh9wcRkvpAxNjZGyZIls7XtsmXL0KZNG4wZMwYAMHPmTBw9ehQ//fQTVq5cmZthFnq6XKfNmzdrvV+7di127dqFP/74A/369cuN8OgfulwnAFCr1ejduzemT5+O06dP482bN7kXHEl0uU7r1q3Dq1evcO7cOZiYmAAAXFxccjE6epcu1+rcuXNo1KgRevXqBSD1OvXs2RMXL17MzRALvfnz58PJyQnr16+XylxdXTNts3LlSri6umLx4sUAAA8PD5w5cwZLlixhMq8HnGZTyAQFBaFUqVIoV64cevfujbCwsAy3PX/+PFq2bKlV1rp1a5w/fz63wyz0dLlO/xUXF4fk5GQULVo0FyMkQPfrNGPGDDg4OGDQoEF5FCEBul2nffv2oUGDBvj2229RokQJVK1aFXPmzIFarc7DiAsvXa5Vw4YN8ddff0nTCu/fv4/ff/8dH3/8cV6FWyjt27cPtWvXRteuXeHg4IAaNWpgzZo1mbZhPpG7mMwXIvXq1YOvry8OHTqEFStWIDQ0FE2aNEF0dHS62z99+hQlSpTQKitRogSePn2aF+EWWrpep/8aN24cSpUqleZ/nKRful6nM2fO4Jdffsnylx7pl67X6f79+9i5cyfUajV+//13TJkyBYsXL8asWbPyOPLCR9dr1atXL8yYMQONGzeGiYkJypcvj2bNmmHixIl5HHnhcv/+faxYsQLu7u44fPgwvv76awwbNgwbNmzIsE1G+URUVBTi4+NzO+SCT1Ch9fr1a2FjYyPWrl2bbr2JiYnYsmWLVtnPP/8sHBwc8iI8+kdW1+ldc+fOFXZ2diIgICAPIqN3ZXadoqKihIuLi/j999+lsv79+4uOHTvmYYQkRNY/T+7u7sLJyUmkpKRIZYsXLxYlS5bMqxDpH1ldq+PHj4sSJUqINWvWiOvXr4vdu3cLJycnMWPGjDyOtHAxMTERDRo00Cr77rvvRP369TNs4+7uLubMmaNVduDAAQFAxMXF5UqchQnnzBdiRYoUQYUKFRAcHJxufcmSJfHs2TOtsmfPnuk0R5jeX1bX6a1FixZh3rx5OHbsGDw9PfMoOnors+sUEhKCBw8e4JNPPpHKNBoNgNQ5wnfv3kX58uXzLNbCLKufJ0dHR5iYmMDIyEgq8/DwwNOnT5GUlARTU9O8CrXQy+paTZkyBX379sXgwYMBANWqVUNsbCyGDBmCSZMmQank5IPc4OjoiMqVK2uVeXh4YNeuXRm2ySifsLGxgbm5ea7EWZjwX3ohFhMTg5CQEDg6OqZb36BBA/zxxx9aZUePHkWDBg3yIjz6R1bXCQAWLFiAmTNn4tChQ6hdu3YeRkdvZXadKlWqhBs3bsDf31/66tChA5o3bw5/f384OTnJEHHhlNXPU6NGjRAcHCz9sQUA9+7dg6OjIxP5PJbVtYqLi0uTsL/9I0wIkevxFVaNGjXC3bt3tcru3bsHZ2fnDNswn8hlcn80QHln9OjR4sSJEyI0NFScPXtWtGzZUhQvXlw8f/5cCCFE3759xfjx46Xtz549K4yNjcWiRYvE7du3hY+PjzAxMRE3btyQ6xAKBV2v07x584SpqanYuXOniIiIkL6io6PlOoRCQdfr9F+cZpM3dL1OYWFhwtraWgwdOlTcvXtX7N+/Xzg4OIhZs2bJdQiFhq7XysfHR1hbW4utW7eK+/fviyNHjojy5cuLbt26yXUIhcKlS5eEsbGxmD17tggKChKbN28WFhYW4n//+5+0zfjx40Xfvn2l9/fv3xcWFhZizJgx4vbt2+Lnn38WRkZG4tChQ3IcQoHDaTaFyKNHj9CzZ0+8fPkS9vb2aNy4MS5cuAB7e3sAQFhYmNYoR8OGDbFlyxZMnjwZEydOhLu7O/bs2cM15nOZrtdpxYoVSEpKwmeffabVj4+PD6ZNm5aXoRcqul4nkoeu18nJyQmHDx/GyJEj4enpidKlS2P48OEYN26cXIdQaOh6rSZPngyFQoHJkyfj8ePHsLe3xyeffILZs2fLdQiFQp06deDn54cJEyZgxowZcHV1xdKlS9G7d29pm4iICK2ViFxdXXHgwAGMHDkSy5YtQ5kyZbB27VouS6knCiH4WRQRERERkSHisBERERERkYFiMk9EREREZKCYzBMRERERGSgm80REREREBorJPBERERGRgWIyT0RERERkoJjMExEREREZKCbzRESFzOrVq+Hk5ASlUomlS5di2rRpqF69utxh5VizZs0wYsQIucMgIpIFk3kiIj0aMGAAOnXqlOf79fX1RZEiRbLcLioqCkOHDsW4cePw+PFjDBkyJFfiMfQ/EIiIDIWx3AEQEVHeCQsLQ3JyMtq1awdHR0e5wyEiovfEkXkiolzUrFkzDBs2DGPHjkXRokVRsmRJTJs2TWsbhUKBFStWoG3btjA3N0e5cuWwc+dOqf7EiRNQKBR48+aNVObv7w+FQoEHDx7gxIkTGDhwICIjI6FQKKBQKNLsA0gdva9WrRoAoFy5clL7/9JoNJgxYwbKlCkDlUqF6tWr49ChQ1rbjBs3DhUqVICFhQXKlSuHKVOmIDk5WdrP9OnTERAQIMXj6+ubZj9HjhyBmZmZ1nEBwPDhw9GiRQsAwMuXL9GzZ0+ULl0aFhYWqFatGrZu3ZrB2f73fO7Zs0errEiRIloxhIeHo1u3bihSpAiKFi2Kjh07pnsuiIjyOybzRES5bMOGDbC0tMTFixexYMECzJgxA0ePHtXaZsqUKejSpQsCAgLQu3dv9OjRA7dv385W/w0bNsTSpUthY2ODiIgIREREwNvbO8123bt3x7FjxwAAly5dQkREBJycnNJst2zZMixevBiLFi3C9evX0bp1a3To0AFBQUHSNtbW1vD19cWtW7ewbNkyrFmzBkuWLJH2M3r0aFSpUkWKp3v37mn28+GHH6JIkSLYtWuXVKZWq7F9+3b07t0bAJCQkIBatWrhwIEDCAwMxJAhQ9C3b19cunQpW+cmPcnJyWjdujWsra1x+vRpnD17FlZWVmjTpg2SkpJy3C8RkRyYzBMR5TJPT0/4+PjA3d0d/fr1Q+3atfHHH39obdO1a1cMHjwYFSpUwMyZM1G7dm38+OOP2erf1NQUtra2UCgUKFmyJEqWLAkrK6s025mbm6NYsWIAAHt7e5QsWRJGRkZptlu0aBHGjRuHHj16oGLFipg/fz6qV6+OpUuXSttMnjwZDRs2hIuLCz755BN4e3tjx44d0n6srKxgbGwsxWNubp5mP0ZGRujRowe2bNkilf3xxx948+YNunTpAgAoXbo0vL29Ub16dZQrVw7fffcd2rRpI+0rJ7Zv3w6NRoO1a9eiWrVq8PDwwPr16xEWFoYTJ07kuF8iIjlwzjwRUS7z9PTUeu/o6Ijnz59rlTVo0CDNe39//9wOLY2oqCg8efIEjRo10ipv1KgRAgICpPfbt2/HDz/8gJCQEMTExCAlJQU2NjY67693796oX78+njx5glKlSmHz5s1o166ddDOvWq3GnDlzsGPHDjx+/BhJSUlITEyEhYVFjo8xICAAwcHBsLa21ipPSEhASEhIjvslIpIDk3kiolxmYmKi9V6hUECj0WS7vVKZ+iGqEEIqezs/XQ7nz59H7969MX36dLRu3Rq2trbYtm0bFi9erHNfderUQfny5bFt2zZ8/fXX8PPz05rbvnDhQixbtgxLly5FtWrVYGlpiREjRmQ6HUahUGidK0D7fMXExKBWrVrYvHlzmrb29vY6HwMRkZyYzBMR5QMXLlxAv379tN7XqFEDwL8JZkREBOzs7AAgzai9qakp1Gr1e8dhY2ODUqVK4ezZs2jatKlUfvbsWdStWxcAcO7cOTg7O2PSpElS/cOHD3McT+/evbF582aUKVMGSqUS7dq109pvx44d0adPHwCpN+feu3cPlStXzrA/e3t7RPy/vbsHaSQIwzj+pBDB2ohNxGK3sDBICgtB0DRaKaggmDKFKULEL7BQTECLFWzE2sImCSkCgiCIIAZSiCTBxo8gCyKIsKVIUt1VF8jJeVyKMwP/XzcsuztM9fDOy8zra2NcrVb18fHRGIdCIWWzWfX09LS0mwAA7YSeeQBoA7lcTkdHR3p8fNT29raur68Vj8clSZZlKRAIKJlMqlqt6vT09FMVvL+/X+/v77q4uJDneU3h9V+tr6/LcRxls1k9PDxoY2NDlUpFS0tLkiTbtvX8/KxMJqOnpycdHBwon89/mo/ruqpUKvI8T/V6/Y//i0QiKpVK2t3d1dzcnDo7OxvPbNvW+fm5isWi7u7utLi4qLe3ty/nHw6HdXh4qHK5rJubG8VisabdkUgkou7ubk1PT6tQKMh1XV1eXiqRSOjl5aWVJQOAb0OYB4A2kEqllMlkFAwGdXx8rHQ63ag+d3R0KJ1O6/7+XsFgUI7jaGdnp+n9kZERxWIxzc/Py+/3a29vr+W5JBIJraysaHV1VYODgzo7O9PJyYls25YkTU1NaXl5WfF4XENDQyoWi9ra2mr6xuzsrCYnJzU+Pi6/3//lcZKWZWl4eFi3t7eNU2x+2dzcVCgU0sTEhMbGxtTb2/vXS7n29/cVCAQ0OjqqhYUFra2tNfXYd3V16erqSn19fZqZmdHAwICi0ahqtRqVegDG8f34vbEQAPBf+Xw+5fP5b7k5FgBgNirzAAAAgKEI8wAAAIChOM0GAL4Z3Y4AgFZRmQcAAAAMRZgHAAAADEWYBwAAAAxFmAcAAAAMRZgHAAAADEWYBwAAAAxFmAcAAAAMRZgHAAAADEWYBwAAAAz1ExgQJmzGiVV1AAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -399,9 +396,9 @@ " name=\"e5_p5\",\n", " k=10,\n", " precision=5,\n", - " emax=15,\n", + " bias=15,\n", " has_nz=True,\n", - " has_infs=True,\n", + " domain=Domain.Extended,\n", " num_high_nans=2**4 - 1,\n", " has_subnormals=True,\n", " is_signed=True,\n", @@ -561,7 +558,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvMAAAHyCAYAAABmsUHvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACoXUlEQVR4nOzdd1gUVxcG8Jfeq2JHQSUKKnaNFXs3auxiLFGTz14RjSIqVtTYu8beYomaKCo2EuwKFsSCimLBThHp7P3+IIxuaLu4uAu8v+fhkZ25M3Nm2R3P3j1zr5YQQoCIiIiIiPIcbXUHQEREREREOcNknoiIiIgoj2IyT0RERESURzGZJyIiIiLKo5jMExERERHlUUzmiYiIiIjyKCbzRERERER5FJN5IiIiIqI8isk8EREREVEexWSeiIiIiCiPYjJPRERE9BVYWFjg+fPn6ZYnJCSgaNGiiI6OVkNUlNcxmSciIiLKZWFhYQCAkiVLpltnYGCAV69ewdzcHEIImJqa4vXr1187RMqjmMwTERER5bKgoCBUrFgx23ahoaEwNjZGkSJFvkJUlB8wmSeV2bx5M7S0tPD48WN1h5Kh6dOnQ0tLS91hKCwt3rdv36o7FACa//fNTRm9dgry81GQeXt7o2LFipDJZOoOJU+IiYmBtrY2Fi9erO5Qct2iRYvQq1cv/PDDD7CwsICTkxMePnworQ8KCkLJkiXRp08fWFhY4Ntvv8WTJ08AAEuXLsWgQYNw584dODk5ISIiAqampqhduzYA4O7du2jRogWsra1hZWWFUaNGZRvPmjVrULp0aSQkJOTOCZPGYDJPWUpLWD7/KVKkCJo2bQofHx91h6cW58+fx/Tp0xEZGanuUFQuP59bQXDr1i1069YNZcqUgaGhIUqWLImWLVti+fLlcu3++77W1dVFyZIlMWDAgHT1vBldA9J+Jk2alCvn8TVehzk5RnR0NObPnw93d3doa6f+9zl06FBUqFAhl6L8Mjdv3oSrqytKliwJfX19FCtWDA0bNsSMGTPk2h0/flzu76qnp4fy5ctj+vTpSExMzLKtlpYWzM3NUadOHRw8eDBdDEFBQRBCwNnZGQAghMDMmTPxzz//5Np5K+rKlSsYMWIEKlWqBBMTE5QuXRo9evTA/fv3c7S/W7du4fz58xgxYgTev3+PypUr47fffpPWBwUF4dy5cxgxYgTevn0Le3t7eHp6Akj9Wzk7O8PR0RGenp4YOnQoYmJicOXKFQCAq6srfvrpJ7x79w5PnjxB//795Y49b948GBoayi0bMGAAEhMTsXbt2hydD+UduuoOgPKGmTNnwt7eHkIIvHr1Cps3b0a7du3w559/okOHDgCAH374Ab169YKBgYGao81d58+fx4wZMzBgwABYWlqqOxyVyurcCsrfV1Ga9nycP38eTZs2RenSpTFkyBAUK1YMT58+xcWLF7F06VKMHDky3TZp7+v4+HhcvHgRmzdvhr+/P4KCgtIlBmltP1e5cuVcO5fcfo/l5Bi//fYbkpOT0bt3b2lZUlKSRvZ8HjhwAL1790bp0qXx888/o0SJEggLC8PJkyexfft2KYkEgBs3bgAAfv31V9jY2CA2NhZ79+7FjBkzkJCQgLlz56Zru2zZMlhZWUEmk+Hp06dYtmwZunfvjlu3bsmVktSpUwdxcXHS++T+/fvw9PRUqNwkt82fPx/nzp1D9+7d4ezsjJcvX2LFihWoUaMGLl68qPTr+9atW5g+fTrq1q0LAHBwcIAQQlofFBQEDw8P1K9fH0DqNeTzZL5v377S782aNZPb98OHD5GYmAiZTAZzc3PUrFlTbn1ycnK616GhoSH69++PX3/9FSNHjsxT30yTkgRRFjZt2iQAiCtXrsgtf//+vdDT0xN9+vRRU2TK8/T0FKp4yS9YsEAAEKGhoV8eVBbS4n3z5k2uHudzX+vcMhITE/PVj6koVb12clO7du2EjY2NiIiISLfu1atXco8ze1+7u7sLAGLPnj3Zts1NX+N1mJNjODs7i759+8otGzRokChTpoxqg/sPFxcX0b9/f4Xbv3//XlhYWIgGDRqIhISEdOufP38u99jV1VUYGhqK5ORkaVlCQoIoVqyYsLe3T9fW0tIy3T7XrFkjAIhdu3ZlGduOHTsEABESEqLw+WTm/fv3Yv/+/Zmu37lzZ5bXlXPnzqV7fu7fvy8MDAyEq6ur3PIGDRoIABn+TJkyRSQnJwtDQ0Px4sULaZtOnTqJLVu2CCGESElJEYaGhnLP/ebNm0Xr1q1FSkqKMDY2Fm/fvhVCCOHk5CQuXrwod/yjR4+KBg0aiKJFiwo3NzeRlJQkt97LyyvDa9TVq1cFAHHq1KlMnwfK+1hmQzliaWkJIyMj6Op++nInoxriJ0+eYNiwYahQoQKMjIxQqFAhdO/ePV2d8YcPHzBmzBjY2dnBwMAARYoUQcuWLREQECC1ef78OX788UcULVoUBgYGqFSpktxXmJ/z9/dH7dq1YWhoiHLlyin8NWN2cUyfPh1ubm4AAHt7e+lr5s/PJzAwEG3btoW5uTlMTU3RvHlzXLx4Md2xnj9/jkGDBqFEiRIwMDCAvb09hg4dmu5r7cjISKn30MLCAgMHDkRsbKzSz3F255fduWX091X0HP4rrQY9ODgYffr0gZWVFRo2bKjUczhgwADY2dlluu//Pn7w4EGWz2MaRV87/30+lD3O2bNnUatWLbnjZFSbf/fuXWkUjKw8fPgQlSpVyrCXWdEb6Ro1aiTtS1mqeq9n9zpU5Dqgivfxf4WGhuLmzZto0aKFws/J8+fPYWhoiB9//FFu+cmTJ6Gnp4exY8cqvC9lnDx5ElFRURg0aBD09fXTrS9RooTc4xs3bqBSpUrQ0dGRlunr66NEiRKIiopK17ZGjRrp9vny5UsAgKOjo9zyli1bokGDBgBSe+ldXV0BpPZaa2lpyb1ew8LCMHjwYJQtWxaGhoYoVqwY2rVrhwcPHmR4nqtWrUKPHj3wxx9/pFu3ceNG9OnTB1u2bMlwWwCoX79+uufHwcEBlSpVwp07d+SW+/v7QwiR4c+sWbPw4MEDmJubo3jx4tI2aaUzAPDgwQPEx8fDxsZGWn/w4EG0bdsWDx48gIWFBQoVKoTExESEhISk+1agbdu28Pf3x6VLl7Bnzx6cPn060/P6XM2aNWFtbY1Dhw4p1J7yJpbZkEKioqLw9u1bCCHw+vVrLF++HDExMdLXgpm5cuUKzp8/j169eqFUqVJ4/PgxVq9ejSZNmiA4OBjGxsYAgP/973/Yt28fRowYAScnJ7x79w7+/v64c+cOatSogVevXuHbb7+FlpYWRowYARsbG/j4+GDQoEGIjo7GmDFjpGPeunULrVq1go2NDaZPn47k5GR4enqiaNGi2Z5ndnF8//33uH//Pnbt2oXFixejcOHCACBdoG/fvo1GjRrB3NwcEydOhJ6eHtauXYsmTZrAz89P+vr1xYsXqFOnDiIjI/HTTz+hYsWKeP78Ofbt24fY2Fi5/2B69OgBe3t7zJ07FwEBAdiwYQOKFCmC+fPnK/UcZ3d+2Z3bfylzDpnp3r07HBwcMGfOHOnraEWfQ2Vl9zwCX/baUeY4gYGBaNOmDYoXL44ZM2YgJSUFM2fOzPC5dnR0hIuLC86ePZvlccuUKYMLFy4gKCgox+UvacmslZVVunVp14DPpb1GANW917N6HSp6HfjS93FGzp8/DwAZJrKZKVmyJAYPHox169bB09MTZcqUwd27d9G9e3e0bdsWixYtUnhfyvj48SOA1GQyO4mJibh37x5++OEHueUvXrxAcHAwXFxc0rV1cXGRXgsRERE4fvw45s+fjxEjRqBq1apy+7l58ya+//57AIC7uzumT5+OhIQETJs2DQCkZP7Vq1eoVasWChUqhCFDhqBIkSJ4+vQp/vjjD7lOo8+5u7vj8uXL6N27N44cOYLmzZsDSC0x+vnnn9G3b18MHTo02+fgc+LfUtJKlSoptd2tW7fkzv3Dhw94/vw5nJycAKSW2Ojq6mLXrl3o06cPNm3ahFu3bmH79u3w8fGRkv4PHz4ASH2uTUxMAAD79+9HjRo1YG9vj4iICCQmJipVplSjRg2cO3dOqfOhPEZt3wlQnpD2Fft/fwwMDMTmzZszbPv519axsbHp9nnhwgUBQGzdulVaZmFhIYYPH55pHIMGDRLFixeXvoZM06tXL2FhYSF3nM6dOwtDQ0Px5MkTaVlwcLDQ0dHJtlQiuziEyPrr+c6dOwt9fX3x8OFDadmLFy+EmZmZaNy4sbSsX79+QltbO8PSBZlMJoT4VNrx448/yq3v0qWLKFSokPRY0edYkfPL6tz++/dV5Bwyk3ZuvXv3TrdO0eewf//+GZY3/LckRtHnMe3Yir52/vt8KHOcjh07CmNjY7mv3ENCQoSurm664wAQLi4u6c7zv06cOCF0dHSEjo6OqFevnpg4caI4fvy4SExMTNc2LfaTJ0+KN2/eiKdPn4p9+/YJGxsbYWBgIJ4+fZqubUY/n1PVe12IzF+Hil4HvvR9nJGpU6cKAOLDhw/pYsqqzObZs2fCwMBADB06VLx9+1aUK1dOVKtWTamyMmXLbB4/fiyMjY0FAOHg4CAmTpwoTp8+LVdGkyYwMFAAEF5eXuLNmzfixYsX4tixY6Jq1arCxMRE7v2d1va/P3p6emLJkiXp9v3q1SsBQKxatUpaVrp0aTFgwIB0bRcuXCgMDQ1FVFSUwucphBBxcXHCxcVFmJqaiosXL4qTJ08KAwMD0aFDh3SlKIrYtm2bACA2btyo1HbTpk0TEyZMkB6fP39eVK5cWXo8Y8YMMWzYMNG2bVthYWEhmjdvLh49eiRt6+bmJrXt16+fMDU1FXXr1hVCCDFy5EhRtGhRYWJiIpydncVff/2V7viZldkIIcRPP/0kjIyMlDofyluYzFOW0v4jX7lypfD19RW+vr5i+/btok2bNkJXV1euXjGjZP5ziYmJ4u3bt+LNmzfC0tJSjBkzRlpXpkwZUatWrXS1nEKkJoaWlpbip59+Em/evJH7STumv7+/EEKI5ORkYWRkJHr16pVuP+3atcs2mc8qjjSZJQHJycnC2NhY9OjRI902P//8s9DW1hZRUVEiJSVFmJubi06dOmUZS1pyePnyZbnlv/76qwCQ4X96WT3Hipyfosm8oueQ3bn5+fnJLVf0ORRC+WQ+u+dR2ddOZsm8osfJ6H6Tjh07flFt/uXLl0WXLl2kRA6AsLGxEYcOHcow9v/+2NnZiePHj2fY9vNrQNpPZnL6Xk+T0etQmevAl7yPMzN06FChq6ubbrkiNfMjRowQBgYGom7duqJEiRLi2bNnmbZNTExMd37169cXvXr1Src8JSUl0/3cuHFD9OjRQ5iYmEh/39KlS6f7u23ZsiXD10KTJk1EYGBghm23bNki9/9B7dq1hYGBgTh//rxce19fXwFA/PPPP0IIISIjIwUA8euvv6aLd+rUqUJHR0ecOXMmy+cyI1FRUaJGjRrC2tpamJqaisaNG2f44TI7d+7cEebm5qJevXoZfvDRZFkl82n3wnz8+PErR0VfC2vmSSF16tRBixYt0KJFC7i6uuLIkSNwcnLCiBEjsqyPjouLw7Rp02BrawsDAwMULlwYNjY2iIyMlKvF9Pb2RlBQEGxtbVGnTh1Mnz4djx49AgC8efMGkZGRWLduHWxsbOR+Bg4cCADSTHlv3rxBXFwcHBwc0sWiyPBxWcWRnTdv3iA2NjbD4zg6OkqjPrx58wbR0dEKl0KULl1a7nFaCURERAQAxZ/jLz2//56rMueQmf+OjqLoc5gT2T2PX/raUfQ4r1+/RlxcHMqXL59u24yWKaN27do4cOAAIiIicPnyZUyePBkfPnxAt27dEBwcnK79ypUr4evri3379qFdu3Z4+/ZtpqPzfH4NSPv5nCre61lR5jqgqte5qkyYMAEJCQm4efMmDh8+nOEMoGnOnTuX7vzOnz+P3bt3p1ue1b0Uzs7O2LNnD96/f48zZ85g4MCBePr0KXr16iV3D0fa6DRHjhyBr68vtm/fjkqVKuHatWuwsLCQ2+eNGzegq6uL3r17y/1/8McffyAhIQErVqyQa3/r1i0AQJUqVQB8KvtJKyn5XL9+/aRhj2vWrIkFCxYgPDw8q6dVYm5ujoULF+L9+/eIiYnBkiVLYGRkpNC2aV6+fIn27dvDwsIC+/btk7t/IK8T/5YwcjSb/IvJPOWItrY2mjZtivDwcISEhGTabuTIkZg9ezZ69OiB33//HSdOnICvry8KFSokN+lKjx498OjRIyxfvhwlSpTAggULUKlSJfj4+Ejt+vbtC19f3wx/0m6w+lJZxaEumf2nknaBVvQ5BjTv/JT9D/dzmf3HlJKSkuHy7J5HVflax8mKvr4+ateujTlz5mD16tVISkrC3r1707VLS9C7du2Kw4cPo3LlyujTpw9iYmKUPqYq3utZUeY6kBuv80KFCiE5OVmqaVbG7NmzAaQOH2htbZ1l26pVq6Y7L2dnZ7Rq1Srd8mLFimV7bH19fTRp0gS//fYb2rdvj3fv3uHevXvS+ps3b6JMmTJo166dlJzv3bsXHz58wKpVq+T2dfPmTZQrVw56enpyy0uWLAljY2M8e/YsXfvSpUtLHwrSkvn/1tUDqTee3r9/H1u2bEHZsmXh4eGBb775RqFa70ePHsHV1RUVK1ZEmTJl0LVrV4U/CACp94O0bdsWkZGROHbsWLobhPO6iIgIGBsbf9H1ljQbb4ClHEtOTgaALP/j37dvH/r37y93o1d8fHyGE7UUL14cw4YNw7Bhw/D69WvUqFEDs2fPhp+fH8zMzJCSkpLtSBI2NjYwMjLK8APG5/+BZSWzONq2bQsg8yTSxsYGxsbGGR7n7t270NbWhq2tLUxNTWFubo6goCCF4smOMs8xkPX5KdpzY2Njo9Jz+Hy/ijyHQGqPd0bnmDajYk6O/aWvHUUUKVIEhoaGGY7QkdmoHV+iVq1aAJBtcqOjo4O5c+eiadOmWLFihdITQqnivZ7Ve8zGxkbh60BOj5GVtBsOQ0NDM+xZzsyCBQuwYcMGrFixAm5ubpg9ezY2bNiQaXsrK6t052dlZYXixYsrNZJORtK+dfm8x/3mzZuoU6eOXDtHR0fUqlUL+/fvx4IFC+Tapo2R/rm0b9T+++Hi89Fc0h4XL15c7sbpz5mamqJfv37o168f7t27hypVquD333/PsrMmPDwcLVu2hJ6eHnx9fREXF4eGDRuiVatW8PPzy/bDU3x8PDp27Ij79+/j5MmT0g2r+UloaGi6UYYof2HPPOVIUlISTpw4AX19/SwvEjo6Oul6JJcvXy7Xe5qSkpKuHKRIkSIoUaIEEhISoKOjg65du2L//v0ZJo9v3ryRO17r1q1x8OBBua+g79y5g+PHj2d5TtnFkSZthIH/Jik6Ojpo1aoVDh06JDfE3atXr7Bz5040bNgQ5ubm0NbWRufOnfHnn3/i6tWr6eJQtgdXkedY0fPL7Nz+S9XnkEbR5xAAypUrh6ioKLkRO8LDwzMcpk7RY+f0taPscVq0aIGDBw/ixYsX0vIHDx5k2HOs6NCUZ86cyfB5P3r0KADFSoWaNGmCOnXqYMmSJYiPj8+2/edU8V5Pk9HrUNHrwJe+jzNTr149AMjw9Z6ZgwcPYtKkSfDy8sLw4cPx008/YevWrQgNDVV4H8ry9/dHXFxcuuU3b97EsWPHUL16dZQtWxZAamnJ69evMyyXa926NUJDQ6UhGtPaZnS9TxupqWvXrtKylJQUBAcHyyXzYWFhKFWqVLrt/ztKEpD6rV1KSkqWveQRERFo3bo1YmJicPLkSZQqVQoODg44fvw4nj59ivbt20sj+2QkJSUFPXv2xIULF7B3717pb5zfBAQEZPghjPIP9syTQnx8fHD37l0AqXWpO3fuREhICCZNmiQlVxnp0KEDtm3bBgsLCzg5OeHChQs4efIkChUqJLX58OEDSpUqhW7duqFq1aowNTXFyZMnceXKFamXb968eThz5gzq1q2LIUOGwMnJCe/fv0dAQABOnjyJ9+/fS/ubMWMGjh07hkaNGmHYsGFITk7G8uXLUalSpSyHalMkDgDSzHtTpkxBr169oKenh44dO8LExASzZs2Cr68vGjZsiGHDhkFXVxdr165FQkICvL29pX3MmTMHJ06cgIuLC3766Sc4OjoiPDwce/fuhb+/v1KzXiryHCt6flmd23+p8hw+p+hz2KtXL7i7u6NLly4YNWoUYmNjsXr1anzzzTdy8xMoI6evHWVNnz4dJ06cQIMGDTB06FCkpKRgxYoVqFy5Mq5fvy7XVtGhKUeOHInY2Fh06dIFFStWRGJiIs6fP489e/bAzs5OqivPjpubG7p3747Nmzfjf//7n8LnpKr3OpD561CR64Aq3scZKVu2LCpXroyTJ0+mGzc+I9euXYOrqytcXV0xZcoUAMDEiROxZs2abHvnv8SkSZNw//59dO/eHVWrVkVycjKuX78u/W22bdsmtU2rl0+raf9cq1atMHv2bBw5cgSOjo5S29evX2P79u0AUpPwEydOwMfHB7169UL37t2l7UNCQhAfHy+3b3t7e5w+fRre3t4oUaIEHB0dUbNmTYwcORJBQUH47rvvYG9vj/DwcKxbtw6lSpXCkCFDMj3XVatW4enTpzh79qzcvS7VqlXDX3/9hVatWmHLli0YNmxYhtuPHz8ehw8fRseOHfH+/XvpvNJkN/RyXnDt2jW8f/8enTp1UncolJvUdect5Q0ZjXphaGgoqlWrJlavXi03BGFGo9lERESIgQMHisKFCwtTU1PRunVrcffuXVGmTBlpqLWEhATh5uYmqlatKszMzISJiYmoWrWq3HBmQqQOczZ8+HBha2sr9PT0RLFixUTz5s3FunXr0sXt5+cnatasKfT19UXZsmXFmjVrsp3FU9E4hEgdOaBkyZJCW1s73TkHBASI1q1bC1NTU2FsbCyaNm2abpQHIYR48uSJ6NevnzQcYNmyZcXw4cOlGQkzmwH2v8+zIs+xMueX2bll9PfN7hwyk93stoo+hydOnBCVK1cW+vr6okKFCmL79u2ZjmaT3fOYRtHXTmaj2Sh6nFOnTonq1asLfX19Ua5cObFhwwYxfvx4YWhoKNcOCg5N6ePjI3788UdRsWJFYWpqKvT19UX58uXFyJEjFZ4BVojUmSrLlSsnypUrJ5KTkxWeAVaV73UhMn8dZncdUNX7OCO//vqrMDU1lRspJaPRbJ4+fSqKFy8uGjRoIOLj4+XWDR06VOjp6UnDEipCmaEpDxw4IHr37i3Kly8vTExMhKGhoXB0dBRubm7i9evXcm29vb0FAHHjxo10+0lMTBRmZmaiadOmcm0//zEzMxMNGjQQGzduTDcc7e+//y4AiNu3b0vLnj9/Lr2vAYhly5YJIYTYuHGjaNasmXQdKV++vBg1alS6eP8rKSlJBAUFZbr+xo0bWQ6T6+Likumwq3ktPcpsNBt3d3dRunTpbIcLprxNS4iveFcWERFlqnPnzrh9+3aWN5WT+kRFRaFs2bLw9vbGoEGDAACDBw/GyZMns5w9lii3zZo1Cx4eHnKlbgkJCbCzs8OkSZMwevRoNUZHuY0180REavDfuuaQkBAcPXoUTZo0UU9AlC0LCwtMnDgRCxYskBuh58mTJ9DS0vrioVqJlLVkyRJoaWnBw8Mj3bpNmzZBT09PqXI5ypvYM09EpAbFixfHgAEDULZsWTx58gSrV69GQkICAgMDMxzrnjTTy5cvpZtoDQwM0s2dQJSbIiIi8OrVK+lx2qhLVLAwmSciUoOBAwfizJkzePnyJQwMDFCvXj3MmTMHNWrUUHdoRESUhzCZJyIiIiLKo1gzT0RERESURzGZJyIiIiLKo5jMExERERHlUUzmiYiIiIjyKCbzRERERER5FJN5IiIiIqI8isk8EREREVEexWSeiIiIiCiPYjJPRERERJRHMZknIiIiIsqjmMwTEREREeVRTOaJiIiIiPIoJvNERERERHkUk3kiIiIiojyKyTwRERERUR7FZJ6IiIiIKI9iMk9ERERElEcxmSciIiIiyqOYzBMRERER5VFM5omIiIiI8igm80REREREeRSTeSIiIiKiPIrJPBERERFRHsVknoiIiIgoj2IyT0RERESURzGZJyIiIiLKo3TVHcCXkMlkePHiBczMzKClpaXucIiIiIiIVEIIgQ8fPqBEiRLQ1s68/z1PJ/MvXryAra2tusMgIiIiIsoVT58+RalSpTJdn6eTeTMzMwCpJ2lubq7maIiIiIiIVCM6Ohq2trZSvpuZPJ3Mp5XWmJubM5knIiIionwnu1Jy3gBLRERERJRHMZknIiIiIsqjmMwTEREREeVRebpmXhFCCCQnJyMlJUXdoRCRAnR0dKCrq8vhZomIiBSQr5P5xMREhIeHIzY2Vt2hEJESjI2NUbx4cejr66s7FCIiIo2Wb5N5mUyG0NBQ6OjooESJEtDX12dPH5GGE0IgMTERb968QWhoKBwcHLKcKIOIiKigy7fJfGJiImQyGWxtbWFsbKzucIhIQUZGRtDT08OTJ0+QmJgIQ0NDdYdERESksfJ9lxd79YjyHr5viYiIFMP/MYmIiIiI8igm80REREREeRSTecpVWlpaOHjwoLrDICIiIsqXmMxrGC0trSx/pk+fru4QiYiIiEhD5NvRbPKq8PBw6fc9e/Zg2rRpuHfvnrTM1NRU+l0IgZSUFOjq8s9IREREpDJCAEKG2LhYGBubAho8vHmB6pkXQuDjx49f/UcIoXCMxYoVk34sLCygpaUlPb579y7MzMzg4+ODmjVrwsDAAP7+/hgwYAA6d+4st58xY8agSZMm0mOZTIa5c+fC3t4eRkZGqFq1Kvbt25dpHL/88gvq1q2bbnnVqlUxc+ZMAMCVK1fQsmVLFC5cGBYWFnBxcUFAQECm+zx79iy0tLQQGRkpLbt+/Tq0tLTw+PFjaZm/vz8aNWoEIyMj2NraYtSoUfj48WPWTxwRERGRipw/fw4IvwjjyJuAkKk7nCwVqGQ+NjYWpqamX/1H1TPQTpo0CfPmzcOdO3fg7Oys0DZz587F1q1bsWbNGty+fRtjx45F37594efnl2F7V1dXXL58GQ8fPpSW3b59Gzdv3kSfPn0AAB8+fED//v3h7++PixcvwsHBAe3atcOHDx9yfG4PHz5EmzZt0LVrV9y8eRN79uyBv78/RowYkeN9EhEREWVHCIHTp0+jadOmaNmypbQ85MEDNUaVPdZn5EEzZ86Ue5FlJyEhAXPmzMHJkydRr149AEDZsmXh7++PtWvXwsXFJd02lSpVQtWqVbFz5054eHgAAHbs2IG6deuifPnyAIBmzZrJbbNu3TpYWlrCz88PHTp0yNG5zZ07F66urhgzZgwAwMHBAcuWLYOLiwtWr17NCYSIiIhIpYQQOH78OLy8vHD+/HkAgIW5mbTe4d+8R1MVqGTe2NgYMTExajmuKtWqVUup9g8ePEBsbGy6DwCJiYmoXr16ptu5urrit99+g4eHB4QQ2LVrF8aNGyetf/XqFaZOnYqzZ8/i9evXSElJQWxsLMLCwpQ7oc/cuHEDN2/exI4dO6RlQgjIZDKEhobC0dExx/smIiIiSiNkMhw9+hfmz/fGP/7nAAAGBgYYMmQI3CdOAPBMvQEqqEAl81paWjAxMVF3GF/sv+egra2dri4/KSlJ+j3tA8yRI0dQsmRJuXYGBgaZHqd3795wd3dHQEAA4uLi8PTpU/Ts2VNa379/f7x79w5Lly5FmTJlYGBggHr16iExMTHD/aXN6vl5rJ/HmRbrzz//jFGjRqXbvnTp0pnGSkRERKQImUyGAwcOYNHCBbiw/1e03z0fhZ07ov+AgZgwYQKKFy8OyFKAcCbz9JXY2NggKChIbtn169ehp6cHAHBycoKBgQHCwsIyLKnJTKlSpeDi4oIdO3YgLi4OLVu2RJEiRaT1586dw6pVq9CuXTsAwNOnT/H27dss4wRSR+yxsrKS4vxcjRo1EBwcLJXyEBEREalCSkoKfv/9d8yePRu3b9+GsdGn0t07d+7ApkhRNUaXcwXqBtj8qlmzZrh69Sq2bt2KkJAQeHp6yiX3ZmZmmDBhAsaOHYstW7bg4cOHCAgIwPLly7Fly5Ys9+3q6ordu3dj7969cHV1lVvn4OCAbdu24c6dO7h06RJcXV1hZGSU6b7Kly8PW1tbTJ8+HSEhIThy5AgWLVok18bd3R3nz5/HiBEjcP36dYSEhODQoUO8AZaIiIiUJwSSEuOxY9tWODk5oU+fPrh9+zYsLCwwefJkqZlN4cJqDPLLMJnPB1q3bg0PDw9MnDgRtWvXxocPH9CvXz+5Nl5eXvDw8MDcuXPh6OiINm3a4MiRI7C3t89y3926dcO7d+8QGxubbvjLjRs3IiIiAjVq1MAPP/yAUaNGyfXc/5eenh527dqFu3fvwtnZGfPnz8esWbPk2jg7O8PPzw/3799Ho0aNUL16dUybNg0lSpRQ7kkhIiKiAi0xMRGbNm2E3ptrcG1WDs+ehsHa2hpeXl548uQJpk6Zou4QVUJLKDMIuoaJjo6GhYUFoqKiYG5uLrcuPj4eoaGhsLe35wgoRHkM379ERJRT8fHx2LhxI+bPn493b9/gY8hJAMDi3Rcw+KefYWb270g1shQg/GLq78W/BbR1Pu0kq3VfSVZ57udYM09EREREeddns7WuXbcBCxYsQHh4OACgrL2d1Gzs2LFqScpzG8tsiIiIiCjP+vAhWpqtdeqUXxAeHg5bW1usXLkSt28HZb+DPI7JPBERERHlOZGRkfDy8oKT06c5aOzs7LBu3To8ePAAw4YNg6FB/i/VZJkNEREREeUZ7969w5IlS7Bs2TJER0fLDTF5/Xog9PTzfwL/OSbzRERERKTZhMDr16+wbNkyLF22XJoQ08nJCZ7TPKRmerp66opQbVhmQ0REREQa68WLF3B3d0OR5IeYNaw9ZCnJqFq1Kvbt24dbt26hR/fu6g5RrZjMExEREZHGCQsLw/Dhw1G2bFmsWLFSWr537+8IDAxE165doa3NVJZlNkRERESkfv8OMRn6OBRz53lj8+bNSEpKAgA0b9ZEataubTtAS0tNQWoefpwhpTVp0gRjxoxRdxhERESUj4SE3AfCL8Le4BV2bN+GpKQkNG3aFKdPn4bvCV91h6exmMxroAEDBkBLSwtaWlrQ09ODvb09Jk6ciPj4eHWHppDp06ejWrVq6g5DrR4/fgwtLS1cv35d3aEo7ezZs6hRowYMDAxQvnx5bN68Odv2nTp1QvHixWFiYoJq1aphx44dcm3Wr1+PRo0awcrKClZWVmjRogUuX76ci2dBRER5xe3bt9GnTx/UqFFDWtaiRQv8888/OH36NJo2bQot9sRnism8hmrTpg3Cw8Px6NEjLF68GGvXroWnp6e6wyoQhBBITk5WdxgKS0lJgUwmS7c8MTFR6X2Fhoaiffv2aNq0Ka5fv44xY8Zg8ODBOH78eKbbnD9/Hs7Ozti/fz9u3ryJgQMHol+/fvjrr7+kNmfPnkXv3r1x5swZXLhwAba2tmjVqhWeP3+udIxERJTHCQHIUnDrxnV0794dVapUwa5du+T+Lzt08CAaNmyoxiDzDibzGsrAwADFihWDra0tOnfujBYtWsDX99NXTAkJCRg1ahSKFCkCQ0NDNGzYEFeuXJHWb968GZaWlnL7PHjwoNwn27Qe9G3btsHOzg4WFhbo1asXPnz4ILX5+PEj+vXrB1NTUxQvXhyLFi3KMu7NmzdjxowZuHHjhvTtQlrPblhYGDp16gRTU1OYm5ujR48eePXqVab7SuvdPnDgAJo2bQpjY2NUrVoVFy5ckGvn7++PRo0awcjICLa2thg1ahQ+fvword+2bRtq1aoFMzMzFCtWDH369MHr16+l9WfPnoWWlhZ8fHxQs2ZNGBgYwN/fHzKZDHPnzoW9vT2MjIykO+fTREREwNXVFTY2NjAyMoKDgwM2bdoEALC3twcAVK9eHVpaWmjSpEmWz9vnEhISMGHCBJQsWRImJiaoW7cuzp49K/ccW1pa4vDhw3BycoKBgQHCwsJgZ2cHLy8v9OvXD+bm5vjpp58UPmaaNWvWwN7eHosWLYKjoyNGjBiBbt26YfHixZlu88svv8DLywv169dHuXLlMHr0aLRp0wYHDhyQ2uzYsQPDhg1DtWrVULFiRWzYsAEymQynTp1SOkYiIsrbAgKuAuEXUaXwRxw98heEEOjatSsunD+v7tDypAKVzAshkJiY+NV/hBBfFHdQUBDOnz8PfX19adnEiROxf/9+bNmyBQEBAShfvjxat26N9+/fK7Xvhw8f4uDBg/jrr7/w119/wc/PD/PmzZPWu7m5wc/PD4cOHcKJEydw9uxZBAQEZLq/nj17Yvz48ahUqRLCw8MRHh6Onj17QiaToVOnTnj//j38/Pzg6+uLR48eoWfPntnGOGXKFEyYMAHXr1/HN998g969e0s95w8fPkSbNm3QtWtX3Lx5E3v27IG/vz9GjBghbZ+UlAQvLy/cuHEDBw8exOPHjzFgwIB0x5k0aRLmzZuHO3fuwNnZGXPnzsXWrVuxZs0a3L59G2PHjkXfvn3h5+cHAPDw8EBwcDB8fHxw584drF69GoULFwYAqYTk5MmTCA8Pl0tsszNixAhcuHABu3fvxs2bN9G9e3e0adMGISEhUpvY2FjMnz8fGzZswO3bt1GkSBEAwMKFC1G1alUEBgbCwyN13N1KlSrB1NQ005+2bdtK+71w4QJatGghF0/r1q3TfYDKTlRUFKytrTNdHxsbi6SkpCzbEBFR/nL+/Hm0bdsWjRo1lpZ1794Nt27dwr59++Ds7KzG6PIutY9m8/z5c7i7u8PHxwexsbEoX748Nm3ahFq1aqn8WElJSZg7d67K95udyZMnyyXiivjrr79gamqK5ORkJCQkQFtbGytWrACQ2lu+evVqbN68WUrE1q9fD19fX2zcuBFubm4KH0cmk2Hz5s0wMzMDAPzwww84deoUZs+ejZiYGGzcuBHbt29H8+bNAQBbtmxBqVKlMt2fkZERTE1Noauri2LFiknLfX19cevWLYSGhsLW1hYAsHXrVlSqVAlXrlxB7dq1M93nhAkT0L59ewDAjBkzUKlSJTx48AAVK1bE3Llz4erqKt2Q6+DggGXLlsHFxQWrV6+GoaEhfvzxR2lfZcuWxbJly1C7dm3ExMTA1NRUWjdz5ky0bNkSQGrv+Jw5c3Dy5EnUq1dP2tbf3x9r166Fi4sLwsLCUL16dem1amdnJ+3LxsYGAFCoUCG55yE7YWFh2LRpE8LCwlCiRAnp/I8dO4ZNmzZhzpw5AFJfy6tWrULVqlXltm/WrBnGjx8vt+zo0aPSaAAZMTIykn5/+fIlihYtKre+aNGiiI6ORlxcnFzbzPz++++4cuUK1q5dm2kbd3d3lChRIt0HByIiyl+EEDh79iy8vLxw5swZAICZqYm0fvOmzYC2jpqiyx/UmsxHRESgQYMGaNq0KXx8fGBjY4OQkBBYWVmpMyyN0LRpU6xevRofP37E4sWLoauri65duwJI7Y1OSkpCgwYNpPZ6enqoU6cO7ty5o9Rx7OzspEQeAIoXLy6VoDx8+BCJiYmoW7eutN7a2hoVKlRQ+nzu3LkDW1tbKZEHUmdts7S0xJ07d7JM5j//pF68eHEAwOvXr1GxYkXcuHEDN2/elLvhUggBmUyG0NBQODo64tq1a5g+fTpu3LiBiIgIqSYvLCwMTk5O0naff4B88OABYmNjpeQ+TWJiIqpXrw4AGDp0KLp27YqAgAC0atUKnTt3Rv369ZV+bj5369YtpKSk4JtvvpFbnpCQgEKFCkmP9fX1M+zByOhDcJkyZb4oJmWcOXMGAwcOxPr161GpUqUM28ybNw+7d+/G2bNnYWhYsKbcJiIqKIRMhlMnfTFv/jycOn0WQGqu0r9/f/wy2R1A5mW2pBy1JvPz58+Hra2tVGcMfKo1zg16enqYPHlyru0/q+Mqy8TEBOXLlwcA/Pbbb6hatSo2btyIQYMGKbS9trZ2uvKejHpn/xublpZWhjdTqtPnMabV/KfFGBMTg59//hmjRo1Kt13p0qXx8eNHtG7dGq1bt8aOHTtgY2ODsLAwtG7dOt0NoiYmn3oK0qaJPnLkCEqWLCnXzsDAAADQtm1bPHnyBEePHoWvry+aN2+O4cOHY+HChTk+15iYGOjo6ODatWvQ0ZHvqfj8WwQjI6MM7+z//BzSVKpUCU+ePMn0mI0aNYKPjw8AoFixYunuY3j16hXMzc2z7ZX38/NDx44dsXjxYvTr1y/DNgsXLsS8efNw8uRJfp2az0RGRiIqKkrdYRCRmgkhcP78eezZvQuHVoxBixV9ULt3OBo0aYM+ffqgaNGi0IIMSIkHPj7C0wQryHRS/+/SggyltdIvV/c62DgD+p86PjWNWpP5w4cPo3Xr1ujevTv8/PxQsmRJDBs2DEOGDMmwfUJCAhISEqTH0dHRSh1PS0tL6XIXTaCtrY1ffvkF48aNQ58+fVCuXDno6+vj3LlzUq9rUlISrly5IpWb2NjY4MOHD/j48aOU4Ck7TGK5cuWgp6eHS5cuoXTp0gBSv025f/8+XFxcMt1OX18fKSkpcsscHR3x9OlTPH36VOqdDw4ORmRkpFzvuLJq1KiB4OBg6YPPf926dQvv3r3DvHnzpONevXo12/1+fmNpVudqY2OD/v37o3///mjUqBHc3NywcOFC6XX23+chO9WrV0dKSgpev36NRo0aKbVtZpQps6lXrx6OHj0qt97X11cqNcrM2bNn0aFDB8yfPz/TG2+9vb0xe/ZsHD9+PFfK6Eh9IiIisHz58i++P4iI8o8G31YDrg0A4p7h2NhCWPPEROo4MtJLxkTHzUDcMxgnFcKaJz8jWehnujyrbb7GOoQsANpdB3SNv86TpyS1JvOPHj3C6tWrMW7cOPzyyy+4cuUKRo0aBX19ffTv3z9d+7lz52LGjBlqiFT9unfvDjc3N6xcuRITJkzA0KFD4ebmBmtra5QuXRre3t6IjY2Veu7r1q0LY2Nj/PLLLxg1ahQuXbqU7Xjh/2VqaopBgwbBzc0NhQoVQpEiRTBlypRsp062s7NDaGgorl+/jlKlSsHMzAwtWrRAlSpV4OrqiiVLliA5ORnDhg2Di4vLFyV27u7u+PbbbzFixAgMHjwYJiYmCA4Ohq+vL1asWIHSpUtDX18fy5cvx//+9z8EBQXBy8sr2/2amZlhwoQJGDt2LGQyGRo2bIioqCicO3cO5ubm6N+/P6ZNm4aaNWuiUqVKSEhIwF9//QVHR0cAQJEiRWBkZIRjx46hVKlSMDQ0hIWFRbbH/eabb+Dq6op+/fph0aJFqF69Ot68eYNTp07B2dlZundAGcqU2fzvf//DihUrMHHiRPz44484ffo0fv/9dxw5ckRqs2LFCvzxxx/SSDRnzpxBhw4dMHr0aHTt2hUvX74EkPqhLu0G1/nz52PatGnYuXMn7OzspDZpN+FS3vb+/XsIIaCjo8MySaICRkdbCzExHxD+8rXU4aqtrY1qpeJTE2EAhfTe4ZsiiXidknovWHG9sAzXZbY8q22+xjrEhACRQUDhOrnxFH45oaRr166JmzdvSo8PHjwoOnXqJCZPniwSEhKU2peenp6oV6+e3LKRI0eKb7/9NsP28fHxIioqSvp5+vSpACCioqLStY2LixPBwcEiLi5OqZg0Qf/+/UWnTp3SLZ87d66wsbERMTExIi4uTowcOVIULlxYGBgYiAYNGojLly/Ltf/jjz9E+fLlhZGRkejQoYNYt26d+PxP7unpKapWrSq3zeLFi0WZMmWkxx8+fBB9+/YVxsbGomjRosLb21u4uLiI0aNHZxp/fHy86Nq1q7C0tBQAxKZNm4QQQjx58kR89913wsTERJiZmYnu3buLly9fZrqf0NBQAUAEBgZKyyIiIgQAcebMGWnZ5cuXRcuWLYWpqakwMTERzs7OYvbs2dL6nTt3Cjs7O2FgYCDq1asnDh8+LLffM2fOCAAiIiJC7vgymUwsWbJEVKhQQejp6QkbGxvRunVr4efnJ4QQwsvLSzg6OgojIyNhbW0tOnXqJB49eiRtv379emFrayu0tbWFi4uL3LFCQ0MzPe/ExEQxbdo0YWdnJ/T09ETx4sVFly5dpPfdpk2bhIWFRbrtypQpIxYvXpzpfhV15swZUa1aNaGvry/Kli0r/f3SeHp6yr1G+vfvLwCk+0k757TYMmrj6emZYQx5+f1bEN27d09Mnz5drFu3Tt2hENFXkpSUJHZs2yrEM38hnvkLYyNDYW5uLqZOnSrevn0rRGKMEIcchNgBIQ47CJH08dPGma3LyTbqWPeVREVFZZrnfk5LCOW+F61duzYmTZqErl274tGjR6hUqRK6dOmCK1euoH379liyZInC+ypTpgxatmyJDRs2SMtWr16NWbNmKTSZTHR0NCwsLBAVFQVzc3O5dfHx8QgNDYW9vT1vsiONkTYiTXBwcI7upSgo+P7NW+7cuYPff/8dtra2cqNHEVH+k5iYiK1bt2Lu3Ll4Gf4CH0NOAgDmbjmDocNGyM9xkxyb2qNtWTl9iUpm63KyjTrWfQVZ5bmfU3qc+fv376NatWoAgL1796Jx48bYuXMnNm/ejP379yu1rwYNGuDevXvp9v81R98g+pqOHj2KOXPmMJGnfCVt3gddXbWPdkxEuSQ+Ph6rVq2Cg4MDhgwZgkePHsHm37lVAGDypMnpJquErnFqaUpGiXBm63KyjTrWaRClr7zi32H/gNQJcTp06AAAsLW1xdu3b5Xa19ixY1G/fn3MmTMHPXr0wOXLl7Fu3TqsW7dO2bCI8oS9e/eqOwQilUu70fu/IzARUd4X+/EjfvttI5YsWYKHj0IBpI58NnHiRPw0ZBAQdUvNEZLSPfO1atXCrFmzsG3bNvj5+Uk35IWGhqabbCY7tWvXxh9//IFdu3ahcuXK8PLywpIlS+Dq6qpsWEREpCbsmSfKfz58+ABvb29UcnLEiO9r4sHf2/CNQ3msWLECoaGhGDt2LEyM0w+HTF+f0lfetGT74MGDmDJlijQk4L59+3I0YU6HDh2k3n0iIsp72DNPlH9ERUVh+fLlWLx4Md6/fw9jo0/3Ld26dRP6BtnPBE5fl9LJvLOzM27dSv+VyoIFC3ghJyIqgNJ65vl/AFEeJQTev3+HlStXYtGvi6UJ4BwcHODpMVVqpq+X9+bqKQiULrMBUmf627BhAyZPnoz3798DSJ0A6PXr1yoNjoiINB975onyrtevX8PDYyqs4+/BY1ALJCUmwMnJCTt37sSdO3dY+pwHKN0zf/PmTTRv3hyWlpZ4/PgxhgwZAmtraxw4cABhYWHYunVrbsRJREQaKi2ZZ808Ud4RHh6OBQsWYM2aNdCCgNfQdgCA7du3o1PnLp8miJQpN5M5fX1K98yPGzcOAwcOREhIiNz4z+3atcPff/+t0uCIiEjzscyGKA8QApCl4NnTJxg5ciTs7e2xePFixMXFoUaNGlKzLp07ZzvTO2kWpf9aV65cwc8//5xuecmSJaUp2omIqOBgzzyR5nv8+BEQfhGltJ/ht40bkJCQgPr168PHxwd/+/mpOzz6Akon8wYGBoiOjk63/P79+7CxsVFJUES5bfPmzeknt/iP6dOnSxOkEVHm2DNPpLlCQkIwcOBAODtXlZY1btwIp06dgr+/P9q0aQMtLS01RkhfSulk/rvvvsPMmTORlJQEANDS0kJYWBjc3d3RtWtXlQdYEL158wZDhw5F6dKlYWBggGLFiqF169Y4d+6c1MbOzg5aWlrQ0tKCsbExqlSpgg0bNsjt5+zZs1Kbz3+mTp3630Mqzc7ODkuWLPni/XyuSZMmGDNmjNLbHThwAC1btoSNjQ3Mzc1Rr149HD9+/IvjmTBhAk6dOiU9HjBgADp37vzF+9UkQghMmzYNxYsXh5GREVq0aIGQkJAst/n777/RsWNHlChRAlpaWjh48KDc+qSkJLi7u6NKlSowMTFBiRIl0K9fP7x48SIXz4TUiTfAEmme4OBguLq6omLFiti8ebP0PgUAn6M+aNasGZP4fELpZH7RokWIiYlBkSJFEBcXBxcXF5QvXx5mZmaYPXt2bsRY4HTt2hWBgYHYsmUL7t+/j8OHD6NJkyZ49+6dXLuZM2ciPDwcQUFB6Nu3L4YMGQIfH590+7t37x7Cw8Oln0mTJn2tU/kq/v77b7Rs2RJHjx7FtWvX0LRpU3Ts2BGBgYFftF9TU1MUKlRIRVGqTmJiYrplQgipd1QZ3t7eWLZsGdasWYNLly7BxMQErVu3Rnx8fKbbfPz4EVWrVsXKlSszXB8bG4uAgAB4eHggICAABw4cwL179/Ddd98pHR/lDSyzIdIQQuDWjevo69oblStXxs6dOyGTydChQwecPXtG3dFRbhE59M8//4iVK1eK+fPnC19f35zu5otERUUJACIqKirduri4OBEcHCzi4uLUEFnORURECADi7NmzWbYrU6aMWLx4sdwya2trMXbsWOnxmTNnBAARERGRbvvLly+LFi1aiEKFCglzc3PRuHFjce3aNWm9TCYTnp6ewtbWVujr64vixYuLkSNHCiGEcHFxEQDkftL8888/omHDhsLQ0FCUKlVKjBw5UsTExEjrV65cKcqXLy8MDAxEkSJFRNeuXYUQQvTv3z/dPkNDQxV92tJxcnISM2bMyHT9pk2bhIWFhfjjjz+keFq1aiXCwsKkNp6enqJq1arS7/+N78yZMyIhIUEMHz5cFCtWTBgYGIjSpUuLOXPmKBXrrVu3RJs2bYSJiYkoUqSI6Nu3r3jz5o203sXFRQwfPlyMHj1aFCpUSDRp0kT62x49elTUqFFD6OnpiTNnzih1XJlMJooVKyYWLFggLYuMjBQGBgZi165dCu0DgPjjjz+ybXf58mUBQDx58kSh/ebV929B9fvvv4vp06eLS5cuqTsUogLrypUronu3rkI88xfimb8wNjIU33//vQgICEhtkJIsrRMpyfIb58Y6+mJZ5bmfy/Htyg0bNsSwYcMwceJEtGjRIscfJvKM5Fjg7eXUf3ORqakpTE1NcfDgQSQkJCi0jUwmw/79+xEREQF9fcUmdPjw4QP69+8Pf39/XLx4EQ4ODmjXrh0+fPgAANi/fz8WL16MtWvXIiQkBAcPHkSVKlUApJa1lCpVSvpmIDw8HADw8OFDtGnTBl27dsXNmzexZ88e+Pv7Y8SIEQCAq1evYtSoUZg5cybu3buHY8eOoXHjxgCApUuXol69ehgyZIi0T1tbW6Weu8+fjw8fPsDa2jrLdrGxsZg9eza2bt2Kc+fOITIyEr169cqw7YQJE9CjRw+0adNGiq9+/fpYtmwZDh8+jN9//x337t3Djh07YGdnp3CskZGRaNasGapXr46rV6/i2LFjePXqFXr06CHXbsuWLdDX18e5c+ewZs0aafmkSZMwb9483LlzB87Ozvjnn3+k11BmPzt27AAAhIaG4uXLl3LvXwsLC9StWxcXLlxQ+BwUERUVBS0trWzvU6C8Ke1bIfbME31958+fR9u2bVG7dm0cOXJEWn7p0iXs378f1atXV2N09DUodOVdtmyZwjscNWpUjoPRWMmxgE814EMIYOYAtL0O6BrnyqF0dXWxefNmDBkyBGvWrEGNGjXg4uKCXr16wdnZWa6tu7s7pk6dioSEBCQnJ8Pa2hqDBw9Ot89SpUrJPX7y5AmaNWsmt2zdunWwtLSEn58fOnTogLCwMBQrVgwtWrSAnp4eSpcujTp16gAArK2toaOjAzMzMxQrVkzax9y5c+Hq6irVvTs4OGDZsmVwcXHB6tWrERYWBhMTE3To0AFmZmYoU6aMdJGxsLCAvr4+jI2N5faZEwsXLkRMTEy6hPi/kpKSsGLFCtStWxdAasLs6OiIy5cvS+eaxtTUFEZGRkhISJCLLywsDA4ODmjYsCG0tLRQpkwZpWJdsWIFqlevjjlz5kjLfvvtN9ja2uL+/fv45ptvAKQ+l97e3lKbtA9QM2fORMuWLaXltWrVwvXr17M8ZtGiRQFAGn0q7fHn61U5MlV8fDzc3d3Ru3dvmJubq2y/pDlYM0/0FQkBCBn+8ffH9Bkzcfr0aQCp77/evXtLzSpXqqSuCOkrUyiZX7x4sUI709LSyp/JfGRQaiIPpP4bGQQUrpP1Nl+ga9euaN++Pf755x9cvHgRPj4+8Pb2xoYNGzBgwACpnZubGwYMGIDw8HC4ublh2LBhKF++fLr9/fPPPzAzM5MeW1lZ4dWrV5g6dSrOnj2L169fIyUlBbGxsQgLCwMAdO/eHUuWLEHZsmXRpk0btGvXDh07dsyy5+3GjRu4efOm1PMLpNZyy2QyhIaGomXLlihTpoy0zzZt2qBLly4wNlbdB6OdO3dixowZOHToEIoUKZJlW11dXdSuXVt6XLFiRVhaWuLOnTvpkvnMDBgwAC1btkSFChXQpk0bdOjQAa1atVI43hs3buDMmTMwNTVNt+7hw4dSMl+zZs0Mt69Vq5bcYyMjowxfA+qSlJSEHj16QAiB1atXqzscyiVM5om+DiEETp86ieaOxmhUThcXL5yHrq4u+vfvj8mTJ6OcvR0QflHdYdJXplAyHxoamttxaDbLyqk98mk985aVc/2QhoaGaNmyJVq2bAkPDw8MHjwYnp6ecsl84cKFUb58eZQvXx579+5FlSpVUKtWLTg5Ocnty97ePl15Q//+/fHu3TssXboUZcqUgYGBAerVqyfdXGlra4t79+7h5MmT8PX1xbBhw7BgwQL4+flBT08vw5hjYmLw888/Z/iBrnTp0tDX10dAQADOnj2LEydOYNq0aZg+fTquXLmikvKL3bt3Y/Dgwdi7d+9XK/2qUaMGQkND4ePjg5MnT6JHjx5o0aIF9u3bp9D2MTEx6NixI+bPn59uXfHixaXfTUxMMtz+v8v/+ecftG3bNstjrl27Fq6urtI3DK9evZI71qtXr1QyJGdaIv/kyROcPn2avfL5GMtsiHKXEAJHjx6Fl5cXbt28gY8hJwEAQ4YMxthxEz59K8zZWgukL7ryCiEAIP8PbaRrnFpaExmUmsjnUolNVpycnNINAfg5W1tb9OzZE5MnT8ahQ4ey3d+5c+ewatUqtGuXOn3z06dP8fbtW7k2RkZG6NixIzp27Ijhw4ejYsWKuHXrFmrUqAF9fX25Ya6A1MQ2ODg4y55hXV1dtGjRAi1atICnpycsLS1x+vRpfP/99xnuU1G7du3Cjz/+iN27d6N9+/YKbZOcnIyrV69KvfD37t1DZGQkHB0dM2yfWXzm5ubo2bMnevbsiW7duqFNmzZ4//59tjX7QOpztn//ftjZ2akkEVKmzMbe3h7FihXDqVOnpOQ9Ojoaly5dwtChQ78ojrREPiQkBGfOnNHIUYFIddgzT6Ri/5bSyGQyHPrzL8yaNQsBAQEAAGsrS6nZksVLAG2+7wq6HGUPGzduxOLFi6XxqB0cHDBmzJgM67XzDV3jXC2tSfPu3Tt0794dP/74I5ydnWFmZoarV6/C29sbnTp1ynLb0aNHo3Llyrh69Wq68ov/cnBwwLZt21CrVi1ER0fDzc0NRkZG0vq0MWnr1q0LY2NjbN++HUZGRtKnfzs7O/z999/o1asXDAwMULhwYbi7u+Pbb7/FiBEjMHjwYJiYmCA4OBi+vr5YsWIF/vrrLzx69AiNGzeGlZUVjh49CplMhgoVKkj7vHTpEh4/fgxTU1NYW1srNKX0zp070b9/fyxduhR169aV6r2NjIxgYWGR6XZ6enoYOXIkli1bBl1dXYwYMQLffvttpiU2dnZ2OH78OO7du4dChQrBwsICy5cvR/HixVG9enVoa2tj7969KFasmMLfNAwfPhzr169H7969MXHiRFhbW+PBgwfYvXs3NmzYoHRypEyZjZaWFsaMGYNZs2bBwcEB9vb28PDwQIkSJeTG02/evDm6dOki3cgcExODBw8eSOtDQ0Nx/fp1WFtbo3Tp0khKSkK3bt0QEBCAv/76CykpKdLfxNraWuGbtCnvYM88kWqlJCdB5/UVaAPo69oHsXHxMDExwbBhwzB+3Fgg5ZG6QyQNovRoNtOmTcPo0aPRsWNH7N27F3v37kXHjh0xduxYTJs2LTdiLFBMTU1Rt25dLF68GI0bN0blypXh4eGBIUOGYMWKFVlu6+TkhFatWin0d9i4cSMiIiJQo0YN/PDDDxg1apRcjbmlpSXWr1+PBg0awNnZGSdPnsSff/4p9bDOnDkTjx8/Rrly5aSZf52dneHn54f79++jUaNGqF69OqZNm4YSJUpI+zxw4ACaNWsGR0dHrFmzBrt27UKlf2/SmTBhAnR0dODk5AQbGxupft/Ozg7Tp0/P9FzWrVuH5ORkDB8+HMWLF5d+Ro8eneVzYGxsDHd3d/Tp0wcNGjSAqakp9uzZk2n7IUOGoEKFCqhVqxZsbGxw7tw5mJmZwdvbG7Vq1ULt2rXx+PFjHD16VPoQMmDAADRp0iTTfZYoUQLnzp1DSkoKWrVqhSpVqmDMmDGwtLRU6IPMl5o4cSJGjhyJn376CbVr10ZMTAyOHTsGQ0NDqc3Dhw/lvrW5evUqqlevLt28PG7cOOlvDQDPnz/H4cOH8ezZM1SrVk3ub3L+/PlcPyf6+tgzT6QaycnJ2LZtG2rX+XQ/l7m5GaZMmYLHjx/D29sbRbO5H4wKHi2RViujIBsbGyxbtkzujmkgtcxh5MiR6Uo1clN0dDQsLCwQFRWVrh43Pj4eoaGhsLe3l0tMKG+JjY1FoUKF4OPjk2VSrKlcXFzQtGnTLD+MUHp8/+YtS5YsQVRUFAYPHoySJUuqOxyiPCcxMRHbtm3D3Llz8fDhQxgbGUp18RFGFWFl/Vmpoizl002uxb+VL7PRpHX0xbLKcz+n9HeiSUlJGZZw1KxZM0czUBJl5cyZM2jWrFmeTOSjoqLw8OFDuXF/ifIjltkQ5UxCfDy2bt2MRYt+xb37qaXLhQsXxiR3N6mNFefnoGwo/T3+Dz/8kOEQc+vWrYOrq6tKgiJK0759+zybDFtYWODZs2cZDjtJlJ+wzIZIOXFxcVi2bBkqV66EIe2r4O7pTbC3K4NFixbh8ePHGD9uvLpDpDwkxzfAnjhxAt9++y2A1FnGwsLC0K9fP4wbN05q9+uvv6omSiIi0ljsmSdSTExMDNasWYOFCxfi1atXMDb6VEZ4+3YQjIz/7fzhEJOkBKWvvEFBQahRowaA1BvjgNSvhAoXLoygoCCpXb4frpKIiACwZ54oS0IgKioSa9eugfeCRXj37h2A1MEdPKb+IjUzMjTKbA9EWVI6mT9z5kxuxEFERHmQTCaT5hxhMk8kLyIiAqtWLseUgc0xsW9jzJgxEw4ODvjll1/g6uoKPR1tzthKXyzffyeq5GA9RKQB+L7NOz6fSI1lNkSp3rx5g8WLF2PFihVISU7ClIHNAQC//fYbunbr/um9wnIaUgGlr7zx8fFYvnw5zpw5g9evX0Mmk8mtT5uhTN309PQApA5t+PlkSESk+WJjYwF8eh+T5vp8FDP2zFOB9e+Mra9evcKCRb9i9erV0nWsbu1PIwD27NGDwzeSyimdzA8aNAgnTpxAt27dUKdOHY2tjdfR0YGlpSVev34NIHWCIE2NlYhSCSEQGxuL169fw9LSkslhHvB5z/zXmOiMSBM9f/4UJbWeoiiA1atWIjYuHjVr1oSHhwc6tm8HvLqs7hApH1M6mf/rr79w9OhRNGjQIDfiUalixYoBgJTQE1HeYGlpKb1/SbN9PpINO0yooHn8+DHmzZuHPbt3IeL2UQBA3bp14DZxEtq0aZP6nmApDeUypZP5kiVLwszMLDdiUTktLS0UL14cRYoUQVJSkrrDISIF6OnpsUc+D+FINlQQPXjwAHPmzMG2bduQnJwsN8TkqZOnoKXD+0fo61H61bZo0SK4u7tjzZo1KFOmTG7EpHI6Ojr8j4aIKBcwmacCQwjcvXsHC7y9sXnrNumewZYtW8JzmofUjN9Q0demdIFjrVq1EB8fj7Jly8LMzAzW1tZyP0REVHBwwigqCG7evIkffnBFRfMIbJw1BIYG+mjfvj0uXLiAEydOoEH9+uoOkQowpa++vXv3xvPnzzFnzhwULVqUn0CJiAow9sxTfnbt2jV4eXnh0KFDMDYyxLb5wwEA5/z9Ua1GTTVHR5RK6WT+/PnzuHDhAqpWrZob8RARUR7CnnnKV/4dYvLS5UuYMXMWfHx8AKSWznTt+r3UrFq1amoKkCg9pctsKlasiLi4uNyIhYiI8hj2zFN+4u//DxB+EXVtBfzOnoG2tjb69u2L27dvY+uWreoOjyhDSifz8+bNw/jx43H27Fm8e/cO0dHRcj9ERFRwMJmnvE4IgZMnT6Jx48Zo3bq1tLxfv364d+8etm3bBkdHRzVGSJQ1pb8XbdOmDQCgefPmcsuFENDS0pKbQISIiPI3ltlQXiWEgI+PD7y8vHDx4kUAgKWFubR+9apVnK2V8gSlr75nzpzJjTiIiCgPYs885TWylBQcOfIn5s/3xrnzFwAAhoaG+OmnnzDRbTyAp+oNkEhJSifzLi4uuREHERHlQeyZp7wiJSUF+/fvx6IF3rh0cCk6/r4ANlW/w4CBP2L8+PGps07LUoBwJvOUt+T46hsbG4uwsDAkJibKLXd2dv7ioIiIKG9gzzxpuuTkZOzevRuzZ8/G3bt35WZrDQ4Ohk2RomqMjujLKZ3Mv3nzBgMHDpSGa/ov1swTERUcTOZJIwmBpKQE7Nq1CzO9ZuPhw4cAAEtLS7hNGCc1sylcWF0REqmM0qPZjBkzBpGRkbh06RKMjIxw7NgxbNmyBQ4ODjh8+HBuxEhERBqKZTakaRISErBhwzrovbmGfi2+QfiL5yhUqBBmz56NJ0+e4JfJv6g7RCKVUvrqe/r0aRw6dAi1atWCtrY2ypQpg5YtW8Lc3Bxz585F+/btcyNOIiLSQOyZJ00RFxeH9evXw9vbGxHv32Fwu5MAgDmzZ2PQkJ9gamqa2lDGCgLKX5RO5j9+/IgiRYoAAKysrPDmzRt88803qFKlCgICAlQeIBERaa60nnkm8/TV/Ttb68fYj1izdj0WLFiAV69eAQDKlysrNRs9ejSHmKR8TekymwoVKuDevXsAgKpVq2Lt2rV4/vw51qxZg+LFi6s8QCIi0lzsmSd1iY6OAsIvwiTqFqZ5TMWrV69QpkwZrF69GkFBt9QdHtFXo3TP/OjRoxEeHg4A8PT0RJs2bbBjxw7o6+tj8+bNqo6PiIg0WFoyz5p5+loiIiKwbNkyrF+3Bs8u7wMAlC1rj7HjJuCHH36Anp4eS2moQFH66tu3b1/p95o1a+LJkye4e/cuSpcujcK8K5yIqEBhmQ19LW/fvsXixYuxYsUKREdHyw0xGRgYCF09AzVGR6Q+X9yVYmBgAG1tbV7IiYgKIPbMU64SAq9evcSyZcuwdNlyfPz4EQBQpUoVeE7zkJrp6vD1RwVXjoam3LhxI4DUi3jjxo1Ro0YN2Nra4uzZs6qOj4iINBhr5im3PH/+HG5u41E05RFmD+8AIUtBjRo18Mcff+D69evo+v336g6RSCMonczv27cPVatWBQD8+eefePz4Me7evYuxY8diypQpKg+QiIg0F8tsSNWePHmCYcOGoWzZsli1arW0fP/+fbh69So6d+4MbW2l0xeifEvpd8Pbt29RrFgxAMDRo0fRvXt3fPPNN/jxxx9x6xbvHiciKkhYZkMqIQQePQzBsKH/Q/ny5bF69WokJiaiYcMGUpM2rdtAS0tLjUESaSalk/miRYsiODgYKSkpOHbsGFq2bAkAiI2NZc8MEVEBwzIb+lJ3797F4MGDUNbwNVZN/QH6erpo0aIF/Pz8cPzYcXWHR6TxlE7mBw4ciB49eqBy5crQ0tJCixYtAACXLl1CxYoVVR4gERFprrQyG/bMk7Ju3bqFnj17wsnJCbt27ZKWnz59Cr6+vmjcuLEaoyPKO5S++k6fPh2VK1fG06dP0b17dxgYpA4FpaOjg0mTJqk8QCIi0lzsmSeF/Ttj6/Xr1zFz1mz88ccf0qqOHTtKv9etU1cd0RHlWTnqSunWrVu6Zf379//iYIiIKG/hDbCkqCtXLqF2yRRUKwocP+YDLS0tdO/eHVOmTIFz5UpA+EV1h0iUJ/F2cCIiyjHeAEvZ+eeff9CqVSs0adJUWtarZ0/cvn0be/bsgbOzsxqjI8r7ePUlIqIcY5kNZUQIgdOnT8PLywt+fn4AAHMzU2n9xo0bAW2+ZohUgT3zRESUY7wBlj4nZDKcOOaD5s2aSCPS6Onp4eeff8bNmzey3jglHogOBpJjFT9gTrb5ku2INBCTeSIiyjH2zBOQ2hN/+PBhNG7cCK2qmOP09jmwtrLEyJEj8ejRI6xZswZlSpfJfAfJscC1AUDgT8CxmvJJdmaJd1bbZCWn2+WWzM7va3/g4AecPEvprpSXL1/i0qVLePnyJQCgWLFiqFu3rjSRFBERFRy8AbZgk8lk2L9/P2bNmoWbN2/C2MgwNSn8+Ai3b1xBMdvy8hv8uw42zoC+2aflUUFA3LPU32NCgMggoHCdT4l33DMgZAHQ7jqga5z1Njk9VnbbZbcuK5ltl9n5ZXXeXxKjsnF8ybnRV6Nwz/zHjx/Rt29flCpVCt26dcO0adMwbdo0dOvWDaVKlcIPP/yA2Fh+miMiKkh4A2wBJARSkhKxZ/cuVKlSBT169MDNmzdhZmaGyW6jpV7vYoHt5Ht5s+oRt3QGTB1SfzdzACwrp/6eUeKd3TY5PVZ222XXo5+TbxAyO7+szjunMeYkji85N/pqFE7mR48ejcuXL+PIkSOIj4/Hq1ev8OrVK8THx+Po0aO4fPkyRo8enZuxEhGRBhFCsMymgElKSsL2bVuh8/oKejYqjcehj2BhYQFPT088fvwYU0d0yjwpzCph1DNJ7Q1udQloe/1Tr3BWiXdm2+T0WNltl9MEOycfSLI675zGmBsfjLL7EEBfhcLJ/P79+7F582a0bt1a7qKto6ODVq1a4bfffsO+fftyJUgiItI8MplM+p098/lbQkIC1q1bh2+++QY//+9/0nJPz2l48uQJpk+fDmtr66yTwqzWAalJdeE68sl1Vol3Ztvk9FjZbZfTBDsnH0iyOu+cxpgbH4yye57pq1D46iuTyaCvr5/pen19fbkLOxER5W9p9fIAe+bznX9na42Lj8PG3zZj/vz5ePYsNaGzK20rNZvoNlF+iMm0pDAyKDWxyygxz2hdVtISb2Xk9Fg5jT8tqY0JyTxRziyWzM4vs+U5jTGncXzJudFXoSWEEIo0dHV1xZ07d7Bx40ZUr15dbl1gYCCGDBmCihUrYvv27bkSaEaio6NhYWGBqKgomJubf7XjEhEREBsbiwULFgAAPDw8oK3NAdLyi48x0TCJugUAMHFogdi4eJQoUQITJ07EkME/wjjyZmrD4t9yvPg0ybH5N6nNz+emwRTNcxW+8q5YsQJFixZFzZo1UahQITg6OsLR0RGFChVCrVq1UKRIEaxYsUIlwRMRkeZL65nX0tJiIp9PfPjwAfPmzYOTo5O0zNbWFqtWrcLDhw8xevRoGBsxmctQZqU7+UF+Prd8QOEyGysrK/j4+ODOnTu4ePGi3NCU9erVQ8WKFXMtSCIi0jwcySb/iIyMxLJly7BkyRJERESkDjH5r5s3b0DfwEiN0RFRVpS+Aqf1yBMRUcHGkWzyOCHw9u0brFy5Er8uXoLo6GgAQIUKFeDpMVVqpq+X+f1yRKR+SiXziYmJOHjwIC5cuCDXM1+/fn106tQpyxtkiYgof0krs2HPfN7z6tUrLFu6BLOHd4DnkFbw9vZG5cqVMXXqVHTr1g06WgDCL6o7TCJSgMJFjg8ePICjoyP69++PwMBAyGQyyGQyBAYGol+/fqhUqRIePHiQm7ESEZEGYc983vP8+XOMGTMG9vb2WLJkibR8584duHHjBnr27Mm/J1Eeo3B3ytChQ1GlShUEBgamu6M2Ojoa/fr1w/Dhw3H8+HGVB0lERJonrWeeyZ8G+3eIyafPnmLuPG9s3LgRiYmJAACXxo2kZp2+6wTwJmaiPEnhZP7cuXO4fPlyhkPjmJubw8vLC3Xr1lVpcEREpLl4A6zme/ToAcoavoatDrBl8yYkJiaiUaNG8PDwQItmTYGXl9QdIhF9IYU/hltaWuLx48eZrn/8+DEsLS1VEBIREeUFLLPRXPfu3UO/fv1QrdqneWGauLjg7Nmz+Pvvv9GyZUtoaWmpMUIiUhWFu1MGDx6Mfv36wcPDA82bN0fRokUBpN5Ec+rUKcyaNQsjR47MtUCJiEiz8AZYzRMUFIRZs2bh999/hxBCbojJI0eOcIInonxI4SvwzJkzYWJiggULFmD8+PHSJ3ohBIoVKwZ3d3dMnDgx1wIlIiLNwp55DSEEblwPxLz587B7z15p8XfffYdpHlMAJKkvNiLKdUrd7eLu7o4XL17gwYMH8Pf3h7+/Px4+fIgXL14wkSciKmB4A6z6Xbp0CV27fo+qReKwa9FomBgboVu3brh+/ToOHTqEmjVqqjtEIsplOfputGzZsihbtqyqYyEiojyEN8Cqj7+/P7y8vHDixIl/S2kmAACuXLkCR6dK6g2OiL4qpXrmg4ODMWzYMFSvXh3FixdH8eLFUb16dQwbNgzBwcG5FSMREWkgltl8RUJApCTj7JnTaNq0KRo1aoQTJ05AR0cHffv2lZo5VqyoxiCJSB0U7k7x8fFB586dUaNGDXTq1EnuBlhfX1/UqFEDhw4dQuvWrXMtWCIi0hy8AfbrEELg5InjaFnZDE2+MUD7Sxehp6eHgQMHYtKkSbAvU5qztRIVYApfgSdNmgR3d3fMnDkz3brp06dj+vTpcHNzYzJPRFRAsGc+dwkh8Oeff8LLywvBt4PwMeQkAODnn3/C2HETYGtrm9pQlqLGKIlI3RQus7l//z5cXV0zXd+7d2+EhISoJCgiItJ8vAE2FwgBWXIS/jiwH9WrV0enTp1w9epVGBkZSU1+XfTrp0SeiAo8hZN5Ozu71DFqM3HkyBGUKVNGJUEREZHmY8+8aqWkpGDPnt3QfnUZXeoWQ8j9ezA1NYW7uzvvSyOiTCk1znyfPn1w9uxZtGjRIt2kUceOHcPOnTtzLVAiItIsHM1GNZKSkrBjxw7MmTMHz589Rc9/y2kmTZqEYcNHoFChQqmlNOEP1RwpEWkiha/A3bt3R8mSJbFs2TIsWrQIL1++BAAUK1YM9erVw9mzZ1GvXr1cC5SIiDQLy2y+TGJiIjZv3ox58+YhNDQUAFCqZHFpvcfUqZyxlYiypVR3Sv369VG/fv3cioWIiPIQ9sznTHxcHLZs2YxFixYh5EFqb7uNjQ0mTJiAof/7GfgQpOYIiSgvUWqc+TRRUVG4d+8e7t27h6ioKFXHREREeQBr5pUTGxuLxYsXo1IlJ/zc0Rn3z25BWXs7LF68GI8fP8bEiRNhZmqq7jCJKI9Rqjtlw4YN+PXXX3Hv3j0AqcNmaWlpoUKFChg/fjwGDRqUK0ESEZHmYZmNYj58+IBVq1Zh0aJFePPmzb8ztqa6fTsIhkYmaoyOiPI6hZP5BQsWYPr06Rg1ahRat24tdwPsiRMnMHr0aERERGDChAm5FiwREWkOltlkQQhERkZgzZrVWLDwV7x//x4AULZsWXhM/UVqZmhgmNkeiIgUovAVeMWKFdi0aRN69Oght9zR0RFNmjRB1apV4ebmxmSeiKiAYJlNxt69e4eVK5Zj2uCWmNSvCby8ZuGbb77BlClT0KdPH+hqa3HGViJSGYVr5l+/fo0qVapkur5KlSp4+/atSoIiIiLNl1Zmw575VK9fv4a7uzvs7Owwf/58afnmzZsRHByMfv368bkiIpVTOJmvXbs25s2bJ128P5eSkoL58+ejdu3aKg2OiIg0V4HvmRcCkKUg/PkzjB07FnZ2dvD29kZMTAycnZ2lZt27dSu4zxER5Tqlymxat26NYsWKoXHjxnI183///Tf09fVx4sSJXAuUiIg0S0G/AfbZszCU0n6G4gDWrV2DuLh41K5dGx4eHujQri3w8pK6QySiAkDhnnlnZ2fcv38fXl5eMDMzw6NHj/Do0SOYmZlh1qxZuHv3LipXrpybsRIRkQYpqDfAPnr0CD/99BMqV/5Uelqv3rc4duwYLl26hI4dO0JLS0uNERJRQaLUFdjMzAxDhw7F0KFDcyseIiLKIwpamc39+/cxZ84cbN++HSkpKXJDTPqe8IWWTsH6UENEmiFHk0ZlJCkpCWFhYaraHRERabgCcQOsEAi+HYSB/fvB0dERW7ZsQUpKClq1agVfX1+pGXviiUhdVJbMBwcHw97eXlW7IyIiDZffe+avX78OV9fecLKMwqY5P8PQQB8dO3bEpUuXcPz4cdSvV0/dIRIRKVdmQ0RElCa/3gB75coVeHl54c8//0wtpVkwEgBw4fx5OFerruboiIjkKZzM16hRI8v1cXFxXxwMERHlHfnmBlghACHDxUsXMWPmLBw7dgxAaulM9+7dpGafDzdJRKQpFL4CBwcHo1evXpmW0oSHh+P+/fsqC4yIiDRbfiizEULgn7/90Li8Hr4tDfztdxY6Ojro27cvJk+ejAoO5TlbKxFpNIWT+cqVK6Nu3bqZjmRz/fp1rF+/XmWBERGR5hJCQCaTAcibPfNCCPj6+sLLywsB167iY8hJAMDAgQMxbvwElC1bNrWhLEWNURIRZU/hK3CDBg1w7969TNebmZmhcePGKgmKiIg02+ezgeelnnkhBI4cOQIvLy9cvnwZAGBlaSGtX7F8OaCdd86HiEjhZH7p0qVZri9XrhzOnDnzxQEREZHmSyuxAfJGMi9LScGffx7C/PneuHAxdWZWIyMj/Pzzz5g4YTyAJ+oNkIgoh1Q2NCURERUceaVnPiUlBbt378a3deugU+2iOL9vEWwKW2PixIl4/PgxFi9ejOLFi6s7TCKiHMt7hY5ERKR2n9/8qokTJiUnJ2Pnzp2YM2cO7t27Jzdb6507d1GosI0aoyMiUh0m80REpDSNHMlGCCQmxmPXrl2Y6TUbjx49AgBYWVlhott4qVkha2t1RUhEpHIssyEiIqVp2oRR8fHxWLduLfTfBqB/ywp4Gf4CNjY2mDdvHp48eYJJ7pPUHSIRUa5gMk9ERErTlAmjYmNjsXTpUpQrVw5jx46Vls+bNw+hoaFwd3eHmZmZGiMkIspdLLMhIiKlqa1n/t/ZWmM+xmD1mnVYuHAhXr9+DQBwKF9OajZyxAgOMUlEBYJKe+abNWsGLy8vxMbGqnK3RESkYdTVMx8VFQmEX4RpdBCme07D69evYWdnh7Vr1+LWrZtfNRYiIk2g0mS+dOnSOHXqFCpWrKjK3RIRkYb52jfAvn//Hp6ennB0/PT/S/ny5bBp0ybcv38fP/30Ewz0Db5KLEREmkSlXSqbN28GAERHR6tyt0REpGG+VpnN69evsXjxYqxYsQIxMTFyQ0wGXAuAjp5+rh6fiEjTqSSZj4yMhKWlpfTY3NxcFbslIiINlatlNkLgZfgLLFmyBMtWrERcXBwAoGrVqvCc5iE105SRdIiI1EnpMpv58+djz5490uMePXqgUKFCKFmyJG7cuKHS4IiISDPlVs/806dPMW7cGBQTjzFvdGdoQaBWrVo4dOgQAgMD0aVzZ5Uej4gor1M6mV+zZg1sbW0BAL6+vvD19YWPjw/atm0LNzc3lQdIRESaR9U986Ghofj5559Rrlw5rF27Tlp+8I8/cPnyZXz33XcaOdMsEZG6KX0VfvnypZTM//XXX+jRowdatWoFOzs71K1bV+UBEhGR5lHJDbBC4MGDECxYsAAbf9sk7bN5syZSk5YtWwJM4omIMqV0z7yVlRWePn0KADh27BhatGgBABBCSBdiIiLK3760zCY4OBg/DhyA8sZvsNZzAAz09dCyZUv8/fff8Dnqo8pQiYjyNaWT+e+//x59+vRBy5Yt8e7dO7Rt2xYAEBgYiPLly6s8QCIi0jw5LbO5ceMGunfvjsqVK2PP779Ly8+ePYMTJ06gUaNGKo2TiCi/U7rMZvHixbCzs8PTp0/h7e0NU1NTAEB4eDiGDRum8gCJiEjzKNwz/++MrQGBAZgxcxYOHz4srfruu47S77Vr1c6VOImI8julk3k9PT1MmDAh3fKxY8eqJCAiItJ8itbMX7x4Ht+WBmoUA076noCWlhZ69OiBKVOmoEolJyD84tcIl4go38rRDLDbtm1Dw4YNUaJECTx58gQAsGTJEhw6dEilwRERkWbKrszGz88PzZs3R/PmLaRlvXv3RnBwMHbv3o0qVap8lTiJiPI7pZP51atXY9y4cWjbti0iIyOlC7qlpSWWLFmi6viIiEgDyZXZCAEkfoB4fR6nTvyJxo0bo0mTJjh9+rRcsr9h/XpUrFhRXSETEeVLSifzy5cvx/r16zFlyhS5r1dr1aqFW7duqTQ4IiLSTJ+X2YjED8ARJ2idbIDSQZ1w9dI/0NfXx9ChQ3Hr1s1sdhQPRAcDybFfIWoiovxH6WQ+NDQU1atXT7fcwMAAHz9+VElQRESk2dKS+Xv37mFIzwZA3DMAgEMxgVkTeuLRo0dYtWoVStuWzjxhT44Frg0AAn8CjtXU3IQ+qw8ceeHDSG7EmBfOm6iAUDqZt7e3x/Xr19MtP3bsGBwdHVURExERabCUlBQ8evQIALB582YcPBsCGJUCACQb2WPcjN9QsmTJ1MZZJexRQdKHAMSEAJFBX/Es/iMnHzi+5MOIqpPh3PjAlNc/hBEVEEon8+PGjcPw4cOxZ88eCCFw+fJlzJ49G5MnT8bEiRNzI0YiIlI3IZCclIBdO3egcuXKuHgxdRQaXV1d/Dx8PN7W+wdoeR66HW4BusaftssqYbd0BkwdUn83cwAsK39a9zV7k3P6gSOnH0ayS4Yzi1PV8ec0Rk36EEZEyifzgwcPxvz58zF16lTExsaiT58+WL16NZYuXYpevXrlRoxERKRGiYmJ2LJlE3RfX0VvFzuEPXkMQ0NDAMDcuXMxe/ZsFC5mB9jUA/RM5DfOKmHXMwHaXQdaXQLaXv/0ISCnyW5W63KanGYVf1brsoolq+NlFmduxJ/TGLPbJxF9VVpCCJHTjWNjYxETE4MiRYqoMiaFRUdHw8LCAlFRUTA3N1dLDERE+VVCQgJ+++03zJs3D2/fvMbHkJMAgEW7zsG6kA3CwsLQuXNnVK1aNesdJcemJoOWleV77TPz5gLgW//T41aXgMJ1Un//92ZbxD1LTSjbXf+0z6zWZbXPpI+AT/XUpNXMQf6DRXbxZ7Yuq1iyOl5mceZG/DmNMbvnhIhUQtE8N0fjzKcxNjZWWyJPREQqJgQgS0FcbAyWLVuGcuXKYdiwYQgLC0PRokWlZuPHjYeWlhaAzMeZl6NrnJp4Kpr0ZdXzm9Oyl5x8Q6BI/JmtyyqWrI6XWZy5EX9OY8zuOSGir0rpGWDt7e2li3hG0m6KIiKivCUmJhqm0UEwAjB5kjti4+JRqlQpuLu7Y9CPA4CIG1JbuXHmVS0tkcyo5zctqU3rMc6o7CWjdVntE/iUnKpKVrFkdbzM4syN+HMaIxFpFKWT+TFjxsg9TkpKQmBgII4dOwY3NzdVxUVERF9JVFQUVq5ciTWrVyLs4u8AgDJlymD0mLEYMGAADAwMAFmK3DbZzQD7xZRNdrNbl9U+c0N2sWQlszhVHf+XxEhEGkPpq/Do0aMzXL5y5UpcvXr1iwMiIqKvIyIiAkuXLsXSpUsRGRkJYyNDad2NG9ehp2+Y6bafTxr11WWV1GpSb7ImxZKZvBAjEWXpi2rmP9e2bVvs379fVbsjIqLcIATevnkNz2keKFOmDGbMmIHIyEg4Ojpi48aNUjM9Xb0sd5OrZTZERKQwlSXz+/btg7W1tap2R0REKvby5Uv8MnkSCieGYMbPbZCSnARnZ2f8/vvvCAoKQq+ePRXeV66X2RARkUKUvgpXr15d7gZYIQRevnyJN2/eYNWqVSoNjoiIvtyzZ8/g7e2N9evXQ1sLmDPyOwDAnj270a59R2hr/9uv85+6+KywZ56ISDMoncx37txZ7rG2tjZsbGzQpEkTVKxYUVVxERFRTgkBCBmehD3B3Hne2LRpExITEwEATZs0lpp1aN8B0M7ZF7TsmSci0gxKX4U9PT1zIw4iIlKRhw8foJzRa5TRA7Zt3YLExES4uLjAw8MDzZq4AC8vffEx1HoDLBERSRRK5qOjoxXeIWdiJSJSjzt37mD27Nk4dPAPfLh3AgDQrGlTuLlPQuPG//bIK1FKkxkhBMtsiIg0hELJvKWlZZYTRQGpF3ctLS2pt4aIiL6OmzdvYtasWdi3bx+EEHJDTP7555+AtmoTbplMJv3OMhsiIvVS6Cp85syZ3I6DiIiUIQQCA69h3rz5+H3vPmlx586dMc1jCoCEXDt0yme9++yZJyJSL4WSeRcXl9yOg4iIFHThwgV4z5+HP1ZOxJ7FY3DkyBG079ARU6ZMgbOzc2opTfjFXDv+59/AsmeeiEi9cnwVjo2NRVhYmDRCQhpnZ+cvDoqIiNLz8/ODl5cXTp069W8pzUQAwNWrV1HR0emrxZGcnJrMa2lpfRrWkoiI1ELpZP7NmzcYOHAgfHx8MlzPmnkiIhURAkKWgtNnzmDGTC/8888/AFJ7w/v16yc1q1ihwlcNiyPZEBFpDqW7VMaMGYPIyEhcunQJRkZGOHbsGLZs2QIHBwccPnw4N2IkIipwhBA4ftwHWi8vobmjMa5dvQJ9fX3873//Q0hICFarcZI+jmRDRKQ5lO6ZP336NA4dOoRatWpBW1sbZcqUQcuWLWFubo65c+eiffv2uREnEVGBIJPJcPjwYcyaNQt3gm/jY8hJAMCwYUMxesw4lCpV6t+G6vsWlBNGERFpDqV75j9+/IgiRYoAAKysrPDmzRsAQJUqVRAQEKDa6IiICgIhkJKUiP379qJatWro0qULrl27BmNjY6nJAu8FnxJ5NZOxzIaISGMoncxXqFAB9+7dAwBUrVoVa9euxfPnz7FmzRoUL15c5QESEeVnycnJ2LVrJ3ReX0HXeiXw8EEIzMzM8Msvv+DOnTvqDi9DySmpZTbsmSciUj+lr8SjR49GeHg4AMDT0xNt2rTBjh07oK+vj82bN6s6PiKifCkpKQnbtm3D3Llz8eL5M/T+t5xmypRfMHTYCFhZWf07xGSImiNNjzfAEhFpDqWT+b59+0q/16xZE0+ePMHdu3dRunRpFC5cWKXBERHlNwkJCdi0aRPmzZuHJ0+eAABsS5WQ1v8y+ReVz9iqamlDUzKZJyJSP6XLbPz9/eUeGxsbo0aNGkzkiYiyEBcbi1UrV6ByJScMHToUT548QdGiRbFgwQIEBwerOzyl8AZYIiLNoXQy36xZM9jb2+OXX37Jc/8BERF9bTExMVi4cCEqOTliWOfqCPHbivLlymLp0qUIDQ3FhAkTYGpiqu4wlcIyGyIizaF0t8qLFy+we/du7Nq1C/PmzYOzszNcXV3Ru3dvjRlpgYhI3aKjo7FixQr8+uuvePfu3b8ztqYKCroFA0PjLLbWbCnJvAGWiEhTKN0zX7hwYYwYMQLnzp3Dw4cP0b17d2zZsgV2dnZo1qxZbsRIRJQ3CIGI9+8wZ7YXypQpgylTpuDdu3coV64cVq/+NMmTgb6BGoP8cuyZJyLSHEon85+zt7fHpEmTMG/ePFSpUgV+fn6qiouIKE95+/Ytpk/3hFXcXfwyoBkSE+JRsWJFbNu2DXfv3kW/H/qpO0SVSRuaksk8EZH65TiZP3fuHIYNG4bixYujT58+qFy5Mo4cOaLK2IiINN7Lly/h5uYGOzs7LFiwQFq+detWBAUFoW/fvvmuHIU3wBIRaQ6lr8STJ0/G7t278eLFC7Rs2RJLly5Fp06d5GYqJCLKt4QAhAwvwl9gvvdCrFu3DvHx8QCA+vW+lZp1/f57jR9iMqc4NCURkeZQOpn/+++/4ebmhh49enA4SiIqcMLCHqO07guUALBhfWoi/+2338LDwwNtW7cCXl5Sd4i5jjXzRESaQ+lk/ty5c7kRBxGRRnvw4AHmzp2LfXt/R9SdYwCAhg0bwG3iJDRv3hxaWlqpM7YWAEzmiYg0BwseiYiycPfuXcyePRs7d+6ETCaTG2Ly+LHj+baUJiscmpKISHN80Wg2RET5khC4HXQL/fv1hZOTE7Zv3w6ZTIa2bdvi9OlT6o5O7VJk7JknItIUTOaJiD4TEBCA3r17opJVNLbMHQojQwN06tQJV65cwdGjR1G3Tl11h6h2yeyZJyLSGLwSExEBuHTpEry8vHDkyJHUUppFowEAFy9eRBXnqmqOTrPIZDIA7JknItIETOaJqGD6d4jJc+fPY8ZML/j6+gIAtLW10atnT6lZlcqV1RWhxuLQlEREmkOhZN7Kyip1pAYFvH///osCIiLKbUIInD1zGk0rGKKBvTbO+f8DXV1d/PDDD5g8eTIcypUFwi+qO0yNxUmjiIg0h0JX4iVLlki/v3v3DrNmzULr1q1Rr149AMCFCxdw/PhxeHh45EqQRESqIITAsWPH4OXlhRvXA/Ex5CQAYNCgQRg3fgLs7OxSGxaQISZzKq1mnj3zRETqp1Ay379/f+n3rl27YubMmRgxYoS0bNSoUVixYgVOnjyJsWPHqj5KIqKc+LeURgiBw38dwaxZs3D16lUAgLWVpdRs2dKlBXKIyZySsWeeiEhjKD2azfHjx9GmTZt0y9u0aYOTJ0+qJCgiIlWQpSQD4Reh9fIS+vTuhatXr8LY2Bjjx49H8O3b6g4vz+LQlEREmkPpZL5QoUI4dOhQuuWHDh1CoUKFVBIUEdGXSElJwc6dO1Gnbh1pmampCSZPnozHjx9j4cKFKFq0qBojzNtYZkNEpDmU/o50xowZGDx4MM6ePYu6dVPHW7506RKOHTuG9evXqzxAIiJFJSUlYceOHZgzZw5CQkLkZmu9c+curAsVVmN0+QdvgCUi0hxKX4kHDBgAR0dHLFu2DAcOHAAAODo6wt/fX0ruiYi+GiGQmBiP7du3w2vWHDx+/BgAYG1tDfeJE6Rm1lZWagow/+HQlEREmiNH3Sp169bFjh07VB0LEZFS4uPjsXnTb/jfd1XxYxsnjBz5EkWKFMGECRMwdOhQmBobcYjJXMCeeSIizaF0zTwAPHz4EFOnTkWfPn3w+vVrAICPjw9u84YyIvoKPn78iF9//RX29vYYP368tNzb2xuhoaFwc3ODqampGiPM39KSefbMExGpn9LJvJ+fH6pUqYJLly5h//79iImJAQDcuHEDnp6eKg+QiAhCALIUREdFYt68ebCzs8P48ePx8uVLlCpVSmo2fNgwGBsbqzHQgiHl3xtg2TNPRKR+SifzkyZNwqxZs+Dr6wt9fX1pebNmzXDxIr/OJiLVi4yMAMIvwjzmNrxmzsDbt29RtmxZrF+/Hrdu3VR3eAUOh6YkItIcSifzt27dQpcuXdItL1KkCN6+fauSoIiIAODt27eYOnUqHB0rSsu++cYBW7Zswb179zB48GDo6+lnsQfKDRyakohIcyj9HamlpSXCw8Nhb28vtzwwMBAlS5ZUWWBEVHC9evUKixYtwqpVq/Dx40e5ISavXrkKHSbwaiWTyQCwzIaISBMo3TPfq1cvuLu74+XLl9DS0oJMJsO5c+cwYcIE9OvXLzdiJKIC4vnzZ5joNh6VnByxYMECfPz4EdWqVcPOnZ9Gz2JvsObg34KISP2UTubnzJmDihUrwtbWFjExMXByckLjxo1Rv359TJ06NTdiJKJ87smTJxg2bBgqV6oE7zHf4+3NP9G4UUP8+eefCAgIQKfvOqk7RMoAe+aJiNRP6Suxvr4+1q9fDw8PDwQFBSEmJgbVq1eHg4NDbsRHRPnYw4cPMXfuXGzZsgXJycly5TRnz5yBls6/lyihpgApS+yZJyJSvxx3q5QuXRqlS5dWZSxEVBAIgfv378Hb2xubt2yVxixv1qwZPKd5SM20tLTUFSEpQFtbm38jIiINoFAyP27cOIV3+Ouvv+Y4GCLK34KCgrDAex62zB2KDTMHYdeuXWjs0hIeHh6oX78+IEvhjK15BHvliYg0g0LJfGBgoNzjgIAAJCcno0KFCgCA+/fvQ0dHBzVr1lR9hESU5wUGBmLWrFk4cOAAjI0MsWXuUADA33/7oWatOmqOjnKC9fJERJpBoavxmTNnpN9//fVXmJmZYcuWLbCysgIAREREYODAgWjUqFHuRElEeYsQgJDh6rWrmDFzFv766y8AqaUz33//aZ6KmjXYAZBXsWeeiEgzKD2azaJFizB37lwpkQcAKysrzJo1C4sWLVJpcESUN50/fw4Iv4haJZJx+tRJaGtro0+fPggKCsK2rdvUHR6pAJN5IiLNoHQyHx0djTdv3qRb/ubNG3z48EElQRFR3iOEwOnTp9G0aVO0bNlSWt63b1/cvXsXO3bsgJOTkxojJFVimQ0RkWZQ+mrcpUsXDBw4EIsWLUKdOqm1rpcuXYKbmxu+//57lQdIRJpNCIHjx4/Dy8sL58+fBwBYmJtJ69euWQNosxc3v2HPPBGRZlA6mV+zZg0mTJiAPn36ICkpKXUnuroYNGgQFixYoPIAiUgzCZkMR4/+hfnzvfGP/zkAgIGBAYYMGQL3iRMAPFNvgJSr2DNPRKQZlC6zMTY2xqpVq/Du3TsEBgYiMDAQ79+/x6pVq2BiYpIbMRKRBpHJZNi3bx/q1fsW7asXwt+756NwIWuMGzcOoaGhWL58OUqVLKXuMAuGlHggOhhIjv3qh2bPPBGRZshx14qJiQmcnZ1VGQsRabCUlBT8/vvvmD17Nm7fvi03W2twcDBsihRVY3S5ICUe+PgIsHEG9M2yb/+1JccC1wYAcc+AkAVAu+uArvFXOzyTeSIizaB0z/zHjx+lCV7Kly+PsmXLyv0QUT4iBJIS47F96xY4OjqiT58+uH37NiwsLDB58mSpmU3hwum3zarXOCc9yjndX06OlZYoB/4EHKupmXFGBaUm8gAQEwJEBikeY079G6OuViLLbIiINITSV+PBgwfDz88PP/zwA4oXL87pvInyqcTEROzYvhUDW9ijb+1EjHkdBmtra4wdOxYjR46EhZlp5rO1ZtVrnJMe5ZzuL6e91xklyoUVmNwqN+LM7BsCS2fA1CE1PjMHwLJy9vEpIrPjfRbjoJKFcFqbQxETEWkCpZN5Hx8fHDlyBA0aNMiNeIhIzeLj47Fx40bMmzcPcR/eYOAmGyDuGUKWFYZuxyCYWf1bTiNLyTzxyyoZzi5RzmifOd1fTo4FZJ8oq/q8M1uXVZKvZ5L6ODIoNT5lSmwUSNjTHe+zGAvpvYO1zgvFj0dERLlG6TIbKysrWFtb50YsRKQOQgCyFMR+/IDFixejbNmyGDFiBJ49e4ZGVaylBM5K9y3MUp582i6rUpS0ZBhInwxntS6zfeZ0fzk5FvApUW51CWh7XT5Rzo3zzmxddqU0usapSX9GiXxmZTtZxZ/V8T6L8V2iNT7q2qc/JhERfXVaQgihzAbbt2/HoUOHsGXLFhgbf72brTISHR0NCwsLREVFwdzcXK2xEOVVH6KjYPYhNWkzcWiB2Lh42NraYtKkSfjxh54wPFPvUw/154ntmwuAb/1PO2p1Sb7XOzk2817jzNZltc+c7C+nx8pKbpx3ZuuSPgI+1TN+/rOS+AE44pSamJs6yPewZxV/dsdLjkXg2W04ej4MVarVxXfffZd9LERElCOK5rlKl9ksWrQIDx8+RNGiRWFnZwc9PT259QEBAcpHS0RfXWRkJJYvX451a1fj6aW9AAA7OzuMGTsO/fv3h76+fmrDzEo5sitFSes1zkhm67LaZ072l9NjZSU3zjuzdTktpcmqpCer+LM7nq4xInW+QbJ4ydFsiIg0hNLJfOfOnXMhDCL6Wt69e4clS5Zg2bJliI6Olhti8vr1QOjpG8pvkFkC+iU125nJjX2q+lhfM0Yg6w8AmfnChD2r4yUnJ6c242g2REQaQemrsaenZ27EQUS5SQi8fv0Ky5Ytw9JlyxETEwMAcHJyguc0D6mZnq5eZnvIWE4STXXsU9XH+pox5sQXJuxZSUlJAcBx5omINIXSN8ASUd7y4sULuLu7oUjyQ8wa1h6ylGRUq1YN+/btw61bt9Cje3d1h0i5IaubY79AWjLPnnkiIs2gdDKvra0NHR2dTH+ISDOEhYVh+PDhKFu2LFasWCkt37v3dwQEBKBr167Q1ubneVJOWpkNr/dERJpB6a6VP/74Q+5xUlISAgMDsWXLFsyYMUNlgRGRkoQAhAyhj0MxZ+58bNmyBUlJSQCA5s2aSM3atW0HcLI3yiGW2RARaRalk/lOnTqlW9atWzdUqlQJe/bswaBBg1QSGBEpJyTkPhxM3sLeANi5YzuSkpLQtGlTeHh4oEnjRsDLS+oOkfIBltkQEWkWlX3H/u233+LUqVOq2h0RKej27dvo06cPatSoIS1r3rw5/P39cfr0aTRt2hRa7IknFWGZDRGRZlFJ10pcXByWLVuGkiVLqmJ3RKSA69evY9asWdi/fz8AyA0xefjQIUCbyRapHnvmiYg0i9JXYysrK7lePiEEPnz4AGNjY2zfvl2lwRHRfwiBa9euYN68+di3/4C0uGvXrpg2dQqAWPXFRgUCa+aJiDSL0sn8kiVL5B5ra2vDxsYGdevWhZWVlariIqL/OHfuHLznz8Oh1ZOwd+k4mPr4oON3nTBlyhRUrlwZkKUA4RfVHSblcyyzISLSLEon8/3798+NOIgoA0IInD17Fl5eXjhz5sy/pTSTAAABAQH4pkJF9QZIBQ7LbIiINEuOrsaRkZHYuHEj7ty5AwCoVKkSfvzxR1hYWKg0OKICSQgIWQpOnTqF6TO9cO7cOQCAnp4eBgwYIDX7xsFBTQFSQcaeeSIizaL0aDZXr15FuXLlsHjxYrx//x7v37/Hr7/+inLlyiEgICA3YiQqMIQQ8PE5Aq2Xl9CikikCA65BX18fw4YNw4MHD7ByxQp1h0gFHHvmiYg0i9LJ/NixY/Hdd9/h8ePHOHDgAA4cOIDQ0FB06NABY8aMyYUQifI/mUyG/fv3o0aNGujWrbu0fMSI4QgNDcXKlStRunRpNUZIlIo3wBIRaRalu1auXr2K9evXy/XK6OrqYuLEiahVq5ZKgyPK14RASnISDvzxB2bM9MLt27cBADaFraUm8+fN5xCTpFFYZkNEpFmU7pk3NzdHWFhYuuVPnz6FmZmZSoIiyu+Sk5Oxc8d26Ly+gu4NSiH00UOYm5tj6tSpuHPnrrrDI8oUy2yIiDSL0sl8z549MWjQIOzZswdPnz7F06dPsXv3bgwePBi9e/fOjRiJ8o3ExERs2LABFSpUwJCffpKWe3hMxZMnT+Dl5YVC1tZZ7IFIvdgzT0SkWZTuWlm4cCG0tLTQr18/6aKup6eHoUOHYt68eSoPkCg/iI+Px2+//Yb58+dL32yVsS0lrZ/kPonlNJQnsGeeiEizKHU1TklJwcWLFzF9+nTMnTsXDx8+BACUK1cOxsbGuRIgUV4W+/EjfvttI5YsWYKHj0IBAMWKFcPEiRPx05BBQNQtNUdIpDiZTAYhBAD2zBMRaQqlymx0dHTQqlUrREZGwtjYGFWqVEGVKlWYyBP9R0xMDLy9vVHJyREjvq+JB39vg0P5cli+fDkePXqEsWPHwsTYRN1hEiklrVceYDJPRKQplP6etHLlynj06BHs7e1zIx6iPC0qKgrLly+X5mFInbE11a1bN2FgyA++lHellVYCLLMhItIUSt8AO2vWLEyYMAF//fUXwsPDER0dLfdDVOAIgffv3mKW10yUKVMGHh4eeP/+PRwcHLB2zRqpmYG+gRqDJPpyn/fMa2sr/d8HERHlAqWvxu3atcONGzfw3XffoVSpUrCysoKVlRUsLS1hZWWVGzESaaw3b95g2jQPWMffw9QfmyMpMQFOTk7YsWMH7ty5g759+6o7RCKV+XwkGy0tLTVHQ0REQA7KbM6cOZMbcRDlKeHh4Vi4cCHWrFkDCBlm/q8tAGD79u3o1LnLp15LWUoWeyHKWzj7KxGR5lE6mXdxccmNOIg0mxCAkOHZ82eYN38BNmzYgISEBABAo4YNpGZdOncGWH5A+RSHpSQi0jzMOogU8PjxIyD8IkppP8Om3zYiISEB9evXx7Fjx+B39qy6wyP6KjhhFBGR5mEyT5SF+/fvY8CAAXB2riota9y4EU6dOgV/f3+0bt2atcNUYLBnnohI8/CKTJSB27dvY/bs2dizZw9kMpncEJM+R304WysVSOyZJyLSPAr1zB8+fBhJSUm5HQuRegmBWzeuo69rb1SpUgW7du2CTCZDhw4dcPYsb/wmYs88EZHmUSiZ79KlCyIjIwGk9si8fv06N2Mi+uquXr2KHj26o0rhj9juPQJGhgb4/vvvERAQgD///BO1a9VWd4hEasfRbIiINI9CybyNjQ0uXrwIABBCsEaY8o3z58+jbdu2qF27No4cOSItv3TpEvbv34/q1aurMToizcIyGyIizaPQd6X/+9//0KlTJ2hpaUFLSwvFihXLtO3nMwQSaRwhIGQp+MffHzNmeuH06dMAUpOT3r17S80qV6qkrgiJNBbLbIiINI9CV+Tp06ejV69eePDgAb777jts2rQJlpaWuRwakWoJIXD6pC+aO5mgcXk9XLxwHrq6uujfvz8mT56McvZ2QPhFdYdJpLHYM09EpHkU7l6pWLEiKlasCE9PT3Tv3h3Gxsa5GReRygghcOTIEcyaNQu3bt7Ax5CTAIAhQwZj7LgJKFOmTGpDztZKlCX2zBMRaR6lr8ienp4AgDdv3uDevXsAgAoVKsDGxka1kRHl1L+ztcpkMhw8/CdmzZqFwMBAAIC1laXUbMniJRxikkgJvAGWiEjzKD1pVGxsLH788UeUKFECjRs3RuPGjVGiRAkMGjQIsbGxuREjkVJSkpOA8IvQfnUZP/R1RWBgIExMTODm5obg4GB1h0eUZ7HMhohI8yidzI8dOxZ+fn44fPgwIiMjERkZiUOHDsHPzw/jx4/PjRiJFJKcnIxt27ahVu1a0jJzczNMmTIFjx8/hre3N4oWKaLGCInyNvbMExFpHqXLbPbv3499+/ahSZMm0rJ27drByMgIPXr0wOrVq1UZH1G2EhMTsW3bNsydOxcPHz6Um601OPgOrKwLqTE6ovwjrWeeNfNERJpD6StybGwsihYtmm55kSJFWGZDX48QSEiIw9atWzFr9lyEhYUBAAoXLgz3iROkZlYcdYlIZdgzT0SkeZQus6lXrx48PT0RHx8vLYuLi8OMGTNQr149lQZHlJHY2FisXLkCBu8CMaR9Fbx98xpFixbFwoUL8fjxY0wYPyH7nRCR0pjMExFpHqV75pcuXYrWrVujVKlSqFq1KgDgxo0bMDQ0xPHjx1UeIFGamJgYrF69GgsXLkTMh2gM75I6xOTChQsxYOCPMDIySm3IISaJcgXLbIiINI/SV+TKlSsjJCQEO3bswN27dwEAvXv3hqur66dkikgV/h1iMio6GitWrsLixYvx7t07AEDFCt9IzYb+738cYpLoK2DPPBGR5slR94qxsTGGDBmi6liI5EREvIdV3F1YAJgzexZi4+JRvnx5/PLLL+jr2ht4c03dIRIVKJw0iohI8yhdM0+U2968eYNffvkFjo4VpWUVK1bA9u3bcefOHQwcOBB6unpqjJCoYOI480REmofdK6QxXr58iYULF2L16tWIjY2VG2Ly8qXL0NHTV2N0RMQyGyIizcNkntTu2bOnWLL4V2zatBnvIyIBADVr1sR0Tw+pDZMHIvVjmQ0RkeZhmQ2pzePHj/G///0PVSpXxsJx3fDu1l9o2qQxjh49iitXrqBD+w7qDpGIPsMyGyIizZOj7pXIyEjs27cPDx8+hJubG6ytrREQEICiRYuiZMmSqo6R8pkHDx5gzpw52LZtG5KTk+XKaU6dPAUtnX9flkJNARJRhtgzT0SkeZS+It+8eRMtWrSAhYUFHj9+jCFDhsDa2hoHDhxAWFgYtm7dmhtxUl4nBO7evYMF3t7YvHUbZDIZAKBFixbwnPapnEZLS0tdERJRNtgzT0SkeZQusxk3bhwGDBiAkJAQGBp+6lFt164d/v77b5UGR/nDrVu30K9fX1Q0j8DGWUNgaKCPdu3a4cKFC/D19UXDBg3UHSIRKYA3wBIRaR6lk/krV67g559/Tre8ZMmSePnypUqCovzh2rVr6NKlC5ydnbF//wFpub//Pzhy5Ai+/fZbNUZHRMpimQ0RkeZR+opsYGCA6OjodMvv378PGxsblQRFedS/M7ZevnIZM2bOwtGjRwGkls507fq91Kx6terqipCIvgDLbIiINI/SPfPfffcdZs6ciaSkJACpiVpYWBjc3d3RtWtXlQdIeYe//z9A+EXUKSXD2TOnoa2tjb59++L27dvYuoX3UhDldeyZJyLSPEon84sWLUJMTAyKFCmCuLg4uLi4oHz58jAzM8Ps2bNzI0bSYEIInDx5Ei4uLmjdurW0vF+/frh37x62bdsGR0dHNUZIRKrCnnkiIs2jdPeKhYUFfH194e/vj5s3byImJgY1atRAixYtciM+0lBCCBw9ehSzZs3CxYsXAQCWFubS+tWrVgHa/A+fKD/hDbBERJonx9+VNmzYEA0bNlRlLJQHyP7f3p2H13jn/x9/nSxIkAWJBKk1VJv4qaWIpagRpcJ0QaS0Ux3lqqVGWloySezUkqgOHao6bQhldFylWgwtQn1bu1oihIaoMkgiSCT37w912ojtRM45OfJ8XNe5Ludzf+77ft3nk8Q7n3zOffLy9OWXqzR16jQlbbtRxJcrV04DBw7U22+NlPSzfQMCsArDMFhmAwAlkMU/kWfPnn3bdpPJpHLlyqlevXpq164dMzcPmby8PK1YsUIz3pum77+IV9jn0+XbOEwvv/KqRo4cKT8/Pyk/T0qnmAceRjc/G0JiZh4AShKLi/lZs2bp119/VXZ2try9vSVJFy5ckLu7uypUqKCzZ8+qTp062rhxowICAu56rJiYGMXGxhZoa9CggQ4dOmRpLFjJ9evXlZiYqIkTJ+rQoUMFPq31p58OqoqPrx3TAbCVm+vlJWbmAaAksfgNsJMmTVLz5s2VnJys8+fP6/z58zpy5IhatGih+Ph4nTx5Un5+fhoxYsR9He/xxx9Xenq6+bFlyxaLLwLFzDCUm3NVn/5rkRo2bKh+/frp0KFD8vLy0pgx75q7Valc2Y4hAdjSzSU2EjPzAFCSWFzMjx07VrNmzVLdunXNbfXq1dP06dP1zjvvqEaNGpo2bZq2bt16X8dzcXGRn5+f+VGlShVLI9mFYRgP5ePq1atasOCfcj2zVf2a5+rCrz+rcuXKmjBhglJTU/XO6HekvKtSxk8yci8X2r+4t9nyXCVpW0nJwYPHzcfNmXmTySQnJ4v/6wAAWInJMAzDkh3c3d313XffqVmzZgXa/+///k9PPfWUsrOzlZqaqqCgIGVlZd31WDExMXrvvffk6empcuXKqVWrVpo8ebIeeeSR2/a/du2arl27Zn6ekZGhgIAAXbp0SR4eHrfdx1rOnDmjDz/80KbntBU31+t6u+Ei6UqazudW1rwTr+u6Ucbm20pKjtJ83cCtXFxcNGbMGHvHAICHXkZGhjw9Pe9Z51o8vdKhQwe9/vrr2rVrl7lt165dGjx4sDp27ChJ2rdvn2rXrn3PY7Vo0UKLFi3S2rVrNXfuXB0/flxt27ZVZmbmbftPnjxZnp6e5se91uTj7lxdnOTqUvhLwMf1rHQlTZJU2fW8fMuctcu2kpKjNF83cKv7+dkOALAdi2fmz5w5o379+mnDhg1ydXWVdOONUU8//bQ+/fRTVa1aVRs3blRubq46d+5sUZiLFy+qZs2amjlzpgYMGFBoe0mamc/Pz9eVK1dses7ilJVxSVXzj0uSfP5fmLKvXFWNGjU0fPhwhb8YJs+k9nK6nKL88nV1pf02ycX9xo65l+X2bYhtttnyXCVpW0nJAdyGu7u7TCaTvWMAwEPvfmfmLS7mbzp06JCOHDki6cYdaBo0aFC0pLdo3ry5OnXqpMmTJ9+z7/1eJH534cIFzZ49W/P/OU9pO5ZLkoJD/6oRf4tUv379zL+g6Xq2dHG/5BVUuLCz5baSkqM0XzcAALA5qxfz1pCVlaVHHnlEMTExGjZs2D37U8zfv3PnzmnWrFmaM2eOMjIy5O5WTpeT10uSrvs2k4trWTsnBAAAwE33W+cW6WbBaWlpWrVqlU6ePKmcnJwC22bOnHnfx4mMjFT37t1Vs2ZNnT59WtHR0XJ2dlZ4eHhRYuFWhqFfzqQrfvZszX5/ji5fvixJCg4OVvTfo8zdXJy5ZzQAAIAjsriK27Bhg8LCwlSnTh0dOnRIQUFBSk1NlWEYatKkiUXHSktLU3h4uM6fPy8fHx+1adNG27dvl4+Pj6WxcItTp04pbtYMvTfieU0a0l3x8fFq0qSJoqKiFBYWJicZUvp2e8cEAADAA7B4mc2TTz6pZ555RrGxsapYsaL27NkjX19fRUREqEuXLho8eLC1shbCMpvCTpw4oSlTpmjhwoVycXYyL6X5et8ldQ595vc3ruXn/V7M+7eUnPgQGAAAgJLCaremPHjwoPr37y/pxv2Gr1y5ogoVKmjcuHGaOnVq0ROjaAxDys9TytFkDRgwQPXq1dO8efOUk5OjNm1am7uFdg7lDhQAAAAPGYuL+fLly5vXyfv7+yslJcW87dy5c8WXDPfl8OFDUvp21XU7q8Qli823Cd20aZO+Xvu1veMBAADAiiwu5lu2bKktW7ZIkrp27aqRI0dq4sSJevXVV9WyZctiD4jb27dvn3r37q2mTZua2zp37qykpCStX79eTz31lB3TAQAAwBYsfgPszJkzlZWVJUmKjY1VVlaWli5dqsDAQIvuZAMLGIZk5EuSdu7erQkTJmrlypWSJHe3cuZuK//9b9a+AwAAlCIWFfN5eXlKS0tTo0aNJN1YcjNv3jyrBMMfGPnmN6u2bdNJ2VeuymQy6YUXXlDU2DGSsuybDwAAAHZh0TIbZ2dnde7cWRcuXLBWHtxi8+bNCgsLMz93cnJSRESE9u/fr2XLlik4KMiO6QAAAGBPFi+zCQoK0rFjx1S7dm1r5IEkwzD03//+V+PHj9e3337721KadyVJu3btUr3A+vYNCAAAgBLB4jfATpgwQZGRkfryyy+Vnp6ujIyMAg8UnZGfr2/WfqWnO7ZXp06d9O2338rV1VUDBgww96lXt64dEwIAAKAksbiY79q1q/bs2aOwsDDVqFFD3t7e8vb2lpeXl7y9va2R8aFnGIb+85//qF27tuoc7KH/fjZJ3l6eGjJkiFJSUjQ7Pt7eEQEAAFACWbzMZuPGjdbIUSrl5+drxYoVmjBhgvbu3VvgzjQ/HTggv2rVf+uYZ6eEAAAAKMksLua5f/kDMgxdv56j5ctXaNz4CTp48KAkqUKFChrx5nBzNz8/P3slBAAAgIOweJmNdOMOKy+99JJCQkJ06tQpSdKnn35q/jAp3F5ubq4+/fQTuZz9QX3a1dSJ1OPy9PTU3//+d504cULjYmPtHREAAAAOxOJifsWKFQoNDZWbm5t27typa9euSZIuXbqkSZMmFXvAh8G1a9f04Ycfqn79+ho0aLC5PTr6RhEfGxurSpUq2TEhAAAAHFGR7mYzb948zZ8/X66urub21q1ba+fOncUaztFduXJFc+bMUb169TRo0CClpqbK18fHvP3tt96Wp6enHRMCAADAkVlczB8+fFjt2rUr1O7p6amLFy8WRyaHdzkrS7Pj4/T4Yw01dOhQpaWlqVq1aoqLi9OBnw7YOx4AAAAeEhYX835+fjp69Gih9i1btqhOnTrFEspRZWZmasqUKXqs4aMa9kJzHduSoAb1A/WPf/xDKSkpGj58uNzd3O0dEwAAAA8Ji+9m89e//lXDhw/XwoULZTKZdPr0aW3btk2RkZGKioqyRsYS7+LFi5o9e7bi4uJ04cKFAreY3Lt3j8qUdbNjOgAAADysLC7mR48erfz8fD399NPKzs5Wu3btVLZsWUVGRmro0KHWyFgyGYbOnz+nOXPmaOasOPOn3zZo0EDRUWPN3cq4lrFXQgAAADzkLF5mYzKZNGbMGP3vf//T/v37tX37dv36668aP368NfKVWN98vVaVrx1R9F8763pujoKCgpSYmKgDBw4oPDzc3vEAAABQClg8M//ZZ5/pueeek7u7ux577DFrZHIIjZ94QrqeIklavDhB3cN6ysnpt9+N+MRWAAAA2IDFM/MjRoyQr6+v+vbtqzVr1igvr3QWrn+8xWSPsB6/F/IAAACAjVhcgaanpysxMVEmk0m9evWSv7+/3njjDSUlJVkjHwAAAIA7sLiYd3Fx0bPPPquEhASdPXtWs2bNUmpqqjp06KC6detaIyMAAACA27B4zfwfubu7KzQ0VBcuXNCJEyd08ODB4soFAAAA4B6KtNA7OztbCQkJ6tq1q6pXr664uDj9+c9/1oEDfLopAAAAYCsWz8z36dNHX375pdzd3dWrVy9FRUWpVatW1sgGAAAA4C4sLuadnZ21bNkyhYaGytnZucC2/fv3KygoqNjCAQAAALgzi4v5hISEAs8zMzO1ZMkSLViwQD/++GOpvVUlAAAAYGtFvjn6d999p5dffln+/v6aPn26OnbsqO3btxdnNgAAAAB3YdHM/JkzZ7Ro0SJ99NFHysjIUK9evXTt2jV98cUXpfrTYAEAAAB7uO+Z+e7du6tBgwbau3ev4uLidPr0ab3//vvWzAYAAADgLu57Zv6rr77SsGHDNHjwYAUGBlozEwAAAID7cN8z81u2bFFmZqaaNm2qFi1aaM6cOTp37pw1swEAAAC4i/su5lu2bKn58+crPT1dr7/+uhITE1WtWjXl5+dr3bp1yszMtGZOAAAAALew+G425cuX16uvvqotW7Zo3759GjlypKZMmSJfX1+FhYVZIyMAAACA2yjyrSklqUGDBpo2bZrS0tK0ZMmS4soEAAAA4D48UDF/k7Ozs3r27KlVq1YVx+EAAAAA3IdiKeYBAAAA2B7FPAAAAOCgKOYBAAAAB0UxDwAAADgoinkAAADAQVHMAwAAAA6KYh4AAABwUBTzAAAAgIOimAcAAAAcFMU8AAAA4KAo5gEAAAAHRTEPAAAAOCiKeQAAAMBBUcwDAAAADopiHgAAAHBQFPMAAACAg6KYBwAAABwUxTwAAADgoCjmS5q8q1LGT9L1bOvu8yD7AQAAoESgmLeHOxXR17OlH1+Rdg2U1jYtuL0o+zzIfgAAACjxKOYfxN1mtotSRF/aL11Ju/HvrGTp4v6i7/Mg+wEAAMAhUMwX1d0K5aIW0V6NpAqBN/5dMVDyCir6Pg+yHwAAAByCi70DOKzbFcpVnrz3tptFdFZy4SLatbzUdfeN/l5Bkot70fd5kP0AAADgEEyGYRj2DlFUGRkZ8vT01KVLl+Th4WHbk+delr564vdC+ZndvxfEd9sm3Zipt7SILso+D7IfAAAA7OZ+61yK+Qdxt0KZIhoAAABFdL91LstsHoSL++/LZyzZBgAAABQD3gALAAAAOCiKeQAAAMBBUcwDAAAADopiHgAAAHBQFPMAAACAg6KYBwAAABwUxTwAAADgoCjmAQAAAAdFMQ8AAAA4KIp5AAAAwEFRzAMAAAAOimIeAAAAcFAU8wAAAICDcrF3gAdhGIYkKSMjw85JAAAAgOJzs769We/eiUMX85mZmZKkgIAAOycBAAAAil9mZqY8PT3vuN1k3KvcL8Hy8/N1+vRpVaxYUSaTyd5xHgoZGRkKCAjQzz//LA8PD3vHwR0wTo6BcXIMjJNjYJwcB2NVPAzDUGZmpqpVqyYnpzuvjHfomXknJyfVqFHD3jEeSh4eHnwDOgDGyTEwTo6BcXIMjJPjYKwe3N1m5G/iDbAAAACAg6KYBwAAABwUxTwKKFu2rKKjo1W2bFl7R8FdME6OgXFyDIyTY2CcHAdjZVsO/QZYAAAAoDRjZh4AAABwUBTzAAAAgIOimAcAAAAcFMU8AAAA4KAo5kuRmJgYmUymAo9HH330rvt8/vnnevTRR1WuXDkFBwdrzZo1Nkpbelk6TvPnz1fbtm3l7e0tb29vderUSTt27LBh4tKpKN9PNyUmJspkMqlnz57WDYkijdPFixf1xhtvyN/fX2XLllX9+vX52WcDRRmruLg4NWjQQG5ubgoICNCIESN09epVGyUuvU6dOqWXXnpJlStXlpubm4KDg/XDDz/cdZ9NmzapSZMmKlu2rOrVq6dFixbZJmwp4NCfAAvLPf7441q/fr35uYvLnb8EkpKSFB4ersmTJ+vZZ5/V4sWL1bNnT+3cuVNBQUG2iFtqWTJOmzZtUnh4uEJCQlSuXDlNnTpVnTt31oEDB1S9enVbxC21LBmnm1JTUxUZGam2bdtaMxr+wJJxysnJ0Z/+9Cf5+vpq+fLlql69uk6cOCEvLy8bJIUlY7V48WKNHj1aCxcuVEhIiI4cOaJXXnlFJpNJM2fOtEXcUunChQtq3bq1OnTooK+++ko+Pj5KTk6Wt7f3Hfc5fvy4unXrpkGDBikhIUEbNmzQa6+9Jn9/f4WGhtow/cOJYr6UcXFxkZ+f3331jY+PV5cuXfTWW29JksaPH69169Zpzpw5mjdvnjVjlnqWjFNCQkKB5wsWLNCKFSu0YcMG9e/f3xrx8BtLxkmS8vLyFBERodjYWG3evFkXL160XjiYWTJOCxcu1P/+9z8lJSXJ1dVVklSrVi0rpsMfWTJWSUlJat26tfr27SvpxjiFh4fr+++/t2bEUm/q1KkKCAjQxx9/bG6rXbv2XfeZN2+eateurRkzZkiSGjZsqC1btmjWrFkU88WAZTalTHJysqpVq6Y6deooIiJCJ0+evGPfbdu2qVOnTgXaQkNDtW3bNmvHLPUsGadbZWdnKzc3V5UqVbJiQkiWj9O4cePk6+urAQMG2CghJMvGadWqVWrVqpXeeOMNVa1aVUFBQZo0aZLy8vJsmLj0smSsQkJC9OOPP5qXFR47dkxr1qxR165dbRW3VFq1apWaNWumF198Ub6+vnriiSc0f/78u+5DPWFdFPOlSIsWLbRo0SKtXbtWc+fO1fHjx9W2bVtlZmbetv+ZM2dUtWrVAm1Vq1bVmTNnbBG31LJ0nG41atQoVatWrdAPThQvS8dpy5Yt+uijj+75nx6Kl6XjdOzYMS1fvlx5eXlas2aNoqKiNGPGDE2YMMHGyUsfS8eqb9++GjdunNq0aSNXV1fVrVtX7du317vvvmvj5KXLsWPHNHfuXAUGBurrr7/W4MGDNWzYMH3yySd33OdO9URGRoauXLli7cgPPwOl1oULFwwPDw9jwYIFt93u6upqLF68uEDbBx98YPj6+toiHn5zr3H6o8mTJxve3t7Gnj17bJAMf3S3ccrIyDBq1aplrFmzxtz28ssvGz169LBhQhjGvb+fAgMDjYCAAOP69evmthkzZhh+fn62iojf3GusNm7caFStWtWYP3++sXfvXuPf//63ERAQYIwbN87GSUsXV1dXo1WrVgXahg4darRs2fKO+wQGBhqTJk0q0LZ69WpDkpGdnW2VnKUJa+ZLMS8vL9WvX19Hjx697XY/Pz/98ssvBdp++eUXi9YI48Hda5xumj59uqZMmaL169erUaNGNkqHm+42TikpKUpNTVX37t3Nbfn5+ZJurBE+fPiw6tata7Ospdm9vp/8/f3l6uoqZ2dnc1vDhg115swZ5eTkqEyZMraKWurda6yioqLUr18/vfbaa5Kk4OBgXb58WQMHDtSYMWPk5MTiA2vw9/fXY489VqCtYcOGWrFixR33uVM94eHhITc3N6vkLE34Si/FsrKylJKSIn9//9tub9WqlTZs2FCgbd26dWrVqpUt4uE39xonSZo2bZrGjx+vtWvXqlmzZjZMh5vuNk6PPvqo9u3bp927d5sfYWFh6tChg3bv3q2AgAA7JC6d7vX91Lp1ax09etT8y5YkHTlyRP7+/hTyNnavscrOzi5UsN/8JcwwDKvnK61at26tw4cPF2g7cuSIatasecd9qCeszN5/GoDtjBw50ti0aZNx/PhxY+vWrUanTp2MKlWqGGfPnjUMwzD69etnjB492tx/69athouLizF9+nTj4MGDRnR0tOHq6mrs27fPXpdQKlg6TlOmTDHKlCljLF++3EhPTzc/MjMz7XUJpYKl43QrltnYhqXjdPLkSaNixYrGkCFDjMOHDxtffvml4evra0yYMMFel1BqWDpW0dHRRsWKFY0lS5YYx44dM7755hujbt26Rq9evex1CaXCjh07DBcXF2PixIlGcnKykZCQYLi7uxufffaZuc/o0aONfv36mZ8fO3bMcHd3N9566y3j4MGDxgcffGA4Ozsba9eutcclPHRYZlOKpKWlKTw8XOfPn5ePj4/atGmj7du3y8fHR5J08uTJArMcISEhWrx4scaOHat3331XgYGB+uKLL7jHvJVZOk5z585VTk6OXnjhhQLHiY6OVkxMjC2jlyqWjhPsw9JxCggI0Ndff60RI0aoUaNGql69uoYPH65Ro0bZ6xJKDUvHauzYsTKZTBo7dqxOnTolHx8fde/eXRMnTrTXJZQKzZs318qVK/XOO+9o3Lhxql27tuLi4hQREWHuk56eXuBORLVr19bq1as1YsQIxcfHq0aNGlqwYAG3pSwmJsPgb1EAAACAI2LaCAAAAHBQFPMAAACAg6KYBwAAABwUxTwAAADgoCjmAQAAAAdFMQ8AAAA4KIp5AAAAwEFRzANAKfPPf/5TAQEBcnJyUlxcnGJiYtS4cWN7xyqy9u3b680337R3DACwC4p5AChGr7zyinr27Gnz8y5atEheXl737JeRkaEhQ4Zo1KhROnXqlAYOHGiVPI7+CwIAOAoXewcAANjOyZMnlZubq27dusnf39/ecQAAD4iZeQCwovbt22vYsGF6++23ValSJfn5+SkmJqZAH5PJpLlz5+qZZ56Rm5ub6tSpo+XLl5u3b9q0SSaTSRcvXjS37d69WyaTSampqdq0aZP+8pe/6NKlSzKZTDKZTIXOId2YvQ8ODpYk1alTx7z/rfLz8zVu3DjVqFFDZcuWVePGjbV27doCfUaNGqX69evL3d1dderUUVRUlHJzc83niY2N1Z49e8x5Fi1aVOg833zzjcqVK1fguiRp+PDh6tixoyTp/PnzCg8PV/Xq1eXu7q7g4GAtWbLkDq/276/nF198UaDNy8urQIaff/5ZvXr1kpeXlypVqqQePXrc9rUAgJKOYh4ArOyTTz5R+fLl9f3332vatGkaN26c1q1bV6BPVFSUnn/+ee3Zs0cRERHq06ePDh48eF/HDwkJUVxcnDw8PJSenq709HRFRkYW6te7d2+tX79ekrRjxw6lp6crICCgUL/4+HjNmDFD06dP1969exUaGqqwsDAlJyeb+1SsWFGLFi3STz/9pPj4eM2fP1+zZs0yn2fkyJF6/PHHzXl69+5d6DxPP/20vLy8tGLFCnNbXl6eli5dqoiICEnS1atX1bRpU61evVr79+/XwIED1a9fP+3YseO+Xpvbyc3NVWhoqCpWrKjNmzdr69atqlChgrp06aKcnJwiHxcA7IFiHgCsrFGjRoqOjlZgYKD69++vZs2aacOGDQX6vPjii3rttddUv359jR8/Xs2aNdP7779/X8cvU6aMPD09ZTKZ5OfnJz8/P1WoUKFQPzc3N1WuXFmS5OPjIz8/Pzk7OxfqN336dI0aNUp9+vRRgwYNNHXqVDVu3FhxcXHmPmPHjlVISIhq1aql7t27KzIyUsuWLTOfp0KFCnJxcTHncXNzK3QeZ2dn9enTR4sXLza3bdiwQRcvXtTzzz8vSapevboiIyPVuHFj1alTR0OHDlWXLl3M5yqKpUuXKj8/XwsWLFBwcLAaNmyojz/+WCdPntSmTZuKfFwAsAfWzAOAlTVq1KjAc39/f509e7ZAW6tWrQo93717t7WjFZKRkaHTp0+rdevWBdpbt26tPXv2mJ8vXbpUs2fPVkpKirKysnT9+nV5eHhYfL6IiAi1bNlSp0+fVrVq1ZSQkKBu3bqZ38ybl5enSZMmadmyZTp16pRycnJ07do1ubu7F/ka9+zZo6NHj6pixYoF2q9evaqUlJQiHxcA7IFiHgCszNXVtcBzk8mk/Pz8+97fyenGH1ENwzC33Vyfbg/btm1TRESEYmNjFRoaKk9PTyUmJmrGjBkWH6t58+aqW7euEhMTNXjwYK1cubLA2vb33ntP8fHxiouLU3BwsMqXL68333zzrsthTCZTgddKKvh6ZWVlqWnTpkpISCi0r4+Pj8XXAAD2RDEPACXA9u3b1b9//wLPn3jiCUm/F5jp6eny9vaWpEKz9mXKlFFeXt4D5/Dw8FC1atW0detWPfXUU+b2rVu36sknn5QkJSUlqWbNmhozZox5+4kTJ4qcJyIiQgkJCapRo4acnJzUrVu3Auft0aOHXnrpJUk33px75MgRPfbYY3c8no+Pj9LT083Pk5OTlZ2dbX7epEkTLV26VL6+vkX6awIAlCSsmQeAEuDzzz/XwoULdeTIEUVHR2vHjh0aMmSIJKlevXoKCAhQTEyMkpOTtXr16kKz4LVq1VJWVpY2bNigc+fOFSheLfXWW29p6tSpWrp0qQ4fPqzRo0dr9+7dGj58uCQpMDBQJ0+eVGJiolJSUjR79mytXLmyUJ7jx49r9+7dOnfunK5du3bH80VERGjnzp2aOHGiXnjhBZUtW9a8LTAwUOvWrVNSUpIOHjyo119/Xb/88std83fs2FFz5szRrl279MMPP2jQoEEF/joSERGhKlWqqEePHtq8ebOOHz+uTZs2adiwYUpLSyvKSwYAdkMxDwAlQGxsrBITE9WoUSP961//0pIlS8yzz66urlqyZIkOHTqkRo0aaerUqZowYUKB/UNCQjRo0CD17t1bPj4+mjZtWpGzDBs2TH/72980cuRIBQcHa+3atVq1apUCAwMlSWFhYRoxYoSGDBmixo0bKykpSVFRUQWO8fzzz6tLly7q0KGDfHx87no7yXr16unJJ5/U3r17zXexuWns2LFq0qSJQkND1b59e/n5+d3zQ7lmzJihgIAAtW3bVn379lVkZGSBNfbu7u767rvv9Mgjj+i5555Tw4YNNWDAAF29epWZegAOx2TcurAQAGBTJpNJK1eutMsnxwIAHBsz8wAAAICDopgHAAAAHBR3swEAO2O1IwCgqJiZBwAAABwUxTwAAADgoCjmAQAAAAdFMQ8AAAA4KIp5AAAAwEFRzAMAAAAOimIeAAAAcFAU8wAAAICDopgHAAAAHNT/B+5LxDKV6KxKAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvMAAAHyCAYAAABmsUHvAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAqF1JREFUeJzs3XdYFFcXBvCX3qtiR0ElCip2jRV7N2rsYixRk89eEY0iKlbU2LvG3mKJmigqNhLsChbEgopiwU4R6ez9/iCMbmi7uLgLvL/n4ZGduTNzZtkdz949c6+WEEKAiIiIiIjyHG11B0BERERERDnDZJ6IiIiIKI9iMk9ERERElEcxmSciIiIiyqOYzBMRERER5VFM5omIiIiI8igm80REREREeRSTeSIiIiKiPIrJPBERERFRHsVknoiIiIgoj2IyT0RERPQVWFhY4Pnz5+mWJyQkoGjRooiOjlZDVJTXMZknIiIiymVhYWEAgJIlS6ZbZ2BggFevXsHc3BxCCJiamuL169dfO0TKo5jMExEREeWyoKAgVKxYMdt2oaGhMDY2RpEiRb5CVJQfMJknldm8eTO0tLTw+PFjdYeSoenTp0NLS0vdYSgsLd63b9+qOxQAmv/3zU0ZvXYK8vNRkHl7e6NixYqQyWTqDiVPiImJgba2NhYvXqzuUHLdokWL0KtXL/zwww+wsLCAk5MTHj58KK0PCgpCyZIl0adPH1hYWODbb7/FkydPAABLly7FoEGDcOfOHTg5OSEiIgKmpqaoXbs2AODu3bto0aIFrK2tYWVlhVGjRmUbz5o1a1C6dGkkJCTkzgmTxmAyT1lKS1g+/ylSpAiaNm0KHx8fdYenFufPn8f06dMRGRmp7lBULj+fW0Fw69YtdOvWDWXKlIGhoSFKliyJli1bYvny5XLt/vu+1tXVRcmSJTFgwIB09bwZXQPSfiZNmpQr5/E1Xoc5OUZ0dDTmz58Pd3d3aGun/vc5dOhQVKhQIZei/DI3b96Eq6srSpYsCX19fRQrVgwNGzbEjBkz5NodP35c7u+qp6eH8uXLY/r06UhMTMyyrZaWFszNzVGnTh0cPHgwXQxBQUEQQsDZ2RkAIITAzJkz8c8//+TaeSvqypUrGDFiBCpVqgQTExOULl0aPXr0wP3793O0v1u3buH8+fMYMWIE3r9/j8qVK+O3336T1gcFBeHcuXMYMWIE3r59C3t7e3h6egJI/Vs5OzvD0dERnp6eGDp0KGJiYnDlyhUAgKurK3766Se8e/cOT548Qf/+/eWOPW/ePBgaGsotGzBgABITE7F27docnQ/lHbrqDoDyhpkzZ8Le3h5CCLx69QqbN29Gu3bt8Oeff6JDhw4AgB9++AG9evWCgYGBmqPNXefPn8eMGTMwYMAAWFpaqjsclcrq3ArK31dRmvZ8nD9/Hk2bNkXp0qUxZMgQFCtWDE+fPsXFixexdOlSjBw5Mt02ae/r+Ph4XLx4EZs3b4a/vz+CgoLSJQZpbT9XuXLlXDuX3H6P5eQYv/32G5KTk9G7d29pWVJSkkb2fB44cAC9e/dG6dKl8fPPP6NEiRIICwvDyZMnsX37dimJBIAbN24AAH799VfY2NggNjYWe/fuxYwZM5CQkIC5c+ema7ts2TJYWVlBJpPh6dOnWLZsGbp3745bt27JlZLUqVMHcXFx0vvk/v378PT0VKjcJLfNnz8f586dQ/fu3eHs7IyXL19ixYoVqFGjBi5evKj06/vWrVuYPn066tatCwBwcHCAEEJaHxQUBA8PD9SvXx9A6jXk82S+b9++0u/NmjWT2/fDhw+RmJgImUwGc3Nz1KxZU259cnJyutehoaEh+vfvj19//RUjR47MU99Mk5IEURY2bdokAIgrV67ILX///r3Q09MTffr0UVNkyvP09BSqeMkvWLBAABChoaFfHlQW0uJ98+ZNrh7nc1/r3DISExPz1Y+pKFW9dnJTu3bthI2NjYiIiEi37tWrV3KPM3tfu7u7CwBiz5492bbNTV/jdZiTYzg7O4u+ffvKLRs0aJAoU6aMaoP7DxcXF9G/f3+F279//15YWFiIBg0aiISEhHTrnz9/LvfY1dVVGBoaiuTkZGlZQkKCKFasmLC3t0/X1tLSMt0+16xZIwCIXbt2ZRnbjh07BAAREhKi8Plk5v3792L//v2Zrt+5c2eW15Vz586le37u378vDAwMhKurq9zyBg0aCAAZ/kyZMkUkJycLQ0ND8eLFC2mbTp06iS1btgghhEhJSRGGhoZyz/3mzZtF69atRUpKijA2NhZv374VQgjh5OQkLl68KHf8o0ePigYNGoiiRYsKNzc3kZSUJLfey8srw2vU1atXBQBx6tSpTJ8HyvtYZkM5YmlpCSMjI+jqfvpyJ6Ma4idPnmDYsGGoUKECjIyMUKhQIXTv3j1dnfGHDx8wZswY2NnZwcDAAEWKFEHLli0REBAgtXn+/Dl+/PFHFC1aFAYGBqhUqZLcV5if8/f3R+3atWFoaIhy5cop/DVjdnFMnz4dbm5uAAB7e3vpa+bPzycwMBBt27aFubk5TE1N0bx5c1y8eDHdsZ4/f45BgwahRIkSMDAwgL29PYYOHZrua+3IyEip99DCwgIDBw5EbGys0s9xdueX3bll9PdV9Bz+K60GPTg4GH369IGVlRUaNmyo1HM4YMAA2NnZZbrv/z5+8OBBls9jGkVfO/99PpQ9ztmzZ1GrVi2542RUm3/37l1pFIysPHz4EJUqVcqwl1nRG+kaNWok7UtZqnqvZ/c6VOQ6oIr38X+Fhobi5s2baNGihcLPyfPnz2FoaIgff/xRbvnJkyehp6eHsWPHKrwvZZw8eRJRUVEYNGgQ9PX1060vUaKE3OMbN26gUqVK0NHRkZbp6+ujRIkSiIqKSte2Ro0a6fb58uVLAICjo6Pc8pYtW6JBgwYAUnvpXV1dAaT2Wmtpacm9XsPCwjB48GCULVsWhoaGKFasGNq1a4cHDx5keJ6rVq1Cjx498Mcff6Rbt3HjRvTp0wdbtmzJcFsAqF+/frrnx8HBAZUqVcKdO3fklvv7+0MIkeHPrFmz8ODBA5ibm6N48eLSNmmlMwDw4MEDxMfHw8bGRlp/8OBBtG3bFg8ePICFhQUKFSqExMREhISEpPtWoG3btvD398elS5ewZ88enD59OtPz+lzNmjVhbW2NQ4cOKdSe8iaW2ZBCoqKi8PbtWwgh8Pr1ayxfvhwxMTHS14KZuXLlCs6fP49evXqhVKlSePz4MVavXo0mTZogODgYxsbGAID//e9/2LdvH0aMGAEnJye8e/cO/v7+uHPnDmrUqIFXr17h22+/hZaWFkaMGAEbGxv4+Phg0KBBiI6OxpgxY6Rj3rp1C61atYKNjQ2mT5+O5ORkeHp6omjRotmeZ3ZxfP/997h//z527dqFxYsXo3DhwgAgXaBv376NRo0awdzcHBMnToSenh7Wrl2LJk2awM/PT/r69cWLF6hTpw4iIyPx008/oWLFinj+/Dn27duH2NhYuf9gevToAXt7e8ydOxcBAQHYsGEDihQpgvnz5yv1HGd3ftmd238pcw6Z6d69OxwcHDBnzhzp62hFn0NlZfc8Al/22lHmOIGBgWjTpg2KFy+OGTNmICUlBTNnzszwuXZ0dISLiwvOnj2b5XHLlCmDCxcuICgoKMflL2nJrJWVVbp1adeAz6W9RgDVvdezeh0qeh340vdxRs6fPw8AGSaymSlZsiQGDx6MdevWwdPTE2XKlMHdu3fRvXt3tG3bFosWLVJ4X8r4+PEjgNRkMjuJiYm4d+8efvjhB7nlL168QHBwMFxcXNK1dXFxkV4LEREROH78OObPn48RI0agatWqcvu5efMmvv/+ewCAu7s7pk+fjoSEBEybNg0ApGT+1atXqFWrFgoVKoQhQ4agSJEiePr0Kf744w+5TqPPubu74/Lly+jduzeOHDmC5s2bA0gtMfr555/Rt29fDB06NNvn4HPi31LSSpUqKbXdrVu35M79w4cPeP78OZycnACkltjo6upi165d6NOnDzZt2oRbt25h+/bt8PHxkZL+Dx8+AEh9rk1MTAAA+/fvR40aNWBvb4+IiAgkJiYqVaZUo0YNnDt3TqnzoTxGbd8JUJ6Q9hX7f38MDAzE5s2bM2z7+dfWsbGx6fZ54cIFAUBs3bpVWmZhYSGGDx+eaRyDBg0SxYsXl76GTNOrVy9hYWEhd5zOnTsLQ0ND8eTJE2lZcHCw0NHRybZUIrs4hMj66/nOnTsLfX198fDhQ2nZixcvhJmZmWjcuLG0rF+/fkJbWzvD0gWZTCaE+FTa8eOPP8qt79KliyhUqJD0WNHnWJHzy+rc/vv3VeQcMpN2br179063TtHnsH///hmWN/y3JEbR5zHt2Iq+dv77fChznI4dOwpjY2O5r9xDQkKErq5uuuMAEC4uLunO879OnDghdHR0hI6OjqhXr56YOHGiOH78uEhMTEzXNi32kydPijdv3oinT5+Kffv2CRsbG2FgYCCePn2arm1GP59T1XtdiMxfh4peB770fZyRqVOnCgDiw4cP6WLKqszm2bNnwsDAQAwdOlS8fftWlCtXTlSrVk2psjJly2weP34sjI2NBQDh4OAgJk6cKE6fPi1XRpMmMDBQABBeXl7izZs34sWLF+LYsWOiatWqwsTERO79ndb2vz96enpiyZIl6fb96tUrAUCsWrVKWla6dGkxYMCAdG0XLlwoDA0NRVRUlMLnKYQQcXFxwsXFRZiamoqLFy+KkydPCgMDA9GhQ4d0pSiK2LZtmwAgNm7cqNR206ZNExMmTJAenz9/XlSuXFl6PGPGDDFs2DDRtm1bYWFhIZo3by4ePXokbevm5ia17devnzA1NRV169YVQggxcuRIUbRoUWFiYiKcnZ3FX3/9le74mZXZCCHETz/9JIyMjJQ6H8pbmMxTltL+I1+5cqXw9fUVvr6+Yvv27aJNmzZCV1dXrl4xo2T+c4mJieLt27fizZs3wtLSUowZM0ZaV6ZMGVGrVq10tZxCpCaGlpaW4qeffhJv3ryR+0k7pr+/vxBCiOTkZGFkZCR69eqVbj/t2rXLNpnPKo40mSUBycnJwtjYWPTo0SPdNj///LPQ1tYWUVFRIiUlRZibm4tOnTplGUtacnj58mW55b/++qsAkOF/elk9x4qcn6LJvKLnkN25+fn5yS1X9DkUQvlkPrvnUdnXTmbJvKLHyeh+k44dO35Rbf7ly5dFly5dpEQOgLCxsRGHDh3KMPb//tjZ2Ynjx49n2Pbza0DaT2Zy+l5Pk9HrUJnrwJe8jzMzdOhQoaurm265IjXzI0aMEAYGBqJu3bqiRIkS4tmzZ5m2TUxMTHd+9evXF7169Uq3PCUlJdP93LhxQ/To0UOYmJhIf9/SpUun+7tt2bIlw9dCkyZNRGBgYIZtt2zZIvf/Qe3atYWBgYE4f/68XHtfX18BQPzzzz9CCCEiIyMFAPHrr7+mi3fq1KlCR0dHnDlzJsvnMiNRUVGiRo0awtraWpiamorGjRtn+OEyO3fu3BHm5uaiXr16GX7w0WRZJfNp98J8/PjxK0dFXwtr5kkhderUQYsWLdCiRQu4urriyJEjcHJywogRI7Ksj46Li8O0adNga2sLAwMDFC5cGDY2NoiMjJSrxfT29kZQUBBsbW1Rp04dTJ8+HY8ePQIAvHnzBpGRkVi3bh1sbGzkfgYOHAgA0kx5b968QVxcHBwcHNLFosjwcVnFkZ03b94gNjY2w+M4OjpKoz68efMG0dHRCpdClC5dWu5xWglEREQEAMWf4y89v/+eqzLnkJn/jo6i6HOYE9k9j1/62lH0OK9fv0ZcXBzKly+fbtuMlimjdu3aOHDgACIiInD58mVMnjwZHz58QLdu3RAcHJyu/cqVK+Hr64t9+/ahXbt2ePv2baaj83x+DUj7+Zwq3utZUeY6oKrXuapMmDABCQkJuHnzJg4fPpzhDKBpzp07l+78zp8/j927d6dbntW9FM7OztizZw/ev3+PM2fOYODAgXj69Cl69eoldw9H2ug0R44cga+vL7Zv345KlSrh2rVrsLCwkNvnjRs3oKuri969e8v9f/DHH38gISEBK1askGt/69YtAECVKlUAfCr7SSsp+Vy/fv2kYY9r1qyJBQsWIDw8PKunVWJubo6FCxfi/fv3iImJwZIlS2BkZKTQtmlevnyJ9u3bw8LCAvv27ZO7fyCvE/+WMHI0m/yLyTzliLa2Npo2bYrw8HCEhIRk2m7kyJGYPXs2evTogd9//x0nTpyAr68vChUqJDfpSo8ePfDo0SMsX74cJUqUwIIFC1CpUiX4+PhI7fr27QtfX98Mf9JusPpSWcWhLpn9p5J2gVb0OQY07/yU/Q/3c5n9x5SSkpLh8uyeR1X5WsfJir6+PmrXro05c+Zg9erVSEpKwt69e9O1S0vQu3btisOHD6Ny5cro06cPYmJilD6mKt7rWVHmOpAbr/NChQohOTlZqmlWxuzZswGkDh9obW2dZduqVaumOy9nZ2e0atUq3fJixYple2x9fX00adIEv/32G9q3b493797h3r170vqbN2+iTJkyaNeunZSc7927Fx8+fMCqVavk9nXz5k2UK1cOenp6cstLliwJY2NjPHv2LF370qVLSx8K0pL5/9bVA6k3nt6/fx9btmxB2bJl4eHhgW+++UahWu9Hjx7B1dUVFStWRJkyZdC1a1eFPwgAqfeDtG3bFpGRkTh27Fi6G4TzuoiICBgbG3/R9ZY0G2+ApRxLTk4GgCz/49+3bx/69+8vd6NXfHx8hhO1FC9eHMOGDcOwYcPw+vVr1KhRA7Nnz4afnx/MzMyQkpKS7UgSNjY2MDIyyvADxuf/gWUlszjatm0LIPMk0sbGBsbGxhke5+7du9DW1oatrS1MTU1hbm6OoKAgheLJjjLPMZD1+Snac2NjY6PSc/h8v4o8h0Bqj3dG55g2o2JOjv2lrx1FFClSBIaGhhmO0JHZqB1folatWgCQbXKjo6ODuXPnomnTplixYoXSE0Kp4r2e1XvMxsZG4etATo+RlbQbDkNDQzPsWc7MggULsGHDBqxYsQJubm6YPXs2NmzYkGl7KyurdOdnZWWF4sWLKzWSTkbSvnX5vMf95s2bqFOnjlw7R0dH1KpVC/v378eCBQvk2qaNkf65tG/U/vvh4vPRXNIeFy9eXO7G6c+ZmpqiX79+6NevH+7du4cqVarg999/z7KzJjw8HC1btoSenh58fX0RFxeHhg0bolWrVvDz88v2w1N8fDw6duyI+/fv4+TJk9INq/lJaGhoulGGKH9hzzzlSFJSEk6cOAF9ff0sLxI6OjrpeiSXL18u13uakpKSrhykSJEiKFGiBBISEqCjo4OuXbti//79GSaPb968kTte69atcfDgQbmvoO/cuYPjx49neU7ZxZEmbYSB/yYpOjo6aNWqFQ4dOiQ3xN2rV6+wc+dONGzYEObm5tDW1kbnzp3x559/4urVq+niULYHV5HnWNHzy+zc/kvV55BG0ecQAMqVK4eoqCi5ETvCw8MzHKZO0WPn9LWj7HFatGiBgwcP4sWLF9LyBw8eZNhzrOjQlGfOnMnweT969CgAxUqFmjRpgjp16mDJkiWIj4/Ptv3nVPFeT5PR61DR68CXvo8zU69ePQDI8PWemYMHD2LSpEnw8vLC8OHD8dNPP2Hr1q0IDQ1VeB/K8vf3R1xcXLrlN2/exLFjx1C9enWULVsWQGppyevXrzMsl2vdujVCQ0OlIRrT2mZ0vU8bqalr167SspSUFAQHB8sl82FhYShVqlS67f87ShKQ+q1dSkpKlr3kERERaN26NWJiYnDy5EmUKlUKDg4OOH78OJ4+fYr27dtLI/tkJCUlBT179sSFCxewd+9e6W+c3wQEBGT4IYzyD/bMk0J8fHxw9+5dAKl1qTt37kRISAgmTZokJVcZ6dChA7Zt2wYLCws4OTnhwoULOHnyJAoVKiS1+fDhA0qVKoVu3bqhatWqMDU1xcmTJ3HlyhWpl2/evHk4c+YM6tatiyFDhsDJyQnv379HQEAATp48iffv30v7mzFjBo4dO4ZGjRph2LBhSE5OxvLly1GpUqUsh2pTJA4A0sx7U6ZMQa9evaCnp4eOHTvCxMQEs2bNgq+vLxo2bIhhw4ZBV1cXa9euRUJCAry9vaV9zJkzBydOnICLiwt++uknODo6Ijw8HHv37oW/v79Ss14q8hwren5Zndt/qfIcPqfoc9irVy+4u7ujS5cuGDVqFGJjY7F69Wp88803cvMTKCOnrx1lTZ8+HSdOnECDBg0wdOhQpKSkYMWKFahcuTKuX78u11bRoSlHjhyJ2NhYdOnSBRUrVkRiYiLOnz+PPXv2wM7OTqorz46bmxu6d++OzZs343//+5/C56Sq9zqQ+etQkeuAKt7HGSlbtiwqV66MkydPphs3PiPXrl2Dq6srXF1dMWXKFADAxIkTsWbNmmx757/EpEmTcP/+fXTv3h1Vq1ZFcnIyrl+/Lv1ttm3bJrVNq5dPq2n/XKtWrTB79mwcOXIEjo6OUtvXr19j+/btAFKT8BMnTsDHxwe9evVC9+7dpe1DQkIQHx8vt297e3ucPn0a3t7eKFGiBBwdHVGzZk2MHDkSQUFB+O6772Bvb4/w8HCsW7cOpUqVwpAhQzI911WrVuHp06c4e/as3L0u1apVw19//YVWrVphy5YtGDZsWIbbjx8/HocPH0bHjh3x/v176bzSZDf0cl5w7do1vH//Hp06dVJ3KJSb1HXnLeUNGY16YWhoKKpVqyZWr14tNwRhRqPZREREiIEDB4rChQsLU1NT0bp1a3H37l1RpkwZaai1hIQE4ebmJqpWrSrMzMyEiYmJqFq1qtxwZkKkDnM2fPhwYWtrK/T09ESxYsVE8+bNxbp169LF7efnJ2rWrCn09fVF2bJlxZo1a7KdxVPROIRIHTmgZMmSQltbO905BwQEiNatWwtTU1NhbGwsmjZtmm6UByGEePLkiejXr580HGDZsmXF8OHDpRkJM5sB9r/PsyLPsTLnl9m5ZfT3ze4cMpPd7LaKPocnTpwQlStXFvr6+qJChQpi+/btmY5mk93zmEbR105mo9koepxTp06J6tWrC319fVGuXDmxYcMGMX78eGFoaCjXDgoOTenj4yN+/PFHUbFiRWFqair09fVF+fLlxciRIxWeAVaI1Jkqy5UrJ8qVKyeSk5MVngFWle91ITJ/HWZ3HVDV+zgjv/76qzA1NZUbKSWj0WyePn0qihcvLho0aCDi4+Pl1g0dOlTo6elJwxIqQpmhKQ8cOCB69+4typcvL0xMTIShoaFwdHQUbm5u4vXr13Jtvb29BQBx48aNdPtJTEwUZmZmomnTpnJtP/8xMzMTDRo0EBs3bkw3HO3vv/8uAIjbt29Ly54/fy69rwGIZcuWCSGE2Lhxo2jWrJl0HSlfvrwYNWpUunj/KykpSQQFBWW6/saNG1kOk+vi4pLpsKt5LT3KbDQbd3d3Ubp06WyHC6a8TUuIr3hXFhERZapz5864fft2ljeVk/pERUWhbNmy8Pb2xqBBgwAAgwcPxsmTJ7OcPZYot82aNQseHh5ypW4JCQmws7PDpEmTMHr0aDVGR7mNNfNERGrw37rmkJAQHD16FE2aNFFPQJQtCwsLTJw4EQsWLJAboefJkyfQ0tL64qFaiZS1ZMkSaGlpwcPDI926TZs2QU9PT6lyOcqb2DNPRKQGxYsXx4ABA1C2bFk8efIEq1evRkJCAgIDAzMc654008uXL6WbaA0MDNLNnUCUmyIiIvDq1SvpcdqoS1SwMJknIlKDgQMH4syZM3j58iUMDAxQr149zJkzBzVq1FB3aERElIcwmSciIiIiyqNYM09ERERElEcxmSciIiIiyqOYzBMRERER5VFM5omIiIiI8igm80REREREeRSTeSIiIiKiPIrJPBERERFRHsVknoiIiIgoj2IyT0RERESURzGZJyIiIiLKo5jMExERERHlUUzmiYiIiIjyKCbzRERERER5FJN5IiIiIqI8isk8EREREVEexWSeiIiIiCiPYjJPRERERJRHMZknIiIiIsqjmMwTEREREeVRTOaJiIiIiPIoJvNERERERHkUk3kiIiIiojyKyTwRERERUR7FZJ6IiIiIKI9iMk9ERERElEcxmSciIiIiyqN01R3Al5DJZHjx4gXMzMygpaWl7nCIiIiIiFRCCIEPHz6gRIkS0NbOvP89TyfzL168gK2trbrDICIiIiLKFU+fPkWpUqUyXZ+nk3kzMzMAqSdpbm6u5miIiIiIiFQjOjoatra2Ur6bmTydzKeV1pibmzOZJyIiIqJ8J7tSct4AS0RERESURzGZJyIiIiLKo5jMExERERHlUXm6Zl4RQggkJycjJSVF3aEQkQJ0dHSgq6vL4WaJiIgUkK+T+cTERISHhyM2NlbdoRCREoyNjVG8eHHo6+urOxQiIiKNlm+TeZlMhtDQUOjo6KBEiRLQ19dnTx+RhhNCIDExEW/evEFoaCgcHByynCiDiIiooMu3yXxiYiJkMhlsbW1hbGys7nCISEFGRkbQ09PDkydPkJiYCENDQ3WHREREpLHyfZcXe/WI8h6+b4mIiBTD/zGJiIiIiPIoJvNERERERHkUk3nKVVpaWjh48KC6wyAiIiLKl5jMaxgtLa0sf6ZPn67uEImIiIhIQ+Tb0WzyqvDwcOn3PXv2YNq0abh37560zNTUVPpdCIGUlBTo6vLPSERERKQyQgBChti4WBgbmwIaPLx5geqZF0Lg48ePX/1HCKFwjMWKFZN+LCwsoKWlJT2+e/cuzMzM4OPjg5o1a8LAwAD+/v4YMGAAOnfuLLefMWPGoEmTJtJjmUyGuXPnwt7eHkZGRqhatSr27duXaRy//PIL6tatm2551apVMXPmTADAlStX0LJlSxQuXBgWFhZwcXFBQEBApvs8e/YstLS0EBkZKS27fv06tLS08PjxY2mZv78/GjVqBCMjI9ja2mLUqFH4+PFj1k8cERERkYqcP38OCL8I48ibgJCpO5wsFahkPjY2Fqampl/9R9Uz0E6aNAnz5s3DnTt34OzsrNA2c+fOxdatW7FmzRrcvn0bY8eORd++feHn55dhe1dXV1y+fBkPHz6Ult2+fRs3b95Enz59AAAfPnxA//794e/vj4sXL8LBwQHt2rXDhw8fcnxuDx8+RJs2bdC1a1fcvHkTe/bsgb+/P0aMGJHjfRIRERFlRwiB06dPo2nTpmjZsqW0POTBAzVGlT3WZ+RBM2fOlHuRZSchIQFz5szByZMnUa9ePQBA2bJl4e/vj7Vr18LFxSXdNpUqVULVqlWxc+dOeHh4AAB27NiBunXronz58gCAZs2ayW2zbt06WFpaws/PDx06dMjRuc2dOxeurq4YM2YMAMDBwQHLli2Di4sLVq9ezQmEiIiISKWEEDh+/Di8vLxw/vx5AICFuZm03uHfvEdTFahk3tjYGDExMWo5rirVqlVLqfYPHjxAbGxsug8AiYmJqF69eqbbubq64rfffoOHhweEENi1axfGjRsnrX/16hWmTp2Ks2fP4vXr10hJSUFsbCzCwsKUO6HP3LhxAzdv3sSOHTukZUIIyGQyhIaGwtHRMcf7JiIiIkojZDIcPfoX5s/3xj/+5wAABgYGGDJkCNwnTgDwTL0BKqhAJfNaWlowMTFRdxhf7L/noK2tna4uPykpSfo97QPMkSNHULJkSbl2BgYGmR6nd+/ecHd3R0BAAOLi4vD06VP07NlTWt+/f3+8e/cOS5cuRZkyZWBgYIB69eohMTExw/2lzer5eayfx5kW688//4xRo0al27506dKZxkpERESkCJlMhgMHDmDRwgW4sP9XtN89H4WdO6L/gIGYMGECihcvDshSgHAm8/SV2NjYICgoSG7Z9evXoaenBwBwcnKCgYEBwsLCMiypyUypUqXg4uKCHTt2IC4uDi1btkSRIkWk9efOncOqVavQrl07AMDTp0/x9u3bLOMEUkfssbKykuL8XI0aNRAcHCyV8hARERGpQkpKCn7//XfMnj0bt2/fhrHRp9LdO3fuwKZIUTVGl3MF6gbY/KpZs2a4evUqtm7dipCQEHh6esol92ZmZpgwYQLGjh2LLVu24OHDhwgICMDy5cuxZcuWLPft6uqK3bt3Y+/evXB1dZVb5+DggG3btuHOnTu4dOkSXF1dYWRklOm+ypcvD1tbW0yfPh0hISE4cuQIFi1aJNfG3d0d58+fx4gRI3D9+nWEhITg0KFDvAGWiIiIlCcEkhLjsWPbVjg5OaFPnz64ffs2LCwsMHnyZKmZTeHCagzyyzCZzwdat24NDw8PTJw4EbVr18aHDx/Qr18/uTZeXl7w8PDA3Llz4ejoiDZt2uDIkSOwt7fPct/dunXDu3fvEBsbm274y40bNyIiIgI1atTADz/8gFGjRsn13P+Xnp4edu3ahbt378LZ2Rnz58/HrFmz5No4OzvDz88P9+/fR6NGjVC9enVMmzYNJUqUUO5JISIiogItMTERmzZthN6ba3BtVg7PnobB2toaXl5eePLkCaZOmaLuEFVCSygzCLqGiY6OhoWFBaKiomBubi63Lj4+HqGhobC3t+cIKER5DN+/RESUU/Hx8di4cSPmz5+Pd2/f4GPISQDA4t0XMPinn2Fm9u9INbIUIPxi6u/FvwW0dT7tJKt1X0lWee7nWDNPRERERHnXZ7O1rl23AQsWLEB4eDgAoKy9ndRs7NixaknKcxvLbIiIiIgoz/rwIVqarXXqlF8QHh4OW1tbrFy5ErdvB2W/gzyOyTwRERER5TmRkZHw8vKCk9OnOWjs7Oywbt06PHjwAMOGDYOhQf4v1WSZDRERERHlGe/evcOSJUuwbNkyREdHyw0xef16IPT0838C/zkm80RERESk2YTA69evsGzZMixdtlyaENPJyQme0zykZnq6euqKUG1YZkNEREREGuvFixdwd3dDkeSHmDWsPWQpyahatSr27duHW7duoUf37uoOUa2YzBMRERGRxgkLC8Pw4cNRtmxZrFixUlq+d+/vCAwMRNeuXaGtzVSWZTZEREREpH7/DjEZ+jgUc+d5Y/PmzUhKSgIANG/WRGrWrm07QEtLTUFqHn6cIaU1adIEY8aMUXcYRERElI+EhNwHwi/C3uAVdmzfhqSkJDRt2hSnT5+G7wlfdYensZjMa6ABAwZAS0sLWlpa0NPTg729PSZOnIj4+Hh1h6aQ6dOno1q1auoOQ60eP34MLS0tXL9+Xd2hKO3s2bOoUaMGDAwMUL58eWzevDnb9p06dULx4sVhYmKCatWqYceOHXJt1q9fj0aNGsHKygpWVlZo0aIFLl++nItnQUREecXt27fRp08f1KhRQ1rWokUL/PPPPzh9+jSaNm0KLfbEZ4rJvIZq06YNwsPD8ejRIyxevBhr166Fp6enusMqEIQQSE5OVncYCktJSYFMJku3PDExUel9hYaGon379mjatCmuX7+OMWPGYPDgwTh+/Him25w/fx7Ozs7Yv38/bt68iYEDB6Jfv37466+/pDZnz55F7969cebMGVy4cAG2trZo1aoVnj9/rnSMRESUxwkByFJw68Z1dO/eHVWqVMGuXbvk/i87dPAgGjZsqMYg8w4m8xrKwMAAxYoVg62tLTp37owWLVrA1/fTV0wJCQkYNWoUihQpAkNDQzRs2BBXrlyR1m/evBmWlpZy+zx48KDcJ9u0HvRt27bBzs4OFhYW6NWrFz58+CC1+fjxI/r16wdTU1MUL14cixYtyjLuzZs3Y8aMGbhx44b07UJaz25YWBg6deoEU1NTmJubo0ePHnj16lWm+0rr3T5w4ACaNm0KY2NjVK1aFRcuXJBr5+/vj0aNGsHIyAi2trYYNWoUPn78KK3ftm0batWqBTMzMxQrVgx9+vTB69evpfVnz56FlpYWfHx8ULNmTRgYGMDf3x8ymQxz586Fvb09jIyMpDvn00RERMDV1RU2NjYwMjKCg4MDNm3aBACwt7cHAFSvXh1aWlpo0qRJls/b5xISEjBhwgSULFkSJiYmqFu3Ls6ePSv3HFtaWuLw4cNwcnKCgYEBwsLCYGdnBy8vL/Tr1w/m5ub46aefFD5mmjVr1sDe3h6LFi2Co6MjRowYgW7dumHx4sWZbvPLL7/Ay8sL9evXR7ly5TB69Gi0adMGBw4ckNrs2LEDw4YNQ7Vq1VCxYkVs2LABMpkMp06dUjpGIiLK2wICrgLhF1Gl8EccPfIXhBDo2rUrLpw/r+7Q8qQClcwLIZCYmPjVf4QQXxR3UFAQzp8/D319fWnZxIkTsX//fmzZsgUBAQEoX748Wrdujffv3yu174cPH+LgwYP466+/8Ndff8HPzw/z5s2T1ru5ucHPzw+HDh3CiRMncPbsWQQEBGS6v549e2L8+PGoVKkSwsPDER4ejp49e0Imk6FTp054//49/Pz84Ovri0ePHqFnz57ZxjhlyhRMmDAB169fxzfffIPevXtLPecPHz5EmzZt0LVrV9y8eRN79uyBv78/RowYIW2flJQELy8v3LhxAwcPHsTjx48xYMCAdMeZNGkS5s2bhzt37sDZ2Rlz587F1q1bsWbNGty+fRtjx45F37594efnBwDw8PBAcHAwfHx8cOfOHaxevRqFCxcGAKmE5OTJkwgPD5dLbLMzYsQIXLhwAbt378bNmzfRvXt3tGnTBiEhIVKb2NhYzJ8/Hxs2bMDt27dRpEgRAMDChQtRtWpVBAYGwsMjddzdSpUqwdTUNNOftm3bSvu9cOECWrRoIRdP69at032Ayk5UVBSsra0zXR8bG4ukpKQs2xARUf5y/vx5tG3bFo0aNZaWde/eDbdu3cK+ffvg7OysxujyLrWPZvP8+XO4u7vDx8cHsbGxKF++PDZt2oRatWqp/FhJSUmYO3euyvebncmTJ8sl4or466+/YGpqiuTkZCQkJEBbWxsrVqwAkNpbvnr1amzevFlKxNavXw9fX19s3LgRbm5uCh9HJpNh8+bNMDMzAwD88MMPOHXqFGbPno2YmBhs3LgR27dvR/PmzQEAW7ZsQalSpTLdn5GREUxNTaGrq4tixYpJy319fXHr1i2EhobC1tYWALB161ZUqlQJV65cQe3atTPd54QJE9C+fXsAwIwZM1CpUiU8ePAAFStWxNy5c+Hq6irdkOvg4IBly5bBxcUFq1evhqGhIX788UdpX2XLlsWyZctQu3ZtxMTEwNTUVFo3c+ZMtGzZEkBq7/icOXNw8uRJ1KtXT9rW398fa9euhYuLC8LCwlC9enXptWpnZyfty8bGBgBQqFAhuechO2FhYdi0aRPCwsJQokQJ6fyPHTuGTZs2Yc6cOQBSX8urVq1C1apV5bZv1qwZxo8fL7fs6NGj0mgAGTEyMpJ+f/nyJYoWLSq3vmjRooiOjkZcXJxc28z8/vvvuHLlCtauXZtpG3d3d5QoUSLdBwciIspfhBA4e/YsvLy8cObMGQCAmamJtH7zps2Ato6aossf1JrMR0REoEGDBmjatCl8fHxgY2ODkJAQWFlZqTMsjdC0aVOsXr0aHz9+xOLFi6Grq4uuXbsCSO2NTkpKQoMGDaT2enp6qFOnDu7cuaPUcezs7KREHgCKFy8ulaA8fPgQiYmJqFu3rrTe2toaFSpUUPp87ty5A1tbWymRB1JnbbO0tMSdO3eyTOY//6RevHhxAMDr169RsWJF3LhxAzdv3pS74VIIAZlMhtDQUDg6OuLatWuYPn06bty4gYiICKkmLywsDE5OTtJ2n3+AfPDgAWJjY6XkPk1iYiKqV68OABg6dCi6du2KgIAAtGrVCp07d0b9+vWVfm4+d+vWLaSkpOCbb76RW56QkIBChQpJj/X19TPswcjoQ3CZMmW+KCZlnDlzBgMHDsT69etRqVKlDNvMmzcPu3fvxtmzZ2FoWLCm3CYiKiiETIZTJ30xb/48nDp9FkBqrtK/f3/8MtkdQOZltqQctSbz8+fPh62trVRnDHyqNc4Nenp6mDx5cq7tP6vjKsvExATly5cHAPz222+oWrUqNm7ciEGDBim0vba2drrynox6Z/8bm5aWVoY3U6rT5zGm1fynxRgTE4Off/4Zo0aNSrdd6dKl8fHjR7Ru3RqtW7fGjh07YGNjg7CwMLRu3TrdDaImJp96CtKmiT5y5AhKliwp187AwAAA0LZtWzx58gRHjx6Fr68vmjdvjuHDh2PhwoU5PteYmBjo6Ojg2rVr0NGR76n4/FsEIyOjDO/s//wc0lSqVAlPnjzJ9JiNGjWCj48PAKBYsWLp7mN49eoVzM3Ns+2V9/PzQ8eOHbF48WL069cvwzYLFy7EvHnzcPLkSX6dms9ERkYiKipK3WEQkZoJIXD+/Hns2b0Lh1aMQYsVfVC7dzgaNGmDPn36oGjRotCCDEiJBz4+wtMEK8h0Uv/v0oIMpbXSL1f3Otg4A/qfOj41jVqT+cOHD6N169bo3r07/Pz8ULJkSQwbNgxDhgzJsH1CQgISEhKkx9HR0UodT0tLS+lyF02gra2NX375BePGjUOfPn1Qrlw56Ovr49y5c1Kva1JSEq5cuSKVm9jY2ODDhw/4+PGjlOApO0xiuXLloKenh0uXLqF06dIAUr9NuX//PlxcXDLdTl9fHykpKXLLHB0d8fTpUzx9+lTqnQ8ODkZkZKRc77iyatSogeDgYOmDz3/dunUL7969w7x586TjXr16Ndv9fn5jaVbnamNjg/79+6N///5o1KgR3NzcsHDhQul19t/nITvVq1dHSkoKXr9+jUaNGim1bWaUKbOpV68ejh49Krfe19dXKjXKzNmzZ9GhQwfMnz8/0xtvvb29MXv2bBw/fjxXyuhIfSIiIrB8+fIvvj+IiPKPBt9WA64NAOKe4djYQljzxETqODLSS8ZEx81A3DMYJxXCmic/I1noZ7o8q22+xjqELADaXQd0jb/Ok6cktSbzjx49wurVqzFu3Dj88ssvuHLlCkaNGgV9fX30798/Xfu5c+dixowZaohU/bp37w43NzesXLkSEyZMwNChQ+Hm5gZra2uULl0a3t7eiI2NlXru69atC2NjY/zyyy8YNWoULl26lO144f9lamqKQYMGwc3NDYUKFUKRIkUwZcqUbKdOtrOzQ2hoKK5fv45SpUrBzMwMLVq0QJUqVeDq6oolS5YgOTkZw4YNg4uLyxcldu7u7vj2228xYsQIDB48GCYmJggODoavry9WrFiB0qVLQ19fH8uXL8f//vc/BAUFwcvLK9v9mpmZYcKECRg7dixkMhkaNmyIqKgonDt3Dubm5ujfvz+mTZuGmjVrolKlSkhISMBff/0FR0dHAECRIkVgZGSEY8eOoVSpUjA0NISFhUW2x/3mm2/g6uqKfv36YdGiRahevTrevHmDU6dOwdnZWbp3QBnKlNn873//w4oVKzBx4kT8+OOPOH36NH7//XccOXJEarNixQr88ccf0kg0Z86cQYcOHTB69Gh07doVL1++BJD6oS7tBtf58+dj2rRp2LlzJ+zs7KQ2aTfhUt72/v17CCGgo6PDMkmiAkZHWwsxMR8Q/vK11OGqra2NaqXiUxNhAIX03uGbIol4nZJ6L1hxvbAM12W2PKttvsY6xIQAkUFA4Tq58RR+OaGka9euiZs3b0qPDx48KDp16iQmT54sEhISlNqXnp6eqFevntyykSNHim+//TbD9vHx8SIqKkr6efr0qQAgoqKi0rWNi4sTwcHBIi4uTqmYNEH//v1Fp06d0i2fO3eusLGxETExMSIuLk6MHDlSFC5cWBgYGIgGDRqIy5cvy7X/448/RPny5YWRkZHo0KGDWLdunfj8T+7p6SmqVq0qt83ixYtFmTJlpMcfPnwQffv2FcbGxqJo0aLC29tbuLi4iNGjR2caf3x8vOjatauwtLQUAMSmTZuEEEI8efJEfPfdd8LExESYmZmJ7t27i5cvX2a6n9DQUAFABAYGSssiIiIEAHHmzBlp2eXLl0XLli2FqampMDExEc7OzmL27NnS+p07dwo7OzthYGAg6tWrJw4fPiy33zNnzggAIiIiQu74MplMLFmyRFSoUEHo6ekJGxsb0bp1a+Hn5yeEEMLLy0s4OjoKIyMjYW1tLTp16iQePXokbb9+/Xpha2srtLW1hYuLi9yxQkNDMz3vxMREMW3aNGFnZyf09PRE8eLFRZcuXaT33aZNm4SFhUW67cqUKSMWL16c6X4VdebMGVGtWjWhr68vypYtK/390nh6esq9Rvr37y8ApPtJO+e02DJq4+npmWEMefn9WxDdu3dPTJ8+Xaxbt07doRDRV5KUlCR2bNsqxDN/IZ75C2MjQ2Fubi6mTp0q3r59K0RijBCHHITYASEOOwiR9PHTxpmty8k26lj3lURFRWWa535OSwjlvhetXbs2Jk2ahK5du+LRo0eoVKkSunTpgitXrqB9+/ZYsmSJwvsqU6YMWrZsiQ0bNkjLVq9ejVmzZik0mUx0dDQsLCwQFRUFc3NzuXXx8fEIDQ2Fvb09b7IjjZE2Ik1wcHCO7qUoKPj+zVvu3LmD33//Hba2tnKjRxFR/pOYmIitW7di7ty5eBn+Ah9DTgIA5m45g6HDRsjPcZMcm9qjbVk5fYlKZutyso061n0FWeW5n1N6nPn79++jWrVqAIC9e/eicePG2LlzJzZv3oz9+/crta8GDRrg3r176fb/NUffIPqajh49ijlz5jCRp3wlbd4HXV21j3ZMRLkkPj4eq1atgoODA4YMGYJHjx7B5t+5VQBg8qTJ6SarhK5xamlKRolwZutyso061mkQpa+84t9h/4DUCXE6dOgAALC1tcXbt2+V2tfYsWNRv359zJkzBz169MDly5exbt06rFu3TtmwiPKEvXv3qjsEIpVLu9H7vyMwEVHeF/vxI377bSOWLFmCh49CAaSOfDZx4kT8NGQQEHVLzRGS0j3ztWrVwqxZs7Bt2zb4+flJN+SFhoamm2wmO7Vr18Yff/yBXbt2oXLlyvDy8sKSJUvg6uqqbFhERKQm7Jknyn8+fPgAb29vVHJyxIjva+LB39vwjUN5rFixAqGhoRg7dixMjNMPh0xfn9JX3rRk++DBg5gyZYo0JOC+fftyNGFOhw4dpN59IiLKe9gzT5R/REVFYfny5Vi8eDHev38PY6NP9y3dunUT+gbZzwROX5fSybyzszNu3Ur/lcqCBQt4ISciKoDSeub5fwBRHiUE3r9/h5UrV2LRr4ulCeAcHBzg6TFVaqavl/fm6ikIlC6zAVJn+tuwYQMmT56M9+/fA0idAOj169cqDY6IiDQfe+aJ8q7Xr1/Dw2MqrOPvwWNQCyQlJsDJyQk7d+7EnTt3WPqcByjdM3/z5k00b94clpaWePz4MYYMGQJra2scOHAAYWFh2Lp1a27ESUREGiotmWfNPFHeER4ejgULFmDNmjXQgoDX0HYAgO3bt6NT5y6fJoiUKTeTOX19SvfMjxs3DgMHDkRISIjc+M/t2rXD33//rdLgiIhI87HMhigPEAKQpeDZ0ycYOXIk7O3tsXjxYsTFxaFGjRpSsy6dO2c70ztpFqX/WleuXMHPP/+cbnnJkiWlKdqJiKjgYM88keZ7/PgREH4RpbSf4beNG5CQkID69evDx8cHf/v5qTs8+gJKJ/MGBgaIjo5Ot/z+/fuwsbFRSVBEuW3z5s3pJ7f4j+nTp0sTpBFR5tgzT6S5QkJCMHDgQDg7V5WWNW7cCKdOnYK/vz/atGkDLS0tNUZIX0rpZP67777DzJkzkZSUBADQ0tJCWFgY3N3d0bVrV5UHWBC9efMGQ4cORenSpWFgYIBixYqhdevWOHfunNTGzs4OWlpa0NLSgrGxMapUqYINGzbI7efs2bNSm89/pk6d+t9DKs3Ozg5Lliz54v18rkmTJhgzZozS2x04cAAtW7aEjY0NzM3NUa9ePRw/fvyL45kwYQJOnTolPR4wYAA6d+78xfvVJEIITJs2DcWLF4eRkRFatGiBkJCQLLf5+++/0bFjR5QoUQJaWlo4ePCg3PqkpCS4u7ujSpUqMDExQYkSJdCvXz+8ePEiF8+E1Ik3wBJpnuDgYLi6uqJixYrYvHmz9D4FAJ+jPmjWrBmT+HxC6WR+0aJFiImJQZEiRRAXFwcXFxeUL18eZmZmmD17dm7EWOB07doVgYGB2LJlC+7fv4/Dhw+jSZMmePfunVy7mTNnIjw8HEFBQejbty+GDBkCHx+fdPu7d+8ewsPDpZ9JkyZ9rVP5Kv7++2+0bNkSR48exbVr19C0aVN07NgRgYGBX7RfU1NTFCpUSEVRqk5iYmK6ZUIIqXdUGd7e3li2bBnWrFmDS5cuwcTEBK1bt0Z8fHym23z8+BFVq1bFypUrM1wfGxuLgIAAeHh4ICAgAAcOHMC9e/fw3XffKR0f5Q0ssyHSEELg1o3r6OvaG5UrV8bOnTshk8nQoUMHnD17Rt3RUW4ROfTPP/+IlStXivnz5wtfX9+c7uaLREVFCQAiKioq3bq4uDgRHBws4uLi1BBZzkVERAgA4uzZs1m2K1OmjFi8eLHcMmtrazF27Fjp8ZkzZwQAERERkW77y5cvixYtWohChQoJc3Nz0bhxY3Ht2jVpvUwmE56ensLW1lbo6+uL4sWLi5EjRwohhHBxcREA5H7S/PPPP6Jhw4bC0NBQlCpVSowcOVLExMRI61euXCnKly8vDAwMRJEiRUTXrl2FEEL0798/3T5DQ0MVfdrScXJyEjNmzMh0/aZNm4SFhYX4448/pHhatWolwsLCpDaenp6iatWq0u//je/MmTMiISFBDB8+XBQrVkwYGBiI0qVLizlz5igV661bt0SbNm2EiYmJKFKkiOjbt6948+aNtN7FxUUMHz5cjB49WhQqVEg0adJE+tsePXpU1KhRQ+jp6YkzZ84odVyZTCaKFSsmFixYIC2LjIwUBgYGYteuXQrtA4D4448/sm13+fJlAUA8efJEof3m1fdvQfX777+L6dOni0uXLqk7FKIC68qVK6J7t65CPPMX4pm/MDYyFN9//70ICAhIbZCSLK0TKcnyG+fGOvpiWeW5n8vx7coNGzbEsGHDMHHiRLRo0SLHHybyjORY4O3l1H9zkampKUxNTXHw4EEkJCQotI1MJsP+/fsREREBfX3FJnT48OED+vfvD39/f1y8eBEODg5o164dPnz4AADYv38/Fi9ejLVr1yIkJAQHDx5ElSpVAKSWtZQqVUr6ZiA8PBwA8PDhQ7Rp0wZdu3bFzZs3sWfPHvj7+2PEiBEAgKtXr2LUqFGYOXMm7t27h2PHjqFx48YAgKVLl6JevXoYMmSItE9bW1ulnrvPn48PHz7A2to6y3axsbGYPXs2tm7dinPnziEyMhK9evXKsO2ECRPQo0cPtGnTRoqvfv36WLZsGQ4fPozff/8d9+7dw44dO2BnZ6dwrJGRkWjWrBmqV6+Oq1ev4tixY3j16hV69Ogh127Lli3Q19fHuXPnsGbNGmn5pEmTMG/ePNy5cwfOzs74559/pNdQZj87duwAAISGhuLly5dy718LCwvUrVsXFy5cUPgcFBEVFQUtLa1s71OgvCntWyH2zBN9fefPn0fbtm1Ru3ZtHDlyRFp+6dIl7N+/H9WrV1djdPQ1KHTlXbZsmcI7HDVqVI6D0VjJsYBPNeBDCGDmALS9Duga58qhdHV1sXnzZgwZMgRr1qxBjRo14OLigl69esHZ2Vmurbu7O6ZOnYqEhAQkJyfD2toagwcPTrfPUqVKyT1+8uQJmjVrJrds3bp1sLS0hJ+fHzp06ICwsDAUK1YMLVq0gJ6eHkqXLo06deoAAKytraGjowMzMzMUK1ZM2sfcuXPh6uoq1b07ODhg2bJlcHFxwerVqxEWFgYTExN06NABZmZmKFOmjHSRsbCwgL6+PoyNjeX2mRMLFy5ETExMuoT4v5KSkrBixQrUrVsXQGrC7OjoiMuXL0vnmsbU1BRGRkZISEiQiy8sLAwODg5o2LAhtLS0UKZMGaViXbFiBapXr445c+ZIy3777TfY2tri/v37+OabbwCkPpfe3t5Sm7QPUDNnzkTLli2l5bVq1cL169ezPGbRokUBQBp9Ku3x5+tVOTJVfHw83N3d0bt3b5ibm6tsv6Q5WDNP9BUJAQgZ/vH3x/QZM3H69GkAqe+/3r17S80qV6qkrgjpK1MomV+8eLFCO9PS0sqfyXxkUGoiD6T+GxkEFK6T9TZfoGvXrmjfvj3++ecfXLx4ET4+PvD29saGDRswYMAAqZ2bmxsGDBiA8PBwuLm5YdiwYShfvny6/f3zzz8wMzOTHltZWeHVq1eYOnUqzp49i9evXyMlJQWxsbEICwsDAHTv3h1LlixB2bJl0aZNG7Rr1w4dO3bMsuftxo0buHnzptTzC6TWcstkMoSGhqJly5YoU6aMtM82bdqgS5cuMDZW3QejnTt3YsaMGTh06BCKFCmSZVtdXV3Url1belyxYkVYWlrizp076ZL5zAwYMAAtW7ZEhQoV0KZNG3To0AGtWrVSON4bN27gzJkzMDU1Tbfu4cOHUjJfs2bNDLevVauW3GMjI6MMXwPqkpSUhB49ekAIgdWrV6s7HMolTOaJvg4hBE6fOonmjsZoVE4XFy+ch66uLvr374/JkyejnL0dEH5R3WHSV6ZQMh8aGprbcWg2y8qpPfJpPfOWlXP9kIaGhmjZsiVatmwJDw8PDB48GJ6ennLJfOHChVG+fHmUL18ee/fuRZUqVVCrVi04OTnJ7cve3j5deUP//v3x7t07LF26FGXKlIGBgQHq1asn3Vxpa2uLe/fu4eTJk/D19cWwYcOwYMEC+Pn5QU9PL8OYY2Ji8PPPP2f4ga506dLQ19dHQEAAzp49ixMnTmDatGmYPn06rly5opLyi927d2Pw4MHYu3fvVyv9qlGjBkJDQ+Hj44OTJ0+iR48eaNGiBfbt26fQ9jExMejYsSPmz5+fbl3x4sWl301MTDLc/r/L//nnH7Rt2zbLY65duxaurq7SNwyvXr2SO9arV69UMiRnWiL/5MkTnD59mr3y+RjLbIhylxACR48ehZeXF27dvIGPIScBAEOGDMbYcRM+fSvM2VoLpC+68gohACD/D22ka5xaWhMZlJrI51KJTVacnJzSDQH4OVtbW/Ts2ROTJ0/GoUOHst3fuXPnsGrVKrRrlzp989OnT/H27Vu5NkZGRujYsSM6duyI4cOHo2LFirh16xZq1KgBfX19uWGugNTENjg4OMueYV1dXbRo0QItWrSAp6cnLC0tcfr0aXz//fcZ7lNRu3btwo8//ojdu3ejffv2Cm2TnJyMq1evSr3w9+7dQ2RkJBwdHTNsn1l85ubm6NmzJ3r27Ilu3bqhTZs2eP/+fbY1+0Dqc7Z//37Y2dmpJBFSpszG3t4exYoVw6lTp6TkPTo6GpcuXcLQoUO/KI60RD4kJARnzpzRyFGBSHXYM0+kYv+W0shkMhz68y/MmjULAQEBAABrK0up2ZLFSwBtvu8KuhxlDxs3bsTixYul8agdHBwwZsyYDOu18w1d41wtrUnz7t07dO/eHT/++COcnZ1hZmaGq1evwtvbG506dcpy29GjR6Ny5cq4evVquvKL/3JwcMC2bdtQq1YtREdHw83NDUZGRtL6tDFp69atC2NjY2zfvh1GRkbSp387Ozv8/fff6NWrFwwMDFC4cGG4u7vj22+/xYgRIzB48GCYmJggODgYvr6+WLFiBf766y88evQIjRs3hpWVFY4ePQqZTIYKFSpI+7x06RIeP34MU1NTWFtbKzSl9M6dO9G/f38sXboUdevWleq9jYyMYGFhkel2enp6GDlyJJYtWwZdXV2MGDEC3377baYlNnZ2djh+/Dju3buHQoUKwcLCAsuXL0fx4sVRvXp1aGtrY+/evShWrJjC3zQMHz4c69evR+/evTFx4kRYW1vjwYMH2L17NzZs2KB0cqRMmY2WlhbGjBmDWbNmwcHBAfb29vDw8ECJEiXkxtNv3rw5unTpIt3IHBMTgwcPHkjrQ0NDcf36dVhbW6N06dJISkpCt27dEBAQgL/++gspKSnS38Ta2lrhm7Qp72DPPJFqpSQnQef1FWgD6OvaB7Fx8TAxMcGwYcMwftxYIOWRukMkDaL0aDbTpk3D6NGj0bFjR+zduxd79+5Fx44dMXbsWEybNi03YixQTE1NUbduXSxevBiNGzdG5cqV4eHhgSFDhmDFihVZbuvk5IRWrVop9HfYuHEjIiIiUKNGDfzwww8YNWqUXI25paUl1q9fjwYNGsDZ2RknT57En3/+KfWwzpw5E48fP0a5cuWkmX+dnZ3h5+eH+/fvo1GjRqhevTqmTZuGEiVKSPs8cOAAmjVrBkdHR6xZswa7du1CpX9v0pkwYQJ0dHTg5OQEGxsbqX7fzs4O06dPz/Rc1q1bh+TkZAwfPhzFixeXfkaPHp3lc2BsbAx3d3f06dMHDRo0gKmpKfbs2ZNp+yFDhqBChQqoVasWbGxscO7cOZiZmcHb2xu1atVC7dq18fjxYxw9elT6EDJgwAA0adIk032WKFEC586dQ0pKClq1aoUqVapgzJgxsLS0VOiDzJeaOHEiRo4ciZ9++gm1a9dGTEwMjh07BkNDQ6nNw4cP5b61uXr1KqpXry7dvDxu3Djpbw0Az58/x+HDh/Hs2TNUq1ZN7m9y/vz5XD8n+vrYM0+kGsnJydi2bRtq1/l0P5e5uRmmTJmCx48fw9vbG0WzuR+MCh4tkVYroyAbGxssW7ZM7o5pILXMYeTIkelKNXJTdHQ0LCwsEBUVla4eNz4+HqGhobC3t5dLTChviY2NRaFCheDj45NlUqypXFxc0LRp0yw/jFB6fP/mLUuWLEFUVBQGDx6MkiVLqjscojwnMTER27Ztw9y5c/Hw4UMYGxlKdfERRhVhZf1ZqaIs5dNNrsW/lS+z0aR19MWyynM/p/R3oklJSRmWcNSsWTNHM1ASZeXMmTNo1qxZnkzko6Ki8PDhQ7lxf4nyI5bZEOVMQnw8tm7djEWLfsW9+6mly4ULF8YkdzepjRXn56BsKP09/g8//JDhEHPr1q2Dq6urSoIiStO+ffs8mwxbWFjg2bNnGQ47SZSfsMyGSDlxcXFYtmwZKleuhCHtq+Du6U2wtyuDRYsW4fHjxxg/bry6Q6Q8JMc3wJ44cQLffvstgNRZxsLCwtCvXz+MGzdOavfrr7+qJkoiItJY7JknUkxMTAzWrFmDhQsX4tWrVzA2+lRGePt2EIyM/+384RCTpASlr7xBQUGoUaMGgNQb44DUr4QKFy6MoKAgqV2+H66SiIgAsGeeKEtCICoqEmvXroH3gkV49+4dgNTBHTym/iI1MzI0ymwPRFlSOpk/c+ZMbsRBRER5kEwmk+YcYTJPJC8iIgKrVi7HlIHNMbFvY8yYMRMODg745Zdf4OrqCj0dbc7YSl8s338nquRgPUSkAfi+zTs+n0iNZTZEqd68eYPFixdjxYoVSElOwpSBzQEAv/32G7p26/7pvcJyGlIBpa+88fHxWL58Oc6cOYPXr19DJpPJrU+boUzd9PT0AKQObfj5ZEhEpPliY2MBfHofk+b6fBQz9sxTgfXvjK2vXr3CgkW/YvXq1dJ1rG7tTyMA9uzRg8M3ksopncwPGjQIJ06cQLdu3VCnTh2NrY3X0dGBpaUlXr9+DSB1giBNjZWIUgkhEBsbi9evX8PS0pLJYR7wec/815jojEgTPX/+FCW1nqIogNWrViI2Lh41a9aEh4cHOrZvB7y6rO4QKR9TOpn/66+/cPToUTRo0CA34lGpYsWKAYCU0BNR3mBpaSm9f0mzfT6SDTtMqKB5/Pgx5s2bhz27dyHi9lEAQN26deA2cRLatGmT+p5gKQ3lMqWT+ZIlS8LMzCw3YlE5LS0tFC9eHEWKFEFSUpK6wyEiBejp6bFHPg/hSDZUED148ABz5szBtm3bkJycLDfE5KmTp6Clw/tH6OtR+tW2aNEiuLu7Y82aNShTpkxuxKRyOjo6/I+GiCgXMJmnAkMI3L17Bwu8vbF56zbpnsGWLVvCc5qH1IzfUNHXpnSBY61atRAfH4+yZcvCzMwM1tbWcj9ERFRwcMIoKghu3ryJH35wRUXzCGycNQSGBvpo3749Lly4gBMnTqBB/frqDpEKMKWvvr1798bz588xZ84cFC1alJ9AiYgKMPbMU3527do1eHl54dChQzA2MsS2+cMBAOf8/VGtRk01R0eUSulk/vz587hw4QKqVq2aG/EQEVEewp55ylf+HWLy0uVLmDFzFnx8fACkls507fq91KxatWpqCpAoPaXLbCpWrIi4uLjciIWIiPIY9sxTfuLv/w8QfhF1bQX8zp6BtrY2+vbti9u3b2Prlq3qDo8oQ0on8/PmzcP48eNx9uxZvHv3DtHR0XI/RERUcDCZp7xOCIGTJ0+icePGaN26tbS8X79+uHfvHrZt2wZHR0c1RkiUNaW/F23Tpg0AoHnz5nLLhRDQ0tKSm0CEiIjyN5bZUF4lhICPjw+8vLxw8eJFAIClhbm0fvWqVZytlfIEpa++Z86cyY04iIgoD2LPPOU1spQUHDnyJ+bP98a58xcAAIaGhvjpp58w0W08gKfqDZBISUon8y4uLrkRBxER5UHsmae8IiUlBfv378eiBd64dHApOv6+ADZVv8OAgT9i/PjxqbNOy1KAcCbzlLfk+OobGxuLsLAwJCYmyi13dnb+4qCIiChvYM88abrk5GTs3r0bs2fPxt27d+Vmaw0ODoZNkaJqjI7oyymdzL958wYDBw6Uhmv6L9bMExEVHEzmSSMJgaSkBOzatQszvWbj4cOHAABLS0u4TRgnNbMpXFhdERKpjNKj2YwZMwaRkZG4dOkSjIyMcOzYMWzZsgUODg44fPhwbsRIREQaimU2pGkSEhKwYcM66L25hn4tvkH4i+coVKgQZs+ejSdPnuCXyb+oO0QilVL66nv69GkcOnQItWrVgra2NsqUKYOWLVvC3Nwcc+fORfv27XMjTiIi0kDsmSdNERcXh/Xr18Pb2xsR799hcLuTAIA5s2dj0JCfYGpqmtpQxgoCyl+UTuY/fvyIIkWKAACsrKzw5s0bfPPNN6hSpQoCAgJUHiAREWmutJ55JvP01f07W+vH2I9Ys3Y9FixYgFevXgEAypcrKzUbPXo0h5ikfE3pMpsKFSrg3r17AICqVati7dq1eP78OdasWYPixYurPEAiItJc7JkndYmOjgLCL8Ik6hameUzFq1evUKZMGaxevRpBQbfUHR7RV6N0z/zo0aMRHh4OAPD09ESbNm2wY8cO6OvrY/PmzaqOj4iINFhaMs+aefpaIiIisGzZMqxftwbPLu8DAJQta4+x4ybghx9+gJ6eHktpqEBR+urbt29f6feaNWviyZMnuHv3LkqXLo3CvCuciKhAYZkNfS1v377F4sWLsWLFCkRHR8sNMRkYGAhdPQM1RkekPl/clWJgYABtbW1eyImICiD2zFOuEgKvXr3EsmXLsHTZcnz8+BEAUKVKFXhO85Ca6erw9UcFV46Gpty4cSOA1It448aNUaNGDdja2uLs2bOqjo+IiDQYa+Yptzx//hxubuNRNOURZg/vACFLQY0aNfDHH3/g+vXr6Pr99+oOkUgjKJ3M79u3D1WrVgUA/Pnnn3j8+DHu3r2LsWPHYsqUKSoPkIiINBfLbEjVnjx5gmHDhqFs2bJYtWq1tHz//n24evUqOnfuDG1tpdMXonxL6XfD27dvUaxYMQDA0aNH0b17d3zzzTf48ccfcesW7x4nIipIWGZDKiEEHj0MwbCh/0P58uWxevVqJCYmomHDBlKTNq3bQEtLS41BEmkmpZP5okWLIjg4GCkpKTh27BhatmwJAIiNjWXPDBFRAcMyG/pSd+/exeDBg1DW8DVWTf0B+nq6aNGiBfz8/HD82HF1h0ek8ZRO5gcOHIgePXqgcuXK0NLSQosWLQAAly5dQsWKFVUeIBERaa60Mhv2zJOybt26hZ49e8LJyQm7du2Slp8+fQq+vr5o3LixGqMjyjuUvvpOnz4dlStXxtOnT9G9e3cYGKQOBaWjo4NJkyapPEAiItJc7Jknhf07Y+v169cxc9Zs/PHHH9Kqjh07Sr/XrVNXHdER5Vk56krp1q1bumX9+/f/4mCIiChv4Q2wpKgrVy6hdskUVCsKHD/mAy0tLXTv3h1TpkyBc+VKQPhFdYdIlCfxdnAiIsox3gBL2fnnn3/QqlUrNGnSVFrWq2dP3L59G3v27IGzs7MaoyPK+3j1JSKiHGOZDWVECIHTp0/Dy8sLfn5+AABzM1Np/caNGwFtvmaIVIE980RElGO8AZY+J2QynDjmg+bNmkgj0ujp6eHnn3/GzZs3st44JR6IDgaSYxU/YE62+ZLtiDQQk3kiIsox9swTkNoTf/jwYTRu3Aitqpjj9PY5sLayxMiRI/Ho0SOsWbMGZUqXyXwHybHAtQFA4E/AsZrySXZmiXdW22Qlp9vllszO72t/4OAHnDxL6a6Uly9f4tKlS3j58iUAoFixYqhbt640kRQRERUcvAG2YJPJZNi/fz9mzZqFmzdvwtjIMDUp/PgIt29cQTHb8vIb/LsONs6Avtmn5VFBQNyz1N9jQoDIIKBwnU+Jd9wzIGQB0O46oGuc9TY5PVZ222W3LiuZbZfZ+WV13l8So7JxfMm50VejcM/8x48f0bdvX5QqVQrdunXDtGnTMG3aNHTr1g2lSpXCDz/8gNhYfpojIipIeANsASQEUpISsWf3LlSpUgU9evTAzZs3YWZmhsluo6Ve72KB7eR7ebPqEbd0BkwdUn83cwAsK6f+nlHind02OT1Wdttl16Ofk28QMju/rM47pzHmJI4vOTf6ahRO5kePHo3Lly/jyJEjiI+Px6tXr/Dq1SvEx8fj6NGjuHz5MkaPHp2bsRIRkQYRQrDMpoBJSkrC9m1bofP6Cno2Ko3HoY9gYWEBT09PPH78GFNHdMo8KcwqYdQzSe0NbnUJaHv9U69wVol3Ztvk9FjZbZfTBDsnH0iyOu+cxpgbH4yy+xBAX4XCyfz+/fuxefNmtG7dWu6iraOjg1atWuG3337Dvn37ciVIIiLSPDKZTPqdPfP5W0JCAtatW4dvvvkGP//vf9JyT89pePLkCaZPnw5ra+usk8Ks1gGpSXXhOvLJdVaJd2bb5PRY2W2X0wQ7Jx9IsjrvnMaYGx+Msnue6atQ+Oork8mgr6+f6Xp9fX25CzsREeVvafXyAHvm851/Z2uNi4/Dxt82Y/78+Xj2LDWhsyttKzWb6DZRfojJtKQwMig1scsoMc9oXVbSEm9l5PRYOY0/LamNCck8Uc4slszOL7PlOY0xp3F8ybnRV6ElhBCKNHR1dcWdO3ewceNGVK9eXW5dYGAghgwZgooVK2L79u25EmhGoqOjYWFhgaioKJibm3+14xIRERAbG4sFCxYAADw8PKCtzQHS8ouPMdEwiboFADBxaIHYuHiUKFECEydOxJDBP8I48mZqw+Lfcrz4NMmx+Tepzc/npsEUzXMVvvKuWLECRYsWRc2aNVGoUCE4OjrC0dERhQoVQq1atVCkSBGsWLFCJcETEZHmS+uZ19LSYiKfT3z48AHz5s2Dk6OTtMzW1harVq3Cw4cPMXr0aBgbMZnLUGalO/lBfj63fEDhMhsrKyv4+Pjgzp07uHjxotzQlPXq1UPFihVzLUgiItI8HMkm/4iMjMSyZcuwZMkSREREpA4x+a+bN29A38BIjdERUVaUvgKn9cgTEVHBxpFs8jgh8PbtG6xcuRK/Ll6C6OhoAECFChXg6TFVaqavl/n9ckSkfkol84mJiTh48CAuXLgg1zNfv359dOrUKcsbZImIKH9JK7Nhz3ze8+rVKyxbugSzh3eA55BW8Pb2RuXKlTF16lR069YNOloAwi+qO0wiUoDCRY4PHjyAo6Mj+vfvj8DAQMhkMshkMgQGBqJfv36oVKkSHjx4kJuxEhGRBmHPfN7z/PlzjBkzBvb29liyZIm0fOfOHbhx4wZ69uzJvydRHqNwd8rQoUNRpUoVBAYGprujNjo6Gv369cPw4cNx/PhxlQdJRESaJ61nnsmfBvt3iMmnz55i7jxvbNy4EYmJiQAAl8aNpGadvusE8CZmojxJ4WT+3LlzuHz5coZD45ibm8PLywt169ZVaXBERKS5eAOs5nv06AHKGr6GrQ6wZfMmJCYmolGjRvDw8ECLZk2Bl5fUHSIRfSGFP4ZbWlri8ePHma5//PgxLC0tVRASERHlBSyz0Vz37t1Dv379UK3ap3lhmri44OzZs/j777/RsmVLaGlpqTFCIlIVhbtTBg8ejH79+sHDwwPNmzdH0aJFAaTeRHPq1CnMmjULI0eOzLVAiYhIs/AGWM0TFBSEWbNm4ffff4cQQm6IySNHjnCCJ6J8SOEr8MyZM2FiYoIFCxZg/Pjx0id6IQSKFSsGd3d3TJw4MdcCJSIizcKeeQ0hBG5cD8S8+fOwe89eafF3332HaR5TACSpLzYiynVK3e3i7u6OFy9e4MGDB/D394e/vz8ePnyIFy9eMJEnIipgeAOs+l26dAldu36PqkXisGvRaJgYG6Fbt264fv06Dh06hJo1aqo7RCLKZTn6brRs2bIoW7asqmMhIqI8hDfAqo+/vz+8vLxw4sSJf0tpJgAArly5AkenSuoNjoi+KqV65oODgzFs2DBUr14dxYsXR/HixVG9enUMGzYMwcHBuRUjERFpIJbZfEVCQKQk4+yZ02jatCkaNWqEEydOQEdHB3379pWaOVasqMYgiUgdFO5O8fHxQefOnVGjRg106tRJ7gZYX19f1KhRA4cOHULr1q1zLVgiItIcvAH26xBC4OSJ42hZ2QxNvjFA+0sXoaenh4EDB2LSpEmwL1Oas7USFWAKX4EnTZoEd3d3zJw5M9266dOnY/r06XBzc2MyT0RUQLBnPncJIfDnn3/Cy8sLwbeD8DHkJADg559/wthxE2Bra5vaUJaixiiJSN0ULrO5f/8+XF1dM13fu3dvhISEqCQoIiLSfLwBNhcIAVlyEv44sB/Vq1dHp06dcPXqVRgZGUlNfl3066dEnogKPIWTeTs7u9QxajNx5MgRlClTRiVBERGR5mPPvGqlpKRgz57d0H51GV3qFkPI/XswNTWFu7s770sjokwpNc58nz59cPbsWbRo0SLdpFHHjh3Dzp07cy1QIiLSLBzNRjWSkpKwY8cOzJkzB8+fPUXPf8tpJk2ahGHDR6BQoUKppTThD9UcKRFpIoWvwN27d0fJkiWxbNkyLFq0CC9fvgQAFCtWDPXq1cPZs2dRr169XAuUiIg0C8tsvkxiYiI2b96MefPmITQ0FABQqmRxab3H1KmcsZWIsqVUd0r9+vVRv3793IqFiIjyEPbM50x8XBy2bNmMRYsWIeRBam+7jY0NJkyYgKH/+xn4EKTmCIkoL1FqnPk0UVFRuHfvHu7du4eoqChVx0RERHkAa+aVExsbi8WLF6NSJSf83NEZ989uQVl7OyxevBiPHz/GxIkTYWZqqu4wiSiPUao7ZcOGDfj1119x7949AKnDZmlpaaFChQoYP348Bg0alCtBEhGR5mGZjWI+fPiAVatWYdGiRXjz5s2/M7amun07CIZGJmqMjojyOoWT+QULFmD69OkYNWoUWrduLXcD7IkTJzB69GhERERgwoQJuRYsERFpDpbZZEEIREZGYM2a1Viw8Fe8f/8eAFC2bFl4TP1FamZoYJjZHoiIFKLwFXjFihXYtGkTevToIbfc0dERTZo0QdWqVeHm5sZknoiogGCZTcbevXuHlSuWY9rglpjUrwm8vGbhm2++wZQpU9CnTx/oamtxxlYiUhmFa+Zfv36NKlWqZLq+SpUqePv2rUqCIiIizZdWZsOe+VSvX7+Gu7s77OzsMH/+fGn55s2bERwcjH79+vG5IiKVUziZr127NubNmyddvD+XkpKC+fPno3bt2ioNjoiINFeB75kXApClIPz5M4wdOxZ2dnbw9vZGTEwMnJ2dpWbdu3UruM8REeU6pcpsWrdujWLFiqFx48ZyNfN///039PX1ceLEiVwLlIiINEtBvwH22bMwlNJ+huIA1q1dg7i4eNSuXRseHh7o0K4t8PKSukMkogJA4Z55Z2dn3L9/H15eXjAzM8OjR4/w6NEjmJmZYdasWbh79y4qV66cm7ESEZEGKag3wD569Ag//fQTKlf+VHpar963OHbsGC5duoSOHTtCS0tLjRESUUGi1BXYzMwMQ4cOxdChQ3MrHiIiyiMKWpnN/fv3MWfOHGzfvh0pKSlyQ0z6nvCFlk7B+lBDRJohR5NGZSQpKQlhYWGq2h0REWm4AnEDrBAIvh2Egf37wdHREVu2bEFKSgpatWoFX19fqRl74olIXVSWzAcHB8Pe3l5VuyMiIg2X33vmr1+/DlfX3nCyjMKmOT/D0EAfHTt2xKVLl3D8+HHUr1dP3SESESlXZkNERJQmv94Ae+XKFXh5eeHPP/9MLaVZMBIAcOH8eThXq67m6IiI5CmczNeoUSPL9XFxcV8cDBER5R355gZYIQAhw8VLFzFj5iwcO3YMQGrpTPfu3aRmnw83SUSkKRS+AgcHB6NXr16ZltKEh4fj/v37KguMiIg0W34osxFC4J+//dC4vB6+LQ387XcWOjo66Nu3LyZPnowKDuU5WysRaTSFk/nKlSujbt26mY5kc/36daxfv15lgRERkeYSQkAmkwHImz3zQgj4+vrCy8sLAdeu4mPISQDAwIEDMW78BJQtWza1oSxFjVESEWVP4StwgwYNcO/evUzXm5mZoXHjxioJioiINNvns4HnpZ55IQSOHDkCLy8vXL58GQBgZWkhrV+xfDmgnXfOh4hI4WR+6dKlWa4vV64czpw588UBERGR5ksrsQHyRjIvS0nBn38ewvz53rhwMXVmViMjI/z888+YOGE8gCfqDZCIKIdUNjQlEREVHHmlZz4lJQW7d+/Gt3XroFPtoji/bxFsCltj4sSJePz4MRYvXozixYurO0wiohzLe4WORESkdp/f/KqJEyYlJydj586dmDNnDu7duyc3W+udO3dRqLCNGqMjIlIdJvNERKQ0jRzJRggkJsZj165dmOk1G48ePQIAWFlZYaLbeKlZIWtrdUVIRKRyLLMhIiKladqEUfHx8Vi3bi303wagf8sKeBn+AjY2Npg3bx6ePHmCSe6T1B0iEVGuYDJPRERK05QJo2JjY7F06VKUK1cOY8eOlZbPmzcPoaGhcHd3h5mZmRojJCLKXSyzISIipamtZ/7f2VpjPsZg9Zp1WLhwIV6/fg0AcChfTmo2csQIDjFJRAWCSnvmmzVrBi8vL8TGxqpyt0REpGHU1TMfFRUJhF+EaXQQpntOw+vXr2FnZ4e1a9fi1q2bXzUWIiJNoNJkvnTp0jh16hQqVqyoyt0SEZGG+do3wL5//x6enp5wdPz0/0v58uWwadMm3L9/Hz/99BMM9A2+SixERJpEpV0qmzdvBgBER0ercrdERKRhvlaZzevXr7F48WKsWLECMTExckNMBlwLgI6efq4en4hI06kkmY+MjISlpaX02NzcXBW7JSIiDZWrZTZC4GX4CyxZsgTLVqxEXFwcAKBq1arwnOYhNdOUkXSIiNRJ6TKb+fPnY8+ePdLjHj16oFChQihZsiRu3Lih0uCIiEgz5VbP/NOnTzFu3BgUE48xb3RnaEGgVq1aOHToEAIDA9Glc2eVHo+IKK9TOplfs2YNbG1tAQC+vr7w9fWFj48P2rZtCzc3N5UHSEREmkfVPfOhoaH4+eefUa5cOaxdu05afvCPP3D58mV89913GjnTLBGRuil9FX758qWUzP/111/o0aMHWrVqBTs7O9StW1flARIRkeZRyQ2wQuDBgxAsWLAAG3/bJO2zebMmUpOWLVsCTOKJiDKldM+8lZUVnj59CgA4duwYWrRoAQAQQkgXYiIiyt++tMwmODgYPw4cgPLGb7DWcwAM9PXQsmVL/P333/A56qPKUImI8jWlk/nvv/8effr0QcuWLfHu3Tu0bdsWABAYGIjy5curPEAiItI8OS2zuXHjBrp3747KlStjz++/S8vPnj2DEydOoFGjRiqNk4gov1O6zGbx4sWws7PD06dP4e3tDVNTUwBAeHg4hg0bpvIAiYhI8yjcM//vjK0BgQGYMXMWDh8+LK367ruO0u+1a9XOlTiJiPI7pZN5PT09TJgwId3ysWPHqiQgIiLSfIrWzF+8eB7flgZqFANO+p6AlpYWevTogSlTpqBKJScg/OLXCJeIKN/K0Qyw27ZtQ8OGDVGiRAk8efIEALBkyRIcOnRIpcEREZFmyq7Mxs/PD82bN0fz5i2kZb1790ZwcDB2796NKlWqfJU4iYjyO6WT+dWrV2PcuHFo27YtIiMjpQu6paUllixZour4iIhIA8mV2QgBJH6AeH0ep078icaNG6NJkyY4ffq0XLK/Yf16VKxYUV0hExHlS0on88uXL8f69esxZcoUua9Xa9WqhVu3bqk0OCIi0kyfl9mIxA/AESdonWyA0kGdcPXSP9DX18fQoUNx69bNbHYUD0QHA8mxXyFqIqL8R+lkPjQ0FNWrV0+33MDAAB8/flRJUEREpNnSkvl79+5hSM8GQNwzAIBDMYFZE3ri0aNHWLVqFUrbls48YU+OBa4NAAJ/Ao7V1NyEPqsPHHnhw0huxJgXzpuogFA6mbe3t8f169fTLT927BgcHR1VERMREWmwlJQUPHr0CACwefNmHDwbAhiVAgAkG9lj3IzfULJkydTGWSXsUUHShwDEhACRQV/xLP4jJx84vuTDiKqT4dz4wJTXP4QRFRBKJ/Pjxo3D8OHDsWfPHgghcPnyZcyePRuTJ0/GxIkTcyNGIiJSNyGQnJSAXTt3oHLlyrh4MXUUGl1dXfw8fDze1vsHaHkeuh1uAbrGn7bLKmG3dAZMHVJ/N3MALCt/Wvc1e5Nz+oEjpx9GskuGM4tT1fHnNEZN+hBGRMon84MHD8b8+fMxdepUxMbGok+fPli9ejWWLl2KXr165UaMRESkRomJidiyZRN0X19Fbxc7hD15DENDQwDA3LlzMXv2bBQuZgfY1AP0TOQ3ziph1zMB2l0HWl0C2l7/9CEgp8luVutympxmFX9W67KKJavjZRZnbsSf0xiz2ycRfVVaQgiR041jY2MRExODIkWKqDImhUVHR8PCwgJRUVEwNzdXSwxERPlVQkICfvvtN8ybNw9v37zGx5CTAIBFu87BupANwsLC0LlzZ1StWjXrHSXHpiaDlpXle+0z8+YC4Fv/0+NWl4DCdVJ///dmW8Q9S00o213/tM+s1mW1z6SPgE/11KTVzEH+g0V28We2LqtYsjpeZnHmRvw5jTG754SIVELRPDdH48ynMTY2VlsiT0REKiYEIEtBXGwMli1bhnLlymHYsGEICwtD0aJFpWbjx42HlpYWgMzHmZeja5yaeCqa9GXV85vTspecfEOgSPyZrcsqlqyOl1mcuRF/TmPM7jkhoq9K6Rlg7e3tpYt4RtJuiiIiorwlJiYaptFBMAIweZI7YuPiUapUKbi7u2PQjwOAiBtSW7lx5lUtLZHMqOc3LalN6zHOqOwlo3VZ7RP4lJyqSlaxZHW8zOLMjfhzGiMRaRSlk/kxY8bIPU5KSkJgYCCOHTsGNzc3VcVFRERfSVRUFFauXIk1q1ci7OLvAIAyZcpg9JixGDBgAAwMDABZitw22c0A+8WUTXazW5fVPnNDdrFkJbM4VR3/l8RIRBpD6avw6NGjM1y+cuVKXL169YsDIiKiryMiIgJLly7F0qVLERkZCWMjQ2ndjRvXoadvmOm2n08a9dVlldRqUm+yJsWSmbwQIxFl6Ytq5j/Xtm1b7N+/X1W7IyKi3CAE3r55Dc9pHihTpgxmzJiByMhIODo6YuPGjVIzPV29LHeTq2U2RESkMJUl8/v27YO1tbWqdkdERCr28uVL/DJ5EgonhmDGz22QkpwEZ2dn/P777wgKCkKvnj0V3leul9kQEZFClL4KV69eXe4GWCEEXr58iTdv3mDVqlUqDY6IiL7cs2fP4O3tjfXr10NbC5gz8jsAwJ49u9GufUdoa//br/OfuvissGeeiEgzKJ3Md+7cWe6xtrY2bGxs0KRJE1SsWFFVcRERUU4JAQgZnoQ9wdx53ti0aRMSExMBAE2bNJaadWjfAdDO2Re07JknItIMSl+FPT09cyMOIiJSkYcPH6Cc0WuU0QO2bd2CxMREuLi4wMPDA82auAAvL33xMdR6AywREUkUSuajo6MV3iFnYiUiUo87d+5g9uzZOHTwD3y4dwIA0KxpU7i5T0Ljxv/2yCtRSpMZIQTLbIiINIRCybylpWWWE0UBqRd3LS0tqbeGiIi+jps3b2LWrFnYt28fhBByQ0z++eefgLZqE26ZTCb9zjIbIiL1UugqfObMmdyOg4iIlCEEAgOvYd68+fh97z5pcefOnTHNYwqAhFw7dMpnvfvsmSciUi+FknkXF5fcjoOIiBR04cIFeM+fhz9WTsSexWNw5MgRtO/QEVOmTIGzs3NqKU34xVw7/uffwLJnnohIvXJ8FY6NjUVYWJg0QkIaZ2fnLw6KiIjS8/Pzg5eXF06dOvVvKc1EAMDVq1dR0dHpq8WRnJyazGtpaX0a1pKIiNRC6WT+zZs3GDhwIHx8fDJcz5p5IiIVEQJCloLTZ85gxkwv/PPPPwBSe8P79esnNatYocJXDYsj2RARaQ6lu1TGjBmDyMhIXLp0CUZGRjh27Bi2bNkCBwcHHD58ODdiJCIqcIQQOH7cB1ovL6G5ozGuXb0CfX19/O9//0NISAhWq3GSPo5kQ0SkOZTumT99+jQOHTqEWrVqQVtbG2XKlEHLli1hbm6OuXPnon379rkRJxFRgSCTyXD48GHMmjULd4Jv42PISQDAsGFDMXrMOJQqVerfhur7FpQTRhERaQ6le+Y/fvyIIkWKAACsrKzw5s0bAECVKlUQEBCg2uiIiAoCIZCSlIj9+/aiWrVq6NKlC65duwZjY2OpyQLvBZ8SeTWTscyGiEhjKJ3MV6hQAffu3QMAVK1aFWvXrsXz58+xZs0aFC9eXOUBEhHlZ8nJydi1ayd0Xl9B13ol8PBBCMzMzPDLL7/gzp076g4vQ8kpqWU27JknIlI/pa/Eo0ePRnh4OADA09MTbdq0wY4dO6Cvr4/NmzerOj4ionwpKSkJ27Ztw9y5c/Hi+TP0/recZsqUXzB02AhYWVn9O8RkiJojTY83wBIRaQ6lk/m+fftKv9esWRNPnjzB3bt3Ubp0aRQuXFilwRER5TcJCQnYtGkT5s2bhydPngAAbEuVkNb/MvkXlc/YqmppQ1MymSciUj+ly2z8/f3lHhsbG6NGjRpM5ImIshAXG4tVK1egciUnDB06FE+ePEHRokWxYMECBAcHqzs8pfAGWCIizaF0Mt+sWTPY29vjl19+yXP/ARERfW0xMTFYuHAhKjk5Yljn6gjx24ry5cpi6dKlCA0NxYQJE2BqYqruMJXCMhsiIs2hdLfKixcvsHv3buzatQvz5s2Ds7MzXF1d0bt3b40ZaYGISN2io6OxYsUK/Prrr3j37t2/M7amCgq6BQND4yy21mwpybwBlohIUyjdM1+4cGGMGDEC586dw8OHD9G9e3ds2bIFdnZ2aNasWW7ESESUNwiBiPfvMGe2F8qUKYMpU6bg3bt3KFeuHFav/jTJk4G+gRqD/HLsmSci0hxKJ/Ofs7e3x6RJkzBv3jxUqVIFfn5+qoqLiChPefv2LaZP94RV3F38MqAZEhPiUbFiRWzbtg13795Fvx/6qTtElUkbmpLJPBGR+uU4mT937hyGDRuG4sWLo0+fPqhcuTKOHDmiytiIiDTey5cv4ebmBjs7OyxYsEBavnXrVgQFBaFv3775rhyFN8ASEWkOpa/EkydPxu7du/HixQu0bNkSS5cuRadOneRmKiQiyreEAIQML8JfYL73Qqxbtw7x8fEAgPr1vpWadf3+e40fYjKnODQlEZHmUDqZ//vvv+Hm5oYePXpwOEoiKnDCwh6jtO4LlACwYX1qIv/tt9/Cw8MDbVu3Al5eUneIuY4180REmkPpZP7cuXO5EQcRkUZ78OAB5s6di317f0fUnWMAgIYNG8Bt4iQ0b94cWlpaqTO2FgBM5omINAcLHomIsnD37l3Mnj0bO3fuhEwmkxti8vix4/m2lCYrHJqSiEhzfNFoNkRE+ZIQuB10C/379YWTkxO2b98OmUyGtm3b4vTpU+qOTu1SZOyZJyLSFEzmiYg+ExAQgN69e6KSVTS2zB0KI0MDdOrUCVeuXMHRo0dRt05ddYeodsnsmSci0hi8EhMRAbh06RK8vLxw5MiR1FKaRaMBABcvXkQV56pqjk6zyGQyAOyZJyLSBEzmiahg+neIyXPnz2PGTC/4+voCALS1tdGrZ0+pWZXKldUVocbi0JRERJpDoWTeysoqdaQGBbx///6LAiIiym1CCJw9cxpNKxiigb02zvn/A11dXfzwww+YPHkyHMqVBcIvqjtMjcVJo4iINIdCV+IlS5ZIv7979w6zZs1C69atUa9ePQDAhQsXcPz4cXh4eORKkEREqiCEwLFjx+Dl5YUb1wPxMeQkAGDQoEEYN34C7OzsUhsWkCEmcyqtZp4980RE6qdQMt+/f3/p965du2LmzJkYMWKEtGzUqFFYsWIFTp48ibFjx6o+SiKinPi3lEYIgcN/HcGsWbNw9epVAIC1laXUbNnSpQVyiMmckrFnnohIYyg9ms3x48fRpk2bdMvbtGmDkydPqiQoIiJVkKUkA+EXofXyEvr07oWrV6/C2NgY48ePR/Dt2+oOL8/i0JRERJpD6WS+UKFCOHToULrlhw4dQqFChVQSFBHRl0hJScHOnTtRp24daZmpqQkmT56Mx48fY+HChShatKgaI8zbWGZDRKQ5lP6OdMaMGRg8eDDOnj2LunVTx1u+dOkSjh07hvXr16s8QCIiRSUlJWHHjh2YM2cOQkJC5GZrvXPnLqwLFVZjdPkHb4AlItIcSl+JBwwYAEdHRyxbtgwHDhwAADg6OsLf319K7omIvhohkJgYj+3bt8Nr1hw8fvwYAGBtbQ33iROkZtZWVmoKMP/h0JRERJojR90qdevWxY4dO1QdCxGRUuLj47F502/433dV8WMbJ4wc+RJFihTBhAkTMHToUJgaG3GIyVzAnnkiIs2hdM08ADx8+BBTp05Fnz598Pr1awCAj48PbvOGMiL6Cj5+/Ihff/0V9vb2GD9+vLTc29sboaGhcHNzg6mpqRojzN/Sknn2zBMRqZ/Sybyfnx+qVKmCS5cuYf/+/YiJiQEA3LhxA56enioPkIgIQgCyFERHRWLevHmws7PD+PHj8fLlS5QqVUpqNnzYMBgbG6sx0IIh5d8bYNkzT0Skfkon85MmTcKsWbPg6+sLfX19aXmzZs1w8SK/ziYi1YuMjADCL8I85ja8Zs7A27dvUbZsWaxfvx63bt1Ud3gFDoemJCLSHEon87du3UKXLl3SLS9SpAjevn2rkqCIiADg7du3mDp1KhwdK0rLvvnGAVu2bMG9e/cwePBg6OvpZ7EHyg0cmpKISHMo/R2ppaUlwsPDYW9vL7c8MDAQJUuWVFlgRFRwvXr1CosWLcKqVavw8eNHuSEmr165Ch0m8Golk8kAsMyGiEgTKN0z36tXL7i7u+Ply5fQ0tKCTCbDuXPnMGHCBPTr1y83YiSiAuL582eY6DYelZwcsWDBAnz8+BHVqlXDzp2fRs9ib7Dm4N+CiEj9lE7m58yZg4oVK8LW1hYxMTFwcnJC48aNUb9+fUydOjU3YiSifO7JkycYNmwYKleqBO8x3+PtzT/RuFFD/PnnnwgICECn7zqpO0TKAHvmiYjUT+krsb6+PtavXw8PDw8EBQUhJiYG1atXh4ODQ27ER0T52MOHDzF37lxs2bIFycnJcuU0Z8+cgZbOv5cooaYAKUvsmSciUr8cd6uULl0apUuXVmUsRFQQCIH79+/B29sbm7dslcYsb9asGTyneUjNtLS01BUhKUBbW5t/IyIiDaBQMj9u3DiFd/jrr7/mOBgiyt+CgoKwwHsetswdig0zB2HXrl1o7NISHh4eqF+/PiBL4YyteQR75YmININCyXxgYKDc44CAACQnJ6NChQoAgPv370NHRwc1a9ZUfYRElOcFBgZi1qxZOHDgAIyNDLFl7lAAwN9/+6FmrTpqjo5ygvXyRESaQaGr8ZkzZ6Tff/31V5iZmWHLli2wsrICAERERGDgwIFo1KhR7kRJRHmLEICQ4eq1q5gxcxb++usvAKmlM99//2meipo12AGQV7FnnohIMyg9ms2iRYswd+5cKZEHACsrK8yaNQuLFi1SaXBElDedP38OCL+IWiWScfrUSWhra6NPnz4ICgrCtq3b1B0eqQCTeSIizaB0Mh8dHY03b96kW/7mzRt8+PBBJUERUd4jhMDp06fRtGlTtGzZUlret29f3L17Fzt27ICTk5MaIyRVYpkNEZFmUPpq3KVLFwwcOBCLFi1CnTqpta6XLl2Cm5sbvv/+e5UHSESaTQiB48ePw8vLC+fPnwcAWJibSevXrlkDaLMXN79hzzwRkWZQOplfs2YNJkyYgD59+iApKSl1J7q6GDRoEBYsWKDyAIlIMwmZDEeP/oX5873xj/85AICBgQGGDBkC94kTADxTb4CUq9gzT0SkGZQuszE2NsaqVavw7t07BAYGIjAwEO/fv8eqVatgYmKSGzESkQaRyWTYt28f6tX7Fu2rF8Lfu+ejcCFrjBs3DqGhoVi+fDlKlSyl7jALhpR4IDoYSI796odmzzwRkWbIcdeKiYkJnJ2dVRkLEWmwlJQU/P7775g9ezZu374tN1trcHAwbIoUVWN0uSAlHvj4CLBxBvTNsm//tSXHAtcGAHHPgJAFQLvrgK7xVzs8k3kiIs2gdM/8x48fpQleypcvj7Jly8r9EFE+IgSSEuOxfesWODo6ok+fPrh9+zYsLCwwefJkqZlN4cLpt82q1zgnPco53V9OjpWWKAf+BByrqZlxRgWlJvIAEBMCRAYpHmNO/RujrlYiy2yIiDSE0lfjwYMHw8/PDz/88AOKFy/O6byJ8qnExETs2L4VA1vYo2/tRIx5HQZra2uMHTsWI0eOhIWZaeaztWbVa5yTHuWc7i+nvdcZJcqFFZjcKjfizOwbAktnwNQhNT4zB8CycvbxKSKz430W46CShXBam0MRExFpAqWTeR8fHxw5cgQNGjTIjXiISM3i4+OxceNGzJs3D3Ef3mDgJhsg7hlClhWGbscgmFn9W04jS8k88csqGc4uUc5onzndX06OBWSfKKv6vDNbl1WSr2eS+jgyKDU+ZUpsFEjY0x3vsxgL6b2Dtc4LxY9HRES5RukyGysrK1hbW+dGLESkDkIAshTEfvyAxYsXo2zZshgxYgSePXuGRlWspQTOSvctzFKefNouq1KUtGQYSJ8MZ7Uus33mdH85ORbwKVFudQloe10+Uc6N885sXXalNLrGqUl/Rol8ZmU7WcWf1fE+i/FdojU+6tqnPyYREX11WkIIocwG27dvx6FDh7BlyxYYG3+9m60yEh0dDQsLC0RFRcHc3FytsRDlVR+io2D2ITVpM3Fogdi4eNja2mLSpEn48YeeMDxT71MP9eeJ7ZsLgG/9TztqdUm+1zs5NvNe48zWZbXPnOwvp8fKSm6cd2brkj4CPtUzfv6zkvgBOOKUmpibOsj3sGcVf3bHS45F4NltOHo+DFWq1cV3332XfSxERJQjiua5SpfZLFq0CA8fPkTRokVhZ2cHPT09ufUBAQHKR0tEX11kZCSWL1+OdWtX4+mlvQAAOzs7jBk7Dv3794e+vn5qw8xKObIrRUnrNc5IZuuy2mdO9pfTY2UlN847s3U5LaXJqqQnq/izO56uMSJ1vkGyeMnRbIiINITSyXznzp1zIQwi+lrevXuHJUuWYNmyZYiOjpYbYvL69UDo6RvKb5BZAvolNduZyY19qvpYXzNGIOsPAJn5woQ9q+MlJyenNuNoNkREGkHpq7Gnp2duxEFEuUkIvH79CsuWLcPSZcsRExMDAHBycoLnNA+pmZ6uXmZ7yFhOEk117FPVx/qaMebEFybsWUlJSQHAceaJiDSF0jfAElHe8uLFC7i7u6FI8kPMGtYespRkVKtWDfv27cOtW7fQo3t3dYdIuSGrm2O/QFoyz555IiLNoHQyr62tDR0dnUx/iEgzhIWFYfjw4ShbtixWrFgpLd+793cEBASga9eu0Nbm53lSTlqZDa/3RESaQemulT/++EPucVJSEgIDA7FlyxbMmDFDZYERkZKEAIQMoY9DMWfufGzZsgVJSUkAgObNmkjN2rVtB3CyN8ohltkQEWkWpZP5Tp06pVvWrVs3VKpUCXv27MGgQYNUEhgRKSck5D4cTN7C3gDYuWM7kpKS0LRpU3h4eKBJ40bAy0vqDpHyAZbZEBFpFpV9x/7tt9/i1KlTqtodESno9u3b6NOnD2rUqCEta968Ofz9/XH69Gk0bdoUWuyJJxVhmQ0RkWZRSddKXFwcli1bhpIlS6pid0SkgOvXr2PWrFnYv38/AMgNMXn40CFAm8kWqR575omINIvSV2MrKyu5Xj4hBD58+ABjY2Ns375dpcER0X8IgWvXrmDevPnYt/+AtLhr166YNnUKgFj1xUYFAmvmiYg0i9LJ/JIlS+Qea2trw8bGBnXr1oWVlZWq4iKi/zh37hy858/DodWTsHfpOJj6+KDjd50wZcoUVK5cGZClAOEX1R0m5XMssyEi0ixKJ/P9+/fPjTiIKANCCJw9exZeXl44c+bMv6U0kwAAAQEB+KZCRfUGSAUOy2yIiDRLjq7GkZGR2LhxI+7cuQMAqFSpEn788UdYWFioNDiiAkkICFkKTp06hekzvXDu3DkAgJ6eHgYMGCA1+8bBQU0BUkHGnnkiIs2i9Gg2V69eRbly5bB48WK8f/8e79+/x6+//opy5cohICAgN2IkKjCEEPDxOQKtl5fQopIpAgOuQV9fH8OGDcODBw+wcsUKdYdIBRx75omINIvSyfzYsWPx3Xff4fHjxzhw4AAOHDiA0NBQdOjQAWPGjMmFEInyP5lMhv3796NGjRro1q27tHzEiOEIDQ3FypUrUbp0aTVGSJSKN8ASEWkWpbtWrl69ivXr18v1yujq6mLixImoVauWSoMjyteEQEpyEg788QdmzPTC7du3AQA2ha2lJvPnzecQk6RRWGZDRKRZlO6ZNzc3R1hYWLrlT58+hZmZmUqCIsrvkpOTsXPHdui8voLuDUoh9NFDmJubY+rUqbhz5666wyPKFMtsiIg0i9LJfM+ePTFo0CDs2bMHT58+xdOnT7F7924MHjwYvXv3zo0YifKNxMREbNiwARUqVMCQn36Slnt4TMWTJ0/g5eWFQtbWWeyBSL3YM09EpFmU7lpZuHAhtLS00K9fP+mirqenh6FDh2LevHkqD5AoP4iPj8dvv/2G+fPnS99slbEtJa2f5D6J5TSUJ7BnnohIsyh1NU5JScHFixcxffp0zJ07Fw8fPgQAlCtXDsbGxrkSIFFeFvvxI377bSOWLFmCh49CAQDFihXDxIkT8dOQQUDULTVHSKQ4mUwGIQQA9swTEWkKpcpsdHR00KpVK0RGRsLY2BhVqlRBlSpVmMgT/UdMTAy8vb1RyckRI76viQd/b4ND+XJYvnw5Hj16hLFjx8LE2ETdYRIpJa1XHmAyT0SkKZT+nrRy5cp49OgR7O3tcyMeojwtKioKy5cvl+ZhSJ2xNdWtWzdhYMgPvpR3pZVWAiyzISLSFErfADtr1ixMmDABf/31F8LDwxEdHS33Q1TgCIH3795iltdMlClTBh4eHnj//j0cHBywds0aqZmBvoEagyT6cp/3zGtrK/3fBxER5QKlr8bt2rXDjRs38N1336FUqVKwsrKClZUVLC0tYWVllRsxEmmsN2/eYNo0D1jH38PUH5sjKTEBTk5O2LFjB+7cuYO+ffuqO0Qilfl8JBstLS01R0NEREAOymzOnDmTG3EQ5Snh4eFYuHAh1qxZAwgZZv6vLQBg+/bt6NS5y6deS1lKFnshyls4+ysRkeZROpl3cXHJjTiINJsQgJDh2fNnmDd/ATZs2ICEhAQAQKOGDaRmXTp3Blh+QPkUh6UkItI8zDqIFPD48SMg/CJKaT/Dpt82IiEhAfXr18exY8fgd/asusMj+io4YRQRkeZhMk+Uhfv372PAgAFwdq4qLWvcuBFOnToFf39/tG7dmrXDVGCwZ56ISPPwikyUgdu3b2P27NnYs2cPZDKZ3BCTPkd9OFsrFUjsmSci0jwK9cwfPnwYSUlJuR0LkXoJgVs3rqOva29UqVIFu3btgkwmQ4cOHXD2LG/8JmLPPBGR5lEome/SpQsiIyMBpPbIvH79OjdjIvrqrl69ih49uqNK4Y/Y7j0CRoYG+P777xEQEIA///wTtWvVVneIRGrH0WyIiDSPQsm8jY0NLl68CAAQQrBGmPKN8+fPo23btqhduzaOHDkiLb906RL279+P6tWrqzE6Is3CMhsiIs2j0Hel//vf/9CpUydoaWlBS0sLxYoVy7Tt5zMEEmkcISBkKfjH3x8zZnrh9OnTAFKTk969e0vNKleqpK4IiTQWy2yIiDSPQlfk6dOno1evXnjw4AG+++47bNq0CZaWlrkcGpFqCSFw+qQvmjuZoHF5PVy8cB66urro378/Jk+ejHL2dkD4RXWHSaSx2DNPRKR5FO5eqVixIipWrAhPT090794dxsbGuRkXkcoIIXDkyBHMmjULt27ewMeQkwCAIUMGY+y4CShTpkxqQ87WSpQl9swTEWkepa/Inp6eAIA3b97g3r17AIAKFSrAxsZGtZER5dS/s7XKZDIcPPwnZs2ahcDAQACAtZWl1GzJ4iUcYpJICbwBlohI8yg9aVRsbCx+/PFHlChRAo0bN0bjxo1RokQJDBo0CLGxsbkRI5FSUpKTgPCL0H51GT/0dUVgYCBMTEzg5uaG4OBgdYdHlGexzIaISPMoncyPHTsWfn5+OHz4MCIjIxEZGYlDhw7Bz88P48ePz40YiRSSnJyMbdu2oVbtWtIyc3MzTJkyBY8fP4a3tzeKFimixgiJ8jb2zBMRaR6ly2z279+Pffv2oUmTJtKydu3awcjICD169MDq1atVGR9RthITE7Ft2zbMnTsXDx8+lJutNTj4DqysC6kxOqL8I61nnjXzRESaQ+krcmxsLIoWLZpueZEiRVhmQ1+PEEhIiMPWrVsxa/ZchIWFAQAKFy4M94kTpGZWHHWJSGXYM09EpHmULrOpV68ePD09ER8fLy2Li4vDjBkzUK9ePZUGR5SR2NhYrFy5AgbvAjGkfRW8ffMaRYsWxcKFC/H48WNMGD8h+50QkdKYzBMRaR6le+aXLl2K1q1bo1SpUqhatSoA4MaNGzA0NMTx48dVHiBRmpiYGKxevRoLFy5EzIdoDO+SOsTkwoULMWDgjzAyMkptyCEmiXIFy2yIiDSP0lfkypUrIyQkBDt27MDdu3cBAL1794arq+unZIpIFf4dYjIqOhorVq7C4sWL8e7dOwBAxQrfSM2G/u9/HGKS6CtgzzwRkebJUfeKsbExhgwZoupYiORERLyHVdxdWACYM3sWYuPiUb58efzyyy/o69obeHNN3SESFSicNIqISPMoXTNPlNvevHmDX375BY6OFaVlFStWwPbt23Hnzh0MHDgQerp6aoyQqGDiOPNERJqH3SukMV6+fImFCxdi9erViI2NlRti8vKly9DR01djdETEMhsiIs3DZJ7U7tmzp1iy+Fds2rQZ7yMiAQA1a9bEdE8PqQ2TByL1Y5kNEZHmYZkNqc3jx4/xv//9D1UqV8bCcd3w7tZfaNqkMY4ePYorV66gQ/sO6g6RiD7DMhsiIs2To+6VyMhI7Nu3Dw8fPoSbmxusra0REBCAokWLomTJkqqOkfKZBw8eYM6cOdi2bRuSk5PlymlOnTwFLZ1/X5ZCTQESUYbYM09EpHmUviLfvHkTLVq0gIWFBR4/fowhQ4bA2toaBw4cQFhYGLZu3ZobcVJeJwTu3r2DBd7e2Lx1G2QyGQCgRYsW8Jz2qZxGS0tLXRESUTbYM09EpHmULrMZN24cBgwYgJCQEBgafupRbdeuHf7++2+VBkf5w61bt9CvX19UNI/AxllDYGigj3bt2uHChQvw9fVFwwYN1B0iESmAN8ASEWkepZP5K1eu4Oeff063vGTJknj58qVKgqL84dq1a+jSpQucnZ2xf/8Babm//z84cuQIvv32WzVGR0TKYpkNEZHmUfqKbGBggOjo6HTL79+/DxsbG5UERXnUvzO2Xr5yGTNmzsLRo0cBpJbOdO36vdSserXq6oqQiL4Ay2yIiDSP0j3z3333HWbOnImkpCQAqYlaWFgY3N3d0bVrV5UHSHmHv/8/QPhF1Cklw9kzp6GtrY2+ffvi9u3b2LqF91IQ5XXsmSci0jxKJ/OLFi1CTEwMihQpgri4OLi4uKB8+fIwMzPD7NmzcyNG0mBCCJw8eRIuLi5o3bq1tLxfv364d+8etm3bBkdHRzVGSESqwp55IiLNo3T3ioWFBXx9feHv74+bN28iJiYGNWrUQIsWLXIjPtJQQggcPXoUs2bNwsWLFwEAlhbm0vrVq1YB2vwPnyg/4Q2wRESaJ8fflTZs2BANGzZUZSyUB8j+396dh9d45/8ff50sSJAFiQSpNVSb+KmliKWoEaXCdEGktFMd5aqlRlpaMkns1JKoDh2qOm0IZXRcpVoMLUJ9W7taIoSGqDJIIkgk9+8PddqI7UTOOTnyfFzXuS7nc3/u+37d55PEO598zn3y8vTll6s0deo0JW27UcSXK1dOAwcO1NtvjZT0s30DArAKwzBYZgMAJZDFP5Fnz55923aTyaRy5cqpXr16ateuHTM3D5m8vDytWLFCM96bpu+/iFfY59Pl2zhML7/yqkaOHCk/Pz8pP09Kp5gHHkY3PxtCYmYeAEoSi4v5WbNm6ddff1V2dra8vb0lSRcuXJC7u7sqVKigs2fPqk6dOtq4caMCAgLueqyYmBjFxsYWaGvQoIEOHTpkaSxYyfXr15WYmKiJEyfq0KFDBT6t9aefDqqKj68d0wGwlZvr5SVm5gGgJLH4DbCTJk1S8+bNlZycrPPnz+v8+fM6cuSIWrRoofj4eJ08eVJ+fn4aMWLEfR3v8ccfV3p6uvmxZcsWiy8CxcwwlJtzVZ/+a5EaNmyofv366dChQ/Ly8tKYMe+au1WpXNmOIQHY0s0lNhIz8wBQklhczI8dO1azZs1S3bp1zW316tXT9OnT9c4776hGjRqaNm2atm7del/Hc3FxkZ+fn/lRpUoVSyPZhWEYD+Xj6tWrWrDgn3I9s1X9mufqwq8/q3LlypowYYJSU1P1zuh3pLyrUsZPMnIvF9q/uLfZ8lwlaVtJycGDx83HzZl5k8kkJyeL/+sAAFiJyTAMw5Id3N3d9d1336lZs2YF2v/v//5PTz31lLKzs5WamqqgoCBlZWXd9VgxMTF677335OnpqXLlyqlVq1aaPHmyHnnkkdv2v3btmq5du2Z+npGRoYCAAF26dEkeHh633cdazpw5ow8//NCm57QVN9frervhIulKms7nVta8E6/rulHG5ttKSo7SfN3ArVxcXDRmzBh7xwCAh15GRoY8PT3vWedaPL3SoUMHvf7669q1a5e5bdeuXRo8eLA6duwoSdq3b59q1659z2O1aNFCixYt0tq1azV37lwdP35cbdu2VWZm5m37T548WZ6enubHvdbk4+5cXZzk6lL4S8DH9ax0JU2SVNn1vHzLnLXLtpKSozRfN3Cr+/nZDgCwHYtn5s+cOaN+/fppw4YNcnV1lXTjjVFPP/20Pv30U1WtWlUbN25Ubm6uOnfubFGYixcvqmbNmpo5c6YGDBhQaHtJmpnPz8/XlStXbHrO4pSVcUlV849Lknz+X5iyr1xVjRo1NHz4cIW/GCbPpPZyupyi/PJ1daX9NsnF/caOuZfl9m2IbbbZ8lwlaVtJyQHchru7u0wmk71jAMBD735n5i0u5m86dOiQjhw5IunGHWgaNGhQtKS3aN68uTp16qTJkyffs+/9XiR+d+HCBc2ePVvz/zlPaTuWS5KCQ/+qEX+LVL9+/cy/oOl6tnRxv+QVVLiws+W2kpKjNF83AACwOasX89aQlZWlRx55RDExMRo2bNg9+1PM379z585p1qxZmjNnjjIyMuTuVk6Xk9dLkq77NpOLa1k7JwQAAMBN91vnFulmwWlpaVq1apVOnjypnJycAttmzpx538eJjIxU9+7dVbNmTZ0+fVrR0dFydnZWeHh4UWLhVoahX86kK372bM1+f44uX74sSQoODlb036PM3VycuWc0AACAI7K4ituwYYPCwsJUp04dHTp0SEFBQUpNTZVhGGrSpIlFx0pLS1N4eLjOnz8vHx8ftWnTRtu3b5ePj4+lsXCLU6dOKW7WDL034nlNGtJd8fHxatKkiaKiohQWFiYnGVL6dnvHBAAAwAOweJnNk08+qWeeeUaxsbGqWLGi9uzZI19fX0VERKhLly4aPHiwtbIWwjKbwk6cOKEpU6Zo4cKFcnF2Mi+l+XrfJXUOfeb3N67l5/1ezPu3lJz4EBgAAICSwmq3pjx48KD69+8v6cb9hq9cuaIKFSpo3Lhxmjp1atETo2gMQ8rPU8rRZA0YMED16tXTvHnzlJOTozZtWpu7hXYO5Q4UAAAADxmLi/ny5cub18n7+/srJSXFvO3cuXPFlwz35fDhQ1L6dtV1O6vEJYvNtwndtGmTvl77tb3jAQAAwIosLuZbtmypLVu2SJK6du2qkSNHauLEiXr11VfVsmXLYg+I29u3b5969+6tpk2bmts6d+6spKQkrV+/Xk899ZQd0wEAAMAWLH4D7MyZM5WVlSVJio2NVVZWlpYuXarAwECL7mQDCxiGZORLknbu3q0JEyZq5cqVkiR3t3Lmbiv//W/WvgMAAJQiFhXzeXl5SktLU6NGjSTdWHIzb948qwTDHxj55jertm3TSdlXrspkMumFF15Q1NgxkrLsmw8AAAB2YdEyG2dnZ3Xu3FkXLlywVh7cYvPmzQoLCzM/d3JyUkREhPbv369ly5YpOCjIjukAAABgTxYvswkKCtKxY8dUu3Zta+SBJMMw9N///lfjx4/Xt99++9tSmnclSbt27VK9wPr2DQgAAIASweI3wE6YMEGRkZH68ssvlZ6eroyMjAIPFJ2Rn69v1n6lpzu2V6dOnfTtt9/K1dVVAwYMMPepV7euHRMCAACgJLG4mO/atav27NmjsLAw1ahRQ97e3vL29paXl5e8vb2tkfGhZxiG/vOf/6hdu7bqHOyh/342Sd5enhoyZIhSUlI0Oz7e3hEBAABQAlm8zGbjxo3WyFEq5efna8WKFZowYYL27t1b4M40Px04IL9q1X/rmGenhAAAACjJLC7muX/5AzIMXb+eo+XLV2jc+Ak6ePCgJKlChQoa8eZwczc/Pz97JQQAAICDsHiZjXTjDisvvfSSQkJCdOrUKUnSp59+av4wKdxebm6uPv30E7mc/UF92tXUidTj8vT01N///nedOHFC42Jj7R0RAAAADsTiYn7FihUKDQ2Vm5ubdu7cqWvXrkmSLl26pEmTJhV7wIfBtWvX9OGHH6p+/foaNGiwuT06+kYRHxsbq0qVKtkxIQAAABxRke5mM2/ePM2fP1+urq7m9tatW2vnzp3FGs7RXblyRXPmzFG9evU0aNAgpaamytfHx7z97bfelqenpx0TAgAAwJFZXMwfPnxY7dq1K9Tu6empixcvFkcmh3c5K0uz4+P0+GMNNXToUKWlpalatWqKi4vTgZ8O2DseAAAAHhIWF/N+fn46evRoofYtW7aoTp06xRLKUWVmZmrKlCl6rOGjGvZCcx3bkqAG9QP1j3/8QykpKRo+fLjc3dztHRMAAAAPCYvvZvPXv/5Vw4cP18KFC2UymXT69Glt27ZNkZGRioqKskbGEu/ixYuaPXu24uLidOHChQK3mNy7d4/KlHWzYzoAAAA8rCwu5kePHq38/Hw9/fTTys7OVrt27VS2bFlFRkZq6NCh1shYMhmGzp8/pzlz5mjmrDjzp982aNBA0VFjzd3KuJaxV0IAAAA85CxeZmMymTRmzBj973//0/79+7V9+3b9+uuvGj9+vDXylVjffL1Wla8dUfRfO+t6bo6CgoKUmJioAwcOKDw83N7xAAAAUApYPDP/2Wef6bnnnpO7u7see+wxa2RyCI2feEK6niJJWrw4Qd3DesrJ6bffjfjEVgAAANiAxTPzI0aMkK+vr/r27as1a9YoL690Fq5/vMVkj7AevxfyAAAAgI1YXIGmp6crMTFRJpNJvXr1kr+/v9544w0lJSVZIx8AAACAO7C4mHdxcdGzzz6rhIQEnT17VrNmzVJqaqo6dOigunXrWiMjAAAAgNuweM38H7m7uys0NFQXLlzQiRMndPDgweLKBQAAAOAeirTQOzs7WwkJCeratauqV6+uuLg4/fnPf9aBA3y6KQAAAGArFs/M9+nTR19++aXc3d3Vq1cvRUVFqVWrVtbIBgAAAOAuLC7mnZ2dtWzZMoWGhsrZ2bnAtv379ysoKKjYwgEAAAC4M4uL+YSEhALPMzMztWTJEi1YsEA//vhjqb1VJQAAAGBrRb45+nfffaeXX35Z/v7+mj59ujp27Kjt27cXZzYAAAAAd2HRzPyZM2e0aNEiffTRR8rIyFCvXr107do1ffHFF6X602ABAAAAe7jvmfnu3burQYMG2rt3r+Li4nT69Gm9//771swGAAAA4C7ue2b+q6++0rBhwzR48GAFBgZaMxMAAACA+3DfM/NbtmxRZmammjZtqhYtWmjOnDk6d+6cNbMBAAAAuIv7LuZbtmyp+fPnKz09Xa+//roSExNVrVo15efna926dcrMzLRmTgAAAAC3sPhuNuXLl9err76qLVu2aN++fRo5cqSmTJkiX19fhYWFWSMjAAAAgNso8q0pJalBgwaaNm2a0tLStGTJkuLKBAAAAOA+PFAxf5Ozs7N69uypVatWFcfhAAAAANyHYinmAQAAANgexTwAAADgoCjmAQAAAAdFMQ8AAAA4KIp5AAAAwEFRzAMAAAAOimIeAAAAcFAU8wAAAICDopgHAAAAHBTFPAAAAOCgKOYBAAAAB0UxDwAAADgoinkAAADAQVHMAwAAAA6KYh4AAABwUBTzAAAAgIOimAcAAAAcFMU8AAAA4KAo5kuavKtSxk/S9Wzr7vMg+wEAAKBEoJi3hzsV0dezpR9fkXYNlNY2Lbi9KPs8yH4AAAAo8SjmH8TdZraLUkRf2i9dSbvx76xk6eL+ou/zIPsBAADAIVDMF9XdCuWiFtFejaQKgTf+XTFQ8goq+j4Psh8AAAAcgou9Azis2xXKVZ6897abRXRWcuEi2rW81HX3jf5eQZKLe9H3eZD9AAAA4BBMhmEY9g5RVBkZGfL09NSlS5fk4eFh25PnXpa+euL3QvmZ3b8XxHfbJt2Yqbe0iC7KPg+yHwAAAOzmfutcivkHcbdCmSIaAAAARXS/dS7LbB6Ei/vvy2cs2QYAAAAUA94ACwAAADgoinkAAADAQVHMAwAAAA6KYh4AAABwUBTzAAAAgIOimAcAAAAcFMU8AAAA4KAo5gEAAAAHRTEPAAAAOCiKeQAAAMBBUcwDAAAADopiHgAAAHBQFPMAAACAg3Kxd4AHYRiGJCkjI8POSQAAAIDic7O+vVnv3olDF/OZmZmSpICAADsnAQAAAIpfZmamPD0977jdZNyr3C/B8vPzdfr0aVWsWFEmk8necR4KGRkZCggI0M8//ywPDw97x8EdME6OgXFyDIyTY2CcHAdjVTwMw1BmZqaqVasmJ6c7r4x36Jl5Jycn1ahRw94xHkoeHh58AzoAxskxME6OgXFyDIyT42CsHtzdZuRv4g2wAAAAgIOimAcAAAAcFMU8Cihbtqyio6NVtmxZe0fBXTBOjoFxcgyMk2NgnBwHY2VbDv0GWAAAAKA0Y2YeAAAAcFAU8wAAAICDopgHAAAAHBTFPAAAAOCgKOZLkZiYGJlMpgKPRx999K77fP7553r00UdVrlw5BQcHa82aNTZKW3pZOk7z589X27Zt5e3tLW9vb3Xq1Ek7duywYeLSqSjfTzclJibKZDKpZ8+e1g2JIo3TxYsX9cYbb8jf319ly5ZV/fr1+dlnA0UZq7i4ODVo0EBubm4KCAjQiBEjdPXqVRslLr1OnTqll156SZUrV5abm5uCg4P1ww8/3HWfTZs2qUmTJipbtqzq1aunRYsW2SZsKeDQnwALyz3++ONav369+bmLy52/BJKSkhQeHq7Jkyfr2Wef1eLFi9WzZ0/t3LlTQUFBtohbalkyTps2bVJ4eLhCQkJUrlw5TZ06VZ07d9aBAwdUvXp1W8QttSwZp5tSU1MVGRmptm3bWjMa/sCSccrJydGf/vQn+fr6avny5apevbpOnDghLy8vGySFJWO1ePFijR49WgsXLlRISIiOHDmiV155RSaTSTNnzrRF3FLpwoULat26tTp06KCvvvpKPj4+Sk5Olre39x33OX78uLp166ZBgwYpISFBGzZs0GuvvSZ/f3+FhobaMP3DiWK+lHFxcZGfn9999Y2Pj1eXLl301ltvSZLGjx+vdevWac6cOZo3b541Y5Z6loxTQkJCgecLFizQihUrtGHDBvXv398a8fAbS8ZJkvLy8hQREaHY2Fht3rxZFy9etF44mFkyTgsXLtT//vc/JSUlydXVVZJUq1YtK6bDH1kyVklJSWrdurX69u0r6cY4hYeH6/vvv7dmxFJv6tSpCggI0Mcff2xuq1279l33mTdvnmrXrq0ZM2ZIkho2bKgtW7Zo1qxZFPPFgGU2pUxycrKqVaumOnXqKCIiQidPnrxj323btqlTp04F2kJDQ7Vt2zZrxyz1LBmnW2VnZys3N1eVKlWyYkJIlo/TuHHj5OvrqwEDBtgoISTLxmnVqlVq1aqV3njjDVWtWlVBQUGaNGmS8vLybJi49LJkrEJCQvTjjz+alxUeO3ZMa9asUdeuXW0Vt1RatWqVmjVrphdffFG+vr564oknNH/+/LvuQz1hXRTzpUiLFi20aNEirV27VnPnztXx48fVtm1bZWZm3rb/mTNnVLVq1QJtVatW1ZkzZ2wRt9SydJxuNWrUKFWrVq3QD04UL0vHacuWLfroo4/u+Z8eipel43Ts2DEtX75ceXl5WrNmjaKiojRjxgxNmDDBxslLH0vHqm/fvho3bpzatGkjV1dX1a1bV+3bt9e7775r4+Sly7FjxzR37lwFBgbq66+/1uDBgzVs2DB98sknd9znTvVERkaGrly5Yu3IDz8DpdaFCxcMDw8PY8GCBbfd7urqaixevLhA2wcffGD4+vraIh5+c69x+qPJkycb3t7exp49e2yQDH90t3HKyMgwatWqZaxZs8bc9vLLLxs9evSwYUIYxr2/nwIDA42AgADj+vXr5rYZM2YYfn5+toqI39xrrDZu3GhUrVrVmD9/vrF3717j3//+txEQEGCMGzfOxklLF1dXV6NVq1YF2oYOHWq0bNnyjvsEBgYakyZNKtC2evVqQ5KRnZ1tlZylCWvmSzEvLy/Vr19fR48eve12Pz8//fLLLwXafvnlF4vWCOPB3Wucbpo+fbqmTJmi9evXq1GjRjZKh5vuNk4pKSlKTU1V9+7dzW35+fmSbqwRPnz4sOrWrWuzrKXZvb6f/P395erqKmdnZ3Nbw4YNdebMGeXk5KhMmTK2ilrq3WusoqKi1K9fP7322muSpODgYF2+fFkDBw7UmDFj5OTE4gNr8Pf312OPPVagrWHDhlqxYsUd97lTPeHh4SE3Nzer5CxN+EovxbKyspSSkiJ/f//bbm/VqpU2bNhQoG3dunVq1aqVLeLhN/caJ0maNm2axo8fr7Vr16pZs2Y2TIeb7jZOjz76qPbt26fdu3ebH2FhYerQoYN2796tgIAAOyQune71/dS6dWsdPXrU/MuWJB05ckT+/v4U8jZ2r7HKzs4uVLDf/CXMMAyr5yutWrdurcOHDxdoO3LkiGrWrHnHfagnrMzefxqA7YwcOdLYtGmTcfz4cWPr1q1Gp06djCpVqhhnz541DMMw+vXrZ4wePdrcf+vWrYaLi4sxffp04+DBg0Z0dLTh6upq7Nu3z16XUCpYOk5TpkwxypQpYyxfvtxIT083PzIzM+11CaWCpeN0K5bZ2Ial43Ty5EmjYsWKxpAhQ4zDhw8bX375peHr62tMmDDBXpdQalg6VtHR0UbFihWNJUuWGMeOHTO++eYbo27dukavXr3sdQmlwo4dOwwXFxdj4sSJRnJyspGQkGC4u7sbn332mbnP6NGjjX79+pmfHzt2zHB3dzfeeust4+DBg8YHH3xgODs7G2vXrrXHJTx0WGZTiqSlpSk8PFznz5+Xj4+P2rRpo+3bt8vHx0eSdPLkyQKzHCEhIVq8eLHGjh2rd999V4GBgfriiy+4x7yVWTpOc+fOVU5Ojl544YUCx4mOjlZMTIwto5cqlo4T7MPScQoICNDXX3+tESNGqFGjRqpevbqGDx+uUaNG2esSSg1Lx2rs2LEymUwaO3asTp06JR8fH3Xv3l0TJ0601yWUCs2bN9fKlSv1zjvvaNy4capdu7bi4uIUERFh7pOenl7gTkS1a9fW6tWrNWLECMXHx6tGjRpasGABt6UsJibD4G9RAAAAgCNi2ggAAABwUBTzAAAAgIOimAcAAAAcFMU8AAAA4KAo5gEAAAAHRTEPAAAAOCiKeQAAAMBBUcwDQCnzz3/+UwEBAXJyclJcXJxiYmLUuHFje8cqsvbt2+vNN9+0dwwAsAuKeQAoRq+88op69uxp8/MuWrRIXl5e9+yXkZGhIUOGaNSoUTp16pQGDhxolTyO/gsCADgKF3sHAADYzsmTJ5Wbm6tu3brJ39/f3nEAAA+ImXkAsKL27dtr2LBhevvtt1WpUiX5+fkpJiamQB+TyaS5c+fqmWeekZubm+rUqaPly5ebt2/atEkmk0kXL140t+3evVsmk0mpqanatGmT/vKXv+jSpUsymUwymUyFziHdmL0PDg6WJNWpU8e8/63y8/M1btw41ahRQ2XLllXjxo21du3aAn1GjRql+vXry93dXXXq1FFUVJRyc3PN54mNjdWePXvMeRYtWlToPN98843KlStX4Lokafjw4erYsaMk6fz58woPD1f16tXl7u6u4OBgLVmy5A6v9u+v5xdffFGgzcvLq0CGn3/+Wb169ZKXl5cqVaqkHj163Pa1AICSjmIeAKzsk08+Ufny5fX9999r2rRpGjdunNatW1egT1RUlJ5//nnt2bNHERER6tOnjw4ePHhfxw8JCVFcXJw8PDyUnp6u9PR0RUZGFurXu3dvrV+/XpK0Y8cOpaenKyAgoFC/+Ph4zZgxQ9OnT9fevXsVGhqqsLAwJScnm/tUrFhRixYt0k8//aT4+HjNnz9fs2bNMp9n5MiRevzxx815evfuXeg8Tz/9tLy8vLRixQpzW15enpYuXaqIiAhJ0tWrV9W0aVOtXr1a+/fv18CBA9WvXz/t2LHjvl6b28nNzVVoaKgqVqyozZs3a+vWrapQoYK6dOminJycIh8XAOyBYh4ArKxRo0aKjo5WYGCg+vfvr2bNmmnDhg0F+rz44ot67bXXVL9+fY0fP17NmjXT+++/f1/HL1OmjDw9PWUymeTn5yc/Pz9VqFChUD83NzdVrlxZkuTj4yM/Pz85OzsX6jd9+nSNGjVKffr0UYMGDTR16lQ1btxYcXFx5j5jx45VSEiIatWqpe7duysyMlLLli0zn6dChQpycXEx53Fzcyt0HmdnZ/Xp00eLFy82t23YsEEXL17U888/L0mqXr26IiMj1bhxY9WpU0dDhw5Vly5dzOcqiqVLlyo/P18LFixQcHCwGjZsqI8//lgnT57Upk2binxcALAH1swDgJU1atSowHN/f3+dPXu2QFurVq0KPd+9e7e1oxWSkZGh06dPq3Xr1gXaW7durT179pifL126VLNnz1ZKSoqysrJ0/fp1eXh4WHy+iIgItWzZUqdPn1a1atWUkJCgbt26md/Mm5eXp0mTJmnZsmU6deqUcnJydO3aNbm7uxf5Gvfs2aOjR4+qYsWKBdqvXr2qlJSUIh8XAOyBYh4ArMzV1bXAc5PJpPz8/Pve38npxh9RDcMwt91cn24P27ZtU0REhGJjYxUaGipPT08lJiZqxowZFh+refPmqlu3rhITEzV48GCtXLmywNr29957T/Hx8YqLi1NwcLDKly+vN998867LYUwmU4HXSir4emVlZalp06ZKSEgotK+Pj4/F1wAA9kQxDwAlwPbt29W/f/8Cz5944glJvxeY6enp8vb2lqRCs/ZlypRRXl7eA+fw8PBQtWrVtHXrVj311FPm9q1bt+rJJ5+UJCUlJalmzZoaM2aMefuJEyeKnCciIkIJCQmqUaOGnJyc1K1btwLn7dGjh1566SVJN96ce+TIET322GN3PJ6Pj4/S09PNz5OTk5WdnW1+3qRJEy1dulS+vr5F+msCAJQkrJkHgBLg888/18KFC3XkyBFFR0drx44dGjJkiCSpXr16CggIUExMjJKTk7V69epCs+C1atVSVlaWNmzYoHPnzhUoXi311ltvaerUqVq6dKkOHz6s0aNHa/fu3Ro+fLgkKTAwUCdPnlRiYqJSUlI0e/ZsrVy5slCe48ePa/fu3Tp37pyuXbt2x/NFRERo586dmjhxol544QWVLVvWvC0wMFDr1q1TUlKSDh48qNdff12//PLLXfN37NhRc+bM0a5du/TDDz9o0KBBBf46EhERoSpVqqhHjx7avHmzjh8/rk2bNmnYsGFKS0sryksGAHZDMQ8AJUBsbKwSExPVqFEj/etf/9KSJUvMs8+urq5asmSJDh06pEaNGmnq1KmaMGFCgf1DQkI0aNAg9e7dWz4+Ppo2bVqRswwbNkx/+9vfNHLkSAUHB2vt2rVatWqVAgMDJUlhYWEaMWKEhgwZosaNGyspKUlRUVEFjvH888+rS5cu6tChg3x8fO56O8l69erpySef1N69e813sblp7NixatKkiUJDQ9W+fXv5+fnd80O5ZsyYoYCAALVt21Z9+/ZVZGRkgTX27u7u+u677/TII4/oueeeU8OGDTVgwABdvXqVmXoADsdk3LqwEABgUyaTSStXrrTLJ8cCABwbM/MAAACAg6KYBwAAABwUd7MBADtjtSMAoKiYmQcAAAAcFMU8AAAA4KAo5gEAAAAHRTEPAAAAOCiKeQAAAMBBUcwDAAAADopiHgAAAHBQFPMAAACAg6KYBwAAABzU/wfuS8QyleisSgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -627,7 +624,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABHcAAAJaCAYAAAClTavJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACgpklEQVR4nOzdeZyNdf/H8feZfYaxE4VI7kJIlFJSbsbYZoax71uhZClLiVLcyBZS2XfGNsyMfbRQFJElQskSZc1uFmbmXL8/3J07P9QMM77XmXk9Hw8P1/c757rOe+aM8ZnP+V7X5bAsyxIAAAAAAADckofpAAAAAAAAALhzNHcAAAAAAADcGM0dAAAAAAAAN0ZzBwAAAAAAwI3R3AEAAAAAAHBjNHcAAAAAAADcGM0dAAAAAAAAN0ZzBwAAAAAAwI15mQ5wN5xOp44fP67AwEA5HA7TcQAAwG1YlqXLly/r/vvvl4cH7y2ZRP0EAIB7SEv95NbNnePHj6tIkSKmYwAAgFQ6duyYChcubDpGlkb9BACAe0lN/eTWzZ3AwEBJ1z/RHDlyGE4DAAD+KvnqVXlt/VGStCHpkkLCQl3/d8Mc6icAAOzr/Llzyp34syRp/8VAVX66SqrqJ7du7vy5lDhHjhwUJwAA2IhlWer8+uua3LqLJMk3PlGSOA3IBqifAACwp/j4eHXo0E6fz/mPJCkgKUBS6uonTnoHAADprl+/fpo3b55r/PTTlQ2mAQAAsLekpCQ1adJEmzdvcc0VLVI01fvT3AEAAOlq5MiRGjlypOkYAAAAbsHpdKpjx45auXKl/Pz87ugYNHcAAEC6mTlzpvr27StJGjJ4sOE0AAAA9mZZlnr37q05c+bI09NT8+bNvaPjuPU1d1LDsiwlJycrJSXFdBTAxdPTU15eXlx7AkDmYVlatWKlunfrJknq3bu3evXqJW3cYTgY7gT1U+ZFDQIANmJZ+nD0KE2a+Kkkafr06QquFSyd2JzmQ2Xq5s61a9d04sQJxcfHm44C3CQgIECFChWSj4+P6SgAcNe+2bhJdXIU1KWV6/XynIn64IMPJMsyHQt3gPop86MGAQB7mDVrhl5vXkWvN/9M45dsVZs2bSTnnb2xkmmbO06nU4cPH5anp6fuv/9++fj48A4FbMGyLF27dk1nzpzR4cOHVbJkSXl4cIYkAPf1ww8/qFGjRjq+aIUk6eMJE67/XGPVh9uhfsrcqEEAwD6ioqLUrdtravtTrCSp+2uv3dXxMm1z59q1a3I6nSpSpIgCAgJMxwFu4O/vL29vb/3666+6du3aHV80CwBMO3z4sGrVqqVLly665ry9vQ0mwt2gfsr8qEEAwLwNGzaoWbNm8vRIvzdQMn2rnncjYFd8bwJwd6dOnVJQUJBOnjypx8qUMR0H6Yj/ozI3Xl8AMGfnzp0KCQnR1atXVbdu3XQ7Lj/ZAQBAml26dEm1a9fWL7/8omLFiikqKsp0JAAAAFs7ePCggoODdenSJVWtWlWzZs1Mt2PT3AEAAGmSmJCgZo0b66d9+5Q/f37FxsaqUKFCpmMBAADYk2Xp1InjCg2pp1OnTql8+fKKiYmRv59/uj0FzR1kKIfDwbu5AJCJpKSkqEO79lrV/z+KW/O1YlevVsmSJU3HAjINaicAyHwuXryg+5yHtSd2qsqUflRr1qxRrly50vU5aO7YjMPh+Ns/gwYNMh0RAJBFWZalrl27Kjom2jX3+OOPmwsEiNoJAGBviYmJatKksWscExOjggULpvvzZNq7ZbmrEydOuLYXLlyod955Rz/99JNrLnv27K5ty7KUkpIiLy9eRgBAxhs4cKCmTJmi7NxFCTZC7QQAsKvk5GQ1a9ZMGzducs09VPyhDHmuLLVyx7IsxcXF3fM/lmWlOmPBggVdf3LmzCmHw+Ea79+/X4GBgVq9erUqVqwoX19fbdy4Ue3atVNYWNgNx+nZs6deeOEF19jpdGrYsGEqXry4/P39Vb58eS1ZsuS2Ofr376/KlSvfNF++fHm9//77kqStW7eqZs2aypcvn3LmzKlq1app+/bttz3m+vXr5XA4dOHCBdfczp075XA4dOTIEdfcxo0bVbVqVfn7+6tIkSLq3r274uLi/v4LBwDIUOPGjdN//vOf69tjxxlOg3vFVO2UlvqJ2onaCQDsyLIsde7cWdHR0fL19c3w58tSb1vEx8ff8O7NvXLlyhVly5Yt3Y735ptvatSoUXrooYeUO3fuVO0zbNgwzZ07VxMnTlTJkiX11VdfqVWrVsqfP7+qVat20+NbtmypYcOG6eDBgypRooQk6ccff9QPP/ygyMhISdLly5fVtm1bffTRR7IsS6NHj1adOnV04MABBQYG3tHn9ufVw4cMGaLp06frzJkz6tatm7p166YZM2bc0TEBAHdn3rx56tmzpyRpyJAh6tChvbRxh9lQuCdM1U5S+tZP1E4AgHutf//+mj59ujw8PNL1rli3k6WaO5nF+++/r5o1a6b68VevXtXQoUP12Wef6ZlnnpEkPfTQQ9q4caMmTZp0ywKlTJkyKl++vObPn6+BAwdKul7cV65cWQ8//LAkqXr16jfsM3nyZOXKlUsbNmxQvXr17uhzGzZsmFq2bOn6JaJkyZIaP368qlWrpk8//VR+fn53dFwAwB2wLMWuWaNXunSRJPXo0UP9+/eXnE7DwYC0oXYCANwzlqWPPhqv8ePGSrr+s75+vfrSic0Z+rRZqrkTEBCgK1euGHne9FSpUqU0Pf6XX35RfHz8TUXNtWvXVKFChdvu17JlS02fPl0DBw6UZVmKiIjQ66+/7vr4qVOnNGDAAK1fv16nT59WSkqK4uPjdfTo0bR9Qn+xa9cu/fDDD5o3b55rzrIsOZ1OHT58WKVKlbrjYwMA0mbLt5sVFJBfF1d8qQ7TP9KYMWPkcDhMx8I9ZKp2+vO50wu1EwDgXpk/b65eC6+k18I/0+iITerYsaPkTMnw581SzR2Hw5Gup0eZ8v8/Bw8Pj5vOS09KSnJt/1mUrVy5Ug888MANj/u7c/+aN2+ufv36afv27UpISNCxY8fUtGlT18fbtm2rs2fPaty4cXrwwQfl6+urZ555RteuXbvl8Tw8rl/i6a9Z/5rzz6ydO3dW9+7db9q/aNGit80KAEhfP/74o8LDw/XbghhJ0sSJk1w/x5F1UDtROwEAUm/lypXq0rWrWuxfK0l6vdfr/7BH+slSzZ3MKn/+/NqzZ88Nczt37pS3t7ckqXTp0vL19dXRo0dvuYz4dgoXLqxq1app3rx5SkhIUM2aNVWgQAHXxzdt2qRPPvlEderUkSQdO3ZMf/zxx9/mlK7f1eLP89137tx5w2OeeOIJ7d2717V8GQBw7x09elS1atXS+QvnXXM+Pt4GEwHpi9oJAJDeNm3apMaNG8uh/zXk7+WKZ96CywSqV6+ubdu2afbs2Tpw4IDefffdGwqWwMBA9e7dW7169dKsWbN08OBBbd++XR999JFmzZr1t8du2bKlFixYoMWLF6tly5Y3fKxkyZKaM2eO9u3bpy1btqhly5by9/e/7bEefvhhFSlSRIMGDdKBAwe0cuVKjR49+obH9OvXT9988426deumnTt36sCBA4qOjla3bt3u4CsDAEirP/74Q0FBQfr9999V6tFHTccBMgS1EwAgPe3evVv16tVTQkKCatWqZSQDzZ1MoFatWho4cKD69u2rJ598UpcvX1abNm1ueMzgwYM1cOBADRs2TKVKlVJwcLBWrlyp4sWL/+2xGzVqpLNnzyo+Pv6mW4ZOmzZN58+f1xNPPKHWrVure/fuN7w79f95e3srIiJC+/fvV7ly5fTBBx9oyJAhNzymXLly2rBhg37++WdVrVpVFSpU0DvvvKP7778/bV8UAEDaWJYuX7iohqFh+umnn1SkSBFFR0ebTgVkCGonAEC6sCz9euSQwkJDdOHCBVWpUkVz584xEsVh/f8Tjt3IpUuXlDNnTl28eFE5cuS44WOJiYk6fPiwihcvzl0CYEt8jwKwk6vxCfLd+qMkqWiLUMV+/rkeLVnyf7c8f66C5Ol5fTsl5eb5f5i7VK6EcubJc8v/s3FvUT+B1xkA0sfpUydVIPmgJOnJkNe0dt1nypMr5//ujFXoacnD8/oFlf//nHTr+b/MXcpWWjlzp65+YuUOAABZXEpKil5++WXXeOnSZXqUU7IAAABu69KlS2rQoIFrHB0TrTx58hjLQ3MHAIAszLIs9ejRQ0sil7jmKlWqaDARAACAvSUmJiosLOyGi9zfX8js6bA0dwAAyMLef/99ffzxx/f0bg4AAADuKiUlRa1atdKXX36p7NmzmY7jQnMHAIAs6pNPPtGgQYMkSWNGjzEbBgAAwOYsy9Krr76qyMhI+fj4aMGChaYjudDcAQAgq7EsRS5arL69e0uS3n33Xb388kuGQwEAANiUZUnOFA0Z/L4mTZokh8OhefPm6cUXXjCdzIXmDgAAWcwXn3+u8PuK68rqr9Tzte569913TUcCAACwL8spndisgR1rKMDfT5988okaNWpkOtUNaO4AAJCFbN26Vc2aNnONR40ayfV2AAAA/saixYtd2wMHDlCXLl0Mprk1mjsAAGQR+/fvV+3atRUXH+ea8/T0NJgIAADA3tauXauXXvrf6ev9+vYzmOb2aO4gzV544QX17NnTdAwAQBr89ttvCgoK0tmzZ1XxCW51DtxLgwYN0uOPP/63j2nXrp3CwsLuSR4AQOps2bJFDRs2VHJysmvOriueae7YULt27eRwOORwOOTt7a3ixYurb9++SkxMNB0tVVJTwGR2R44ckcPh0M6dO01HAQCdPXtWQUFBOnbsmB555BFFLo00HQlIV2fOnFHXrl1VtGhR+fr6qmDBgqpVq5Y2bdrkekyxYsVc9VVAQIDKli2rqVOnpvm5pkyZoqpVqyp37tzKnTu3atSooe++++6uP4dx48Zp5syZrjFvpgGAWfv27VOdOnUUHx+vf//736bj/COaOzYVHBysEydO6NChQ/rwww81adIkLnh5j1iWdUNnFgDclmUp7tJlNWrQUPv27dMDDzygtWvXKn++fKaTAekqPDxcO3bs0KxZs/Tzzz8rJiZGL7zwgs6ePXvD495//32dOHFCe/bsUatWrfTSSy9p9erVaXqu9evXq3nz5vryyy/17bffqkiRIgoKCtLvv/9+V59Dzpw5lStXrrs6BgAgHViWjh09otCQ+jp37pwqV66s+fPnmU71j2ju2NSf7zoVKVJEYWFhqlGjhtatW+f6+NWrV9W9e3cVKFBAfn5+eu6557R161bXx2fOnHlTgRAVFXXDErI/V9jMmTNHxYoVU86cOdWsWTNdvnzZ9Zi4uDi1adNG2bNnV6FChTR69Oi/zT1z5ky999572rVrl+vdsT/fhTp69KhCQ0OVPXt25ciRQ02aNNGpU6due6w/V78sXbpUL774ogICAlS+fHl9++23Nzxu48aNqlq1qvz9/VWkSBF1795dcXH/u57EnDlzVKlSJQUGBqpgwYJq0aKFTp8+7fr4+vXr5XA4tHr1alWsWFG+vr7auHGjnE6nhg0bpuLFi8vf31/ly5fXkiVLXPudP39eLVu2VP78+eXv76+SJUtqxowZkqTixYtLkipUqCCHw6EXbHSLPABZx7XEq8q24yd9OXi0HihYSGvXrtWDDz5oOhaQri5cuKCvv/5aH3zwgV588UU9+OCDeuqpp/TWW28pJCTkhsf+WQs89NBD6tevn/LkyXNDfZUa8+bN0yuvvKLHH39cjz76qKZOnSqn06nPP//8H/edNGmSihQpooCAADVp0kQXL150feyvp2W1a9dOGzZs0Lhx41z11JEjR/629gAApI8//jijIp6/6+f1s/REhfJauXKlsmfLbjrWP6K5k1rx8dJ3313/+x7bs2ePvvnmG/n4+Ljm+vbtq8jISM2aNUvbt2/Xww8/rFq1auncuXNpOvbBgwcVFRWlFStWaMWKFdqwYYOGDx/u+nifPn20YcMGRUdHKzY2VuvXr9f27dtve7ymTZvqjTfeUJkyZXTixAmdOHFCTZs2ldPpVGhoqM6dO6cNGzZo3bp1OnTokJo2bfqPGd9++2317t1bO3fu1L/+9S81b97ctbLm4MGDCg4OVnh4uH744QctXLhQGzduVLdu3Vz7JyUlafDgwdq1a5eioqJ05MgRtWvX7qbnefPNNzV8+HDt27dP5cqV07BhwzR79mxNnDhRP/74o3r16qVWrVppw4YNkqSBAwdq7969Wr16tfbt26dPP/1U+f77bvify7M/++wznThxQkuXLv3nFwMA0pHT6VSXLp1d48jISJUpU8ZgImQ5yfHSH99d/zsDZc+eXdmzZ1dUVJSuXr2aqn2cTqciIyN1/vz5G+qrOxEfH6+kpCTlyZPnbx/3yy+/aNGiRVq+fLnWrFmjHTt26JVXXrnlY8eNG6dnnnlGL730kqueKlKkyN/WHgCAu3flyhWFh4e7xtHR0cqbN6/BRKnnZTqAW4iPlx5/XDpwQCpZUtq5UwoIyNCnXLFihbJnz67k5GRdvXpVHh4emjBhgqTrq2k+/fRTzZw5U7Vr15Z0/fzvdevWadq0aerTp0+qn8fpdGrmzJkKDAyUJLVu3Vqff/65/vOf/+jKlSuaNm2a5s6d6zrHcNasWSpcuPBtj+fv76/s2bPLy8tLBQsWdM2vW7dOu3fv1uHDh1WkSBFJ0uzZs1WmTBlt3bpVTz755G2P2bt3b9WtW1eS9N5776lMmTL65Zdf9Oijj2rYsGFq2bKl65z0kiVLavz48apWrZo+/fRT+fn5qUOHDq5jPfTQQxo/fryefPJJXblyRdmz/68D+/7776tmzZqSrq+MGjp0qD777DM988wzrn03btyoSZMmqVq1ajp69KgqVKigSpUqSbp+Lv+f8ufPL0nKmzfvDV8HALgXLMtSr169tHDRIk3v8JokqXLlpwynQpaSHC+tfly6fEAKLCnV3il5ZUzt5OXlpZkzZ+qll17SxIkT9cQTT6hatWpq1qyZypUrd8Nj+/XrpwEDBujq1atKTk5Wnjx51KlTp7t6/n79+un+++9XjRo1/vZxiYmJmj17th544AFJ0kcffaS6detq9OjRN9UKOXPmlI+PjwICAm742N/VHgCAu3Pt2jWFh4dr27ZtrrnCD9z+d1+7YeVOauzZc72xI13/e8+eDH/KF198UTt37tSWLVvUtm1btW/f3tVBPHjwoJKSkvTss8+6Hu/t7a2nnnpK+/btS9PzFCtWzNXYkaRChQq5Tlk6ePCgrl27psqVK7s+nidPHj3yyCNp/nz27dunIkWKuBo7klS6dGnlypXrHzP/tTArVKiQJLky7tq1SzNnznS9a5c9e3bVqlVLTqdThw8fliR9//33ql+/vooWLarAwEBVq1ZN0vUC6a/+LJSk6++uxcfHq2bNmjcce/bs2Tp48KAkqWvXrlqwYIEef/xx9e3bV998802avy4AkBGGDRum8ePHm46BrOzCnuuNHen63xcytnYKDw/X8ePHFRMTo+DgYK1fv15PPPHEDRcolq6vSN65c6e++OILVa5cWR9++KEefvjhO37e4cOHa8GCBVq2bJn8/Pz+9rFFixZ1NXYk6ZlnnpHT6dRPP/2U6uej9gCAjOF0OtWmTRvFxsYqW7aMXciRUYw3d37//Xe1atVKefPmlb+/v8qWLXtDp8wWHnvs+ood6frfjz2W4U+ZLVs2PfzwwypfvrymT5+uLVu2aNq0aane38PDQ5Zl3TCXlJR00+O8vb1vGDscDjmdzjsLnUH+mvHPawb9mfHKlSvq3Lmzdu7c6fqza9cuHThwQCVKlFBcXJxq1aqlHDlyaN68edq6dauWLVsm6Xpn9q+yZcvm2r5y5YokaeXKlTcce+/eva7r7tSuXVu//vqrevXqpePHj+vf//63evfunXFfCABIhSlTpujtt9+WJI0YMcJwGmQEt6idcj12fcWOdP3vXBlfO/n5+almzZoaOHCgvvnmG7Vr1+6mm1Hky5dPDz/8sKpWrarFixere/fu2rt37x0936hRozR8+HDFxsbetEIoo1B7AED6syxLPXr00MKFC+Xt7a2I+RGmI90Ro82d8+fP69lnn5W3t7dWr16tvXv3avTo0cqdO7fJWDcLCLh+KtaWLffklKz/z8PDQ/3799eAAQOUkJCgEiVKyMfH54bbeyYlJWnr1q0qXbq0pOunBV2+fPmGCwun9bbcJUqUkLe3t7Zs2eKaO3/+vH7++ee/3c/Hx0cpKSk3zJUqVUrHjh3TsWPHXHN79+7VhQsXXJnvxBNPPKG9e/fq4YcfvumPj4+P9u/fr7Nnz2r48OGqWrWqHn300Rsupnw7pUuXlq+vr44ePXrTcf+6+ih//vxq27at5s6dq7Fjx2ry5Mmur4Gkm74OAJBhLEvRS5fp9f+eptq/f3+9epvrecB9uU3t5BVw/VSsoC0ZekrW3ylduvQNddD/V6RIETVt2lRvvfVWmo89YsQIDR48WGvWrLlh5e/fOXr0qI4fP+4ab968WR4eHrddEX2rekq6fe0BALgDlqUPhg/V9GlT5XA4NGvWLLe47fmtGL3mzgcffKAiRYrccJX/P+8yZDsBAdJT5q5X0LhxY/Xp00cff/yxevfura5du6pPnz7KkyePihYtqhEjRig+Pl4dO3aUJFWuXFkBAQHq37+/unfvri1btty0NPmfZM+eXR07dlSfPn2UN29eFShQQG+//bY8PP6+J1isWDEdPnxYO3fuVOHChRUYGKgaNWqobNmyatmypcaOHavk5GS98sorqlatWqqLolvp16+fnn76aXXr1k2dOnVStmzZtHfvXq1bt04TJkxQ0aJF5ePjo48++khdunTRnj17NHjw4H88bmBgoHr37q1evXrJ6XTqueee08WLF7Vp0yblyJFDbdu21TvvvKOKFSuqTJkyunr1qlasWKFSpUpJkgoUKCB/f3+tWbNGhQsXlp+fn3LmzHnHnycA/JOvNmxQaN4iurxqg16NmKYhQ4ZINluJibvnVrWTV4CUL+Nrp7Nnz6px48bq0KGDypUrp8DAQG3btk0jRoxQaGjo3+7bo0cPPfbYY9q2bVuq65EPPvhA77zzjubPn69ixYrp5MmTkv53Yefb8fPzU9u2bTVq1ChdunRJ3bt3V5MmTW57bb5ixYppy5YtOnLkiLJnz648efJo0KBBt609AABpN3XqZL3Z5gW92eYFfRq9U82bN5ec7vkGvdGVOzExMapUqZIaN26sAgUKqEKFCpoyZYrJSLbl5eWlbt26acSIEYqLi9Pw4cMVHh6u1q1b64knntAvv/yitWvXut65y5Mnj+bOnatVq1apbNmyioiI0KBBg9L8vCNHjlTVqlVVv3591ahRQ88995wqVqz4t/uEh4crODhYL774ovLnz6+IiAg5HA5FR0crd+7cev7551WjRg099NBDWrhw4Z18OVzKlSunDRs26Oeff1bVqlVVoUIFvfPOO7r//vslXX93a+bMmVq8eLFKly6t4cOHa9SoUak69uDBgzVw4EANGzZMpUqVUnBwsFauXOkqon18fPTWW2+pXLlyev755+Xp6akFCxZIuv56jR8/XpMmTdL999//j8Ul/oZlSZcvS99+K/35Duyt5tLyWPZn/0y2/44dO9SkcRMpMVHa96PGDRvqOo31z7mb7vZ4q/nUzqXH/rgj1E43y549u+v6Oc8//7wee+wxDRw4UC+99JLrZhS3U7p0aQUFBemdd95xzTkcjr99Q+zTTz/VtWvX1KhRIxUqVMj155/qi4cfflgNGzZUnTp1FBQUpHLlyumTTz657eN79+4tT09PlS5dWvnz59fRo0f/tvbIdCxLunZZOvOtlBR3+7m7PaZpt8tkx6wZJbWvdUa9/nZ8/rs9blqOea+e/26//hmQafHixerZs5eUkihd2quundr87xj/nbvhjo+3mkvLY+92/3/+vM3x9fW1fH19rbfeesvavn27NWnSJMvPz8+aOXPmLR+fmJhoXbx40fXn2LFjliTr4sWLNz02ISHB2rt3r5WQkJDRnwZwR/geTaVLlyyrcBHLkiyrZEnLiou79VxaHsv+7J+J9j+wa5dVoEABK6+vr62zXnzoodv+n43US2vtZFnUT2lx6NAhy8vLy/r5559NR8lQbvE6X71kWUsLW9Y8WVZ0SctKirv13N0e07TbZbJj1oyS2tc6o15/Oz7/3R43Lce8V89/t1//dM70eexyy9vb28qb0/fe5L/D/S9GpL5+MnpaltPpVKVKlTR06FBJUoUKFbRnzx5NnDhRbdu2venxw4YN03vvvXevYwIwac8e6bf/Xqvpz7vVpaTcPPfUU6l/LPuzfybav3dwsE6fPq0OZcpIP/5o36yHDgl3L621k0T9lBarVq3Syy+/rJJ/3kgD5lzcIyX8dn37yn/vuGal3DyXllP/bnXMe3Dq4B1lsmPWjJLa1zqjXn87Pv/dHjctWe/V898u0736t/7/jvn+202UlJSkV1rUlBLWZXz+O94/9fWT0dOyChUqdNPFdEuVKnXTLar/9NZbb+nixYuuP3+9OC+ATOqxx6TC/72I9Z93q7vVXFoey/7sn0n2P+rrq9gTJ1SiRAkNjYm5+c6O5crd+m6Pt5pP7dyd7v/QQ8LdS2vtJFE/pcWrr76qjz/+2HQMSFLOxyT/wte3s5e8fse1W83d7TFNu10mO2bNKKl9rTPq9bfj89/tcdNyzHv1/Hf79U/HTIfOeOq7nxNUvXp1vT1iwfXHSP+7u2Oucqmbk1L/2DveP/X1k8Oy/t/9su+hFi1a6NixY/r6669dc7169dKWLVv0zTff/OP+ly5dUs6cOXXx4kXlyJHjho8lJibq8OHDKl68uPz8/NI9O3C3+B5NpZQU6bNvpcMHpZYNpcDAW8+l5bHsz/6ZZP98PTvLO3dubdq0SQ899ND169rs2XO9sfLnnR1vNXe7+Qzc/1LRospZqNAt/89G6t1t7SRRP8FNXmdnivTbeinukFSimeQTeOu5uz2mabfLZMesGSW1r3VGvf52fP67PW5ajnmvnv9uv/7pmCnfM6+p2MOP6csvv1RgYOD169pc2HO9sfLn3R1TO5eWx97B/pc8iipn3tTVT15p+yqlr169eqlKlSoaOnSomjRpou+++06TJ0/mlo4AbuTnJ5Uqc+MvlreaS8tj2Z/93XT/5ORkef13zidnLq1Zu/Z6Y0e69Z0db3e3x9Q+Nr32v3Tp5mMgzaidkKV4+kk5St/4S9Ct5u72mKbdLpMds2aU1L7WGfX62/H57/a4aTnmvXr+u/3630Wmc+fPK89/5wo/WFKrV6++3tiRbn13x9TOZfT+aaifjJ6W9eSTT2rZsmWKiIjQY489psGDB2vs2LFq2bKlyVgAANiSZVl65dVXXePFixerXLlyBhPhXqN2AgAgbeLj49WoUbhrHB0drfz58xtMlDGMrtyRpHr16qlevXoZdnyDZ50Bf4vvTQBp1bdvX02ZNk0LFizQgogFqlOvrulIMCCjayeJ/6MyO15fAFlFUnKSGjdurC/Xf6XCTzXS2rWxKlOmuOlYGcLoyp2M5O3tLel6lw6woz+/N//8XgWAvzN27FiNGjVKkjR+wgTVqV9PcjgMp0JmQ/2UNVCDAMgqunbpqlWrVsnf31+LFkeqzGNlM239ZHzlTkbx9PRUrly5dPr0aUlSQECAHJn0RYR7sSxL8fHxOn36tHLlyiVPT0/TkQC4gbcHDJAkjRw5Uu3atTMbBpkW9VPmRg0CIKuJWLBAnp6eWrJkiapUqWI6TobKtM0dSSpYsKAkuQoUwE5y5crl+h4FgNTo06ePevfubToGMjnqp8yPGgRAVjJjxgzVqVPHdIwMl6mbOw6HQ4UKFVKBAgWUlJRkOg7g4u3tzbtlAP7Rpk3f6Fn5S5Jat26tDz74wHAiZAXUT5kbNQiAzG7mrJlqF/SoJGn48OFq3bq14UT3RqZu7vzJ09OT/8QAAG5l165daty4sY4vWiFJmvDRR5weg3uK+gkA4G6WLVum117rrnY/xUqSXuvWzXCieyfTXlAZAAB3dfjwEQUHB+vE6VOq+V4/JVQsJS8fH9OxAAAAbGv9+vVq3ry5rsTFq+vg2bIKVpYcWaflkSVW7gAA4E5CQkJ08uRJlStXTouXRso/ezbTkQAAAGxrx44dCgkJ0dWrVxUaGqqPJnwsh2fWandkrc8WAAA3cOjwIRUvXlxr1qxRrly5TMcBAACwJ8vSwYO/qGFYqC5fvqznn39eERER8vLKeq2OrLNGCQAAG0tMvOraLpA/v2JjY1WoUCGDiQAAAOzt5InjKuF/Woe/iVDlp55UTEyM/P39TccyguYOAACGJScnq3379q5xVFSUHn74YYOJAAAA7O3ChQsKCwtzjaOjopQzZ05zgQyjuQMAgEGWZalr165asHiRcof8W19ZV1S+QgXTsQAAAGwrISFBISEh2r1nj2vuvvvuM5jIPJo7AAAYNGDAAE2dOlUeHh6aNmOGnn/hBYlbngMAANxScnKymjVrpq+//lo5cgSajmMbNHcAADBkwscfa+jQoZKkiRMnqmHDhoYTAQAA2JdlWXr55ZcVExMjX19fLV68xHQk26C5AwCAIf369ZMkDR06VC+99JLhNAAAADZlWZIzRe8MHKAZM2bIw8NDCxcu1HPPPms6mW3Q3AEAwKCePXvqzTffNB0DAADAviyndGKzBnetowB/P02ZMkWhoaGmU9kKzR0AAO6hzZu3uLabNW2q0aNHy8E1dgAAAG5r3rx5ru0hgwerQ4cOBtPYk5fpAAAAZBV79uxR7Xp1dS0xUUFBQVq0eLE8PHifBQAA4HZWrFihrq+8opb710q6vuoZN6OiBADgHjh69Jhq1aqlCxcuqHyFCpo7f768fXxMxwIAALCtb779Vo0bN1ZKSoprjhXPt0ZzBwCAeyAkJETHjx9X6dKltWLFCmXLls10JAAAAFtr1ChciYmJql27tukotkdzBwCAe+DALwdUtGhRrV27Vnny5DEdBwAAwPYuXrykZ599VrNnzzIdxfZo7gAAkEGuXr3m2s6XN69iY2NVuHBhg4kAAADs7fSZM67tMqVLa/ny5QrwDzCYyD3Q3AEAIAOkpKSoU6dOrvGyZVF65JFHDCYCAACwt0uXLqlBgwaucXR0tHLnzm0wkfuguQMAQDqzLEvdunXT3Ij5ylW/ur5IuqAnKlU0HQsAAMC2Eq8mKiwsTN98u1nFnmmmA3H5VOj+B0zHchvcCh0AgHQ2dOgwTZw4UQ6HQ1OmTVP1GjVMRwIAALC1jh076ssvv1RgYKAil0Wp5L9Y8ZwWrNwBACCdDR02VJL08ccfq3HjxobTAAAA2F9UVLR8fHwUFRWlihVZ8ZxWNHcAAMgA7733nrp27Wo6BgAAgFtwOByaP3++qlevbjqKW6K5AwBAOvj8iy9c2106d9HAgQMNpgEAALC/TydOdG2PGzdW4eHhBtO4N5o7AADcpe+++07NmzV3jUeOHCGHw2EwEQAAgL3Nnz9fvXv3do07duhoMI37o7kDAMBd2L9/v+rUqaMz584qZOQgXXvqMXl4cb8CAACA21mzZo3atm2r+IRE9fkwUlbBypKD9sTdoPoEAOAO/fbb7woKCtLZs2f11FNPaf6CBfLx9zMdCwAAwLa+2/qdwsPDlZycrObNm+uDEaPk8KCxc7f4CgIAcIdCQ0N07NgxPfLII1q5cqWyZ89uOhIAAICthYeHKz4+XrVq1dLMmTPlQWMnXfBVBADgDu3/6Sc98MADio2NVb58+UzHAQAAsL1z586rcuXKioyMlI+Pj+k4mQbNHQAA0uDatSTXdu5cuRUbG6uiRYsaTAQAAGBvf5w969p+9NHrK56zZctmMFHmQ3MHAIBUcjqd6tz5Zdc4MjJSpUuXNpgIAADA3q5cuaKGDRu6xtHR0cqbN6/BRJkTzR0AAFLBsiz17NlTM+fMUc56L2pdwh+q/MzTpmMBAADY1rWka2rYsKG+3rhJRZ9uop8u51Hhwqx4zgjcLQsAgFQYOXKUPvroI0nSp5MmqWZwsOFEAAAA9vbSSy9p3bp1ypYtm5ZELtMjj5YyHSnTYuUOAACp8N7770mSxo0bpxYtWhhOAwAAYH9LlkTK29tby5Yt01NPPWU6TqZGcwcAgFR6++231b17d9MxAAAA3ILD4dCcOXNUs2ZN01EyPZo7AADcxvoNG1zb7du11+DBgw2mAQAAsL8pU6e4tkeNGqWmTZsaTJN10NwBAOAWvv/+ezVt8r9iZNy4sXI4HAYTAQAA2NuiRYvUq9frrnGXzp0NpslaaO4AAPD//PLLQdWuXVunz/6hOkPfVmKl0vL09jYdCwAAwLa++PJLtWrVSnHxCeo5YoGsgpUlBy2He4W7ZQEA8P+EhITozJkzeuKJJ7Rg8WL5ZQswHQkAAMDWmjVrqqSkJDVu3Fijx4yVw9PTdKQshTYaAAD/z69Hf9XDDz+s1atXK0eOHKbjAAAA2F5cXLz+/e9/a86cOfKksXPP0dwBAEBSfHyCa7tgwYJat26dChQoYDARAACAvf1+/HfX9hNPPKFly5bJ19fXYKKsi+YOACDLS0pKUpu2bVzj6OhoFStWzFwgAAAAmzt37pxCQ0Nd46VLlyowMNBgoqyN5g4AIEtzOp3q1KmTIpctU97QmvrW86oeK1vWdCwAAADbiouLU7169fT99p16+PnWOpp8v/LnZ8WzSVxQGQCQpfXr10+zZ8+Wp6enZs2do2eee9Z0JAAAANv686LJ3377rXLnzq3omOUq+mBx07GyPFbuAACyrA8//FCjRo2SJE2fPl316tUznAgAAMC+nE6n2rdvr9WrV8vf318rVqxQmTJlTMeCaO4AALKwAQMHSpJGjRqlNm3a/MOjAQAAsijLkpWSrDf79dG8efPk5eWlJUuWqEqVKqaT4b9o7gAAsrR+/frpjTfeMB0DAADAviynHCe3aETPhgrw99OMGTNUp04d06nwFzR3AABZysaNm1zbbdq00bBhwwymAQAAsL+Zs2a6tocPH65WrVqZC4Nb4oLKAIAsY9euXaoXGqKkq1dVt05dzV8QIYfDYToWAACAbS1btkyvvdZd7X6KlSS91q2b4US4FVbuAACyhMOHjyg4OFgXL15UxSef1Ky5c+Tl7W06FgAAgG2tX79ezZs3l9PpNB0F/4DmDgAgSwgJCdHJkydVvnx5xcTEyN/f33QkAAAA29qxY4dCQkJ09epVhYTUNx0H/4DmDgAgSzh0+JAeeughrVmzRrly5TIdBwAAwJ4sSwd/OaCGYaG6fPmyqlWrphkzZphOhX9AcwcAkGklJl51bd9XoIBiY2NVsGBBg4kAAADs7eSJ4yrhf1qHv4nQ05WfUnR0tPx8/UzHwj+guQMAyJSSk5PVrl0713jZsmUqUaKEuUAAAAA2d+HCBYWFhbnGUVFRypkzp7lASDWaOwCATMeyLHXp0kULlyxWnpAa+lpxKl+hgulYAAAAtpWQmKD69etr9549rrn7ChQwmAhpQXMHAJDpDHrvPU2bNk0eHh6aPmumqlarJnHLcwAAgNtq06atNm7cqJw5c5iOgjtAcwcAkOmMGjVKkjR58uQblhYDAADg1latWiU/Pz8tXrzEdBTcAZo7AIBMadiwYerYsaPpGAAAAG7B09NTCxcu1LNVqpiOgjtAcwcAkCmsXbvWtf1at27q16+fwTQAAAD2N27cONf2xx9PUEhIiME0uBs0dwAAbm/Tpk1q2bKVazx06FA5uMYOAADAbc2cOVP9337bNW7dqrXBNLhbNHcAAG5tz549qlevns5eOK+GHw5RUuXH5OHlZToWAACAbS1fvlydOnVSfEKi+k9YLhV6WnLQHnBnVL8AALf1669HVatWLV24cEFVqlTR3Pnz5e3nZzoWAACAbW3cuFFNmjRRSkqK2rZtqyH/GSp50Nhxd7yCAAC3FRISouPHj6tMmTJavny5AgICTEcCAACwrR9++EH16tVTYmKi6tWrpylTpsiDxk6mwModAIDb+uXgL3rwwQe1du1a5cmTx3QcAAAAe7IsHTlySA3CQnXx4kU999xzWrhwoby9vU0nQzqhRQcAcCtXr15zbefLm1exsbF64IEHDCYCAACwt1OnTqqYz0kd/HqunqpUkRXPmRDNHQCA20hJSVGHDh1c42XLovSvf/3LYCIAAAB7u3Tpkho0aOAaR0dHK1euXOYCIUPQ3AEAuAXLsvTqq69q/sIFyh3yb61PuaQnKlU0HQsAAMC2Eq8mKjQ0VLt27XLNFSxY0GAiZBSaOwAAtzBkyH80adIkORwOTZk2TS9Ury45HKZjAQAA2Fb79u21fv16BQZmNx0FGYzmDgDALQz/YLgk6ZNPPlGjRo0MpwEAALC/mJjl8vHx0cKFi0xHQQajuQMAcBvvv/++unTpYjoGAACAW/Dw8FBERISqPf+86SjIYDR3AAC29dlnn7m2u3bpqgEDBhhMAwAAYH8TPv7YtT1+/Dg1bNjQYBrcKzR3AAC2tGXLFjVv3sI1HjHiAzm4xg4AAMBtzZs3T/369XON27drbzAN7iWaOwAA29n/00+qU6eO/jh/TiEjB+naU4/Jw8vLdCwAAADbio2NVbt27RSfkKi+Y5fKKlhZcvArf1ZBpQwAsJ2QkBCdO3dOTz31lOYvWCAffz/TkQAAAGytRcuWSk5OVosWLTT8g5FyeNDYyUp4tQEAtvP777/r0Ucf1cqVK5U9O7fuBAAA+CcJCQkKDg7WjBkz5EFjJ8vhFQcA2MKVK3Gu7QceeEBr165Vvnz5DCYCAACwt6PHjrq2n3rqKS1ZskQ+Pj4GE8EUmjsAAOOuXbumlq1ausYxMTEqWrSowUQAAAD2dubMGYWEhLjGkZGRypYtm8FEMInmDgDAKKfTqXbt2ilmxQrlb1BLW31T9GipUqZjAQAA2Nbly5dVp04d7fphjx55sZ1+t4ooT568pmPBIC6oDAAwxrIs9ejZUxEREfLy8tLciPl68unKpmMBAADY1tWrV9WgQQNt27ZNefPmVXTMcj1QmBXPWR0rdwAAxowYMVITJkyQJM2ePVu1atUynAgAAMC+UlJS1Lp1a33++efKli2bVq9erUcffdR0LNgAK3cAAMa8P/h9SdL48ePVvHlzw2kAAABsyrJkOVP0eq+eWrx4sby9vbVs2TI9+eSTppPBJli5AwAwauDAgXrttddMxwAAALAvyynHyS0a16+5sgX4a+7cuapZs6bpVLARmjsAgHvqy/XrXdsdO3TUe++9Zy4MAACAG5g0ebJre/To0WrSpInBNLAjTssCANwz33//vULCwuRMTlZYaJhmz50jh8NhOhYAAIBtLVy4UG+88YY6118nSer88suGE8GOWLkDALgnDhz4RbVr19aVK1f0dJUqmj5rpjy9eI8BAADgdtatW6fWrVvLsizTUWBzNHcAAPdESEiIzpw5o4oVKyoqKkq+vr6mIwEAANjW1q1b1aBBAyUlJalRo3DTcWBzNHcAAPfE0WNHVbJkSa1atUqBgYGm4wAAANiTZemn/fsU3jBMcXFxqlmzpqZMmWI6FWyO5g4AIMPExye4tgsVKqTY2FgVKFDAYCIAAAB7+/33Y3ok8JyObl6kqs89q8jISPl4+5iOBZujuQMAyBBJSUlq1bqVaxwdHa1ixYqZCwQAAGBzZ8+eVUhIiGu8dOlSVjwjVWjuAADSndPpVIcOHbQsOlr5woL0redVlXnsMdOxAAAAbCsuPk716tXT/v0/ueby5c1rMBHcCc0dAEC669+/v+bOnStPT0/NmjtHzzz3rMQtzwEAAG6rZctW2rx5s3LnzmU6CtwQzR0AQLr7aMIESdL06dNVt25dw2kAAADsb926dQoICFBkZKTpKHBDNHcAABli9OjRatOmjekYAAAAtmVZlmvby8tLS5YsUeWnKhtMBHdFcwcAkC5WrFjp2n799df1+uuvG0wDAABgf6NGj3JtT5o0SbVr1zaYBu6M5g4A4K599dVXN6zSef+99wymAQAAsL/Jkydr0KD/1UzNmjY1mAbujuYOAOCu7Ny5U/Xr19f5SxfV9KMPlPx0WTk8PU3HAgAAsK3IyEh17dpV8QmJGjR5rVToacnBr+e4c16mAwAA3NehQ4cVHBysS5cu6fnnn9fMObPl5etrOhYAAIBtbfjqK7Vo0UJOp1MvvfSS3h30HncVxV2jNQgAuGMhISE6deqUypcvr5iYGPn7+5uOBAAAYGtNmzbRtWvX1LBhQ3366ady0NhBOqC5AwC4Y4ePHNZDDz2kNWvWKGfOnKbjAAAA2N7ly1f0wgsvaN68efLkVHakE5o7AIA0SUhIdG3fV6CAYmNjVbBgQYOJAAAA7O3EiROu7fLlyys6Olp+fn4GEyGzobkDAEi15ORktWvXzjWOjo5WiRIlzAUCAACwufPnzys0NNQ1XrZsmXLkyGEwETIjmjsAgFSxLEudO3fWosglyhNSQxsVr7Lly5uOBQAAYFvx8fGqX7++tn6/XQ8911JHrhXUffex4hnpj7tlAQBS5Z1339X06dPl4eGhGbNn6blqz5uOBAAAYFtJSUlq0qSJNm3apJw5cyoqOkbFirPiGRmDlTsAgFQZM2aMJGnKlCk3LC0GAADAjZxOpzp16qSVK1fKz89Py5cvV7ly5UzHQiZGcwcAkGoffPCBOnToYDoGAACAfVmWBrzdX0sWL5Knp6cWLVqkqlWrmk6FTI7mDgDgttasWePa7tG9u/r06WMwDQAAgP2N/XCMhnarr7gDn2nWjOmqX7++6UjIAmjuAABuadOmTWrVqrVrPGTIEDkcDoOJAAAA7G3GjBl6e8AA17hly5YG0yArobkDALjJnh9/VL169XT2wnmFj/2Pkio/Jg8vrsEPAABwOzExMerUqZPpGMiiqNQBADcJDQ3VhQsXVKVKFc2ZN0/efn6mIwEAANjWV199paZNm8rpdKp169b/vAOQzli5AwC4ycmTJ/XYY49pxYoVCggIMB0HAADAnixLu3ftVNMmjZSYmKiQkBBNmPCR6VTIgmjuAAAkSZcvX3FtFy1SVGvWrFHu3LkNJgIAALC3w4cPqmy+OJ34fplq/PtFLViwQF6enCCDe4/mDgBAV69eVbNmTV3jmJgYPfDAAwYTAQAA2NvJkycVEhLiGi9evET+/v4GEyEro7kDAFlcSkqKWrZsqVVr1+q+8NrakU0q+ci/TMcCAACwrYsXL6p27do6dOiway5XzpwGEyGro7kDAFmYZVl69dVXFRkZKR8fH0UsWqgKlSpJ3PIcAADglhKvJio0NFQ7d+5Ugfz5TccBJNHcAYAsbfDgIZo0aZIcDofmzZun6tWrm44EAABga+3atdeGDRsUGBioqKgo03EASTR3ACBL+2DEB5KkTz/9VI0aNTKcBgAAwP6WL18uX19fxcTEqHz58qbjAJJo7gBAljd48GB17tzZdAwAAAC34OHhoYiICL3wwgumowAuNHcAIItZt26da7trl656++23DaYBAACwvwkff+za/uij8WrQoIHBNMDNaO4AQBayefNmhYWHK1twVbWfNl4jRo2Ug4snAwAA3NbcuXP1WvceylayhkbN36h27TqYjgTchOYOAGQR+/bvV926dRUfH6+q1app0tSp8vD0NB0LAADAttbGrlX79u0lSZ27dNUbvftyV1HYEs0dAMgiQkNDde7cOVWuXNl163MAAADcXsuWrZScnKxWrVpp1KhRrHiGbdHcAYAs4vfff1epUqW0cuVKZcuWzXQcAAAA20tISFDt2rU1ffp0eXjw6zPsi+9OAMjErlyJc20XLlxYa9euVd68eQ0mAgAAsLejx466titXfkqLFy+Wt7e3wUTAP6O5AwCZ1LVr19SiRXPXODo6WkWKFDGYCAAAwN7OnDmjkJAQ13jJkkhWPMMt0NwBgEzI6XSqTZs2Wr5qlQo0DNY2P6ceLVXKdCwAAADbunzliurUqaNdP+zRo9Xb67iKKk8eVjzDPXiZDgAASH99+vTVwoUL5e3trbkR81Wp8lOmIwEAANha82bNtG3bNuXLl0/RMct1/wOseIb7YOUOAGRCEydNlMPh0Jw5cxQUFGQ6DgAAgO19uX69smfPrtWrV+uRRx4xHQdIE5o7AJBJjR8/Xk2bNjUdAwAAwLYsy3Jte3t7a9myZapUqZLBRMCdobkDAJnE0qXLXNtvvfmWunXrZjANAACA/f1n6FDX9rRp01SjRg2DaYA7R3MHADKBzz77TB06dnCN3367v8E0AAAA9jdhwgQNGzbMNQ5v2NBgGuDu0NwBADe3bds2NWjQQBcvX1brSR8q5Zlycnh6mo4FAABgWwsWLFD37t0Vn5CoYbO+lAo9LTn49Rjui7tlAYAbO3DgF9WuXVtXrlzRv//9b02dMV2ePj6mYwEAANjW559/rjZt2siyLL366qt68623JYfDdCzgrtCaBAA3Vr9+ff3xxx+qWLGili1bJl9fX9ORAAAAbK15i+ZKSkpS06ZNNX78eDlo7CAToLkDAG7s2G/H9K9//UurV69WYGCg6TgAAAC2FxcXr5o1a2r27Nny8OBXYmQOfCcDgJuJj09wbRcqVEixsbHKnz+/wUQAAAD29tvvv7m2K1asqKVLl8qHU9mRidDcAQA3kpSUpFatW7nGMTExevDBBw0mAgAAsLezZ88qNDTUNV66dKmyZ89uMBGQ/mjuAICbcDqd6tChg5ZFRytfWJA2e11T6TJlTMcCAACwrStXrqhu3bravmOX/vVCWx1LeUD58rHiGZkPd8sCADfx1ltvae7cufL09NTseXP19LNVTEcCAACwrWvXrqlRo0basmWL8uTJo6joGBUpWsx0LCBDsHIHANzEhI8/liTNmDFDderUMZwGAADAvpxOp9q1a6e1a9cqICBAK1euVOnSpU3HAjIMzR0AcCNjxoxR69atTccAAACwLcvpVN8+byg6apm8vLwUGRmpp59+2nQsIEPR3AEAG4uJWe7a7t27t3r16mUwDQAAgP2NGDFco15vpLgDn2nunNkKDg42HQnIcDR3AMCm1q9fr3bt2rnGg95911wYAAAANzBp0iS9//5g17hpkyYG0wD3Ds0dALChXbt2KSQkROcvXVSzCSOU/HRZOTw9TccCAACwrSVLlqhr166mYwBGcLcsALChsLAwXb58WdWqVdPMObPl5etrOhIAAIBtffHFF2rZsqUsy1KHDh1MxwHuOVbuAIANnT5zRo8//riio6Pl5+dnOg4AAIA9WZZ2bN+m5s2a6Nq1awoPD9fYDz80nQq452juAIBNXLhw0bX9UPGHtGbNGuXMmdNgIgAAAHs7cOBnVbjvqk7tiFad4FqaN2+ePDmVHVkQzR0AsIGEhAQ1+csF/2JiYnTfffcZTAQAAGBvx48fV0hIiGscsWCBfDmVHVkUzR0AMCw5OVnNmjXTui8+1/1N6ml3Ti8VL/GQ6VgAAAC2df78edWqVUtHjx51zeUIDDSYCDCL5g4AGGRZll5++WXFxMTIz89PC5csVtnHH5ccDtPRAAAAbCk+IV7169fXnj17VLBgQdNxAFuguQMABg185x3NmDFDnp6eWrhwoapWrWo6EgAAgK21bt1GmzZtUq5cuRQdHW06DmALNHcAwKAP/3s3hylTptxwzjgAAABubc2aNfLz89OKFSv0WJkypuMAtkBzBwAM++CDD9S+fXvTMQAAAGzLsizXtqenpxYvXqxnn33WYCLAXmjuAMA9tnr1Gtd2j+7d1adPH4NpAAAA7G/s2LGu7Ymffqp69eqZCwPYEM0dALiHNm7cqIaNGylbcFW9PGeihgwdKgcXTwYAALit6dOn6/XefZStZA2NW/ydWrRsZToSYDs0dwDgHtm9Z4/q1aunxMREVa9RQx9/+qk8PD1NxwIAALCtFStX6KWXXpIkvda9h3r07MVdRYFboLkDAPdIWFiYLl68qOeee04LFy6Ut7e36UgAAAC21qZNWzmdTnXo0EHDhg0zHQewLZo7AHCPnDx5UmXLllVMTIwCAgJMxwEAALC9q1evKiQkRJMmTeJUduBv0NwBgAx06dJl1/aDRR/UmjVrlDt3boOJAAAA7O3Q4UOu7WefraIFCxbIy8vLYCLA/mjuAEAGSUxMVLNmTV3jmJgY3X///QYTAQAA2NvJkycVEhLiGi9atFj+/v4GEwHugeYOAGSAlJQUtWzZUqtjY1WwUR3tzO7Qw/8qaToWAACAbV28dEnBwcH6ce9+lanZSScdxZQrFyuegdRgbRsAZICePXtp6dKl8vHxUcSihXq8YkXTkQAAAGytSZPG2rVrl+677z5FxyxXwfsfMB0JcBvpsnLnwoUL6XEYAMg0ps+YLg8PD0VEROjFF180HQeADVE/AcCNNm7cpBw5cmj16tV6+OGHTccB3EqamzsffPCBFi5c6Bo3adJEefPm1QMPPKBdu3alazgAcGcTJ05Uw4YNTccAYAPUTwBwa5ZlubZ9fX0VHR2tChUqGEwEuKc0N3cmTpyoIkWKSJLWrVundevWafXq1apdu7b69OmT7gEBwF0s+MsvboPeHaSXXnrJYBoAdkL9BAC39u6gQa7tmTNn6IUXXjCWBXBnaW7unDx50lWcrFixQk2aNFFQUJD69u2rrVu3pntAAHAHa9asUefOnV3j3r3fMJgGgN1QPwHAzcaMGaPRo0e7xiH1Q/7m0QD+TpqbO7lz59axY8ckXf9lpkaNGpKuL6dLSUlJ33QA4AY2b96s8PBwXbpyRR2mfyRnlfJyeHqajgXARqifAOBGs2fP1htvvKH4hESNjtgkFXpacnAzZ+BOpfluWQ0bNlSLFi1UsmRJnT17VrVr15Yk7dixg4teAchy9u3fr7p16yo+Pl7BwcGaOGWKPLy9TccCYDPUTwDwPytXrlSHDh0kSb169dLrb/SRHA7DqQD3lubmzocffqhixYrp2LFjGjFihLJnzy5JOnHihF555ZV0DwgAdhYSEqJz587p6aef1pIlS+Tj42M6EgAbon4CgOs2bdqkxo0bKyUlRa1bt9aoUaPkoLED3LU0N3e8vb3Vu3fvm+Z79eqVLoEAwJ0cP35cpUuX1sqVK5UtWzbTcQDYFPUTgCzPsvTjj3vUpHG4EhISVKdOHU2bNk0eHpyKBaSHO/qXNGfOHD333HO6//779euvv0qSxo4dq+jo6HQNBwB2dOVKnGu7cOHCWrt2rfLkyWMwEQB3QP0EICv79dfDKpP7kn7fGqnqL1bT4sWL5c2p7EC6SXNz59NPP9Xrr7+u2rVr68KFC66LAObKlUtjx45N73wAYCtXr15VixbNXeOYmBgVLlzYYCIA7oD6CUBWdvr0aYWE/O9OWIsXL1FAQIDBREDmk+bmzkcffaQpU6bo7bffludf7gZTqVIl7d69O13DAYCdpKSkqG3btlq+apUKNAzWNj+nHnn0UdOxALgB6icAWdWlS5dUu3Zt/fLLQddcnty5DSYCMqc0N3cOHz6sChUq3DTv6+uruLi4W+wBAJlD7959tHDhQnl7e2vegghVqvwUd3YAkCrUTwCyoqtXr6pBgwbavn278uXNazoOkKmlublTvHhx7dy586b5NWvWqFSpUumRCQBsafKUyXI4HJo7d65q1qxpOg4AN0L9BCCrSUlJUatWrfTFF18oe/bsWha1zHQkIFNL892yXn/9db366qtKTEyUZVn67rvvFBERoWHDhmnq1KkZkREAbGPChAlq0qSJ6RgA3Az1E4CsxHI61atnD61auUI+Pj6KiorSExWekE5sNh0NyLTS3Nzp1KmT/P39NWDAAMXHx6tFixa6//77NW7cODVr1iwjMgKAMZGRSxV+X3FJUv+3+uuVV14xnAiAO6J+ApCVDBkyWOPfbK7xbzbXsi0n9e9//1typpiOBWRqd3Qr9JYtW+rAgQO6cuWKTp48qd9++00dO3ZM72wAYNS6devUsdP/frb17/+WwTQA3B31E4Cs4KOPPtLw4cNd4wZhYebCAFnIHTV3/hQQEKACBQqkVxYAsI3vv9+uBg0a6OLly2ozeaxSniknx1/ucAMAd4r6CUBmFRERoe7du5uOAWRJaT4tq3jx4nL8zd1hDh06dFeBAMAOGjQIU1xcnGrUqKEp06fJ08fHdCQAboz6CUBmt3btWrVp00aS1KVLZ8NpgKwnzc2dnj173jBOSkrSjh07tGbNGvXp0ye9cgGAUWfPnVOlSpW0dOlS+fr6mo4DwM1RPwHItCxLW7duUauWLZScnKxmzZpp5IiR0qnvTCcDspQ0N3d69Ohxy/mPP/5Y27Ztu+tAAGDKufPnlee/2yUfLqlVq1YpMDDQaCYAmQP1E4DMav/+fXrygRSd2RWjkC7DNGvWLHl43NXVPwDcgXT7V1e7dm1FRkam1+EA4J6Ki4tTo/BGrnFMTIzy589vMBGArID6CYA7O3bsmEJCQlzj+fPnyYdT2QEj0q25s2TJEuXJk+efHwgANpOUlKTGjRvry682qHCzEO3N66eixR40HQtAFkD9BMBdnT17VkFBQfr9999dc9mzZTeYCMja0nxaVoUKFW64IKBlWTp58qTOnDmjTz75JF3DAUBGczqdat++vVavXi1/f38tXhqp0o89ZjoWgEyG+glAZnLlyhXVrVtX+/fvV8mHS5iOA0B30NwJCwu7Yezh4aH8+fPrhRde0KOPPppeuQDgnnjzzTc1b948eXl5KTIyUs8884zpSAAyIeonAJnFtWvXFB4eri1btihPnjyKiYmRdN50LCDLS3Nz5913382IHABgxMf/fcd85syZql27tuE0ADIr6icAbs+y5ExJ1ssvdVRsbKwCAgK0atUqPfrII9KJzabTAVleqpo7ly5dSvUBc+TIccdhAMCEsWPHqmXLlqZjAMhkqJ8AZCaWM0Uep77TzKFdFBUVrYWLFqty5cqSM8V0NABKZXMnV65cN5wnfiuWZcnhcCglhX/cAOwtOjpGoXmLSJL69ul721sUA8DdoH4CkJl8MOIDvdnmBUnS5MmTVatWLbOBANwgVc2dL7/8MqNzAMA98eWXX6pJ82by8vBQ+3bt9dHHE0xHApBJUT8ByCwmTpyowYOHuJo7TRo3NhsIwE1S1dypVq1aRucAgAy3c+dOhYaG6tq1a6rXsKHGTfhIDg8P07EAZFLUTwAygyVLluiVV16Rv5+v6SgA/kaaL6j8p/j4eB09elTXrl27Yb5cuXJ3HQoAMkJYWJguX76sF198UfPmzZOnp6fpSACyGOonAO7k888/V8uWLWVZljp27Gg6DoC/kebmzpkzZ9S+fXutXr36lh/nnHEAdnXmjz9UoUIFRUVFyc/Pz3QcAFkI9RMAt2JZ2r59m1o0b6pr166pUaNG+nDMGOn0VtPJANxGms9H6Nmzpy5cuKAtW7bI399fa9as0axZs1SyZEnFxMRkREYAuGMXLlx0bZd4qIRWr17NXWkA3HPUTwDcyYEDP+uJgtd0ake06gTX0ty5c1nxDNhcmps7X3zxhcaMGaNKlSrJw8NDDz74oFq1aqURI0Zo2LBhGZERAO5IfHy8Gv/lgn8xMTG67777DCYCkFVRPwFwF7///rtCQkJc4wULF8rXl+vtAHaX5uZOXFycChQoIEnKnTu3zpw5I0kqW7astm/fnr7pAOAOJSUlqWnTpvrsyy90f5N62p3LW8UeKm46FoAsivoJgDs4d+6catWqpaNHj7rmArNnN5gIQGqlubnzyCOP6KeffpIklS9fXpMmTdLvv/+uiRMnqlChQukeEADuxKvdumnFihXy8/PTosglKlu+vORwmI4FIIuifgJgd/Hx8apfv75+/PFHfi4BbijNF1Tu0aOHTpw4IUl69913FRwcrHnz5snHx0czZ85M73wAcEf+vBvWokWL9Nxzz5mOAyCLo34CYGdJSUlq3LixvvnmG+XKlUvR0dGSLpmOBSAN0tzcadWqlWu7YsWK+vXXX7V//34VLVpU+fLlS9dwAHA3pk2bpvr165uOAQDUTwBsy5mSoq6dX9b6L7+Qv7+/VqxYoTKlS0snNpuOBiAN0nxa1saNG28YBwQE6IknnqAwAWDc3LlzXdtD//MftW3b1mAaAPgf6icAdmRZlt7u/5amDu6kuAOfaWnkYj377LOmYwG4A2lu7lSvXl3FixdX//79tXfv3ozIBABpFhMTo1defdU17tGjh8E0AHAj6icAdjRixAiN/+gj1zi4VrDBNADuRpqbO8ePH9cbb7yhDRs26LHHHtPjjz+ukSNH6rfffsuIfADwj77++ms1bdpUl+Pi1GXeZFnPPi55pPnHGwBkGOonAHYzbdo0vfnmm6ZjAEgnaf7tJ1++fOrWrZs2bdqkgwcPqnHjxpo1a5aKFSum6tWrZ0RGALit3Xv2qH79+kpMTFRISIgmfPKJHF5e3BkLgK1QPwGwk6ioKL388suSpDfeeMNwGgDp4a7e2i5evLjefPNNDR8+XGXLltWGDRvSKxcApEpoaKguXryo5557TgsWLJCXV5qvEw8A9xT1EwCTNmzYoGbNmsnpdKpDhw56b9Ag05EApIM7bu5s2rRJr7zyigoVKqQWLVroscce08qVK9MzGwD8o1OnTqls2bJavny5/P39TccBgL9F/QTAGMvSDzt3qFnTxrp69arCwsI0adIkOVjtDGQKaX6L+6233tKCBQt0/Phx1axZU+PGjVNoaKgCAgIyIh8A3OTSpcvK8d/tB4s+qLVr1ypXrlwmIwHA36J+AmDaoUO/qFz+eJ34fpmCOwxSRETE9RXPzhTT0QCkgzQ3d7766iv16dNHTZo04fadAO65xMRENW3aRKvfHirp+l2yChUqZDgVAPw96icAJp04cUIhISHaEztVkrRw4SL5+fkZTgUgPaW5ubNp06aMyAEA/yg5OVktWrTQmnXrVHDHTq1du0bl/1XSdCwA+EfUTwBMuXDhgmrXrq3Dh4+45nLmyHH7HQC4Je4VDMBt9OjRU8uWLZOPj48WLF6k8k88wV2xAAAAbiMhIUEhISHatWuX7itQwHQcABmI5g4AtzFz1kx5eHgoIiJCL7zwguk4AAAAtpWcnKxmzZrp66+/Vo4cORQVFWU6EoAMRHMHgFuZOHGiGjZsaDoGAACAbVlOp7q9+oo+WxcrX19fLV++XOXKlTMdC0AGorkDwNYiFixwbb83aJBeeuklg2kAAADs7513BmriO20Vd+AzLVm8UM8//7zpSAAyGM0dALa1atUqdenSxTV+4403DKYBAACwv9GjR2vMmDGucb269QymAXCvpOpuWblz55YjlRctPXfu3F0FAgBJ+vbbb9WoUSMlJCSo44wJmjJlijw8PU3HAoBUo34CcK/Nnj1bvXv3VoA/tzkHsppUNXfGjh3r2j579qyGDBmiWrVq6ZlnnpF0/ZewtWvXauDAgRkSEkDW8uOPP6pu3bpKSEhQ7dq1NXHKFHl4e5uOBQBpQv0E4F5asWKFOnToIEnq0b274TQA7rVUNXfatm3r2g4PD9f777+vbt26uea6d++uCRMm6LPPPlOvXr3SPyWArMGydPTIrwoLCdH58+f1zDPPaPHixfKmsQPADVE/AchwliVZTn3z7bdq3LixUlJS1KZNGw0ZMkQ69Z3pdADuoTRfc2ft2rUKDg6+aT44OFifffZZuoQCkDWdOX1aRY/+oQPTF6ri449rxYoVypYtm+lYAHDXqJ8AZAjLKZ3YrCrFHPJwSHXr1tXUqVPl4cGlVYGsJs3/6vPmzavo6Oib5qOjo5U3b950CQUg67l8+fINtziPjo5Wnjx5DCYCgPRD/QQgI/x69FfX9jPPPK1Fixax4hnIolJ1WtZfvffee+rUqZPWr1+vypUrS5K2bNmiNWvWaMqUKekeEEDmd/XqVTVo0EDbt293zT3wwAMGEwFA+qJ+ApDeTp8+rfr16+uHNZMlSYsXL1FAQIDhVABMSXNzp127dipVqpTGjx+vpUuXSpJKlSqljRs3uooVAEitlJQUtW7dWp9//rny5+HdawCZE/UTgPR06dIl1a5dWwcPHnLN5c6Vy1wgAMalubkjSZUrV9a8efPSOwuALMayLHXv3t110eSIBRGmIwFAhqF+ApAeEhMTFRYWpu3bt+vBIoVNxwFgE3d0pa2DBw9qwIABatGihU6fPi1JWr16tX788cd0DQcgk7IsKSVFQwcP0SeffCKHw6G5c+fq39Wrm04GABmG+gnAXbEspSRdU4f2bfXll18qe/bsWha1zHQqADaR5ubOhg0bVLZsWW3ZskWRkZG6cuWKJGnXrl1699130z0ggEzI6ZQ27tDb1WorwM9PH3/8sZo0aWI6FQBkGOonAHfLcqbI8/RWzR/VXbly5lB0dLQqPF7BdCwANpHm5s6bb76pIUOGaN26dfLx8XHNV69eXZs3b07XcAAypyWRka7t/m/1V9euXQ2mAYCMR/0E4G4NHjLEtT19+nRVZ8UzgL9Ic3Nn9+7datCgwU3zBQoU0B9//JEuoQBkXrGxserUqZNr3L//WwbTAMC9Qf0E4G6MHz9eH3zwgWvcICzMXBgAtpTm5k6uXLl04sSJm+Z37NjBrYsB/K3vvvtODRs2VFJSkmvO4XAYTAQA9wb1E4A7tXDRIvXo0cN0DAA2l+bmTrNmzdSvXz+dPHlSDodDTqdTmzZtUu/evdWmTZuMyAggE9i/f7/q1KmjuLg4LpwMIMuhfgJwp15++WVJUteuXQwnAWBnaW7uDB06VI8++qiKFCmiK1euqHTp0nr++edVpUoVDRgwICMyAnBnlqXffj2q0Pr1dfbsWT355JOaP59bngPIWqifANyp5ORkNW/eXCM+GGE6CgAb80rrDj4+PpoyZYoGDhyoPXv26MqVK6pQoYJKliyZEfkAuLmzf/yhwkdO66epEarwWketWrVK2bNnMx0LAO4p6icAabFv/36Vynl9u0aNGpo5c6Y8PNL8vjyALCTNzZ0/FS1aVEWLFk3PLAAymbi4OIU3DNf6IWMkSTExMcqXL5+UkmI4GQCYQf0E4J8cPXpUoaGh+nn9LEnS/Pnzrt9lz0n9BOD2UtXcef3111N9wDFjxtxxGACZx7Vr1xQeHq6t27a65ooUKWwwEQDcW9RPANLqjz/+UK1atXTgl4OqWP9VxcauU95sgaZjAXADqWru7Nix44bx9u3blZycrEceeUSS9PPPP8vT01MVK1ZM/4QA3I7T6VT79u21du1a5cudx3QcADCC+glAWlyJu6K6detq//79KlKkiKKilytvvvymYwFwE6lq7nz55Zeu7TFjxigwMFCzZs1S7ty5JUnnz59X+/btVbVq1YxJCcBtWJalXr16af78+fLy8tL8+fNMRwIAI6ifAKRFixYt9d133ylv3ryKjY1VkSJFTEcC4EbSfFWu0aNHa9iwYa7CRJJy586tIUOGaPTo0ekaDoCbsSyNHP6Bpk6eLEmaNWuWatasaTgUAJhH/QTgn3z++efKli2bVq1apUcffdR0HABuJs3NnUuXLunMmTM3zZ85c0aXL19Ol1AA3NP0qdPUt0oNxa35WhPGj1eLFi1MRwIAW6B+AnArlmW5tr29vbV06VI99dRTBhMBcFdpbu40aNBA7du319KlS/Xbb7/pt99+U2RkpDp27KiGDRtmREYAbiAyMlI9evZwjV995RWDaQDAXqifANzKByM+cG1PmTJFQUFBBtMAcGdpvhX6xIkT1bt3b7Vo0UJJSUnXD+LlpY4dO2rkyJHpHhCA/X355Zdq0aKFvDzS3C8GgCyB+gnA//fpp5/qrf4DNHiwn0aPHq0uXbqajgTAjaW5uRMQEKBPPvlEI0eO1MGDByVJJUqUULZs2dI9HAD72759u0JDQ6/f+rxJU9NxAMCWqJ8A/NXixYv16quvSpJ69+mrLl1Z8Qzg7qS5ufOnbNmyqVy5cumZBYCbOXDggIKDg3X58mW9+OKLmj59urRtr+lYAGBb1E8APvvsM7Vs2VKWZalLly4aNGiQ6UgAMoE0N3fi4uI0fPhwff755zp9+rScTucNHz906FC6hQNgU5alE7//rtB69XXmzBk98cQTioqKkp+fr+lkAGBL1E8AZFn6/vutatG8qZKSktSoUSNNmDBBDofDdDIAmUCamzudOnXShg0b1Lp1axUqVIgfRkAWdP7cORU6eFJ7J89VuVfaafXq1cqRI4eUkmI6GgDYEvUTgJ9//kkVCyXp9M4Y1XtpiObOnStPT0/TsQBkEmlu7qxevVorV67Us88+mxF5ANhcfHy8GjdqrM8GjZAkxcTEqECBAoZTAYC9UT8BWdvvv/+ukJAQ7f9ihiQpYsEC+fqy4hlA+knzrW1y586tPHnyZEQWADaXlJSkpk2b6tvN37rmihV70GAiAHAP1E9A1nXu3DkFBQXp2LFjrrnA7NkNJgKQGaW5uTN48GC98847io+Pz4g8AGzK6XTqpZde0ooVK+Tn62c6DgC4FeonIGuKi4tTvXr1tHfvXhUqVMh0HACZWJpPyxo9erQOHjyo++67T8WKFZO3t/cNH9++fXu6hQNgH/369dOsWbPk6empOXPmmI4DAG6F+gnIepKSktS4cWN9++23yp07t2JiYiRdNB0LQCaV5uZOWFhYBsQAYFuWpbFjxuiTCRMkSdOmTVOdOrWljTsMBwMA90H9BGQtzpQUde38sjas/1L+/v5asWKFSpcqJZ3YbDoagEwqzc2dd999NyNyALCpObNmqWelauq55muN+/4rtW3blrtiAUAaUT8BWYdlWXrrrX6aOriTpg7upNjdl1SlShXJSf0EIOOk+Zo7ALKOmJgYvdqtm2vco0cPg2kAAADsb/jw4Zow4WPXOCgoyGAaAFlFmlfueHh4yOFw3PbjKbyjD2QKX331lZo2bUoHGADSAfUTkDVMnTpV/fv3V4A/N58AcG+lubmzbNmyG8ZJSUnasWOHZs2apffeey/dggEwZ9euXQoJCVFiYqIaNww3HQcA3B71E5D5LVu2TJ07d5Yk9e7d23AaAFlNmps7oaGhN801atRIZcqU0cKFC9WxY8d0CQbAAMvS4YOH1CA0VBcvXlTVqlU1a9Ys6ft9ppMBgFujfgIyKcuSLKe++vprNW/eXE6nUx07dtSgd9+VTm4xnQ5AFpJuZ1w8/fTT+vzzz9PrcAAMOHXihIr/fl6HZi1R5UqVFBMTI3+WFQNAhqF+Atyc5ZRObNbzD3vL08OhsLAwTZw48W9PwwSAjJAuzZ2EhASNHz9eDzzwQHocDoABFy9eVFiDBq5xVFSUcuXKZS4QAGRy1E+A+zt46JBru2rV5xQRESEvrzSfHAEAdy3NP3ly5859QyfasixdvnxZAQEBmjt3brqGA3BvJCYmKjQ0VD/88INrrmDBggYTAUDmQv0EZD4nTpxQSEiIflw3VZK0cOEi+fmx4hmAGWlu7owdO/aGsYeHh/Lnz6/KlSsrd+7c6ZULwD2SnJys5s2ba8OGDSqYv4DpOACQKVE/AZnLhQsXFBwcrCNHjrjmcubIYS4QgCwvzc2dtm3bZkQOAAZYlqUuXbooKipKvr6+WrhooelIAJApUT8BmUdCQoJCQkL0ww8/qHixB03HAQBJd9Dcka53qqdNm6Z9+67fQadMmTLq0KGDcubMma7hAGQQy5KcTr377ruaNm2aPDw8tGDBAj1ftaq0cYfpdACQKVE/AW7OspScfE1tWrfS119/rRw5cig6KkpSnOlkAJD2Cypv27ZNJUqU0Icffqhz587p3LlzGjNmjEqUKKHt27dnREYA6c3plDbu0Ps1wxTg56fJkycrLCzMdCoAyLSonwD3ZzlT5HV6mxaPe115cufS8uXLVbZsWdOxAEDSHTR3evXqpZCQEB05ckRLly7V0qVLdfjwYdWrV089e/bMgIgA0ltERIRr+71Bg9SxY0eDaQAg86N+AtzfwHfecW3Pnj1Lzz//vME0AHCjO1q5069fvxtu8efl5aW+fftq27Zt6RoOQPpbuXKlOnfp4hq/8cYbBtMAQNZA/QS4t1GjRunDDz90jevWqWswDQDcLM3NnRw5cujo0aM3zR87dkyBgYHpEgpAxti0aZMaN26slJQU19xfb80LAMgY1E+A+5o1a5b69OljOgYA/K00N3eaNm2qjh07auHChTp27JiOHTumBQsWqFOnTmrevHlGZASQDvbs2aN69eopISFBtWrVMh0HALIU6ifAPS1fvtx1+nqPHj0MpwGA20vz3bJGjRolh8OhNm3aKDk5WZLk7e2trl27avjw4ekeEMBdsiz9eviIwkJCdOHCBVWpUkVz58yVtu83nQwAsgzqJ8DNWJa++WaT2rVto5SUFLVt21ZDBg+WTn1nOhkA3FKamzs+Pj4aN26chg0bpoMHD0qSSpQooYCAACUkJKR7QAB358zp03rw2Fn9MmORnuz1spYvX66AAH/TsQAgS6F+AtzL7t0/qEoxh87uXqFG3UdrypQp8vBI80kPAHDP3PFPqICAAJUtW1Zly5aVp6enxowZo+LFi6dnNgB36fLly2rQoIFrHB0drTx58hhMBABZG/UTYH+HDx9WWFiYazx79ix5e3ubCwQAqZDq5s7Vq1f11ltvqVKlSqpSpYqioqIkSTNmzFDx4sX14YcfqlevXhmVE0AaXb16VWFhYdqxY4dr7v777zeYCACyHuonwL2cOnVKQUFBOnnypGsuwD/AYCIASJ1Un5b1zjvvaNKkSapRo4a++eYbNW7cWO3bt9fmzZs1ZswYNW7cWJ6enhmZFUAqpaSkqFWrVvriiy9UIG8+03EAIMuifgLcx6VLl1S7dm398ssvKvXoI6bjAECapLq5s3jxYs2ePVshISHas2ePypUrp+TkZO3atYtbKQM2YlmWXn31VS1ZskQ+Pj5asHCB6UgAkGVRPwHuITExUaGhodqxY4fy58+vmJgYSWdMxwKAVEv1aVm//fabKlasKEl67LHH5Ovrq169elGYAHZiWfrP+4M1Z9YsORwOzZ07Vy++8ILpVACQZVE/ATZnWUpJuqb27dpo/fr1CgwM1Jo1a/RwiRKmkwFAmqS6uZOSkiIfHx/X2MvLS9mzZ8+QUADuzMRPPtWAF+oobs3XmvzpRDVu3Nh0JADI0qifAHuznCnyPL1VEaN7KFfOHIqKitITTzxhOhYApFmqT8uyLEvt2rWTr6+vpOtLF7t06aJs2bLd8LilS5emb0IAqRIREaHefXqry+qvJEmdOnU0nAgAQP0E2Nt777+vQS/XkiTNnDlD1atXN5wIAO5Mqps7bdu2vWHcqlWrdA8D4M6sXbtWbdq0kY9Xqv9JAwDuAeonwL7Gjh2rkSNHupo7oSGhhhMBwJ1L9W+CM2bMyMgcAO7Qli1bFB4eruTkZLVs1sx0HADAX1A/Afa0YOFC9erVSwH+fqajAEC6SPU1dwDYz759+1S3bl3FxcUpKChIkydPMR0JAADA9jp37ixJevXVVwwnAYD0QXMHcEeWpd9+ParQ+vV19uxZPfXUU4qMjJSPj7fpZAAAALaXnJysFi1aaPiw4aajAEC6oLkDuKGzf/yhwkdO6+dpC/R42XJauXIld18BAAD4G3v37XNt16xZUzNmzJCHB78OAcgc+GkGuJkrV64ovGG4axwTE6N8+fIZTAQAAGBvv/76q0JD/3fB5Hnz5srHx8dgIgBIXzR3ADdy7do1NWrUSFu3bXXNFSlS2GAiAAAAeztz5oyCgoL0y8FDqhTSTef8HlG2bIGmYwFAuqK5A7gJp9Opdu3aae3atQrwDzAdBwAAwPYuX76sOnXq6Oeff1aRIkUUFb1cefLmkxwO09EAIF3R3AHcgGVZ6tGjhyIiIuTl5aX58+eZjgQAAGBrV69eVcOGDbVt2zblzZtXsbGxKlyYFc8AMieaO4DdWZZGDBuu6VOnSpJmz56tmjVrGg4FAABgXynJyXr5pY76ZtNGZcuWTatXr9ajjz5qOhYAZBiaO4DNTZsyVf2eram4NV/r448+UvPmzU1HAgAAsC3LstS79+uaNayr4g58puioZXryySdNxwKADEVzB7CxJUuWqEfPHq7xK127GkwDAABgf++//74mT57iGv+7enWDaQDg3qC5A9jU559/rpYtW8qyLNNRAAAA3MInn3yiQYMGmY4BAPcczR3Ahr7//nuFhYXp2rVrCgsNMx0HAADA9hYtWqRu3bpJkvr3f8twGgC4t2juAHZiWTqw/yeFh4XpypUrql69uqZPn246FQAAgD1ZluRM0Reff6ZWrVrJsix17dpV/d/qbzoZANxTNHcAGzn+228qeeqyjsxdpmefeUZRUVHy9fUxHQsAAMCeLKd0YrOqP+ovby9PNW7cWB999JEcDofpZABwT9HcAWzi/PnzCgsLc42XLl2qwMBAc4EAAABs7qeff3ZtV3/xRc2ZM0eenp4GEwGAGTR3ABuIj49XvXr19OPeva65AvnzG0wEAABgb7/99ptCQ0Nd4/kREfL19TWYCADMobkDGJaUlKQmTZrom2++Ua6cuUzHAQAAsL2z586pVq1aOnbsmGsuMHt2g4kAwCyaO4BBTqdTHTt21MqVK+Xv768lS5aYjgQAAGB7jRo10t69e3X//febjgIAtkBzBzDBsmQlJ+vtN990nRu+ePFiPfPM06aTAQAA2N53332n3LlzKzo62nQUALAFmjuACU6nHJt2aljdJgrw89P06dNVt25d06kAAABsy+l0urYDAgK0cuVKlS5VymAiALAPmjuAAbNmzXZtDx06VG3atDGYBgAAwN4sy1K/N/u5xvPmztUzzzxjMBEA2AvNHeAei4qKUrfXurnGPbp3N5gGAADA/oYNG6ZRoz9UtpI1tOCrXxVUK9h0JACwFS/TAYCs5KuvvlKzZs3k6XCYjgIAAOAWps+YrrfffluSNHTYcDVr3sJwIgCwH1buAPfIzp07Vb9+fV29elX16tYzHQcAAMAt9OjRU5LUv39/9ejRw2wYALApmjtARrMsHTrwixqGhurSpUt6/vnnNXPmTNOpAAAA3ILT6dRLL72kIUOGmI4CALZFcwfIYKdOnNBDxy/o0OxIVX7yScXExMjf3890LAAAANvauXOnazskpL4+/fRTOTitHQBui+YOkIEuXryo0LAw1zg6Kko5c+Y0FwgAAMDmDhw4oAYNGrjGM2bMkKenp8FEAGB/NHeADJKQkKCQkBDt3r3bNXffffcZTAQAAGBvx48fV1BQkI4cPaYqjd7Qpexl5OcXYDoWANgezR0gAyQnJ6t58+b66quvlCMwh+k4AAAAtnfhwgUFBwfryJEjevjhh7UsKlo5cuaSOB0LAP4RzR0gnVmWpc6dOys6Olq+vr5atHiR6UgAAAC2Fh8fr/r162v37t0qWLCgYmNjWfEMAGlAcwdIT5aldwcO1IL58+Xh4aGFCxeq6nPPmU4FAABgT5alpGuJatO6lTZu3KicOXNq7dq1Kl68uOlkAOBWaO4A6Wj8uHF6v2aY4tZ8rRlTpyo0NNR0JAAAANuynCnyPvO9lox/Q3ly59Ly5ctVrlw507EAwO3Q3AHSyezZs/XWW2+5xm3atDGYBgAAwP4GDBzo2p49e5aqVq1qMA0AuC+aO0A6WLlypTp06GA6BgAAgNsYOXKkxo4d6xrXrVPXXBgAcHM0d4C7tGnTJjVu3FgpKSlq0aKF6TgAAAC2N3PmTPXt29d0DADINGjuAHdh9+7dqlevnhISElS3bl198vHHpiMBAADY2vLly9WpUydJUs+ePc2GAYBMguYOcCcsS78eOqywkBBduHBBVapU0aJFi+Tt7W06GQAAgD1ZljZt/Frt2rZRSkqK2rVrpyGDB5tOBQCZAs0d4A6cPnVKDx47q4MzF+vJJ57QihUrFBAQYDoWAACAbe3e/YOeLe6hs7tXqHGjcE2ZMkUOh8N0LADIFGjuAGl06dIlNWjQwDWOiopS7ty5DSYCAACwt0OHDik0NNQ1njVrpry8vAwmAoDMheYOkAaJiYlq0KCBdu7c6Zq7//77zQUCAACwuVOnTikoKEinTp1yzfn7+RtMBACZD80dIJVSUlLUqlUrffHFF8qeLbvpOAAAALZ38eJFBQcH6+DBg3rwwQdNxwGATIvmDpAKlmXplVdeUWRkpHx8fLRw0ULTkQAAAGwtMTFRoaGh2rlzpwoUKKDly5ebjgQAmRbNHeCfWJYGD3pPc2fPlsPh0Pz58/VCtWqmUwEAANhWclKS2rVto63fbVFgYKDWrFmjEg89ZDoWAGRaXMUM+AeffPyx3qleT+9Ur6dpP+1QeHi4lJJiOhYAAIAtWZalHj26a8GYHtKYHvrqlyRVqFBBclI/AUBGYeUO8Dfmz5+vPn36uMYdO3YwmAYAAMD+3n77bc2cOdM1fr5qVXNhACCLoLkD3MaaNWvUtm1b0zEAAADcxocffqhhw4aZjgEAWQ7NHeAWtmzZovDwcCUnJ6tJ48am4wAAANje3Llz9frrr0uS3ntvkNkwAJDF0NwB/sqytH/vXjVq0EDx8fGqVauWJk2abDoVAACAPVmW5EzR2jWr1L59e0lSz5499cbrbxgOBgBZC80d4C9+O3pMj56J17GIGFV7rup/b33ubToWAACAPVlO6cRm1SqbUz7eXmrZsqVGjx4th8NhOhkAZCk0d4D/+uOPPxQSEuIaRy6NVLZs2QwmAgAAsLe9+/a5toOCgjRjxgx5ePArBgDca/zkBSRduXJFdevW1U8//+Say5snj8FEAAAA9vbrr7/e8MbY3Llz5O3NimcAMIHmDrK8a9euKTw8XN999x0NHQAAgFQ4c+aMgoKCdOLECddctgBWPAOAKTR3kKU5nU61bdtWsbGxypYtm5YuXWY6EgAAgK1dvnxZderU0c8//6wiRYqYjgMAEM0dZFWWJSs5WX1ef0MLFiyQt7e3li5dqkqVKppOBgAAYE+WpauJ8WretIm2bdumfPnyKSYmxnQqAIBo7iCrcjrl2LRToxu0VDZ/f82ZM0dBQUGmUwEAANhWSnKSfM/u0IopA1Qgf16tXr1a/ypZ0nQsAIBo7iCLmjp1mmt71MhRatq0qcE0AAAA9mZZlt7o/YZrHBGxQJUqVTKYCADwVzR3kOUsXrxYPXv1dI27dOlsLgwAAIAbeO+99zRlylTXuPqLLxpMAwD4/2juIEv57LPP1LJlS1mWZToKAACAW5gwYYLee+890zEAAH+D5g6yjG3btqlBgwZKSkpSwwYNTccBAACwvQULFqh79+6SpAED3jacBgBwOzR3kPlZln7et1/hYWG6cuWK/v3vf2vq1Kn/vB8AAEBWZVn6fF2sunR+WZZlqVu3bnqz35umUwEAboPmDjK947/9pn+dvqJf50Xp2Wee0bJly+Tr62M6FgAAgG1t2/ad/l06my7sXa22bVpp3LhxcjgcpmMBAG6D5g4ytXPnzik0NNQ1XrZsmQIDAw0mAgAAsLf9+/erYcP/ncI+efJkeXjwawMA2Bk/pZFpxcfHq169etq7b59rLn++fAYTAQAA2Ntvv/2moKAgnT17zjXn482KZwCwO5o7yJSSkpLUuHFjffvtt8qdK7fpOAAAALZ39uxZBQUF6dixY/rXv0qajgMASAOaO8h0nE6nOnTooFWrVsnf319LliwxHQkAAMDW4uLiVK9ePe3bt08PPPCAYmJiTEcCAKQBzR1kKpbTqf79+mnpkiXy9PTUkiVL9PTTlU3HAgAAsCfL0rWrCWrRvJk2b96s3LlzKzY2VkUKFzGdDACQBjR3kKmMGTVKw+s1VdyarzVn1izVqVPHdCQAAADbcqYky+eP7Yr+9E3ly5tHq1atUunSpU3HAgCkEc0dZBpTp07VO+++6xo3b9bMYBoAAAB7syxL/d7s5xrPnzdPTz/9tMFEAIA7RXMHmUJUVJQ6d+5sOgYAAIDbGDp0qD755FPXuGbNmgbTAADuBs0duL0NGzaoWbNmcjqdatu2rek4AAAAtjd58mQNGDDAdAwAQDqhuQO3tmPHDoWEhOjq1asKCwvT+HHjTEcCAACwtcjISHXt2lWS1LdvX8NpAADpgeYO3JNl6eDPB9QwNFSXLl1StWrVFBERIS8vL9PJAAAA7MmytP7LL9SpYwc5nU69/PLLemfgQNOpAADpgOYO3NLJ48dV4sRFHZ6zVE8/9ZSio6Pl5+dnOhYAAIBt7dyxXS/8y1fnf1yl5s2a6JNPPpHD4TAdCwCQDmjuwO1cuHBBYQ0auMZRy5YpZ86cBhMBAADY24EDBxQWFuYaT58+XZ6enuYCAQDSFc0duJWEhASFhoZq9+7drrn77rvPYCIAAAB7O378uIKCgnTmjz9cc36+rHgGgMyE5g7cRnJyspo1a6avvvpKOQJzmI4DAABge+fPn1etWrV05MgRlSjxkOk4AIAMQnMHbsGyLL388suKiYmRr6+vFi9ebDoSAACArcXHx6t+/fras2ePChUqpJiYGNORAAAZhOYO7M+y9M6AAVoYESEPDw8tXLhQzz33rOlUAAAAtpV07Zpat2qpHdu/V65cubR27VoVe7CY6VgAgAzCfaNhe+PGjtXgoAYaHNRAsw/tVmhoqJSSYjoWAACALTmdTr3ySldFftRbUm99c8RS2bJlJSf1EwBkVqzcga3Nnj1b/fv3d43btGljMA0AAIC9WZalPn36aP78+a65Ks88YzARAOBeoLkD21qxYoU6dOhgOgYAAIDbGDlypMaMGWM6BgDgHqO5A1vauHGjGjdurJSUFLVo0cJ0HAAAANubPn26+vXrJ0kaOnSo4TQAgHuJ5g7sxbK0e9cuNQlvpMTERNWrV0+ffPyx6VQAAAD2ZFmSM0XLY6L00ksvSZL69u2rHt27Gw4GALiXaO7AVo4cOqyyF5J0fNEK/fuFF7Vw4UJ5e3ubjgUAAGBPllM6sVn1K+aXn6+P2rdvr+HDh5tOBQC4x2juwDZOnTqlkJAQ13jxksUKCAgwmAgAAMDefvjhB9d23bp1NXnyZDkcDoOJAAAm0NyBLVy6dEm1a9fWwUMHXXO5c+UyFwgAAMDmDh48qLCwMNd41qyZ8vLyMhcIAGAMzR0Yl5iYqLCwMO3YsUP58+UzHQcAAMD2Tp48qaCgIJ06fdo15+/nbzARAMAkmjswKiUlRS1bttSXX36pwMBARUVFmY4EAABgaxcvXlRwcLAOHTqkYsWKmY4DALABmjsww7JkJSerR7fXtHTpUvn4+Cg6OlqPP/646WQAAAD2ZFlKTIhTk8bh2rVrlwoUKKCYmBjTqQAANkBzB2Y4nXJs2qkJzTooe0CAIiIi9OKLL5pOBQAAYFvJydfkd26n1s54TwXvy681a9aoxEMPmY4FALABmjsw4uNPPnFtjxs7Tg0bNjSYBgAAwN4sy1L37j1c44ULF6lChQoGEwEA7ITmDu65efPmqW/fvq5xhw7tDaYBAACwv7fffluzZs1yjZ+vWtVgGgCA3dDcwT21evVqtWvXznQMAAAAt/Hhhx9q2LBhpmMAAGyM5g7umW+//Vbh4eFKTk5W0yZNTMcBAACwvTlz5uj111+XJL3//nuG0wAA7IrmDjKeZWnvnj1q3DBcCQkJCg4O1sSJk0ynAgAAsC/L0prVK/XqK10lSb169dLrvV43HAoAYFc0d5Dhjv16VKXPJuq3BTGq9lxVLVmyRD4+3qZjAQAA2Nbmzd8ouFwuXdq/Vh3bt9OoUaPkcDhMxwIA2BTNHWSoP/74QyEhIa5x5NJIZcuWzWAiAAAAe9uzZ4/Cw8Nd408nfioPD8p2AMDt8b8EMsyVK1dUp04d/XzgZ9dc3jx5DCYCAACwtyNHjqhWrVq6cOGia87bixXPAIC/R3MHGeLatWtq2LChtm7dSkMHAAAgFU6fPq2goCAdP35cpUuVMh0HAOBGaO4g3aWkpKhNmzZat26dsmXLpqVLl5mOBAAAYGuXL19WnTp1dODAARUtWlTRMdGmIwEA3AjNHaQry+lUn9ff0PLoaHl7e2vZsmWqVKmi6VgAAAD2ZFm6mhivZk0a6/vvv1e+fPkUGxur+wvdbzoZAMCN0NxBuho+dJjGNGyluDVfa/7cuapZs6bpSAAAALaVkpwk37M7tHLqQBXIn1erV6/WI488YjoWAMDN0NxBuvn000815D9DXONGf7nLAwAAAG5kWZZ6vf66axwRsUCVKlUymAgA4K5o7iBdLFq0SK+++qrpGAAAAG5j0KBBmjZtmmtc/cUXDaYBALgzmju4a5999platWoly7L0UqeXTMcBAACwvQkTJuj99983HQMAkEnQ3MFd2bp1q8LCwpSUlKTGjRtr9OhRpiMBAADYWkREhLp37y5JGjhwgOE0AIDMgOYO7oxl6ad9+xQeFqa4uDjVqFFDc+bMkaenp+lkAAAA9mRZ+ix2rbp0flmWZalbt27q17ef6VQAgEyA5g7uyO/HjumR03E6Oj9az1WpoqVLl8rX19d0LAAAANvaunWLapTJrov71qhtm1YaN26cHA6H6VgAgEyA5g7S7Ny5cwoNDXWNly5dqsDAQIOJAAAA7G3fvn1q2LChazx58mR5eFCKAwDSB/+jIE3i4uJUt25d7du/3zWXP18+g4kAAADs7dixYwoKCtK5c+ddcz7ePgYTAQAyG5o7SLWkpCQ1atRImzdvVu5cuU3HAQAAsL0//vhDQUFB+u233/TII/8yHQcAkEnR3EGqOJ1OtW/fXmvWrJG/v78iIyNNRwIAALC1K1euqG7dutq/f78KFy6s6Oho05EAAJkUzR38I8vp1Ft9+2pZZKS8vLwUGRmpypWfMh0LAADAtq5dvaoWzZtpz+4flCdPHsXGxqpI4SKmYwEAMikv0wFgf6NHjtQH9Zvpg/rNtOD3n1W7dm0pJcV0LAAAAFtyOp16+eVOipn4lqS3tPV3T5UqVUpyUj8BADIGK3fwt6ZMmaJ3Bw1yjZs1bWouDAAAgM1ZlqUePXpo8eIlrrknKz1pMBEAICuguYPbWrp0qbp06WI6BgAAgNv4z3/+owkTJpiOAQDIYmju4Ja+/PJLNW/e/PqFlNu1Nx0HAADA9iZOnKiBAwdKkkaOHGk4DQAgK6G5gxtZlnZt367mTZrq2rVratiwocaNG2s6FQAAgD1ZluRM0bKlkXrllVckSQMGDNArXbsaDgYAyEpo7uAGv/x8QOUvO3VyySoF16ypefPmydPT03QsAAAAe7Kc0onNalC5oPz9fPXyyy/r/fffN50KAJDF0NyBy4kTJxQaGuoaL1y4SH5+fgYTAQAA2NuOnTtc22Fhofrkk0/kcDgMJgIAZEU0dyBJunDhgmrVqqUjvx5xzeXIEWguEAAAgM39/PPPahDWwDWeNm0aK54BAEbQ3IESEhJUv3597d69W/fdd5/pOAAAALZ3/PhxBQUF6cwff7jm/HxZ8QwAMIPmThaXnJyspk2bauPGjcqZM6eio6NNRwIAALC18+fPq1atWvr111/18MMlTMcBAIDmTpZlWbKSk/Vq165avny5/Pz8tHz5cpV97DHTyQAAAOzJshQfd1mNwhtoz549KlSokGJiYkynAgCA5k6W5XTKsWmnJrXqrMBs2bRo0SJVrVrVdCoAAADbSkq6qoALP+jzOf/R/YXuU2xsrB4s+qDpWAAA0NzJqsaOHeva/njCBNWvX99cGAAAAJtzOp3q2vUV13jJkkg9xopnAIBN0NzJgmbOnKm3BwxwjVu3bm0wDQAAgL1ZlqXevXsrIiLCNffM008bTAQAwI1o7mQxy5cvV6dOnUzHAAAAcBsjRozQhx9+aDoGAAC3RXMnC/n666/VpEkTpaSkqFWrVqbjAAAA2N60adP05ptvSpKGDRtmOA0AALdGcycrsCzt3rVLTRs1VmJiourXr6+PJ0wwnQoAAMC+LEvLY6LUs0d3SdKbb76p7q+9ZjgUAAC3RnMnCzhy6LDKXkjS8UUrVOPF6lq4cKG8vLxMxwIAALCtr7/+SvUr5tfln2LVpfPLGjp0qOlIAADcFs2dTO7UqVM33Alr8eLF8vf3N5gIAADA3nbu3KkmTRq7xh99NF4Oh8NgIgAA/h7LNzKxixcvKjg4WIcOH3LN5cqV02AiAAAAezt48KCCg4N1+dJl15yXJyUzAMDeWLmTSSUmJiosLEw7d+5Ugfz5TccBAACwvZMnTyooKEinTp1S2bJlTccBACDVaO5kQikpKWrRooXWr1+vwMBALVu2zHQkAAAAW7tw4cL1Fc+HDumhhx5SdFSU6UgAAKQazZ1MxnI61f3Vblq7erV8fHwUHR2txx9/3HQsAAAAe7IsJcRfUdMmjbRr1y7dd999io2N1X333Wc6GQAAqUZzJ5N5b9Agfdy8o+LWfK1FEQv04osvmo4EAABgW8nJ1+R/fpfWznhPBe/LrzVr1qhEiRKmYwEAkCY0dzKRsWPHauTIka5xaGiIwTQAAAD2ZlmWXnutu2u8aNFiVjwDANwSzZ1MYt68eerVq5fpGAAAAG6jf//+mj17tmtc9bnnDKYBAODO0dzJBFavXq127dpJkl595RWzYQAAANzAmDFjNHz4cNMxAABIFzR33Ny3336r8PBwJScnq0WLFhQpAAAA/2D27Nl64403JEmD33/fcBoAAO4ezR13ZVnau2ePGjcMV0JCgoKDgzVjxgx5ePCSAgAA3JJlac3qler26vWVzq+//jqntQMAMgU6AW7q6JFfVfpson5bEKMXqj6vJUuWyMfHx3QsAAAA2/r2228UXC6XLu1fq04dO2jkyJFyOBymYwEAcNdo7rihM2fOKCTkf3fCWhK5RNmyZTOYCAAAwN52796tRo3CXeNPPvmYFc8AgEzDy3QApM3ly//X3p3HN1Xl/x9/B7pAgbJDWyhgoezlURSVZfiJI9IiWlCEUirixqJsKiCow7SAoCAIZeTLDDjA+J2yySIgWFl+MoMUZFDBBYQCZVMWUWhZLC3t+f5RjXZooWnT3KR9PR+PPMw9uSfnnZOUfDy5N7mkBx54QCmHU+xtNWvUsDARAACAezt27JgiIiKUdjHN3ubt5W1hIgAAnIuPKzzItWvX9PDDD2vPnj2qVbOm1XEAAADc3rlz53T//ffr9OnTatWypdVxAAAoESzueIjs7GwNGDBAW7duVaVKlbR69RqrIwEAALi19PR0de/eXYcPH1bDhg31/tr3rY4EAECJYHHHA5icHL046nltWL9e3t7eev/993XHHbdbHQsAAMBtXcvIUL/oPvr2wH7Vrl1bmzZtUlBgkNWxAAAoEXznjgeY+toUJfQZqIQ+A7XqbKq6du0qZWdbHQsAAMAtZWdn66mnntDGd/4sSfrirK+aNm0q5VA/AQBKJ47ccXNz587V1Nen2rd7937EwjQAAADuzRijYcOG6f3319rb2oa3tTARAAAlj8UdN7Z8+XKNGDHC6hgAAAAeIy4uTn/7299ks9msjgIAgMuwuOOmNm/erAEDBsgYoyGDh1gdBwAAwO3NmTNHkydPliQlJMy2NgwAAC7E4o67MUaf7f6PYvvFKCsrS9HR0Zox402rUwEAALgnY6ScbC1ftlSjRo2SJE2ePFlPP/W0xcEAAHAdFnfczMFvv9UdP9t0bnWSHnrgAb377rsqV46nCQAAIF8mRzq9S9GdG8ivYgWNGDFCr776qtWpAABwKVYN3MipU6cUFRVl305MXCIfHx8LEwEAALi3/+z5j/163z59NHv2bL5vBwBQ5rC44yZ+/PFHdevWTadOnbK3ValS2cJEAAAA7m3//v165JHffkn0b/P/xhHPAIAyiXc/N3DlyhU9+OCDOnDggIKCgqyOAwAA4PZOnDihiIgI/fTTBXubjzdHPAMAyiYWdyyWmZmpRx99VLt27VL16tW1bt06qyMBAAC4tfPnzysiIkKnTp1S8+bNrI4DAIDlWNyxijHKycrS0EGDlJSUJD8/P23YsEEtmje3OhkAAIB7MkaXL6Wp9yMP69tvv1X9+vW1du1aq1MBAGA5FncsYrKzVS55nxY+NUL+lStr1apV6tChg9WxAAAA3FZmZoYqp3+tfy19Q8H1g7Rp0ybVr1ff6lgAAFiOxR2LzJgx0359/vz5ioyMtDANAACAe8vJydGgQYPs26tWrVKLFi0sTAQAgPtgcccCCxYsUPzEePt2dN++1oUBAABwc8YYjRo1SitXrrK33dnuTgsTAQDgXljccbHVq1dr6NChVscAAADwGJMnT9bbb78tm81mdRQAANwSizsu9PHHHysmJkY5OTl66smnrI4DAADg9ubNm6e4uDhJ0owZMyxOAwCAe7J0cSc+Pl42my3PpXlp/LUoY7T3s88U0zdamZmZeuSRRzR79iyrUwEAAA9Uluqn1atWauyY0ZKkP//5zxo6ZIjFoQAAcE9eVgdo1aqVtmzZYt/28rI8ktMdPpSi8MtGZ1Zu1ANTX1ViYqLKly9vdSwAAOChykL99PHH/1+PtA/UI4c2a9S0pYqPj5dMjtWxAABwS5afluXl5aWAgAD7pVatWo7fyZUruf81Rrp0Sdq587e2gtqLu28h+3///feKioqSMjKkA99o2cJFqlChQu6+v7Tp6tW8jye/9sK20Z/+pbE/ACAPp9RPWb+raTIvST/s/K3NEQX1z6+9kG179uxRv37RUnaGlL5fb0177bfv2/mlTdd/9z6RX5sj+9LfPfsXliPjF7d/STx+R5TU+J7yXBfElWO5anxX/q24avziKu7femlnLBQXF2f8/PxMYGCgue2220z//v3N8ePHC9w/IyPDpKWl2S8nT540kkxaSIgxV64Yk55uTP1gYyRjQkNz24zJv724+xai//WQENOuZUtT09fXkvHpT/9S0R9AqZCWlpb7np2WZnUUj+e0+mlpiDFZV4y5lm7M6vrGJMqYtaG5bY4oqH9+7YVoO7R/r6lVq5apWdW3SP2LOz793aR/Sbz+XPD6dbh/cR+rM8b3lOfaGfNSEqx+rotzn64cv7iK+7fuoRypnyw9cufuu+/W4sWLlZSUpHnz5ik1NVWdO3fWpUuX8t3/9ddfV9WqVe2X4ODg3BuOHpW+/jr3cupkbltKSu62lH97cfctRP/yR4/Ktn+/OteoYcn49Kd/qegPAMjDafXT5aPSxa+ltK+ln0/90paS2+aIgvrn116ItjGDInX+/Hk9fG9okfoXd3z6u0n/wnJk/OL2L4nHX9zH6ozxPeW5dsa8lASrn+vi3Kcrxy+u4v6tlwGWLu50795dffr0UZs2bRQREaGNGzfq4sWLWrFiRb77v/zyy0pLS7NfTp785X8CQ0Kk1q1zL/V/KVhCQ3O3pfzbi7tvIfqn2Gw6VbWqJq9Zk7vP7/dt0+bGNin/9sK20Z/+pbE/ACAPp9VPlUOkaq2lqq2livV/aQvNbXNEQf3za79F2/GffLX5P2fUtGlTTf2f9bn7SFKVX/at1qZwbVLh96W/e/YvLEfGL27/knj8xX2szhjfU55rZ8xLSbD6uS7Ofbpy/OIq7t96WeCCI4kc0q5dOzN+/PhC7Ws/ROnUqdyG69eNSdpuzLzFuad3/Cq/9uLuW0D/nKwse3s9/6pm+/btuTdcuWLMp5/mPc0kvzZH9qU//ctKfwAej9OySlaR6qcffqmfsq8bc3yLMfvn5x7e7qiC+ufXfou2mlV9TVBQkElNTc29LeuKMT98mvcw+8K20d/z+xeWI+MXt39JPH5HlNT4nvJcF8SVY7lqfFf+rbhq/OIq7t+6B3KkfrIZY4y1y0u/uXz5sho0aKD4+HiNHDnylvunp6eratWqSvvpJ/lXry5lZ0uffJF74x/aSr/+IlV+7cXdt4D+r4wfr6ndH5UkfXjprLo/2KNYcwIAQGlgf89OS5O/v7/VcUqVItdPF36Sf7XqUk62dHpX7o2B7aVyDv6iZ0H982vPpy0rM0PeP3wmSap/16NK+mizWnPkJgAADtVPlp6WNWbMGP3rX//SsWPHlJycrIcffljly5dXTEyMlbGK7M0331RCQoJ9u3v3SAvTAACA0qg01U85OTl6duiz9u2VK1eysAMAQBFYurhz6tQpxcTEqFmzZurbt69q1qypXbt2qXbt2lbGKpJFixbppZde0tWMDCV8vj33aJ5ylv/SPAAAKGVKS/1kjNGYMWP090WL5d88Qh99lab27TtaHQsAAI/kZeXgy5Yts3J4p9mwYaMGDRokSXrppZc06oUXLE4EAABKq9JSP7016y3NmjVLkjT3f+YpIvIBixMBAOC5OLTECR5//HFlZ2frySef1BtvvGF1HAAAALf35z/HSZLeeustDRgwwOI0AAB4NhZ3nCDjWoaioqI0f/582Ww2q+MAAAB4hPHjx+sFjngGAKDYWNwpotTUY/brnTp20rJly+TlZelZbgAAAG7t39u3268PHDhQU6dOtTANAAClB4s7RXDmzBlFRUXZt1esWKGKFStamAgAAMC9ffHFF+rbt499e86cBI54BgDASVjccVBaWrq6d++urw/sV6shA3SmSaCq1ahudSwAAAC3deToUUVGRursufOKfCpeGTXC5eXlY3UsAABKDc4jclB0dLT27t2rOnXqaO0H6xVQr57VkQAAANxaVFSUzp07p/DwcC1fsVIVKlayOhIAAKUKR+44aPsn2+Xv76+kpCQ1adLE6jgAAABu79ixY2rcuLGSkpJUtWpVq+MAAFDqsLhTCMYY+3VfH1+tXbtWbdu2tTARAACAe/s542f79bp162rTpk2qW7euhYkAACi9WNwphPiJE+3XFy9erC5dulgXBgAAwM1dv35dAwc+Yd9eu3atQkJCrAsEAEApx+LOLcyaNUszZsywb0dFPWRhGgAAAPdmjNGgQYO0YcMGe1tY69YWJgIAoPRjcecmli5dqhdffFFXMzI0Y9dW6Q9tpXJMGQAAQEHGjx+vxYsX61pmljZ88aMU2F6yUT8BAFCS+LWsmxgydKgk6fnnn9fol16SbDaLEwEAALivhIQETZ8+XZK0YMEC9XgwyuJEAACUDXyMchPZ2dl67LHHNHPmTNlY2AEAALipV159VZI0bdo0PfnkkxanAQCg7GBx5798s3+//Xq3bt20cOFCleNULAAAgEIZPXq0xo4da3UMAADKFFYtfuf48ePq2bOnffuf//tPeXt7W5gIAADAvSXv3Gm/3r9/f02fPp0jngEAcDG+c+cXP/zwg7p166Yjqalq9/wgbdq8WTWqVLY6FgAAgNv68ssv9UCPB5WVeU2RkZFatmw5RzwDAGAB3n0lXbp0Wd27d9ehQ4fUoEEDvb9+vWrUqsUXKAMAABQgNTVVkZGRSktLU9vb79D//jNR3j4+VscCAKBMYnFHUkxMP3322WeqVauWNm3apPr161sdCQAAwG2dPXtW3bp10+nTpxUWFqb169fLz8/P6lgAAJRZnJYl6eNt21S5cmV9+OGHatasmdVxAAAA3JMxSk9P08O9eurw4cNq1KiRkpKSVL16dauTAQBQppXZI3eMMfbr3t7eWrNmjdq1a2dhIgAAAPeWkXFV/pe/UfLKmWrUIFibNm1SUFCQ1bEAACjzyuzizpQpU+3X//7O39W1a1cL0wAAALi37OxsPfXUU/btNWvWKDQ01MJEAADgV2Vyceftt9/WhPg4VYrsrAUHPlPvPo9aHQkAAMBtGWP03HPPae3adfa28PBw6wIBAIA8ytziznsrV2rkyJGSpHEvv6xBQ4fwq1gAAAA3MWHCBM2fP5+fOQcAwE2VuXfoQYMGyRijYcOGacKECVbHAQAAcGsJCQmaMmWKJGnOnASL0wAAgPyUucWdrKwsRUdHa86cObJxxA4AAED+jNGypUv0ysvjJUlTpkzRk088aXEoAACQnzKxuPPtwYP26/fdd5/effddDisGAAC4ic2bPlK//9dQV1K2aOyYF/Xyyy9bHQkAABSg1K9wnDx5Uj179rRvL0lcIh8fHwsTAQAAuLedO3eqf2ysffuN19/giGcAANxYqV7c+fHHHxUREaFDhw+r7Yindb5FA1X2r2J1LAAAALf1zTffqEePHrp69aq9jSOeAQBwb6X2nfrKlavq0aOHDhw4oPr162vtB+tVq04dfhkLAACgACdPnVRERIQuXLigO++80+o4AACgkErt4k7/2P769NNPVaNGDX300Udq0KCB1ZEAAADcWlRUlL777ju1aNFCq1atsjoOAAAopFK7uLNlyxb5+flpw4YNatmypdVxAAAA3N6hQykKDg7WRx99pJo1algdBwAAFFKpWtwxxtive3l5adWqVWrfvr2FiQAAANzbtcxr9us1a9bQpk2bFBwcbGEiAADgqFK1uPPmmzPs1+fPn6/IyEgL0wAAALi37OxsDR482L69evVqNW/e3MJEAACgKErN4s78+fM17pWXVSmys/7nq12K7tfP6kgAAABuyxijUaNG6d3/TVS1lt219cBVtWt3l9WxAABAEXhZHcAZPvhgg5599llJ0otjxui54cMtTgQAAODeZr41U3PnzpXNZtPf5i/QfV3vtzoSAAAoolJx5M5zw55TTk6OhgwZokmTJlkdBwAAwO3NmDFTkvSXv/xF0dHRFqcBAADFUSoWdzIzM9W7d2/7p08AAAC4tbi4OA0bNszqGAAAoJg8+rSsX38dq3379po3b56uXLlicSIAAJCf9PR0SXl/2RLW+PU5iImJ0QsvvGB/bm6Qky1d+qW2qpQulSuffxsAACgRjtRPNuPBVdapU6f4qU4AADzIyZMnVb9+fatjlGnUTwAAeJbC1E8evbiTk5Oj77//XlWqVHHb07HS09MVHByskydPyt/f3+o4Hot5dB7m0jmYR+dgHp3DE+bRGKNLly4pKChI5cqVirPCPRb1U9nBPDoH8+g8zKVzMI/O4Qnz6Ej95NGnZZUrV85jPv3z9/d32xeMJ2EenYe5dA7m0TmYR+dw93msWrWq1REg6qeyiHl0DubReZhL52AencPd57Gw9RMfnQEAAAAAAHgwFncAAAAAAAA8GIs7JczX11dxcXHy9fW1OopHYx6dh7l0DubROZhH52AeUdrwmnYO5tE5mEfnYS6dg3l0jtI2jx79hcoAAAAAAABlHUfuAAAAAAAAeDAWdwAAAAAAADwYizsAAAAAAAAejMUdAAAAAAAAD8biTjHEx8fLZrPluTRv3vymfd577z01b95cFSpUUFhYmDZu3OiitO7N0blcsGCBOnfurOrVq6t69erq2rWrdu/e7cLE7qkor8lfLVu2TDabTb169SrZkB6gKPN48eJFDRs2TIGBgfL19VXTpk3L/N93UeZx9uzZatasmSpWrKjg4GC98MILysjIcFFi9/Xdd9/pscceU82aNVWxYkWFhYVpz549N+2zbds23X777fL19VWTJk20ePFi14QFboH6yTmonZyH+sk5qJ+cg/rJecpa/eRldQBP16pVK23ZssW+7eVV8JQmJycrJiZGr7/+uh588EEtWbJEvXr10ueff67WrVu7Iq5bc2Qut23bppiYGHXs2FEVKlTQtGnT1K1bN33zzTeqV6+eK+K6LUfm8VfHjh3TmDFj1Llz55KM5lEcmcfMzEzdf//9qlOnjlauXKl69erp+PHjqlatmguSujdH5nHJkiUaP368Fi5cqI4dO+rQoUN64oknZLPZ9NZbb7kirlu6cOGCOnXqpHvvvVcffvihateurZSUFFWvXr3APqmpqerRo4eGDh2qxMREbd26Vc8884wCAwMVERHhwvRA/qifnIPayXmon5yD+sk5qJ+KryzWTyzuFJOXl5cCAgIKtW9CQoIiIyM1duxYSdLkyZO1efNmvf322/rrX/9akjE9giNzmZiYmGf7nXfe0apVq7R161Y9/vjjJRHPYzgyj5KUnZ2t2NhYTZw4Udu3b9fFixdLLpwHcWQeFy5cqJ9++knJycny9vaWJDVq1KgE03kOR+YxOTlZnTp1Uv/+/SXlzmFMTIw+/fTTkozo9qZNm6bg4GAtWrTI3nbbbbfdtM9f//pX3XbbbZo5c6YkqUWLFvrkk080a9YsjyhOUPpRPzkHtZPzUD85B/WTc1A/FV9ZrJ84LauYUlJSFBQUpJCQEMXGxurEiRMF7rtz50517do1T1tERIR27txZ0jE9giNz+d+uXr2qrKws1ahRowQTegZH53HSpEmqU6eOnn76aRcl9AyOzOO6devUoUMHDRs2THXr1lXr1q01depUZWdnuzCxe3JkHjt27KjPPvvMfprA0aNHtXHjRj3wwAOuiuuW1q1bp3bt2qlPnz6qU6eO2rZtqwULFty0D+83cHfUT85B7eQ81E/OQf3kHNRPxVcW6ycWd4rh7rvv1uLFi5WUlKR58+YpNTVVnTt31qVLl/Ld/8yZM6pbt26etrp16+rMmTOuiOvWHJ3L/zZu3DgFBQXd8MdY1jg6j5988on+/ve/3/IfurLG0Xk8evSoVq5cqezsbG3cuFETJkzQzJkz9dprr7k4uXtxdB779++vSZMm6Q9/+IO8vb3VuHFjdenSRa+88oqLk7uXo0ePat68eQoNDdVHH32kZ599ViNHjtQ//vGPAvsU9H6Tnp6un3/+uaQjAzdF/eQc1E7OQ/3kHNRPzkH95Bxlsn4ycJoLFy4Yf39/88477+R7u7e3t1myZEmetrlz55o6deq4Ip5HudVc/t7rr79uqlevbvbt2+eCZJ7lZvOYnp5uGjVqZDZu3GhvGzhwoOnZs6cLE3qGW70eQ0NDTXBwsLl+/bq9bebMmSYgIMBVET3Crebx448/NnXr1jULFiwwX375pVm9erUJDg42kyZNcnFS9+Lt7W06dOiQp23EiBGmffv2BfYJDQ01U6dOzdO2YcMGI8lcvXq1RHICRUX95BzUTs5D/eQc1E/OQf1UNGWxfuI7d5yoWrVqatq0qQ4fPpzv7QEBATp79myetrNnzzp0fm9Zcau5/NWMGTP0xhtvaMuWLWrTpo2L0nmOm83jkSNHdOzYMT300EP2tpycHEm55/kePHhQjRs3dllWd3ar12NgYKC8vb1Vvnx5e1uLFi105swZZWZmysfHx1VR3dqt5nHChAkaMGCAnnnmGUlSWFiYrly5osGDB+vVV19VuXJl82DTwMBAtWzZMk9bixYttGrVqgL7FPR+4+/vr4oVK5ZITqCoqJ+cg9rJeaifnIP6yTmon4qmLNZPZfOZLiGXL1/WkSNHFBgYmO/tHTp00NatW/O0bd68WR06dHBFPI9yq7mUpOnTp2vy5MlKSkpSu3btXJjOc9xsHps3b66vvvpKe/futV+ioqJ07733au/evQoODrYgsXu61euxU6dOOnz4sL24k6RDhw4pMDCQwuR3bjWPV69evaEA+bXgM8aUeD531alTJx08eDBP26FDh9SwYcMC+/B+A09C/eQc1E7OQ/3kHNRPzkH9VDRlsn6y+tAhTzZ69Gizbds2k5qaanbs2GG6du1qatWqZc6dO2eMMWbAgAFm/Pjx9v137NhhvLy8zIwZM8yBAwdMXFyc8fb2Nl999ZVVD8FtODqXb7zxhvHx8TErV640p0+ftl8uXbpk1UNwC47O43/jsOJcjs7jiRMnTJUqVczw4cPNwYMHzQcffGDq1KljXnvtNasegltwdB7j4uJMlSpVzNKlS83Ro0fNpk2bTOPGjU3fvn2teghuYffu3cbLy8tMmTLFpKSkmMTEROPn52f++c9/2vcZP368GTBggH376NGjxs/Pz4wdO9YcOHDAzJ0715QvX94kJSVZ8RCAPKifnIPayXmon5yD+sk5qJ+coyzWTyzuFEN0dLQJDAw0Pj4+pl69eiY6OtocPnzYfvs999xjBg4cmKfPihUrTNOmTY2Pj49p1aqV2bBhg4tTuydH57Jhw4ZG0g2XuLg414d3I0V5Tf4exUmuosxjcnKyufvuu42vr68JCQkxU6ZMyXMOeVnk6DxmZWWZ+Ph407hxY1OhQgUTHBxsnnvuOXPhwgXXh3cz69evN61btza+vr6mefPmZv78+XluHzhwoLnnnnvytH388ccmPDzc+Pj4mJCQELNo0SLXBQZugvrJOaidnIf6yTmon5yD+sl5ylr9ZDOmDB+rBQAAAAAA4OH4zh0AAAAAAAAPxuIOAAAAAACAB2NxBwAAAAAAwIOxuAMAAAAAAODBWNwBAAAAAADwYCzuAAAAAAAAeDAWdwAAAAAAADwYizsASsz8+fMVHByscuXKafbs2YqPj1d4eLjVsYqsS5cuev75562OAQAASilqJwBFxeIO4KGeeOIJ9erVy+XjLl68WNWqVbvlfunp6Ro+fLjGjRun7777ToMHDy6RPJ5e9AAAANegdspF7QSUTl5WBwBQOp04cUJZWVnq0aOHAgMDrY4DAADg1qidABQHR+4ApUSXLl00cuRIvfTSS6pRo4YCAgIUHx+fZx+bzaZ58+ape/fuqlixokJCQrRy5Ur77du2bZPNZtPFixftbXv37pXNZtOxY8e0bds2Pfnkk0pLS5PNZpPNZrthDCn3E6qwsDBJUkhIiL3/f8vJydGkSZNUv359+fr6Kjw8XElJSXn2GTdunJo2bSo/Pz+FhIRowoQJysrKso8zceJE7du3z55n8eLFN4yzadMmVahQIc/jkqRRo0bpj3/8oyTpxx9/VExMjOrVqyc/Pz+FhYVp6dKlBcz2b/P5/vvv52mrVq1angwnT55U3759Va1aNdWoUUM9e/bMdy4AAIBrUTtROwGlCYs7QCnyj3/8Q5UqVdKnn36q6dOna9KkSdq8eXOefSZMmKDevXtr3759io2NVb9+/XTgwIFC3X/Hjh01e/Zs+fv76/Tp0zp9+rTGjBlzw37R0dHasmWLJGn37t06ffq0goODb9gvISFBM2fO1IwZM/Tll18qIiJCUVFRSklJse9TpUoVLV68WPv371dCQoIWLFigWbNm2ccZPXq0WrVqZc8THR19wzj33XefqlWrplWrVtnbsrOztXz5csXGxkqSMjIydMcdd2jDhg36+uuvNXjwYA0YMEC7d+8u1NzkJysrSxEREapSpYq2b9+uHTt2qHLlyoqMjFRmZmaR7xcAADgHtRO1E1BasLgDlCJt2rRRXFycQkND9fjjj6tdu3baunVrnn369OmjZ555Rk2bNtXkyZPVrl07/eUvfynU/fv4+Khq1aqy2WwKCAhQQECAKleufMN+FStWVM2aNSVJtWvXVkBAgMqXL3/DfjNmzNC4cePUr18/NWvWTNOmTVN4eLhmz55t3+dPf/qTOnbsqEaNGumhhx7SmDFjtGLFCvs4lStXlpeXlz1PxYoVbxinfPny6tevn5YsWWJv27p1qy5evKjevXtLkurVq6cxY8YoPDxcISEhGjFihCIjI+1jFcXy5cuVk5Ojd955R2FhYWrRooUWLVqkEydOaNu2bUW+XwAA4BzUTtROQGnBd+4ApUibNm3ybAcGBurcuXN52jp06HDD9t69e0s62g3S09P1/fffq1OnTnnaO3XqpH379tm3ly9frjlz5ujIkSO6fPmyrl+/Ln9/f4fHi42NVfv27fX9998rKChIiYmJ6tGjh/0LDrOzszV16lStWLFC3333nTIzM3Xt2jX5+fkV+THu27dPhw8fVpUqVfK0Z2Rk6MiRI0W+XwAA4BzUTgWjdgI8C4s7QCni7e2dZ9tmsyknJ6fQ/cuVyz2Yzxhjb/v1HG0r7Ny5U7GxsZo4caIiIiJUtWpVLVu2TDNnznT4vu688041btxYy5Yt07PPPqs1a9bkOb/7zTffVEJCgmbPnq2wsDBVqlRJzz///E0PAbbZbHnmSso7X5cvX9Ydd9yhxMTEG/rWrl3b4ccAAACci9qpYNROgGdhcQcoY3bt2qXHH388z3bbtm0l/famefr0aVWvXl2SbvhkysfHR9nZ2cXO4e/vr6CgIO3YsUP33HOPvX3Hjh266667JEnJyclq2LChXn31Vfvtx48fL3Ke2NhYJSYmqn79+ipXrpx69OiRZ9yePXvqsccek5T7hYWHDh1Sy5YtC7y/2rVr6/Tp0/btlJQUXb161b59++23a/ny5apTp06RPjEDAADWo3aidgI8Ad+5A5Qx7733nhYuXKhDhw4pLi5Ou3fv1vDhwyVJTZo0UXBwsOLj45WSkqINGzbc8ElPo0aNdPnyZW3dulXnz5/P84bsqLFjx2ratGlavny5Dh48qPHjx2vv3r0aNWqUJCk0NFQnTpzQsmXLdOTIEc2ZM0dr1qy5IU9qaqr27t2r8+fP69q1awWOFxsbq88//1xTpkzRo48+Kl9fX/ttoaGh2rx5s5KTk3XgwAENGTJEZ8+evWn+P/7xj3r77bf1xRdfaM+ePRo6dGieTwBjY2NVq1Yt9ezZU9u3b1dqaqq2bdumkSNH6tSpU0WZMgAA4GLUTtROgCdgcQcoYyZOnKhly5apTZs2evfdd7V06VL7Jyze3t5aunSpvv32W7Vp00bTpk3Ta6+9lqd/x44dNXToUEVHR6t27dqaPn16kbOMHDlSL774okaPHq2wsDAlJSVp3bp1Cg0NlSRFRUXphRde0PDhwxUeHq7k5GRNmDAhz3307t1bkZGRuvfee1W7du2b/gRnkyZNdNddd+nLL7+0/9LDr/70pz/p9ttvV0REhLp06aKAgAD16tXrpvlnzpyp4OBgde7cWf3799eYMWPynGfu5+enf//732rQoIEeeeQRtWjRQk8//bQyMjL4NAoAAA9B7UTtBHgCm/nvkx4BlFo2m01r1qy55RsvAAAAqJ0AeA6O3AEAAAAAAPBgLO4AAAAAAAB4ME7LAgAAAAAA8GAcuQMAAAAAAODBWNwBAAAAAADwYCzuAAAAAAAAeDAWdwAAAAAAADwYizsAAAAAAAAejMUdAAAAAAAAD8biDgAAAAAAgAdjcQcAAAAAAMCDsbgDAAAAAADgwf4PUZCTDGr3KToAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABHcAAAJaCAYAAAClTavJAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAoKZJREFUeJzs3XmcjXX/x/H3mX2GsROFSO5CSJRSUm7G2GaGse9boWQpS4lS3MgWUtl3xjbMjH20UBSRJULJEmXNbhZm5ly/P9ydOz/UDDO+15l5PR8PD9f3O+e6znvmjPGZz/le1+WwLMsSAAAAAAAA3JKH6QAAAAAAAAC4czR3AAAAAAAA3BjNHQAAAAAAADdGcwcAAAAAAMCN0dwBAAAAAABwYzR3AAAAAAAA3BjNHQAAAAAAADdGcwcAAAAAAMCNeZkOcDecTqeOHz+uwMBAORwO03EAAMBtWJaly5cv6/7775eHB+8tmUT9BACAe0hL/eTWzZ3jx4+rSJEipmMAAIBUOnbsmAoXLmw6RpZG/QQAgHtJTf3k1s2dwMBASdc/0Rw5chhOAwAA/ir56lV5bf1RkrQh6ZJCwkJd/3fDHOonAADs6/y5c8qd+LMkaf/FQFV+ukqq6ie3bu78uZQ4R44cFCcAANiIZVnq/Prrmty6iyTJNz5RkjgNyAaonwAAsKf4+Hh16NBOn8/5jyQpIClAUurqJ056BwAA6a5fv36aN2+ea/z005UNpgEAALC3pKQkNWnSRJs3b3HNFS1SNNX709wBAADpauTIkRo5cqTpGAAAAG7B6XSqY8eOWrlypfz8/O7oGDR3AABAupk5c6b69u0rSRoyeLDhNAAAAPZmWZZ69+6tOXPmyNPTU/Pmzb2j47j1NXdSw7IsJScnKyUlxXQUwMXT01NeXl5cewJA5mFZWrVipbp36yZJ6t27t3r16iVt3GE4GO4E9VPmRQ0CADZiWfpw9ChNmvipJGn69OkKrhUsndic5kNl6ubOtWvXdOLECcXHx5uOAtwkICBAhQoVko+Pj+koAHDXvtm4SXVyFNSllev18pyJ+uCDDyTLMh0Ld4D6KfOjBgEAe5g1a4Zeb15Frzf/TOOXbFWbNm0k5529sZJpmztOp1OHDx+Wp6en7r//fvn4+PAOBWzBsixdu3ZNZ86c0eHDh1WyZEl5eHCGJAD39cMPP6hRo0Y6vmiFJOnjCROu/1xj1YfboX7K3KhBAMA+oqKi1K3ba2r7U6wkqftrr93V8TJtc+fatWtyOp0qUqSIAgICTMcBbuDv7y9vb2/9+uuvunbt2h1fNAsATDt8+LBq1aqlS5cuuua8vb0NJsLdoH7K/KhBAMC8DRs2qFmzZvL0SL83UDJ9q553I2BXfG8CcHenTp1SUFCQTp48qcfKlDEdB+mI/6MyN15fADBn586dCgkJ0dWrV1W3bt10Oy4/2QEAQJpdunRJtWvX1i+//KJixYopKirKdCQAAABbO3jwoIKDg3Xp0iVVrVpVs2bNTLdj09wBAABpkpiQoGaNG+unffuUP39+xcbGqlChQqZjAQAA2JNl6dSJ4woNqadTp06pfPnyiomJkb+ff7o9Bc0dZCiHw8G7uQCQiaSkpKhDu/Za1f8/ilvztWJXr1bJkiVNxwIyDWonAMh8Ll68oPuch7UndqrKlH5Ua9asUa5cudL1OWju2IzD4fjbP4MGDTIdEQCQRVmWpa5duyo6Jto19/jjj5sLBIjaCQBgb4mJiWrSpLFrHBMTo4IFC6b782Tau2W5qxMnTri2Fy5cqHfeeUc//fSTay579uyubcuylJKSIi8vXkYAQMYbOHCgpkyZouzcRQk2Qu0EALCr5ORkNWvWTBs3bnLNPVT8oQx5riy1cseyLMXFxd3zP5ZlpTpjwYIFXX9y5swph8PhGu/fv1+BgYFavXq1KlasKF9fX23cuFHt2rVTWFjYDcfp2bOnXnjhBdfY6XRq2LBhKl68uPz9/VW+fHktWbLktjn69++vypUr3zRfvnx5vf/++5KkrVu3qmbNmsqXL59y5sypatWqafv27bc95vr16+VwOHThwgXX3M6dO+VwOHTkyBHX3MaNG1W1alX5+/urSJEi6t69u+Li4v7+CwcAyFDjxo3Tf/7zn+vbY8cZToN7xVTtlJb6idqJ2gkA7MiyLHXu3FnR0dHy9fXN8OfLUm9bxMfH3/Duzb1y5coVZcuWLd2O9+abb2rUqFF66KGHlDt37lTtM2zYMM2dO1cTJ05UyZIl9dVXX6lVq1bKnz+/qlWrdtPjW7ZsqWHDhungwYMqUaKEJOnHH3/UDz/8oMjISEnS5cuX1bZtW3300UeyLEujR49WnTp1dODAAQUGBt7R5/bn1cOHDBmi6dOn68yZM+rWrZu6deumGTNm3NExAQB3Z968eerZs6ckaciQIerQob20cYfZULgnTNVOUvrWT9ROAIB7rX///po+fbo8PDzS9a5Yt5OlmjuZxfvvv6+aNWum+vFXr17V0KFD9dlnn+mZZ56RJD300EPauHGjJk2adMsCpUyZMipfvrzmz5+vgQMHSrpe3FeuXFkPP/ywJKl69eo37DN58mTlypVLGzZsUL169e7ocxs2bJhatmzp+iWiZMmSGj9+vKpVq6ZPP/1Ufn5+d3RcAMAdsCzFrlmjV7p0kST16NFD/fv3l5xOw8GAtKF2AgDcM5aljz4ar/Hjxkq6/rO+fr360onNGfq0Waq5ExAQoCtXrhh53vRUqVKlND3+l19+UXx8/E1FzbVr11ShQoXb7teyZUtNnz5dAwcOlGVZioiI0Ouvv+76+KlTpzRgwACtX79ep0+fVkpKiuLj43X06NG0fUJ/sWvXLv3www+aN2+ea86yLDmdTh0+fFilSpW642MDANJmy7ebFRSQXxdXfKkO0z/SmDFj5HA4TMfCPWSqdvrzudMLtRMA4F6ZP2+uXguvpNfCP9PoiE3q2LGj5EzJ8OfNUs0dh8ORrqdHmfL/PwcPD4+bzktPSkpybf9ZlK1cuVIPPPDADY/7u3P/mjdvrn79+mn79u1KSEjQsWPH1LRpU9fH27Ztq7Nnz2rcuHF68MEH5evrq2eeeUbXrl275fE8PK5f4umvWf+a88+snTt3Vvfu3W/av2jRorfNCgBIXz/++KPCw8P124IYSdLEiZNcP8eRdVA7UTsBAFJv5cqV6tK1q1rsXytJer3X6/+wR/rJUs2dzCp//vzas2fPDXM7d+6Ut7e3JKl06dLy9fXV0aNHb7mM+HYKFy6satWqad68eUpISFDNmjVVoEAB18c3bdqkTz75RHXq1JEkHTt2TH/88cff5pSu39Xiz/Pdd+7cecNjnnjiCe3du9e1fBkAcO8dPXpUtWrV0vkL511zPj7eBhMB6YvaCQCQ3jZt2qTGjRvLof815O/limfegssEqlevrm3btmn27Nk6cOCA3n333RsKlsDAQPXu3Vu9evXSrFmzdPDgQW3fvl0fffSRZs2a9bfHbtmypRYsWKDFixerZcuWN3ysZMmSmjNnjvbt26ctW7aoZcuW8vf3v+2xHn74YRUpUkSDBg3SgQMHtHLlSo0ePfqGx/Tr10/ffPONunXrpp07d+rAgQOKjo5Wt27d7uArAwBIqz/++ENBQUH6/fffVerRR03HATIEtRMAID3t3r1b9erVU0JCgmrVqmUkA82dTKBWrVoaOHCg+vbtqyeffFKXL19WmzZtbnjM4MGDNXDgQA0bNkylSpVScHCwVq5cqeLFi//tsRs1aqSzZ88qPj7+pluGTps2TefPn9cTTzyh1q1bq3v37je8O/X/eXt7KyIiQvv371e5cuX0wQcfaMiQITc8ply5ctqwYYN+/vlnVa1aVRUqVNA777yj+++/P21fFABA2liWLl+4qIahYfrpp59UpEgRRUdHm04FZAhqJwBAurAs/XrkkMJCQ3ThwgVVqVJFc+fOMRLFYf3/E47dyKVLl5QzZ05dvHhROXLkuOFjiYmJOnz4sIoXL85dAmBLfI8CsJOr8Qny3fqjJKloi1DFfv65Hi1Z8n+3PH+uguTpeX07JeXm+X+Yu1SuhHLmyXPL/7Nxb1E/gdcZANLH6VMnVSD5oCTpyZDXtHbdZ8qTK+f/7oxV6GnJw/P6BZX//5x06/m/zF3KVlo5c6eufmLlDgAAWVxKSopefvll13jp0mV6lFOyAAAAbuvSpUtq0KCBaxwdE608efIYy0NzBwCALMyyLPXo0UNLIpe45ipVqmgwEQAAgL0lJiYqLCzshovc31/I7OmwNHcAAMjC3n//fX388cf39G4OAAAA7iolJUWtWrXSl19+qezZs5mO40JzBwCALOqTTz7RoEGDJEljRo8xGwYAAMDmLMvSq6++qsjISPn4+GjBgoWmI7nQ3AEAIKuxLEUuWqy+vXtLkt599129/PJLhkMBAADYlGVJzhQNGfy+Jk2aJIfDoXnz5unFF14wncyF5g4AAFnMF59/rvD7iuvK6q/U87Xuevfdd01HAgAAsC/LKZ3YrIEdayjA30+ffPKJGjVqZDrVDWjuAACQhWzdulXNmjZzjUeNGsn1dgAAAP7GosWLXdsDBw5Qly5dDKa5NZo7AABkEfv371ft2rUVFx/nmvP09DSYCAAAwN7Wrl2rl1763+nr/fr2M5jm9mjuIM1eeOEF9ezZ03QMAEAa/PbbbwoKCtLZs2dV8QludQ7cS4MGDdLjjz/+t49p166dwsLC7kkeAEDqbNmyRQ0bNlRycrJrzq4rnmnu2FC7du3kcDjkcDjk7e2t4sWLq2/fvkpMTDQdLVVSU8BkdkeOHJHD4dDOnTtNRwEAnT17VkFBQTp27JgeeeQRRS6NNB0JSFdnzpxR165dVbRoUfn6+qpgwYKqVauWNm3a5HpMsWLFXPVVQECAypYtq6lTp6b5uaZMmaKqVasqd+7cyp07t2rUqKHvvvvurj+HcePGaebMma4xb6YBgFn79u1TnTp1FB8fr3//+9+m4/wjmjs2FRwcrBMnTujQoUP68MMPNWnSJC54eY9YlnVDZxYA3JZlKe7SZTVq0FD79u3TAw88oLVr1yp/vnymkwHpKjw8XDt27NCsWbP0888/KyYmRi+88ILOnj17w+Pef/99nThxQnv27FGrVq300ksvafXq1Wl6rvXr16t58+b68ssv9e2336pIkSIKCgrS77//flefQ86cOZUrV667OgYAIB1Ylo4dPaLQkPo6d+6cKleurPnz55lO9Y9o7tjUn+86FSlSRGFhYapRo4bWrVvn+vjVq1fVvXt3FShQQH5+fnruuee0detW18dnzpx5U4EQFRV1wxKyP1fYzJkzR8WKFVPOnDnVrFkzXb582fWYuLg4tWnTRtmzZ1ehQoU0evTov809c+ZMvffee9q1a5fr3bE/34U6evSoQkNDlT17duXIkUNNmjTRqVOnbnusP1e/LF26VC+++KICAgJUvnx5ffvttzc8buPGjapatar8/f1VpEgRde/eXXFx/7uexJw5c1SpUiUFBgaqYMGCatGihU6fPu36+Pr16+VwOLR69WpVrFhRvr6+2rhxo5xOp4YNG6bixYvL399f5cuX15IlS1z7nT9/Xi1btlT+/Pnl7++vkiVLasaMGZKk4sWLS5IqVKggh8OhF2x0izwAWce1xKvKtuMnfTl4tB4oWEhr167Vgw8+aDoWkK4uXLigr7/+Wh988IFefPFFPfjgg3rqqaf01ltvKSQk5IbH/lkLPPTQQ+rXr5/y5MlzQ32VGvPmzdMrr7yixx9/XI8++qimTp0qp9Opzz///B/3nTRpkooUKaKAgAA1adJEFy9edH3sr6dltWvXThs2bNC4ceNc9dSRI0f+tvYAAKSPP/44oyKev+vn9bP0RIXyWrlypbJny2461j+iuZNa8fHSd99d//se27Nnj7755hv5+Pi45vr27avIyEjNmjVL27dv18MPP6xatWrp3LlzaTr2wYMHFRUVpRUrVmjFihXasGGDhg8f7vp4nz59tGHDBkVHRys2Nlbr16/X9u3bb3u8pk2b6o033lCZMmV04sQJnThxQk2bNpXT6VRoaKjOnTunDRs2aN26dTp06JCaNm36jxnffvtt9e7dWzt37tS//vUvNW/e3LWy5uDBgwoODlZ4eLh++OEHLVy4UBs3blS3bt1c+yclJWnw4MHatWuXoqKidOTIEbVr1+6m53nzzTc1fPhw7du3T+XKldOwYcM0e/ZsTZw4UT/++KN69eqlVq1aacOGDZKkgQMHau/evVq9erX27dunTz/9VPn++274n8uzP/vsM504cUJLly795xcDANKR0+lUly6dXePIyEiVKVPGYCJkOcnx0h/fXf87A2XPnl3Zs2dXVFSUrl69mqp9nE6nIiMjdf78+RvqqzsRHx+vpKQk5cmT528f98svv2jRokVavny51qxZox07duiVV1655WPHjRunZ555Ri+99JKrnipSpMjf1h4AgLt35coVhYeHu8bR0dHKmzevwUSp52U6gFuIj5cef1w6cEAqWVLauVMKCMjQp1yxYoWyZ8+u5ORkXb16VR4eHpowYYKk66tpPv30U82cOVO1a9eWdP3873Xr1mnatGnq06dPqp/H6XRq5syZCgwMlCS1bt1an3/+uf7zn//oypUrmjZtmubOnes6x3DWrFkqXLjwbY/n7++v7Nmzy8vLSwULFnTNr1u3Trt379bhw4dVpEgRSdLs2bNVpkwZbd26VU8++eRtj9m7d2/VrVtXkvTee++pTJky+uWXX/Too49q2LBhatmypeuc9JIlS2r8+PGqVq2aPv30U/n5+alDhw6uYz300EMaP368nnzySV25ckXZs/+vA/v++++rZs2akq6vjBo6dKg+++wzPfPMM659N27cqEmTJqlatWo6evSoKlSooEqVKkm6fi7/n/Lnzy9Jyps37w1fBwC4FyzLUq9evbRw0SJN7/CaJKly5acMp0KWkhwvrX5cunxACiwp1d4peWVM7eTl5aWZM2fqpZde0sSJE/XEE0+oWrVqatasmcqVK3fDY/v166cBAwbo6tWrSk5OVp48edSpU6e7ev5+/frp/vvvV40aNf72cYmJiZo9e7YeeOABSdJHH32kunXravTo0TfVCjlz5pSPj48CAgJu+Njf1R4AgLtz7do1hYeHa9u2ba65wg/c/ndfu2HlTmrs2XO9sSNd/3vPngx/yhdffFE7d+7Uli1b1LZtW7Vv397VQTx48KCSkpL07LPPuh7v7e2tp556Svv27UvT8xQrVszV2JGkQoUKuU5ZOnjwoK5du6bKlSu7Pp4nTx498sgjaf589u3bpyJFirgaO5JUunRp5cqV6x8z/7UwK1SokCS5Mu7atUszZ850vWuXPXt21apVS06nU4cPH5Ykff/996pfv76KFi2qwMBAVatWTdL1Aumv/iyUpOvvrsXHx6tmzZo3HHv27Nk6ePCgJKlr165asGCBHn/8cfXt21fffPNNmr8uAJARhg0bpvHjx5uOgazswp7rjR3p+t8XMrZ2Cg8P1/HjxxUTE6Pg4GCtX79eTzzxxA0XKJaur0jeuXOnvvjiC1WuXFkffvihHn744Tt+3uHDh2vBggVatmyZ/Pz8/vaxRYsWdTV2JOmZZ56R0+nUTz/9lOrno/YAgIzhdDrVpk0bxcbGKlu2jF3IkVGMN3d+//13tWrVSnnz5pW/v7/Kli17Q6fMFh577PqKHen63489luFPmS1bNj388MMqX768pk+fri1btmjatGmp3t/Dw0OWZd0wl5SUdNPjvL29bxg7HA45nc47C51B/prxz2sG/ZnxypUr6ty5s3bu3On6s2vXLh04cEAlSpRQXFycatWqpRw5cmjevHnaunWrli1bJul6Z/avsmXL5tq+cuWKJGnlypU3HHvv3r2u6+7Url1bv/76q3r16qXjx4/r3//+t3r37p1xXwgASIUpU6bo7bffliSNGDHCcBpkBLeonXI9dn3FjnT971wZXzv5+fmpZs2aGjhwoL755hu1a9fupptR5MuXTw8//LCqVq2qxYsXq3v37tq7d+8dPd+oUaM0fPhwxcbG3rRCKKNQewBA+rMsSz169NDChQvl7e2tiPkRpiPdEaPNnfPnz+vZZ5+Vt7e3Vq9erb1792r06NHKnTu3yVg3Cwi4firWli335JSs/8/Dw0P9+/fXgAEDlJCQoBIlSsjHx+eG23smJSVp69atKl26tKTrpwVdvnz5hgsLp/W23CVKlJC3t7e2bNnimjt//rx+/vnnv93Px8dHKSkpN8yVKlVKx44d07Fjx1xze/fu1YULF1yZ78QTTzyhvXv36uGHH77pj4+Pj/bv36+zZ89q+PDhqlq1qh599NEbLqZ8O6VLl5avr6+OHj1603H/uvoof/78atu2rebOnauxY8dq8uTJrq+BpJu+DgCQYSxL0UuX6fX/nqbav39/vXqb63nAfblN7eQVcP1UrKAtGXpK1t8pXbr0DXXQ/1ekSBE1bdpUb731VpqPPWLECA0ePFhr1qy5YeXv3zl69KiOHz/uGm/evFkeHh63XRF9q3pKun3tAQC4A5alD4YP1fRpU+VwODRr1iy3uO35rRi95s4HH3ygIkWK3HCV/z/vMmQ7AQHSU+auV9C4cWP16dNHH3/8sXr37q2uXbuqT58+ypMnj4oWLaoRI0YoPj5eHTt2lCRVrlxZAQEB6t+/v7p3764tW7bctDT5n2TPnl0dO3ZUnz59lDdvXhUoUEBvv/22PDz+vidYrFgxHT58WDt37lThwoUVGBioGjVqqGzZsmrZsqXGjh2r5ORkvfLKK6pWrVqqi6Jb6devn55++ml169ZNnTp1UrZs2bR3716tW7dOEyZMUNGiReXj46OPPvpIXbp00Z49ezR48OB/PG5gYKB69+6tXr16yel06rnnntPFixe1adMm5ciRQ23bttU777yjihUrqkyZMrp69apWrFihUqVKSZIKFCggf39/rVmzRoULF5afn59y5sx5x58nAPyTrzZsUGjeIrq8aoNejZimIUOGSDZbiYm751a1k1eAlC/ja6ezZ8+qcePG6tChg8qVK6fAwEBt27ZNI0aMUGho6N/u26NHDz322GPatm1bquuRDz74QO+8847mz5+vYsWK6eTJk5L+d2Hn2/Hz81Pbtm01atQoXbp0Sd27d1eTJk1ue22+YsWKacuWLTpy5IiyZ8+uPHnyaNCgQbetPQAAaTd16mS92eYFvdnmBX0avVPNmzeXnO75Br3RlTsxMTGqVKmSGjdurAIFCqhChQqaMmWKyUi25eXlpW7dumnEiBGKi4vT8OHDFR4ertatW+uJJ57QL7/8orVr17reucuTJ4/mzp2rVatWqWzZsoqIiNCgQYPS/LwjR45U1apVVb9+fdWoUUPPPfecKlas+Lf7hIeHKzg4WC+++KLy58+viIgIORwORUdHK3fu3Hr++edVo0YNPfTQQ1q4cOGdfDlcypUrpw0bNujnn39W1apVVaFCBb3zzju6//77JV1/d2vmzJlavHixSpcureHDh2vUqFGpOvbgwYM1cOBADRs2TKVKlVJwcLBWrlzpKqJ9fHz01ltvqVy5cnr++efl6empBQsWSLr+eo0fP16TJk3S/fff/4/FJf6GZUmXL0vffiv9+Q7srebS8lj2Z/9Mtv+OHTvUpHETKTFR2vejxg0b6jqN9c+5m+72eKv51M6lx/64I9RON8uePbvr+jnPP/+8HnvsMQ0cOFAvvfSS62YUt1O6dGkFBQXpnXfecc05HI6/fUPs008/1bVr19SoUSMVKlTI9eef6ouHH35YDRs2VJ06dRQUFKRy5crpk08+ue3je/fuLU9PT5UuXVr58+fX0aNH/7b2yHQsS7p2WTrzrZQUd/u5uz2mabfLZMesGSW1r3VGvf52fP67PW5ajnmvnv9uv/4ZkGnx4sXq2bOXlJIoXdqrrp3a/O8Y/5274Y6Pt5pLy2Pvdv9//rzN8fX1tXx9fa233nrL2r59uzVp0iTLz8/Pmjlz5i0fn5iYaF28eNH159ixY5Yk6+LFizc9NiEhwdq7d6+VkJCQ0Z8GcEf4Hk2lS5csq3ARy5Isq2RJy4qLu/VcWh7L/uyfifY/sGuXVaBAASuvr6+ts1586KHb/p+N1Etr7WRZ1E9pcejQIcvLy8v6+eefTUfJUG7xOl+9ZFlLC1vWPFlWdEnLSoq79dzdHtO022WyY9aMktrXOqNefzs+/90eNy3HvFfPf7df/3TO9Hnscsvb29vKm9P33uS/w/0vRqS+fjJ6WpbT6VSlSpU0dOhQSVKFChW0Z88eTZw4UW3btr3p8cOGDdN77713r2MCMGnPHum3/16r6c+71aWk3Dz31FOpfyz7s38m2r93cLBOnz6tDmXKSD/+aN+shw4Jdy+ttZNE/ZQWq1at0ssvv6ySf95IA+Zc3CMl/HZ9+8p/77hmpdw8l5ZT/251zHtw6uAdZbJj1oyS2tc6o15/Oz7/3R43LVnv1fPfLtO9+rf+/475/ttNlJSUpFda1JQS1mV8/jveP/X1k9HTsgoVKnTTxXRLlSp10y2q//TWW2/p4sWLrj9/vTgvgEzqscekwv+9iPWfd6u71VxaHsv+7J9J9j/q66vYEydUokQJDY2JufnOjuXK3fpuj7eaT+3cne7/0EPC3Utr7SRRP6XFq6++qo8//th0DEhSzsck/8LXt7OXvH7HtVvN3e0xTbtdJjtmzSipfa0z6vW34/Pf7XHTcsx79fx3+/VPx0yHznjqu58TVL16db09YsH1x0j/u7tjrnKpm5NS/9g73j/19ZPDsv7f/bLvoRYtWujYsWP6+uuvXXO9evXSli1b9M033/zj/pcuXVLOnDl18eJF5ciR44aPJSYm6vDhwypevLj8/PzSPTtwt/geTaWUFOmzb6XDB6WWDaXAwFvPpeWx7M/+mWT/fD07yzt3bm3atEkPPfTQ9eva7NlzvbHy550dbzV3u/kM3P9S0aLKWajQLf/PRurdbe0kUT/BTV5nZ4r023op7pBUopnkE3jrubs9pmm3y2THrBklta91Rr3+dnz+uz1uWo55r57/br/+6Zgp3zOvqdjDj+nLL79UYGDg9evaXNhzvbHy590dUzuXlsfewf6XPIoqZ97U1U9eafsqpa9evXqpSpUqGjp0qJo0aaLvvvtOkydP5paOAG7k5yeVKnPjL5a3mkvLY9mf/d10/+TkZHn9d84nZy6tWbv2emNHuvWdHW93t8fUPja99r906eZjIM2onZClePpJOUrf+EvQrebu9pim3S6THbNmlNS+1hn1+tvx+e/2uGk55r16/rv9+t9FpnPnzyvPf+cKP1hSq1evvt7YkW59d8fUzmX0/mmon4yelvXkk09q2bJlioiI0GOPPabBgwdr7NixatmypclYAADYkmVZeuXVV13jxYsXq1y5cgYT4V6jdgIAIG3i4+PVqFG4axwdHa38+fMbTJQxjK7ckaR69eqpXr16GXZ8g2edAX+L700AadW3b19NmTZNCxYs0IKIBapTr67pSDAgo2snif+jMjteXwBZRVJykho3bqwv13+lwk810tq1sSpTprjpWBnC6MqdjOTt7S3pepcOsKM/vzf//F4FgL8zduxYjRo1SpI0fsIE1alfT3I4DKdCZkP9lDVQgwDIKrp26apVq1bJ399fixZHqsxjZTNt/WR85U5G8fT0VK5cuXT69GlJUkBAgByZ9EWEe7EsS/Hx8Tp9+rRy5colT09P05EAuIG3BwyQJI0cOVLt2rUzGwaZFvVT5kYNAiCriViwQJ6enlqyZImqVKliOk6GyrTNHUkqWLCgJLkKFMBOcuXK5foeBYDU6NOnj3r37m06BjI56qfMjxoEQFYyY8YM1alTx3SMDJepmzsOh0OFChVSgQIFlJSUZDoO4OLt7c27ZQD+0aZN3+hZ+UuSWrdurQ8++MBwImQF1E+ZGzUIgMxu5qyZahf0qCRp+PDhat26teFE90ambu78ydPTk//EAABuZdeuXWrcuLGOL1ohSZrw0UecHoN7ivoJAOBuli1bptde6652P8VKkl7r1s1wonsn015QGQAAd3X48BEFBwfrxOlTqvlePyVULCUvHx/TsQAAAGxr/fr1at68ua7Exavr4NmyClaWHFmn5ZElVu4AAOBOQkJCdPLkSZUrV06Ll0bKP3s205EAAABsa8eOHQoJCdHVq1cVGhqqjyZ8LIdn1mp3ZK3PFgAAN3Do8CEVL15ca9asUa5cuUzHAQAAsCfL0sGDv6hhWKguX76s559/XhEREfLyynqtjqyzRgkAABtLTLzq2i6QP79iY2NVqFAhg4kAAADs7eSJ4yrhf1qHv4lQ5aeeVExMjPz9/U3HMoLmDgAAhiUnJ6t9+/aucVRUlB5++GGDiQAAAOztwoULCgsLc42jo6KUM2dOc4EMo7kDAIBBlmWpa9euWrB4kXKH/FtfWVdUvkIF07EAAABsKyEhQSEhIdq9Z49r7r777jOYyDyaOwAAGDRgwABNnTpVHh4emjZjhp5/4QWJW54DAADcUnJyspo1a6avv/5aOXIEmo5jGzR3AAAwZMLHH2vo0KGSpIkTJ6phw4aGEwEAANiXZVl6+eWXFRMTI19fXy1evMR0JNuguQMAgCH9+vWTJA0dOlQvvfSS4TQAAAA2ZVmSM0XvDBygGTNmyMPDQwsXLtRzzz5rOplt0NwBAMCgnj176s033zQdAwAAwL4sp3RiswZ3raMAfz9NmTJFoaGhplPZCs0dAADuoc2bt7i2mzVtqtGjR8vBNXYAAABua968ea7tIYMHq0OHDgbT2JOX6QAAAGQVe/bsUe16dXUtMVFBQUFatHixPDx4nwUAAOB2VqxYoa6vvKKW+9dKur7qGTejogQA4B44evSYatWqpQsXLqh8hQqaO3++vH18TMcCAACwrW++/VaNGzdWSkqKa44Vz7dGcwcAgHsgJCREx48fV+nSpbVixQply5bNdCQAAABba9QoXImJiapdu7bpKLZHcwcAgHvgwC8HVLRoUa1du1Z58uQxHQcAAMD2Ll68pGeffVazZ88yHcX2aO4AAJBBrl695trOlzevYmNjVbhwYYOJAAAA7O30mTOu7TKlS2v58uUK8A8wmMg90NwBACADpKSkqFOnTq7xsmVReuSRRwwmAgAAsLdLly6pQYMGrnF0dLRy585tMJH7oLkDAEA6syxL3bp109yI+cpVv7q+SLqgJypVNB0LAADAthKvJiosLEzffLtZxZ5ppgNx+VTo/gdMx3Ib3AodAIB0NnToME2cOFEOh0NTpk1T9Ro1TEcCAACwtY4dO+rLL79UYGCgIpdFqeS/WPGcFqzcAQAgnQ0dNlSS9PHHH6tx48aG0wAAANhfVFS0fHx8FBUVpYoVWfGcVjR3AADIAO+99566du1qOgYAAIBbcDgcmj9/vqpXr246iluiuQMAQDr4/IsvXNtdOnfRwIEDDaYBAACwv08nTnRtjxs3VuHh4QbTuDeaOwAA3KXvvvtOzZs1d41Hjhwhh8NhMBEAAIC9zZ8/X71793aNO3boaDCN+6O5AwDAXdi/f7/q1KmjM+fOKmTkIF176jF5eHG/AgAAgNtZs2aN2rZtq/iERPX5MFJWwcqSg/bE3aD6BADgDv322+8KCgrS2bNn9dRTT2n+ggXy8fczHQsAAMC2vtv6ncLDw5WcnKzmzZvrgxGj5PCgsXO3+AoCAHCHQkNDdOzYMT3yyCNauXKlsmfPbjoSAACArYWHhys+Pl61atXSzJkz5UFjJ13wVQQA4A7t/+knPfDAA4qNjVW+fPlMxwEAALC9c+fOq3LlyoqMjJSPj4/pOJkGzR0AANLg2rUk13buXLkVGxurokWLGkwEAABgb3+cPevafvTR6yues2XLZjBR5kNzBwCAVHI6nerc+WXXODIyUqVLlzaYCAAAwN6uXLmihg0busbR0dHKmzevwUSZE80dAABSwbIs9ezZUzPnzFHOei9qXcIfqvzM06ZjAQAA2Na1pGtq2LChvt64SUWfbqKfLudR4cKseM4I3C0LAIBUGDlylD766CNJ0qeTJqlmcLDhRAAAAPb20ksvad26dcqWLZuWRC7TI4+WMh0p02LlDgAAqfDe++9JksaNG6cWLVoYTgMAAGB/S5ZEytvbW8uWLdNTTz1lOk6mRnMHAIBUevvtt9W9e3fTMQAAANyCw+HQnDlzVLNmTdNRMj2aOwAA3Mb6DRtc2+3btdfgwYMNpgEAALC/KVOnuLZHjRqlpk2bGkyTddDcAQDgFr7//ns1bfK/YmTcuLFyOBwGEwEAANjbokWL1KvX665xl86dDabJWmjuAADw//zyy0HVrl1bp8/+oTpD31ZipdLy9PY2HQsAAMC2vvjyS7Vq1Upx8QnqOWKBrIKVJQcth3uFu2UBAPD/hISE6MyZM3riiSe0YPFi+WULMB0JAADA1po1a6qkpCQ1btxYo8eMlcPT03SkLIU2GgAA/8+vR3/Vww8/rNWrVytHjhym4wAAANheXFy8/v3vf2vOnDnypLFzz9HcAQBAUnx8gmu7YMGCWrdunQoUKGAwEQAAgL39fvx31/YTTzyhZcuWydfX12CirIvmDgAgy0tKSlKbtm1c4+joaBUrVsxcIAAAAJs7d+6cQkNDXeOlS5cqMDDQYKKsjeYOACBLczqd6tSpkyKXLVPe0Jr61vOqHitb1nQsAAAA24qLi1O9evX0/fadevj51jqafL/y52fFs0lcUBkAkKX169dPs2fPlqenp2bNnaNnnnvWdCQAAADb+vOiyd9++61y586t6JjlKvpgcdOxsjxW7gAAsqwPP/xQo0aNkiRNnz5d9erVM5wIAADAvpxOp9q3b6/Vq1fL399fK1asUJkyZUzHgmjuAACysAEDB0qSRo0apTZt2vzDowEAALIoy5KVkqw3+/XRvHnz5OXlpSVLlqhKlSqmk+G/aO4AALK0fv366Y033jAdAwAAwL4spxwnt2hEz4YK8PfTjBkzVKdOHdOp8Bc0dwAAWcrGjZtc223atNGwYcMMpgEAALC/mbNmuraHDx+uVq1amQuDW+KCygCALGPXrl2qFxqipKtXVbdOXc1fECGHw2E6FgAAgG0tW7ZMr73WXe1+ipUkvdatm+FEuBVW7gAAsoTDh48oODhYFy9eVMUnn9SsuXPk5e1tOhYAAIBtrV+/Xs2bN5fT6TQdBf+A5g4AIEsICQnRyZMnVb58ecXExMjf3990JAAAANvasWOHQkJCdPXqVYWE1DcdB/+A5g4AIEs4dPiQHnroIa1Zs0a5cuUyHQcAAMCeLEsHfzmghmGhunz5sqpVq6YZM2aYToV/QHMHAJBpJSZedW3fV6CAYmNjVbBgQYOJAAAA7O3kieMq4X9ah7+J0NOVn1J0dLT8fP1Mx8I/oLkDAMiUkpOT1a5dO9d42bJlKlGihLlAAAAANnfhwgWFhYW5xlFRUcqZM6e5QEg1mjsAgEzHsix16dJFC5csVp6QGvpacSpfoYLpWAAAALaVkJig+vXra/eePa65+woUMJgIaUFzBwCQ6Qx67z1NmzZNHh4emj5rpqpWqyZxy3MAAIDbatOmrTZu3KicOXOYjoI7QHMHAJDpjBo1SpI0efLkG5YWAwAA4NZWrVolPz8/LV68xHQU3AGaOwCATGnYsGHq2LGj6RgAAABuwdPTUwsXLtSzVaqYjoI7QHMHAJAprF271rX9Wrdu6tevn8E0AAAA9jdu3DjX9scfT1BISIjBNLgbNHcAAG5v06ZNatmylWs8dOhQObjGDgAAwG3NnDlT/d9+2zVu3aq1wTS4WzR3AABubc+ePapXr57OXjivhh8OUVLlx+Th5WU6FgAAgG0tX75cnTp1UnxCovpPWC4Velpy0B5wZ1S/AAC39euvR1WrVi1duHBBVapU0dz58+Xt52c6FgAAgG1t3LhRTZo0UUpKitq2bash/xkqedDYcXe8ggAAtxUSEqLjx4+rTJkyWr58uQICAkxHAgAAsK0ffvhB9erVU2JiourVq6cpU6bIg8ZOpsDKHQCA2/rl4C968MEHtXbtWuXJk8d0HAAAAHuyLB05ckgNwkJ18eJFPffcc1q4cKG8vb1NJ0M6oUUHAHArV69ec23ny5tXsbGxeuCBBwwmAgAAsLdTp06qmM9JHfx6rp6qVJEVz5kQzR0AgNtISUlRhw4dXONly6L0r3/9y2AiAAAAe7t06ZIaNGjgGkdHRytXrlzmAiFD0NwBALgFy7L06quvav7CBcod8m+tT7mkJypVNB0LAADAthKvJio0NFS7du1yzRUsWNBgImQUmjsAALcwZMh/NGnSJDkcDk2ZNk0vVK8uORymYwEAANhW+/bttX79egUGZjcdBRmM5g4AwC0M/2C4JOmTTz5Ro0aNDKcBAACwv5iY5fLx8dHChYtMR0EGo7kDAHAb77//vrp06WI6BgAAgFvw8PBQRESEqj3/vOkoyGA0dwAAtvXZZ5+5trt26aoBAwYYTAMAAGB/Ez7+2LU9fvw4NWzY0GAa3Cs0dwAAtrRlyxY1b97CNR4x4gM5uMYOAADAbc2bN0/9+vVzjdu3a28wDe4lmjsAANvZ/9NPqlOnjv44f04hIwfp2lOPycPLy3QsAAAA24qNjVW7du0Un5CovmOXyipYWXLwK39WQaUMALCdkJAQnTt3Tk899ZTmL1ggH38/05EAAABsrUXLlkpOTlaLFi00/IORcnjQ2MlKeLUBALbz+++/69FHH9XKlSuVPTu37gQAAPgnCQkJCg4O1owZM+RBYyfL4RUHANjClStxru0HHnhAa9euVb58+QwmAgAAsLejx466tp966iktWbJEPj4+BhPBFJo7AADjrl27ppatWrrGMTExKlq0qMFEAAAA9nbmzBmFhIS4xpGRkcqWLZvBRDCJ5g4AwCin06l27dopZsUK5W9QS1t9U/RoqVKmYwEAANjW5cuXVadOHe36YY8eebGdfreKKE+evKZjwSAuqAwAMMayLPXo2VMRERHy8vLS3Ij5evLpyqZjAQAA2NbVq1fVoEEDbdu2TXnz5lV0zHI9UJgVz1kdK3cAAMaMGDFSEyZMkCTNnj1btWrVMpwIAADAvlJSUtS6dWt9/vnnypYtm1avXq1HH33UdCzYACt3AADGvD/4fUnS+PHj1bx5c8NpAAAAbMqyZDlT9Hqvnlq8eLG8vb21bNkyPfnkk6aTwSZYuQMAMGrgwIF67bXXTMcAAACwL8spx8ktGtevubIF+Gvu3LmqWbOm6VSwEZo7AIB76sv1613bHTt01HvvvWcuDAAAgBuYNHmya3v06NFq0qSJwTSwI07LAgDcM99//71CwsLkTE5WWGiYZs+dI4fDYToWAACAbS1cuFBvvPGGOtdfJ0nq/PLLhhPBjli5AwC4Jw4c+EW1a9fWlStX9HSVKpo+a6Y8vXiPAQAA4HbWrVun1q1by7Is01FgczR3AAD3REhIiM6cOaOKFSsqKipKvr6+piMBAADY1tatW9WgQQMlJSWpUaNw03FgczR3AAD3xNFjR1WyZEmtWrVKgYGBpuMAAADYk2Xpp/37FN4wTHFxcapZs6amTJliOhVsjuYOACDDxMcnuLYLFSqk2NhYFShQwGAiAAAAe/v992N6JPCcjm5epKrPPavIyEj5ePuYjgWbo7kDAMgQSUlJatW6lWscHR2tYsWKmQsEAABgc2fPnlVISIhrvHTpUlY8I1Vo7gAA0p3T6VSHDh20LDpa+cKC9K3nVZV57DHTsQAAAGwrLj5O9erV0/79P7nm8uXNazAR3AnNHQBAuuvfv7/mzp0rT09PzZo7R88896zELc8BAABuq2XLVtq8ebNy585lOgrcEM0dAEC6+2jCBEnS9OnTVbduXcNpAAAA7G/dunUKCAhQZGSk6ShwQzR3AAAZYvTo0WrTpo3pGAAAALZlWZZr28vLS0uWLFHlpyobTAR3RXMHAJAuVqxY6dp+/fXX9frrrxtMAwAAYH+jRo9ybU+aNEm1a9c2mAbujOYOAOCuffXVVzes0nn/vfcMpgEAALC/yZMna9Cg/9VMzZo2NZgG7o7mDgDgruzcuVP169fX+UsX1fSjD5T8dFk5PD1NxwIAALCtyMhIde3aVfEJiRo0ea1U6GnJwa/nuHNepgMAANzXoUOHFRwcrEuXLun555/XzDmz5eXrazoWAACAbW346iu1aNFCTqdTL730kt4d9B53FcVdozUIALhjISEhOnXqlMqXL6+YmBj5+/ubjgQAAGBrTZs20bVr19SwYUN9+umnctDYQTqguQMAuGOHjxzWQw89pDVr1ihnzpym4wAAANje5ctX9MILL2jevHny5FR2pBOaOwCANElISHRt31eggGJjY1WwYEGDiQAAAOztxIkTru3y5csrOjpafn5+BhMhs6G5AwBIteTkZLVr1841jo6OVokSJcwFAgAAsLnz588rNDTUNV62bJly5MhhMBEyI5o7AIBUsSxLnTt31qLIJcoTUkMbFa+y5cubjgUAAGBb8fHxql+/vrZ+v10PPddSR64V1H33seIZ6Y+7ZQEAUuWdd9/V9OnT5eHhoRmzZ+m5as+bjgQAAGBbSUlJatKkiTZt2qScOXMqKjpGxYqz4hkZg5U7AIBUGTNmjCRpypQpNywtBgAAwI2cTqc6deqklStXys/PT8uXL1e5cuVMx0ImRnMHAJBqH3zwgTp06GA6BgAAgH1Zlga83V9LFi+Sp6enFi1apKpVq5pOhUyO5g4A4LbWrFnj2u7Rvbv69OljMA0AAID9jf1wjIZ2q6+4A59p1ozpql+/vulIyAJo7gAAbmnTpk1q1aq1azxkyBA5HA6DiQAAAOxtxowZenvAANe4ZcuWBtMgK6G5AwC4yZ4ff1S9evV09sJ5hY/9j5IqPyYPL67BDwAAcDsxMTHq1KmT6RjIoqjUAQA3CQ0N1YULF1SlShXNmTdP3n5+piMBAADY1ldffaWmTZvK6XSqdevW/7wDkM5YuQMAuMnJkyf12GOPacWKFQoICDAdBwAAwJ4sS7t37VTTJo2UmJiokJAQTZjwkelUyIJo7gAAJEmXL19xbRctUlRr1qxR7ty5DSYCAACwt8OHD6psvjid+H6Zavz7RS1YsEBenpwgg3uP5g4AQFevXlWzZk1d45iYGD3wwAMGEwEAANjbyZMnFRIS4hovXrxE/v7+BhMhK6O5AwBZXEpKilq2bKlVa9fqvvDa2pFNKvnIv0zHAgAAsK2LFy+qdu3aOnTosGsuV86cBhMhq6O5AwBZmGVZevXVVxUZGSkfHx9FLFqoCpUqSdzyHAAA4JYSryYqNDRUO3fuVIH8+U3HASTR3AGALG3w4CGaNGmSHA6H5s2bp+rVq5uOBAAAYGvt2rXXhg0bFBgYqKioKNNxAEk0dwAgS/tgxAeSpE8//VSNGjUynAYAAMD+li9fLl9fX8XExKh8+fKm4wCSaO4AQJY3ePBgde7c2XQMAAAAt+Dh4aGIiAi98MILpqMALjR3ACCLWbdunWu7a5euevvttw2mAQAAsL8JH3/s2v7oo/Fq0KCBwTTAzWjuAEAWsnnzZoWFhytbcFW1nzZeI0aNlIOLJwMAANzW3Llz9Vr3HspWsoZGzd+odu06mI4E3ITmDgBkEfv271fdunUVHx+vqtWqadLUqfLw9DQdCwAAwLbWxq5V+/btJUmdu3TVG737cldR2BLNHQDIIkJDQ3Xu3DlVrlzZdetzAAAA3F7Llq2UnJysVq1aadSoUax4hm3R3AGALOL3339XqVKltHLlSmXLls10HAAAANtLSEhQ7dq1NX36dHl48Osz7IvvTgDIxK5ciXNtFy5cWGvXrlXevHkNJgIAALC3o8eOurYrV35Kixcvlre3t8FEwD+juQMAmdS1a9fUokVz1zg6OlpFihQxmAgAAMDezpw5o5CQENd4yZJIVjzDLdDcAYBMyOl0qk2bNlq+apUKNAzWNj+nHi1VynQsAAAA27p85Yrq1KmjXT/s0aPV2+u4iipPHlY8wz14mQ4AAEh/ffr01cKFC+Xt7a25EfNVqfJTpiMBAADYWvNmzbRt2zbly5dP0THLdf8DrHiG+2DlDgBkQhMnTZTD4dCcOXMUFBRkOg4AAIDtfbl+vbJnz67Vq1frkUceMR0HSBOaOwCQSY0fP15NmzY1HQMAAMC2LMtybXt7e2vZsmWqVKmSwUTAnaG5AwCZxNKly1zbb735lrp162YwDQAAgP39Z+hQ1/a0adNUo0YNg2mAO0dzBwAygc8++0wdOnZwjd9+u7/BNAAAAPY3YcIEDRs2zDUOb9jQYBrg7tDcAQA3t23bNjVo0EAXL19W60kfKuWZcnJ4epqOBQAAYFsLFixQ9+7dFZ+QqGGzvpQKPS05+PUY7ou7ZQGAGztw4BfVrl1bV65c0b///W9NnTFdnj4+pmMBAADY1ueff642bdrIsiy9+uqrevOttyWHw3Qs4K7QmgQAN1a/fn398ccfqlixopYtWyZfX1/TkQAAAGyteYvmSkpKUtOmTTV+/Hg5aOwgE6C5AwBu7Nhvx/Svf/1Lq1evVmBgoOk4AAAAthcXF6+aNWtq9uzZ8vDgV2JkDnwnA4CbiY9PcG0XKlRIsbGxyp8/v8FEAAAA9vbb77+5titWrKilS5fKh1PZkYnQ3AEAN5KUlKRWrVu5xjExMXrwwQcNJgIAALC3s2fPKjQ01DVeunSpsmfPbjARkP5o7gCAm3A6nerQoYOWRUcrX1iQNntdU+kyZUzHAgAAsK0rV66obt262r5jl/71QlsdS3lA+fKx4hmZD3fLAgA38dZbb2nu3Lny9PTU7Hlz9fSzVUxHAgAAsK1r166pUaNG2rJli/LkyaOo6BgVKVrMdCwgQ7ByBwDcxISPP5YkzZgxQ3Xq1DGcBgAAwL6cTqfatWuntWvXKiAgQCtXrlTp0qVNxwIyDM0dAHAjY8aMUevWrU3HAAAAsC3L6VTfPm8oOmqZvLy8FBkZqaefftp0LCBD0dwBABuLiVnu2u7du7d69eplMA0AAID9jRgxXKNeb6S4A59p7pzZCg4ONh0JyHA0dwDAptavX6927dq5xoPefddcGAAAADcwadIkvf/+YNe4aZMmBtMA9w7NHQCwoV27dikkJETnL11UswkjlPx0WTk8PU3HAgAAsK0lS5aoa9eupmMARnC3LACwobCwMF2+fFnVqlXTzDmz5eXrazoSAACAbX3xxRdq2bKlLMtShw4dTMcB7jlW7gCADZ0+c0aPP/64oqOj5efnZzoOAACAPVmWdmzfpubNmujatWsKDw/X2A8/NJ0KuOdo7gCATVy4cNG1/VDxh7RmzRrlzJnTYCIAAAB7O3DgZ1W476pO7YhWneBamjdvnjw5lR1ZEM0dALCBhIQENfnLBf9iYmJ03333GUwEAABgb8ePH1dISIhrHLFggXw5lR1ZFM0dADAsOTlZzZo107ovPtf9Teppd04vFS/xkOlYAAAAtnX+/HnVqlVLR48edc3lCAw0mAgwi+YOABhkWZZefvllxcTEyM/PTwuXLFbZxx+XHA7T0QAAAGwpPiFe9evX1549e1SwYEHTcQBboLkDAAYNfOcdzZgxQ56enlq4cKGqVq1qOhIAAICttW7dRps2bVKuXLkUHR1tOg5gCzR3AMCgD/97N4cpU6bccM44AAAAbm3NmjXy8/PTihUr9FiZMqbjALZAcwcADPvggw/Uvn170zEAAABsy7Is17anp6cWL16sZ5991mAiwF5o7gDAPbZ69RrXdo/u3dWnTx+DaQAAAOxv7Nixru2Jn36qevXqmQsD2BDNHQC4hzZu3KiGjRspW3BVvTxnooYMHSoHF08GAAC4renTp+v13n2UrWQNjVv8nVq0bGU6EmA7NHcA4B7ZvWeP6tWrp8TERFWvUUMff/qpPDw9TccCAACwrRUrV+ill16SJL3WvYd69OzFXUWBW6C5AwD3SFhYmC5evKjnnntOCxculLe3t+lIAAAAttamTVs5nU516NBBw4YNMx0HsC2aOwBwj5w8eVJly5ZVTEyMAgICTMcBAACwvatXryokJESTJk3iVHbgb9DcAYAMdOnSZdf2g0Uf1Jo1a5Q7d26DiQAAAOzt0OFDru1nn62iBQsWyMvLy2AiwP5o7gBABklMTFSzZk1d45iYGN1///0GEwEAANjbyZMnFRIS4hovWrRY/v7+BhMB7oHmDgBkgJSUFLVs2VKrY2NVsFEd7czu0MP/Kmk6FgAAgG1dvHRJwcHB+nHvfpWp2UknHcWUKxcrnoHUYG0bAGSAnj17aenSpfLx8VHEooV6vGJF05EAAABsrUmTxtq1a5fuu+8+RccsV8H7HzAdCXAb6bJy58KFC+lxGADINKbPmC4PDw9FREToxRdfNB0HgA1RPwHAjTZu3KQcOXJo9erVevjhh03HAdxKmps7H3zwgRYuXOgaN2nSRHnz5tUDDzygXbt2pWs4AHBnEydOVMOGDU3HAGAD1E8AcGuWZbm2fX19FR0drQoVKhhMBLinNDd3Jk6cqCJFikiS1q1bp3Xr1mn16tWqXbu2+vTpk+4BAcBdLPjLL26D3h2kl156yWAaAHZC/QQAt/buoEGu7ZkzZ+iFF14wlgVwZ2lu7pw8edJVnKxYsUJNmjRRUFCQ+vbtq61bt6Z7QABwB2vWrFHnzp1d49693zCYBoDdUD8BwM3GjBmj0aNHu8Yh9UP+5tEA/k6amzu5c+fWsWPHJF3/ZaZGjRqSri+nS0lJSd90AOAGNm/erPDwcF26ckUdpn8kZ5Xycnh6mo4FwEaonwDgRrNnz9Ybb7yh+IREjY7YJBV6WnJwM2fgTqX5blkNGzZUixYtVLJkSZ09e1a1a9eWJO3YsYOLXgHIcvbt36+6desqPj5ewcHBmjhlijy8vU3HAmAz1E8A8D8rV65Uhw4dJEm9evXS62/0kRwOw6kA95bm5s6HH36oYsWK6dixYxoxYoSyZ88uSTpx4oReeeWVdA8IAHYWEhKic+fO6emnn9aSJUvk4+NjOhIAG6J+AoDrNm3apMaNGyslJUWtW7fWqFGj5KCxA9y1NDd3vL291bt375vme/XqlS6BAMCdHD9+XKVLl9bKlSuVLVs203EA2BT1E4Asz7L044971KRxuBISElSnTh1NmzZNHh6cigWkhzv6lzRnzhw999xzuv/++/Xrr79KksaOHavo6Oh0DQcAdnTlSpxru3Dhwlq7dq3y5MljMBEAd0D9BCAr+/XXwyqT+5J+3xqp6i9W0+LFi+XNqexAuklzc+fTTz/V66+/rtq1a+vChQuuiwDmypVLY8eOTe98AGArV69eVYsWzV3jmJgYFS5c2GAiAO6A+glAVnb69GmFhPzvTliLFy9RQECAwURA5pPm5s5HH32kKVOm6O2335bnX+4GU6lSJe3evTtdwwGAnaSkpKht27ZavmqVCjQM1jY/px559FHTsQC4AeonAFnVpUuXVLt2bf3yy0HXXJ7cuQ0mAjKnNDd3Dh8+rAoVKtw07+vrq7i4uFvsAQCZQ+/efbRw4UJ5e3tr3oIIVar8FHd2AJAq1E8AsqKrV6+qQYMG2r59u/LlzWs6DpCppbm5U7x4ce3cufOm+TVr1qhUqVLpkQkAbGnylMlyOByaO3euatasaToOADdC/QQgq0lJSVGrVq30xRdfKHv27FoWtcx0JCBTS/Pdsl5//XW9+uqrSkxMlGVZ+u677xQREaFhw4Zp6tSpGZERAGxjwoQJatKkiekYANwM9ROArMRyOtWrZw+tWrlCPj4+ioqK0hMVnpBObDYdDci00tzc6dSpk/z9/TVgwADFx8erRYsWuv/++zVu3Dg1a9YsIzICgDGRkUsVfl9xSVL/t/rrlVdeMZwIgDuifgKQlQwZMljj32yu8W8217ItJ/Xvf/9bcqaYjgVkand0K/SWLVvqwIEDunLlik6ePKnffvtNHTt2TO9sAGDUunXr1LHT/3629e//lsE0ANwd9ROArOCjjz7S8OHDXeMGYWHmwgBZyB01d/4UEBCgAgUKpFcWALCN77/frgYNGuji5ctqM3msUp4pJ8df7nADAHeK+glAZhUREaHu3bubjgFkSWk+Lat48eJy/M3dYQ4dOnRXgQDADho0CFNcXJxq1KihKdOnydPHx3QkAG6M+glAZrd27Vq1adNGktSlS2fDaYCsJ83NnZ49e94wTkpK0o4dO7RmzRr16dMnvXIBgFFnz51TpUqVtHTpUvn6+pqOA8DNUT8ByLQsS1u3blGrli2UnJysZs2aaeSIkdKp70wnA7KUNDd3evToccv5jz/+WNu2bbvrQABgyrnz55Xnv9slHy6pVatWKTAw0GgmAJkD9ROAzGr//n168oEUndkVo5AuwzRr1ix5eNzV1T8A3IF0+1dXu3ZtRUZGptfhAOCeiouLU6PwRq5xTEyM8ufPbzARgKyA+gmAOzt27JhCQkJc4/nz58mHU9kBI9KtubNkyRLlyZPnnx8IADaTlJSkxo0b68uvNqhwsxDtzeunosUeNB0LQBZA/QTAXZ09e1ZBQUH6/fffXXPZs2U3mAjI2tJ8WlaFChVuuCCgZVk6efKkzpw5o08++SRdwwFARnM6nWrfvr1Wr14tf39/LV4aqdKPPWY6FoBMhvoJQGZy5coV1a1bV/v371fJh0uYjgNAd9DcCQsLu2Hs4eGh/Pnz64UXXtCjjz6aXrkA4J548803NW/ePHl5eSkyMlLPPPOM6UgAMiHqJwCZxbVr1xQeHq4tW7YoT548iomJkXTedCwgy0tzc+fdd9/NiBwAYMTH/33HfObMmapdu7bhNAAyK+onAG7PsuRMSdbLL3VUbGysAgICtGrVKj36yCPSic2m0wFZXqqaO5cuXUr1AXPkyHHHYQDAhLFjx6ply5amYwDIZKifAGQmljNFHqe+08yhXRQVFa2FixarcuXKkjPFdDQASmVzJ1euXDecJ34rlmXJ4XAoJYV/3ADsLTo6RqF5i0iS+vbpe9tbFAPA3aB+ApCZfDDiA73Z5gVJ0uTJk1WrVi2zgQDcIFXNnS+//DKjcwDAPfHll1+qSfNm8vLwUPt27fXRxxNMRwKQSVE/AcgsJk6cqMGDh7iaO00aNzYbCMBNUtXcqVatWkbnAIAMt3PnToWGhuratWuq17Chxk34SA4PD9OxAGRS1E8AMoMlS5bolVdekb+fr+koAP5Gmi+o/Kf4+HgdPXpU165du2G+XLlydx0KADJCWFiYLl++rBdffFHz5s2Tp6en6UgAshjqJwDu5PPPP1fLli1lWZY6duxoOg6Av5Hm5s6ZM2fUvn17rV69+pYf55xxAHZ15o8/VKFCBUVFRcnPz890HABZCPUTALdiWdq+fZtaNG+qa9euqVGjRvpwzBjp9FbTyQDcRprPR+jZs6cuXLigLVu2yN/fX2vWrNGsWbNUsmRJxcTEZERGALhjFy5cdG2XeKiEVq9ezV1pANxz1E8A3MmBAz/riYLXdGpHtOoE19LcuXNZ8QzYXJqbO1988YXGjBmjSpUqycPDQw8++KBatWqlESNGaNiwYRmREQDuSHx8vBr/5YJ/MTExuu+++wwmApBVUT8BcBe///67QkJCXOMFCxfK15fr7QB2l+bmTlxcnAoUKCBJyp07t86cOSNJKlu2rLZv356+6QDgDiUlJalp06b67MsvdH+Tetqdy1vFHipuOhaALIr6CYA7OHfunGrVqqWjR4+65gKzZzeYCEBqpbm588gjj+inn36SJJUvX16TJk3S77//rokTJ6pQoULpHhAA7sSr3bppxYoV8vPz06LIJSpbvrzkcJiOBSCLon4CYHfx8fGqX7++fvzxR34uAW4ozRdU7tGjh06cOCFJevfddxUcHKx58+bJx8dHM2fOTO98AHBH/rwb1qJFi/Tcc8+ZjgMgi6N+AmBnSUlJaty4sb755hvlypVL0dHRki6ZjgUgDdLc3GnVqpVru2LFivr111+1f/9+FS1aVPny5UvXcABwN6ZNm6b69eubjgEA1E8AbMuZkqKunV/W+i+/kL+/v1asWKEypUtLJzabjgYgDdJ8WtbGjRtvGAcEBOiJJ56gMAFg3Ny5c13bQ//zH7Vt29ZgGgD4H+onAHZkWZbe7v+Wpg7upLgDn2lp5GI9++yzpmMBuANpbu5Ur15dxYsXV//+/bV3796MyAQAaRYTE6NXXn3VNe7Ro4fBNABwI+onAHY0YsQIjf/oI9c4uFawwTQA7kaamzvHjx/XG2+8oQ0bNuixxx7T448/rpEjR+q3337LiHwA8I++/vprNW3aVJfj4tRl3mRZzz4ueaT5xxsAZBjqJwB2M23aNL355pumYwBIJ2n+7Sdfvnzq1q2bNm3apIMHD6px48aaNWuWihUrpurVq2dERgC4rd179qh+/fpKTExUSEiIJnzyiRxeXtwZC4CtUD8BsJOoqCi9/PLLkqQ33njDcBoA6eGu3touXry43nzzTQ0fPlxly5bVhg0b0isXAKRKaGioLl68qOeee04LFiyQl1earxMPAPcU9RMAkzZs2KBmzZrJ6XSqQ4cOem/QINORAKSDO27ubNq0Sa+88ooKFSqkFi1a6LHHHtPKlSvTMxsA/KNTp06pbNmyWr58ufz9/U3HAYC/Rf0EwBjL0g87d6hZ08a6evWqwsLCNGnSJDlY7QxkCml+i/utt97SggULdPz4cdWsWVPjxo1TaGioAgICMiIfANzk0qXLyvHf7QeLPqi1a9cqV65cJiMBwN+ifgJg2qFDv6hc/nid+H6ZgjsMUkRExPUVz84U09EApIM0N3e++uor9enTR02aNOH2nQDuucTERDVt2kSr3x4q6fpdsgoVKmQ4FQD8PeonACadOHFCISEh2hM7VZK0cOEi+fn5GU4FID2lubmzadOmjMgBAP8oOTlZLVq00Jp161Rwx06tXbtG5f9V0nQsAPhH1E8ATLlw4YJq166tw4ePuOZy5shx+x0AuCXuFQzAbfTo0VPLli2Tj4+PFixepPJPPMFdsQAAAG4jISFBISEh2rVrl+4rUMB0HAAZiOYOALcxc9ZMeXh4KCIiQi+88ILpOAAAALaVnJysZs2a6euvv1aOHDkUFRVlOhKADERzB4BbmThxoho2bGg6BgAAgG1ZTqe6vfqKPlsXK19fXy1fvlzlypUzHQtABqK5A8DWIhYscG2/N2iQXnrpJYNpAAAA7O+ddwZq4jttFXfgMy1ZvFDPP/+86UgAMhjNHQC2tWrVKnXp0sU1fuONNwymAQAAsL/Ro0drzJgxrnG9uvUMpgFwr6Tqblm5c+eWI5UXLT137txdBQIASfr222/VqFEjJSQkqOOMCZoyZYo8PD1NxwKAVKN+AnCvzZ49W71791aAP7c5B7KaVDV3xo4d69o+e/ashgwZolq1aumZZ56RdP2XsLVr12rgwIEZEhJA1vLjjz+qbt26SkhIUO3atTVxyhR5eHubjgUAaUL9BOBeWrFihTp06CBJ6tG9u+E0AO61VDV32rZt69oODw/X+++/r27durnmunfvrgkTJuizzz5Tr1690j8lgKzBsnT0yK8KCwnR+fPn9cwzz2jx4sXyprEDwA1RPwHIcJYlWU598+23aty4sVJSUtSmTRsNGTJEOvWd6XQA7qE0X3Nn7dq1Cg4Ovmk+ODhYn332WbqEApA1nTl9WkWP/qED0xeq4uOPa8WKFcqWLZvpWABw16ifAGQIyymd2KwqxRzycEh169bV1KlT5eHBpVWBrCbN/+rz5s2r6Ojom+ajo6OVN2/edAkFIOu5fPnyDbc4j46OVp48eQwmAoD0Q/0EICP8evRX1/YzzzytRYsWseIZyKJSdVrWX7333nvq1KmT1q9fr8qVK0uStmzZojVr1mjKlCnpHhBA5nf16lU1aNBA27dvd8098MADBhMBQPqifgKQ3k6fPq369evrhzWTJUmLFy9RQECA4VQATElzc6ddu3YqVaqUxo8fr6VLl0qSSpUqpY0bN7qKFQBIrZSUFLVu3Vqff/658ufh3WsAmRP1E4D0dOnSJdWuXVsHDx5yzeXOlctcIADGpbm5I0mVK1fWvHnz0jsLgCzGsix1797dddHkiAURpiMBQIahfgKQHhITExUWFqbt27frwSKFTccBYBN3dKWtgwcPasCAAWrRooVOnz4tSVq9erV+/PHHdA0HIJOyLCklRUMHD9Enn3wih8OhuXPn6t/Vq5tOBgAZhvoJwF2xLKUkXVOH9m315ZdfKnv27FoWtcx0KgA2kebmzoYNG1S2bFlt2bJFkZGRunLliiRp165devfdd9M9IIBMyOmUNu7Q29VqK8DPTx9//LGaNGliOhUAZBjqJwB3y3KmyPP0Vs0f1V25cuZQdHS0KjxewXQsADaR5ubOm2++qSFDhmjdunXy8fFxzVevXl2bN29O13AAMqclkZGu7f5v9VfXrl0NpgGAjEf9BOBuDR4yxLU9ffp0VWfFM4C/SHNzZ/fu3WrQoMFN8wUKFNAff/yRLqEAZF6xsbHq1KmTa9y//1sG0wDAvUH9BOBujB8/Xh988IFr3CAszFwYALaU5uZOrly5dOLEiZvmd+zYwa2LAfyt7777Tg0bNlRSUpJrzuFwGEwEAPcG9ROAO7Vw0SL16NHDdAwANpfm5k6zZs3Ur18/nTx5Ug6HQ06nU5s2bVLv3r3Vpk2bjMgIIBPYv3+/6tSpo7i4OC6cDCDLoX4CcKdefvllSVLXrl0MJwFgZ2lu7gwdOlSPPvqoihQpoitXrqh06dJ6/vnnVaVKFQ0YMCAjMgJwZ5al3349qtD69XX27Fk9+eSTmj+fW54DyFqonwDcqeTkZDVv3lwjPhhhOgoAG/NK6w4+Pj6aMmWKBg4cqD179ujKlSuqUKGCSpYsmRH5ALi5s3/8ocJHTuunqRGq8FpHrVq1StmzZzMdCwDuKeonAGmxb/9+lcp5fbtGjRqaOXOmPDzS/L48gCwkzc2dPxUtWlRFixZNzywAMpm4uDiFNwzX+iFjJEkxMTHKly+flJJiOBkAmEH9BOCfHD16VKGhofp5/SxJ0vz5867fZc9J/QTg9lLV3Hn99ddTfcAxY8bccRgAmce1a9cUHh6urdu2uuaKFClsMBEA3FvUTwDS6o8//lCtWrV04JeDqlj/VcXGrlPebIGmYwFwA6lq7uzYseOG8fbt25WcnKxHHnlEkvTzzz/L09NTFStWTP+EANyO0+lU+/bttXbtWuXLncd0HAAwgvoJQFpcibuiunXrav/+/SpSpIiiopcrb778pmMBcBOpau58+eWXru0xY8YoMDBQs2bNUu7cuSVJ58+fV/v27VW1atWMSQnAbViWpV69emn+/Pny8vLS/PnzTEcCACOonwCkRYsWLfXdd98pb968io2NVZEiRUxHAuBG0nxVrtGjR2vYsGGuwkSScufOrSFDhmj06NHpGg6Am7EsjRz+gaZOnixJmjVrlmrWrGk4FACYR/0E4J98/vnnypYtm1atWqVHH33UdBwAbibNzZ1Lly7pzJkzN82fOXNGly9fTpdQANzT9KnT1LdKDcWt+VoTxo9XixYtTEcCAFugfgJwK5Zluba9vb21dOlSPfXUUwYTAXBXaW7uNGjQQO3bt9fSpUv122+/6bffflNkZKQ6duyohg0bZkRGAG4gMjJSPXr2cI1ffeUVg2kAwF6onwDcygcjPnBtT5kyRUFBQQbTAHBnab4V+sSJE9W7d2+1aNFCSUlJ1w/i5aWOHTtq5MiR6R4QgP19+eWXatGihbw80twvBoAsgfoJwP/36aef6q3+AzR4sJ9Gjx6tLl26mo4EwI2lubkTEBCgTz75RCNHjtTBgwclSSVKlFC2bNnSPRwA+9u+fbtCQ0Ov3/q8SVPTcQDAlqifAPzV4sWL9eqrr0qSevfpqy5dWfEM4O6kubnzp2zZsqlcuXLpmQWAmzlw4ICCg4N1+fJlvfjii5o+fbq0ba/pWABgW9RPAD777DO1bNlSlmWpS5cuGjRokOlIADKBNDd34uLiNHz4cH3++ec6ffq0nE7nDR8/dOhQuoUDYFOWpRO//67QevV15swZPfHEE4qKipKfn6/pZABgS9RPAGRZ+v77rWrRvKmSkpLUqFEjTZgwQQ6Hw3QyAJlAmps7nTp10oYNG9S6dWsVKlSIH0ZAFnT+3DkVOnhSeyfPVblX2mn16tXKkSOHlJJiOhoA2BL1E4Cff/5JFQsl6fTOGNV7aYjmzp0rT09P07EAZBJpbu6sXr1aK1eu1LPPPpsReQDYXHx8vBo3aqzPBo2QJMXExKhAgQKGUwGAvVE/AVnb77//rpCQEO3/YoYkKWLBAvn6suIZQPpJ861tcufOrTx58mREFgA2l5SUpKZNm+rbzd+65ooVe9BgIgBwD9RPQNZ17tw5BQUF6dixY665wOzZDSYCkBmlubkzePBgvfPOO4qPj8+IPABsyul06qWXXtKKFSvk5+tnOg4AuBXqJyBriouLU7169bR3714VKlTIdBwAmViaT8saPXq0Dh48qPvuu0/FihWTt7f3DR/fvn17uoUDYB/9+vXTrFmz5OnpqTlz5piOAwBuhfoJyHqSkpLUuHFjffvtt8qdO7diYmIkXTQdC0AmlebmTlhYWAbEAGBblqWxY8bokwkTJEnTpk1TnTq1pY07DAcDAPdB/QRkLc6UFHXt/LI2rP9S/v7+WrFihUqXKiWd2Gw6GoBMKs3NnXfffTcjcgCwqTmzZqlnpWrqueZrjfv+K7Vt25a7YgFAGlE/AVmHZVl6661+mjq4k6YO7qTY3ZdUpUoVyUn9BCDjpPmaOwCyjpiYGL3arZtr3KNHD4NpAAAA7G/48OGaMOFj1zgoKMhgGgBZRZpX7nh4eMjhcNz24ym8ow9kCl999ZWaNm1KBxgA0gH1E5A1TJ06Vf3791eAPzefAHBvpbm5s2zZshvGSUlJ2rFjh2bNmqX33nsv3YIBMGfXrl0KCQlRYmKiGjcMNx0HANwe9ROQ+S1btkydO3eWJPXu3dtwGgBZTZqbO6GhoTfNNWrUSGXKlNHChQvVsWPHdAkGwADL0uGDh9QgNFQXL15U1apVNWvWLOn7faaTAYBbo34CMinLkiynvvr6azVv3lxOp1MdO3bUoHfflU5uMZ0OQBaSbmdcPP300/r888/T63AADDh14oSK/35eh2YtUeVKlRQTEyN/lhUDQIahfgLcnOWUTmzW8w97y9PDobCwME2cOPFvT8MEgIyQLs2dhIQEjR8/Xg888EB6HA6AARcvXlRYgwaucVRUlHLlymUuEABkctRPgPs7eOiQa7tq1ecUEREhL680nxwBAHctzT95cufOfUMn2rIsXb58WQEBAZo7d266hgNwbyQmJio0NFQ//PCDa65gwYIGEwFA5kL9BGQ+J06cUEhIiH5cN1WStHDhIvn5seIZgBlpbu6MHTv2hrGHh4fy58+vypUrK3fu3OmVC8A9kpycrObNm2vDhg0qmL+A6TgAkClRPwGZy4ULFxQcHKwjR4645nLmyGEuEIAsL83NnbZt22ZEDgAGWJalLl26KCoqSr6+vlq4aKHpSACQKVE/AZlHQkKCQkJC9MMPP6h4sQdNxwEASXfQ3JGud6qnTZumffuu30GnTJky6tChg3LmzJmu4QBkEMuSnE69++67mjZtmjw8PLRgwQI9X7WqtHGH6XQAkClRPwFuzrKUnHxNbVq30tdff60cOXIoOipKUpzpZACQ9gsqb9u2TSVKlNCHH36oc+fO6dy5cxozZoxKlCih7du3Z0RGAOnN6ZQ27tD7NcMU4OenyZMnKywszHQqAMi0qJ8A92c5U+R1epsWj3tdeXLn0vLly1W2bFnTsQBA0h00d3r16qWQkBAdOXJES5cu1dKlS3X48GHVq1dPPXv2zICIANJbRESEa/u9QYPUsWNHg2kAIPOjfgLc38B33nFtz549S88//7zBNABwoztaudOvX78bbvHn5eWlvn37atu2bekaDkD6W7lypTp36eIav/HGGwbTAEDWQP0EuLdRo0bpww8/dI3r1qlrMA0A3CzNzZ0cOXLo6NGjN80fO3ZMgYGB6RIKQMbYtGmTGjdurJSUFNfcX2/NCwDIGNRPgPuaNWuW+vTpYzoGAPytNDd3mjZtqo4dO2rhwoU6duyYjh07pgULFqhTp05q3rx5RmQEkA727NmjevXqKSEhQbVq1TIdBwCyFOonwD0tX77cdfp6jx49DKcBgNtL892yRo0aJYfDoTZt2ig5OVmS5O3tra5du2r48OHpHhDAXbIs/Xr4iMJCQnThwgVVqVJFc+fMlbbvN50MALIM6ifAzViWvvlmk9q1baOUlBS1bdtWQwYPlk59ZzoZANxSmps7Pj4+GjdunIYNG6aDBw9KkkqUKKGAgAAlJCSke0AAd+fM6dN68NhZ/TJjkZ7s9bKWL1+ugAB/07EAIEuhfgLcy+7dP6hKMYfO7l6hRt1Ha8qUKfLwSPNJDwBwz9zxT6iAgACVLVtWZcuWlaenp8aMGaPixYunZzYAd+ny5ctq0KCBaxwdHa08efIYTAQAWRv1E2B/hw8fVlhYmGs8e/YseXt7mwsEAKmQ6ubO1atX9dZbb6lSpUqqUqWKoqKiJEkzZsxQ8eLF9eGHH6pXr14ZlRNAGl29elVhYWHasWOHa+7+++83mAgAsh7qJ8C9nDp1SkFBQTp58qRrLsA/wGAiAEidVJ+W9c4772jSpEmqUaOGvvnmGzVu3Fjt27fX5s2bNWbMGDVu3Fienp4ZmRVAKqWkpKhVq1b64osvVCBvPtNxACDLon4C3MelS5dUu3Zt/fLLLyr16COm4wBAmqS6ubN48WLNnj1bISEh2rNnj8qVK6fk5GTt2rWLWykDNmJZll599VUtWbJEPj4+WrBwgelIAJBlUT8B7iExMVGhoaHasWOH8ufPr5iYGElnTMcCgFRL9WlZv/32mypWrChJeuyxx+Tr66tevXpRmAB2Yln6z/uDNWfWLDkcDs2dO1cvvvCC6VQAkGVRPwE2Z1lKSbqm9u3aaP369QoMDNSaNWv0cIkSppMBQJqkurmTkpIiHx8f19jLy0vZs2fPkFAA7szETz7VgBfqKG7N15r86UQ1btzYdCQAyNKonwB7s5wp8jy9VRGjeyhXzhyKiorSE088YToWAKRZqk/LsixL7dq1k6+vr6TrSxe7dOmibNmy3fC4pUuXpm9CAKkSERGh3n16q8vqryRJnTp1NJwIAED9BNjbe++/r0Ev15IkzZw5Q9WrVzecCADuTKqbO23btr1h3KpVq3QPA+DOrF27Vm3atJGPV6r/SQMA7gHqJ8C+xo4dq5EjR7qaO6EhoYYTAcCdS/VvgjNmzMjIHADu0JYtWxQeHq7k5GS1bNbMdBwAwF9QPwH2tGDhQvXq1UsB/n6mowBAukj1NXcA2M++fftUt25dxcXFKSgoSJMnTzEdCQAAwPY6d+4sSXr11VcMJwGA9EFzB3BHlqXffj2q0Pr1dfbsWT311FOKjIyUj4+36WQAAAC2l5ycrBYtWmj4sOGmowBAuqC5A7ihs3/8ocJHTuvnaQv0eNlyWrlyJXdfAQAA+Bt79+1zbdesWVMzZsyQhwe/DgHIHPhpBriZK1euKLxhuGscExOjfPnyGUwEAABgb7/++qtCQ/93weR58+bKx8fHYCIASF80dwA3cu3aNTVq1Ehbt211zRUpUthgIgAAAHs7c+aMgoKC9MvBQ6oU0k3n/B5RtmyBpmMBQLqiuQO4CafTqXbt2mnt2rUK8A8wHQcAAMD2Ll++rDp16ujnn39WkSJFFBW9XHny5pMcDtPRACBd0dwB3IBlWerRo4ciIiLk5eWl+fPnmY4EAABga1evXlXDhg21bds25c2bV7GxsSpcmBXPADInmjuA3VmWRgwbrulTp0qSZs+erZo1axoOBQAAYF8pycl6+aWO+mbTRmXLlk2rV6/Wo48+ajoWAGQYmjuAzU2bMlX9nq2puDVf6+OPPlLz5s1NRwIAALAty7LUu/frmjWsq+IOfKboqGV68sknTccCgAxFcwewsSVLlqhHzx6u8StduxpMAwAAYH/vv/++Jk+e4hr/u3p1g2kA4N6guQPY1Oeff66WLVvKsizTUQAAANzCJ598okGDBpmOAQD3HM0dwIa+//57hYWF6dq1awoLDTMdBwAAwPYWLVqkbt26SZL693/LcBoAuLdo7gB2Ylk6sP8nhYeF6cqVK6pevbqmT59uOhUAAIA9WZbkTNEXn3+mVq1aybIsde3aVf3f6m86GQDcUzR3ABs5/ttvKnnqso7MXaZnn3lGUVFR8vX1MR0LAADAniyndGKzqj/qL28vTzVu3FgfffSRHA6H6WQAcE/R3AFs4vz58woLC3ONly5dqsDAQHOBAAAAbO6nn392bVd/8UXNmTNHnp6eBhMBgBk0dwAbiI+PV7169fTj3r2uuQL58xtMBAAAYG+//fabQkNDXeP5ERHy9fU1mAgAzKG5AxiWlJSkJk2a6JtvvlGunLlMxwEAALC9s+fOqVatWjp27JhrLjB7doOJAMAsmjuAQU6nUx07dtTKlSvl7++vJUuWmI4EAABge40aNdLevXt1//33m44CALZAcwcwwbJkJSfr7TffdJ0bvnjxYj3zzNOmkwEAANjed999p9y5cys6Otp0FACwBZo7gAlOpxybdmpY3SYK8PPT9OnTVbduXdOpAAAAbMvpdLq2AwICtHLlSpUuVcpgIgCwD5o7gAGzZs12bQ8dOlRt2rQxmAYAAMDeLMtSvzf7ucbz5s7VM888YzARANgLzR3gHouKilK317q5xj26dzeYBgAAwP6GDRumUaM/VLaSNbTgq18VVCvYdCQAsBUv0wGArOSrr75Ss2bN5OlwmI4CAADgFqbPmK63335bkjR02HA1a97CcCIAsB9W7gD3yM6dO1W/fn1dvXpV9erWMx0HAADALfTo0VOS1L9/f/Xo0cNsGACwKZo7QEazLB068Isahobq0qVLev755zVz5kzTqQAAANyC0+nUSy+9pCFDhpiOAgC2RXMHyGCnTpzQQ8cv6NDsSFV+8knFxMTI39/PdCwAAADb2rlzp2s7JKS+Pv30Uzk4rR0AbovmDpCBLl68qNCwMNc4OipKOXPmNBcIAADA5g4cOKAGDRq4xjNmzJCnp6fBRABgfzR3gAySkJCgkJAQ7d692zV33333GUwEAABgb8ePH1dQUJCOHD2mKo3e0KXsZeTnF2A6FgDYHs0dIAMkJyerefPm+uqrr5QjMIfpOAAAALZ34cIFBQcH68iRI3r44Ye1LCpaOXLmkjgdCwD+Ec0dIJ1ZlqXOnTsrOjpavr6+WrR4kelIAAAAthYfH6/69etr9+7dKliwoGJjY1nxDABpQHMHSE+WpXcHDtSC+fPl4eGhhQsXqupzz5lOBQAAYE+WpaRriWrTupU2btyonDlzau3atSpevLjpZADgVmjuAOlo/Lhxer9mmOLWfK0ZU6cqNDTUdCQAAADbspwp8j7zvZaMf0N5cufS8uXLVa5cOdOxAMDt0NwB0sns2bP11ltvucZt2rQxmAYAAMD+Bgwc6NqePXuWqlatajANALgvmjtAOli5cqU6dOhgOgYAAIDbGDlypMaOHesa161T11wYAHBzNHeAu7Rp0yY1btxYKSkpatGihek4AAAAtjdz5kz17dvXdAwAyDRo7gB3Yffu3apXr54SEhJUt25dffLxx6YjAQAA2Nry5cvVqVMnSVLPnj3NhgGATILmDnAnLEu/HjqssJAQXbhwQVWqVNGiRYvk7e1tOhkAAIA9WZY2bfxa7dq2UUpKitq1a6chgwebTgUAmQLNHeAOnD51Sg8eO6uDMxfrySee0IoVKxQQEGA6FgAAgG3t3v2Dni3uobO7V6hxo3BNmTJFDofDdCwAyBRo7gBpdOnSJTVo0MA1joqKUu7cuQ0mAgAAsLdDhw4pNDTUNZ41a6a8vLwMJgKAzIXmDpAGiYmJatCggXbu3Omau//++80FAgAAsLlTp04pKChIp06dcs35+/kbTAQAmQ/NHSCVUlJS1KpVK33xxRfKni276TgAAAC2d/HiRQUHB+vgwYN68MEHTccBgEyL5g6QCpZl6ZVXXlFkZKR8fHy0cNFC05EAAABsLTExUaGhodq5c6cKFCig5cuXm44EAJkWzR3gn1iWBg96T3Nnz5bD4dD8+fP1QrVqplMBAADYVnJSktq1baOt321RYGCg1qxZoxIPPWQ6FgBkWlzFDPgHn3z8sd6pXk/vVK+naT/tUHh4uJSSYjoWAACALVmWpR49umvBmB7SmB766pckVahQQXJSPwFARmHlDvA35s+frz59+rjGHTt2MJgGAADA/t5++23NnDnTNX6+alVzYQAgi6C5A9zGmjVr1LZtW9MxAAAA3MaHH36oYcOGmY4BAFkOzR3gFrZs2aLw8HAlJyerSePGpuMAAADY3ty5c/X6669Lkt57b5DZMACQxdDcAf7KsrR/7141atBA8fHxqlWrliZNmmw6FQAAgD1ZluRM0do1q9S+fXtJUs+ePfXG628YDgYAWQvNHeAvfjt6TI+eidexiBhVe67qf2997m06FgAAgD1ZTunEZtUqm1M+3l5q2bKlRo8eLYfDYToZAGQpNHeA//rjjz8UEhLiGkcujVS2bNkMJgIAALC3vfv2ubaDgoI0Y8YMeXjwKwYA3Gv85AUkXblyRXXr1tVPP//kmsubJ4/BRAAAAPb266+/3vDG2Ny5c+TtzYpnADCB5g6yvGvXrik8PFzfffcdDR0AAIBUOHPmjIKCgnTixAnXXLYAVjwDgCk0d5ClOZ1OtW3bVrGxscqWLZuWLl1mOhIAAICtXb58WXXq1NHPP/+sIkWKmI4DABDNHWRVliUrOVl9Xn9DCxYskLe3t5YuXapKlSqaTgYAAGBPlqWrifFq3rSJtm3bpnz58ikmJsZ0KgCAaO4gq3I65di0U6MbtFQ2f3/NmTNHQUFBplMBAADYVkpyknzP7tCKKQNUIH9erV69Wv8qWdJ0LACAaO4gi5o6dZpre9TIUWratKnBNAAAAPZmWZbe6P2GaxwRsUCVKlUymAgA8Fc0d5DlLF68WD179XSNu3TpbC4MAACAG3jvvfc0ZcpU17j6iy8aTAMA+P9o7iBL+eyzz9SyZUtZlmU6CgAAgFuYMGGC3nvvPdMxAAB/g+YOsoxt27apQYMGSkpKUsMGDU3HAQAAsL0FCxaoe/fukqQBA942nAYAcDs0d5D5WZZ+3rdf4WFhunLliv79739r6tSp/7wfAABAVmVZ+nxdrLp0flmWZalbt256s9+bplMBAG6D5g4yveO//aZ/nb6iX+dF6dlnntGyZcvk6+tjOhYAAIBtbdv2nf5dOpsu7F2ttm1aady4cXI4HKZjAQBug+YOMrVz584pNDTUNV62bJkCAwMNJgIAALC3/fv3q2HD/53CPnnyZHl48GsDANgZP6WRacXHx6tevXrau2+fay5/vnwGEwEAANjbb7/9pqCgIJ09e8415+PNimcAsDuaO8iUkpKS1LhxY3377bfKnSu36TgAAAC2d/bsWQUFBenYsWP6179Kmo4DAEgDmjvIdJxOpzp06KBVq1bJ399fS5YsMR0JAADA1uLi4lSvXj3t27dPDzzwgGJiYkxHAgCkAc0dZCqW06n+/fpp6ZIl8vT01JIlS/T005VNxwIAALAny9K1qwlq0byZNm/erNy5cys2NlZFChcxnQwAkAY0d5CpjBk1SsPrNVXcmq81Z9Ys1alTx3QkAAAA23KmJMvnj+2K/vRN5cubR6tWrVLp0qVNxwIApBHNHWQaU6dO1TvvvusaN2/WzGAaAAAAe7MsS/3e7Ocaz583T08//bTBRACAO0VzB5lCVFSUOnfubDoGAACA2xg6dKg++eRT17hmzZoG0wAA7gbNHbi9DRs2qFmzZnI6nWrbtq3pOAAAALY3efJkDRgwwHQMAEA6obkDt7Zjxw6FhITo6tWrCgsL0/hx40xHAgAAsLXIyEh17dpVktS3b1/DaQAA6YHmDtyTZengzwfUMDRUly5dUrVq1RQRESEvLy/TyQAAAOzJsrT+yy/UqWMHOZ1Ovfzyy3pn4EDTqQAA6YDmDtzSyePHVeLERR2es1RPP/WUoqOj5efnZzoWAACAbe3csV0v/MtX539cpebNmuiTTz6Rw+EwHQsAkA5o7sDtXLhwQWENGrjGUcuWKWfOnAYTAQAA2NuBAwcUFhbmGk+fPl2enp7mAgEA0hXNHbiVhIQEhYaGavfu3a65++67z2AiAAAAezt+/LiCgoJ05o8/XHN+vqx4BoDMhOYO3EZycrKaNWumr776SjkCc5iOAwAAYHvnz59XrVq1dOTIEZUo8ZDpOACADEJzB27Bsiy9/PLLiomJka+vrxYvXmw6EgAAgK3Fx8erfv362rNnjwoVKqSYmBjTkQAAGYTmDuzPsvTOgAFaGBEhDw8PLVy4UM8996zpVAAAALaVdO2aWrdqqR3bv1euXLm0du1aFXuwmOlYAIAMwn2jYXvjxo7V4KAGGhzUQLMP7VZoaKiUkmI6FgAAgC05nU698kpXRX7UW1JvfXPEUtmyZSUn9RMAZFas3IGtzZ49W/3793eN27RpYzANAACAvVmWpT59+mj+/PmuuSrPPGMwEQDgXqC5A9tasWKFOnToYDoGAACA2xg5cqTGjBljOgYA4B6juQNb2rhxoxo3bqyUlBS1aNHCdBwAAADbmz59uvr16ydJGjp0qOE0AIB7ieYO7MWytHvXLjUJb6TExETVq1dPn3z8selUAAAA9mRZkjNFy2Oi9NJLL0mS+vbtqx7duxsOBgC4l2juwFaOHDqssheSdHzRCv37hRe1cOFCeXt7m44FAABgT5ZTOrFZ9Svml5+vj9q3b6/hw4ebTgUAuMdo7sA2Tp06pZCQENd48ZLFCggIMJgIAADA3n744QfXdt26dTV58mQ5HA6DiQAAJtDcgS1cunRJtWvX1sFDB11zuXPlMhcIAADA5g4ePKiwsDDXeNasmfLy8jIXCABgDM0dGJeYmKiwsDDt2LFD+fPlMx0HAADA9k6ePKmgoCCdOn3aNefv528wEQDAJJo7MColJUUtW7bUl19+qcDAQEVFRZmOBAAAYGsXL15UcHCwDh06pGLFipmOAwCwAZo7MMOyZCUnq0e317R06VL5+PgoOjpajz/+uOlkAAAA9mRZSkyIU5PG4dq1a5cKFCigmJgY06kAADZAcwdmOJ1ybNqpCc06KHtAgCIiIvTiiy+aTgUAAGBbycnX5Hdup9bOeE8F78uvNWvWqMRDD5mOBQCwAZo7MOLjTz5xbY8bO04NGzY0mAYAAMDeLMtS9+49XOOFCxepQoUKBhMBAOyE5g7uuXnz5qlv376ucYcO7Q2mAQAAsL+3335bs2bNco2fr1rVYBoAgN3Q3ME9tXr1arVr1850DAAAALfx4YcfatiwYaZjAABsjOYO7plvv/1W4eHhSk5OVtMmTUzHAQAAsL05c+bo9ddflyS9//57htMAAOyK5g4ynmVp7549atwwXAkJCQoODtbEiZNMpwIAALAvy9Ka1Sv16itdJUm9evXS671eNxwKAGBXNHeQ4Y79elSlzybqtwUxqvZcVS1ZskQ+Pt6mYwEAANjW5s3fKLhcLl3av1Yd27fTqFGj5HA4TMcCANgUzR1kqD/++EMhISGuceTSSGXLls1gIgAAAHvbs2ePwsPDXeNPJ34qDw/KdgDA7fG/BDLMlStXVKdOHf184GfXXN48eQwmAgAAsLcjR46oVq1aunDhomvO24sVzwCAv0dzBxni2rVratiwobZu3UpDBwAAIBVOnz6toKAgHT9+XKVLlTIdBwDgRmjuIN2lpKSoTZs2WrdunbJly6alS5eZjgQAAGBrly9fVp06dXTgwAEVLVpU0THRpiMBANwIzR2kK8vpVJ/X39Dy6Gh5e3tr2bJlqlSpoulYAAAA9mRZupoYr2ZNGuv7779Xvnz5FBsbq/sL3W86GQDAjdDcQboaPnSYxjRspbg1X2v+3LmqWbOm6UgAAAC2lZKcJN+zO7Ry6kAVyJ9Xq1ev1iOPPGI6FgDAzdDcQbr59NNPNeQ/Q1zjRn+5ywMAAABuZFmWer3+umscEbFAlSpVMpgIAOCuaO4gXSxatEivvvqq6RgAAABuY9CgQZo2bZprXP3FFw2mAQC4M5o7uGufffaZWrVqJcuy9FKnl0zHAQAAsL0JEybo/fffNx0DAJBJ0NzBXdm6davCwsKUlJSkxo0ba/ToUaYjAQAA2FpERIS6d+8uSRo4cIDhNACAzIDmDu6MZemnffsUHhamuLg41ahRQ3PmzJGnp6fpZAAAAPZkWfosdq26dH5ZlmWpW7du6te3n+lUAIBMgOYO7sjvx47pkdNxOjo/Ws9VqaKlS5fK19fXdCwAAADb2rp1i2qUya6L+9aobZtWGjdunBwOh+lYAIBMgOYO0uzcuXMKDQ11jZcuXarAwECDiQAAAOxt3759atiwoWs8efJkeXhQigMA0gf/oyBN4uLiVLduXe3bv981lz9fPoOJAAAA7O3YsWMKCgrSuXPnXXM+3j4GEwEAMhuaO0i1pKQkNWrUSJs3b1buXLlNxwEAALC9P/74Q0FBQfrtt9/0yCP/Mh0HAJBJ0dxBqjidTrVv315r1qyRv7+/IiMjTUcCAACwtStXrqhu3brav3+/ChcurOjoaNORAACZFM0d/CPL6dRbfftqWWSkvLy8FBkZqcqVnzIdCwAAwLauXb2qFs2bac/uH5QnTx7FxsaqSOEipmMBADIpL9MBYH+jR47UB/Wb6YP6zbTg959Vu3ZtKSXFdCwAAABbcjqdevnlToqZ+Jakt7T1d0+VKlVKclI/AQAyBit38LemTJmidwcNco2bNW1qLgwAAIDNWZalHj16aPHiJa65Jys9aTARACAroLmD21q6dKm6dOliOgYAAIDb+M9//qMJEyaYjgEAyGJo7uCWvvzySzVv3vz6hZTbtTcdBwAAwPYmTpyogQMHSpJGjhxpOA0AICuhuYMbWZZ2bd+u5k2a6tq1a2rYsKHGjRtrOhUAAIA9WZbkTNGypZF65ZVXJEkDBgzQK127Gg4GAMhKaO7gBr/8fEDlLzt1cskqBdesqXnz5snT09N0LAAAAHuynNKJzWpQuaD8/Xz18ssv6/333zedCgCQxdDcgcuJEycUGhrqGi9cuEh+fn4GEwEAANjbjp07XNthYaH65JNP5HA4DCYCAGRFNHcgSbpw4YJq1aqlI78ecc3lyBFoLhAAAIDN/fzzz2oQ1sA1njZtGiueAQBG0NyBEhISVL9+fe3evVv33Xef6TgAAAC2d/z4cQUFBenMH3+45vx8WfEMADCD5k4Wl5ycrKZNm2rjxo3KmTOnoqOjTUcCAACwtfPnz6tWrVr69ddf9fDDJUzHAQCA5k6WZVmykpP1ateuWr58ufz8/LR8+XKVfewx08kAAADsybIUH3dZjcIbaM+ePSpUqJBiYmJMpwIAgOZOluV0yrFppya16qzAbNm0aNEiVa1a1XQqAAAA20pKuqqACz/o8zn/0f2F7lNsbKweLPqg6VgAANDcyarGjh3r2v54wgTVr1/fXBgAAACbczqd6tr1Fdd4yZJIPcaKZwCATdDcyYJmzpyptwcMcI1bt25tMA0AAIC9WZal3r17KyIiwjX3zNNPG0wEAMCNaO5kMcuXL1enTp1MxwAAAHAbI0aM0Icffmg6BgAAt0VzJwv5+uuv1aRJE6WkpKhVq1am4wAAANjetGnT9Oabb0qShg0bZjgNAAC3RnMnK7As7d61S00bNVZiYqLq16+vjydMMJ0KAADAvixLy2Oi1LNHd0nSm2++qe6vvWY4FAAAt0ZzJws4cuiwyl5I0vFFK1TjxepauHChvLy8TMcCAACwra+//kr1K+bX5Z9i1aXzyxo6dKjpSAAA3BbNnUzu1KlTN9wJa/HixfL39zeYCAAAwN527typJk0au8YffTReDofDYCIAAP4eyzcysYsXLyo4OFiHDh9yzeXKldNgIgAAAHs7ePCggoODdfnSZdeclyclMwDA3li5k0klJiYqLCxMO3fuVIH8+U3HAQAAsL2TJ08qKChIp06dUtmyZU3HAQAg1WjuZEIpKSlq0aKF1q9fr8DAQC1btsx0JAAAAFu7cOHC9RXPhw7poYceUnRUlOlIAACkGs2dTMZyOtX91W5au3q1fHx8FB0drccff9x0LAAAAHuyLCXEX1HTJo20a9cu3XfffYqNjdV9991nOhkAAKlGcyeTeW/QIH3cvKPi1nytRREL9OKLL5qOBAAAYFvJydfkf36X1s54TwXvy681a9aoRIkSpmMBAJAmNHcykbFjx2rkyJGucWhoiME0AAAA9mZZll57rbtrvGjRYlY8AwDcEs2dTGLevHnq1auX6RgAAABuo3///po9e7ZrXPW55wymAQDgztHcyQRWr16tdu3aSZJefeUVs2EAAADcwJgxYzR8+HDTMQAASBc0d9zct99+q/DwcCUnJ6tFixYUKQAAAP9g9uzZeuONNyRJg99/33AaAADuHs0dd2VZ2rtnjxo3DFdCQoKCg4M1Y8YMeXjwkgIAANySZWnN6pXq9ur1lc6vv/46p7UDADIFOgFu6uiRX1X6bKJ+WxCjF6o+ryVLlsjHx8d0LAAAANv69ttvFFwuly7tX6tOHTto5MiRcjgcpmMBAHDXaO64oTNnzigk5H93wloSuUTZsmUzmAgAAMDedu/erUaNwl3jTz75mBXPAIBMw8t0AKTN5cv/196dxzdV5f8ffwe6QIGyQ1soYKHs5VEUlWX4iSPSIlpQhFIq4saibCogqMO0gKAgCGXkyww4wPidsskiIFhZfjKDFGRQwQWEAmVTFlFoWSwt7fn+UY12aKFp09ykfT0fjzzMPbkn552TlHw8uTe5pAceeEAph1PsbTVr1LAwEQAAgHs7duyYIiIilHYxzd7m7eVtYSIAAJyLjys8yLVr1/Twww9rz549qlWzptVxAAAA3N65c+d0//336/Tp02rVsqXVcQAAKBEs7niI7OxsDRgwQFu3blWlSpW0evUaqyMBAAC4tfT0dHXv3l2HDx9Ww4YN9f7a962OBABAiWBxxwOYnBy9OOp5bVi/Xt7e3nr//fd1xx23Wx0LAADAbV3LyFC/6D769sB+1a5dW5s2bVJQYJDVsQAAKBF8544HmPraFCX0GaiEPgO16myqunbtKmVnWx0LAADALWVnZ+upp57Qxnf+LEn64qyvmjZtKuVQPwEASieO3HFzc+fO1dTXp9q3e/d+xMI0AAAA7s0Yo2HDhun999fa29qGt7UwEQAAJY/FHTe2fPlyjRgxwuoYAAAAHiMuLk5/+9vfZLPZrI4CAIDLsLjjpjZv3qwBAwbIGKMhg4dYHQcAAMDtzZkzR5MnT5YkJSTMtjYMAAAuxOKOuzFGn+3+j2L7xSgrK0vR0dGaMeNNq1MBAAC4J2OknGwtX7ZUo0aNkiRNnjxZTz/1tMXBAABwHRZ33MzBb7/VHT/bdG51kh564AG9++67KleOpwkAACBfJkc6vUvRnRvIr2IFjRgxQq+++qrVqQAAcClWDdzIqVOnFBUVZd9OTFwiHx8fCxMBAAC4t//s+Y/9et8+fTR79my+bwcAUOawuOMmfvzxR3Xr1k2nTp2yt1WpUtnCRAAAAO5t//79euSR335J9G/z/8YRzwCAMol3Pzdw5coVPfjggzpw4ICCgoKsjgMAAOD2Tpw4oYiICP300wV7m483RzwDAMomFncslpmZqUcffVS7du1S9erVtW7dOqsjAQAAuLXz588rIiJCp06dUvPmzayOAwCA5VjcsYoxysnK0tBBg5SUlCQ/Pz9t2LBBLZo3tzoZAACAezJGly+lqfcjD+vbb79V/fr1tXbtWqtTAQBgORZ3LGKys1UueZ8WPjVC/pUra9WqVerQoYPVsQAAANxWZmaGKqd/rX8tfUPB9YO0adMm1a9X3+pYAABYjsUdi8yYMdN+ff78+YqMjLQwDQAAgHvLycnRoEGD7NurVq1SixYtLEwEAID7YHHHAgsWLFD8xHj7dnTfvtaFAQAAcHPGGI0aNUorV66yt93Z7k4LEwEA4F5Y3HGx1atXa+jQoVbHAAAA8BiTJ0/W22+/LZvNZnUUAADcEos7LvTxxx8rJiZGOTk5eurJp6yOAwAA4PbmzZunuLg4SdKMGTMsTgMAgHuydHEnPj5eNpstz6V5afy1KGO097PPFNM3WpmZmXrkkUc0e/Ysq1MBAAAPVJbqp9WrVmrsmNGSpD//+c8aOmSIxaEAAHBPXlYHaNWqlbZs2WLf9vKyPJLTHT6UovDLRmdWbtQDU19VYmKiypcvb3UsAADgocpC/fTxx/9fj7QP1COHNmvUtKWKj4+XTI7VsQAAcEuWn5bl5eWlgIAA+6VWrVqO38mVK7n/NUa6dEnaufO3toLai7tvIft///33ioqKkjIypAPfaNnCRapQoULuvr+06erVvI8nv/bCttGf/qWxPwAgD6fUT1m/q2kyL0k/7PytzREF9c+vvZBte/bsUb9+0VJ2hpS+X29Ne+2379v5pU3Xf/c+kV+bI/vS3z37F5Yj4xe3f0k8fkeU1Pie8lwXxJVjuWp8V/6tuGr84iru33ppZywUFxdn/Pz8TGBgoLnttttM//79zfHjxwvcPyMjw6SlpdkvJ0+eNJJMWkiIMVeuGJOebkz9YGMkY0JDc9uMyb+9uPsWov/1kBDTrmVLU9PX15Lx6U//UtEfQKmQlpaW+56dlmZ1FI/ntPppaYgxWVeMuZZuzOr6xiTKmLWhuW2OKKh/fu2FaDu0f6+pVauWqVnVt0j9izs+/d2kf0m8/lzw+nW4f3EfqzPG95Tn2hnzUhKsfq6Lc5+uHL+4ivu37qEcqZ8sPXLn7rvv1uLFi5WUlKR58+YpNTVVnTt31qVLl/Ld//XXX1fVqlXtl+Dg4Nwbjh6Vvv4693LqZG5bSkrutpR/e3H3LUT/8kePyrZ/vzrXqGHJ+PSnf6noDwDIw2n10+Wj0sWvpbSvpZ9P/dKWktvmiIL659deiLYxgyJ1/vx5PXxvaJH6F3d8+rtJ/8JyZPzi9i+Jx1/cx+qM8T3luXbGvJQEq5/r4tynK8cvruL+rZcBli7udO/eXX369FGbNm0UERGhjRs36uLFi1qxYkW++7/88stKS0uzX06e/OV/AkNCpNatcy/1fylYQkNzt6X824u7byH6p9hsOlW1qiavWZO7z+/3bdPmxjYp//bCttGf/qWxPwAgD6fVT5VDpGqtpaqtpYr1f2kLzW1zREH982u/Rdvxn3y1+T9n1LRpU039n/W5+0hSlV/2rdamcG1S4felv3v2LyxHxi9u/5J4/MV9rM4Y31Oea2fMS0mw+rkuzn26cvziKu7felnggiOJHNKuXTszfvz4Qu1rP0Tp1KnchuvXjUnabsy8xbmnd/wqv/bi7ltA/5ysLHt7Pf+qZvv27bk3XLlizKef5j3NJL82R/alP/3LSn8AHo/TskpWkeqnH36pn7KvG3N8izH75+ce3u6ogvrn136LtppVfU1QUJBJTU3NvS3rijE/fJr3MPvCttHf8/sXliPjF7d/STx+R5TU+J7yXBfElWO5anxX/q24avziKu7fugdypH6yGWOMtctLv7l8+bIaNGig+Ph4jRw58pb7p6enq2rVqkr76Sf5V68uZWdLn3yRe+Mf2kq//iJVfu3F3beA/q+MH6+p3R+VJH146ay6P9ijWHMCAEBpYH/PTkuTv7+/1XFKlSLXTxd+kn+16lJOtnR6V+6Nge2lcg7+omdB/fNrz6ctKzND3j98Jkmqf9ejSvpos1pz5CYAAA7VT5aeljVmzBj961//0rFjx5ScnKyHH35Y5cuXV0xMjJWxiuzNN99UQkKCfbt790gL0wAAgNKoNNVPOTk5enbos/btlStXsrADAEARWLq4c+rUKcXExKhZs2bq27evatasqV27dql27dpWxiqSRYsW6aWXXtLVjAwlfL4992iecpb/0jwAAChlSkv9ZIzRmDFj9PdFi+XfPEIffZWm9u07Wh0LAACP5GXl4MuWLbNyeKfZsGGjBg0aJEl66aWXNOqFFyxOBAAASqvSUj+9NestzZo1S5I093/mKSLyAYsTAQDguTi0xAkef/xxZWdn68knn9Qbb7xhdRwAAAC39+c/x0mS3nrrLQ0YMMDiNAAAeDYWd5wg41qGoqKiNH/+fNlsNqvjAAAAeITx48frBY54BgCg2FjcKaLU1GP26506dtKyZcvk5WXpWW4AAABu7d/bt9uvDxw4UFOnTrUwDQAApQeLO0Vw5swZRUVF2bdXrFihihUrWpgIAADAvX3xxRfq27ePfXvOnASOeAYAwElY3HFQWlq6unfvrq8P7FerIQN0pkmgqtWobnUsAAAAt3Xk6FFFRkbq7LnzinwqXhk1wuXl5WN1LAAASg3OI3JQdHS09u7dqzp16mjtB+sVUK+e1ZEAAADcWlRUlM6dO6fw8HAtX7FSFSpWsjoSAAClCkfuOGj7J9vl7++vpKQkNWnSxOo4AAAAbu/YsWNq3LixkpKSVLVqVavjAABQ6rC4UwjGGPt1Xx9frV27Vm3btrUwEQAAgHv7OeNn+/W6detq06ZNqlu3roWJAAAovVjcKYT4iRPt1xcvXqwuXbpYFwYAAMDNXb9+XQMHPmHfXrt2rUJCQqwLBABAKcfizi3MmjVLM2bMsG9HRT1kYRoAAAD3ZozRoEGDtGHDBntbWOvWFiYCAKD0Y3HnJpYuXaoXX3xRVzMyNGPXVukPbaVyTBkAAEBBxo8fr8WLF+taZpY2fPGjFNheslE/AQBQkvi1rJsYMnSoJOn555/X6Jdekmw2ixMBAAC4r4SEBE2fPl2StGDBAvV4MMriRAAAlA18jHIT2dnZeuyxxzRz5kzZWNgBAAC4qVdefVWSNG3aND355JMWpwEAoOxgcee/fLN/v/16t27dtHDhQpXjVCwAAIBCGT16tMaOHWt1DAAAyhRWLX7n+PHj6tmzp337n//7T3l7e1uYCAAAwL0l79xpv96/f39Nnz6dI54BAHAxvnPnFz/88IO6deumI6mpavf8IG3avFk1qlS2OhYAAIDb+vLLL/VAjweVlXlNkZGRWrZsOUc8AwBgAd59JV26dFndu3fXoUOH1KBBA72/fr1q1KrFFygDAAAUIDU1VZGRkUpLS1Pb2+/Q//4zUd4+PlbHAgCgTGJxR1JMTD999tlnqlWrljZt2qT69etbHQkAAMBtnT17Vt26ddPp06cVFham9evXy8/Pz+pYAACUWZyWJenjbdtUuXJlffjhh2rWrJnVcQAAANyTMUpPT9PDvXrq8OHDatSokZKSklS9enWrkwEAUKaV2SN3jDH2697e3lqzZo3atWtnYSIAAAD3lpFxVf6Xv1Hyyplq1CBYmzZtUlBQkNWxAAAo88rs4s6UKVPt1//+zt/VtWtXC9MAAAC4t+zsbD311FP27TVr1ig0NNTCRAAA4FdlcnHn7bff1oT4OFWK7KwFBz5T7z6PWh0JAADAbRlj9Nxzz2nt2nX2tvDwcOsCAQCAPMrc4s57K1dq5MiRkqRxL7+sQUOH8KtYAAAANzFhwgTNnz+fnzkHAMBNlbl36EGDBskYo2HDhmnChAlWxwEAAHBrCQkJmjJliiRpzpwEi9MAAID8lLnFnaysLEVHR2vOnDmyccQOAABA/ozRsqVL9MrL4yVJU6ZM0ZNPPGlxKAAAkJ8ysbjz7cGD9uv33Xef3n33XQ4rBgAAuInNmz5Sv//XUFdStmjsmBf18ssvWx0JAAAUoNSvcJw8eVI9e/a0by9JXCIfHx8LEwEAALi3nTt3qn9srH37jdff4IhnAADcWKle3Pnxxx8VERGhQ4cPq+2Ip3W+RQNV9q9idSwAAAC39c0336hHjx66evWqvY0jngEAcG+l9p36ypWr6tGjhw4cOKD69etr7QfrVatOHX4ZCwAAoAAnT51URESELly4oDvvvNPqOAAAoJBK7eJO/9j++vTTT1WjRg199NFHatCggdWRAAAA3FpUVJS+++47tWjRQqtWrbI6DgAAKKRSu7izZcsW+fn5acOGDWrZsqXVcQAAANzeoUMpCg4O1kcffaSaNWpYHQcAABRSqVrcMcbYr3t5eWnVqlVq3769hYkAAADc27XMa/brNWvW0KZNmxQcHGxhIgAA4KhStbjz5psz7Nfnz5+vyMhIC9MAAAC4t+zsbA0ePNi+vXr1ajVv3tzCRAAAoChKzeLO/PnzNe6Vl1UpsrP+56tdiu7Xz+pIAAAAbssYo1GjRund/01UtZbdtfXAVbVrd5fVsQAAQBF4WR3AGT74YIOeffZZSdKLY8boueHDLU4EAADg3ma+NVNz586VzWbT3+Yv0H1d77c6EgAAKKJSceTOc8OeU05OjoYMGaJJkyZZHQcAAMDtzZgxU5L0l7/8RdHR0RanAQAAxVEqFncyMzPVu3dv+6dPAAAAuLW4uDgNGzbM6hgAAKCYPPq0rF9/Hat9+/aaN2+erly5YnEiAACQn/T0dEl5f9kS1vj1OYiJidELL7xgf25ukJMtXfqltqqULpUrn38bAAAoEY7UTzbjwVXWqVOn+KlOAAA8yMmTJ1W/fn2rY5Rp1E8AAHiWwtRPHr24k5OTo++//15VqlRx29Ox0tPTFRwcrJMnT8rf39/qOB6LeXQe5tI5mEfnYB6dwxPm0RijS5cuKSgoSOXKlYqzwj0W9VPZwTw6B/PoPMylczCPzuEJ8+hI/eTRp2WVK1fOYz798/f3d9sXjCdhHp2HuXQO5tE5mEfncPd5rFq1qtURIOqnsoh5dA7m0XmYS+dgHp3D3eexsPUTH50BAAAAAAB4MBZ3AAAAAAAAPBiLOyXM19dXcXFx8vX1tTqKR2MenYe5dA7m0TmYR+dgHlHa8Jp2DubROZhH52EunYN5dI7SNo8e/YXKAAAAAAAAZR1H7gAAAAAAAHgwFncAAAAAAAA8GIs7AAAAAAAAHozFHQAAAAAAAA/G4k4xxMfHy2az5bk0b978pn3ee+89NW/eXBUqVFBYWJg2btzoorTuzdG5XLBggTp37qzq1aurevXq6tq1q3bv3u3CxO6pKK/JXy1btkw2m029evUq2ZAeoCjzePHiRQ0bNkyBgYHy9fVV06ZNy/zfd1Hmcfbs2WrWrJkqVqyo4OBgvfDCC8rIyHBRYvf13Xff6bHHHlPNmjVVsWJFhYWFac+ePTfts23bNt1+++3y9fVVkyZNtHjxYteEBW6B+sk5qJ2ch/rJOaifnIP6yXnKWv3kZXUAT9eqVStt2bLFvu3lVfCUJicnKyYmRq+//roefPBBLVmyRL169dLnn3+u1q1buyKuW3NkLrdt26aYmBh17NhRFSpU0LRp09StWzd98803qlevniviui1H5vFXx44d05gxY9S5c+eSjOZRHJnHzMxM3X///apTp45WrlypevXq6fjx46pWrZoLkro3R+ZxyZIlGj9+vBYuXKiOHTvq0KFDeuKJJ2Sz2fTWW2+5Iq5bunDhgjp16qR7771XH374oWrXrq2UlBRVr169wD6pqanq0aOHhg4dqsTERG3dulXPPPOMAgMDFRER4cL0QP6on5yD2sl5qJ+cg/rJOaifiq8s1k8s7hSTl5eXAgICCrVvQkKCIiMjNXbsWEnS5MmTtXnzZr399tv661//WpIxPYIjc5mYmJhn+5133tGqVau0detWPf744yURz2M4Mo+SlJ2drdjYWE2cOFHbt2/XxYsXSy6cB3FkHhcuXKiffvpJycnJ8vb2liQ1atSoBNN5DkfmMTk5WZ06dVL//v0l5c5hTEyMPv3005KM6PamTZum4OBgLVq0yN5222233bTPX//6V912222aOXOmJKlFixb65JNPNGvWLI8oTlD6UT85B7WT81A/OQf1k3NQPxVfWayfOC2rmFJSUhQUFKSQkBDFxsbqxIkTBe67c+dOde3aNU9bRESEdu7cWdIxPYIjc/nfrl69qqysLNWoUaMEE3oGR+dx0qRJqlOnjp5++mkXJfQMjszjunXr1KFDBw0bNkx169ZV69atNXXqVGVnZ7swsXtyZB47duyozz77zH6awNGjR7Vx40Y98MADrorrltatW6d27dqpT58+qlOnjtq2basFCxbctA/vN3B31E/OQe3kPNRPzkH95BzUT8VXFusnFneK4e6779bixYuVlJSkefPmKTU1VZ07d9alS5fy3f/MmTOqW7dunra6devqzJkzrojr1hydy/82btw4BQUF3fDHWNY4Oo+ffPKJ/v73v9/yH7qyxtF5PHr0qFauXKns7Gxt3LhREyZM0MyZM/Xaa6+5OLl7cXQe+/fvr0mTJukPf/iDvL291bhxY3Xp0kWvvPKKi5O7l6NHj2revHkKDQ3VRx99pGeffVYjR47UP/7xjwL7FPR+k56erp9//rmkIwM3Rf3kHNROzkP95BzUT85B/eQcZbJ+MnCaCxcuGH9/f/POO+/ke7u3t7dZsmRJnra5c+eaOnXquCKeR7nVXP7e66+/bqpXr2727dvngmSe5WbzmJ6ebho1amQ2btxobxs4cKDp2bOnCxN6hlu9HkNDQ01wcLC5fv26vW3mzJkmICDAVRE9wq3m8eOPPzZ169Y1CxYsMF9++aVZvXq1CQ4ONpMmTXJxUvfi7e1tOnTokKdtxIgRpn379gX2CQ0NNVOnTs3TtmHDBiPJXL16tURyAkVF/eQc1E7OQ/3kHNRPzkH9VDRlsX7iO3ecqFq1amratKkOHz6c7+0BAQE6e/ZsnrazZ886dH5vWXGrufzVjBkz9MYbb2jLli1q06aNi9J5jpvN45EjR3Ts2DE99NBD9racnBxJuef5Hjx4UI0bN3ZZVnd2q9djYGCgvL29Vb58eXtbixYtdObMGWVmZsrHx8dVUd3areZxwoQJGjBggJ555hlJUlhYmK5cuaLBgwfr1VdfVblyZfNg08DAQLVs2TJPW4sWLbRq1aoC+xT0fuPv76+KFSuWSE6gqKifnIPayXmon5yD+sk5qJ+KpizWT2XzmS4hly9f1pEjRxQYGJjv7R06dNDWrVvztG3evFkdOnRwRTyPcqu5lKTp06dr8uTJSkpKUrt27VyYznPcbB6bN2+ur776Snv37rVfoqKidO+992rv3r0KDg62ILF7utXrsVOnTjp8+LC9uJOkQ4cOKTAwkMLkd241j1evXr2hAPm14DPGlHg+d9WpUycdPHgwT9uhQ4fUsGHDAvvwfgNPQv3kHNROzkP95BzUT85B/VQ0ZbJ+svrQIU82evRos23bNpOammp27NhhunbtamrVqmXOnTtnjDFmwIABZvz48fb9d+zYYby8vMyMGTPMgQMHTFxcnPH29jZfffWVVQ/BbTg6l2+88Ybx8fExK1euNKdPn7ZfLl26ZNVDcAuOzuN/47DiXI7O44kTJ0yVKlXM8OHDzcGDB80HH3xg6tSpY1577TWrHoJbcHQe4+LiTJUqVczSpUvN0aNHzaZNm0zjxo1N3759rXoIbmH37t3Gy8vLTJkyxaSkpJjExETj5+dn/vnPf9r3GT9+vBkwYIB9++jRo8bPz8+MHTvWHDhwwMydO9eUL1/eJCUlWfEQgDyon5yD2sl5qJ+cg/rJOaifnKMs1k8s7hRDdHS0CQwMND4+PqZevXomOjraHD582H77PffcYwYOHJinz4oVK0zTpk2Nj4+PadWqldmwYYOLU7snR+eyYcOGRtINl7i4ONeHdyNFeU3+HsVJrqLMY3Jysrn77ruNr6+vCQkJMVOmTMlzDnlZ5Og8ZmVlmfj4eNO4cWNToUIFExwcbJ577jlz4cIF14d3M+vXrzetW7c2vr6+pnnz5mb+/Pl5bh84cKC555578rR9/PHHJjw83Pj4+JiQkBCzaNEi1wUGboL6yTmonZyH+sk5qJ+cg/rJecpa/WQzpgwfqwUAAAAAAODh+M4dAAAAAAAAD8biDgAAAAAAgAdjcQcAAAAAAMCDsbgDAAAAAADgwVjcAQAAAAAA8GAs7gAAAAAAAHgwFncAAAAAAAA8GIs7AErM/PnzFRwcrHLlymn27NmKj49XeHi41bGKrEuXLnr++eetjgEAAEopaicARcXiDuChnnjiCfXq1cvl4y5evFjVqlW75X7p6ekaPny4xo0bp++++06DBw8ukTyeXvQAAADXoHbKRe0ElE5eVgcAUDqdOHFCWVlZ6tGjhwIDA62OAwAA4NaonQAUB0fuAKVEly5dNHLkSL300kuqUaOGAgICFB8fn2cfm82mefPmqXv37qpYsaJCQkK0cuVK++3btm2TzWbTxYsX7W179+6VzWbTsWPHtG3bNj355JNKS0uTzWaTzWa7YQwp9xOqsLAwSVJISIi9/3/LycnRpEmTVL9+ffn6+io8PFxJSUl59hk3bpyaNm0qPz8/hYSEaMKECcrKyrKPM3HiRO3bt8+eZ/HixTeMs2nTJlWoUCHP45KkUaNG6Y9//KMk6ccff1RMTIzq1asnPz8/hYWFaenSpQXM9m/z+f777+dpq1atWp4MJ0+eVN++fVWtWjXVqFFDPXv2zHcuAACAa1E7UTsBpQmLO0Ap8o9//EOVKlXSp59+qunTp2vSpEnavHlznn0mTJig3r17a9++fYqNjVW/fv104MCBQt1/x44dNXv2bPn7++v06dM6ffq0xowZc8N+0dHR2rJliyRp9+7dOn36tIKDg2/YLyEhQTNnztSMGTP05ZdfKiIiQlFRUUpJSbHvU6VKFS1evFj79+9XQkKCFixYoFmzZtnHGT16tFq1amXPEx0dfcM49913n6pVq6ZVq1bZ27Kzs7V8+XLFxsZKkjIyMnTHHXdow4YN+vrrrzV48GANGDBAu3fvLtTc5CcrK0sRERGqUqWKtm/frh07dqhy5cqKjIxUZmZmke8XAAA4B7UTtRNQWrC4A5Qibdq0UVxcnEJDQ/X444+rXbt22rp1a559+vTpo2eeeUZNmzbV5MmT1a5dO/3lL38p1P37+PioatWqstlsCggIUEBAgCpXrnzDfhUrVlTNmjUlSbVr11ZAQIDKly9/w34zZszQuHHj1K9fPzVr1kzTpk1TeHi4Zs+ebd/nT3/6kzp27KhGjRrpoYce0pgxY7RixQr7OJUrV5aXl5c9T8WKFW8Yp3z58urXr5+WLFlib9u6dasuXryo3r17S5Lq1aunMWPGKDw8XCEhIRoxYoQiIyPtYxXF8uXLlZOTo3feeUdhYWFq0aKFFi1apBMnTmjbtm1Fvl8AAOAc1E7UTkBpwXfuAKVImzZt8mwHBgbq3Llzedo6dOhww/bevXtLOtoN0tPT9f3336tTp0552jt16qR9+/bZt5cvX645c+boyJEjunz5sq5fvy5/f3+Hx4uNjVX79u31/fffKygoSImJierRo4f9Cw6zs7M1depUrVixQt99950yMzN17do1+fn5Ffkx7tu3T4cPH1aVKlXytGdkZOjIkSNFvl8AAOAc1E4Fo3YCPAuLO0Ap4u3tnWfbZrMpJyen0P3Llcs9mM8YY2/79RxtK+zcuVOxsbGaOHGiIiIiVLVqVS1btkwzZ850+L7uvPNONW7cWMuWLdOzzz6rNWvW5Dm/+80331RCQoJmz56tsLAwVapUSc8///xNDwG22Wx55krKO1+XL1/WHXfcocTExBv61q5d2+HHAAAAnIvaqWDUToBnYXEHKGN27dqlxx9/PM9227ZtJf32pnn69GlVr15dkm74ZMrHx0fZ2dnFzuHv76+goCDt2LFD99xzj719x44duuuuuyRJycnJatiwoV599VX77cePHy9yntjYWCUmJqp+/foqV66cevTokWfcnj176rHHHpOU+4WFhw4dUsuWLQu8v9q1a+v06dP27ZSUFF29etW+ffvtt2v58uWqU6dOkT4xAwAA1qN2onYCPAHfuQOUMe+9954WLlyoQ4cOKS4uTrt379bw4cMlSU2aNFFwcLDi4+OVkpKiDRs23PBJT6NGjXT58mVt3bpV58+fz/OG7KixY8dq2rRpWr58uQ4ePKjx48dr7969GjVqlCQpNDRUJ06c0LJly3TkyBHNmTNHa9asuSFPamqq9u7dq/Pnz+vatWsFjhcbG6vPP/9cU6ZM0aOPPipfX1/7baGhodq8ebOSk5N14MABDRkyRGfPnr1p/j/+8Y96++239cUXX2jPnj0aOnRonk8AY2NjVatWLfXs2VPbt29Xamqqtm3bppEjR+rUqVNFmTIAAOBi1E7UToAnYHEHKGMmTpyoZcuWqU2bNnr33Xe1dOlS+ycs3t7eWrp0qb799lu1adNG06ZN02uvvZanf8eOHTV06FBFR0erdu3amj59epGzjBw5Ui+++KJGjx6tsLAwJSUlad26dQoNDZUkRUVF6YUXXtDw4cMVHh6u5ORkTZgwIc999O7dW5GRkbr33ntVu3btm/4EZ5MmTXTXXXfpyy+/tP/Sw6/+9Kc/6fbbb1dERIS6dOmigIAA9erV66b5Z86cqeDgYHXu3Fn9+/fXmDFj8pxn7ufnp3//+99q0KCBHnnkEbVo0UJPP/20MjIy+DQKAAAPQe1E7QR4Apv575MeAZRaNptNa9asueUbLwAAAKidAHgOjtwBAAAAAADwYCzuAAAAAAAAeDBOywIAAAAAAPBgHLkDAAAAAADgwVjcAQAAAAAA8GAs7gAAAAAAAHgwFncAAAAAAAA8GIs7AAAAAAAAHozFHQAAAAAAAA/G4g4AAAAAAIAHY3EHAAAAAADAg7G4AwAAAAAA4MH+D1GQkwxq9yk6AAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -700,7 +697,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAApIAAAEpCAYAAAAgbcJNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABDXUlEQVR4nO3deXxU5b0/8M/MZLKvZA8JSQhJCCF75qEqCFQq4lJp3bfirUuFWuu+9ifQWtlUuLWWVq+K1evS9rbqvSooVr1VkWeyLyQhhIQlEBIgK9lnnt8fkHMd2ZJhkplkPu/XKy/lO2fO+Q4nk3x4nnnO0SmlFIiIiIiIRkjv7AaIiIiIaHxikCQiIiIiuzBIEhEREZFdGCSJiIiIyC4MkkRERERkFwZJIiIiIrILgyQRERER2YVBkoiIiIjswiBJRERERHZhkCSiUbVixQrodDqbWkJCAm699VbnNDSGBgcH8fDDDyMuLg56vR6LFy8GAOh0OqxYsULbbtOmTdDpdGhoaHDYsWtra3HxxRcjKCgIOp0O7777rsP2TUQ0hEGSyMUNhYyhLw8PD0yePBm33norGhsbnd0encErr7yCdevW4eqrr8Zrr72G++67b8yOvWTJEpSXl+O3v/0tXn/9deTn54/asRoaGmy+R/V6PSZNmoRFixZh27ZtAE7+Pj7dV0JCAoD/+wdIZGQkuru7TzpmQkICLr/8cpvamfZ71113jdrrJ3JnHs5ugIiG59e//jUSExPR29uLb775Bps2bcKXX36JiooKeHt7O7u9EampqYFeP/H/HfvPf/4TkydPxvr1623qPT098PAYvR+/PT092LZtG5544gncfffdo3ac77rhhhtw6aWXwmKxYOfOnfjDH/6A+fPnw2w248ILL8Trr79us/3tt98OIQTuvPNOrebv72+zTXNzMzZu3IgHHnhgWD384Ac/wE9+8pOT6ikpKXa8IiI6GwZJonFi0aJF2qjS7bffjrCwMKxZswbvv/8+rr32Wid3NzJeXl7ObsEux44dg5+f37C3b25uRnBw8En10Q7+LS0tAHDKY9trOK89NzcXN998s/bnOXPmYNGiRdi4cSP+8Ic/YOrUqTbb33XXXZg6darNc74rOzsb69atw7Jly+Dj43PWPlNSUs64PyJyrIk/JEA0Qc2ZMwcAUFdXZ1P/5z//iTlz5sDPzw/BwcG48sorUVVVZbPNrbfeqk0hftupPs+o0+lw9913491338XMmTPh5eWF9PR0bN68+aTnf/nllzCZTPD29kZSUhL+9Kc/nbL3735Gcmja86uvvsL999+P8PBw+Pn54Uc/+pEWioZYrVasWLECMTEx8PX1xfz587Fjx45hfe5yaAr2mWeewfr16xEfHw8fHx/MnTsXFRUVJ/0d+fv7o66uDpdeeikCAgJw0003ATgeqh544AHExcXBy8sLqampeOaZZ6CUsjnOZ599hsrKSm169fPPP9f+Tr/9GcnT+eijj7RzGRAQgMsuuwyVlZVnfM6KFSsQHx8PAHjooYdsposBoLi4GIsWLUJgYCD8/f1x0UUX4ZtvvrHZx9D5+OKLL7Bs2TJEREQgNjb2rP1+1+m+R0fiySefxKFDh7Bx40a790FEo4cjkkTj1NDCjJCQEK22detWLFq0CFOnTsWKFSvQ09OD559/HhdccAGKiopOGR6H48svv8Tf//53LFu2DAEBAfjd736Hq666Cnv37kVoaCgAoLy8HBdffDHCw8OxYsUKDA4OYvny5YiMjBz2cX7xi18gJCQEy5cvR0NDAzZs2IC7774b77zzjrbNY489hrVr1+KKK67AwoULUVpaioULF6K3t3fYx/nzn/+Mzs5O/PznP0dvby/+/d//Hd///vdRXl5u0+/g4CAWLlyI2bNn45lnnoGvry+UUvjhD3+Izz77DLfddhuys7OxZcsWPPTQQ2hsbMT69esRHh6O119/Hb/97W/R1dWFVatWAQDS0tKG3ePrr7+OJUuWYOHChVizZg26u7uxceNGzJ49G8XFxac9lz/+8Y8RHByM++67T5tqHpourqysxJw5cxAYGIiHH34YRqMRf/rTnzBv3jx88cUXmDVrls2+li1bhvDwcDz55JM4duzYsHsfcqrv0ZGaM2cOvv/972Pt2rVYunTpWUcle3t7cfjw4ZPqgYGB8PT0tLsPIjoNRUQu7dVXX1UA1NatW1VLS4vat2+f+tvf/qbCw8OVl5eX2rdvn7Ztdna2ioiIUEeOHNFqpaWlSq/Xq5/85CdabcmSJSo+Pv6kYy1fvlx998cCAOXp6al27dpls08A6vnnn9dqixcvVt7e3mrPnj1abceOHcpgMJy0z/j4eLVkyZKTXuOCBQuU1WrV6vfdd58yGAyqra1NKaVUU1OT8vDwUIsXL7bZ34oVKxQAm32eSn19vQKgfHx81P79+7X69u3bFQB13333abUlS5YoAOrRRx+12ce7776rAKinnnrKpn711VcrnU5n8/c0d+5clZ6eflIfANTy5ctPev319fVKKaU6OztVcHCwuuOOO2ye19TUpIKCgk6qn+51rlu3zqa+ePFi5enpqerq6rTagQMHVEBAgLrwwgtP6mf27NlqcHDwjMf69vFWrlypWlpaVFNTk/rXv/6lTCaTAqD++te/nvJ5fn5+pz1nQ9+LLS0t6osvvlAA1HPPPac9Hh8fry677DKb5wA47ddbb7111tdBRCPHqW2icWLBggUIDw9HXFwcrr76avj5+eH999/XphwPHjyIkpIS3HrrrZg0aZL2vMzMTPzgBz/Ahx9+eE7HTkpKstlnYGAgdu/eDQCwWCzYsmULFi9ejClTpmjbpaWlYeHChcM+zp133mkztT5nzhxYLBbs2bMHAPDpp59icHAQy5Yts3neL37xixG9nsWLF2Py5Mnan4UQmDVr1in/jpYuXWrz5w8//BAGgwH33HOPTf2BBx6AUgofffTRiHo5lU8++QRtbW244YYbcPjwYe3LYDBg1qxZ+Oyzz0a8T4vFgo8//hiLFy+2+axidHQ0brzxRnz55Zfo6Oiwec4dd9wBg8Ew7GMsX74c4eHhiIqKwpw5c1BVVYVnn30WV1999Yj7/bYLL7wQ8+fPx9q1a9HT03PGba+88kp88sknJ33Nnz//nHogolPj1DbROPHCCy8gJSUF7e3teOWVV/C///u/NotWhsJWamrqSc9NS0vDli1bRrxYZMi3w+GQkJAQtLa2Aji+uKOnpwfJycknbZeamjrsEPvd4wxNiQ4dZ+g1Tps2zWa7SZMmjWj69FR9pqSk4C9/+YtNzcPD46TPBu7ZswcxMTEICAiwqQ9NWw/1eC5qa2sBAN///vdP+XhgYOCI99nS0oLu7u7Tfn9YrVbs27cP6enpWj0xMXFEx7jzzjtxzTXXoLe3F//85z/xu9/9DhaLZcS9nsqKFSswd+5c/PGPfzzjZZRiY2OxYMEChxyTiM6OQZJonBBCaKu2Fy9ejNmzZ+PGG29ETU3NSZdMOZvvLqgZcrpf+qcblVInFpc4ylgdZ7i8vLyccpkiq9UK4PjnJKOiok56fDQvHfRtw1kl/W3JyclaiLv88sthMBjw6KOPYv78+ed8HcsLL7wQ8+bNw9q1a3lNSCIXwqltonHIYDBg1apVOHDgAH7/+98DgLZSt6am5qTtq6urERYWpo1GhoSEoK2t7aTt7B1NCw8Ph4+PjzaS9m2n6sdeQ69x165dNvUjR45oo5bDcao+d+7cOazFSPHx8Thw4AA6Oztt6tXV1TY9nouhjxFERERgwYIFJ33NmzdvxPsMDw+Hr6/vab8/9Ho94uLizrV1G0888QQCAgLwq1/9yiH7W7FiBZqamk57NQAiGnsMkkTj1Lx58yCEwIYNG9Db24vo6GhkZ2fjtddeswmJFRUV+Pjjj3HppZdqtaSkJLS3t6OsrEyrHTx4EP/4xz/s6sVgMGDhwoV49913sXfvXq1eVVWFLVu22LXPU7nooovg4eFx0qVghsL0cL377rs2dwWSUmL79u1YtGjRWZ87dMHt7x5z/fr10Ol0w9rH2SxcuBCBgYF4+umnMTAwcNLj370k0nAYDAZcfPHFeO+992xuxXjo0CG8+eabmD17tl1T5mcSHByMn/3sZ9iyZQtKSkrOeX9z587FvHnzsGbNmhGt0iei0cOpbaJx7KGHHsI111yDTZs24a677sK6deuwaNEinHfeebjtttu0y/8EBQXZXLfw+uuvxyOPPIIf/ehHuOeee7RLy6SkpKCoqMiuXlauXInNmzdjzpw5WLZsGQYHB/H8888jPT3dJrCei8jISPzyl7/Es88+ix/+8Ie45JJLUFpaio8++ghhYWGnnbL/rmnTpmH27NlYunQp+vr6sGHDBoSGhuLhhx8+63OvuOIKzJ8/H0888QQaGhqQlZWFjz/+GO+99x7uvfdem0VJ9goMDMTGjRtxyy23IDc3F9dffz3Cw8Oxd+9efPDBB7jgggtGHJ4B4KmnnsInn3yC2bNnY9myZfDw8MCf/vQn9PX1Ye3atefc96n88pe/xIYNG7B69Wq8/fbb57y/5cuXn3HhzM6dO/HGG2+cVI+MjMQPfvCDcz4+EdlikCQax3784x8jKSkJzzzzDO644w4sWLAAmzdvxvLly/Hkk0/CaDRi7ty5WLNmjc3CidDQUPzjH//A/fffj4cffhiJiYlYtWoVamtr7Q6SmZmZ2LJlC+6//348+eSTiI2NxcqVK3Hw4EGHBUkAWLNmDXx9ffHSSy9h69atOO+88/Dxxx9j9uzZw75jzE9+8hPo9Xps2LABzc3NEELg97//PaKjo8/6XL1ej/fffx9PPvkk3nnnHbz66qtISEjAunXrhn0bv+G48cYbERMTg9WrV2PdunXo6+vD5MmTMWfOHPzbv/2bXftMT0/Hv/71Lzz22GNYtWoVrFYrZs2ahTfeeOOka0g6SkxMDG688Ua8/vrrqKurO+egPW/ePMydOxdffPHFKR8fWqX9XXPnzmWQJBoFOuWsT7ETETlIW1sbQkJC8NRTT+GJJ5447XYNDQ1ITEzEunXr8OCDD45hh0REExM/I0lE48qpriO4YcMGALBrEQoREdmPU9tENK6888472LRpk3brvy+//BJvvfUWLr74YlxwwQXObo+IyK0wSBLRuJKZmQkPDw+sXbsWHR0d2gKcp556ytmtERG5HX5GkoiIiIjsws9IEhEREZFdGCSJiIiIyC5j/hlJq9WKAwcOICAgYNgXDyYiIiKisaOUQmdnJ2JiYqDXn37cccyD5IEDBxx+P1ciIiIicrx9+/YhNjb2tI+PeZAMCAgAcLwxR9/XlYiIiIjOXUdHB+Li4rTcdjpjHiSHprMDAwMZJImIiIhc2Nk+hsjFNkRERERkFwZJIiIiIrILgyQRERER2cUlb5FotVrR39/v7DYmBKPRCIPB4Ow2iIiIaAJyuSDZ39+P+vp6WK1WZ7cyYQQHByMqKorX7SQiIiKHcqkgqZTCwYMHYTAYEBcXd8YLYNLZKaXQ3d2N5uZmAEB0dLSTOyIiIqKJxKWC5ODgILq7uxETEwNfX19ntzMh+Pj4AACam5sRERHBaW4iIqKzGBgYQEVFBVJTU5lHzsKlgqTFYgEAeHp6OrmTiWXoTTAwMMAgSUREdBrt7e0wm80oKipCT08PLrroIsyePdvZbbk0lwqSQ/hZPsfi3ycREdGpKaXQ0NAAKSVqamqglAIABAUFcTRyGFwySBIRERGNpv7+fpSVlcFsNmtrCQAgMTERQgikpKRwrcYwMEg6wLx585CdnY0NGzY4uxUiIiI6g9bWVkgpUVJSgt7eXgDHL5WXlZUFk8mEiIgIJ3c4vjBIOsDf//53GI3GMT3mihUr8O6776KkpGRMj0tERDTeKKVQV1cHKSVqa2u1+qRJk2AymZCdnQ1vb28ndjh+MUg6wKRJk5zdAhEREX1HX18fSkpKYDabceTIEa0+bdo0CCEwbdo0riM4R5z8d4B58+bh3nvvBQAkJCTg6aefxk9/+lMEBARgypQpePHFF7VtGxoaoNPp8Pbbb+P888+Ht7c3Zs6ciS+++ELbZtOmTQgODrY5xrvvvqt9s2/atAkrV65EaWkpdDoddDodNm3aNNovk4iIaFw4fPgwPvzwQzz33HPYvHkzjhw5Ai8vL8yaNQt33303brrpJiQnJzNEOoBLj0gqpTAwMOCUYxuNRru/wZ599ln85je/weOPP46//e1vWLp0KebOnYvU1FRtm4ceeggbNmzAjBkz8Nxzz+GKK65AfX09QkNDz7r/6667DhUVFdi8eTO2bt0K4PjqMiIiIndltVpRW1sLKSV2796t1cPCwiCEQGZmJry8vJzY4cTk0kFyYGAAq1atcsqxH3vsMbuvZ3nppZdi2bJlAIBHHnkE69evx2effWYTJO+++25cddVVAICNGzdi8+bNePnll/Hwww+fdf8+Pj7w9/eHh4cHoqKi7OqRiIhoIujp6UFxcTEKCgrQ2tqq1VNTUyGEQGJiIkceR5FLB8nxKjMzU/t/nU6HqKgom0sLAMB5552n/b+Hhwfy8/NRVVU1Zj0SERGNZ4cOHYKUEuXl5drspbe3N3JycmAymRASEuLkDt2DSwdJo9GIxx57zGnHdtRzdTodrFbrsJ+v1+u1C6IOcdYUPxERkauwWq2orq6G2WxGQ0ODVo+MjIQQAhkZGWN+FRV359JBUqfTTdjbJX7zzTe48MILARy/x3hhYSHuvvtuAEB4eDg6Oztx7Ngx+Pn5AcBJl/nx9PTUbilJREQ0kXV3d6OwsBAFBQXo6OgAcDwjpKWlQQiBKVOmcPraSVw6SE5kL7zwApKTk5GWlob169ejtbUVP/3pTwEAs2bNgq+vLx5//HHcc8892L59+0mrshMSElBfX4+SkhLExsYiICCAHyImIqIJ5cCBA5BSoqKiQhs88fX1RW5uLkwmEwIDA53cIY348j+NjY24+eabERoaCh8fH2RkZKCgoGA0epvQVq9ejdWrVyMrKwtffvkl3n//fYSFhQE4fl3KN954Ax9++CEyMjLw1ltvYcWKFTbPv+qqq3DJJZdg/vz5CA8Px1tvveWEV0FERORYFosFFRUVePnll/HSSy+htLQUFosFMTExWLx4Me677z5cdNFFDJEuQqe++2G8M2htbUVOTg7mz5+PpUuXIjw8HLW1tUhKSkJSUtKw9tHR0YGgoCC0t7ef9E3Q29uL+vp6JCYmTtgrzDc0NCAxMRHFxcXIzs4ek2O6w98rERGNb11dXSgoKEBhYSG6uroAHF8zkJ6eDiEEJk+ezOnrMXSmvPZtI5raXrNmDeLi4vDqq69qtcTERPu7JCIiIrellEJjYyOklKisrNQWpvr7+yMvLw95eXkICAhwcpd0JiMKku+//z4WLlyIa665Bl988QUmT56MZcuW4Y477jjtc/r6+tDX16f9eehDskREE9YLLwClpc7ugshlWa1WHG1tRUtzM7q7uxEPIB6An78/IsLDERwSAn1NDfDmm85t9Ic/BC6/3Lk9uLgRBcndu3dj48aNuP/++/H444/DbDbjnnvugaenJ5YsWXLK56xatQorV650SLMTQUJCwkmX9iGiCWTPHuDEFRiI6NT0AMJOfLm02FgGybMY0WckPT09kZ+fj6+//lqr3XPPPTCbzdi2bdspn3OqEcm4uDi3/YykM/DvlWgMlZYC2dlAQAAwjDtVEU10Sim0tbVh//79OHz4sDaY4uXtjckxMYiJiXHdS/1deOHxLzc0Kp+RjI6OxowZM2xqaWlp+K//+q/TPsfLy4uXpSEi99Hbe/y/oaHAr37l3F6InGhgYABlZWUwm804ZLUCJ/JDQkIChBBITU2FXj/ii8eQixlRkLzgggtQU1NjU9u5cyfi4+Md2hQR0bg1FCQ5+k9uqq2tDVJKFBcXo/fE+8HDwwOZmZkQQiAyMtLJHZIjjShI3nfffTj//PPx9NNP49prr4WUEi+++CJefPHF0eqPiGh8YZAkN6SUQn19PaSUNgNOwcHBMJlMyMnJgY+PjxM7pNEyoiBpMpnwj3/8A4899hh+/etfIzExERs2bMBNN900Wv0REY0vQ58JZ5AkN9DX14fS0lKYzWYcPnxYqyclJUEIgWnTpnH6eoIb8S0SL7/8clzOFUxERKfGEUlyA0eOHIGUEqWlpdqCWk9PT2RlZUEIod2pjSY+3mubiMiRhoIkFxnSBKOUwq5duyClxK5du7R6aGgoTCYTsrOzubjWDXG82QFuvfVW6HQ66HQ6GI1GJCYm4uGHH8Yf//hHrX66r4aGBqxYsQI6nQ533XWXzX5LSkq0bYDjt1c83X6++eYbJ7xyIjoJRyRpgunt7cW2bdvw/PPP480339RCZEpKCm666Sb8/Oc/x6xZsxgi3RRHJB3kkksuwauvvoqBgQEUFhZiyZIluOuuu3Dw4EFtmx//+MeYOXMmfv3rX2u18PBwAIC3tzdefvllPPDAA0hOTj7jsbZu3Yr09HSbWmhoqANfDRHZjUGSJojm5mZIKVFWVoaBgQEAxy/pl5OTA5PJhEmTJjm5Q3IFDJIO4uXlhaioKABAXFwcFixYgE8++QRr1qzRtvH09ISvr6+23belpqYiIiICTzzxBP7yl7+c8VihoaGn3AcRuQAGSRrHrFYrdu7cCSkl6uvrtXp4eDiEEMjMzHTdi4eTU7h2kFQK6O52zrF9fQGdzq6nVlRU4Ouvvx7x9TVXr14Nk8mEgoIC5Ofn23VsInIyrtqmcai7uxtFRUUoKChAe3s7AECn0yE1NRVCCCQkJEBn5+9EmthcO0h2dwP+/s45dlcX4Oc37M3/53/+B/7+/hgcHERfXx/0ej1+//vfj+iQubm5uPbaa/HII4/g008/Pe12559//kmXU+jq6hrRsYholHBEksaRpqYmbN++HRUVFRgcHAQA+Pj4IDc3FyaTCUFBQU7ukFydawfJcWT+/PnYuHEjjh07hvXr18PDwwNXXXXViPfz1FNPIS0tDR9//DEiIiJOuc0777yDtLS0c22ZiEYDV22Ti7NYLKiuroaUEnv37tXq0dHREEIgPT0dRqPRiR3SeOLaQdLX9/jIoLOOPQJ+fn6YNm0aAOCVV15BVlYWXn75Zdx2220j2k9SUhLuuOMOPProo3j55ZdPuU1cXJx2LCJyMRyRJBd17NgxFBYWoqCgAJ2dnQAAvV6PGTNmQAiB2NhYTl/TiLl2kNTpRjS97Cr0ej0ef/xx3H///bjxxhtHfFuoJ598EklJSXj77bdHqUMiGjUMkuRiGhsbIaVEZWUlLBYLgOODH3l5ecjPz0dAQICTO6TxzLWD5Dh2zTXX4KGHHsILL7yABx98cETPjYyMxP33349169ad8vEjR46gqanJphYcHAxv/uIicj4utiEXMDg4iB07dkBKicbGRq0+efJkbfraYDA4sUOaKBgkR4mHhwfuvvturF27FkuXLoXfCEdWH3zwQWzcuBG9Q6Mb37JgwYKTam+99Rauv/56u/slIgfhiCQ5UUdHBwoKClBUVIRjx44BAAwGA2bOnAkhBGJiYpzcIU00OqWUGssDdnR0ICgoCO3t7QgMDLR5rLe3F/X19UhMTOTomgPx75VoDF1+OfDBB8DLLwM//amzuyE3oJTCvn37IKVEVVUVrFYrACAgIAD5+fnIy8sb8WAG0Zny2rdxRJKIyJE4IkljZGBgAOXl5TCbzTYfd5oyZQqEEJg+fTqnr2nUMUgSETkSgySNsra2NpjNZhQXF6OnpwfA8Y9TZWRkQAjBO5/RmGKQJCJyJAZJGgVKKTQ0NEBKiZqaGgx9Ki04OBj5+fnIzc0d8RVCiByBQZKIyJG4apscqL+/H2VlZZBSoqWlRatPnToVQggkJyefdKczorHEIElE5EgckSQHOHr0KKSUKCkpQd+Jf5wYjUZkZWVBCIHw8HAnd0h0nEsGyTFeSD7hDa3gI6IxwFskkp2UUqirq4OUErW1tVp90qRJMJlMyM7O5pU3yOW4VJA0Go3Q6XRoaWlBeHg4b9V0jpRS6O/vR0tLC/R6PTw9PZ3dEtHExxFJGqHe3l6UlJTAbDbj6NGjWn3atGkQQmDatGn8fUguy6WCpMFgQGxsLPbv34+GhgZntzNh+Pr6YsqUKfwcDdFYYJCkYWppaYGUEmVlZejv7wcAeHl5ITs7GyaTCaGhoU7ukOjsXCpIAoC/vz+Sk5MxMDDg7FYmBIPBAA8PD/5rlmisMEjSGVitVtTW1kJKid27d2v18PBwmEwmZGVlcfaIxhWXC5LA8fDDi6gS0bhjsQCDg8f/n0GSvqWnpwfFxcUwm81oa2sDAOh0OqSkpEAIgcTERP6Dn8YllwySRETj0tClfwAutiEAwKFDh7B9+3aUl5dj8MQ/Mry9vZGbmwuTyYTg4GDnNkh0jhgkiYgcZWhaG+CIpBuzWq2orq6GlBJ79uzR6pGRkRBCICMjA0aj0YkdEjkOgyQRkaMMBUmDAfDgj1d3c+zYMRQWFqKwsBAdHR0Ajk9fp6WlQQiBKVOmcPqaJhz+pCMichQutHFLBw4cgJQSFRUVsFgsAI5fLSMvLw/5+fkIDAx0codEo4dBkojIUXh7RLdhsVhQWVkJs9mM/fv3a/WYmBgIIZCeng4PjkqTG+B3ORGRo/CuNhNeZ2cnCgoKUFhYiGPHjgEA9Ho90tPTIYRAbGyskzskGlsMkkREjsKp7QlJKYX9+/dDSokdO3Zot5319/dHfn4+8vLy4O/v7+QuiZyDQZKIyFEYJCeUwcFBVFRUQEqJgwcPavW4uDgIIZCWlsZrHpPbY5AkInIUBskJob29HWazGUVFRejp6QFw/EYZGRkZEEIgOjrayR0SuQ4GSSIiR2GQHLeUUtizZw+klKiuroZSCgAQFBSE/Px85ObmwtfX18ldErkeBkkiIkfhqu1xp7+/H+Xl5ZBSorm5WasnJCRACIHU1FTo9Xondkjk2hgkiYgchau2x43W1lZIKVFSUoLeE+fNaDQiMzMTQghEREQ4uUOi8YFBkojIUTi17dKUUti9ezeklNi5c6dWDwkJgclkQnZ2Nnx8fJzYIdH4wyBJROQoDJIuqa+vD6WlpTCbzTh8+LBWT0pKghACycnJvHUhkZ0YJImIHIVB0qUcPnwYZrMZJSUl6O/vBwB4enoiOzsbJpMJYWFhTu6QaPxjkCQichQutnE6pRRqa2shpURdXZ1WDw0NhRACWVlZ8OJnWIkchkGSiMhRuNjGaXp6elBSUgKz2YzW1latnpKSAiEEpk6dyulrolHAIElE5Cic2h5zzc3N2L59O8rLyzEwMAAA8Pb2Rk5ODkwmE0JCQpzcIdHExiBJROQoDJJjwmq1oqamBlJKNDQ0aPWIiAgIIZCZmQmj0ei8BoncCIMkEZGjMEiOqu7ubhQVFcFsNqOjowMAoNPpMH36dAghEB8fz+lrojHGIElE5CgMkqPi4MGDkFKivLwcFosFAODr64vc3Fzk5+cjKCjIyR0SuS8GSSIiR+GqbYexWCyoqqqClBL79u3T6tHR0RBCYObMmfDw4K8wImfju5CIyFG4avucdXV1obCwEAUFBejq6gIA6PV6zJgxA0IIxMbGcvqayIUwSBIROQqntu2ilEJjYyOklKisrITVagUA+Pv7Iy8vD3l5eQgICHByl0R0KgySRESOwiA5IoODg6isrISUEgcOHNDqsbGxEEJgxowZMBgMTuyQiM6GQZKIyFEYJIelo6MDBQUFKCwsRHd3NwDAYDAgIyMDJpMJMTExTu6QiIaLQZKIyFEYJE9LKYW9e/dCSomqqioopQAAgYGByM/PR25uLvz8/JzcJRGNFIMkEZGjDK3a5mIbzcDAAMrLyyGlxKFDh7R6fHw8hBCYPn069Hq9EzskonPBIElE5CgckdS0tbXBbDajqKgIvSf+Xjw8PJCZmQkhBCIjI53cIRE5AoMkEZGjuHmQVEqhvr4eUkrU1NRo9eDgYJhMJuTk5MDHx8eJHRKRozFIEhE5ipsGyf7+fpSWlkJKicOHD2v1qVOnQgiB5ORkTl8TTVAMkkREjuJmQfLIkSMwm80oKSlB34nPh3p6eiIrKwtCCISFhTm5QyIabQySRESOMDgInLiQ9kQOkkop7Nq1C1JK7Nq1S6uHhobCZDIhOzsbXlxsROQ2GCSJiBxhaDQSmJCrtnt7e1FSUgKz2YyjR49q9eTkZAghkJSUxFsXErkhBkkiIkeYoEGypaUFUkqUlpZiYGAAAODl5YWcnByYTCZMmjTJyR0SkTMxSBIROcJQkDQagXF+Wz+r1YqdO3dCSon6+nqtHh4eDiEEMjMz4enp6cQOichVMEgSETnCBFho093djeLiYpjNZrS3twMAdDodUlNTIYRAQkICp6+JyAaDJBGRI4zjINnU1AQpJcrLyzE4OAgA8PHxQW5uLvLz8xEcHOzcBonIZTFIEhE5wji7PaLFYkF1dTWklNi7d69Wj4qKghACM2fOhNFodGKHRDQeMEgSETnCOBmRPHbsGAoLC1FQUIDOzk4AgF6vR1paGoQQiIuL4/Q1EQ0bgyQRkSO4eJBsbGyElBKVlZWwWCwAAD8/P+Tl5SEvLw+BgYFO7pCIxiMGSSIiR3DBIDk4OIgdO3ZASonGxkatPnnyZAghMGPGDHh48NcAEdmPP0GIiBzBhYJkZ2cnCgoKUFhYiGPHjgEADAYD0tPTIYTA5MmTndwhEU0UDJJERI7g5CCplMK+ffsgpURVVRWsJ27XGBAQgPz8fOTm5sLf398pvRHRxMUgSUTkCE5atT0wMICKigpIKdHU1KTVp0yZAiEEpk+fDsM4v0A6EbkuBkkiIkcY4xHJ9vZ2mM1mFBUVoaenBwDg4eGBjIwMCCEQFRU1Jn0QkXtjkCQicoQxCJJKKTQ0NEBKiZqaGiilAABBQUEwmUzIycmBr6/vqB2fiOi7GCSJiBxhFINkf38/ysrKYDab0dzcrNUTExNhMpmQmpoKvV7v8OMSEZ0NgyQRkSOMQpA8evQozGYziouL0XfiM5hGoxGZmZkQQiAiIsJhxyIisgeDJBGRIzhosY1SCnV1dZBSora2VquHhIRACIHs7Gx4u8AlhoiIAAZJIiLHOMcRyb6+PpSUlMBsNuPIkSNafdq0aRBCYNq0abx1IRG5HAZJIiJHsDNIHj58GFJKlJaWor+/HwDg6emJ7OxsCCEQGhrq6E6JiByGQZKIyBFGECStVitqa2shpcTu3bu1elhYGIQQyMzMhNcYX4+SiMgeDJJERI4wjCDZ09OD4uJimM1mtLW1afXU1FQIIZCYmMjpayIaVxgkiYgc4QxB8tChQ5BSoqysDIODgyc280ZOTg5MJhNCQkLGslMiIodhkCQicoTvrNq2Wq2orq6GlBJ79uzRNouMjIQQAhkZGTAajc7olIjIYRgkiYgc4cSIZC8A87/+hYKCAnR0dAAAdDod0tLSIITAlClTOH1NRBMGgyQRkQP0d3TAE8B7W7agOiUFAODr64u8vDzk5eUhKCjIuQ0SEY0CBkkiIjtZLBbs2LEDUkpcduAAogD06/WIiYmBEALp6enw8OCPWSKauPgTjohohLq6ulBQUIDCwkJ0dXUBADwsFgDAwiuvRPhVV3H6mojcAoMkEdEwKKWwf/9+SCmxY8cOWK1WAIC/vz/y8vIw6ZVXAAARcXEAQyQRuQkGSSKiMxgcHERFRQWklDh48KBWj4uLgxACaWlpMBgMwIm70th7i0QiovGIQZKI6BTa29tRUFCAoqIidHd3AwAMBgMyMjIghEB0dLTtE87xXttEROMRgyQR0QlKKezZswdSSlRXV0MpBQAIDAyEyWRCTk4O/Pz8Tv1kBkkickMMkkTk9gYGBlBWVgYpJZqbm7V6QkIChBBITU2FXq8//Q6UYpAkIrfEIElEbqu1tRVmsxnFxcXoPREEjUajNn0dGRk5vB0NfT4SYJAkIrfCIElEbkUphd27d8NsNqOmpkarBwcHa9PXPj4+I9vp0O0RAe0WiURE7oBBkojcQl9fH0pLS2E2m3H48GGtPnXqVAghkJycfObp6zMZmtYGGCSJyK0wSBLRhHbkyBFIKVFSUoL+E1PQnp6eyMrKghACYWFh536QoSDp5cVrSBKRW2GQJKIJRymF2tpaSClRV1en1UNDQ2EymZCdnQ0vR44ccqENEbkpBkkimjB6e3tRXFwMs9mM1tZWrZ6SkgIhBKZOnTo6ty5kkCQiN8UgSUTjXnNzM6SUKCsrw8DAAADA29sbOTk5yM/Px6RJk0a3gW9PbRMRuREGSSIal6xWK2pqaiClRENDg1aPiIiAEAIZGRnw9PQcm2aGVm1zRJKI3AyDJBGNK93d3SgqKkJBQQHa29sBADqdDtOnT4cQAvHx8aMzfX0mnNomIjfFIElE48LBgwchpURFRQUGBwcBAD4+PsjNzYXJZEJQUJDzmmOQJCI3xSBJRC7LYrGgqqoKUkrs27dPq0dFRUEIgZkzZ8JoNDqxwxMYJInITTFIEpHL6erqQmFhIQoKCtDV1QUA0Ov1mDFjBoQQiI2NHfvp6zPhYhsiclMMkkTkMvbv3w8pJSorK2G1WgEAfn5+yM/PR15eHgICApzc4WlwsQ0RuSkGSSJyqsHBQVRWVkJKiQMHDmj12NhYCCEwY8YMGAwGJ3Y4DJzaJiI3xSBJRE7R0dGBgoICFBUV4dixYwAAg8GAmTNnQgiBmJgYJ3c4AgySROSmGCSJaMwopbBv3z5IKVFVVaVNXwcEBGjT135+fk7u0g4MkkTkphgkiWjUDQwMoLy8HGazGU1NTVo9Pj4eJpMJ06dPd/3p6zNhkCQiN8UgSUSjpq2tDWazGcXFxejp6QEAeHh4ICMjA0IIREVFOblDB+GqbSJyUwySRORQSik0NDRASomamhoopQAAwcHByM/PR25uLnx8fJzcpYNx1TYRuSkGSSJyiP7+fpSVlUFKiZaWFq0+depUCCGQnJwMvV7vxA5HEae2ichNMUgS0Tk5evQopJQoKSlB34mROaPRiKysLAghEB4e7uQOxwCDJBG5KQZJIhoxpRTq6uogpURtba1WnzRpEoQQyMrKgrc7hSoGSSJyUwySRDRsvb29KCkpgdlsxtGjR7V6cnIyhBBISkpyrVsXjhUutiEiN8UgSURn1dLSAiklSktLMTAwAADw8vJCdnY2TCYTQkNDndyhk3FEkojcFIMkEZ2S1WrFzp07IaVEfX29Vg8PD4fJZEJWVhY8PT2d2KEL4aptInJTDJJEZKOnpwdFRUUoKChAW1sbAECn0yE1NRUmkwmJiYnuOX19JhyRJCI3xSBJRACAQ4cOYfv27SgvL8fg4CAAwMfHBzk5OTCZTAgODnZug66MQZKI3BSDJJEbs1qtqK6uxvbt27F3716tHhkZCSEEMjIyYDQandjhOMEgSURuikGSyA0dO3YMhYWFKCwsREdHB4Dj09czZsyAEAJxcXGcvh4JrtomIjfFIEnkRg4cOAApJSoqKmCxWAAAvr6+yMvLQ35+PgIDA53c4TjFxTZE5KYYJIkmOIvFgsrKSkgp0djYqNVjYmIghEB6ejo8PPij4JxwapuI3BR/exBNUJ2dnSgoKEBhYSGOHTsGANDr9Zg5cyaEEJg8ebKTO5xAGCSJyE0xSBJNIEop7Nu3D2azGTt27IDVagUABAQEIC8vD3l5efD393dylxOM1Qr09x//fwZJInIzDJJEE8Dg4CDKy8shpURTU5NWj4uLgxACaWlpMBgMTuxwAhv6fCTAxTZE5HYYJInGsfb2dpjNZhQVFaGnpwcAYDAYkJGRASEEoqOjndyhGxia1gY4IklEbodBkmicUUphz549kFKiuroaSikAQFBQEPLz85GbmwtfX18nd+lGhkYkdTqA19wkIjfDIEk0TvT396OsrAxmsxnNzc1aPSEhAUIIpKamQq/XO7FDN/XthTa89iYRuRkGSSIX19raCiklSkpK0HsitBiNRmRmZkIIgYiICCd36Oa4YpuI3BiDJJELUkqhrq4OUkrU1tZq9ZCQEJhMJuTk5MCbwcU1MEgSkRtjkCRyIX19fSgpKYHZbMaRI0e0elJSEoQQSE5O5q0LXQ1vj0hEboxBksgFHD58GFJKlJaWov/ENQk9PT2RnZ0Nk8mEsLAwJ3dIp8URSSJyYwySRE5itVqxa9cuSClRV1en1UNDQyGEQFZWFrw4yuX6eJ9tInJjDJJEY6ynpwfFxcUoKChAa2urVk9JSYEQAlOnTuX09XjCEUkicmMMkkRj5NChQ5BSory8HAMDAwAAb29v5OTkwGQyISQkxMkdkl0YJInIjTFIEo0iq9WK6upqmM1mNDQ0aPWIiAgIIZCZmQkjL2I9vnGxDRG5MQZJolHQ3d2NwsJCFBQUoKOjAwCg0+kwffp0CCEQHx/P6euJgiOSROTGGCSJHOjgwYPa9LXFYgEA+Pr6Ijc3F/n5+QgKCnJyh+RwXGxDRG6MQZLoHFksFlRVVUFKiX379mn16OhoCCEwc+ZMeHjwrTZhcUSSiNwYf7sR2amrq0ubvu7q6gIA6PV6zJgxA0IIxMbGcvraHTBIEpEbY5AkGgGlFBobGyGlRGVlJaxWKwDA398feXl5yMvLQ0BAgJO7pDHFIElEboxBkmgYBgcHUVlZCSklDhw4oNVjY2MhhMCMGTNgMBic2CE5DVdtE5EbY5AkOoOOjg6YzWYUFRWhu7sbAGAwGJCRkQGTyYSYmBgnd0hOxxFJInJjDJJE36GUwt69eyGlRFVVFZRSAIDAwEDk5+cjNzcXfn5+Tu6SXAZXbRORG2OQJDphYGAA5eXlkFLi0KFDWj0+Ph5CCEyfPh16vd6JHZJL4ogkEbkxBklye21tbdr0de+JUODh4YHMzEwIIRAZGenkDsmlMUgSkRtjkCS3pJRCfX09pJTYuXOnNn0dHBwMk8mEnJwc+Pj4OLlLGhe42IaI3BiDJLmVvr4+lJWVQUqJw4cPa/WpU6dCCIHk5GROX9PIcESSiNwYgyS5hSNHjkBKidLSUvSdWBzh6emJrKwsCCEQFhbm5A5p3GKQJCI3xiBJE5ZSCrt27YKUErt27dLqoaGhMJlMyM7OhhenI+lccdU2EbkxBkmacHp7e1FSUgKz2YyjR49q9eTkZAghkJSUxFsXkuNwRJKI3BiDJE0YLS0t2vT1wMAAAMDLyws5OTkwmUyYNGmSkzukCYlBkojcGIMkjWtWqxU7d+6ElBL19fVaPTw8HEIIZGZmwtPT04kd0oTHVdtE5MYYJGlc6u7uRnFxMcxmM9rb2wEAOp0OqampEEIgISGB09c0NjgiSURujEGSxpWmpiZs374dFRUVGBwcBAD4+PggNzcX+fn5CA4Odm6D5H642IaI3BiDJLk8i8WC6upqSCmxd+9erR4VFQUhBGbOnAmj0ejEDsmtcUSSiNwYgyS5rK6uLhQWFqKwsBCdnZ0AAL1ej7S0NAghEBcXx+lrcq7BweNfAIMkEbklBklyOY2NjZBSorKyEhaLBQDg5+eHvLw85OfnIyAgwMkdEp0wNK0NcLENEbklBklyCYODg9ixYweklGhsbNTqkydPhhACM2bMgIcHv13JxQxNawMckSQit8TfzORUnZ2dKCgoQGFhIY4dOwYAMBgMSE9PhxACkydPdnKHRGcwFCQNBoD/0CEiN8SffDTmlFLYt28fpJSoqqqC1WoFAAQEBCA/Px+5ubnw9/d3cpdEw8AV20Tk5hgkacwMDAygoqICUko0NTVp9SlTpkAIgenTp8NgMDixQ6IR4optInJzDJI06tra2lBQUICioiL09PQAADw8PJCRkQEhBKKiopzcIZGdeFcbInJzDJI0KpRSaGhogJQSNTU1UEoBAIKCgmAymZCTkwNfX18nd0l0jjgiSURujkGSHKq/vx9lZWWQUqKlpUWrJyYmQgiBlJQU6PV6J3ZI5EAMkkTk5hgkySGOHj0Ks9mM4uJi9J1YgGA0GpGVlQUhBMLDw53cIdEo4GIbInJzDJJkN6UU6urqIKVEbW2tVp80aRJMJhOys7PhzV+wNJFxRJKI3ByDJI1YX18fSkpKIKXE0aNHtfq0adMghMC0adN460JyDwySROTmGCRp2FpaWmA2m1FaWor+/n4AgJeXF7Kzs2EymRAaGurkDonGGFdtE5GbG1GQXLFiBVauXGlTS01NRXV1tUObItdhtVpRW1sLKSV2796t1cPCwiCEQGZmJrz4S5TcFUckicjNjXhEMj09HVu3bv2/HfC2YBNST08PiouLYTab0dbWptVTU1MhhEBiYiKnr4kYJInIzY04BXp4ePAC0hPYoUOHIKVEWVkZBgcHAQDe3t7IycmBEALBwcHObZDIlXDVNhG5uREHydraWsTExMDb2xvnnXceVq1ahSlTppx2+76+Pu1yMADQ0dFhX6fj2aZNwJo1zu7itBSOX/+xp6cH+oEBfA/A93D8Hw0+3t7w8vKCbtMm5zZJ5IoOHz7+XwZJInJTIwqSs2bNwqZNm5CamoqDBw9i5cqVmDNnDioqKhAQEHDK56xateqkz1W6naNHARf+HKkOgNeJLyKyQ0qKszsgInIKnRq6d50d2traEB8fj+eeew633XbbKbc51YhkXFwc2tvbERgYaO+hx5f9+4FvLVRxtsOHD6Oqqgr19fWwWCwAjk9fp6amIjU1FX5+fk7ukGgc8fMDcnMBfmaYiCaQjo4OBAUFnTWvndNKmeDgYKSkpGDXrl2n3cbLy4uremNjj385kcViwY4dOyClxP79+48X4+IQExMDIQTS09O5cIqIiIhG5JySQ1dXF+rq6nDLLbc4qh9ysM7OThQWFqKwsBBdXV0AAL1ej/T0dAghMHnyZK6+JiIiIruMKEg++OCDuOKKKxAfH48DBw5g+fLlMBgMuOGGG0arP7KDUgr79++HlBI7duyA1WoFAPj7+yM/Px95eXnw9/d3cpdEREQ03o0oSO7fvx833HADjhw5gvDwcMyePRvffPMNwsPDR6s/GoHBwUFUVFRASomDBw9q9bi4OAghkJaWBoPB4MQOiYiIaCIZUZB8++23R6sPOgft7e0oKChAUVERuru7AQAGgwEZGRkQQiA6OtrJHRIREdFExNUV45RSCnv27IGUEtXV1RhafB8YGAiTyYTc3Fz4+vo6uUsiIiKayBgkx5mBgQGUlZVBSonm5matnpCQACEEUlNTodfrndghERERuQsGyXGitbUVZrMZxcXF6D1xf1+j0ahNX0dGRjq5QyIiInI3DJIuTCmF3bt3Q0qJnTt3avWQkBCYTCZkZ2fDx8fHiR0SERGRO2OQdEF9fX0oLS2F2WzG4aF7+QJISkqCEALTpk3j9DURERE5HYOkCzly5AiklCgpKUF/fz8AwNPTE9nZ2TCZTAgLC3Nyh0RERET/h0HSyZRSqK2thZQSdXV1Wj00NBRCCGRlZfEWk0REROSSGCSdpLe3F8XFxTCbzWhtbdXqKSkpEEJg6tSpvHUhERERuTQGyTHW3NwMKSXKysowMDAAAPD29tamrydNmuTkDomIiIiGh0FyDFitVtTU1EBKiYaGBq0eEREBk8mEzMxMeHp6Oq9BIiIiIjswSI6Bjz76CAUFBQAAnU6H6dOnQwiB+Ph4Tl8TERHRuMUgOQYyMjJQWVmJ3NxcmEwmBAUFObslIiIionOmU0M3aR4jHR0dCAoKQnt7OwIDA8fy0E6jlILFYoGHB3M7ERERub7h5jVe1XoM6HQ6hkgiIiKacBgkiYiIiMguDJJEREREZBcGSSIiIiKyC4MkEREREdmFQZKIiIiI7MIgSURERER2GfNr0gxdtrKjo2OsD01EREREwzCU0852ufExD5KdnZ0AgLi4uLE+NBERERGNQGdn5xnvyDfmd7axWq04cOAAAgICeJ9pF9PR0YG4uDjs27fPbe46NF7w3Lg2nh/XxXPjunhuXJtSCp2dnYiJiYFef/pPQo75iKRer0dsbOxYH5ZGIDAwkG9qF8Vz49p4flwXz43r4rlxXWcaiRzCxTZEREREZBcGSSIiIiKyC4Mkaby8vLB8+XJ4eXk5uxX6Dp4b18bz47p4blwXz83EMOaLbYiIiIhoYuCIJBERERHZhUGSiIiIiOzCIElEREREdmGQJCIiIiK7MEhOUCtWrIBOp7P5mj59+hmf89e//hXTp0+Ht7c3MjIy8OGHH9o8rpTCk08+iejoaPj4+GDBggWora0dzZcxIY303Lz00kuYM2cOQkJCEBISggULFkBKabPNrbfeetI+L7nkktF+KRPOSM/Npk2bTtre29vbZhu+bxxnpOdn3rx5J22v0+lw2WWXadvwveM4jY2NuPnmmxEaGgofHx9kZGSgoKDgjM/5/PPPkZubCy8vL0ybNg2bNm06aZsXXngBCQkJ8Pb2xqxZs076+UfOxSA5gaWnp+PgwYPa15dffnnabb/++mvccMMNuO2221BcXIzFixdj8eLFqKio0LZZu3Ytfve73+GPf/wjtm/fDj8/PyxcuBC9vb1j8XImlJGcm88//xw33HADPvvsM2zbtg1xcXG4+OKL0djYaLPdJZdcYrPPt956a7RfxoQ0knMDHL8rx7e337Nnj83jfN841kjOz9///nebbSsqKmAwGHDNNdfYbMf3zrlrbW3FBRdcAKPRiI8++gg7duzAs88+i5CQkNM+p76+Hpdddhnmz5+PkpIS3Hvvvbj99tuxZcsWbZt33nkH999/P5YvX46ioiJkZWVh4cKFaG5uHouXRcOhaEJavny5ysrKGvb21157rbrssstsarNmzVI/+9nPlFJKWa1WFRUVpdatW6c93tbWpry8vNRbb73lkJ7dxUjPzXcNDg6qgIAA9dprr2m1JUuWqCuvvPLcm3NzIz03r776qgoKCjrt43zfONa5vnfWr1+vAgICVFdXl1bje8cxHnnkETV79uwRPefhhx9W6enpNrXrrrtOLVy4UPuzEEL9/Oc/1/5ssVhUTEyMWrVq1bk1TA7DEckJrLa2FjExMZg6dSpuuukm7N2797Tbbtu2DQsWLLCpLVy4ENu2bQNw/F+OTU1NNtsEBQVh1qxZ2jY0fCM5N9/V3d2NgYEBTJo0yab++eefIyIiAqmpqVi6dCmOHDni6LbdwkjPTVdXF+Lj4xEXF4crr7wSlZWV2mN83zjeubx3Xn75ZVx//fXw8/OzqfO9c+7ef/995Ofn45prrkFERARycnLw0ksvnfE5Z/u909/fj8LCQptt9Ho9FixYwPePC2GQnKBmzZqFTZs2YfPmzdi4cSPq6+sxZ84cdHZ2nnL7pqYmREZG2tQiIyPR1NSkPT5UO902NDwjPTff9cgjjyAmJsbmh+sll1yCP//5z/j000+xZs0afPHFF1i0aBEsFstovYwJaaTnJjU1Fa+88gree+89vPHGG7BarTj//POxf/9+AHzfONq5vHeklKioqMDtt99uU+d7xzF2796NjRs3Ijk5GVu2bMHSpUtxzz334LXXXjvtc073e6ejowM9PT04fPgwLBYL3z+uztlDojQ2WltbVWBgoPqP//iPUz5uNBrVm2++aVN74YUXVEREhFJKqa+++koBUAcOHLDZ5pprrlHXXnvt6DTtJs52br5t1apVKiQkRJWWlp5xu7q6OgVAbd261VFtuqWRnBullOrv71dJSUnqV7/6lVKK75vRNpLzc+edd6qMjIyzbsf3jn2MRqM677zzbGq/+MUv1Pe+973TPic5OVk9/fTTNrUPPvhAAVDd3d2qsbFRAVBff/21zTYPPfSQEkI4rnk6JxyRdBPBwcFISUnBrl27Tvl4VFQUDh06ZFM7dOgQoqKitMeHaqfbhuxztnMz5JlnnsHq1avx8ccfIzMz84zbTp06FWFhYWfdJ53ZcM/NEKPRiJycHG17vm9G13DPz7Fjx/D222/jtttuO+s++d6xT3R0NGbMmGFTS0tLO+NHD073eycwMBA+Pj4ICwuDwWDg+8fFMUi6ia6uLtTV1SE6OvqUj5933nn49NNPbWqffPIJzjvvPABAYmIioqKibLbp6OjA9u3btW3IPmc7N8Dxlb+/+c1vsHnzZuTn5591n/v378eRI0fOuE86u+Gcm2+zWCwoLy/Xtuf7ZnQN9/z89a9/RV9fH26++eaz7pPvHftccMEFqKmpsant3LkT8fHxp33O2X7veHp6Ii8vz2Ybq9WKTz/9lO8fV+LsIVEaHQ888ID6/PPPVX19vfrqq6/UggULVFhYmGpublZKKXXLLbeoRx99VNv+q6++Uh4eHuqZZ55RVVVVavny5cpoNKry8nJtm9WrV6vg4GD13nvvqbKyMnXllVeqxMRE1dPTM+avbzwb6blZvXq18vT0VH/729/UwYMHta/Ozk6llFKdnZ3qwQcfVNu2bVP19fVq69atKjc3VyUnJ6ve3l6nvMbxaqTnZuXKlWrLli2qrq5OFRYWquuvv155e3uryspKbRu+bxxnpOdnyOzZs9V11113Up3vHceRUioPDw/129/+VtXW1qr//M//VL6+vuqNN97Qtnn00UfVLbfcov159+7dytfXVz300EOqqqpKvfDCC8pgMKjNmzdr27z99tvKy8tLbdq0Se3YsUPdeeedKjg4WDU1NY3p66PTY5CcoK677joVHR2tPD091eTJk9V1112ndu3apT0+d+5ctWTJEpvn/OUvf1EpKSnK09NTpaenqw8++MDmcavVqv7f//t/KjIyUnl5eamLLrpI1dTUjMXLmVBGem7i4+MVgJO+li9frpRSqru7W1188cUqPDxcGY1GFR8fr+644w7+oLXDSM/Nvffeq6ZMmaI8PT1VZGSkuvTSS1VRUZHNPvm+cRx7fq5VV1crAOrjjz8+aX987zjWf//3f6uZM2cqLy8vNX36dPXiiy/aPL5kyRI1d+5cm9pnn32msrOzlaenp5o6dap69dVXT9rv888/r73PhBDqm2++GcVXQSOlU0opZ46IEhEREdH4xM9IEhEREZFdGCSJiIiIyC4MkkRERERkFwZJIiIiIrILgyQRERER2YVBkoiIiIjswiBJRERERHZhkCQiIiIiuzBIEhEREZFdGCSJiIiIyC4MkkRERERkFwZJIiIiIrLL/wcp3OYnf6IfRAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApIAAAEpCAYAAAAgbcJNAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQ11JREFUeJzt3Xl8VOW9P/DPzGSyr2QPCUkISQghe+ahKghUKuJSad234q1LhVrrvvYn0FrZVLi1llavitXr0va26r0qKFa9VZFnsi8kIYSEJRASICvZZ57fH5BzHdmSYZKZZD7v1ysv5TtnzvkOJ5N8eJ55ztEppRSIiIiIiEZI7+wGiIiIiGh8YpAkIiIiIrswSBIRERGRXRgkiYiIiMguDJJEREREZBcGSSIiIiKyC4MkEREREdmFQZKIiIiI7MIgSURERER2YZAkolG1YsUK6HQ6m1pCQgJuvfVW5zQ0hgYHB/Hwww8jLi4Oer0eixcvBgDodDqsWLFC227Tpk3Q6XRoaGhw2LFra2tx8cUXIygoCDqdDu+++67D9k1ENIRBksjFDYWMoS8PDw9MnjwZt956KxobG53dHp3BK6+8gnXr1uHqq6/Ga6+9hvvuu2/Mjr1kyRKUl5fjt7/9LV5//XXk5+eP2rEaGhpsvkf1ej0mTZqERYsWYdu2bQBO/j4+3VdCQgKA//sHSGRkJLq7u086ZkJCAi6//HKb2pn2e9ddd43a6ydyZx7OboCIhufXv/41EhMT0dvbi2+++QabNm3Cl19+iYqKCnh7ezu7vRGpqamBXj/x/x37z3/+E5MnT8b69ett6j09PfDwGL0fvz09Pdi2bRueeOIJ3H333aN2nO+64YYbcOmll8JisWDnzp34wx/+gPnz58NsNuPCCy/E66+/brP97bffDiEE7rzzTq3m7+9vs01zczM2btyIBx54YFg9/OAHP8BPfvKTk+opKSl2vCIiOhsGSaJxYtGiRdqo0u23346wsDCsWbMG77//Pq699londzcyXl5ezm7BLseOHYOfn9+wt29ubkZwcPBJ9dEO/i0tLQBwymPbazivPTc3FzfffLP25zlz5mDRokXYuHEj/vCHP2Dq1Kk22991112YOnWqzXO+Kzs7G+vWrcOyZcvg4+Nz1j5TUlLOuD8icqyJPyRANEHNmTMHAFBXV2dT/+c//4k5c+bAz88PwcHBuPLKK1FVVWWzza233qpNIX7bqT7PqNPpcPfdd+Pdd9/FzJkz4eXlhfT0dGzevPmk53/55ZcwmUzw9vZGUlIS/vSnP52y9+9+RnJo2vOrr77C/fffj/DwcPj5+eFHP/qRFoqGWK1WrFixAjExMfD19cX8+fOxY8eOYX3ucmgK9plnnsH69esRHx8PHx8fzJ07FxUVFSf9Hfn7+6Ourg6XXnopAgICcNNNNwE4HqoeeOABxMXFwcvLC6mpqXjmmWeglLI5zmeffYbKykptevXzzz/X/k6//RnJ0/noo4+0cxkQEIDLLrsMlZWVZ3zOihUrEB8fDwB46KGHbKaLAaC4uBiLFi1CYGAg/P39cdFFF+Gbb76x2cfQ+fjiiy+wbNkyREREIDY29qz9ftfpvkdH4sknn8ShQ4ewceNGu/dBRKOHI5JE49TQwoyQkBCttnXrVixatAhTp07FihUr0NPTg+effx4XXHABioqKThkeh+PLL7/E3//+dyxbtgwBAQH43e9+h6uuugp79+5FaGgoAKC8vBwXX3wxwsPDsWLFCgwODmL58uWIjIwc9nF+8YtfICQkBMuXL0dDQwM2bNiAu+++G++88462zWOPPYa1a9fiiiuuwMKFC1FaWoqFCxeit7d32Mf585//jM7OTvz85z9Hb28v/v3f/x3f//73UV5ebtPv4OAgFi5ciNmzZ+OZZ56Br68vlFL44Q9/iM8++wy33XYbsrOzsWXLFjz00ENobGzE+vXrER4ejtdffx2//e1v0dXVhVWrVgEA0tLSht3j66+/jiVLlmDhwoVYs2YNuru7sXHjRsyePRvFxcWnPZc//vGPERwcjPvuu0+bah6aLq6srMScOXMQGBiIhx9+GEajEX/6058wb948fPHFF5g1a5bNvpYtW4bw8HA8+eSTOHbs2LB7H3Kq79GRmjNnDr7//e9j7dq1WLp06VlHJXt7e3H48OGT6oGBgfD09LS7DyI6DUVELu3VV19VANTWrVtVS0uL2rdvn/rb3/6mwsPDlZeXl9q3b5+2bXZ2toqIiFBHjhzRaqWlpUqv16uf/OQnWm3JkiUqPj7+pGMtX75cfffHAgDl6empdu3aZbNPAOr555/XaosXL1be3t5qz549Wm3Hjh3KYDCctM/4+Hi1ZMmSk17jggULlNVq1er33XefMhgMqq2tTSmlVFNTk/Lw8FCLFy+22d+KFSsUAJt9nkp9fb0CoHx8fNT+/fu1+vbt2xUAdd9992m1JUuWKADq0UcftdnHu+++qwCop556yqZ+9dVXK51OZ/P3NHfuXJWenn5SHwDU8uXLT3r99fX1SimlOjs7VXBwsLrjjjtsntfU1KSCgoJOqp/uda5bt86mvnjxYuXp6anq6uq02oEDB1RAQIC68MILT+pn9uzZanBw8IzH+vbxVq5cqVpaWlRTU5P617/+pUwmkwKg/vrXv57yeX5+fqc9Z0Pfiy0tLeqLL75QANRzzz2nPR4fH68uu+wym+cAOO3XW2+9ddbXQUQjx6ltonFiwYIFCA8PR1xcHK6++mr4+fnh/fff16YcDx48iJKSEtx6662YNGmS9rzMzEz84Ac/wIcffnhOx05KSrLZZ2BgIHbv3g0AsFgs2LJlCxYvXowpU6Zo26WlpWHhwoXDPs6dd95pM7U+Z84cWCwW7NmzBwDw6aefYnBwEMuWLbN53i9+8YsRvZ7Fixdj8uTJ2p+FEJg1a9Yp/46WLl1q8+cPP/wQBoMB99xzj039gQcegFIKH3300Yh6OZVPPvkEbW1tuOGGG3D48GHty2AwYNasWfjss89GvE+LxYKPP/4YixcvtvmsYnR0NG688UZ8+eWX6OjosHnOHXfcAYPBMOxjLF++HOHh4YiKisKcOXNQVVWFZ599FldfffWI+/22Cy+8EPPnz8fatWvR09Nzxm2vvPJKfPLJJyd9zZ8//5x6IKJT49Q20TjxwgsvICUlBe3t7XjllVfwv//7vzaLVobCVmpq6knPTUtLw5YtW0a8WGTIt8PhkJCQELS2tgI4vrijp6cHycnJJ22Xmpo67BD73eMMTYkOHWfoNU6bNs1mu0mTJo1o+vRUfaakpOAvf/mLTc3Dw+Okzwbu2bMHMTExCAgIsKkPTVsP9XguamtrAQDf//73T/l4YGDgiPfZ0tKC7u7u035/WK1W7Nu3D+np6Vo9MTFxRMe48847cc0116C3txf//Oc/8bvf/Q4Wi2XEvZ7KihUrMHfuXPzxj38842WUYmNjsWDBAocck4jOjkGSaJwQQmirthcvXozZs2fjxhtvRE1NzUmXTDmb7y6oGXK6X/qnG5VSJxaXOMpYHWe4vLy8nHKZIqvVCuD45ySjoqJOenw0Lx30bcNZJf1tycnJWoi7/PLLYTAY8Oijj2L+/PnnfB3LCy+8EPPmzcPatWt5TUgiF8KpbaJxyGAwYNWqVThw4AB+//vfA4C2Urempuak7aurqxEWFqaNRoaEhKCtre2k7ewdTQsPD4ePj482kvZtp+rHXkOvcdeuXTb1I0eOaKOWw3GqPnfu3DmsxUjx8fE4cOAAOjs7berV1dU2PZ6LoY8RREREYMGCBSd9zZs3b8T7DA8Ph6+v72m/P/R6PeLi4s61dRtPPPEEAgIC8Ktf/coh+1uxYgWamppOezUAIhp7DJJE49S8efMghMCGDRvQ29uL6OhoZGdn47XXXrMJiRUVFfj4449x6aWXarWkpCS0t7ejrKxMqx08eBD/+Mc/7OrFYDBg4cKFePfdd7F3716tXlVVhS1btti1z1O56KKL4OHhcdKlYIbC9HC9++67NncFklJi+/btWLRo0VmfO3TB7e8ec/369dDpdMPax9ksXLgQgYGBePrppzEwMHDS49+9JNJwGAwGXHzxxXjvvfdsbsV46NAhvPnmm5g9e7ZdU+ZnEhwcjJ/97GfYsmULSkpKznl/c+fOxbx587BmzZoRrdInotHDqW2iceyhhx7CNddcg02bNuGuu+7CunXrsGjRIpx33nm47bbbtMv/BAUF2Vy38Prrr8cjjzyCH/3oR7jnnnu0S8ukpKSgqKjIrl5WrlyJzZs3Y86cOVi2bBkGBwfx/PPPIz093SawnovIyEj88pe/xLPPPosf/vCHuOSSS1BaWoqPPvoIYWFhp52y/65p06Zh9uzZWLp0Kfr6+rBhwwaEhobi4YcfPutzr7jiCsyfPx9PPPEEGhoakJWVhY8//hjvvfce7r33XptFSfYKDAzExo0bccsttyA3NxfXX389wsPDsXfvXnzwwQe44IILRhyeAeCpp57CJ598gtmzZ2PZsmXw8PDAn/70J/T19WHt2rXn3Pep/PKXv8SGDRuwevVqvP322+e8v+XLl59x4czOnTvxxhtvnFSPjIzED37wg3M+PhHZYpAkGsd+/OMfIykpCc888wzuuOMOLFiwAJs3b8by5cvx5JNPwmg0Yu7cuVizZo3NwonQ0FD84x//wP3334+HH34YiYmJWLVqFWpra+0OkpmZmdiyZQvuv/9+PPnkk4iNjcXKlStx8OBBhwVJAFizZg18fX3x0ksvYevWrTjvvPPw8ccfY/bs2cO+Y8xPfvIT6PV6bNiwAc3NzRBC4Pe//z2io6PP+ly9Xo/3338fTz75JN555x28+uqrSEhIwLp164Z9G7/huPHGGxETE4PVq1dj3bp16Ovrw+TJkzFnzhz827/9m137TE9Px7/+9S889thjWLVqFaxWK2bNmoU33njjpGtIOkpMTAxuvPFGvP7666irqzvnoD1v3jzMnTsXX3zxxSkfH1ql/V1z585lkCQaBTrlrE+xExE5SFtbG0JCQvDUU0/hiSeeOO12DQ0NSExMxLp16/Dggw+OYYdERBMTPyNJROPKqa4juGHDBgCwaxEKERHZj1PbRDSuvPPOO9i0aZN2678vv/wSb731Fi6++GJccMEFzm6PiMitMEgS0biSmZkJDw8PrF27Fh0dHdoCnKeeesrZrRERuR1+RpKIiIiI7MLPSBIRERGRXRgkiYiIiMguY/4ZSavVigMHDiAgIGDYFw8mIiIiorGjlEJnZydiYmKg159+3HHMg+SBAwccfj9XIiIiInK8ffv2ITY29rSPj3mQDAgIAHC8MUff15WIiIiIzl1HRwfi4uK03HY6Yx4kh6azAwMDGSSJiIiIXNjZPobIxTZEREREZBcGSSIiIiKyC4MkEREREdnFJW+RaLVa0d/f7+w2JgSj0QiDweDsNoiIiGgCcrkg2d/fj/r6elitVme3MmEEBwcjKiqK1+0kIiIih3KpIKmUwsGDB2EwGBAXF3fGC2DS2Sml0N3djebmZgBAdHS0kzsiIiKiicSlguTg4CC6u7sRExMDX19fZ7czIfj4+AAAmpubERERwWluIiKisxgYGEBFRQVSU1OZR87CpYKkxWIBAHh6ejq5k4ll6E0wMDDAIElERHQa7e3tMJvNKCoqQk9PDy666CLMnj3b2W25NJcKkkP4WT7H4t8nERHRqSml0NDQACklampqoJQCAAQFBXE0chhcMkgSERERjab+/n6UlZXBbDZrawkAIDExEUIIpKSkcK3GMDBIOsC8efOQnZ2NDRs2OLsVIiIiOoPW1lZIKVFSUoLe3l4Axy+Vl5WVBZPJhIiICCd3OL4wSDrA3//+dxiNxjE95ooVK/Duu++ipKRkTI9LREQ03iilUFdXByklamtrtfqkSZNgMpmQnZ0Nb29vJ3Y4fjFIOsCkSZOc3QIRERF9R19fH0pKSmA2m3HkyBGtPm3aNAghMG3aNK4jOEec/HeAefPm4d577wUAJCQk4Omnn8ZPf/pTBAQEYMqUKXjxxRe1bRsaGqDT6fD222/j/PPPh7e3N2bOnIkvvvhC22bTpk0IDg62Oca7776rfbNv2rQJK1euRGlpKXQ6HXQ6HTZt2jTaL5OIiGhcOHz4MD788EM899xz2Lx5M44cOQIvLy/MmjULd999N2666SYkJyczRDqAS49IKqUwMDDglGMbjUa7v8GeffZZ/OY3v8Hjjz+Ov/3tb1i6dCnmzp2L1NRUbZuHHnoIGzZswIwZM/Dcc8/hiiuuQH19PUJDQ8+6/+uuuw4VFRXYvHkztm7dCuD46jIiIiJ3ZbVaUVtbCykldu/erdXDwsIghEBmZia8vLyc2OHE5NJBcmBgAKtWrXLKsR977DG7r2d56aWXYtmyZQCARx55BOvXr8dnn31mEyTvvvtuXHXVVQCAjRs3YvPmzXj55Zfx8MMPn3X/Pj4+8Pf3h4eHB6KiouzqkYiIaCLo6elBcXExCgoK0NraqtVTU1MhhEBiYiJHHkeRSwfJ8SozM1P7f51Oh6ioKJtLCwDAeeedp/2/h4cH8vPzUVVVNWY9EhERjWeHDh2ClBLl5eXa7KW3tzdycnJgMpkQEhLi5A7dg0sHSaPRiMcee8xpx3bUc3U6HaxW67Cfr9frtQuiDnHWFD8REZGrsFqtqK6uhtlsRkNDg1aPjIyEEAIZGRljfhUVd+fSQVKn003Y2yV+8803uPDCCwEcv8d4YWEh7r77bgBAeHg4Ojs7cezYMfj5+QHASZf58fT01G4pSURENJF1d3ejsLAQBQUF6OjoAHA8I6SlpUEIgSlTpnD62klcOkhOZC+88AKSk5ORlpaG9evXo7W1FT/96U8BALNmzYKvry8ef/xx3HPPPdi+fftJq7ITEhJQX1+PkpISxMbGIiAggB8iJiKiCeXAgQOQUqKiokIbPPH19UVubi5MJhMCAwOd3CGN+PI/jY2NuPnmmxEaGgofHx9kZGSgoKBgNHqb0FavXo3Vq1cjKysLX375Jd5//32EhYUBOH5dyjfeeAMffvghMjIy8NZbb2HFihU2z7/qqqtwySWXYP78+QgPD8dbb73lhFdBRETkWBaLBRUVFXj55Zfx0ksvobS0FBaLBTExMVi8eDHuu+8+XHTRRQyRLkKnvvthvDNobW1FTk4O5s+fj6VLlyI8PBy1tbVISkpCUlLSsPbR0dGBoKAgtLe3n/RN0Nvbi/r6eiQmJk7YK8w3NDQgMTERxcXFyM7OHpNjusPfKxERjW9dXV0oKChAYWEhurq6ABxfM5Ceng4hBCZPnszp6zF0prz2bSOa2l6zZg3i4uLw6quvarXExET7uyQiIiK3pZRCY2MjpJSorKzUFqb6+/sjLy8PeXl5CAgIcHKXdCYjCpLvv/8+Fi5ciGuuuQZffPEFJk+ejGXLluGOO+447XP6+vrQ19en/XnoQ7JERBPWCy8ApaXO7oLIZVmtVhxtbUVLczO6u7sRDyAegJ+/PyLCwxEcEgJ9TQ3w5pvObfSHPwQuv9y5Pbi4EQXJ3bt3Y+PGjbj//vvx+OOPw2w245577oGnpyeWLFlyyuesWrUKK1eudEizE0FCQsJJl/Yhoglkzx7gxBUYiOjU9ADCTny5tNhYBsmzGNFnJD09PZGfn4+vv/5aq91zzz0wm83Ytm3bKZ9zqhHJuLg4t/2MpDPw75VoDJWWAtnZQEAAMIw7VRFNdEoptLW1Yf/+/Th8+LA2mOLl7Y3JMTGIiYlx3Uv9XXjh8S83NCqfkYyOjsaMGTNsamlpafiv//qv0z7Hy8uLl6UhIvfR23v8v6GhwK9+5dxeiJxoYGAAZWVlMJvNOGS1AifyQ0JCAoQQSE1NhV4/4ovHkIsZUZC84IILUFNTY1PbuXMn4uPjHdoUEdG4NRQkOfpPbqqtrQ1SShQXF6P3xPvBw8MDmZmZEEIgMjLSyR2SI40oSN533304//zz8fTTT+Paa6+FlBIvvvgiXnzxxdHqj4hofGGQJDeklEJ9fT2klDYDTsHBwTCZTMjJyYGPj48TO6TRMqIgaTKZ8I9//AOPPfYYfv3rXyMxMREbNmzATTfdNFr9ERGNL0OfCWeQJDfQ19eH0tJSmM1mHD58WKsnJSVBCIFp06Zx+nqCG/EtEi+//HJczhVMRESnxhFJcgNHjhyBlBKlpaXaglpPT09kZWVBCKHdqY0mPt5rm4jIkYaCJBcZ0gSjlMKuXbsgpcSuXbu0emhoKEwmE7Kzs7m41g1xvNkBbr31Vuh0Ouh0OhiNRiQmJuLhhx/GH//4R61+uq+GhgasWLECOp0Od911l81+S0pKtG2A47dXPN1+vvnmGye8ciI6CUckaYLp7e3Ftm3b8Pzzz+PNN9/UQmRKSgpuuukm/PznP8esWbMYIt0URyQd5JJLLsGrr76KgYEBFBYWYsmSJbjrrrtw8OBBbZsf//jHmDlzJn79619rtfDwcACAt7c3Xn75ZTzwwANITk4+47G2bt2K9PR0m1poaKgDXw0R2Y1BkiaI5uZmSClRVlaGgYEBAMcv6ZeTkwOTyYRJkyY5uUNyBQySDuLl5YWoqCgAQFxcHBYsWIBPPvkEa9as0bbx9PSEr6+vtt23paamIiIiAk888QT+8pe/nPFYoaGhp9wHEbkABkkax6xWK3bu3AkpJerr67V6eHg4hBDIzMx03YuHk1O4dpBUCujuds6xfX0Bnc6up1ZUVODrr78e8fU1V69eDZPJhIKCAuTn59t1bCJyMq7apnGou7sbRUVFKCgoQHt7OwBAp9MhNTUVQggkJCRAZ+fvRJrYXDtIdncD/v7OOXZXF+DnN+zN/+d//gf+/v4YHBxEX18f9Ho9fv/734/okLm5ubj22mvxyCOP4NNPPz3tdueff/5Jl1Po6uoa0bGIaJRwRJLGkaamJmzfvh0VFRUYHBwEAPj4+CA3NxcmkwlBQUFO7pBcnWsHyXFk/vz52LhxI44dO4b169fDw8MDV1111Yj389RTTyEtLQ0ff/wxIiIiTrnNO++8g7S0tHNtmYhGA1dtk4uzWCyorq6GlBJ79+7V6tHR0RBCID09HUaj0Ykd0nji2kHS1/f4yKCzjj0Cfn5+mDZtGgDglVdeQVZWFl5++WXcdtttI9pPUlIS7rjjDjz66KN4+eWXT7lNXFycdiwicjEckSQXdezYMRQWFqKgoACdnZ0AAL1ejxkzZkAIgdjYWE5f04i5dpDU6UY0vewq9Ho9Hn/8cdx///248cYbR3xbqCeffBJJSUl4++23R6lDIho1DJLkYhobGyGlRGVlJSwWC4Djgx95eXnIz89HQECAkzuk8cy1g+Q4ds011+Chhx7CCy+8gAcffHBEz42MjMT999+PdevWnfLxI0eOoKmpyaYWHBwMb/7iInI+LrYhFzA4OIgdO3ZASonGxkatPnnyZG362mAwOLFDmigYJEeJh4cH7r77bqxduxZLly6F3whHVh988EFs3LgRvUOjG9+yYMGCk2pvvfUWrr/+erv7JSIH4YgkOVFHRwcKCgpQVFSEY8eOAQAMBgNmzpwJIQRiYmKc3CFNNDqllBrLA3Z0dCAoKAjt7e0IDAy0eay3txf19fVITEzk6JoD8e+VaAxdfjnwwQfAyy8DP/2ps7shN6CUwr59+yClRFVVFaxWKwAgICAA+fn5yMvLG/FgBtGZ8tq3cUSSiMiROCJJY2RgYADl5eUwm802H3eaMmUKhBCYPn06p69p1DFIEhE5EoMkjbK2tjaYzWYUFxejp6cHwPGPU2VkZEAIwTuf0ZhikCQiciQGSRoFSik0NDRASomamhoMfSotODgY+fn5yM3NHfEVQogcgUGSiMiRuGqbHKi/vx9lZWWQUqKlpUWrT506FUIIJCcnn3SnM6KxxCBJRORIHJEkBzh69CiklCgpKUHfiX+cGI1GZGVlQQiB8PBwJ3dIdJxLBskxXkg+4Q2t4COiMcBbJJKdlFKoq6uDlBK1tbVafdKkSTCZTMjOzuaVN8jluFSQNBqN0Ol0aGlpQXh4OG/VdI6UUujv70dLSwv0ej08PT2d3RLRxMcRSRqh3t5elJSUwGw24+jRo1p92rRpEEJg2rRp/H1ILsulgqTBYEBsbCz279+PhoYGZ7czYfj6+mLKlCn8HA3RWGCQpGFqaWmBlBJlZWXo7+8HAHh5eSE7OxsmkwmhoaFO7pDo7FwqSAKAv78/kpOTMTAw4OxWJgSDwQAPDw/+a5ZorDBI0hlYrVbU1tZCSondu3dr9fDwcJhMJmRlZXH2iMYVlwuSwPHww4uoEtG4Y7EAg4PH/59Bkr6lp6cHxcXFMJvNaGtrAwDodDqkpKRACIHExET+g5/GJZcMkkRE49LQpX8ALrYhAMChQ4ewfft2lJeXY/DEPzK8vb2Rm5sLk8mE4OBg5zZIdI4YJImIHGVoWhvgiKQbs1qtqK6uhpQSe/bs0eqRkZEQQiAjIwNGo9GJHRI5DoMkEZGjDAVJgwHw4I9Xd3Ps2DEUFhaisLAQHR0dAI5PX6elpUEIgSlTpnD6miYc/qQjInIULrRxSwcOHICUEhUVFbBYLACOXy0jLy8P+fn5CAwMdHKHRKOHQZKIyFF4e0S3YbFYUFlZCbPZjP3792v1mJgYCCGQnp4OD45KkxvgdzkRkaPwrjYTXmdnJwoKClBYWIhjx44BAPR6PdLT0yGEQGxsrJM7JBpbDJJERI7Cqe0JSSmF/fv3Q0qJHTt2aLed9ff3R35+PvLy8uDv7+/kLomcg0GSiMhRGCQnlMHBQVRUVEBKiYMHD2r1uLg4CCGQlpbGax6T22OQJCJyFAbJCaG9vR1msxlFRUXo6ekBcPxGGRkZGRBCIDo62skdErkOBkkiIkdhkBy3lFLYs2cPpJSorq6GUgoAEBQUhPz8fOTm5sLX19fJXRK5HgZJIiJH4artcae/vx/l5eWQUqK5uVmrJyQkQAiB1NRU6PV6J3ZI5NoYJImIHIWrtseN1tZWSClRUlKC3hPnzWg0IjMzE0IIREREOLlDovGBQZKIyFE4te3SlFLYvXs3pJTYuXOnVg8JCYHJZEJ2djZ8fHyc2CHR+MMgSUTkKAySLqmvrw+lpaUwm804fPiwVk9KSoIQAsnJybx1IZGdGCSJiByFQdKlHD58GGazGSUlJejv7wcAeHp6Ijs7GyaTCWFhYU7ukGj8Y5AkInIULrZxOqUUamtrIaVEXV2dVg8NDYUQAllZWfDiZ1iJHIZBkojIUbjYxml6enpQUlICs9mM1tZWrZ6SkgIhBKZOncrpa6JRwCBJROQonNoec83Nzdi+fTvKy8sxMDAAAPD29kZOTg5MJhNCQkKc3CHRxMYgSUTkKAySY8JqtaKmpgZSSjQ0NGj1iIgICCGQmZkJo9HovAaJ3AiDJBGRozBIjqru7m4UFRXBbDajo6MDAKDT6TB9+nQIIRAfH8/pa6IxxiBJROQoDJKj4uDBg5BSory8HBaLBQDg6+uL3Nxc5OfnIygoyMkdErkvBkkiIkfhqm2HsVgsqKqqgpQS+/bt0+rR0dEQQmDmzJnw8OCvMCJn47uQiMhRuGr7nHV1daGwsBAFBQXo6uoCAOj1esyYMQNCCMTGxnL6msiFMEgSETkKp7btopRCY2MjpJSorKyE1WoFAPj7+yMvLw95eXkICAhwcpdEdCoMkkREjsIgOSKDg4OorKyElBIHDhzQ6rGxsRBCYMaMGTAYDE7skIjOhkGSiMhRGCSHpaOjAwUFBSgsLER3dzcAwGAwICMjAyaTCTExMU7ukIiGi0GSiMhRGCRPSymFvXv3QkqJqqoqKKUAAIGBgcjPz0dubi78/Pyc3CURjRSDJBGRowyt2uZiG83AwADKy8shpcShQ4e0enx8PIQQmD59OvR6vRM7JKJzwSBJROQoHJHUtLW1wWw2o6ioCL0n/l48PDyQmZkJIQQiIyOd3CEROQKDJBGRo7h5kFRKob6+HlJK1NTUaPXg4GCYTCbk5OTAx8fHiR0SkaMxSBIROYqbBsn+/n6UlpZCSonDhw9r9alTp0IIgeTkZE5fE01QDJJERI7iZkHyyJEjMJvNKCkpQd+Jz4d6enoiKysLQgiEhYU5uUMiGm0MkkREjjA4CJy4kPZEDpJKKezatQtSSuzatUurh4aGwmQyITs7G15cbETkNhgkiYgcYWg0EpiQq7Z7e3tRUlICs9mMo0ePavXk5GQIIZCUlMRbFxK5IQZJIiJHmKBBsqWlBVJKlJaWYmBgAADg5eWFnJwcmEwmTJo0yckdEpEzMUgSETnCUJA0GoFxfls/q9WKnTt3QkqJ+vp6rR4eHg4hBDIzM+Hp6enEDonIVTBIEhE5wgRYaNPd3Y3i4mKYzWa0t7cDAHQ6HVJTUyGEQEJCAqevicgGgyQRkSOM4yDZ1NQEKSXKy8sxODgIAPDx8UFubi7y8/MRHBzs3AaJyGUxSBIROcI4uz2ixWJBdXU1pJTYu3evVo+KioIQAjNnzoTRaHRih0Q0HjBIEhE5wjgZkTx27BgKCwtRUFCAzs5OAIBer0daWhqEEIiLi+P0NRENG4MkEZEjuHiQbGxshJQSlZWVsFgsAAA/Pz/k5eUhLy8PgYGBTu6QiMYjBkkiIkdwwSA5ODiIHTt2QEqJxsZGrT558mQIITBjxgx4ePDXABHZjz9BiIgcwYWCZGdnJwoKClBYWIhjx44BAAwGA9LT0yGEwOTJk53cIRFNFAySRESO4OQgqZTCvn37IKVEVVUVrCdu1xgQEID8/Hzk5ubC39/fKb0R0cTFIElE5AhOWrU9MDCAiooKSCnR1NSk1adMmQIhBKZPnw7DOL9AOhG5LgZJIiJHGOMRyfb2dpjNZhQVFaGnpwcA4OHhgYyMDAghEBUVNSZ9EJF7Y5AkInKEMQiSSik0NDRASomamhoopQAAQUFBMJlMyMnJga+v76gdn4jouxgkiYgcYRSDZH9/P8rKymA2m9Hc3KzVExMTYTKZkJqaCr1e7/DjEhGdDYMkEZEjjEKQPHr0KMxmM4qLi9F34jOYRqMRmZmZEEIgIiLCYcciIrIHgyQRkSM4aLGNUgp1dXWQUqK2tlarh4SEQAiB7OxseLvAJYaIiAAGSSIixzjHEcm+vj6UlJTAbDbjyJEjWn3atGkQQmDatGm8dSERuRwGSSIiR7AzSB4+fBhSSpSWlqK/vx8A4OnpiezsbAghEBoa6uhOiYgchkGSiMgRRhAkrVYramtrIaXE7t27tXpYWBiEEMjMzITXGF+PkojIHgySRESOMIwg2dPTg+LiYpjNZrS1tWn11NRUCCGQmJjI6WsiGlcYJImIHOEMQfLQoUOQUqKsrAyDg4MnNvNGTk4OTCYTQkJCxrJTIiKHYZAkInKE76zatlqtqK6uhpQSe/bs0TaLjIyEEAIZGRkwGo3O6JSIyGEYJImIHOHEiGQvAPO//oWCggJ0dHQAAHQ6HdLS0iCEwJQpUzh9TUQTBoMkEZED9Hd0wBPAe1u2oDolBQDg6+uLvLw85OXlISgoyLkNEhGNAgZJIiI7WSwW7NixA1JKXHbgAKIA9Ov1iImJgRAC6enp8PDgj1kimrj4E46IaIS6urpQUFCAwsJCdHV1AQA8LBYAwMIrr0T4VVdx+pqI3AKDJBHRMCilsH//fkgpsWPHDlitVgCAv78/8vLyMOmVVwAAEXFxAEMkEbkJBkkiojMYHBxERUUFpJQ4ePCgVo+Li4MQAmlpaTAYDMCJu9LYe4tEIqLxiEGSiOgU2tvbUVBQgKKiInR3dwMADAYDMjIyIIRAdHS07RPO8V7bRETjEYMkEdEJSins2bMHUkpUV1dDKQUACAwMhMlkQk5ODvz8/E79ZAZJInJDDJJE5PYGBgZQVlYGKSWam5u1ekJCAoQQSE1NhV6vP/0OlGKQJCK3xCBJRG6rtbUVZrMZxcXF6D0RBI1GozZ9HRkZObwdDX0+EmCQJCK3wiBJRG5FKYXdu3fDbDajpqZGqwcHB2vT1z4+PiPb6dDtEQHtFolERO6AQZKI3EJfXx9KS0thNptx+PBhrT516lQIIZCcnHzm6eszGZrWBhgkicitMEgS0YR25MgRSClRUlKC/hNT0J6ensjKyoIQAmFhYed+kKEg6eXFa0gSkVthkCSiCUcphdraWkgpUVdXp9VDQ0NhMpmQnZ0NL0eOHHKhDRG5KQZJIpowent7UVxcDLPZjNbWVq2ekpICIQSmTp06OrcuZJAkIjfFIElE415zczOklCgrK8PAwAAAwNvbGzk5OcjPz8ekSZNGt4FvT20TEbkRBkkiGpesVitqamogpURDQ4NWj4iIgBACGRkZ8PT0HJtmhlZtc0SSiNwMgyQRjSvd3d0oKipCQUEB2tvbAQA6nQ7Tp0+HEALx8fGjM319JpzaJiI3xSBJROPCwYMHIaVERUUFBgcHAQA+Pj7Izc2FyWRCUFCQ85pjkCQiN8UgSUQuy2KxoKqqClJK7Nu3T6tHRUVBCIGZM2fCaDQ6scMTGCSJyE0xSBKRy+nq6kJhYSEKCgrQ1dUFANDr9ZgxYwaEEIiNjR376esz4WIbInJTDJJE5DL2798PKSUqKythtVoBAH5+fsjPz0deXh4CAgKc3OFpcLENEbkpBkkicqrBwUFUVlZCSokDBw5o9djYWAghMGPGDBgMBid2OAyc2iYiN8UgSURO0dHRgYKCAhQVFeHYsWMAAIPBgJkzZ0IIgZiYGCd3OAIMkkTkphgkiWjMKKWwb98+SClRVVWlTV8HBARo09d+fn5O7tIODJJE5KYYJIlo1A0MDKC8vBxmsxlNTU1aPT4+HiaTCdOnT3f96eszYZAkIjfFIElEo6atrQ1msxnFxcXo6ekBAHh4eCAjIwNCCERFRTm5Qwfhqm0iclMMkkTkUEopNDQ0QEqJmpoaKKUAAMHBwcjPz0dubi58fHyc3KWDcdU2EbkpBkkicoj+/n6UlZVBSomWlhatPnXqVAghkJycDL1e78QORxGntonITTFIEtE5OXr0KKSUKCkpQd+JkTmj0YisrCwIIRAeHu7kDscAgyQRuSkGSSIaMaUU6urqIKVEbW2tVp80aRKEEMjKyoK3O4UqBkkiclMMkkQ0bL29vSgpKYHZbMbRo0e1enJyMoQQSEpKcq1bF44VLrYhIjfFIElEZ9XS0gIpJUpLSzEwMAAA8PLyQnZ2NkwmE0JDQ53coZNxRJKI3BSDJBGdktVqxc6dOyGlRH19vVYPDw+HyWRCVlYWPD09ndihC+GqbSJyUwySRGSjp6cHRUVFKCgoQFtbGwBAp9MhNTUVJpMJiYmJ7jl9fSYckSQiN8UgSUQAgEOHDmH79u0oLy/H4OAgAMDHxwc5OTkwmUwIDg52boOujEGSiNwUgySRG7Naraiursb27duxd+9erR4ZGQkhBDIyMmA0Gp3Y4TjBIElEbopBksgNHTt2DIWFhSgsLERHRweA49PXM2bMgBACcXFxnL4eCa7aJiI3xSBJ5EYOHDgAKSUqKipgsVgAAL6+vsjLy0N+fj4CAwOd3OE4xcU2ROSmGCSJJjiLxYLKykpIKdHY2KjVY2JiIIRAeno6PDz4o+CccGqbiNwUf3sQTVCdnZ0oKChAYWEhjh07BgDQ6/WYOXMmhBCYPHmykzucQBgkichNMUgSTSBKKezbtw9msxk7duyA1WoFAAQEBCAvLw95eXnw9/d3cpcTjNUK9Pcf/38GSSJyMwySRBPA4OAgysvLIaVEU1OTVo+Li4MQAmlpaTAYDE7scAIb+nwkwMU2ROR2GCSJxrH29naYzWYUFRWhp6cHAGAwGJCRkQEhBKKjo53coRsYmtYGOCJJRG6HQZJonFFKYc+ePZBSorq6GkopAEBQUBDy8/ORm5sLX19fJ3fpRoZGJHU6gNfcJCI3wyBJNE709/ejrKwMZrMZzc3NWj0hIQFCCKSmpkKv1zuxQzf17YU2vPYmEbkZBkkiF9fa2gopJUpKStB7IrQYjUZkZmZCCIGIiAgnd+jmuGKbiNwYgySRC1JKoa6uDlJK1NbWavWQkBCYTCbk5OTAm8HFNTBIEpEbY5AkciF9fX0oKSmB2WzGkSNHtHpSUhKEEEhOTuatC10Nb49IRG6MQZLIBRw+fBhSSpSWlqL/xDUJPT09kZ2dDZPJhLCwMCd3SKfFEUkicmMMkkROYrVasWvXLkgpUVdXp9VDQ0MhhEBWVha8OMrl+nifbSJyYwySRGOsp6cHxcXFKCgoQGtrq1ZPSUmBEAJTp07l9PV4whFJInJjDJJEY+TQoUOQUqK8vBwDAwMAAG9vb+Tk5MBkMiEkJMTJHZJdGCSJyI0xSBKNIqvViurqapjNZjQ0NGj1iIgICCGQmZkJIy9iPb5xsQ0RuTEGSaJR0N3djcLCQhQUFKCjowMAoNPpMH36dAghEB8fz+nriYIjkkTkxhgkiRzo4MGD2vS1xWIBAPj6+iI3Nxf5+fkICgpycofkcFxsQ0RujEGS6BxZLBZUVVVBSol9+/Zp9ejoaAghMHPmTHh48K02YXFEkojcGH+7Edmpq6tLm77u6uoCAOj1esyYMQNCCMTGxnL62h0wSBKRG2OQJBoBpRQaGxshpURlZSWsVisAwN/fH3l5ecjLy0NAQICTu6QxxSBJRG6MQZJoGAYHB1FZWQkpJQ4cOKDVY2NjIYTAjBkzYDAYnNghOQ1XbRORG2OQJDqDjo4OmM1mFBUVobu7GwBgMBiQkZEBk8mEmJgYJ3dITscRSSJyYwySRN+hlMLevXshpURVVRWUUgCAwMBA5OfnIzc3F35+fk7uklwGV20TkRtjkCQ6YWBgAOXl5ZBS4tChQ1o9Pj4eQghMnz4der3eiR2SS+KIJBG5MQZJcnttbW3a9HXviVDg4eGBzMxMCCEQGRnp5A7JpTFIEpEbY5Akt6SUQn19PaSU2LlzpzZ9HRwcDJPJhJycHPj4+Di5SxoXuNiGiNwYgyS5lb6+PpSVlUFKicOHD2v1qVOnQgiB5ORkTl/TyHBEkojcGIMkuYUjR45ASonS0lL0nVgc4enpiaysLAghEBYW5uQOadxikCQiN8YgSROWUgq7du2ClBK7du3S6qGhoTCZTMjOzoYXpyPpXHHVNhG5MQZJmnB6e3tRUlICs9mMo0ePavXk5GQIIZCUlMRbF5LjcESSiNwYgyRNGC0tLdr09cDAAADAy8sLOTk5MJlMmDRpkpM7pAmJQZKI3BiDJI1rVqsVO3fuhJQS9fX1Wj08PBxCCGRmZsLT09OJHdKEx1XbROTGGCRpXOru7kZxcTHMZjPa29sBADqdDqmpqRBCICEhgdPXNDY4IklEboxBksaVpqYmbN++HRUVFRgcHAQA+Pj4IDc3F/n5+QgODnZug+R+uNiGiNwYgyS5PIvFgurqakgpsXfvXq0eFRUFIQRmzpwJo9HoxA7JrXFEkojcGIMkuayuri4UFhaisLAQnZ2dAAC9Xo+0tDQIIRAXF8fpa3KuwcHjXwCDJBG5JQZJcjmNjY2QUqKyshIWiwUA4Ofnh7y8POTn5yMgIMDJHRKdMDStDXCxDRG5JQZJcgmDg4PYsWMHpJRobGzU6pMnT4YQAjNmzICHB79dycUMTWsDHJEkIrfE38zkVJ2dnSgoKEBhYSGOHTsGADAYDEhPT4cQApMnT3Zyh0RnMBQkDQaA/9AhIjfEn3w05pRS2LdvH6SUqKqqgtVqBQAEBAQgPz8fubm58Pf3d3KXRMPAFdtE5OYYJGnMDAwMoKKiAlJKNDU1afUpU6ZACIHp06fDYDA4sUOiEeKKbSJycwySNOra2tpQUFCAoqIi9PT0AAA8PDyQkZEBIQSioqKc3CGRnXhXGyJycwySNCqUUmhoaICUEjU1NVBKAQCCgoJgMpmQk5MDX19fJ3dJdI44IklEbo5Bkhyqv78fZWVlkFKipaVFqycmJkIIgZSUFOj1eid2SORADJJE5OYYJMkhjh49CrPZjOLiYvSdWIBgNBqRlZUFIQTCw8Od3CHRKOBiGyJycwySZDelFOrq6iClRG1trVafNGkSTCYTsrOz4c1fsDSRcUSSiNwcgySNWF9fH0pKSiClxNGjR7X6tGnTIITAtGnTeOtCcg8MkkTk5hgkadhaWlpgNptRWlqK/v5+AICXlxeys7NhMpkQGhrq5A6JxhhXbRORmxtRkFyxYgVWrlxpU0tNTUV1dbVDmyLXYbVaUVtbCykldu/erdXDwsIghEBmZia8+EuU3BVHJInIzY14RDI9PR1bt279vx3wtmATUk9PD4qLi2E2m9HW1qbVU1NTIYRAYmIip6+JGCSJyM2NOAV6eHjwAtIT2KFDhyClRFlZGQYHBwEA3t7eyMnJgRACwcHBzm2QyJVw1TYRubkRB8na2lrExMTA29sb5513HlatWoUpU6acdvu+vj7tcjAA0NHRYV+n49mmTcCaNc7u4rQUjl//saenB/qBAXwPwPdw/B8NPt7e8PLygm7TJuc2SeSKDh8+/l8GSSJyUyMKkrNmzcKmTZuQmpqKgwcPYuXKlZgzZw4qKioQEBBwyuesWrXqpM9Vup2jRwEX/hypDoDXiS8iskNKirM7ICJyCp0aunedHdra2hAfH4/nnnsOt9122ym3OdWIZFxcHNrb2xEYGGjvoceX/fuBby1UcbbDhw+jqqoK9fX1sFgsAI5PX6empiI1NRV+fn5O7pBoHPHzA3JzAX5mmIgmkI6ODgQFBZ01r53TSpng4GCkpKRg165dp93Gy8uLq3pjY49/OZHFYsGOHTsgpcT+/fuPF+PiEBMTAyEE0tPTuXCKiIiIRuSckkNXVxfq6upwyy23OKofcrDOzk4UFhaisLAQXV1dAAC9Xo/09HQIITB58mSuviYiIiK7jChIPvjgg7jiiisQHx+PAwcOYPny5TAYDLjhhhtGqz+yg1IK+/fvh5QSO3bsgNVqBQD4+/sjPz8feXl58Pf3d3KXRERENN6NKEju378fN9xwA44cOYLw8HDMnj0b33zzDcLDw0erPxqBwcFBVFRUQEqJgwcPavW4uDgIIZCWlgaDweDEDomIiGgiGVGQfPvtt0erDzoH7e3tKCgoQFFREbq7uwEABoMBGRkZEEIgOjrayR0SERHRRMTVFeOUUgp79uyBlBLV1dUYWnwfGBgIk8mE3Nxc+Pr6OrlLIiIimsgYJMeZgYEBlJWVQUqJ5uZmrZ6QkAAhBFJTU6HX653YIREREbkLBslxorW1FWazGcXFxeg9cX9fo9GoTV9HRkY6uUMiIiJyNwySLkwphd27d0NKiZ07d2r1kJAQmEwmZGdnw8fHx4kdEhERkTtjkHRBfX19KC0thdlsxuGhe/kCSEpKghAC06ZN4/Q1EREROR2DpAs5cuQIpJQoKSlBf38/AMDT0xPZ2dkwmUwICwtzcodERERE/4dB0smUUqitrYWUEnV1dVo9NDQUQghkZWXxFpNERETkkhgknaS3txfFxcUwm81obW3V6ikpKRBCYOrUqbx1IREREbk0Bskx1tzcDCklysrKMDAwAADw9vbWpq8nTZrk5A6JiIiIhodBcgxYrVbU1NRASomGhgatHhERAZPJhMzMTHh6ejqvQSIiIiI7MEiOgY8++ggFBQUAAJ1Oh+nTp0MIgfj4eE5fExER0bjFIDkGMjIyUFlZidzcXJhMJgQFBTm7JSIiIqJzplNDN2keIx0dHQgKCkJ7ezsCAwPH8tBOo5SCxWKBhwdzOxEREbm+4eY1XtV6DOh0OoZIIiIimnAYJImIiIjILgySRERERGQXBkkiIiIisguDJBERERHZhUGSiIiIiOzCIElEREREdhnza9IMXbayo6NjrA9NRERERMMwlNPOdrnxMQ+SnZ2dAIC4uLixPjQRERERjUBnZ+cZ78g35ne2sVqtOHDgAAICAnifaRfT0dGBuLg47Nu3z23uOjRe8Ny4Np4f18Vz47p4blybUgqdnZ2IiYmBXn/6T0KO+YikXq9HbGzsWB+WRiAwMJBvahfFc+PaeH5cF8+N6+K5cV1nGokcwsU2RERERGQXBkkiIiIisguDJGm8vLywfPlyeHl5ObsV+g6eG9fG8+O6eG5cF8/NxDDmi22IiIiIaGLgiCQRERER2YVBkoiIiIjswiBJRERERHZhkCQiIiIiuzBITlArVqyATqez+Zo+ffoZn/PXv/4V06dPh7e3NzIyMvDhhx/aPK6UwpNPPono6Gj4+PhgwYIFqK2tHc2XMSGN9Ny89NJLmDNnDkJCQhASEoIFCxZASmmzza233nrSPi+55JLRfikTzkjPzaZNm07a3tvb22Ybvm8cZ6TnZ968eSdtr9PpcNlll2nb8L3jOI2Njbj55psRGhoKHx8fZGRkoKCg4IzP+fzzz5GbmwsvLy9MmzYNmzZtOmmbF154AQkJCfD29sasWbNO+vlHzsUgOYGlp6fj4MGD2teXX3552m2//vpr3HDDDbjttttQXFyMxYsXY/HixaioqNC2Wbt2LX73u9/hj3/8I7Zv3w4/Pz8sXLgQvb29Y/FyJpSRnJvPP/8cN9xwAz777DNs27YNcXFxuPjii9HY2Giz3SWXXGKzz7feemu0X8aENJJzAxy/K8e3t9+zZ4/N43zfONZIzs/f//53m20rKipgMBhwzTXX2GzH9865a21txQUXXACj0YiPPvoIO3bswLPPPouQkJDTPqe+vh6XXXYZ5s+fj5KSEtx77724/fbbsWXLFm2bd955B/fffz+WL1+OoqIiZGVlYeHChWhubh6Ll0XDoWhCWr58ucrKyhr29tdee6267LLLbGqzZs1SP/vZz5RSSlmtVhUVFaXWrVunPd7W1qa8vLzUW2+95ZCe3cVIz813DQ4OqoCAAPXaa69ptSVLlqgrr7zy3JtzcyM9N6+++qoKCgo67eN83zjWub531q9frwICAlRXV5dW43vHMR555BE1e/bsET3n4YcfVunp6Ta16667Ti1cuFD7sxBC/fznP9f+bLFYVExMjFq1atW5NUwOwxHJCay2thYxMTGYOnUqbrrpJuzdu/e0227btg0LFiywqS1cuBDbtm0DcPxfjk1NTTbbBAUFYdasWdo2NHwjOTff1d3djYGBAUyaNMmm/vnnnyMiIgKpqalYunQpjhw54ui23cJIz01XVxfi4+MRFxeHK6+8EpWVldpjfN843rm8d15++WVcf/318PPzs6nzvXPu3n//feTn5+Oaa65BREQEcnJy8NJLL53xOWf7vdPf34/CwkKbbfR6PRYsWMD3jwthkJygZs2ahU2bNmHz5s3YuHEj6uvrMWfOHHR2dp5y+6amJkRGRtrUIiMj0dTUpD0+VDvdNjQ8Iz033/XII48gJibG5ofrJZdcgj//+c/49NNPsWbNGnzxxRdYtGgRLBbLaL2MCWmk5yY1NRWvvPIK3nvvPbzxxhuwWq04//zzsX//fgB83zjaubx3pJSoqKjA7bffblPne8cxdu/ejY0bNyI5ORlbtmzB0qVLcc899+C111477XNO93uno6MDPT09OHz4MCwWC98/rs7ZQ6I0NlpbW1VgYKD6j//4j1M+bjQa1ZtvvmlTe+GFF1RERIRSSqmvvvpKAVAHDhyw2eaaa65R11577eg07SbOdm6+bdWqVSokJESVlpaecbu6ujoFQG3dutVRbbqlkZwbpZTq7+9XSUlJ6le/+pVSiu+b0TaS83PnnXeqjIyMs27H9459jEajOu+882xqv/jFL9T3vve90z4nOTlZPf300za1Dz74QAFQ3d3dqrGxUQFQX3/9tc02Dz30kBJCOK55OicckXQTwcHBSElJwa5du075eFRUFA4dOmRTO3ToEKKiorTHh2qn24bsc7ZzM+SZZ57B6tWr8fHHHyMzM/OM206dOhVhYWFn3Sed2XDPzRCj0YicnBxte75vRtdwz8+xY8fw9ttv47bbbjvrPvnesU90dDRmzJhhU0tLSzvjRw9O93snMDAQPj4+CAsLg8Fg4PvHxTFIuomuri7U1dUhOjr6lI+fd955+PTTT21qn3zyCc477zwAQGJiIqKiomy26ejowPbt27VtyD5nOzfA8ZW/v/nNb7B582bk5+efdZ/79+/HkSNHzrhPOrvhnJtvs1gsKC8v17bn+2Z0Dff8/PWvf0VfXx9uvvnms+6T7x37XHDBBaipqbGp7dy5E/Hx8ad9ztl+73h6eiIvL89mG6vVik8//ZTvH1fi7CFRGh0PPPCA+vzzz1V9fb366quv1IIFC1RYWJhqbm5WSil1yy23qEcffVTb/quvvlIeHh7qmWeeUVVVVWr58uXKaDSq8vJybZvVq1er4OBg9d5776mysjJ15ZVXqsTERNXT0zPmr288G+m5Wb16tfL09FR/+9vf1MGDB7Wvzs5OpZRSnZ2d6sEHH1Tbtm1T9fX1auvWrSo3N1clJyer3t5ep7zG8Wqk52blypVqy5Ytqq6uThUWFqrrr79eeXt7q8rKSm0bvm8cZ6TnZ8js2bPVddddd1Kd7x3HkVIqDw8P9dvf/lbV1taq//zP/1S+vr7qjTfe0LZ59NFH1S233KL9effu3crX11c99NBDqqqqSr3wwgvKYDCozZs3a9u8/fbbysvLS23atEnt2LFD3XnnnSo4OFg1NTWN6euj02OQnKCuu+46FR0drTw9PdXkyZPVddddp3bt2qU9PnfuXLVkyRKb5/zlL39RKSkpytPTU6Wnp6sPPvjA5nGr1ar+3//7fyoyMlJ5eXmpiy66SNXU1IzFy5lQRnpu4uPjFYCTvpYvX66UUqq7u1tdfPHFKjw8XBmNRhUfH6/uuOMO/qC1w0jPzb333qumTJmiPD09VWRkpLr00ktVUVGRzT75vnEce36uVVdXKwDq448/Pml/fO841n//93+rmTNnKi8vLzV9+nT14osv2jy+ZMkSNXfuXJvaZ599prKzs5Wnp6eaOnWqevXVV0/a7/PPP6+9z4QQ6ptvvhnFV0EjpVNKKWeOiBIRERHR+MTPSBIRERGRXRgkiYiIiMguDJJEREREZBcGSSIiIiKyC4MkEREREdmFQZKIiIiI7MIgSURERER2YZAkIiIiIrswSBIRERGRXRgkiYiIiMguDJJEREREZBcGSSIiIiKyy/8HKdzmJ3+iH0QAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -738,7 +735,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAApIAAAEoCAYAAADrMRHoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABsrUlEQVR4nO3deXwUVbo//k9n66ydhRCahCxk36sVBCKjMAoEBC9cIwqjDowSFtlRRPihbF+MwiAiolzEAa4z6ExGRR1GFhkQZDVwu5IQCFsgBBICIRsk6fX8/gh9SJM9JOnqzvN+vXhpn6pUnepKJ0+ep845MsYYAyGEEEIIIa1kZ+kOEEIIIYQQ60SBJCGEEEIIaRMKJAkhhBBCSJtQIEkIIYQQQtqEAklCCCGEENImFEgSQgghhJA2oUCSEEIIIYS0CQWShBBCCCGkTSiQJIQQQgghbUKBJCGEEEIIaRMKJAkhhBAiKa+//jrOnTtn1rZmzRoUFhZi9+7duHHjhoV6Rh5EgSQhhBBCJOXixYsICwsza3vjjTfQs2dPbN68GXK53EI9Iw+iQJI0a/DgwfjrX//KX8fFxeHo0aMW7FHzzpw5g4SEBHh4eOCbb74x63NISAh+/fVXi/SjpTrqPe7Ma28NmUyGgoKCDj2HNXzf1mWNnztrNnPmTPztb3+zdDfajUajQY8ePVBRUWHprjSrX79+SE1NRXR0NH744QcAwK1btzBp0iQkJibiX//6FwBg6NCh+O6777Bv3z6MGTMGP/30E7RaLcaNG4eBAwfid7/7HYxGY73j6/V6JCQkUBazg1AgKXEhISFwdXWFu7s7/P39MWvWLBgMBov26fTp00hKSrJoH5qzevVqPPvss6isrERKSorF+vxgP1rKGt5jQLqBKVC/b9bynjamM/p/8OBBDBgwAJ6enujWrRueeuop5OXl8e3N/Tyqu93d3R1KpfKh+tMe318tOUZhYSH+/e9/Y9y4cfxrqqqqHuq8LbVp0ybEx8fDw8MDfn5+eP755wEAly9fhkwmg7u7O9zc3BAXF4dffvmFf13d7a6urvD19cWiRYv4drlcjhs3bkChUAAAGGNwd3dHcXFxu1+DRqPBq6++iqCgICgUCgwYMKDFf/Tk5+ejqqoK69evx1dffYWff/4Z169fR2VlJdavX4+ff/4Zn376Ka5du4aAgAA8++yzePzxx3HgwAGMGDECR48eRUhICA4fPoyDBw/Czq42rPnoo4/wwQcfAAAcHBzw2muvYdWqVe1+7YQCSauwZ88e3LlzB4cOHcI333yDL774wtJdsii9Xt/sPvn5+YiNje2E3lhHP0j7aMn3nrUqLy/H6NGj8dZbb6G0tBRXrlzBzJkzYW9vb7Zfcz+PTNvv3LmDoqKizryENvvyyy8xevRofq1XrlxpMLPVGhMnTsTWrVub3OeTTz7BZ599hvT0dFRUVODkyZMYNWoUAEAURcTFxfH3cvTo0Zg8eTL/WlEUERsbizt37qCqqgp79uxBWloasrOzGzxXXl4eXF1d4efn16L+GwwGZGVl1WtXq9X12vR6PQ/Yy8rKMGfOHDz77LO4c+cOAKCoqAiDBw82+zds2DAAQHZ2Nl566SU4Ozvj1q1bCA4ORnZ2NiZMmAB3d3e4uLjAx8cHWVlZSEhIwNmzZxETE8PP3a9fP+h0OowfPx6HDx/m7WVlZSgtLeWvx40bhy+//BI6na5F109ajgJJKxIWFoaBAweafZBPnz6NJ554Al5eXujTp4/ZB+nBcmHdUplMJsNnn32G3r17w9fXF2lpaXy/3377DYmJiVAoFJg6dWq9H6h1/8Jv6jjHjx9HQkICP86gQYPMSnV1yWQyrF+/HkFBQVAqlVi9enW97Z988gl69+6N3//+901e+4gRI7B//35MmjQJ7u7uKCkpaTQrkZ+fj5EjR6Jbt26IiYnBrl27AABGoxGzZs2Cr68vvLy88Nhjj+HWrVsN9r01/airqXM8+B5v2LABISEh8PLywv/8z//gyJEjiI2Nhbe3N1asWNGq97K5a39QY/2cNGkS8vPzMWzYMLi7u/OyYFPfk3l5efycPXv2xMcff8y3/fjjjw1+HwHAe++9h+DgYCgUCiQlJSEzM7PVfXvwe6Cpvjz4ftb93mvq+kz7W8vnrq5z585BLpfjueeeg52dHdzd3fHf//3fCAoKanD/hn4eNaax+we07h629vPa2Pfog3bt2oUnnniiyWuYMWMGpkyZws83evRozJ07t9lrb8rWrVsxa9YsxMTEQCaTITAwEBMnTgRQGyg+8sgjAGrv98CBA81+BpkCSRNBEODo6MgDpXXr1uG1114DUPuITWxsLEpLS+Hu7o7HHnsMZ8+exZAhQ+Dj4wNvb2/MmjXLrG+m7RkZGbxt48aNeOGFF6DVas32dXNzw7vvvougoCDY2dlh3LhxcHJyQm5uLgBAqVTiwIEDZv/27NkDoDaQVKlU/JoSEhKQnZ0NBwcHAMCWLVswZswYHkjm5OQgKiqKn5sxhjVr1mD58uX45JNPGn2vlUolvL29za6HtBNGJC04OJgdOnSIMcZYbm4uUyqV7M9//jNjjDGNRsN69+7N1q1bx7RaLfv666+Zt7c3u337NmOMMQDs6tWr/FiDBg1iX375Jd/2/PPPs8rKSpaVlcXkcjm7cOEC02g0rFevXuzTTz9lWq2Wffzxx8ze3p5/3YN9auw4NTU1zN/fn23evJlptVq2YcMG5uDgYHacugCwYcOGsfLycnbmzBmmVCrZzz//bLb9v/7rv1h5eTmrqqpq9trrXuuDfTb9v8FgYImJiWzdunVMp9OxI0eOMF9fX1ZUVMR++ukn1qdPH1ZeXs70ej07efIkq6ysrNfv1vajrqbO8eB7/OKLL7K7d++y//znP8zZ2Zk999xzrKSkhJ05c4Y5Ozuzixcvtui9bMm1t7Wfzb0fOp2OxcTEsCVLlrDq6mpWXl7OMjIymvw+Mvnmm29YcXEx02q17J133mGCILS6b3VfN9WXB9X93isrK2vyfpv2l/Lnbtq0aWzatGn1rrOsrIx5e3uz1157je3Zs4eVl5fX26epn0cNvefN3T/GWn4P2/p5baxPdfn6+rKsrCz+GkC9z3tBQQFTKBSsoKCAzZs3jz377LPMYDA0eswJEyawLVu2NHnegQMHsr59+7Lvv/++3vv93HPPsQ8//JCf+4knnmBTpkwx2/7uu+8yxhirrq5mS5cuZQMGDGBGo5Exxtirr77KPvroI77/e++9x2bOnMlfP/roo+zvf/87MxqNjX7///DDD0ypVLKcnBz21VdfsYCAAHbp0qUmr4kxxs6dO8fkcjkrKytrdt9XXnmFFRQUMMYY++Mf/8iuXbvG/vSnP7E5c+awlJQUNmfOHL7ftWvXmFqtZnFxcfzaX3jhBTZw4ECWlJTETpw4wY+7ZMkStmDBArNz/dd//RfbuHFjs30irUOBpMQFBwczd3d35ubmxgCw5557jlVXVzPGGDt48CALDg4223/AgAFs+/btjLHmf6HV/cHx2GOPse+++44dOHCAhYSE8Haj0ch69erV5C+0ho6zf/9+Fhoaata3wMDAJgPJ/fv389f/3//3/7HU1FSz7UeOHOGvm7v2lgSSR48eZREREWbHSElJYVu2bGE///wzi4yMZMePH+c/mBvS2n7U1dQ5HnyPT548ybf5+fmxb775hr/u168f++677/jrpt7Lllx7W/vZ3Pvx66+/sl69ejX4y7ex76OGVFdXM5lMxiorK1vVt7qvm+pLQ30zfe81d79N+1vL5+5BWVlZ7OWXX2Y9evRgTk5O7KWXXmIVFRVmfWjs51Hd7Z6enszT05PNnTu33jnq3j/GWv791dbPa0sCSQcHB5aXl8dfNxRIMsbY9OnTmUqlYiqVit25c6fJY7YkkMzPz2dTp05lfn5+TC6Xs0mTJjGNRsMYYywsLMzsvZ46dSrfZtru6urKPD09mb29PQsKCjK7hr59+7L//Oc//PW4cePYpk2b+GtPT0/25ZdfMr1e32Qft23bxpRKJfPz82OZmZlN7ssYY1VVVaxfv35s6dKlze7bkRoKJF966SX2wQcfWKhHtotK21bgp59+QmVlJXbs2IGMjAz+3Mn169cRGBhotm9wcDCuX7/eouP26NGD/7+rqyvu3LmDwsJC9OrVi7fLZDKz1y09TlFREQICAsz2e/D1g+peS2BgIAoLC8221+3Hw147UFvazcvLg5eXF/+3a9cuFBYW4umnn8bUqVMxefJk9OzZE2+++WaDz9Y8TD9aeg4AZs81ubi41Htt+p4wae69bOraH6afTb0fBQUFCA4O5g/DP6ih7yOTzz//HHFxcfD09IRSqQRjDCUlJa3qW13N9eVBpu+99vi+k9rnrq74+Hh8+eWXKCoqwpEjR3DkyBGsXLnSbJ/Gfh7V3V5WVoaysjJ8+OGHABq/f0DLv7/a4/PaGE9Pz3rX0RBBEKBWq/Hpp5/Czc2t3vZRo0bxvm3fvh2vv/46f/3+++/X2z8wMBCfffYZCgsL8eOPP+Kvf/0r/vnPf+LOnTu4dOkSrl69ioqKCnzwwQc4duwYnJycAIBvF0URZWVluHv3Lp566im89dZbAGpL7zk5OUhMTOTnyszMNHv91VdfYePGjQgICMBbb73V6PO/YWFhqKmpgUKhMPuea4hOp8PYsWMRHh6Od999t9n3s7NVVlbC09PT0t2wORRIWgmZTIbRo0djyJAh+H//7/8BAPz9/XH16lWz/fLz8+Hv7w+g9pdLdXU139aSqQ969uxZbxqWtkzLolQqce3aNbO2B18/qO61XL16FT179jTbLpPJ+P83d+0tERAQgJiYGP5Lr6ysDHfu3MHChQsBAHPnzoVarcZvv/2G3bt3N/h81cP2oyXnaIvm3svmrr2l/ax7T4Cm34/AwEBcuXIFjLFWXcvly5cxZ84cbNu2DaWlpSgsLIRMJuPHaWnf6mptX0zHasn9trbPXWP69OmD5557rsHBGw39PGpMc/cPaNk9bOvntanvA5OEhAScP3++yX2OHz+O5cuXIyUlBdu2bWtwn3/961+8b3/4wx/w6aef8tdvv/12o8e2s7PD0KFD0aNHD1RVVSEzMxP+/v7w8vKCnZ0dZs+ejYsXL/JnSzMzM6FQKPg8i3K5HElJSfwPwQsXLvCR9wCg1Wpx/vx5xMfH83OOGDECv/76K44fP46///3v+M9//lOvX2q1GikpKfjnP/+JCRMmIDk5GeXl5Q1eg9FoxCuvvAKZTIZt27a16H3vbLm5uUhISLB0N2wOBZJW5s0338TmzZtx69Yt9O/fH0DtyD+9Xo/09HScOXMGw4cPB1D71/PXX38Ng8GA//3f/8WFCxeaPX5SUhJ0Oh02bdoEnU6HDRs2NJilaslxqqursWXLFuj1emzcuLHZ43zwwQeoqKhAbm4u/vKXv+CFF15odN/mrr0l+vfvD6PRiM8++wxarRZarRaHDh1Cfn4+MjIy8Ntvv0Gv18PDwwOOjo71Rq8+bD9aeo62aO69bOraW9NPPz8/XL582ey4QMPvR79+/eDh4YEVK1agpqaGj1Jtzp07d2BnZ4fu3btDr9djyZIlbepbXW3tS0vut7V97kzOnj2LtWvX8uzquXPn8OOPP6Jfv36Nfk3dn0eNaer+AS2/h239vDb1fWAyfPjwJqcIys/Px9ixY/HXv/4V69atw/bt2xv8rLRGWloajh8/Dp1Ohzt37mDlypW4e/cuRo8ezUdsm8jlcgwePJjPp2gaiGMK1s6fP48NGzZgzJgxAOpnHysrKwGAD5L55ptv+LROpaWl0Gq1iI6ONuufaTDaxo0b8fTTT2Px4sV46qmnMGrUqHqDbQBgypQpKCwsRHp6Oh8oIyU3btxASUkJ+vbta+mu2BwKJK1MTEwMBg0ahHXr1sHJyQk//PADvvrqK3Tr1g1paWn44Ycf4O3tDQBYu3Yt/va3v8HHxwcnT57E448/3uzxnZyc8M0332D9+vXo1q0bMjMzW/R1D5LL5fjmm2+wZs0a+Pj4QK1W47HHHmtyNYJnnnkG8fHxePLJJzFr1iwMGTKkyX42de0t4eDggJ07d2L37t0ICAiAv78/Vq5cCaPRiPLycrz66qvw8vJCVFQUBg4ciD/84Q/t2o+WnqMtmnsvm7r21vRzwYIFePvtt3kpr6n3w8HBAf/6179w5MgR9OzZE1FRUS2aay4+Ph5TpkxBYmIiQkJC0Lt3b17ia03fHrz+tvSlJfdb6p+7qVOnYurUqfW+1sPDA0eOHEGfPn3g5uaGIUOGYOTIkU1m0ur+PGpMU/cPaPk9/Mc//tGmz2tT3wcmr7zyCnbs2NHgHL2VlZUYNWoUlixZgkGDBiEgIAAvvfQS3nvvvUavuSVKS0vx0ksvwdvbG5GRkcjKysLRo0fRvXt3iKJolj0EgOTkZLNA8tdff4W7uzu8vLwwevRoTJgwAfPmzQMAZGVlmQWS3bp1w/jx4xEUFIQBAwbgl19+QVJSEtzd3TFhwgRs3ry53uj87t27Y9OmTTw4BYA///nPmDlzptn9A2qnS9q8eTNOnDgBX19fPo/ooUOHHuo9ak9ff/01XnnllXp9Jw9PxlpbZyKkDRhj6NWrF9LT0xv8BSmTyXD16tVmnwsjzaP3kpg097kj982YMQOPP/44/vCHP0Amk6GyshLu7u6W7hZpo6VLl6Kmpgbvv/8+9Ho9HnnkEezdu/ehJ8kn9VFGknSYAwcO4NatW9Bqtfjggw8gk8morEBIB6PPXdt88sknPIsZFxeHAQMG4B//+IeFe0XaIjk5Gf/85z950Ojg4ICsrCwKIjuI9B5kIDYjKysLL7zwAqqrqxETE4Nvv/2WygqEdDD63D28xlaHIdZh9+7dlu5Cl0KlbUIIIYQQ0iZU2iaEEEIIIW1CgSQhhBBCCGkTCiQJIYQQQkibdPpgG6PRiOvXr8PDw0OSM98TQgghhHR1jDFUVlbC39+/yeVkOz2QbGitWkIIIYQQIj3NzUvc6YGkh4cHgNqOKRSKzj49IYQQQghpRkVFBQIDA3nc1phODyRN5WyFQkGBJCGEEEKIhDX3GCINtiGEEEIIIW1CgSQhhBBCCGkTCiQJIYQQQkibSHKtbaPRCK1Wa+luEIlzdHSEvb29pbtBCCGEdFmSCyS1Wi3y8vJgNBot3RViBby8vKBUKmlOUkIIIcQCJBVIMsZQWFgIe3t7BAYGNjkBJunaGGOoqqpCcXExAKBnz54W7hEhhBDS9UgqkNTr9aiqqoK/vz9cXV0t3R0icS4uLgCA4uJi+Pn5UZmbEEII6WSSSvkZDAYAgJOTk4V7QqyF6Q8OnU5n4Z4QQgghXY+kAkkTet6NtBR9rxBCCCGWI8lAkhBCCCGESB8FkoQQQgghpE0okCSEEEIIIW1CgSQhhBBCCGkTCiTbyeDBgzFnzhxLd4MQQgghpNNIah5Ja/btt9/C0dGx0887ePBgqFQqfPTRR51+bkIIIYR0bRRIthMfHx9Ld4EQQgghpFNJurTNGINWq7XIP8ZYq/pat7Q9ePBgzJo1C2+99RZ8fHygVCqxdOnSevvPmDEDM2bMgKenJ3x9ffHOO++YnTckJKReplGlUvFjTZw4Eb/88gvWrVsHmUwGmUyGy5cvN9i/r776Ci4uLigsLORtf/rTn5CYmIjy8vJWXSshhBBCCCDxjKROp0NaWppFzr1w4cKHWmFn27ZtmDdvHo4fP46jR49i4sSJGDhwIIYOHWq2z2uvvYYTJ04gIyMDkydPRlBQEFJTU1t0jnXr1uHcuXOIj4/H8uXLAQDdu3dvcN9x48bh/fffx3vvvYf169djyZIl+Pnnn3Hs2DF4enq2+ToJIYQQ0nVJOpC0ZomJiViyZAkAICIiAp988gn27dtnFkgGBgZi7dq1kMlkiIqKQlZWFtauXdviQNLT0xNOTk5wdXWFUqlscl+ZTIaVK1fi+eefh1KpxPr163Ho0CEEBAS0/SIJIYQQ0qVJOpB0dHTEwoULLXbuh5GYmGj2umfPniguLjZrGzBggNkSf0lJSVizZg0MBgPs7e0f6vwNGTVqFGJjY7F8+XLs2bMHcXFx7X4OQgghxBbo9XrY2dnBzk7STwFanKQDSZlM9lDlZUt6MBCVyWQwGo2tOoadnV29ZzV1Ol2b+7Rr1y6cPXsWBoMBPXr0aPNxCCGEEFvEGMP169ehVquRnZ2N0aNHIzo62tLdkjRJB5K27vjx42avjx07hoiICJ6N7N69u9ngmIqKCuTl5Zl9jZOTEwwGQ7PnOnXqFF544QV88cUX2Lp1K9555x2kp6e3w1UQQggh1q2iogKZmZkQRRG3bt3i7bm5uRRINoMCSQvKz8/HvHnzMGXKFJw6dQrr16/HmjVr+PannnoKW7duxbPPPgsvLy+8++679UreISEhOH78OC5fvgx3d3f4+PjUS8NfvnwZI0eOxKJFizB+/HiEhoYiKSkJp06dwqOPPtop10oIIYRIiU6nw9mzZyGKIi5dusQrgA4ODoiJiYEgCOjdu7eFeyl9FEha0B//+EdUV1ejX79+sLe3x+zZszF58mS+feHChcjLy8OoUaPg6emJFStW1MtIvvnmm5gwYQJiY2NRXV2NvLw8hISE8O23b9/G8OHDMXr0aLz99tsAgP79+2PEiBFYtGgRdu3a1SnXSgghhFgaYwxXr16FKIo4ffo0NBoN3xYUFARBEBAXFwe5XG7BXloXGWvthIkPqaKiAp6enigvL4dCoTDbVlNTg7y8PPTu3RvOzs6d2a1ORyvStI+u9D1DCCGkbcrLyyGKIkRRxO3bt3m7p6cnBEGAIAi0sMgDmorX6qKMJCGEEEJsjlarxZkzZyCKolk1z9HREXFxcRAEAcHBwWazp5DWo0CSEEIIITaBMYYrV65AFEXk5ORAq9XybSEhIRAEAbGxsVY7I4wUUSBpIQcOHLB0FwghhBCbcPv2bYiiiMzMTJSVlfF2Hx8fCIKAxMREeHl5Wax/towCSUIIIYRYHY1Gg9OnT0MUReTn5/N2uVzOS9eBgYFUuu5gFEgSQgghxCoYjUbk5eVBFEWcOXMGer0eQO2iH6GhoRAEAdHR0Q+9Oh1pOQokCSGEECJpt27d4qXriooK3u7r68tL102NLCYdhwJJQgghhEhOdXU1L10XFBTwdmdnZ8THx0OlUsHf359K1xbW6kDy2rVrWLBgAX766SdUVVUhPDwcW7ZsQd++fTuif4QQQgjpIoxGIy5evAhRFHH27Fm+BLBMJkNERAQEQUBkZCQcHCgPJhWtuhOlpaUYOHAgfv/73+Onn35C9+7dcf78eXh7e3dU/wghhBBi44qLi6FWq5GVlYU7d+7wdj8/P6hUKiQkJMDd3d2CPSSNaVUg+cEHHyAwMBBbtmzhbbQOJSEdjzGGmqwsGOv8gCXSVVJ9GzeqiizdDfKg6jKg+nazu5HOodPpUVp6G0U3S1FeXTvfowyAl509PBQeUCgUkOvKceu389j/W7pF+ugfl4Q+T4+1yLmtRasCyR9++AHJyckYO3YsfvnlFwQEBOD1119Hampqo1+j0WjM1rKs+5AsIaRlyr/5BoWL37F0N0grUO6EkOZ5Awi1dCeaIP7uNwokm9GqQPLSpUv47LPPMG/ePCxatAi//fYbZs2aBScnJ0yYMKHBr0lLS8OyZcvapbOklhTX6Q4JCcGcOXMwZ84cS3fFJmnuLe9l7+0Nh+7dLdwb0hSNQYMrFVcggwxO9rR6hmQwI2C4t8qJzM6yfemCGBjAGttWS5JDZmgkePNYKzg6OrKkpCSztpkzZ7IBAwY0+jU1NTWsvLyc/7t69SoDwMrLy+vtW11dzXJyclh1dXVruiUJxcXFbOrUqSwwMJA5OTmxHj16sGHDhrFff/2VMcZYcHAwQ+3nhbm4uLD4+Hj2+eefmx1j//79fB8AzNnZmcXGxrL/+Z//MduvpKSEVVRU8NfBwcFs7dq1HXp9//jHP1hUVBSTy+UsPj6e7dy502x7S/pQXV3NXn/9debj48Pc3NzYc889x4qKisz2uXLlCnvmmWeYi4sL6969O3vzzTeZTqdr8pjW+j3TGoXLV7CcqGh2o4PvM3l4YrHI4rfGs2HpwyzdFVJX/nHGligYW5tg6Z50GZWVlezIkSPss88+Y0uXLuX/Vq9ezXbv3s1u3LjBTuSVsOAF/2KDVv3H0t0lDygvL280XqurVRnJnj17IjY21qwtJiYG33zzTaNfI5fLIZfLWxneWp+UlBRotVps27YNoaGhuHHjBvbt24eSkhK+z/Lly5Gamoqqqiqkp6cjNTUVAQEBGDFihNmxcnNzoVAoUF1djR9//BHTpk1DWFgYnn76aQC1Sz51piNHjmD8+PFIS0vDqFGjsH37dowZMwanTp1CfHx8i48zd+5c7Ny5E+np6fD09MSMGTPw3HPP4fDhwwAAg8GAkSNHQqlU4siRIygsLMQf//hHODo64r333uuoy7MKRk0NAMDO2dnCPSHN0RhqH+WRO9j+zz2roquu/a+ji2X7YeP0ej3OnTsHURRx/vx5MFabb7S3t0dUVBQEQUB4eDjs7GqzwrnnbwIAnB3tLdZn8nBaFUgOHDgQubm5Zm3nzp1DcHBwu3bKhDGGap2hQ47dHBdH+xbPTVVWVoZDhw7hwIEDGDRoEAAgODgY/fr1M9vPw8MDSqUSALBgwQKsWrUKe/furRdI+vn58TVBZ82ahY8//hinTp3igWTd0vbgwYNx5coVzJ07F3PnzgVwf9H6GTNm4Ndff4VWq0VISAhWr16NZ555ptXvxbp16zB8+HDMnz8fALBixQrs3bsXn3zyCTZu3Mj3q6ysxPjx4/HDDz/Ay8sLixYtwvTp0wEA5eXl+OKLL7B9+3Y89dRTAIAtW7YgJiYGx44dw4ABA7Bnzx7k5OTg559/Ro8ePaBSqbBixQosWLAAS5cuhZNT1y0TMs29B9HlFEhKnSmQdLaneyUp+to/xuBA96W9McZw/fp1qNVqZGdno6amhm8LCAiASqVCXFwcXFzqB/EanREAIKdA0mq1KpCcO3cuHn/8cbz33nt44YUXcOLECWzatAmbNm3qkM5V6wyIfXd3hxy7OTnLk+Hq1LK3x93dHe7u7tixYwcGDBjQbAbWaDTiu+++Q2lpaZPBEWMMu3fvRn5+Pvr379/gPt9++y0EQcDkyZPNBj1Nnz4dWq0WBw8ehJubG3JycsymTmhuGoWXX36ZB4lHjx7FvHnzzLYnJydjx44dZm2rV6/GokWLsGzZMuzevRuzZ89GZGQkhg4dipMnT0Kn02HIkCF8/+joaAQFBeHo0aMYMGAAjh49ioSEBPTo0cPsPNOmTcPp06fxyCOPNNlnW8ZqTBlJynJJnUZ/LyNpT/dKUkyBJGUk201lZSUyMzOhVqtx69Yt3u7h4QFBECAIAnx9fZs8Ro2+Nlnk7EDPrVqrVgWSjz32GL777jssXLgQy5cvR+/evfHRRx/hpZde6qj+WQUHBwds3boVqamp2LhxIx599FEMGjQI48aNQ2JiIt9vwYIFWLx4MTQaDfR6PXx8fDBp0qR6x+vVqxeA2hHvRqMRy5cvx5NPPtnguX18fGBvb2+W7QSA/Px8pKSkICEhAQAQGmo+Lk6tVjd5TXWXmioqKjIL7gCgR48eKCoyn95k4MCBePvttwEAkZGROHz4MNauXYuhQ4eiqKgITk5OPNPa0HEaO49pW1dmKm1TRlL6agy194pK2xKjo4xke9DpdMjNzYVarcalS5d46drBwQExMTEQBAG9e/fmpevm1NzLSFJp23q1emr4UaNGYdSoUR3Rl3pcHO2Rszy5U87V0LlbIyUlBSNHjsShQ4dw7Ngx/PTTT1i1ahU2b96MiRMnAgDmz5+PiRMnorCwEPPnz8frr7+O8PDwesc6dOgQPDw8oNFocOLECcyYMQM+Pj6YNm1ai/sza9YsTJs2DXv27MGQIUOQkpJiFtQ2dN6HlZSUVO+1lEaWWzNWU5vlooyk9FFpW6L09IxkWzHGUFBQALVajdOnT5tN6RcUFARBEBAXF9em8RA19x5fc3akjKS1kvQaQzKZrMXlZSlwdnbG0KFDMXToULzzzjuYNGkSlixZwgNJX19fhIeHIzw8HOnp6UhISEDfvn3rDWDq3bs3z9zFxcXh+PHjWLlyZasCyUmTJiE5ORk7d+7Enj17kJaWhjVr1mDmzJkAWlfaViqVuHHjhtn2GzdumGVAm6NUKqHValFWVmaWlax7HKVSiRMnTtQ7j2lbV8YzkjTYRvJq7pVQqbQtMZSRbLXy8nKIoghRFHH79v2J3D09PXnp+mEHf94PJCkjaa2sJ0qzQrGxsfWeIzQJDAzEiy++iIULF+L7779v8jj29vaorq5udLuTkxNfj/TBc0ydOhVTp07FwoUL8fnnn/NAsjWl7aSkJOzbt89sjsi9e/fWy0AeO3as3uuYmBgAQJ8+feDo6Ih9+/YhJSUFQO3o9Pz8fH6cpKQkrFy5EsXFxfDz8+PnUSgU9YLtrsaUkZR1gRkQrB3PSFLAIi2UkWwRrVaLM2fOQBRF5N2bvxYAHB0dERsbC0EQEBIS0uLBqM3R6O+Vth0okLRWFEi2g5KSEowdOxavvvoqEhMT4eHhgYyMDKxatQqjR49u9Otmz56N+Ph4ZGRkoG/fvry9uLgYNTU1vLT95Zdf4vnnn2/0OCEhITh48CDGjRsHuVwOX19fzJkzByNGjEBkZCRKS0uxf/9+HtQBrSttz549G4MGDcKaNWswcuRIfP3118jIyKg3yOrw4cNYtWoVxowZg7179yI9PR07d+4EUPsX7GuvvYZ58+bBx8cHCoUCM2fORFJSEgYMGAAAGDZsGGJjY/HKK69g1apVKCoqwuLFizF9+vQuMYVUU/hgmy7+PlgD0zOSNBm5xFBGslGmmT5EUUROTg60Wi3fFhISApVKhZiYmA6ZOcOUkZRTadtqUSDZDtzd3dG/f3+sXbsWFy9ehE6nQ2BgIFJTU7Fo0aJGvy42NhbDhg3Du+++i3//+9+8PSoqCkDtw8uBgYGYMmUKli5d2uhxli9fjilTpiAsLAwajQaMMRgMBkyfPh0FBQVQKBQYPnw41q5d26bre/zxx7F9+3YsXrwYixYtQkREBHbs2FFvDsk33ngDGRkZWLZsGRQKBT788EMkJ99/xnXt2rWws7NDSkoKNBoNkpOT8emnn/Lt9vb2+Ne//oVp06YhKSkJbm5umDBhApYvX96mftsSo8aUkaRfglJnGrVNz0hKjCkjSYEkd/v2bYiiiMzMTJSVlfF2b29vXrp+cIBke6PStvWjQLIdyOVypKWlIS0trdF9Ll++3GD7rl27+P8PHjyYj4BryoEDB8xeDxgwAKIomrWtX7++2eO0xtixYzF2bOPrjTZ2fXU5Oztjw4YN2LBhQ6P7BAcHmwXVpBZN/2M9+ITk9IyktJgyko5dO5DUaDTIycmBWq1Gfn4+b5fL5YiLi4MgCAgMDGy30nVz+Khtmv7HalEgSYgV4BlJGmwjeTT9j0TxjGTXe0bSaDTi8uXLUKvVOHPmDPR6Pd8WFhYGQRAQHR0NR0fHTu/b/dI2ZSStFQWShEgcY4xnJGmwjfRRaVuiumBGsqSkBGq1GpmZmaioqODtvr6+EAQBiYmJZgMrLaFGT/NIWjsKJAmROKbTAfceeaC1tqWPZySptC0tXeQZyZqaGmRnZ0MURRQUFPB2Z2dnxMfHQxAEBAQEdFrpujk0j6T1o0CSEIljddatpdK29NH0PxLFM5K2V9o2Go24ePEiRFHE2bNn+XRwMpkM4eHhEAQBUVFRcHCQ3q98HkjS9D9WS3rfVYQQM8y0ioRMBpkFnmEirUODbSRKb3vT/xQXF/NR13fu3OHtfn5+vHTd3OITlqah0rbVo0CSEImrO9BGKuUo0jh6RlKidLYxIXlVVRWys7OhVqtRWFjI211dXREfHw+VSgWlUmk1Pys0VNq2ehRIEiJxNBm5deEZSRq1LS33AnxrzEgaDAZcuHABoigiNzcXRmNtFs/Ozg6RkZEQBAERERGwt7e+rB6f/ocyklaLAklCJM5YQ1P/WBMabCNRVrhEYlFREdRqNbKyslBVVcXbe/bsCUEQkJCQAFdXVwv28OHV6Ckjae0okCRE4piGMpLWhErbEmUlSyTevXsXmZmZEEURN27c4O1ubm5ITEyEIAjo0aOHBXvYvvg8kjTYxmpRIGmFBg8eDJVKhY8++sjSXeFCQkIwZ84czJkzx9JdsTlG0xySlJG0CjQhuURJOCOp1+tx7tw5iKKI8+fP8xXO7O3tERUVBZVKhbCwMNjZ2V7Wjkrb1s/2vist5ObNm5g2bRqCgoIgl8uhVCqRnJyMw4cPA6gNtGQyGWQyGVxdXZGQkIDNmzebHePAgQN8H5lMBhcXF8TFxWHTpk1m+3377bdYsWIFfx0SEtLhQWV6ejqio6Ph7OyMhISENi1jWFNTg+nTp6Nbt25wd3dHSkqK2V/cADBr1iz06dMHcrkcKpWqnXpv3RhfZ5sCE2tAo7YlSmIZScYYrl27hn//+9/48MMPkZ6ejnPnzoExhoCAADzzzDN44403MHbsWERERNhkEAnUzUja5vV1BZSRbCcpKSnQarXYtm0bQkNDcePGDezbtw8lJSV8n+XLlyM1NRVVVVVIT09HamoqAgICMGLECLNj5ebmQqFQoLq6Gj/++COmTZuGsLAwPP300wAAHx+fTr22I0eOYPz48UhLS8OoUaOwfft2jBkzBqdOnUJ8fHyLjzN37lzs3LkT6enp8PT0xIwZM/Dcc8/xYNvk1VdfxfHjx5GZmdnel2KVaLCNdTGVtimQlBDGJJORrKysRGZmJtRqNW7dusXbPTw8kJiYCJVKBV9fXwv2sPMwxmj6Hxsg7UCSMUBX1fx+HcHRFWjh9AllZWU4dOgQDhw4gEGDBgEAgoOD0a9fP7P9PDw8oFQqAQALFizAqlWrsHfv3nqBpJ+fH7y8vADUZug+/vhjnDp1igeSdUvbgwcPxpUrVzB37lzMnTsXQO2H88qVK5gxYwZ+/fVXaLVahISEYPXq1XjmmWda/VasW7cOw4cPx/z58wEAK1aswN69e/HJJ59g48aNfL/KykqMHz8eP/zwA7y8vLBo0SJMnz4dAFBeXo4vvvgC27dvx1NPPQUA2LJlC2JiYnDs2DEMGDAAAPDxxx8DqM3wUiBZiwbbWA+9UQ89q13HmJ6RlBCDDmC1AQss8MiBTqdDbm4u1Go1Ll26xEvXDg4OiImJgSAI6N27t81mHRtjCiIBGmxjzaQdSOqqgPf8LXPuRdcBJ7cW7eru7g53d3fs2LEDAwYMgLyZzJHRaMR3332H0tJSODk5NbofYwy7d+9Gfn4++vfv3+A+3377LQRBwOTJk5Gamsrbp0+fDq1Wi4MHD8LNzQ05OTlmE9M2N0ntyy+/zIPEo0ePYt68eWbbk5OTsWPHDrO21atXY9GiRVi2bBl2796N2bNnIzIyEkOHDsXJkyeh0+kwZMgQvn90dDSCgoJw9OhRHkiS+vhgG2fKcEmdqawN0DOSkmLKRgKAQ+dkJBljKCgogFqtxunTp6HR3P/eCAoKgiAIiI2NhXMX/gPRVNYGKCNpzaQdSFoJBwcHbN26Fampqdi4cSMeffRRDBo0COPGjUNiYiLfb8GCBVi8eDE0Gg30ej18fHwwadKkesfr1asXAECj0cBoNGL58uV48sknGzy3j48P7O3tzbKdAJCfn4+UlBQkJCQAAEJDQ82+Tq1WN3lNCoWC/39RUVG9UYI9evRAUVGRWdvAgQPx9ttvAwAiIyNx+PBhrF27FkOHDkVRURGcnJx4prWp4xBzPCMp77q/cKxFjWn1FFBpW1JMz0dC1uEZyfLycoiiCFEUcfv2bd7u6ekJQRAgCEKnP54kVaaBNvZ2MjjaU0bSWkk7kHR0rc0MWurcrZCSkoKRI0fi0KFDOHbsGH766SesWrUKmzdvxsSJEwEA8+fPx8SJE1FYWIj58+fj9ddfR3h4eL1jHTp0CB4eHtBoNDhx4gRmzJgBHx8fTJs2rcX9mTVrFqZNm4Y9e/ZgyJAhSElJMQtqGzrvw0pKSqr3Wkojy62VKSMpo4yk5Jkykk52TrCT0S9GyTBlJB2cW/zIUmtotVqcOXMGoigiLy+Ptzs6OiI2NhaCIPABl+S+++ts02fFmkk7kJTJWlxelgJnZ2cMHToUQ4cOxTvvvINJkyZhyZIlPJD09fVFeHg4wsPDkZ6ejoSEBPTt2xexsbFmx+nduzfP3MXFxeH48eNYuXJlqwLJSZMmITk5GTt37sSePXuQlpaGNWvWYObMmQBaV9pWKpX1RlffuHHDLAPaHKVSCa1Wi7KyMrOsZGuP0xUZ+WAbykhKHU39I1GmjKRj+32GTM+ii6KInJwcaLVavi0kJISXrpt6fKmruz8ZOZW1rZm0A0krFxsbW+85QpPAwEC8+OKLWLhwIb7//vsmj2Nvb4/q6upGtzs5OcFgMNRrDwwMxNSpUzF16lQsXLgQn3/+OQ8kW1PaTkpKwr59+8zmiNy7d2+9DOSxY8fqvY6JiQEA9OnTB46Ojti3bx9SUlIA1I5Oz8/Pr3ccYo5pan9BUUZS+rSG2ntFA20khmckH/75yNLSUl66Lisr4+3e3t68dP3gIzykYRqaQ9ImUCDZDkpKSjB27Fi8+uqrSExMhIeHBzIyMrBq1SqMHj260a+bPXs24uPjkZGRgb59+/L24uJi1NTU8NL2l19+ieeff77R44SEhODgwYMYN24c5HI5fH19MWfOHIwYMQKRkZEoLS3F/v37eVAHtK60PXv2bAwaNAhr1qzByJEj8fXXXyMjI6Pe/JaHDx/GqlWrMGbMGOzduxfp6enYuXMngNrng1577TXMmzcPPj4+UCgUmDlzJpKSkswG2ly4cAF37txBUVERqqurecDblf+yv7+yDQUnUmd6RpKej5SYh8xIajQa5OTkQBRFXLlyhbfL5XLExsZCpVIhMDCQStetxOeQpBHbVo0CyXbg7u6O/v37Y+3atbh48SJ0Oh0CAwORmpqKRYsWNfp1sbGxGDZsGN59912zCb6joqIA1A7iCQwMxJQpU7B06dJGj7N8+XJMmTIFYWFh0Gg0YIzBYDBg+vTpKCgogEKhwPDhw7F27do2Xd/jjz+O7du3Y/HixVi0aBEiIiKwY8eOenNIvvHGG8jIyMCyZcugUCjw4YcfIjk5mW9fu3Yt7OzskJKSAo1Gg+TkZHz66admx5g0aRJ++eUX/vqRRx4BAOTl5SEkJKRN/bd2NP2P9TA9I+kskUmvyT1tyEgyxpCXlwdRFHHmzBnodDq+LSwsDIIgIDo6Go6Oju3d2y6jxjSHJC2PaNUokGwHcrkcaWlpSEtLa3Sfy5cvN9i+a9cu/v+DBw/m84s15cCBA2avBwwYAFEUzdrWr1/f7HFaY+zYsRg7dmyj2xu7vrqcnZ2xYcMGbNiwodF9Hrw2UmdCciptSx6taiNR9yaJb0lGsqSkBGq1GpmZmaioqODtvr6+EAQBiYmJZo/+kLbjg20oI2nVKJAkROKMGpr+x1pQaVuidE1nJGtqapCdnQ1RFFFQUMDbnZ2dER8fD0EQEBAQQKXrdnY/kKSMpDWjQJIQiaOMpPWg0rZE6es/I2k0GnHx4kWIooizZ8/yAYsymQzh4eEQBAFRUVFwcKBfkx2FBtvYBvqEECJxRtM8krTWtuSZpv9xsu+aA8MkS3d/Hsni4mKIoojMzEzcuXOH7+Ln58dL181Nj0bah2n6HznNI2nVKJAkROIYX9mGAkmp09x7Fo+m/5EWbVUFnABcuHINf/vsM97u6uqK+Ph4qFQqKJVKKl13Mipt2wYKJAmRuPtrbVNwInV8QnJ6RtLiDAYDLly4AFEU4XvmZzwFoKJaBzt7O0RGRkIQBERERMDenoIYS6nhpW3KSFozCiQJkThaa9t60DOSlldUVAS1Wo2srCxUVVUBAH7Paqfu8Q8KxbwX58HNzXpWTLNlfB5Jmv7HqlEgSYjE0WAb62EqbVNGsnPdvXsXmZmZEEXRbDlXNzc3JCYmos/dMkA8DmWvYICCSMmoocE2NoECSUIkjk//Q6VtyaPSdufR6/U4f/481Go1Lly4AKOxNiixt7dHVFQUBEFAeHg47OzsgJ27a7+oHZZIJO3n/lrbVNq2ZhRIEiJxPCNJg20kj0rbHYsxhsLCQqjVamRnZ6O6uppvCwgIgCAIiI+Ph4vLAwHjQy6RSDoGDbaxDRRIWqHBgwdDpVLho48+snRXuJCQEMyZMwdz5syxdFdsCmMMTKsFQBlJa0Ar23SMyspKXrq+efMmb/fw8EBiYiIEQUD37t0bP0AblkgkHU/Dl0ikjKQ1o7vXTm7evIlp06YhKCgIcrkcSqUSycnJOHz4MIDaQEsmk0Emk8HV1RUJCQnYvHmz2TEOHDjA95HJZHBxcUFcXBw2bdpktt+3336LFStW8NchISEdHlSmp6cjOjoazs7OSEhIMFsbvKU2bdqEwYMHQ6FQQCaToaysrN4+t2/fxksvvQSFQgEvLy+89tprZnO9dTXsXlkboME21oCm/2k/Op0O2dnZ+Nvf/oa1a9fi559/xs2bN+Hg4ICEhAS8/PLLmDNnDoYMGdJ0EAlQRlKiNJSRtAmUkWwnKSkp0Gq12LZtG0JDQ3Hjxg3s27cPJSUlfJ/ly5cjNTUVVVVVSE9PR2pqKgICAjBixAizY+Xm5kKhUKC6uho//vgjpk2bhrCwMDz99NMAAB8fn069tiNHjmD8+PFIS0vDqFGjsH37dowZMwanTp1CfHx8i49TVVWF4cOHY/jw4Vi4cGGD+7z00ksoLCzE3r17odPp8Kc//QmTJ0/G9u3b2+tyrIqprA3QYBtrwJ+RdKB71RaMMRQUFECtVuP06dPQ1PlDKigoCIIgIDY2Fs6tzc5TRlKSaLCNbZB0IMkYQ7W+uvkdO4CLg0uLJ6ctKyvDoUOHcODAAQwaNAgAEBwcjH79+pnt5+HhAaVSCQBYsGABVq1ahb1799YLJP38/ODl5QUAmDVrFj7++GOcOnWKB5J1S9uDBw/GlStXMHfuXMydOxdA7ft25coVzJgxA7/++iu0Wi1CQkKwevVqPPPMM61+L9atW4fhw4dj/vz5AIAVK1Zg7969+OSTT7Bx40a+X2VlJcaPH48ffvgBXl5eWLRoEaZPn863m8reBw4caPA8Z86cwa5du/Dbb7+hb9++AID169fjmWeewZ///Gf4+/u3uu/WzjTQBg4OkNFSbZLHn5GkjGSrlJeXQxRFiKKI27dv83ZPT08IggBBEB7uD2jKSErS/WckqThqzST9m6laX43+2/tb5NzH/3Acro6uLdrX3d0d7u7u2LFjBwYMGAB5M4MijEYjvvvuO5SWlsLJqfGl1Bhj2L17N/Lz89G/f8Pvw7fffgtBEDB58mSkpqby9unTp0Or1eLgwYNwc3NDTk6O2bJfzS0B9vLLL/Mg8ejRo5g3b57Z9uTkZOzYscOsbfXq1Vi0aBGWLVuG3bt3Y/bs2YiMjMTQoUObPJfJ0aNH4eXlxYNIABgyZAjs7Oxw/Phx/Pd//3eLjmNLaKCNdaHpf1pOq9Xi7NmzUKvVyMvL4+2Ojo6IjY2FIAj8kaCHZlprmzKSksKXSKSMpFWTdCBpLRwcHLB161akpqZi48aNePTRRzFo0CCMGzcOiYmJfL8FCxZg8eLF0Gg00Ov18PHxwaRJk+odr1evXgAAjUYDo9GI5cuX48knn2zw3D4+PrC3tzfLdgJAfn4+UlJSkJCQAAAIDQ01+zq1Wt3kNSkUCv7/RUVF6NGjh9n2Hj16oKioyKxt4MCBePvttwEAkZGROHz4MNauXdviQLKoqAh+fn5mbQ4ODvDx8al3rq6CT0ZOA22sApW2m8YYQ35+PtRqNXJycqC9N5AMqH3W21S6buoP7DbRU0ZSinhpmyYkt2qSDiRdHFxw/A/HLXbu1khJScHIkSNx6NAhHDt2DD/99BNWrVqFzZs3Y+LEiQCA+fPnY+LEiSgsLMT8+fPx+uuvIzw8vN6xDh06BA8PD2g0Gpw4cQIzZsyAj48Ppk2b1uL+zJo1C9OmTcOePXswZMgQpKSkmAW1DZ33YSUlJdV7LaWR5dbItDyiTN7Ov1hJh6BR2w0rLS3lpeu6g+y8vb156dr0OE+H0NEzklLEV7ah0rZVk3QgKZPJWlxelgJnZ2cMHToUQ4cOxTvvvINJkyZhyZIlPJD09fVFeHg4wsPDkZ6ejoSEBPTt2xexsbFmx+nduzf/oRoXF4fjx49j5cqVrQokJ02ahOTkZOzcuRN79uxBWloa1qxZg5kzZwJoXWlbqVSarRYBADdu3DDLgLYHpVKJ4uJisza9Xo/bt2+3+7mshZGXtimTYg1q7mW+6BnJ2opKTk4ORFHElStXeLuTkxPi4uKgUqkQGBjYPqXr5lBGUpIoI2kbJB1IWrvY2Nh6zxGaBAYG4sUXX8TChQvx/fffN3kce3t7s4l3H+Tk5ASDwdDgOaZOnYqpU6di4cKF+Pzzz3kg2ZrSdlJSEvbt22c2R+TevXvrZSCPHTtW73VMTEyT56krKSkJZWVlOHnyJPr06QMA+M9//gOj0djoM6K2jtGqNlalq2ckGWPIy8uDKIo4c+YMdDod3xYaGgqVSoXo6Gg4Ojp2bscoIylJGhpsYxMokGwHJSUlGDt2LF599VUkJibCw8MDGRkZWLVqFUaPHt3o182ePRvx8fHIyMgwG2BSXFyMmpoaXtr+8ssv8fzzzzd6nJCQEBw8eBDjxo2DXC6Hr68v5syZgxEjRiAyMhKlpaXYv3+/WVDXmtL27NmzMWjQIKxZswYjR47E119/jYyMjHrzWx4+fBirVq3CmDFjsHfvXqSnp2Pnzp18e1FREYqKinDhwgUAQFZWFjw8PBAUFAQfHx/ExMRg+PDh/FlTnU6HGTNmYNy4cV1yxDZQNyPZNQMTa8MDyS72jGRJSQkvXVdUVPD2bt268dJ13T9OOx1lJCXp/hKJlJG0ZhRItgN3d3f0798fa9euxcWLF6HT6RAYGIjU1FQsWrSo0a+LjY3FsGHD8O6775pN8B0VFQWgdqBJYGAgpkyZgqVLlzZ6nOXLl2PKlCkICwuDRqMBYwwGgwHTp09HQUEBFAoFhg8fjrVr17bp+h5//HFs374dixcvxqJFixAREYEdO3bUm0PyjTfeQEZGBpYtWwaFQoEPP/wQycnJfPvGjRuxbNky/to0gGjLli28/P+3v/0NM2bMwNNPPw07OzukpKTg448/blO/bQGjwTZWgzHWpUrbNTU1OH36NNRqNQoKCni7s7MzL10HBAR0Tum6KYzVGbVt+/fFWhiMDDoDA0CBpLWTMcZYZ56woqICnp6eKC8vr/cXak1NDfLy8tC7d+/WTzhLuiRb/54p++c/Ubj4HbgPGoTA/9nY/BcQi9EatOjz19pHMg6PPwyFkwUzcB3EaDTi0qVLvHRteqRGJpMhPDwcgiAgKioKDlKa81RXDay894z121cBZ9u7L9borkaPuCW7AQA5y5Ph6iSh7xkCoOl4rS66c4RIGE3/Yz1MU/8AtpeRvHnzJtRqNTIzM82WLPXz84MgCEhMTGx2AJ/F6Oo8X+5Iz0hKhWnENkCDbawdBZKESJhpsA0tjyh9WkPtnIgyyOBo18mDSTpAVVUVsrOzIYoirl+/zttdXFyQkJAAlUoFpVJp+dJ1c0xlbZk9YG/998VWaPS1I7ad7O1gZyfx7yHSJAokCZEwI59H0rYyXLaIPx/p4Cz94KoRBoMBFy5cgCiKyM3NhdFY+8vezs4OEREREAQBkZGRsLe3ogySKSNJ2UhJoTkkbQcFkoRI2P3BNpSRlDprnvqnqKgIoigiKysLd+/e5e09e/aEIAiIj4+Hm5ubBXv4EGigjSTxOSRpoI3Vo0CSEAkzrWxDE5JLH18e0UoCybt37yIrKwuiKJotQerm5obExEQIglBvaVSrpDNN/UMZSSm5P/UPZSStHQWShEiYkTKSVkOjr71XzhLOfOn1epw/fx6iKOL8+fO8dG1vb4+oqCgIgoDw8HDY2dnQL3e9aTJy6d6XrshU2qaBNtaPAklCJIyZJiSnUduSJ9WMJGMMhYWFUKvVyM7ONlslKyAggJeuXVxsNGNHk5FLkoZK2zaDAklCJMxoWiLRSVrBCanPlJGUSiBZWVmJzMxMiKKImzdv8nYPDw9euu7evbsFe9hJTKVtWh5RUvhgGwcbyn53URRIEiJhpowklbalTwqDbfR6Pc6ePQtRFHHx4kWY1ptwcHBAdHQ0VCoVevfubVul6+ZQRlKSaHlE20GBpBUaPHgwVCoVPvroI0t3hQsJCcGcOXMwZ84cS3fFppim/6HStvTx0nYnr7PNGENBQQFEUUR2djY097LYABAYGAiVSoXY2FibXPmpRUzT/1BGUlLuj9ruQn/U2Ci6g+3k5s2bmDZtGoKCgiCXy6FUKpGcnIzDhw8DqA20ZDIZZDIZXF1dkZCQgM2bN5sd48CBA3wfmUwGFxcXxMXFYdOmTWb7ffvtt1ixYgV/HRIS0uFBZXp6OqKjo+Hs7IyEhASztcFbatOmTRg8eDAUCgVkMhnKysrq7bNy5Uo8/vjjcHV1hZeX18N33Mrx6X/klJGUOj7YppNWtSkvL8ehQ4ewYcMG/OUvf8HJkyeh0Wjg6emJJ598EjNnzsSrr76KRx99tOsGkQBlJCXq/jySlJG0dpSRbCcpKSnQarXYtm0bQkNDcePGDezbtw8lJSV8n+XLlyM1NRVVVVVIT09HamoqAgICMGLECLNj5ebmQqFQoLq6Gj/++COmTZuGsLAwPP300wAAHx+fTr22I0eOYPz48UhLS8OoUaOwfft2jBkzBqdOnUJ8fHyLj1NVVYXhw4dj+PDhWLhwYYP7aLVajB07FklJSfjiiy/a6xKsFmUkrUdnDLbR6XQ4c+YMRFHEpUuXeLujoyNiY2MhCAL/o5XcQxlJSeIZSRq1bfUkHUgyxsDqjDDsTDIXlxb/MC4rK8OhQ4dw4MABDBo0CAAQHByMfv36me3n4eEBpVIJAFiwYAFWrVqFvXv31gsk/fz8eDZu1qxZ+Pjjj3Hq1CkeSNYtbQ8ePBhXrlzB3LlzMXfuXAC179uVK1cwY8YM/Prrr9BqtQgJCcHq1avxzDPPtPq9WLduHYYPH4758+cDAFasWIG9e/fik08+wcaNG/l+lZWVGD9+PH744Qd4eXlh0aJFmD59Ot9uKnsfOHCg0XMtW7YMALB169ZW99MW3c9IUiApdaZnJNt7+h/GGPLz86FWq5GTkwOtVsu3hYSEQBAExMbGwsnJqV3PazP4hOSU1ZcSPv0PlbatnrQDyepq5D7axyLnjjp1EjJX1xbt6+7uDnd3d+zYsQMDBgyAvJkypNFoxHfffYfS0tImf/gzxrB7927k5+ejf//+De7z7bffQhAETJ48Gampqbx9+vTp0Gq1OHjwINzc3JCTkwN3d3ezPjfl5Zdf5kHi0aNHMW/ePLPtycnJ2LFjh1nb6tWrsWjRIixbtgy7d+/G7NmzERkZiaFDhzZ5LtI4WmvberT3YJvS0lKIoojMzEyUlpbydm9vbwiCAEEQ6PGPlqAlEiXJtNY2DbaxfpIOJK2Fg4MDtm7ditTUVGzcuBGPPvooBg0ahHHjxiExMZHvt2DBAixevBgajQZ6vR4+Pj6YNGlSveP16tULAKDRaGA0GrF8+XI8+eSTDZ7bx8cH9vb2ZtlOAMjPz0dKSgoSEhIAAKGhoWZfp1arm7wmhULB/7+oqKjeChc9evQwWw0DAAYOHIi3334bABAZGYnDhw9j7dq1FEg+BD79D5W2Ja89npHUaDTIycmBKIq4cuUKb3dyckJcXBxUKhUCAwOpdN0atESiJFFG0nZIOpCUubgg6tRJi527NVJSUjBy5EgcOnQIx44dw08//YRVq1Zh8+bNmDhxIgBg/vz5mDhxIgoLCzF//ny8/vrrCA8Pr3esQ4cOwcPDAxqNBidOnMCMGTPg4+ODadOmtbg/s2bNwrRp07Bnzx4MGTIEKSkpZkFtQ+d9WElJSfVeS2lkuTXiE5LTYBvJa+uobcYY8vLyIIoizpw5A51Ox7eFhoZCpVIhOjoajo6O7drfLoMykpKk0dPKNrZC2oGkTNbi8rIUODs7Y+jQoRg6dCjeeecdTJo0CUuWLOGBpK+vL8LDwxEeHo709HQkJCSgb9++iI2NNTtO7969eckqLi4Ox48fx8qVK1sVSE6aNAnJycnYuXMn9uzZg7S0NKxZswYzZ84E0LrStlKpxI0bN8y237hxwywDSjoGZSStR2tL2yUlJbx0XV5eztu7devGS9d1KwOkjSgjKUk1tLKNzZB0IGntYmNj6z1HaBIYGIgXX3wRCxcuxPfff9/kcezt7c2WNXuQk5MTDAZDg+eYOnUqpk6dioULF+Lzzz/ngWRrSttJSUnYt2+f2RyRe/furZeBPHbsWL3XMTExTZ6HNI4ZDMC97BRN/yN9LSlt19TU4PTp0xBFEVevXuXtzs7OvHQdEBBApev2RBlJSaLStu2gQLIdlJSUYOzYsXj11VeRmJgIDw8PZGRkYNWqVRg9enSjXzd79mzEx8cjIyMDffv25e3FxcWoqanhpe0vv/wSzz//fKPHCQkJwcGDBzFu3DjI5XL4+vpizpw5GDFiBCIjI1FaWor9+/ebBXWtKW3Pnj0bgwYNwpo1azBy5Eh8/fXXyMjIqDe/5eHDh7Fq1SqMGTMGe/fuRXp6Onbu3Mm3FxUVoaioCBcuXAAAZGVlwcPDA0FBQXxKo/z8fNy+fRv5+fkwGAw84A0PD282i2prTGVtgKb/sQaNlbaNRiMuXbrES9emP/pkMhnCw8MhCAKioqLg4EA/jjsEZSQlieaRtB30k6sduLu7o3///li7di0uXrwInU6HwMBApKamYtGiRY1+XWxsLIYNG4Z3333XbILvqKgoALWDeAIDAzFlyhQsXbq00eMsX74cU6ZMQVhYGDQaDRhjMBgMmD59OgoKCqBQKDB8+HCsXbu2Tdf3+OOPY/v27Vi8eDEWLVqEiIgI7Nixo94ckm+88QYyMjKwbNkyKBQKfPjhh0hOTubbN27cyKf3AcAHEG3ZsoWX/999911s27aN7/PII48AAPbv34/Bgwe3qf/WylhnhRLKSErfg6XtmzdvQq1WIysrC5WVlXw/Pz8/CIKAhIQEeHh4WKSvXQplJCXJVNqmtbatn4yZFmPtJBUVFfD09ER5eXm9539qamqQl5eH3r17d+2VGEiL2fL3jO76dVx46mnIHB0RnZVp6e6QZkz4aQJOFZ/C1ICpcMpzwvXr1/k2FxcXJCQkQKVSQalUUum6M32RDFw9BrzwJRD7X5buDbnnvz89jP/LL8P/vNIHyXH0vL0UNRWv1UUZSUIkylhDA22sgcFgwIULF1B4sxAAkHkqE/7V/rCzs0NERAQEQUBkZCTs7amEZxF6ykhKEQ22sR0USBIiUeze8ogymoxckoqKiiCKIrKysnD37l3c9b8LOAHdvbsj+clkJCQkwM3NzdLdJDp6RlKKNKbBNlTatnoUSBIiUUY+hyT9ApSKu3fvIisrC6Iomk3I7+bmBkcXR8AAPD/6eaj8VJbrJDFHGUlJuj9qmzKS1k6SgWQnP7ZJrJgtf68wPockZSQtyWAw4Ny5cxBFEefPn4fRWFuSs7e3R1RUFARBQFhYGP79zb+B6vZbIpG0E8pISlINLZFoMyQVSJqeIdJqtXBp5coypGuqqqoCAJtc9YMykpbDGENhYSHUajWys7PN5nENCAiAIAiIj483+znV1pVtSAczTf9DGUlJoXkkbYekAkkHBwe4urri5s2bcHR0hJ0dfYORhjHGUFVVheLiYnh5ednkQAam0QKgwTadqbKyEpmZmRBFETdv3uTtHh4eSExMhCAI6N69e4NfqzXU3q+HWWubdADT9D8U4EuKhjKSNkNSgaRMJkPPnj2Rl5eHK1euWLo7xAp4eXnZ7FKNpsE2tM52x9Lr9Th79ixEUcTFixf54xIODg6Ijo6GIAgIDQ1t8g9bxlirl0gkncBoAIz31i53oIykVOgMRhiMtZ8zWmvb+kkqkARql/uLiIiAVqu1dFeIxDk6OtpkJtLEVNqmjGT7Y4yhoKAAoiji9OnTqKmzilBgYCAEQUBcXFyL5yY1BZEA4EzP4kmHrs7Sso50X6TCVNYGADmVtq2e5AJJALCzs7O5yaUJaS12bx5JOxps027Ky8t56bqkpIS3e3p68tJ1t27dWn3cuoEkZSQlRH//DwTKSEqHaQ5JmYxWtrEFkgwkCSGA0TSPJA22eSg6nQ5nzpyBKIq4dOkSb3d0dERMTAxUKhVCQkIearWZmnsBi4PMAQ529GNVMkwZSXsngJ65lwy+zraDHa3yZAPoJx4hEsVqaPqftmKMIT8/H2q1Gjk5OWaPyoSEhEAQBMTExEDeTs+f8ucjaUCHtJgykpSNlBSNnuaQtCUUSBIiUXywjRMFJy1VWloKURSRmZmJ0tJS3u7t7Q1BEJCYmAhvb+92Py+f+ofK2tJiykjS85GSYiptU1nbNlAgSYhE0VrbLaPRaJCTkwNRFM1me3ByckJcXBwEQUBQUFCHltA0ehqxLUl6moxcimhVG9tCgSQhEsUzklTarocxhsuXL0OtVuPMmTPQ6XR8W2hoKC9dd9ZE9ZSRlCiajFySTBlJmvrHNlAgSYhE8YwkDbbhSkpKeOm6vLyct3fr1o2Xrj09PTu9X6ZnJGnqH4mh5REliVa1sS0USBIiUYzPI9m1s1w1NTU4ffo0RFHE1atXebuzszPi4uKgUqkQEBBg0dGfVNqWKL3pGUnKSEpJzb3BNnIqbdsECiQJkSgjX9mm62VTjEYjLl26BFEUcfbsWej1egC1q1+Fh4dDEARERUXBwUEaP8JMpW1aHlFiKCMpSby0TYGkTZDGT2FCSD1dcfqfmzdvQq1WIysrC5WVlby9e/fuUKlUSEhIgIeHhwV72DCa/keiKCMpSby0TaO2bQIFkoRIFNOYVrax7WxKdXU1srOzoVarcf36dd7u4uKChIQECIKAnj17SnriYlpnW6IoIylJGj1lJG0JBZKESJRRY7uDbQwGAy5evAi1Wo1z587BYKjNUNjZ2SEiIgKCICAyMtJq1lI3PSNJpW2JMWUkKZCUFBpsY1sokCREokyDbWxp+p8bN27w0vXdu3d5u1KphCAISEhIgJubmwV72DZ8+h8qbUuLKSNJE5JLiobmkbQpFEgSIlG2kpG8e/cusrKyIIoiioqKeLubmxsvXSuVSgv28OHx6X8oIyktPCNJz0hKSQ2Vtm0KBZKESJQ1ZyQNBgPOnTsHURRx/vx5GI21vzjs7e0RFRUFQRAQFhZmNaXr5tToaUJySaKMpCTRYBvbQoEkIRLFM5JWMtiGMYbCwkKIooisrCxUV1fzbf7+/lCpVIiPj4eLi+1lh2jUtkRRRlKSTIEkzSNpGyiQJESCGGP3JyR3knZwUllZiczMTIiiiJs3b/J2Dw8PJCYmQhAEdO/e3YI97Hg0aluiKCMpSaZ5JOWUkbQJFEgSIkU6HXCvHCzF0rZer8fZs2chiiIuXrwIxhgAwMHBAdHR0RAEAaGhobCz6xq/KKi0LVE0aluSamiwjU2hQJIQCTKVtQHplLYZYygoKIAoijh9+jRq7mVMASAwMBCCICAuLg7OEulvZ6LBNhLFM5JU2pYSGmxjWyiQJESCTGVtyGSQOTlZtC/l5eW8dF1SUsLbFQoFBEGAIAjo1q2bBXtoeTT9j0TpaUJyKaJ5JG0LBZKESND9qX/kFlnRRafT4cyZMxBFEZcuXeLtjo6OiImJgUqlQkhIiKRXm+lMNCG5ROkpIylFfB5JB8pI2gIKJAmRID71j7zzMlyMMeTn5/PStVar5duCg4MhCAJiY2Mh78Q+WQsabCNRtESiJJkG21Bp2zZQIEmIBBlrOm/qn7KyMoiiCFEUUVpaytu9vb0hCAISExPh7e3d4f2wZqbStjMFLNJiGmxDGUlJqdFTaduWUCBJiAQxrSmQ7JgMl1arRU5ODtRqNa5cucLbnZycEBcXB0EQEBQURKXrFtIaarO3lJGUGMpISpKGMpI2hQJJQiTofmm7/X4BMsZw+fJliKKInJwc6HQ6vi00NBSCICAmJgaOjo7tds6ugqb/kSjKSEoSZSRtCwWShEhQe5a2b9++DbVajczMTJSXl/P2bt268dK1p6fnQ5+nK+PT/1DmS1p4RpICfCnhK9vQYBubQIEkIRLENA832KampganT5+GKIq4evUqb5fL5YiPj4dKpUJAQACVrtsJn/6HMpLSwRgtkShBjDEabGNjKJAkRILakpE0Go24dOkSRFHE2bNnodfra48hkyEsLAyCICA6OhoODvSxb08GowF6Y+17TdP/SIhBB7DagIWWSJQOzb3JyAEqbdsK+o1CiATxjGQLBtvcvHkToigiMzMTlZWVvL179+5QqVRISEiAh4dHh/W1qzOVtQGakFxSTNlIgDKSEmIaaANQRtJWUCBJiAQZ7w22kTk1HJhUV1cjOzsbarUa169f5+0uLi68dN2zZ08qXXcCU1kboNK2pJiej4SMnpGUENNAGzsZ4GBHP59sAQWShEgQq6k//Y/BYMDFixchiiJyc3NhMNz7gWxnh4iICAiCgMjISNjb01/5ncm0qo2jnSPsZFSqkwz+fKQzQH9QScb95RHt6Q9dG0GBJCESZNTcn/7nxo0bUKvVyMrKwt27d/k+SqUSgiAgISEBbm5ulupql8cnI6fnI6XFlJGk5yMlhQba2B4KJAmRIG3lHQBAZm4ujm7cyNvd3NyQkJAAQRCgVCot1T1SB18ekcqn0kIjtiWJZyQdKHtvKyiQJEQiDAYDzp07B1EU4Xb8OMIBVNTUwN7eHpGRkRAEAeHh4VS6lhiajFyi7j1yQBlJaalb2ia2gQJJQiyIMYaioiJeuq6urs2iPHZv6p7w2Bg8M28eXF1dLdlN0gQ+GTmVtqVFRxlJKaq5N/2PnAJJm0GBJCEWUFlZiaysLIiiiOLiYt7u7u6OxMREhBbfhDYvD0Hh4RREShyVtiVKT89IStH9jCSVtm0FBZKEdBK9Xo/c3FyIoogLFy6AMQYAcHBwQHR0NARBQGhoKOzs7HD1+++hBSBrx7W2ScegjKREUUZSkkwTkjvT8og2gwJJQjoQYwzXrl2DWq3G6dOnUVNzf87BwMBACIKAuLg4OD+wgk1D0/8QaaJnJCWKMpKSRBlJ20OBJCEdoKKiAqIoQhRFlJSU8HaFQgFBECAIArp169bo17Ma08o29EtQ6qi0LVG6OvNIEsnQ0GAbm0OBJCHtRKfT4cyZMxBFEZcuXeLtjo6OiImJgSAI6N27d4sm4TVq7mUk5RScSB2VtiXKlJGkQFJSaB5J20OBJCEPgTGG/Px8iKKI06dPQ6vV8m3BwcEQBAGxsbGQtzIgpIyk9aDStkSZMpJU2pYUKm3bHgokCWmDsrIyXrouLS3l7V5eXrx07e3t3ebj389I0i9BqeMZScp8SQvPSNJgGykxrbUtp8E2NoMCSUJaSKvVIicnB6Io4vLly7zdyckJsbGxUKlUCAoKapf1Y00ZSZnc6aGPRTqWaYlEJ3u6V5JCGUlJMpW25ZSRtBkUSBLSBMYYLl++DFEUkZOTA51Ox7eFhoZCEARER0fDyal9gwhTRpJK29Kn0dMzkpJEGUlJur9EImUkbQUFkoQ0oKSkBKIoIjMzE+Xl5bzdx8cHKpUKiYmJ8PT07LDz389IUnAidXzUNj0jKS06mv5Himiwje2hQJKQe2pqanD69GmIooirV6/ydrlcjri4OKhUKvTq1atdStdNYYyB8YwkBSdSZypt0zOSEqOnCcmlyPSMJA22sR0USJIuzWg04tKlSxBFEWfPnoX+3hrXMpkMYWFhEAQBUVFRcHR07LQ+mYJIAJBRaVvyTKVtykhKDGUkJYnmkbQ9FEiSLunmzZu8dF1ZWcnbu3fvDkEQkJiYCA8PD4v0jdVZ/caO5pGUPFNGkgJJiaFnJCXpfmmbMpK2ggJJ0mVUV1cjOzsboiji2rVrvN3FxQXx8fFQqVTo2bNnh5eum2MaaAN7e8g6MRNK2oam/5EoWiJRkmiwje2hQJLYNKPRiAsXLkAUReTm5sJgqP0hZmdnh4iICAiCgIiICDg4SOejwJ+PpGykVaDBNhKlo2ckpUijp8E2tkY6vz0JaUc3btyAWq1GVlYW7t69y9uVSiUEQUBCQgLc3Nws2MPGGU0jtun5SKtA0/9IFGUkJcmUkaR5JG0HBZLEZty9exdZWVkQRRFFRUW83dXVFYmJiRAEAUql0oI9bBlTRlJGI7atAs9IOtD9khTKSErS/VHblJG0FRRIEqtmMBhw7tw5iKKI8+fPw2isLZvY29sjMjISgiAgPDwc9vbW80OLr7NNc0haBT79D2UkpYUykpLEB9vQM5I2gwJJYnUYYygsLIQoisjOzkZVVRXf5u/vD0EQEB8fD1dXVwv2su2MNaaMJP0CtAY0/Y9E8YwkfY6khA+2odK2zaBAkliNyspKXrouLi7m7e7u7khMTIRKpUL37t0t2MP2wTT3MpLtvOwi6Rg0/Y9E8el/KJCUEg1fa5sykraCAkkiaXq9Hrm5uRBFERcuXABjDEBt6TomJgaCICA0NBR2drbz1y1lJK0HY4yekZQixuqUtukZSakwGBm0BlNp23Z+Znd1FEgSyWGM4dq1a1Cr1Th9+jRq6kzQ3atXL6hUKsTFxcHZRgMtU0aSBttIn96oh5Hdy7BQRlI69Pd/ZlBGUjo09wbaADTYxpZQIEkko6KiAqIoQhRFlJSU8HaFQsFHXfv6+lqwh53DSINtrIaprA3QhOSSYno+EqCMpISYBtoAFEjaEgokiUXpdDqcOXMGoiji0qVLvN3BwQGxsbEQBAEhISE2VbpuDquh6X+shamsLYMMTnb0TKtkmDKSMnvAnlaHkgrTQBtHexns7Sy7ghhpPxRIkk7HGMPVq1d56Vqr1fJtwcHBEAQBsbGxkHfRlV2MGspIWosa/f2BNpZeWpPUYcpIUjZSUmh5RNtEgSTpNGVlZbx0XVpaytu9vLwgCAIEQYC3t7cFeygNjAbbWA0aaCNRNGJbkmpoxLZNokCSdCitVoucnByIoojLly/zdicnJ166Dg4OpmxOHXytbSptSx6tsy1RNGJbkjR6mkPSFlEgSdodYwyXL1+GKIrIycmBTqfj20JDQyEIAqKjo+FE8yQ2yFTallFpW/JMgSStaiMxOspIShFf1YYykjaFAknSbm7fvs1L1+Xl5bzdx8cHKpUKiYmJ8PT0tGAPrYOptE0ZSenjz0hSaVta9KZnJCmQlJIaykjaJAokyUOpqalBTk4O1Go1rl69ytvlcjni4+MhCAJ69epFpetWoIyk9aCMpETxjCSVtqVEQ4NtbBIFkqTVjEYj8vLyoFarcfbsWej1egCATCZDWFgYBEFAVFQUHB1p2o22oOl/rActjyhR/BlJCvClhErbtokCSdJit27dglqtRmZmJiorK3l79+7dIQgCEhMT4eHhYcEe2ga+1jaN2pY8jZ5GbUuSafofykhKCp/+h0rbNqVVgeTSpUuxbNkys7aoqCicPXu2XTtFpKO6uhrZ2dkQRRHXrl3j7S4uLrx07e/vT6XrdsTX2nai4ETq+KhtO7pXksKn/6H7IiWmQFJOpW2b0uqMZFxcHH7++ef7B3CgpKatMRqNuHDhAkRRRG5uLgyG2g+/TCZDREQEVCoVIiIi6N53EGZaIpFK25JHg20kiiYkl6QavWkeScpI2pJWRwIODg5QKpUd0RebVXBqFwqzDlq6G82qrq7CrVsluF5SAe29D7wragfOeHgooHB3h/3NMlzY+xsu7LVsX21ZYFE+5AD+k/UD7tRkWLo7pAm/3ckEAFTfvIGsg99buDfExO+yGj0AFFUBF87fsnR3yD3nb9wBQM9I2ppWB5Lnz5+Hv78/nJ2dkZSUhLS0NAQFBTW6v0ajgebeBMsAUFFR0baeWrHTX3+MoB/yLN2NZrkD6A4gxtIdIQCAv1TuxsUiemTAGvhf+wUJWTss3Q3ygJ1nK7Ai+7ilu0Ee4EqBpE1pVSDZv39/bN26FVFRUSgsLMSyZcvwxBNPIDs7u9FBFmlpafWeq+xqnLx8UNT9sqW7YYYx1vg2ABS+WFaxjwxGbyBY2/y+xLKcGdCnSoE8O5ojVUqqZc74P/dhiHagAYBS4upkjzGPBFi6G6QdyVhTEUUzysrKEBwcjA8//BCvvfZag/s0lJEMDAxEeXk5FApFW09NWokxhqKiIqjVamRnZ6Oqqopv8/f3hyAIiI+Px6qf87D1yGW8PjgMbw2PtmCPCSGEEGIpFRUV8PT0bDZee6jREl5eXoiMjMSFCxca3Ucul0MupwfRLeXOnTvIzMyEKIooLi7m7e7u7khMTIQgCPDz8+Pt99dCpdIDIYQQQpr2UIHknTt3cPHiRbzyyivt1R/SDvR6PXJzcyGKIi5cuMDL2Pb29oiOjoZKpUJoaCjs7OqPnNPwCWNpVB0hhBBCmtaqQPLNN9/Es88+i+DgYFy/fh1LliyBvb09xo8f31H9Iy3EGMO1a9cgiiKys7NRc28KGQDo1asXL107NzPJdQ1lJAkhhBDSQq0KJAsKCjB+/HiUlJSge/fu+N3vfodjx46he/fuHdU/0oyKigpeur516/40FwqFAoIgQBAEdOvWrcXH40tY0YSxhBBCCGlGqwLJr7/+uqP6QVpBp9Ph7NmzEEURFy9e5O0ODg6IjY2FIAgICQlpsHTdHL7yAJW2CSGEENIMWprESjDGcPXqVajVauTk5JiNhA8ODoYgCIiNjX3ogU3310KljCQhhBBCmkaBpMSVlZVBFEWIoojS0lLe7uXlxUvX3t7e7XY+XtqmQJIQQgghzaBAUoK0Wi1ycnIgiiIuX77M252cnBAbGwuVSoWgoCDIZO0/bTgfbONApW1CCCGENI0CSYlgjOHy5csQRRE5OTnQ6XR8W+/evaFSqRAdHQ0nJ6cO7Ydp+h85ZSQJIYQQ0gwKJC3s9u3bUKvVyMzMRHl5OW/38fHhpWtPz85beu3+M5KUkSSEEEJI0yiQtICamhrk5ORArVbj6tWrvF0ulyMuLg4qlQq9evXqkNJ1s30zBZI0/Q8hhBBCmkGBZCcxGo3Iy8uDWq3G2bNnodfrAQAymQxhYWEQBAFRUVFwdHS0aD9r9DTYhhBCCCEtQ4FkJzh58iR++eUXVFZW8jZfX19euvbw8LBg7+7TG4wwGGuXU6TSNiGEEEKaQ4FkJ6msrISLiwvi4+MhCAL8/f0tUrpuiikbCVBGkhBCCCHNo0CyE8TFxcHFxQWRkZFwcJDuW256PhIA5DT9DyGEEEKaId2oxoY4OzsjNjbW0t1oFl8e0cFOctlSQgghhEgPpZ0IR6vaEEIIIaQ1KJAkHM0hSQghhJDWoIiBcBrT8oiUkSSEEEJIC1AgSThe2qbJyAkhhBDSAhRIEo5K24QQQghpDYoYCGfKSMqptE0IIYSQFqBAknB1p/8hhBBCCGkORQyEq6HBNoQQQghpBQokCaeheSQJIYQQ0goUSBKOZySptE0IIYSQFqCIgXC0sg0hhBBCWoMCScJpaPofQgghhLQCRQyEuz+PJGUkCSGEENI8CiQJR6VtQgghhLQGBZKEMw22oXkkCSGEENISFDEQjkrbhBBCCGkNCiQJR6VtQgghhLQGBZKEq6FR24QQQghpBYoYCFejv5eRdKCMJCGEEEKa59DZJ2SMAQAqKio6+9SkGXcrK2DUVMGgqaL7QwghhHRhpjjAFLc1Rsaa26OdFRQUIDAwsDNPSQghhBBC2uDq1avo1atXo9s7PZA0Go24fv06PDw8IJPJOvPUpBkVFRUIDAzE1atXoVAoLN0dUgfdG2mj+yNddG+ki+6NtDHGUFlZCX9/f9jZNf4kZKeXtu3s7JqMbInlKRQK+lBLFN0baaP7I110b6SL7o10eXp6NrsPDbYhhBBCCCFtQoEkIYQQQghpEwokCSeXy7FkyRLI5XJLd4U8gO6NtNH9kS66N9JF98Y2dPpgG0IIIYQQYhsoI0kIIYQQQtqEAklCCCGEENImFEgSQgghhJA2oUCSEEIIIYS0CQWShBBCCCGkTSiQtFFLly6FTCYz+xcdHd3k16SnpyM6OhrOzs5ISEjAv//9b7PtjDG8++676NmzJ1xcXDBkyBCcP3++Iy/DJrX23nz++ed44okn4O3tDW9vbwwZMgQnTpww22fixIn1jjl8+PCOvhSb09p7s3Xr1nr7Ozs7m+1Dn5v209r7M3jw4Hr7y2QyjBw5ku9Dn532c+3aNbz88svo1q0bXFxckJCQgIyMjCa/5sCBA3j00Uchl8sRHh6OrVu31ttnw4YNCAkJgbOzM/r371/v5x+xLAokbVhcXBwKCwv5v19//bXRfY8cOYLx48fjtddew//93/9hzJgxGDNmDLKzs/k+q1atwscff4yNGzfi+PHjcHNzQ3JyMmpqajrjcmxKa+7NgQMHMH78eOzfvx9Hjx5FYGAghg0bhmvXrpntN3z4cLNjfvXVVx19GTapNfcGqF3ere7+V65cMdtOn5v21Zr78+2335rtm52dDXt7e4wdO9ZsP/rsPLzS0lIMHDgQjo6O+Omnn5CTk4M1a9bA29u70a/Jy8vDyJEj8fvf/x5qtRpz5szBpEmTsHv3br7P3//+d8ybNw9LlizBqVOnIAgCkpOTUVxc3BmXRVqCEZu0ZMkSJghCi/d/4YUX2MiRI83a+vfvz6ZMmcIYY8xoNDKlUslWr17Nt5eVlTG5XM6++uqrdulzV9Hae/MgvV7PPDw82LZt23jbhAkT2OjRox++c11ca+/Nli1bmKenZ6Pb6XPTvh72s7N27Vrm4eHB7ty5w9vos9M+FixYwH73u9+16mveeustFhcXZ9b24osvsuTkZP66X79+bPr06fy1wWBg/v7+LC0t7eE6TNoNZSRt2Pnz5+Hv74/Q0FC89NJLyM/Pb3Tfo0ePYsiQIWZtycnJOHr0KIDavxyLiorM9vH09ET//v35PqTlWnNvHlRVVQWdTgcfHx+z9gMHDsDPzw9RUVGYNm0aSkpK2rvbXUJr782dO3cQHByMwMBAjB49GqdPn+bb6HPT/h7ms/PFF19g3LhxcHNzM2unz87D++GHH9C3b1+MHTsWfn5+eOSRR/D55583+TXN/d7RarU4efKk2T52dnYYMmQIfX4khAJJG9W/f39s3boVu3btwmeffYa8vDw88cQTqKysbHD/oqIi9OjRw6ytR48eKCoq4ttNbY3tQ1qmtffmQQsWLIC/v7/ZD9fhw4fjf//3f7Fv3z588MEH+OWXXzBixAgYDIaOugyb1Np7ExUVhb/85S/4/vvv8de//hVGoxGPP/44CgoKANDnpr09zGfnxIkTyM7OxqRJk8za6bPTPi5duoTPPvsMERER2L17N6ZNm4ZZs2Zh27ZtjX5NY793KioqUF1djVu3bsFgMNDnR+osnRIlnaO0tJQpFAq2efPmBrc7Ojqy7du3m7Vt2LCB+fn5McYYO3z4MAPArl+/brbP2LFj2QsvvNAxne4imrs3daWlpTFvb28mimKT+128eJEBYD///HN7dbNLas29YYwxrVbLwsLC2OLFixlj9LnpaK25P5MnT2YJCQnN7kefnbZxdHRkSUlJZm0zZ85kAwYMaPRrIiIi2HvvvWfWtnPnTgaAVVVVsWvXrjEA7MiRI2b7zJ8/n/Xr16/9Ok8eCmUkuwgvLy9ERkbiwoULDW5XKpW4ceOGWduNGzegVCr5dlNbY/uQtmnu3pj8+c9/xvvvv489e/YgMTGxyX1DQ0Ph6+vb7DFJ01p6b0wcHR3xyCOP8P3pc9OxWnp/7t69i6+//hqvvfZas8ekz07b9OzZE7GxsWZtMTExTT560NjvHYVCARcXF/j6+sLe3p4+PxJHgWQXcefOHVy8eBE9e/ZscHtSUhL27dtn1rZ3714kJSUBAHr37g2lUmm2T0VFBY4fP873IW3T3L0Bakf+rlixArt27ULfvn2bPWZBQQFKSkqaPCZpXkvuTV0GgwFZWVl8f/rcdKyW3p/09HRoNBq8/PLLzR6TPjttM3DgQOTm5pq1nTt3DsHBwY1+TXO/d5ycnNCnTx+zfYxGI/bt20efHymxdEqUdIw33niDHThwgOXl5bHDhw+zIUOGMF9fX1ZcXMwYY+yVV15hb7/9Nt//8OHDzMHBgf35z39mZ86cYUuWLGGOjo4sKyuL7/P+++8zLy8v9v3337PMzEw2evRo1rt3b1ZdXd3p12fNWntv3n//febk5MT++c9/ssLCQv6vsrKSMcZYZWUle/PNN9nRo0dZXl4e+/nnn9mjjz7KIiIiWE1NjUWu0Vq19t4sW7aM7d69m128eJGdPHmSjRs3jjk7O7PTp0/zfehz035ae39Mfve737EXX3yxXjt9dtrPiRMnmIODA1u5ciU7f/48+9vf/sZcXV3ZX//6V77P22+/zV555RX++tKlS8zV1ZXNnz+fnTlzhm3YsIHZ29uzXbt28X2+/vprJpfL2datW1lOTg6bPHky8/LyYkVFRZ16faRxFEjaqBdffJH17NmTOTk5sYCAAPbiiy+yCxcu8O2DBg1iEyZMMPuaf/zjHywyMpI5OTmxuLg4tnPnTrPtRqORvfPOO6xHjx5MLpezp59+muXm5nbG5diU1t6b4OBgBqDevyVLljDGGKuqqmLDhg1j3bt3Z46Ojiw4OJilpqbSD9o2aO29mTNnDgsKCmJOTk6sR48e7JlnnmGnTp0yOyZ9btpPW36unT17lgFge/bsqXc8+uy0rx9//JHFx8czuVzOoqOj2aZNm8y2T5gwgQ0aNMisbf/+/UylUjEnJycWGhrKtmzZUu+469ev55+zfv36sWPHjnXgVZDWkjHGmCUzooQQQgghxDrRM5KEEEIIIaRNKJAkhBBCCCFtQoEkIYQQQghpEwokCSGEEEJIm1AgSQghhBBC2oQCSUIIIYQQ0iYUSBJCCCGEkDahQJIQQgghhLQJBZKEEEIIIaRNKJAkhBBCCCFtQoEkIYQQQghpk/8fiuzlR0Ej7PsAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApIAAAEoCAYAAADrMRHoAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAbK1JREFUeJzt3Xl8FFW6P/5PZ+usnYUQmoQsZN+rFQQiozAKBAQvXCMKow6MEhbZUUT4oWxfjMIgIqJcxAGuM+hMRkUdRhYZEGQ1cLuSEAhbIAQSAiEbJOn1/P4IfUiTPSTp6s7zfr14aZ+qVJ3qSidPnqfOOTLGGAMhhBBCCCGtZGfpDhBCCCGEEOtEgSQhhBBCCGkTCiQJIYQQQkibUCBJCCGEEELahAJJQgghhBDSJhRIEkIIIYSQNqFAkhBCCCGEtAkFkoQQQgghpE0okCSEEEIIIW1CgSQhhBBCCGkTCiQJIYQQIimvv/46zp07Z9a2Zs0aFBYWYvfu3bhx44aFekYeRIEkIYQQQiTl4sWLCAsLM2t744030LNnT2zevBlyudxCPSMPokCSNGvw4MH461//yl/HxcXh6NGjFuxR886cOYOEhAR4eHjgm2++MetzSEgIfv31V4v0o6U66j3uzGtvDZlMhoKCgg49hzV839ZljZ87azZz5kz87W9/s3Q32o1Go0GPHj1QUVFh6a40q1+/fkhNTUV0dDR++OEHAMCtW7cwadIkJCYm4l//+hcAYOjQofjuu++wb98+jBkzBj/99BO0Wi3GjRuHgQMH4ne/+x2MRmO94+v1eiQkJFAWs4NQIClxISEhcHV1hbu7O/z9/TFr1iwYDAaL9un06dNISkqyaB+as3r1ajz77LOorKxESkqKxfr8YD9ayhreY0C6gSlQv2/W8p42pjP6f/DgQQwYMACenp7o1q0bnnrqKeTl5fHtzf08qrvd3d0dSqXyofrTHt9fLTlGYWEh/v3vf2PcuHH8a6qqqh7qvC21adMmxMfHw8PDA35+fnj++ecBAJcvX4ZMJoO7uzvc3NwQFxeHX375hX9d3e2urq7w9fXFokWL+Ha5XI4bN25AoVAAABhjcHd3R3Fxcbtfg0ajwauvvoqgoCAoFAoMGDCgxX/05Ofno6qqCuvXr8dXX32Fn3/+GdevX0dlZSXWr1+Pn3/+GZ9++imuXbuGgIAAPPvss3j88cdx4MABjBgxAkePHkVISAgOHz6MgwcPws6uNqz56KOP8MEHHwAAHBwc8Nprr2HVqlXtfu2EAkmrsGfPHty5cweHDh3CN998gy+++MLSXbIovV7f7D75+fmIjY3thN5YRz9I+2jJ9561Ki8vx+jRo/HWW2+htLQUV65cwcyZM2Fvb2+2X3M/j0zb79y5g6Kios68hDb78ssvMXr0aH6tV65caTCz1RoTJ07E1q1bm9znk08+wWeffYb09HRUVFTg5MmTGDVqFABAFEXExcXx93L06NGYPHky/1pRFBEbG4s7d+6gqqoKe/bsQVpaGrKzsxs8V15eHlxdXeHn59ei/hsMBmRlZdVrV6vV9dr0ej0P2MvKyjBnzhw8++yzuHPnDgCgqKgIgwcPNvs3bNgwAEB2djZeeuklODs749atWwgODkZ2djYmTJgAd3d3uLi4wMfHB1lZWUhISMDZs2cRExPDz92vXz/odDqMHz8ehw8f5u1lZWUoLS3lr8eNG4cvv/wSOp2uRddPWo4CSSsSFhaGgQMHmn2QT58+jSeeeAJeXl7o06eP2QfpwXJh3VKZTCbDZ599ht69e8PX1xdpaWl8v99++w2JiYlQKBSYOnVqvR+odf/Cb+o4x48fR0JCAj/OoEGDzEp1dclkMqxfvx5BQUFQKpVYvXp1ve2ffPIJevfujd///vdNXvuIESOwf/9+TJo0Ce7u7igpKWk0K5Gfn4+RI0eiW7duiImJwa5duwAARqMRs2bNgq+vL7y8vPDYY4/h1q1bDfa9Nf2oq6lzPPgeb9iwASEhIfDy8sL//M//4MiRI4iNjYW3tzdWrFjRqveyuWt/UGP9nDRpEvLz8zFs2DC4u7vzsmBT35N5eXn8nD179sTHH3/Mt/34448Nfh8BwHvvvYfg4GAoFAokJSUhMzOz1X178Hugqb48+H7W/d5r6vpM+1vL566uc+fOQS6X47nnnoOdnR3c3d3x3//93wgKCmpw/4Z+HjWmsfsHtO4etvbz2tj36IN27dqFJ554oslrmDFjBqZMmcLPN3r0aMydO7fZa2/K1q1bMWvWLMTExEAmkyEwMBATJ04EUBsoPvLIIwBq7/fAgQPNfgaZAkkTQRDg6OjIA6V169bhtddeA1D7iE1sbCxKS0vh7u6Oxx57DGfPnsWQIUPg4+MDb29vzJo1y6xvpu0ZGRm8bePGjXjhhReg1WrN9nVzc8O7776LoKAg2NnZYdy4cXByckJubi4AQKlU4sCBA2b/9uzZA6A2kFSpVPyaEhISkJ2dDQcHBwDAli1bMGbMGB5I5uTkICoqip+bMYY1a9Zg+fLl+OSTTxp9r5VKJby9vc2uh7QTRiQtODiYHTp0iDHGWG5uLlMqlezPf/4zY4wxjUbDevfuzdatW8e0Wi37+uuvmbe3N7t9+zZjjDEA7OrVq/xYgwYNYl9++SXf9vzzz7PKykqWlZXF5HI5u3DhAtNoNKxXr17s008/ZVqtln388cfM3t6ef92DfWrsODU1Nczf359t3ryZabVatmHDBubg4GB2nLoAsGHDhrHy8nJ25swZplQq2c8//2y2/b/+679YeXk5q6qqavba617rg302/b/BYGCJiYls3bp1TKfTsSNHjjBfX19WVFTEfvrpJ9anTx9WXl7O9Ho9O3nyJKusrKzX79b2o66mzvHge/ziiy+yu3fvsv/85z/M2dmZPffcc6ykpISdOXOGOTs7s4sXL7bovWzJtbe1n829HzqdjsXExLAlS5aw6upqVl5ezjIyMpr8PjL55ptvWHFxMdNqteydd95hgiC0um91XzfVlwfV/d4rKytr8n6b9pfy527atGls2rRp9a6zrKyMeXt7s9dee43t2bOHlZeX19unqZ9HDb3nzd0/xlp+D9v6eW2sT3X5+vqyrKws/hpAvc97QUEBUygUrKCggM2bN489++yzzGAwNHrMCRMmsC1btjR53oEDB7K+ffuy77//vt77/dxzz7EPP/yQn/uJJ55gU6ZMMdv+7rvvMsYYq66uZkuXLmUDBgxgRqORMcbYq6++yj766CO+/3vvvcdmzpzJXz/66KPs73//OzMajY1+///www9MqVSynJwc9tVXX7GAgAB26dKlJq+JMcbOnTvH5HI5Kysra3bfV155hRUUFDDGGPvjH//Irl27xv70pz+xOXPmsJSUFDZnzhy+37Vr15harWZxcXH82l944QU2cOBAlpSUxE6cOMGPu2TJErZgwQKzc/3Xf/0X27hxY7N9Iq1DgaTEBQcHM3d3d+bm5sYAsOeee45VV1czxhg7ePAgCw4ONtt/wIABbPv27Yyx5n+h1f3B8dhjj7HvvvuOHThwgIWEhPB2o9HIevXq1eQvtIaOs3//fhYaGmrWt8DAwCYDyf379/PX/9//9/+x1NRUs+1Hjhzhr5u79pYEkkePHmURERFmx0hJSWFbtmxhP//8M4uMjGTHjx/nP5gb0tp+1NXUOR58j0+ePMm3+fn5sW+++Ya/7tevH/vuu+/466bey5Zce1v72dz78euvv7JevXo1+Mu3se+jhlRXVzOZTMYqKytb1be6r5vqS0N9M33vNXe/Tftby+fuQVlZWezll19mPXr0YE5OTuyll15iFRUVZn1o7OdR3e2enp7M09OTzZ07t9456t4/xlr+/dXWz2tLAkkHBweWl5fHXzcUSDLG2PTp05lKpWIqlYrduXOnyWO2JJDMz89nU6dOZX5+fkwul7NJkyYxjUbDGGMsLCzM7L2eOnUq32ba7urqyjw9PZm9vT0LCgoyu4a+ffuy//znP/z1uHHj2KZNm/hrT09P9uWXXzK9Xt9kH7dt28aUSiXz8/NjmZmZTe7LGGNVVVWsX79+bOnSpc3u25EaCiRfeukl9sEHH1ioR7aLSttW4KeffkJlZSV27NiBjIwM/tzJ9evXERgYaLZvcHAwrl+/3qLj9ujRg/+/q6sr7ty5g8LCQvTq1Yu3y2Qys9ctPU5RURECAgLM9nvw9YPqXktgYCAKCwvNttftx8NeO1Bb2s3Ly4OXlxf/t2vXLhQWFuLpp5/G1KlTMXnyZPTs2RNvvvlmg8/WPEw/WnoOAGbPNbm4uNR7bfqeMGnuvWzq2h+mn029HwUFBQgODuYPwz+ooe8jk88//xxxcXHw9PSEUqkEYwwlJSWt6ltdzfXlQabvvfb4vpPa566u+Ph4fPnllygqKsKRI0dw5MgRrFy50myfxn4e1d1eVlaGsrIyfPjhhwAav39Ay7+/2uPz2hhPT89619EQQRCgVqvx6aefws3Nrd72UaNG8b5t374dr7/+On/9/vvv19s/MDAQn332GQoLC/Hjjz/ir3/9K/75z3/izp07uHTpEq5evYqKigp88MEHOHbsGJycnACAbxdFEWVlZbh79y6eeuopvPXWWwBqS+85OTlITEzk58rMzDR7/dVXX2Hjxo0ICAjAW2+91ejzv2FhYaipqYFCoTD7nmuITqfD2LFjER4ejnfffbfZ97OzVVZWwtPT09LdsDkUSFoJmUyG0aNHY8iQIfh//+//AQD8/f1x9epVs/3y8/Ph7+8PoPaXS3V1Nd/WkqkPevbsWW8alrZMy6JUKnHt2jWztgdfP6jutVy9ehU9e/Y02y6Tyfj/N3ftLREQEICYmBj+S6+srAx37tzBwoULAQBz586FWq3Gb7/9ht27dzf4fNXD9qMl52iL5t7L5q69pf2se0+Apt+PwMBAXLlyBYyxVl3L5cuXMWfOHGzbtg2lpaUoLCyETCbjx2lp3+pqbV9Mx2rJ/ba2z11j+vTpg+eee67BwRsN/TxqTHP3D2jZPWzr57Wp7wOThIQEnD9/vsl9jh8/juXLlyMlJQXbtm1rcJ9//etfvG9/+MMf8Omnn/LXb7/9dqPHtrOzw9ChQ9GjRw9UVVUhMzMT/v7+8PLygp2dHWbPno2LFy/yZ0szMzOhUCj4PItyuRxJSUn8D8ELFy7wkfcAoNVqcf78ecTHx/NzjhgxAr/++iuOHz+Ov//97/jPf/5Tr19qtRopKSn45z//iQkTJiA5ORnl5eUNXoPRaMQrr7wCmUyGbdu2teh972y5ublISEiwdDdsDgWSVubNN9/E5s2bcevWLfTv3x9A7cg/vV6P9PR0nDlzBsOHDwdQ+9fz119/DYPBgP/93//FhQsXmj1+UlISdDodNm3aBJ1Ohw0bNjSYpWrJcaqrq7Flyxbo9Xps3Lix2eN88MEHqKioQG5uLv7yl7/ghRdeaHTf5q69Jfr37w+j0YjPPvsMWq0WWq0Whw4dQn5+PjIyMvDbb79Br9fDw8MDjo6O9UavPmw/WnqOtmjuvWzq2lvTTz8/P1y+fNnsuEDD70e/fv3g4eGBFStWoKamho9Sbc6dO3dgZ2eH7t27Q6/XY8mSJW3qW11t7UtL7re1fe5Mzp49i7Vr1/Ls6rlz5/Djjz+iX79+jX5N3Z9HjWnq/gEtv4dt/bw29X1gMnz48CanCMrPz8fYsWPx17/+FevWrcP27dsb/Ky0RlpaGo4fPw6dToc7d+5g5cqVuHv3LkaPHs1HbJvI5XIMHjyYz6doGohjCtbOnz+PDRs2YMyYMQDqZx8rKysBgA+S+eabb/i0TqWlpdBqtYiOjjbrn2kw2saNG/H0009j8eLFeOqppzBq1Kh6g20AYMqUKSgsLER6ejofKCMlN27cQElJCfr27WvprtgcCiStTExMDAYNGoR169bByckJP/zwA7766it069YNaWlp+OGHH+Dt7Q0AWLt2Lf72t7/Bx8cHJ0+exOOPP97s8Z2cnPDNN99g/fr16NatGzIzM1v0dQ+Sy+X45ptvsGbNGvj4+ECtVuOxxx5rcjWCZ555BvHx8XjyyScxa9YsDBkypMl+NnXtLeHg4ICdO3di9+7dCAgIgL+/P1auXAmj0Yjy8nK8+uqr8PLyQlRUFAYOHIg//OEP7dqPlp6jLZp7L5u69tb0c8GCBXj77bd5Ka+p98PBwQH/+te/cOTIEfTs2RNRUVEtmmsuPj4eU6ZMQWJiIkJCQtC7d29e4mtN3x68/rb0pSX3W+qfu6lTp2Lq1Kn1vtbDwwNHjhxBnz594ObmhiFDhmDkyJFNZtLq/jxqTFP3D2j5PfzHP/7Rps9rU98HJq+88gp27NjR4By9lZWVGDVqFJYsWYJBgwYhICAAL730Et57771Gr7klSktL8dJLL8Hb2xuRkZHIysrC0aNH0b17d4iiaJY9BIDk5GSzQPLXX3+Fu7s7vLy8MHr0aEyYMAHz5s0DAGRlZZkFkt26dcP48eMRFBSEAQMG4JdffkFSUhLc3d0xYcIEbN68ud7o/O7du2PTpk08OAWAP//5z5g5c6bZ/QNqp0vavHkzTpw4AV9fXz6P6KFDhx7qPWpPX3/9NV555ZV6fScPT8ZaW2cipA0YY+jVqxfS09Mb/AUpk8lw9erVZp8LI82j95KYNPe5I/fNmDEDjz/+OP7whz9AJpOhsrIS7u7ulu4WaaOlS5eipqYG77//PvR6PR555BHs3bv3oSfJJ/VRRpJ0mAMHDuDWrVvQarX44IMPIJPJqKxASAejz13bfPLJJzyLGRcXhwEDBuAf//iHhXtF2iI5ORn//Oc/edDo4OCArKwsCiI7iPQeZCA2IysrCy+88AKqq6sRExODb7/9lsoKhHQw+tw9vMZWhyHWYffu3ZbuQpdCpW1CCCGEENImVNomhBBCCCFtQoEkIYQQQghpEwokCSGEEEJIm3T6YBuj0Yjr16/Dw8NDkjPfE0IIIYR0dYwxVFZWwt/fv8nlZDs9kGxorVpCCCGEECI9zc1L3OmBpIeHB4DajikUis4+PSGEEEIIaUZFRQUCAwN53NaYTg8kTeVshUJBgSQhhBBCiIQ19xgiDbYhhBBCCCFtQoEkIYQQQghpEwokCSGEEEJIm0hyrW2j0QitVmvpbhCJc3R0hL29vaW7QQghhHRZkgsktVot8vLyYDQaLd0VYgW8vLygVCppTlJCCCHEAiQVSDLGUFhYCHt7ewQGBjY5ASbp2hhjqKqqQnFxMQCgZ8+eFu4RIYQQ0vVIKpDU6/WoqqqCv78/XF1dLd0dInEuLi4AgOLiYvj5+VGZmxBCCOlkkkr5GQwGAICTk5OFe0KshekPDp1OZ+GeEEIIIV2PpAJJE3rejbQUfa8QQgghliPJQJIQQgghhEgfBZKEEEIIIaRNKJAkhBBCCCFtQoEkIYQQQghpEwok28ngwYMxZ84cS3eDEEIIIaTTSGoeSWv27bffwtHRsdPPO3jwYKhUKnz00Uedfm5CCCGEdG0USLYTHx8fS3eBEEIIIaRTSbq0zRiDVqu1yD/GWKv6Wre0PXjwYMyaNQtvvfUWfHx8oFQqsXTp0nr7z5gxAzNmzICnpyd8fX3xzjvvmJ03JCSkXqZRpVLxY02cOBG//PIL1q1bB5lMBplMhsuXLzfYv6+++gouLi4oLCzkbX/605+QmJiI8vLyVl0rIYQQQggg8YykTqdDWlqaRc69cOHCh1phZ9u2bZg3bx6OHz+Oo0ePYuLEiRg4cCCGDh1qts9rr72GEydOICMjA5MnT0ZQUBBSU1NbdI5169bh3LlziI+Px/LlywEA3bt3b3DfcePG4f3338d7772H9evXY8mSJfj5559x7NgxeHp6tvk6CSGEENJ1STqQtGaJiYlYsmQJACAiIgKffPIJ9u3bZxZIBgYGYu3atZDJZIiKikJWVhbWrl3b4kDS09MTTk5OcHV1hVKpbHJfmUyGlStX4vnnn4dSqcT69etx6NAhBAQEtP0iCSGEENKlSTqQdHR0xMKFCy127oeRmJho9rpnz54oLi42axswYIDZEn9JSUlYs2YNDAYD7O3tH+r8DRk1ahRiY2OxfPly7NmzB3Fxce1+DkIIIcQW6PV62NnZwc5O0k8BWpykA0mZTPZQ5WVLejAQlclkMBqNrTqGnZ1dvWc1dTpdm/u0a9cunD17FgaDAT169GjzcQghhBBbxBjD9evXoVarkZ2djdGjRyM6OtrS3ZI0SQeStu748eNmr48dO4aIiAiejezevbvZ4JiKigrk5eWZfY2TkxMMBkOz5zp16hReeOEFfPHFF9i6dSveeecdpKent8NVEEIIIdatoqICmZmZEEURt27d4u25ubkUSDaDAkkLys/Px7x58zBlyhScOnUK69evx5o1a/j2p556Clu3bsWzzz4LLy8vvPvuu/VK3iEhITh+/DguX74Md3d3+Pj41EvDX758GSNHjsSiRYswfvx4hIaGIikpCadOncKjjz7aKddKCCGESIlOp8PZs2chiiIuXbrEK4AODg6IiYmBIAjo3bu3hXspfRRIWtAf//hHVFdXo1+/frC3t8fs2bMxefJkvn3hwoXIy8vDqFGj4OnpiRUrVtTLSL755puYMGECYmNjUV1djby8PISEhPDtt2/fxvDhwzF69Gi8/fbbAID+/ftjxIgRWLRoEXbt2tUp10oIIYRYGmMMV69ehSiKOH36NDQaDd8WFBQEQRAQFxcHuVxuwV5aFxlr7YSJD6miogKenp4oLy+HQqEw21ZTU4O8vDz07t0bzs7OndmtTkcr0rSPrvQ9QwghpG3Ky8shiiJEUcTt27d5u6enJwRBgCAItLDIA5qK1+qijCQhhBBCbI5Wq8WZM2cgiqJZNc/R0RFxcXEQBAHBwcFms6eQ1qNAkhBCCCE2gTGGK1euQBRF5OTkQKvV8m0hISEQBAGxsbFWOyOMFFEgaSEHDhywdBcIIYQQm3D79m2IoojMzEyUlZXxdh8fHwiCgMTERHh5eVmsf7aMAklCCCGEWB2NRoPTp09DFEXk5+fzdrlczkvXgYGBVLruYBRIEkIIIcQqGI1G5OXlQRRFnDlzBnq9HkDtoh+hoaEQBAHR0dEPvTodaTkKJAkhhBAiabdu3eKl64qKCt7u6+vLS9dNjSwmHYcCSUIIIYRITnV1NS9dFxQU8HZnZ2fEx8dDpVLB39+fStcW1upA8tq1a1iwYAF++uknVFVVITw8HFu2bEHfvn07on+EEEII6SKMRiMuXrwIURRx9uxZvgSwTCZDREQEBEFAZGQkHBwoDyYVrboTpaWlGDhwIH7/+9/jp59+Qvfu3XH+/Hl4e3t3VP8IIYQQYuOKi4uhVquRlZWFO3fu8HY/Pz+oVCokJCTA3d3dgj0kjWlVIPnBBx8gMDAQW7Zs4W20DiUhHY8xhpqsLBjr/IAl0lVSfRs3qoos3Q3yoOoyoPp2s7uRzqHT6VFaehtFN0tRXl0736MMgJedPTwUHlAoFJDrynHrt/PY/1u6RfroH5eEPk+Ptci5rUWrAskffvgBycnJGDt2LH755RcEBATg9ddfR2pqaqNfo9FozNayrPuQLCGkZcq/+QaFi9+xdDdIK1DuhJDmeQMItXQnmiD+7jcKJJvRqkDy0qVL+OyzzzBv3jwsWrQIv/32G2bNmgUnJydMmDChwa9JS0vDsmXL2qWzpJYU1+kOCQnBnDlzMGfOHEt3xSZp7i3vZe/tDYfu3S3cG9IUjUGDKxVXIIMMTva0eoZkMCNguLfKiczOsn3pghgYwBrbVkuSQ2ZoJHjzWCs4OjqypKQks7aZM2eyAQMGNPo1NTU1rLy8nP+7evUqA8DKy8vr7VtdXc1ycnJYdXV1a7olCcXFxWzq1KksMDCQOTk5sR49erBhw4axX3/9lTHGWHBwMEPt54W5uLiw+Ph49vnnn5sdY//+/XwfAMzZ2ZnFxsay//mf/zHbr6SkhFVUVPDXwcHBbO3atR16ff/4xz9YVFQUk8vlLD4+nu3cudNse0v6UF1dzV5//XXm4+PD3Nzc2HPPPceKiorM9rly5Qp75plnmIuLC+vevTt78803mU6na/KY1vo90xqFy1ewnKhodqOD7zN5eGKxyOK3xrNh6cMs3RVSV/5xxpYoGFubYOmedBmVlZXsyJEj7LPPPmNLly7l/1avXs12797Nbty4wU7klbDgBf9ig1b9x9LdJQ8oLy9vNF6rq1UZyZ49eyI2NtasLSYmBt98802jXyOXyyGXy1sZ3lqflJQUaLVabNu2DaGhobhx4wb27duHkpISvs/y5cuRmpqKqqoqpKenIzU1FQEBARgxYoTZsXJzc6FQKFBdXY0ff/wR06ZNQ1hYGJ5++mkAtUs+daYjR45g/PjxSEtLw6hRo7B9+3aMGTMGp06dQnx8fIuPM3fuXOzcuRPp6enw9PTEjBkz8Nxzz+Hw4cMAAIPBgJEjR0KpVOLIkSMoLCzEH//4Rzg6OuK9997rqMuzCkZNDQDAztnZwj0hzdEYah/lkTvY/s89q6Krrv2vo4tl+2Hj9Ho9zp07B1EUcf78eTBWm2+0t7dHVFQUBEFAeHg47Oxqs8K5528CAJwd7S3WZ/JwWhVIDhw4ELm5uWZt586dQ3BwcLt2yoQxhmqdoUOO3RwXR/sWz01VVlaGQ4cO4cCBAxg0aBAAIDg4GP369TPbz8PDA0qlEgCwYMECrFq1Cnv37q0XSPr5+fE1QWfNmoWPP/4Yp06d4oFk3dL24MGDceXKFcydOxdz584FcH/R+hkzZuDXX3+FVqtFSEgIVq9ejWeeeabV78W6deswfPhwzJ8/HwCwYsUK7N27F5988gk2btzI96usrMT48ePxww8/wMvLC4sWLcL06dMBAOXl5fjiiy+wfft2PPXUUwCALVu2ICYmBseOHcOAAQOwZ88e5OTk4Oeff0aPHj2gUqmwYsUKLFiwAEuXLoWTU9ctEzLNvQfR5RRISp0pkHS2p3slKfraP8bgQPelvTHGcP36dajVamRnZ6OmpoZvCwgIgEqlQlxcHFxc6gfxGp0RACCnQNJqtSqQnDt3Lh5//HG89957eOGFF3DixAls2rQJmzZt6pDOVesMiH13d4ccuzk5y5Ph6tSyt8fd3R3u7u7YsWMHBgwY0GwG1mg04rvvvkNpaWmTwRFjDLt370Z+fj769+/f4D7ffvstBEHA5MmTzQY9TZ8+HVqtFgcPHoSbmxtycnLMpk5obhqFl19+mQeJR48exbx588y2JycnY8eOHWZtq1evxqJFi7Bs2TLs3r0bs2fPRmRkJIYOHYqTJ09Cp9NhyJAhfP/o6GgEBQXh6NGjGDBgAI4ePYqEhAT06NHD7DzTpk3D6dOn8cgjjzTZZ1vGakwZScpySZ1Gfy8jaU/3SlJMgSRlJNtNZWUlMjMzoVarcevWLd7u4eEBQRAgCAJ8fX2bPEaNvjZZ5OxAz61aq1YFko899hi+++47LFy4EMuXL0fv3r3x0Ucf4aWXXuqo/lkFBwcHbN26Fampqdi4cSMeffRRDBo0COPGjUNiYiLfb8GCBVi8eDE0Gg30ej18fHwwadKkesfr1asXgNoR70ajEcuXL8eTTz7Z4Ll9fHxgb29vlu0EgPz8fKSkpCAhIQEAEBpqPi5OrVY3eU11l5oqKioyC+4AoEePHigqMp/eZODAgXj77bcBAJGRkTh8+DDWrl2LoUOHoqioCE5OTjzT2tBxGjuPaVtXZiptU0ZS+moMtfeKStsSo6OMZHvQ6XTIzc2FWq3GpUuXeOnawcEBMTExEAQBvXv35qXr5tTcy0hSadt6tXpq+FGjRmHUqFEd0Zd6XBztkbM8uVPO1dC5WyMlJQUjR47EoUOHcOzYMfz0009YtWoVNm/ejIkTJwIA5s+fj4kTJ6KwsBDz58/H66+/jvDw8HrHOnToEDw8PKDRaHDixAnMmDEDPj4+mDZtWov7M2vWLEybNg179uzBkCFDkJKSYhbUNnTeh5WUlFTvtZRGllszVlOb5aKMpPRRaVui9PSMZFsxxlBQUAC1Wo3Tp0+bTekXFBQEQRAQFxfXpvEQNfceX3N2pIyktZL0GkMymazF5WUpcHZ2xtChQzF06FC88847mDRpEpYsWcIDSV9fX4SHhyM8PBzp6elISEhA37596w1g6t27N8/cxcXF4fjx41i5cmWrAslJkyYhOTkZO3fuxJ49e5CWloY1a9Zg5syZAFpX2lYqlbhx44bZ9hs3bphlQJujVCqh1WpRVlZmlpWsexylUokTJ07UO49pW1fGM5I02Ebyau6VUKm0LTGUkWy18vJyiKIIURRx+/b9idw9PT156fphB3/eDyQpI2mtrCdKs0KxsbH1niM0CQwMxIsvvoiFCxfi+++/b/I49vb2qK6ubnS7k5MTX4/0wXNMnToVU6dOxcKFC/H555/zQLI1pe2kpCTs27fPbI7IvXv31stAHjt2rN7rmJgYAECfPn3g6OiIffv2ISUlBUDt6PT8/Hx+nKSkJKxcuRLFxcXw8/Pj51EoFPWC7a7GlJGUdYEZEKwdz0hSwCItlJFsEa1WizNnzkAUReTdm78WABwdHREbGwtBEBASEtLiwajN0ejvlbYdKJC0VhRItoOSkhKMHTsWr776KhITE+Hh4YGMjAysWrUKo0ePbvTrZs+ejfj4eGRkZKBv3768vbi4GDU1Nby0/eWXX+L5559v9DghISE4ePAgxo0bB7lcDl9fX8yZMwcjRoxAZGQkSktLsX//fh7UAa0rbc+ePRuDBg3CmjVrMHLkSHz99dfIyMioN8jq8OHDWLVqFcaMGYO9e/ciPT0dO3fuBFD7F+xrr72GefPmwcfHBwqFAjNnzkRSUhIGDBgAABg2bBhiY2PxyiuvYNWqVSgqKsLixYsxffr0LjGFVFP4YJsu/j5YA9MzkjQZucRQRrJRppk+RFFETk4OtFot3xYSEgKVSoWYmJgOmTnDlJGUU2nbalEg2Q7c3d3Rv39/rF27FhcvXoROp0NgYCBSU1OxaNGiRr8uNjYWw4YNw7vvvot///vfvD0qKgpA7cPLgYGBmDJlCpYuXdrocZYvX44pU6YgLCwMGo0GjDEYDAZMnz4dBQUFUCgUGD58ONauXdum63v88cexfft2LF68GIsWLUJERAR27NhRbw7JN954AxkZGVi2bBkUCgU+/PBDJCfff8Z17dq1sLOzQ0pKCjQaDZKTk/Hpp5/y7fb29vjXv/6FadOmISkpCW5ubpgwYQKWL1/epn7bEqPGlJGkX4JSZxq1Tc9ISowpI0mBJHf79m2IoojMzEyUlZXxdm9vb166fnCAZHuj0rb1o0CyHcjlcqSlpSEtLa3RfS5fvtxg+65du/j/Dx48mI+Aa8qBAwfMXg8YMACiKJq1rV+/vtnjtMbYsWMxdmzj6402dn11OTs7Y8OGDdiwYUOj+wQHB5sF1aQWTf9jPfiE5PSMpLSYMpKOXTuQ1Gg0yMnJgVqtRn5+Pm+Xy+WIi4uDIAgIDAxst9J1c/iobZr+x2pRIEmIFeAZSRpsI3k0/Y9E8Yxk13tG0mg04vLly1Cr1Thz5gz0ej3fFhYWBkEQEB0dDUdHx07v2/3SNmUkrRUFkoRIHGOMZyRpsI30UWlborpgRrKkpARqtRqZmZmoqKjg7b6+vhAEAYmJiWYDKy2hRk/zSFo7CiQJkTim0wH3Hnmgtbalj2ckqbQtLV3kGcmamhpkZ2dDFEUUFBTwdmdnZ8THx0MQBAQEBHRa6bo5NI+k9aNAkhCJY3XWraXStvTR9D8SxTOStlfaNhqNuHjxIkRRxNmzZ/l0cDKZDOHh4RAEAVFRUXBwkN6vfB5I0vQ/Vkt631WEEDPMtIqETAaZBZ5hIq1Dg20kSm970/8UFxfzUdd37tzh7X5+frx03dziE5amodK21aNAkhCJqzvQRirlKNI4ekZSonS2MSF5VVUVsrOzoVarUVhYyNtdXV0RHx8PlUoFpVJpNT8rNFTatnoUSBIicTQZuXXhGUkatS0t9wJ8a8xIGgwGXLhwAaIoIjc3F0ZjbRbPzs4OkZGREAQBERERsLe3vqwen/6HMpJWiwJJQiTOWENT/1gTGmwjUVa4RGJRURHUajWysrJQVVXF23v27AlBEJCQkABXV1cL9vDh1egpI2ntKJAkROKYhjKS1oRK2xJlJUsk3r17F5mZmRBFETdu3ODtbm5uSExMhCAI6NGjhwV72L74PJI02MZqUSBphQYPHgyVSoWPPvrI0l3hQkJCMGfOHMyZM8fSXbE5RtMckpSRtAo0IblESTgjqdfrce7cOYiiiPPnz/MVzuzt7REVFQWVSoWwsDDY2dle1o5K29bP9r4rLeTmzZuYNm0agoKCIJfLoVQqkZycjMOHDwOoDbRkMhlkMhlcXV2RkJCAzZs3mx3jwIEDfB+ZTAYXFxfExcVh06ZNZvt9++23WLFiBX8dEhLS4UFleno6oqOj4ezsjISEhDYtY1hTU4Pp06ejW7ducHd3R0pKitlf3AAwa9Ys9OnTB3K5HCqVqp16b90YX2ebAhNrQKO2JUpiGUnGGK5du4Z///vf+PDDD5Geno5z586BMYaAgAA888wzeOONNzB27FhERETYZBAJ1M1I2ub1dQWUkWwnKSkp0Gq12LZtG0JDQ3Hjxg3s27cPJSUlfJ/ly5cjNTUVVVVVSE9PR2pqKgICAjBixAizY+Xm5kKhUKC6uho//vgjpk2bhrCwMDz99NMAAB8fn069tiNHjmD8+PFIS0vDqFGjsH37dowZMwanTp1CfHx8i48zd+5c7Ny5E+np6fD09MSMGTPw3HPP8WDb5NVXX8Xx48eRmZnZ3pdilWiwjXUxlbYpkJQQxiSTkaysrERmZibUajVu3brF2z08PJCYmAiVSgVfX18L9rDzMMZo+h8bIO1AkjFAV9X8fh3B0RVo4fQJZWVlOHToEA4cOIBBgwYBAIKDg9GvXz+z/Tw8PKBUKgEACxYswKpVq7B37956gaSfnx+8vLwA1GboPv74Y5w6dYoHknVL24MHD8aVK1cwd+5czJ07F0Dth/PKlSuYMWMGfv31V2i1WoSEhGD16tV45plnWv1WrFu3DsOHD8f8+fMBACtWrMDevXvxySefYOPGjXy/yspKjB8/Hj/88AO8vLywaNEiTJ8+HQBQXl6OL774Atu3b8dTTz0FANiyZQtiYmJw7NgxDBgwAADw8ccfA6jN8FIgWYsG21gPvVEPPatdx5iekZQQgw5gtQELLPDIgU6nQ25uLtRqNS5dusRL1w4ODoiJiYEgCOjdu7fNZh0bYwoiARpsY82kHUjqqoD3/C1z7kXXASe3Fu3q7u4Od3d37NixAwMGDIC8mcyR0WjEd999h9LSUjg5OTW6H2MMu3fvRn5+Pvr379/gPt9++y0EQcDkyZORmprK26dPnw6tVouDBw/Czc0NOTk5ZhPTNjdJ7csvv8yDxKNHj2LevHlm25OTk7Fjxw6zttWrV2PRokVYtmwZdu/ejdmzZyMyMhJDhw7FyZMnodPpMGTIEL5/dHQ0goKCcPToUR5Ikvr4YBtnynBJnamsDdAzkpJiykYCgEPnZCQZYygoKIBarcbp06eh0dz/3ggKCoIgCIiNjYVzF/4D0VTWBigjac2kHUhaCQcHB2zduhWpqanYuHEjHn30UQwaNAjjxo1DYmIi32/BggVYvHgxNBoN9Ho9fHx8MGnSpHrH69WrFwBAo9HAaDRi+fLlePLJJxs8t4+PD+zt7c2ynQCQn5+PlJQUJCQkAABCQ0PNvk6tVjd5TQqFgv9/UVFRvVGCPXr0QFFRkVnbwIED8fbbbwMAIiMjcfjwYaxduxZDhw5FUVERnJyceKa1qeMQczwjKe+6v3CsRY1p9RRQaVtSTM9HQtbhGcny8nKIoghRFHH79m3e7unpCUEQIAhCpz+eJFWmgTb2djI42lNG0lpJO5B0dK3NDFrq3K2QkpKCkSNH4tChQzh27Bh++uknrFq1Cps3b8bEiRMBAPPnz8fEiRNRWFiI+fPn4/XXX0d4eHi9Yx06dAgeHh7QaDQ4ceIEZsyYAR8fH0ybNq3F/Zk1axamTZuGPXv2YMiQIUhJSTELahs678NKSkqq91pKI8utlSkjKaOMpOSZMpJOdk6wk9EvRskwZSQdnFv8yFJraLVanDlzBqIoIi8vj7c7OjoiNjYWgiDwAZfkvvvrbNNnxZpJO5CUyVpcXpYCZ2dnDB06FEOHDsU777yDSZMmYcmSJTyQ9PX1RXh4OMLDw5Geno6EhAT07dsXsbGxZsfp3bs3z9zFxcXh+PHjWLlyZasCyUmTJiE5ORk7d+7Enj17kJaWhjVr1mDmzJkAWlfaViqV9UZX37hxwywD2hylUgmtVouysjKzrGRrj9MVGflgG8pISh1N/SNRpoykY/t9hkzPoouiiJycHGi1Wr4tJCSEl66benypq7s/GTmVta2ZtANJKxcbG1vvOUKTwMBAvPjii1i4cCG+//77Jo9jb2+P6urqRrc7OTnBYDDUaw8MDMTUqVMxdepULFy4EJ9//jkPJFtT2k5KSsK+ffvM5ojcu3dvvQzksWPH6r2OiYkBAPTp0weOjo7Yt28fUlJSANSOTs/Pz693HGKOaWp/QVFGUvq0htp7RQNtJIZnJB/++cjS0lJeui4rK+Pt3t7evHT94CM8pGEamkPSJlAg2Q5KSkowduxYvPrqq0hMTISHhwcyMjKwatUqjB49utGvmz17NuLj45GRkYG+ffvy9uLiYtTU1PDS9pdffonnn3++0eOEhITg4MGDGDduHORyOXx9fTFnzhyMGDECkZGRKC0txf79+3lQB7SutD179mwMGjQIa9aswciRI/H1118jIyOj3vyWhw8fxqpVqzBmzBjs3bsX6enp2LlzJ4Da54Nee+01zJs3Dz4+PlAoFJg5cyaSkpLMBtpcuHABd+7cQVFREaqrq3nA25X/sr+/sg0FJ1JnekaSno+UmIfMSGo0GuTk5EAURVy5coW3y+VyxMbGQqVSITAwkErXrcTnkKQR21aNAsl24O7ujv79+2Pt2rW4ePEidDodAgMDkZqaikWLFjX6dbGxsRg2bBjeffddswm+o6KiANQO4gkMDMSUKVOwdOnSRo+zfPlyTJkyBWFhYdBoNGCMwWAwYPr06SgoKIBCocDw4cOxdu3aNl3f448/ju3bt2Px4sVYtGgRIiIisGPHjnpzSL7xxhvIyMjAsmXLoFAo8OGHHyI5OZlvX7t2Lezs7JCSkgKNRoPk5GR8+umnZseYNGkSfvnlF/76kUceAQDk5eUhJCSkTf23djT9j/UwPSPpLJFJr8k9bchIMsaQl5cHURRx5swZ6HQ6vi0sLAyCICA6OhqOjo7t3dsuo8Y0hyQtj2jVKJBsB3K5HGlpaUhLS2t0n8uXLzfYvmvXLv7/gwcP5vOLNeXAgQNmrwcMGABRFM3a1q9f3+xxWmPs2LEYO3Zso9sbu766nJ2dsWHDBmzYsKHRfR68NlJnQnIqbUserWojUfcmiW9JRrKkpARqtRqZmZmoqKjg7b6+vhAEAYmJiWaP/pC244NtKCNp1SiQJETijBqa/sdaUGlbonRNZyRramqQnZ0NURRRUFDA252dnREfHw9BEBAQEECl63Z2P5CkjKQ1o0CSEImjjKT1oNK2ROnrPyNpNBpx8eJFiKKIs2fP8gGLMpkM4eHhEAQBUVFRcHCgX5MdhQbb2Ab6hBAicUbTPJK01rbkmab/cbLvmgPDJEt3fx7J4uJiiKKIzMxM3Llzh+/i5+fHS9fNTY9G2odp+h85zSNp1SiQJETiGF/ZhgJJqdPcexaPpv+RFm1VBZwAXLhyDX/77DPe7urqivj4eKhUKiiVSipddzIqbdsGCiQJkbj7a21TcCJ1fEJyekbS4gwGAy5cuABRFOF75mc8BaCiWgc7eztERkZCEARERETA3p6CGEup4aVtykhaMwokCZE4WmvbetAzkpZXVFQEtVqNrKwsVFVVAQB+z2qn7vEPCsW8F+fBzc16VkyzZXweSZr+x6pRIEmIxNFgG+thKm1TRrJz3b17F5mZmRBF0Ww5Vzc3NyQmJqLP3TJAPA5lr2CAgkjJqKHBNjaBAklCJI5P/0Olbcmj0nbn0ev1OH/+PNRqNS5cuACjsTYosbe3R1RUFARBQHh4OOzs7ICdu2u/qB2WSCTt5/5a21TatmYUSBIicTwjSYNtJI9K2x2LMYbCwkKo1WpkZ2ejurqabwsICIAgCIiPj4eLywMB40MukUg6Bg22sQ0USFqhwYMHQ6VS4aOPPrJ0V7iQkBDMmTMHc+bMsXRXbApjDEyrBUAZSWtAK9t0jMrKSl66vnnzJm/38PBAYmIiBEFA9+7dGz9AG5ZIJB1Pw5dIpIykNaO7105u3ryJadOmISgoCHK5HEqlEsnJyTh8+DCA2kBLJpNBJpPB1dUVCQkJ2Lx5s9kxDhw4wPeRyWRwcXFBXFwcNm3aZLbft99+ixUrVvDXISEhHR5UpqenIzo6Gs7OzkhISDBbG7ylNm3ahMGDB0OhUEAmk6GsrKzePrdv38ZLL70EhUIBLy8vvPbaa2ZzvXU17F5ZG6DBNtaApv9pPzqdDtnZ2fjb3/6GtWvX4ueff8bNmzfh4OCAhIQEvPzyy5gzZw6GDBnSdBAJUEZSojSUkbQJlJFsJykpKdBqtdi2bRtCQ0Nx48YN7Nu3DyUlJXyf5cuXIzU1FVVVVUhPT0dqaioCAgIwYsQIs2Pl5uZCoVCguroaP/74I6ZNm4awsDA8/fTTAAAfH59OvbYjR45g/PjxSEtLw6hRo7B9+3aMGTMGp06dQnx8fIuPU1VVheHDh2P48OFYuHBhg/u89NJLKCwsxN69e6HT6fCnP/0JkydPxvbt29vrcqyKqawN0GAba8CfkXSge9UWjDEUFBRArVbj9OnT0NT5QyooKAiCICA2NhbOrc3OU0ZSkmiwjW2QdCDJGEO1vrr5HTuAi4NLiyenLSsrw6FDh3DgwAEMGjQIABAcHIx+/fqZ7efh4QGlUgkAWLBgAVatWoW9e/fWCyT9/Pzg5eUFAJg1axY+/vhjnDp1igeSdUvbgwcPxpUrVzB37lzMnTsXQO37duXKFcyYMQO//vortFotQkJCsHr1ajzzzDOtfi/WrVuH4cOHY/78+QCAFStWYO/evfjkk0+wceNGvl9lZSXGjx+PH374AV5eXli0aBGmT5/Ot5vK3gcOHGjwPGfOnMGuXbvw22+/oW/fvgCA9evX45lnnsGf//xn+Pv7t7rv1s400AYODpDRUm2Sx5+RpIxkq5SXl0MURYiiiNu3b/N2T09PCIIAQRAe7g9oykhK0v1nJKk4as0k/ZupWl+N/tv7W+Tcx/9wHK6Ori3a193dHe7u7tixYwcGDBgAeTODIoxGI7777juUlpbCyanxpdQYY9i9ezfy8/PRv3/D78O3334LQRAwefJkpKam8vbp06dDq9Xi4MGDcHNzQ05OjtmyX80tAfbyyy/zIPHo0aOYN2+e2fbk5GTs2LHDrG316tVYtGgRli1bht27d2P27NmIjIzE0KFDmzyXydGjR+Hl5cWDSAAYMmQI7OzscPz4cfz3f/93i45jS2igjXWh6X9aTqvV4uzZs1Cr1cjLy+Ptjo6OiI2NhSAI/JGgh2Zaa5sykpLCl0ikjKRVk3QgaS0cHBywdetWpKamYuPGjXj00UcxaNAgjBs3DomJiXy/BQsWYPHixdBoNNDr9fDx8cGkSZPqHa9Xr14AAI1GA6PRiOXLl+PJJ59s8Nw+Pj6wt7c3y3YCQH5+PlJSUpCQkAAACA0NNfs6tVrd5DUpFAr+/0VFRejRo4fZ9h49eqCoqMisbeDAgXj77bcBAJGRkTh8+DDWrl3b4kCyqKgIfn5+Zm0ODg7w8fGpd66ugk9GTgNtrAKVtpvGGEN+fj7UajVycnKgvTeQDKh91ttUum7qD+w20VNGUop4aZsmJLdqkg4kXRxccPwPxy127tZISUnByJEjcejQIRw7dgw//fQTVq1ahc2bN2PixIkAgPnz52PixIkoLCzE/Pnz8frrryM8PLzesQ4dOgQPDw9oNBqcOHECM2bMgI+PD6ZNm9bi/syaNQvTpk3Dnj17MGTIEKSkpJgFtQ2d92ElJSXVey2lkeXWyLQ8okzezr9YSYegUdsNKy0t5aXruoPsvL29eena9DhPh9DRM5JSxFe2odK2VZN0ICmTyVpcXpYCZ2dnDB06FEOHDsU777yDSZMmYcmSJTyQ9PX1RXh4OMLDw5Geno6EhAT07dsXsbGxZsfp3bs3/6EaFxeH48ePY+XKla0KJCdNmoTk5GTs3LkTe/bsQVpaGtasWYOZM2cCaF1pW6lUmq0WAQA3btwwy4C2B6VSieLiYrM2vV6P27dvt/u5rIWRl7Ypk2INau5lvugZydqKSk5ODkRRxJUrV3i7k5MT4uLioFKpEBgY2D6l6+ZQRlKSKCNpGyQdSFq72NjYes8RmgQGBuLFF1/EwoUL8f333zd5HHt7e7OJdx/k5OQEg8HQ4DmmTp2KqVOnYuHChfj88895INma0nZSUhL27dtnNkfk3r1762Ugjx07Vu91TExMk+epKykpCWVlZTh58iT69OkDAPjPf/4Do9HY6DOito7RqjZWpatnJBljyMvLgyiKOHPmDHQ6Hd8WGhoKlUqF6OhoODo6dm7HKCMpSRoabGMTKJBsByUlJRg7dixeffVVJCYmwsPDAxkZGVi1ahVGjx7d6NfNnj0b8fHxyMjIMBtgUlxcjJqaGl7a/vLLL/H88883epyQkBAcPHgQ48aNg1wuh6+vL+bMmYMRI0YgMjISpaWl2L9/v1lQ15rS9uzZszFo0CCsWbMGI0eOxNdff42MjIx681sePnwYq1atwpgxY7B3716kp6dj586dfHtRURGKiopw4cIFAEBWVhY8PDwQFBQEHx8fxMTEYPjw4fxZU51OhxkzZmDcuHFdcsQ2UDcj2TUDE2vDA8ku9oxkSUkJL11XVFTw9m7duvHSdd0/TjsdZSQl6f4SiZSRtGYUSLYDd3d39O/fH2vXrsXFixeh0+kQGBiI1NRULFq0qNGvi42NxbBhw/Duu++aTfAdFRUFoHagSWBgIKZMmYKlS5c2epzly5djypQpCAsLg0ajAWMMBoMB06dPR0FBARQKBYYPH461a9e26foef/xxbN++HYsXL8aiRYsQERGBHTt21JtD8o033kBGRgaWLVsGhUKBDz/8EMnJyXz7xo0bsWzZMv7aNIBoy5YtvPz/t7/9DTNmzMDTTz8NOzs7pKSk4OOPP25Tv20Bo8E2VoMx1qVK2zU1NTh9+jTUajUKCgp4u7OzMy9dBwQEdE7puimM1Rm1bfv3xVoYjAw6AwNAgaS1kzHGWGeesKKiAp6enigvL6/3F2pNTQ3y8vLQu3fv1k84S7okW/+eKfvnP1G4+B24DxqEwP/Z2PwXEIvRGrTo89faRzIOjz8MhZMFM3AdxGg04tKlS7x0bXqkRiaTITw8HIIgICoqCg5SmvNUVw2svPeM9dtXAWfbuy/W6K5Gj7gluwEAOcuT4eokoe8ZAqDpeK0uunOESBhN/2M9TFP/ALaXkbx58ybUajUyMzPNliz18/ODIAhITExsdgCfxejqPF/uSM9ISoVpxDZAg22sHQWShEiYabANLY8ofVpD7ZyIMsjgaNfJg0k6QFVVFbKzsyGKIq5fv87bXVxckJCQAJVKBaVSafnSdXNMZW2ZPWBv/ffFVmj0tSO2neztYGcn8e8h0iQKJAmRMCOfR9K2Mly2iD8f6eAs/eCqEQaDARcuXIAoisjNzYXRWPvL3s7ODhERERAEAZGRkbC3t6IMkikjSdlISaE5JG0HBZKESNj9wTaUkZQ6a576p6ioCKIoIisrC3fv3uXtPXv2hCAIiI+Ph5ubmwV7+BBooI0k8TkkaaCN1aNAkhAJM61sQxOSSx9fHtFKAsm7d+8iKysLoiiaLUHq5uaGxMRECIJQb2lUq6QzTf1DGUkpuT/1D2UkrR0FkoRImJEyklZDo6+9V84Sznzp9XqcP38eoiji/PnzvHRtb2+PqKgoCIKA8PBw2NnZ0C93vWkycunel67IVNqmgTbWjwJJQiSMmSYkp1HbkifVjCRjDIWFhVCr1cjOzjZbJSsgIICXrl1cbDRjR5ORS5KGSts2gwJJQiTMaFoi0UlawQmpz5SRlEogWVlZiczMTIiiiJs3b/J2Dw8PXrru3r27BXvYSUylbVoeUVL4YBsHG8p+d1EUSBIiYaaMJJW2pU8Kg230ej3Onj0LURRx8eJFmNabcHBwQHR0NFQqFXr37m1bpevmUEZSkmh5RNtBgaQVGjx4MFQqFT766CNLd4ULCQnBnDlzMGfOHEt3xaaYpv+h0rb08dJ2J6+zzRhDQUEBRFFEdnY2NPey2AAQGBgIlUqF2NhYm1z5qUVM0/9QRlJS7o/a7kJ/1NgouoPt5ObNm5g2bRqCgoIgl8uhVCqRnJyMw4cPA6gNtGQyGWQyGVxdXZGQkIDNmzebHePAgQN8H5lMBhcXF8TFxWHTpk1m+3377bdYsWIFfx0SEtLhQWV6ejqio6Ph7OyMhIQEs7XBW2rTpk0YPHgwFAoFZDIZysrK6u2zcuVKPP7443B1dYWXl9fDd9zK8el/5JSRlDo+2KaTVrUpLy/HoUOHsGHDBvzlL3/ByZMnodFo4OnpiSeffBIzZ87Eq6++ikcffbTrBpEAZSQl6v48kpSRtHaUkWwnKSkp0Gq12LZtG0JDQ3Hjxg3s27cPJSUlfJ/ly5cjNTUVVVVVSE9PR2pqKgICAjBixAizY+Xm5kKhUKC6uho//vgjpk2bhrCwMDz99NMAAB8fn069tiNHjmD8+PFIS0vDqFGjsH37dowZMwanTp1CfHx8i49TVVWF4cOHY/jw4Vi4cGGD+2i1WowdOxZJSUn44osv2usSrBZlJK1HZwy20el0OHPmDERRxKVLl3i7o6MjYmNjIQgC/6OV3EMZSUniGUkatW31JB1IMsbA6oww7EwyF5cW/zAuKyvDoUOHcODAAQwaNAgAEBwcjH79+pnt5+HhAaVSCQBYsGABVq1ahb1799YLJP38/Hg2btasWfj4449x6tQpHkjWLW0PHjwYV65cwdy5czF37lwAte/blStXMGPGDPz666/QarUICQnB6tWr8cwzz7T6vVi3bh2GDx+O+fPnAwBWrFiBvXv34pNPPsHGjRv5fpWVlRg/fjx++OEHeHl5YdGiRZg+fTrfbip7HzhwoNFzLVu2DACwdevWVvfTFt3PSFIgKXWmZyTbe/ofxhjy8/OhVquRk5MDrVbLt4WEhEAQBMTGxsLJyaldz2sz+ITklNWXEj79D5W2rZ60A8nqauQ+2sci5446dRIyV9cW7evu7g53d3fs2LEDAwYMgLyZMqTRaMR3332H0tLSJn/4M8awe/du5Ofno3///g3u8+2330IQBEyePBmpqam8ffr06dBqtTh48CDc3NyQk5MDd3d3sz435eWXX+ZB4tGjRzFv3jyz7cnJydixY4dZ2+rVq7Fo0SIsW7YMu3fvxuzZsxEZGYmhQ4c2eS7SOFpr23q092Cb0tJSiKKIzMxMlJaW8nZvb28IggBBEOjxj5agJRIlybTWNg22sX6SDiSthYODA7Zu3YrU1FRs3LgRjz76KAYNGoRx48YhMTGR77dgwQIsXrwYGo0Ger0ePj4+mDRpUr3j9erVCwCg0WhgNBqxfPlyPPnkkw2e28fHB/b29mbZTgDIz89HSkoKEhISAAChoaFmX6dWq5u8JoVCwf+/qKio3goXPXr0MFsNAwAGDhyIt99+GwAQGRmJw4cPY+3atRRIPgQ+/Q+VtiWvPZ6R1Gg0yMnJgSiKuHLlCm93cnJCXFwcVCoVAgMDqXTdGrREoiRRRtJ2SDqQlLm4IOrUSYuduzVSUlIwcuRIHDp0CMeOHcNPP/2EVatWYfPmzZg4cSIAYP78+Zg4cSIKCwsxf/58vP766wgPD693rEOHDsHDwwMajQYnTpzAjBkz4OPjg2nTprW4P7NmzcK0adOwZ88eDBkyBCkpKWZBbUPnfVhJSUn1XktpZLk14hOS02AbyWvrqG3GGPLy8iCKIs6cOQOdTse3hYaGQqVSITo6Go6Oju3a3y6DMpKSpNHTyja2QtqBpEzW4vKyFDg7O2Po0KEYOnQo3nnnHUyaNAlLlizhgaSvry/Cw8MRHh6O9PR0JCQkoG/fvoiNjTU7Tu/evXnJKi4uDsePH8fKlStbFUhOmjQJycnJ2LlzJ/bs2YO0tDSsWbMGM2fOBNC60rZSqcSNGzfMtt+4ccMsA0o6BmUkrUdrS9slJSW8dF1eXs7bu3XrxkvXdSsDpI0oIylJNbSyjc2QdCBp7WJjY+s9R2gSGBiIF198EQsXLsT333/f5HHs7e3NljV7kJOTEwwGQ4PnmDp1KqZOnYqFCxfi888/54Fka0rbSUlJ2Ldvn9kckXv37q2XgTx27Fi91zExMU2ehzSOGQzAvewUTf8jfS0pbdfU1OD06dMQRRFXr17l7c7Ozrx0HRAQQKXr9kQZSUmi0rbtoECyHZSUlGDs2LF49dVXkZiYCA8PD2RkZGDVqlUYPXp0o183e/ZsxMfHIyMjA3379uXtxcXFqKmp4aXtL7/8Es8//3yjxwkJCcHBgwcxbtw4yOVy+Pr6Ys6cORgxYgQiIyNRWlqK/fv3mwV1rSltz549G4MGDcKaNWswcuRIfP3118jIyKg3v+Xhw4exatUqjBkzBnv37kV6ejp27tzJtxcVFaGoqAgXLlwAAGRlZcHDwwNBQUF8SqP8/Hzcvn0b+fn5MBgMPOANDw9vNotqa0xlbYCm/7EGjZW2jUYjLl26xEvXpj/6ZDIZwsPDIQgCoqKi4OBAP447BGUkJYnmkbQd9JOrHbi7u6N///5Yu3YtLl68CJ1Oh8DAQKSmpmLRokWNfl1sbCyGDRuGd99912yC76ioKAC1g3gCAwMxZcoULF26tNHjLF++HFOmTEFYWBg0Gg0YYzAYDJg+fToKCgqgUCgwfPhwrF27tk3X9/jjj2P79u1YvHgxFi1ahIiICOzYsaPeHJJvvPEGMjIysGzZMigUCnz44YdITk7m2zdu3Min9wHABxBt2bKFl//fffddbNu2je/zyCOPAAD279+PwYMHt6n/1spYZ4USykhK34Ol7Zs3b0KtViMrKwuVlZV8Pz8/PwiCgISEBHh4eFikr10KZSQlyVTaprW2rZ+MmRZj7SQVFRXw9PREeXl5ved/ampqkJeXh969e3ftlRhIi9ny94zu+nVceOppyBwdEZ2VaenukGZM+GkCThWfwtSAqXDKc8L169f5NhcXFyQkJEClUkGpVFLpujN9kQxcPQa88CUQ+1+W7g25578/PYz/yy/D/7zSB8lx9Ly9FDUVr9VFGUlCJMpYQwNtrIHBYMCFCxdQeLMQAJB5KhP+1f6ws7NDREQEBEFAZGQk7O2phGcRespIShENtrEdFEgSIlHs3vKIMpqMXJKKioogiiKysrJw9+5d3PW/CzgB3b27I/nJZCQkJMDNzc3S3SQ6ekZSijSmwTZU2rZ6FEgSIlFGPock/QKUirt37yIrKwuiKJpNyO/m5gZHF0fAADw/+nmo/FSW6yQxRxlJSbo/apsyktZOkoFkJz+2SayYLX+vMD6HJGUkLclgMODcuXMQRRHnz5+H0VhbkrO3t0dUVBQEQUBYWBj+/c2/ger2WyKRtBPKSEpSDS2RaDMkFUianiHSarVwaeXKMqRrqqqqAgCbXPWDMpKWwxhDYWEh1Go1srOzzeZxDQgIgCAIiI+PN/s51daVbUgHM03/QxlJSaF5JG2HpAJJBwcHuLq64ubNm3B0dISdHX2DkYYxxlBVVYXi4mJ4eXnZ5EAGptECoME2namyshKZmZkQRRE3b97k7R4eHkhMTIQgCOjevXuDX6s11N6vh1lrm3QA0/Q/FOBLioYykjZDUoGkTCZDz549kZeXhytXrli6O8QKeHl52exSjabBNrTOdsfS6/U4e/YsRFHExYsX+eMSDg4OiI6OhiAICA0NbfIPW8ZYq5dIJJ3AaACM99Yud6CMpFToDEYYjLWfM1pr2/pJKpAEapf7i4iIgFartXRXiMQ5OjraZCbSxFTapoxk+2OMoaCgAKIo4vTp06ips4pQYGAgBEFAXFxci+cmNQWRAOBMz+JJh67O0rKOdF+kwlTWBgA5lbatnuQCSQCws7OzucmlCWktdm8eSTsabNNuysvLeem6pKSEt3t6evLSdbdu3Vp93LqBJGUkJUR//w8EykhKh2kOSZmMVraxBZIMJAkhgNE0jyQNtnkoOp0OZ86cgSiKuHTpEm93dHRETEwMVCoVQkJCHmq1mZp7AYuDzAEOdvRjVTJMGUl7J4CeuZcMvs62gx2t8mQD6CceIRLFamj6n7ZijCE/Px9qtRo5OTlmj8qEhIRAEATExMRA3k7Pn/LnI2lAh7SYMpKUjZQUjZ7mkLQlFEgSIlF8sI0TBSctVVpaClEUkZmZidLSUt7u7e0NQRCQmJgIb2/vdj8vn/qHytrSYspI0vORkmIqbVNZ2zZQIEmIRNFa2y2j0WiQk5MDURTNZntwcnJCXFwcBEFAUFBQh5bQNHoasS1JepqMXIpoVRvbQoEkIRLFM5JU2q6HMYbLly9DrVbjzJkz0Ol0fFtoaCgvXXfWRPWUkZQomoxckkwZSZr6xzZQIEmIRPGMJA224UpKSnjpury8nLd369aNl649PT07vV+mZyRp6h+JoeURJYlWtbEtFEgSIlGMzyPZtbNcNTU1OH36NERRxNWrV3m7s7Mz4uLioFKpEBAQYNHRn1Talii96RlJykhKSc29wTZyKm3bBAokCZEoI1/ZputlU4xGIy5dugRRFHH27Fno9XoAtatfhYeHQxAEREVFwcFBGj/CTKVtWh5RYigjKUm8tE2BpE2Qxk9hQkg9XXH6n5s3b0KtViMrKwuVlZW8vXv37lCpVEhISICHh4cFe9gwmv5HoigjKUm8tE2jtm0CBZKESBTTmFa2se1sSnV1NbKzs6FWq3H9+nXe7uLigoSEBAiCgJ49e0p64mJaZ1uiKCMpSRo9ZSRtCQWShEiUUWO7g20MBgMuXrwItVqNc+fOwWCozVDY2dkhIiICgiAgMjLSatZSNz0jSaVtiTFlJCmQlBQabGNbKJAkRKJMg21safqfGzdu8NL13bt3ebtSqYQgCEhISICbm5sFe9g2fPofKm1LiykjSROSS4qG5pG0KRRIEiJRtpKRvHv3LrKysiCKIoqKini7m5sbL10rlUoL9vDh8el/KCMpLTwjSc9ISkkNlbZtCgWShEiUNWckDQYDzp07B1EUcf78eRiNtb847O3tERUVBUEQEBYWZjWl6+bU6GlCckmijKQk0WAb20KBJCESxTOSVjLYhjGGwsJCiKKIrKwsVFdX823+/v5QqVSIj4+Hi4vtZYdo1LZEUUZSkkyBJM0jaRsokCREghhj9yckd5J2cFJZWYnMzEyIooibN2/ydg8PDyQmJkIQBHTv3t2CPex4NGpboigjKUmmeSTllJG0CRRIEiJFOh1wrxwsxdK2Xq/H2bNnIYoiLl68CMYYAMDBwQHR0dEQBAGhoaGws+savyiotC1RNGpbkmposI1NoUCSEAkylbUB6ZS2GWMoKCiAKIo4ffo0au5lTAEgMDAQgiAgLi4OzhLpb2eiwTYSxTOSVNqWEhpsY1sokCREgkxlbchkkDk5WbQv5eXlvHRdUlLC2xUKBQRBgCAI6NatmwV7aHk0/Y9E6WlCcimieSRtCwWShEjQ/al/5BZZ0UWn0+HMmTMQRRGXLl3i7Y6OjoiJiYFKpUJISIikV5vpTDQhuUTpKSMpRXweSQfKSNoCCiQJkSA+9Y+88zJcjDHk5+fz0rVWq+XbgoODIQgCYmNjIe/EPlkLGmwjUbREoiSZBttQads2UCBJiAQZazpv6p+ysjKIoghRFFFaWsrbvb29IQgCEhMT4e3t3eH9sGam0rYzBSzSYhpsQxlJSanRU2nbllAgSYgEMa0pkOyYDJdWq0VOTg7UajWuXLnC252cnBAXFwdBEBAUFESl6xbSGmqzt5SRlBjKSEqShjKSNoUCSUIk6H5pu/1+ATLGcPnyZYiiiJycHOh0Or4tNDQUgiAgJiYGjo6O7XbOroKm/5EoykhKEmUkbQsFkoRIUHuWtm/fvg21Wo3MzEyUl5fz9m7duvHStaen50Ofpyvj0/9Q5ktaeEaSAnwp4Svb0GAbm0CBJCESxDQPN9impqYGp0+fhiiKuHr1Km+Xy+WIj4+HSqVCQEAAla7bCZ/+hzKS0sEYLZEoQYwxGmxjYyiQJESC2pKRNBqNuHTpEkRRxNmzZ6HX62uPIZMhLCwMgiAgOjoaDg70sW9PBqMBemPte03T/0iIQQew2oCFlkiUDs29ycgBKm3bCvqNQogE8YxkCwbb3Lx5E6IoIjMzE5WVlby9e/fuUKlUSEhIgIeHR4f1taszlbUBmpBcUkzZSIAykhJiGmgDUEbSVlAgSYgEGe8NtpE5NRyYVFdXIzs7G2q1GtevX+ftLi4uvHTds2dPKl13AlNZG6DStqSYno+EjJ6RlBDTQBs7GeBgRz+fbAEFkoRIEKupP/2PwWDAxYsXIYoicnNzYTDc+4FsZ4eIiAgIgoDIyEjY29Nf+Z3JtKqNo50j7GRUqpMM/nykM0B/UEnG/eUR7ekPXRtBgSQhEmTU3J/+58aNG1Cr1cjKysLdu3f5PkqlEoIgICEhAW5ubpbqapfHJyOn5yOlxZSRpOcjJYUG2tgeCiQJkSBt5R0AQGZuLo5u3Mjb3dzckJCQAEEQoFQqLdU9UgdfHpHKp9JCI7YliWckHSh7bysokCREIgwGA86dOwdRFOF2/DjCAVTU1MDe3h6RkZEQBAHh4eFUupYYmoxcou49ckAZSWmpW9omtoECSUIsiDGGoqIiXrqurq7Nojx2b+qe8NgYPDNvHlxdXS3ZTdIEPhk5lbalRUcZSSmquTf9j5wCSZtBgSQhFlBZWYmsrCyIooji4mLe7u7ujsTERIQW34Q2Lw9B4eEUREoclbYlSk/PSErR/YwklbZtBQWShHQSvV6P3NxciKKICxcugDEGAHBwcEB0dDQEQUBoaCjs7Oxw9fvvoQUga8e1tknHoIykRFFGUpJME5I70/KINoMCSUI6EGMM165dg1qtxunTp1FTc3/OwcDAQAiCgLi4ODg/sIJNQ9P/EGmiZyQlijKSkkQZSdtDgSQhHaCiogKiKEIURZSUlPB2hUIBQRAgCAK6devW6NezGtPKNvRLUOqotC1RujrzSBLJ0NBgG5tDgSQh7USn0+HMmTMQRRGXLl3i7Y6OjoiJiYEgCOjdu3eLJuE1au5lJOUUnEgdlbYlypSRpEBSUmgeSdtDgSQhD4Exhvz8fIiiiNOnT0Or1fJtwcHBEAQBsbGxkLcyIKSMpPWg0rZEmTKSVNqWFCpt2x4KJAlpg7KyMl66Li0t5e1eXl68dO3t7d3m49/PSNIvQanjGUnKfEkLz0jSYBspMa21LafBNjaDAklCWkir1SInJweiKOLy5cu83cnJCbGxsVCpVAgKCmqX9WNNGUmZ3Omhj0U6lmmJRCd7uleSQhlJSTKVtuWUkbQZFEgS0gTGGC5fvgxRFJGTkwOdTse3hYaGQhAEREdHw8mpfYMIU0aSStvSp9HTM5KSRBlJSbq/RCJlJG0FBZKENKCkpASiKCIzMxPl5eW83cfHByqVComJifD09Oyw89/PSFJwInV81DY9IyktOpr+R4posI3toUCSkHtqampw+vRpiKKIq1ev8na5XI64uDioVCr06tWrXUrXTWGMgfGMJAUnUmcqbdMzkhKjpwnJpcj0jCQNtrEdFEiSLs1oNOLSpUsQRRFnz56F/t4a1zKZDGFhYRAEAVFRUXB0dOy0PpmCSACQUWlb8kylbcpISgxlJCWJ5pG0PRRIki7p5s2bvHRdWVnJ27t37w5BEJCYmAgPDw+L9I3VWf3GjuaRlDxTRpICSYmhZyQl6X5pmzKStoICSdJlVFdXIzs7G6Io4tq1a7zdxcUF8fHxUKlU6NmzZ4eXrptjGmgDe3vIOjETStqGpv+RKFoiUZJosI3toUCS2DSj0YgLFy5AFEXk5ubCYKj9IWZnZ4eIiAgIgoCIiAg4OEjno8Cfj6RspFWgwTYSpaNnJKVIo6fBNrZGOr89CWlHN27cgFqtRlZWFu7evcvblUolBEFAQkIC3NzcLNjDxhlNI7bp+UirQNP/SBRlJCXJlJGkeSRtBwWSxGbcvXsXWVlZEEURRUVFvN3V1RWJiYkQBAFKpdKCPWwZU0ZSRiO2rQLPSDrQ/ZIUykhK0v1R25SRtBUUSBKrZjAYcO7cOYiiiPPnz8NorC2b2NvbIzIyEoIgIDw8HPb21vNDi6+zTXNIWgU+/Q9lJKWFMpKSxAfb0DOSNoMCSWJ1GGMoLCyEKIrIzs5GVVUV3+bv7w9BEBAfHw9XV1cL9rLtjDWmjCT9ArQGNP2PRPGMJH2OpIQPtqHSts2gQJJYjcrKSl66Li4u5u3u7u5ITEyESqVC9+7dLdjD9sE09zKS7bzsIukYNP2PRPHpfyiQlBINX2ubMpK2ggJJIml6vR65ubkQRREXLlwAYwxAbek6JiYGgiAgNDQUdna289ctZSStB2OMnpGUIsbqlLbpGUmpMBgZtAZTadt2fmZ3dRRIEslhjOHatWtQq9U4ffo0aupM0N2rVy+oVCrExcXB2UYDLVNGkgbbSJ/eqIeR3cuwUEZSOvT3f2ZQRlI6NPcG2gA02MaWUCBJJKOiogKiKEIURZSUlPB2hULBR137+vpasIedw0iDbayGqawN0ITkkmJ6PhKgjKSEmAbaABRI2hIKJIlF6XQ6nDlzBqIo4tKlS7zdwcEBsbGxEAQBISEhNlW6bg6roel/rIWprC2DDE529EyrZJgykjJ7wJ5Wh5IK00AbR3sZ7O0su4IYaT8USJJOxxjD1atXeelaq9XybcHBwRAEAbGxsZB30ZVdjBrKSFqLGv39gTaWXlqT1GHKSFI2UlJoeUTbRIEk6TRlZWW8dF1aWsrbvby8IAgCBEGAt7e3BXsoDYwG21gNGmgjUTRiW5JqaMS2TaJAknQorVaLnJwciKKIy5cv83YnJydeug4ODqZsTh18rW0qbUserbMtUTRiW5I0eppD0hZRIEnaHWMMly9fhiiKyMnJgU6n49tCQ0MhCAKio6PhRPMkNshU2pZRaVvyTIEkrWojMTrKSEoRX9WGMpI2hQJJ0m5u377NS9fl5eW83cfHByqVComJifD09LRgD62DqbRNGUnp489IUmlbWvSmZyQpkJSSGspI2iQKJMlDqampQU5ODtRqNa5evcrb5XI54uPjIQgCevXqRaXrVqCMpPWgjKRE8YwklbalREODbWwSBZKk1YxGI/Ly8qBWq3H27Fno9XoAgEwmQ1hYGARBQFRUFBwdadqNtqDpf6wHLY8oUfwZSQrwpYRK27aJAknSYrdu3YJarUZmZiYqKyt5e/fu3SEIAhITE+Hh4WHBHtoGvtY2jdqWPI2eRm1Lkmn6H8pISgqf/odK2zalVYHk0qVLsWzZMrO2qKgonD17tl07RaSjuroa2dnZEEUR165d4+0uLi68dO3v70+l63bE19p2ouBE6viobTu6V5LCp/+h+yIlpkBSTqVtm9LqjGRcXBx+/vnn+wdwoKSmrTEajbhw4QJEUURubi4MhtoPv0wmQ0REBFQqFSIiIujedxBmWiKRStuSR4NtJIomJJekGr1pHknKSNqSVkcCDg4OUCqVHdEXm1VwahcKsw5auhvNqq6uwq1bJbheUgHtvQ+8K2oHznh4KKBwd4f9zTJc2PsbLuy1bF9tWWBRPuQA/pP1A+7UZFi6O6QJv93JBABU37yBrIPfW7g3xMTvsho9ABRVARfO37J0d8g952/cAUDPSNqaVgeS58+fh7+/P5ydnZGUlIS0tDQEBQU1ur9Go4Hm3gTLAFBRUdG2nlqx019/jKAf8izdjWa5A+gOIMbSHSEAgL9U7sbFInpkwBr4X/sFCVk7LN0N8oCdZyuwIvu4pbtBHuBKgaRNaVUg2b9/f2zduhVRUVEoLCzEsmXL8MQTTyA7O7vRQRZpaWn1nqvsapy8fFDU/bKlu2GGMdb4NgAUvlhWsY8MRm8gWNv8vsSynBnQp0qBPDuaI1VKqmXO+D/3YYh2oAGAUuLqZI8xjwRYuhukHclYUxFFM8rKyhAcHIwPP/wQr732WoP7NJSRDAwMRHl5ORQKRVtPTVqJMYaioiKo1WpkZ2ejqqqKb/P394cgCIiPj8eqn/Ow9chlvD44DG8Nj7ZgjwkhhBBiKRUVFfD09Gw2Xnuo0RJeXl6IjIzEhQsXGt1HLpdDLqcH0S3lzp07yMzMhCiKKC4u5u3u7u5ITEyEIAjw8/Pj7ffXQqXSAyGEEEKa9lCB5J07d3Dx4kW88sor7dUf0g70ej1yc3MhiiIuXLjAy9j29vaIjo6GSqVCaGgo7Ozqj5zT8AljaVQdIYQQQprWqkDyzTffxLPPPovg4GBcv34dS5Ysgb29PcaPH99R/SMtxBjDtWvXIIoisrOzUXNvChkA6NWrFy9dOzczyXUNZSQJIYQQ0kKtCiQLCgowfvx4lJSUoHv37vjd736HY8eOoXv37h3VP9KMiooKXrq+dev+NBcKhQKCIEAQBHTr1q3Fx+NLWNGEsYQQQghpRqsCya+//rqj+kFaQafT4ezZsxBFERcvXuTtDg4OiI2NhSAICAkJabB03Ry+8gCVtgkhhBDSDFqaxEowxnD16lWo1Wrk5OSYjYQPDg6GIAiIjY196IFN99dCpYwkIYQQQppGgaTElZWVQRRFiKKI0tJS3u7l5cVL197e3u12Pl7apkCSEEIIIc2gQFKCtFotcnJyIIoiLl++zNudnJwQGxsLlUqFoKAgyGTtP204H2zjQKVtQgghhDSNAkmJYIzh8uXLEEUROTk50Ol0fFvv3r2hUqkQHR0NJyenDu2HafofOWUkCSGEENIMCiQt7Pbt21Cr1cjMzER5eTlv9/Hx4aVrT8/OW3rt/jOSlJEkhBBCSNMokLSAmpoa5OTkQK1W4+rVq7xdLpcjLi4OKpUKvXr16pDSdbN9MwWSNP0PIYQQQppBgWQnMRqNyMvLg1qtxtmzZ6HX6wEAMpkMYWFhEAQBUVFRcHR0tGg/a/Q02IYQQgghLUOBZCc4efIkfvnlF1RWVvI2X19fXrr28PCwYO/u0xuMMBhrl1Ok0jYhhBBCmkOBZCeprKyEi4sL4uPjIQgC/P39LVK6boopGwlQRpIQQgghzaNAshPExcXBxcUFkZGRcHCQ7ltuej4SAOQ0/Q8hhBBCmiHdqMaGODs7IzY21tLdaBZfHtHBTnLZUkIIIYRID6WdCEer2hBCCCGkNSiQJBzNIUkIIYSQ1qCIgXAa0/KIlJEkhBBCSAtQIEk4XtqmycgJIYQQ0gIUSBKOStuEEEIIaQ2KGAhnykjKqbRNCCGEkBagQJJwdaf/IYQQQghpDkUMhKuhwTaEEEIIaQUKJAmnoXkkCSGEENIKFEgSjmckqbRNCCGEkBagiIFwtLINIYQQQlqDAknCaWj6H0IIIYS0AkUMhLs/jyRlJAkhhBDSPAokCUelbUIIIYS0BgWShDMNtqF5JAkhhBDSEhQxEI5K24QQQghpDQokCUelbUIIIYS0BgWShKuhUduEEEIIaQWKGAhXo7+XkXSgjCQhhBBCmufQ2SdkjAEAKioqOvvUpBl3Kytg1FTBoKmi+0MIIYR0YaY4wBS3NUbGmtujnRUUFCAwMLAzT0kIIYQQQtrg6tWr6NWrV6PbOz2QNBqNuH79Ojw8PCCTyTrz1KQZFRUVCAwMxNWrV6FQKCzdHVIH3Rtpo/sjXXRvpIvujbQxxlBZWQl/f3/Y2TX+JGSnl7bt7OyajGyJ5SkUCvpQSxTdG2mj+yNddG+ki+6NdHl6eja7Dw22IYQQQgghbUKBJCGEEEIIaRMKJAknl8uxZMkSyOVyS3eFPIDujbTR/ZEuujfSRffGNnT6YBtCCCGEEGIbKCNJCCGEEELahAJJQgghhBDSJhRIEkIIIYSQNqFAkhBCCCGEtAkFkoQQQgghpE0okLRRS5cuhUwmM/sXHR3d5Nekp6cjOjoazs7OSEhIwL///W+z7YwxvPvuu+jZsydcXFwwZMgQnD9/viMvwya19t58/vnneOKJJ+Dt7Q1vb28MGTIEJ06cMNtn4sSJ9Y45fPjwjr4Um9Pae7N169Z6+zs7O5vtQ5+b9tPa+zN48OB6+8tkMowcOZLvQ5+d9nPt2jW8/PLL6NatG1xcXJCQkICMjIwmv+bAgQN49NFHIZfLER4ejq1bt9bbZ8OGDQgJCYGzszP69+9f7+cfsSwKJG1YXFwcCgsL+b9ff/210X2PHDmC8ePH47XXXsP//d//YcyYMRgzZgyys7P5PqtWrcLHH3+MjRs34vjx43Bzc0NycjJqamo643JsSmvuzYEDBzB+/Hjs378fR48eRWBgIIYNG4Zr166Z7Td8+HCzY3711VcdfRk2qTX3Bqhd3q3u/leuXDHbTp+b9tWa+/Ptt9+a7ZudnQ17e3uMHTvWbD/67Dy80tJSDBw4EI6Ojvjpp5+Qk5ODNWvWwNvbu9GvycvLw8iRI/H73/8earUac+bMwaRJk7B7926+z9///nfMmzcPS5YswalTpyAIApKTk1FcXNwZl0VaghGbtGTJEiYIQov3f+GFF9jIkSPN2vr378+mTJnCGGPMaDQypVLJVq9ezbeXlZUxuVzOvvrqq3bpc1fR2nvzIL1ezzw8PNi2bdt424QJE9jo0aMfvnNdXGvvzZYtW5inp2ej2+lz074e9rOzdu1a5uHhwe7cucPb6LPTPhYsWMB+97vftepr3nrrLRYXF2fW9uKLL7Lk5GT+ul+/fmz69On8tcFgYP7+/iwtLe3hOkzaDWUkbdj58+fh7++P0NBQvPTSS8jPz29036NHj2LIkCFmbcnJyTh69CiA2r8ci4qKzPbx9PRE//79+T6k5Vpzbx5UVVUFnU4HHx8fs/YDBw7Az88PUVFRmDZtGkpKStq7211Ca+/NnTt3EBwcjMDAQIwePRqnT5/m2+hz0/4e5rPzxRdfYNy4cXBzczNrp8/Ow/vhhx/Qt29fjB07Fn5+fnjkkUfw+eefN/k1zf3e0Wq1OHnypNk+dnZ2GDJkCH1+JIQCSRvVv39/bN26Fbt27cJnn32GvLw8PPHEE6isrGxw/6KiIvTo0cOsrUePHigqKuLbTW2N7UNaprX35kELFiyAv7+/2Q/X4cOH43//93+xb98+fPDBB/jll18wYsQIGAyGjroMm9TaexMVFYW//OUv+P777/HXv/4VRqMRjz/+OAoKCgDQ56a9Pcxn58SJE8jOzsakSZPM2umz0z4uXbqEzz77DBEREdi9ezemTZuGWbNmYdu2bY1+TWO/dyoqKlBdXY1bt27BYDDQ50fqLJ0SJZ2jtLSUKRQKtnnz5ga3Ozo6su3bt5u1bdiwgfn5+THGGDt8+DADwK5fv262z9ixY9kLL7zQMZ3uIpq7N3WlpaUxb29vJopik/tdvHiRAWA///xze3WzS2rNvWGMMa1Wy8LCwtjixYsZY/S56WituT+TJ09mCQkJze5Hn522cXR0ZElJSWZtM2fOZAMGDGj0ayIiIth7771n1rZz504GgFVVVbFr164xAOzIkSNm+8yfP5/169ev/TpPHgplJLsILy8vREZG4sKFCw1uVyqVuHHjhlnbjRs3oFQq+XZTW2P7kLZp7t6Y/PnPf8b777+PPXv2IDExscl9Q0ND4evr2+wxSdNaem9MHB0d8cgjj/D96XPTsVp6f+7evYuvv/4ar732WrPHpM9O2/Ts2ROxsbFmbTExMU0+etDY7x2FQgEXFxf4+vrC3t6ePj8SR4FkF3Hnzh1cvHgRPXv2bHB7UlIS9u3bZ9a2d+9eJCUlAQB69+4NpVJptk9FRQWOHz/O9yFt09y9AWpH/q5YsQK7du1C3759mz1mQUEBSkpKmjwmaV5L7k1dBoMBWVlZfH/63HSslt6f9PR0aDQavPzyy80ekz47bTNw4EDk5uaatZ07dw7BwcGNfk1zv3ecnJzQp08fs32MRiP27dtHnx8psXRKlHSMN954gx04cIDl5eWxw4cPsyFDhjBfX19WXFzMGGPslVdeYW+//Tbf//Dhw8zBwYH9+c9/ZmfOnGFLlixhjo6OLCsri+/z/vvvMy8vL/b999+zzMxMNnr0aNa7d29WXV3d6ddnzVp7b95//33m5OTE/vnPf7LCwkL+r7KykjHGWGVlJXvzzTfZ0aNHWV5eHvv555/Zo48+yiIiIlhNTY1FrtFatfbeLFu2jO3evZtdvHiRnTx5ko0bN445Ozuz06dP833oc9N+Wnt/TH73u9+xF198sV47fXbaz4kTJ5iDgwNbuXIlO3/+PPvb3/7GXF1d2V//+le+z9tvv81eeeUV/vrSpUvM1dWVzZ8/n505c4Zt2LCB2dvbs127dvF9vv76ayaXy9nWrVtZTk4Omzx5MvPy8mJFRUWden2kcRRI2qgXX3yR9ezZkzk5ObGAgAD24osvsgsXLvDtgwYNYhMmTDD7mn/84x8sMjKSOTk5sbi4OLZz506z7Uajkb3zzjusR48eTC6Xs6effprl5uZ2xuXYlNbem+DgYAag3r8lS5Ywxhirqqpiw4YNY927d2eOjo4sODiYpaam0g/aNmjtvZkzZw4LCgpiTk5OrEePHuyZZ55hp06dMjsmfW7aT1t+rp09e5YBYHv27Kl3PPrstK8ff/yRxcfHM7lczqKjo9mmTZvMtk+YMIENGjTIrG3//v1MpVIxJycnFhoayrZs2VLvuOvXr+efs379+rFjx4514FWQ1pIxxpglM6KEEEIIIcQ60TOShBBCCCGkTSiQJIQQQgghbUKBJCGEEEIIaRMKJAkhhBBCSJtQIEkIIYQQQtqEAklCCCGEENImFEgSQgghhJA2oUCSEEIIIYS0CQWShBBCCCGkTSiQJIQQQgghbUKBJCGEEEIIaZP/H4rs5UdBI+z7AAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -829,7 +826,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABRIAAAHaCAYAAAB8VbV4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1hT1xsH8G/YIEtcOEBQqVsUV13VunC19Ve3uPfALe699957a2uto86qdQtuEJyoKC5wMZQNOb8/KLdEEiQaSCDfz/Pw1Jyce+6bxMaX955zrkwIIUBERERERERERESUDgNtB0BERERERERERES6j4VEIiIiIiIiIiIi+iIWEomIiIiIiIiIiOiLWEgkIiIiIiIiIiKiL2IhkYiIiIiIiIiIiL6IhUQiIiIiIiIiIiL6IhYSiYiIiIiIiIiI6ItYSCQiIiIiIiIiIqIvYiGRiIiIiIiIiIiIvoiFRCIiIiIiIiIiIvoiFhKJiIiIiIiIiIjoi1hIJCKibMfGxgYvX75M0x4XF4cCBQogMjJSC1EREREREWWcqpwWYF5LuouFRCIiylaCg4MBAIULF07znKmpKUJDQ2FtbQ0AEELA0tISb968ydIYiYiIiIjSk15OCyjmtcxpSZewkEhERNlKQEAASpUqlaG+QUFBsLCwQP78+TM5KiIiIiKijGNOS9kVC4lEpBXz5s1DqVKlIJfLtR1KtvDp0ycYGBhg8eLF2g4lSyxcuBDt27dH586dYWNjgzJlyuDx48cAkpOuwoULo2PHjrCxscH333+PZ8+eAQCWLl2Knj17AgDu3buHMmXKICwsDJaWlqhatSru37+Phg0bws7ODrlz58bgwYO/GMuaNWvg6OiIuLi4zHvBREREOUh2yvN0OVZ9y/9Uyc652NfmtMB/ea2ynBYA81rSGhYSiVTw9/dH69atUbRoUZiZmaFw4cJo1KgRli9fLvXZsmULZDKZ9GNkZITChQujW7duSve6+Lx/6p8xY8Zo/DVcvnwZU6ZMQXh4uMbH/pZzREZGYu7cuRg9ejQMDP77Gurfvz9KliyZCVF+m9u3b8PDwwOFCxeGiYkJ7O3tUbt2bUydOlWh34kTJxQ+U2NjY5QoUQJTpkxBfHx8mnE/7y+TyWBtbY1q1arhwIEDCn0DAgIghECFChWkNiEEpk2bhgsXLmTK686oa9euwdPTE2XLlkWuXLng6OiItm3b4uHDh189pr+/Py5fvgxPT098+PAB5cqVw6ZNmwAkvxeXLl2Cp6cn3r17B2dnZ0yePBlA8meV8h6VLl0akydPRv/+/fHp0ydcu3YNHh4e6NOnD96/f49nz56ha9euac49Z84cmJmZSY+7deuG+Ph4rF279qtfDxER6R99zSWV5Xm6muOpyklTZCQH1Nf8D0jew2/06NEoVKgQzM3NUb16dZw8eTJDx549e1bl32UfHx+FvlmZi2k6r/3anBb4L69VltMC+GJe+3lOCzCvJc0w0nYARLro8uXL+PHHH+Ho6IjevXvD3t4ez58/h4+PD5YuXYpBgwYp9J82bRqcnZ0RGxsLHx8fbNmyBRcvXkRAQECaL+/U/VMrV65cpryOqVOnolu3brC1tdX4+F97jk2bNiExMREdOnRQaE9ISNC5q2N//vknOnToAEdHR/Tt2xeFChVCcHAwTp06hR07dij8Y+/n5wcAWLRoEfLly4fo6Gjs3bsXU6dORVxcHGbPnq0wdkr/ZcuWIXfu3JDL5Xj+/DmWLVuGNm3awN/fX1ruUK1aNcTExMDU1FQ6/uHDh5g8eXKGl0Rklrlz5+LSpUto06YNKlSogJCQEKxYsQJubm7w8fH5qr/b/v7+mDJlCqpXrw4AcHFxgRACQHLSNXHiRNSsWRMA0LlzZ4VCYqdOnaRxbt++jfr160uPHz9+jPj4eMjlclhbW6Ny5cppzp2YmKjw99DMzAxdu3bFokWLMGjQIMhkMrVfDxER6Rd9ziWV5Xm6mOMBqnNSIOM5oL7mf0ByUeqPP/7A0KFD4eLigi1btqBZs2Y4c+YMateunaExBg8eLM2wS1GiRAmFx1mZi2k6r/3anBZQzGs/z2mBL+e1n+e0APNa0hBBRGk0a9ZM5MuXT4SFhaV5LjQ0VPrz5s2bBQBx7do1hT6jR48WAMRvv/2m0K6qf2aZP3++ACCCgoJ06hwVKlQQnTp1StPes2dPUbRoUc0F95m6deuKrl27Zrj/hw8fhI2NjahVq5aIi4tL8/zLly8VHnt4eAgzMzORmJgotcXFxQl7e3vh7Oyc5ngPDw9ha2ubpn3NmjUCgNi9e3e68e3cuVMAEIGBgRl9SUp9+PBB7Nu3T+Xzu3btEp8+fVL5/KVLl9K8Pw8fPhSmpqbCw8NDob1WrVoCgNKf8ePHCyGESExMFGZmZuLVq1fScb/88ovYunWrSEpKEmZmZgrv/ZYtW4S7u7tISkoSFhYW4t27d9JzZcqUET4+PtLjo0ePilq1aokCBQoILy8vkZCQkOb1TJ8+XXz+z+P169cFAHH69GmV7wMREVEKfc4lleV5mZ3jCaF+nieE6pxUnRwwu+Z/n1P3/bty5YoAIObPny+1xcTEiOLFi4saNWp88fgzZ84IAGLv3r0ZOl9GcrFvzWmFyHhem5k5rRAiTV77eU4rxJfzWmU5rRDMa+nbcWkzkRKPHz9G2bJllV55zcgGt3Xq1JHGUdezZ88wYMAAlCxZEubm5siTJw/atGmDp0+fKvT7+PEjhg4dCicnJ5iamiJ//vxo1KgRbt68CQCYMmUKvLy8AADOzs7SUoHU47x8+RI9evRAgQIFYGpqirJly0pT7TNynoyc43NBQUG4ffs2GjZsmOH35OXLlzAzM0OPHj0U2k+dOgVjY2MMGzYsw2Op49SpU4iIiEDPnj1hYmKS5vlChQopPPbz80PZsmVhaGgotZmYmKBQoUKIiIhIc7yfnx/c3NzStIeEhABIXpqbolGjRqhVq5b0uFq1avDw8ACQfGVTJpNJf1+Dg4PRq1cvFCtWDGZmZrC3t0ezZs3w6NEjpa9z1apVaNu2Lfbv35/muY0bN6Jjx47YunWr0mMBoGbNmmneHxcXF5QtWxb37t1TaL948SKEEEp/ZsyYAQB49OgRrK2tUbBgQem4lKUdjx49QmxsLPLlyyc9d+DAATRt2hSPHj2CjY0N8uTJAwCIj49HYGCgwpXjpk2b4uLFi7hy5Qp+++03/PPPPypfV2qVK1eGnZ0dDh48mKH+RESk3/Qll/xcdsrz0otVnRwwu+Z/3+qPP/6AoaEh+vTpI7WZmZmhZ8+e8Pb2xvPnzzM81sePH5GYmJhun4zkYt+a0wIZz2szM6dNOTYlr1WW0wLMa0l7uLSZSImiRYvC29sbAQEBX7VMJCXByp07t9LnIyIi8O7dO4W2vHnzAkjel+Py5cto3749ihQpgqdPn2L16tWoV68e7t69CwsLCwBAv3798Mcff8DT0xNlypTB+/fvcfHiRdy7dw9ubm749ddf8fDhQ+zevRuLFy+Wxk/5xyo0NBTff/89ZDIZPD09kS9fPhw7dgw9e/ZEZGQkhg4d+sXzfOkcyly+fBkAlCZQqhQuXBi9evXCunXrMHnyZBQtWhT3799HmzZt0LRpUyxcuDDDY6kjKioKQPI/+F8SHx+PBw8eoHPnzgrtr169wt27d1G3bl2l/evWrSv9XQgLC8OJEycwd+5ceHp6wtXVVep/+/Zt/Prrr9Lj0aNHY8qUKYiLi8OkSZMAALa2tggNDUWVKlWQJ08e9O7dG/nz58fz58+xf/9+GBkp/8ofPXo0rl69ig4dOuDIkSNo0KABgOQlPX379kWnTp3Qv3//L74HqQkhEBoairJly6p1HJC8BCT1a//48SNevnyJMmXK4PDhwzAyMsLu3bvRsWNHbN68Gf7+/tixYweOHTumsIfQx48fASS/17ly5cK+ffvg5uYGZ2dnhIWFIT4+Xq1lQW5ubrh06ZLar4eIiPSPPuSSymSnPC+9WDOaA2bn/O9b3bp1C9999x2sra0V2qtVqwYA8PX1hYODwxfH6d69Oz59+gRDQ0PUqVMH8+fPR5UqVZT2/VIulhk5LfD1ee3X5rSA4r7fn+e0AJjXknZpYxokka77+++/haGhoTA0NBQ1atQQo0aNEidOnBDx8fEK/VKWl5w6dUq8fftWPH/+XPzxxx8iX758wtTUVDx//lxpf2U/KaKjo9PE4+3tLQCIbdu2SW02NjZi4MCB6b6O9Jaj9OzZUxQsWFBhGagQQrRv317Y2NhIcXzpPOoueZkwYYIAID5+/Kg0JlXLXl68eCFMTU1F//79xbt370Tx4sVFxYoVv7g8ITV1l2w8ffpUWFhYCADCxcVFjBo1Svzzzz8KS1dS3Lp1SwAQ06dPF2/fvhWvXr0Sx48fF66uriJXrlxpliCl9P/8x9jYWCxZskShb2hoqAAgVq1apdDu6OgounXrptC2YMECYWZmJiIiIjL8OoVIXopSt25dYWlpKXx8fMSpU6eEqampaNGihdLlv1+yfft2AUBs3LhR7WMnTZokRo4cKT2+fPmyKFeunBBCiKlTp4oBAwaIpk2bChsbG9GgQQPx5MkT6TgvLy+Fsbp06SIsLS1F9erVxaBBg0SBAgVErly5RIUKFcThw4eVnl/VMpA+ffoIc3NztV8PERHpH33IJZVRled9aWmzNvK89HLSjOaA2T3/S03d969s2bKifv36adrv3LkjAIg1a9ake/ylS5dEq1atxMaNG8XBgwfF7NmzRZ48eYSZmZm4efOm0mMykotpOqcV4uvz2q/NaVOOTZ3Xps5phRAZymtV5bRCMK+lb8NCIpEKV69eFf/73/+kJAKAyJcvnzh48KDUR1Uy5+TkJE6cOJFmzJT+K1euFCdPnlT4USY+Pl68e/dOvH37Vtja2oqhQ4dKzxUtWlRUqVIlzT59qalK/uRyubC1tRV9+vQRb9++VfhJifHixYsZOo+6CWb//v2FkZGR0ue+lGR6enoKU1NTUb16dVGoUCHx4sULlX3j4+PTvLaaNWuK9u3bp2lPSkpSOY6fn59o27atyJUrl/T5Ojo6pvnMtm7dqvTvQr169cStW7fSjJvSf+vWrdLfgR07doiqVasKU1NTcfnyZanvyZMnBQBx4cIFqS08PFwAEIsWLVIYd8KECcLQ0FCcOXNG5WtSJSIiQri5uQk7OzthaWkpfvjhB6W/jHzJvXv3hLW1tahRo4bSoquuU5V0pexXFRUVpYWoiIgou8nJuaQqqvK8jOyRmNV5Xno5qRAZywGza/6nifevWLFiomnTpmnaHz9+LACIxYsXZyiW1AIDA4W5ubm0T+DnMpqLaSqnFSJ757XpFRKZ19K3YCGR6Avi4uLE1atXxdixY4WZmZkwNjYWd+7cEUKkTeb++OMP0axZM2FpaSnOnj2bZqyMbJAdHR0tJk6cKIoUKSJkMplCUtK9e3ep32+//SbMzMyEgYGBqFq1qpg8ebJ4/Pixwliqkr+UK5zp/fz5558ZOk9WFhKfPn0qAAhzc3Nx/fr1dM+TsoFzRn4yEntcXJw4c+aM6N69u5DJZCJPnjwK//AOHz5cABBHjhyRksKyZcsKKysrhauLqfsbGRmlmZnw4sULAUB07NhRalu0aJEAIMLDw6W28+fPSzMYUnv48KEoWLCgACDc3NzEvHnzFDZ4/pJ//vlHel9UXQ1Oz+vXr0WxYsWEg4NDur+Y6DJVSdeoUaMEgK9ORImISD/lxFxSlW8pJGZ1nvelQmKK9HLA7Jr/aeL9+9YZiaq0b99emJiYKC3aqZOLfWtOK0T2z2vTKyQyr6VvwT0Sib7AxMQEVatWRdWqVfHdd9+he/fu2Lt3LyZPniz1qVatmrSXR8uWLVG7dm107NgRDx48gKWlpVrnGzRoEDZv3oyhQ4eiRo0asLGxgUwmQ/v27SGXy6V+bdu2RZ06dbB//378/fffmD9/PubOnYs///xT2qRXlZRxOnXqhK5duyrtk7Inx7ecR5k8efIgMTERHz9+hJWVlVrHzpw5EwCQmJgIOzu7dPu6urri5MmTCm0jRoyAvb29tHF4Cnt7+y+e28TEBPXq1UO9evXw9u1bHD58GA8ePEClSpUAJO9jUrRoUTRr1kw6xs3NDWXKlMGqVaswf/58hfFu376N4sWLw9jYWKG9cOHCsLCwwIsXLxT6Ojo6wsbGRqEt5XWm5uLigocPH+LPP//EX3/9hYkTJ2LatGk4fvy4wmbdyjx58gQeHh4oVaoUYmJi0KpVK1y6dElhg+j0REREoGnTpggPD8eFCxfS3IwmuwsLC4OFhQXMzc21HQoREWUjOTGXVCU75XkZjTW9HDC75n+aeP8KFiyIly9fpml//fo1gLQ3JcwoBwcHxMfHIyoqKs3+ixnNxb41pwWY1xKlS9uVTKLsxN/fXwAQffv2FUKoviqccpVv9uzZCu0ZuYpsY2OjcLVYiOS9PgwNDdPdtyQ0NFQULlxY1KpVS2pbsGCB0iuJiYmJwsrKSnTo0CG9l5uh86g6hyo7duwQAISfn1+a59K7Wj1v3jwhk8nEihUrhLm5uejZs6fasau794sqrVq1EgAUrtrnz59ftGjRIk3fKlWqCGdn5zTt+fPnFy1btkzT/ubNGwFAtG3bVmpzc3NLM3afPn1EwYIFvxjr/fv3hbGxsRg8eHC6/V69eiWKFSsmHB0dxfPnz8XDhw9F/vz5Rbly5cT79++/eJ6YmBhRp04dYWFhobAsJztSdfW2YcOGonLlylqIiIiIcoqckkuqoirP+9KMRG3keenlpKp8ngNm9/wvNXXfv5EjRwpDQ8M0+zLOnDlTABDBwcEZHiu1Vq1aCTMzM6VLqjOSi31rTitEzslr05uRyLyWvoVBllYtibKJM2fOQAiRpv3o0aMAgJIlS6Z7fL169VCtWjUsWbIEsbGxap3b0NAwzbmXL1+OpKQk6XFSUhIiIiIU+uTPnx+FChVCXFyc1JZyV6/w8PA052jVqhX27duHgICANDG8ffs2w+dRdQ5VatSoAQC4fv16hvoDwIEDBzBmzBhMnz4dAwcORJ8+fbBt2zYEBQVleAx1Xbx4ETExMWnab9++jePHj6NSpUooVqwYACAkJARv3rxReldGd3d3BAUF4d69e1JbSv/SpUun6T937lwAQKtWrQAkfwZ3795VuBsxAAQHB6NIkSIKbZ/fvREAzM3NkZSUlO5V1LCwMLi7u+PTp084deoUihQpAhcXF5w4cQLPnz9H8+bNpbsXKpOUlIR27drB29sbe/fulT7jnObmzZuoWbOmtsMgIqJsIKfnkqpklzwPUB1rRnPA7J7/favWrVsjKSkJ69atk9ri4uKwefNmVK9eXeGOzdHR0bh//75CrCm/b6Tm5+eHQ4cOoXHjxjAwSFuq+FIu9q05LcC8ligjuLSZSIlBgwYhOjoa//vf/1CqVCnEx8fj8uXL+O233+Dk5ITu3bt/cQwvLy+0adMGW7ZsQb9+/TJ87hYtWmD79u2wsbFBmTJl4O3tjVOnTiFPnjxSn48fP6JIkSJo3bo1XF1dYWlpiVOnTuHatWtYuHCh1K9y5coAgPHjx6N9+/YwNjbGTz/9hFy5cmHOnDk4c+YMqlevjt69e6NMmTL48OEDbt68iVOnTuHDhw8ZOk9651CmWLFiKFeuHE6dOoUePXp88f24ceMGPDw84OHhgfHjxwMARo0ahTVr1mDmzJnYsGFDht9bdYwZMwYPHz5EmzZt4OrqisTERPj6+kqfzfbt26W+fn5+AIDy5cunGadx48aYOXMmjhw5IiWOKf3fvHmDHTt2AEhOAv/++28cO3YM7du3R5s2bQAAgYGBiI2NTTO2s7Mz/vnnH8ybNw+FChVC6dKlsWDBAgQEBODnn3+Gs7MzXr9+jXXr1qFIkSLo3bu3yte6atUqPH/+HGfPnoWLi4vUXrFiRRw+fBiNGzfG1q1bMWDAAKXHjxgxAocOHcJPP/2EDx8+SK8pRadOnVSeO7u4ceMGPnz4gF9++UXboRARUTagD7mkMtklz0sv1ozmgNk9//tW1atXR5s2bTB27Fi8efMGJUqUwNatW/H06VNs3LhRoe/Vq1fx448/YvLkyZgyZQoAoF27djA3N0fNmjWRP39+3L17F+vWrYOFhQXmzJmT5nwZycW+NacFmNcSZYh2J0QS6aZjx46JHj16iFKlSglLS0thYmIiSpQoIQYNGiRCQ0OlfuktL0lKShLFixcXxYsXlzYLzshylLCwMNG9e3eRN29eYWlpKdzd3cX9+/dF0aJFpeUGcXFxwsvLS7i6ugorKyuRK1cu4erqKlatWpVmvOnTp4vChQsLAwODNEtTQkNDxcCBA4WDg4MwNjYW9vb2okGDBmLdunVqnSe9cyizaNEiYWlpmWZz38+XvTx//lwULFhQ1KpVS8TGxir07d+/vzA2Nla6kbUq6izZ+PPPP0WHDh1EiRIlRK5cuYSZmZkoXbq08PLyEm/evFHoO2/ePJVLY+Lj44WVlZX48ccf0/RP/WNlZSVq1aolNm7cKORyudT3999/FwCkTdlTvHz5Uri7uwtLS0sBQCxbtkxs3LhR1K9fX+TLl0+YmpqKEiVKiMGDB6eJ93MJCQkiICBA5fN+fn4KMX2ubt266W7Snd0oWwYyevRo4ejomO77QERElEJfcklllOV5ypY2azPPSy/WjOaA2T3/+9zXvH8xMTFi5MiRwt7eXpiamoqqVauK48ePp+mXslR/8uTJUtvSpUtFtWrVhJ2dnTAyMhIFCxYUnTp1EoGBgUrPlZFc7FtzWiFyVl6ramkz81r6VjIhlMy5JyLKRBEREShWrBjmzZuHnj17Su29evXCqVOn8PTpU+0FR3pvxowZmDhxorQsLC4uDk5OThgzZgyGDBmi5eiIiIh0m7I8T1dzPFU5KekW5mJf5/OcFuB7SZrBPRKJKMvZ2Nhg1KhRmD9/vsLdAwHg2bNnkMlkSvebIcpMS5YsgUwmw8SJExXaN2/eDGNjY7WWlREREekrVXmeLuZ46eWkpDuYi6lHVU4L8L0kzeCMRCLSGSEhIdJm3qampnB2dtZuQKRXwsLCEBoaKj0uVaqUFqMhIiLKOZjjEWUd5rSU2VhIJCIiIiIiIiIioi/i0mYiIiIiIiIiIiL6IhYSiYiIiIiIiIiI6IuMtB3At5DL5Xj16hWsrKwgk8m0HQ4RERGR2oQQ+PjxIwoVKgQDA17jzY6YkxIREVF2pk4+mq0Lia9evYKDg4O2wyAiIiL6Zs+fP0eRIkW0HQZ9BeakRERElBNkJB/N1oVEKysrAMkv1NraWsvREBEREakvMjISDg4OUl5D2Q9zUiIiIsrO1MlHs3UhMWXpiLW1NZM2IiIiyta4JDb7Yk5KREREOUFG8lFuxENERERERERERERfxEIiERERERERERERfRELiURERERERERERPRF2XqPRCIiIiIiXSeEQGJiIpKSkrQdChGR2gwNDWFkZMS9fIkIAAuJRERERESZJj4+Hq9fv0Z0dLS2QyEi+moWFhYoWLAgTExMtB0KEWkZC4lERERERJlALpcjKCgIhoaGKFSoEExMTDijh4iyFSEE4uPj8fbtWwQFBcHFxQUGBtwhjUifsZBIRERERJQJ4uPjIZfL4eDgAAsLC22HQ0T0VczNzWFsbIxnz54hPj4eZmZm2g6JiLSIlxKIiIiIiDIRZ+8QUXbH7zEiSsFvAyIiIiIiIiIiIvoiFhKJiIiIiIiIiIjoi1hIJCIiIiKiHEsmk+HAgQPaDoOIiChHYCGRiIiIiIgkMpks3Z8pU6ZoO0QiIiLSEt61mYiIiOhzQgBCjo+fPsHKyhqQybQdEVGWef36tfTn3377DZMmTcKDBw+kNktLS+nPQggkJSXByIi/VhAREWmaEAJh4RGwtrGG4b8X9LSNMxKJiIiIPvPhw3vgtQ+sPgYgMjJC2+FQDiKEQFRUlFZ+hBAZitHe3l76sbGxgUwmkx7fv38fVlZWOHbsGCpXrgxTU1NcvHgR3bp1Q8uWLRXGGTp0KOrVqyc9lsvlmD17NpydnWFubg5XV1f88ccfKuMYN24cqlevnqbd1dUV06ZNAwBcu3YNjRo1Qt68eWFjY4O6devi5s2bKsc8e/YsZDIZwsPDpTZfX1/IZDI8ffpUart48SLq1KkDc3NzODg4YPDgwYiKikr/jSMiItKw3//4A2ffxOBQYCiSMvjveGZjIZGIiIjoX3K5HBs3bkTFiq5S29GjR7UYEeU00dHRsLS01MpPdHS0xl7HmDFjMGfOHNy7dw8VKlTI0DGzZ8/Gtm3bsGbNGty5cwfDhg1Dp06dcO7cOaX9PTw8cPXqVTx+/Fhqu3PnDm7fvo2OHTsCAD5+/IiuXbvi4sWL8PHxgYuLC5o1a4aPHz9+9Wt7/PgxmjRpglatWuH27dv47bffcPHiRXh6en71mEREROp4//492rdvj65du2o7lDS4BoGIiIgIwK1btzBw4EB4e3vDwtxMam/frp0WoyLSTdOmTUOjRo0y3D8uLg6zZs3CqVOnUKNGDQBAsWLFcPHiRaxduxZ169ZNc0zZsmXh6uqKXbt2YeLEiQCAnTt3onr16ihRogQAoH79+grHrFu3Dra2tjh37hxatGjxVa9t9uzZ8PDwwNChQwEALi4uWLZsGerWrYvVq1fDzMws/QGIiIi+wdGjR9GzZ0+EhITAItV2IrqChUQiIiLSa+FhYZg+fSrWrVuPT1HJs8Vmzpiu7bAoh7KwsMCnT5+0dm5NqVKlilr9Hz16hOjo6DTFx/j4eFSqVEnlcR4eHti0aRMmTpwIIQR2796N4cOHS8+HhoZiwoQJOHv2LN68eYOkpCRER0cjODhYvReUip+fH27fvo2dO3dKbUIIyOVyBAUFoXTp0l89NhERkTJCCEREfsSYsWOwdvVqAECpUqWwZdt2vNRybJ9jIZGIiIj0khACO3bswOSJE/Dk0i4sHNEGXceuxqzZc1G4oD3w2kfbIVIOJJPJkCtXLm2H8c0+fw0GBgZp9mBMSEiQ/pxSPD1y5AgKFy6s0M/U1FTleTp06IDRo0fj5s2biImJwfPnz9Eu1Szhrl274v3791i6dCmKFi0KU1NT1KhRA/Hx8UrHMzBI3tkpdayp40yJtW/fvhg8eHCa4x0dHVXGSkRE9LXOnj+PMPvv0HjIRGzduhUD+vXDjBkzYGxqipeBodoOTwELiURERKR3AgICMGDAAFy4cEFhGfPWLVsBA0NAnqTF6Iiyn3z58iEgIEChzdfXF8bGxgCAMmXKwNTUFMHBwUqXMatSpEgR1K1bFzt37kRMTAwaNWqE/PnzS89funQJq1atQrNmzQAAz58/x7t379KNE0i+M3Xu3LmlOFNzc3PD3bt3peXTREREmSUmJgbjxo3D6rVrsetW8p7Ax44dQ70ffgAAJMrl2gxPKd5shYiIiPSDEPgYGYGxo0ehYsWKyUVECwtMmzZV25ERZXv169fH9evXsW3bNgQGBmLy5MkKhUUrKyuMHDkSw4YNw9atW/H48WPcvHkTy5cvx9atW9Md28PDA3v27MHevXvh4eGh8JyLiwu2b9+Oe/fu4cqVK/Dw8IC5ubnKsUqUKAEHBwdMmTIFgYGBOHLkCBYuXKjQZ/To0bh8+TI8PT3h6+uLwMBAHDx4kDdbISIijbp27Rrc3NywZMkShfbatWtrJ6AMYiGRiIiIcjwhBPbu/R1WHwMwe/AvMDUxxv/+9z/cu3cPI4aP0HZ4RNmeu7s7Jk6ciFGjRqFq1ar4+PEjunTpotBn+vTpmDhxImbPno3SpUujSZMmOHLkCJydndMdu3Xr1nj//j2io6PRsmVLhec2btyIsLAwuLm5oXPnzhg8eLDCjMXPGRsbY/fu3bh//z4qVKiAuXPnYsaMGQp9KlSogHPnzuHhw4eoU6cOKlWqhEmTJqFQoULqvSlERESfEUIgOjYOU6ZOQ40aNXD//n0ULFgQ+/b9qe3QMkwmPt/MJBuJjIyEjY0NIiIiYG1tre1wiIiISAfdv38fnp6e8L58CVGBpwAAf/tHonGTpskd5En/7YdY8Pv/ljZ/3pZJmM9kf6o+w9jYWAQFBcHZ2Zl3+iWibI3fZ0SacTsgAI+M8wAAOlYqjl9btsSKFStgbWuLQ//uhfizSwEY/bunb6JcrrRd09TJRzkjkYiIiHIWIQB5EqI+RWLs2LGoUKECTp8+rfCLT+PGjbUYIBERERHpk6SkJMybN09h2fK2bduwa9cu2NnZaTEy9bGQSERERDmK+Hc2Ya4IfyxbugQJCQlo3rw5rl+/pu3QiIiIiEjPPHr0CHXr1sXo0aMRHx8vtf/6669ajOrrsZBIREREOcajR4/wv1RJmaOjIw4ePIi//voLzk7p78NGRERERKQpcrkcq9euQ7Xq3+PSpUuwsrLCqlWrtR3WN2MhkYiIiLK9mJgYTJ48GeXKlcPJkyel9hs3ruPnn3+GTCbTYnREREREpE9evHiBn375BQXq/YQNl/3RsLE7bt++jS5dOms7tG9mpO0AiIiIiL6aEDh27AhGjvTC3Xv3AQA/NW8mPW1hbqGtyIiIiIhIzwghsHPnTnh6eiI2Ph49/20/cuQITIwMkSiXazU+TeCMRCIiIsqWgoKC0KZNazR1zY07JzfApURx7N27FwcPHtR2aERERESkJ4QQSJTLEfLmDVq3bo3OnTsjIiICVSpXkfoYGOSc1TEsJBIREVG2EhcXhxkzZqBMmTI4evSo1H7z5g20bt2ay5iJiIiIKMskCYFDgaG4HJaEI8eOwcjICNOnT8ep06e1HVqmYCGRiIiIdJ8QgDwJp/4+gXLlymHixImIjY1F3bo/SF0sc1lqMUAiIiIi0jfh4eHo06eP9LhMmbK4evUqJkyYACMjQy1GlnlYSCQiIiKd9+JFMPDaBw3LWuLVyxcoWLAgdu3ahSOHj2g7NCIiIiLSQydPnkT58uWxa9cuqe3ChQuoVKmSFqPKfCwkEhERkc6Kj4/HvHnz4ObmJrV5eg7E/fv30aFDBy5jJtJT9erVw9ChQ7UdBhER6RkhBCI+fsLgocPQuHFjvHjxAs7OxaTnTU1NtBhd1mAhkYiIiHTLv8uYz509g4oVK2L06NGIioqWnp47Zy6sra21GCBRztetWzfIZDLIZDIYGxvD2dkZo0aNQmxsrLZDy5ApU6agYsWK2g5Dq54+fQqZTAZfX19th6K2s2fPws3NDaampihRogS2bNnyxf6//PILChYsiFy5cqFixYrYuXOnQp/169ejTp06yJ07N3Lnzo2GDRvi6tWrmfgqiCgnuuTtg9OvPqJe/1EwNTfHgAED4OPjo+2wshQLiURERKRTQl6/Al77oK6LCZ49DUK+fPmwbu1abYdFpHeaNGmC169f48mTJ1i8eDHWrl2LyZMnazssvSCEQGJiorbDyLCkpCTI5fI07fHx8WqPFRQUhObNm+PHH3+Er68vhg4dil69euHEiRMqj7l8+TIqVKiAffv24fbt2+jevTu6dOmCw4cPS33Onj2LDh064MyZM/D29oaDgwMaN26Mly9fqh0jEemfuLg4jBkzBo0bN5LaDh06hJUrVyJXLgstRpb1WEgkIiIinZCYmIglS5agYqWKUlvfvn3w8OFDeHh4aC8wIg0SQiA+Pl4rP0IItWI1NTWFvb09HBwc0LJlSzRs2BAnT56Uno+Li8PgwYORP39+mJmZoXbt2rh27Zr0/JYtW2Bra6sw5oEDBxS2JEiZObh9+3Y4OTnBxsYG7du3x8ePH6U+UVFR6NKlCywtLVGwYEEsXLgw3bi3bNmCqVOnws/PT5pVmTKjLTg4GL/88gssLS1hbW2Ntm3bIjQ0VOVYKbP6/vzzT/z444+wsLCAq6srvL29FfpdvHgRderUgbm5ORwcHDB48GBERUVJz2/fvh1VqlSBlZUV7O3t0bFjR7x580Z6/uzZs5DJZDh27BgqV64MU1NTXLx4EXK5HLNnz4azszPMzc3h6uqKP/74QzouLCwMHh4eyJcvH8zNzeHi4oLNmzcDAJydnQEAlSpVgkwmQ7169dJ931KLi4vDyJEjUbhwYeTKlQvVq1fH2bNnFd5jW1tbHDp0CGXKlIGpqSmCg4Ph5OSE6dOno0uXLrC2tla4AUFGrVmzBs7Ozli4cCFKly4NT09PtG7dGosXL1Z5zLhx4zB9+nTUrFkTxYsXx5AhQ9CkSRP8+eefUp+dO3diwIABqFixIkqVKoUNGzZALpfjdA69qyoRaY6vry+qVq2KuXPnKlw0qV+/vhaj0h4jbQfw8uVLjB49GseOHUN0dDRKlCiBzZs3o0qVKtoOjYiIiLLIxYsXMWDAAPj7+8PC3ExqX7RwEWBgCMiTtBgdkeYkJCRg9uzZWjn32LFjYWLydXs3BQQE4PLlyyhatKjUNmrUKOzbtw9bt25F0aJFMW/ePLi7u+PRo0ews7PL8NiPHz/GgQMHcPjwYYSFhaFt27aYM2cOZs6cCQDw8vLCuXPncPDgQeTPnx/jxo3DzZs3VS5dbteuHQICAnD8+HGcOnUKAGBjYwO5XC4VEc+dO4fExEQMHDgQ7dq1UyiSKTN+/HgsWLAALi4uGD9+PDp06IBHjx7ByMgIjx8/RpMmTTBjxgxs2rQJb9++haenJzw9PaWiXkJCAqZPn46SJUvizZs3GD58OLp164ajR48qnGfMmDFYsGABihUrhty5c2P27NnYsWMH1qxZAxcXF5w/fx6dOnVCvnz5ULduXUycOBF3797FsWPHkDdvXjx69AgxMTEAgKtXr6JatWo4deoUypYtq9Zn7+npibt372LPnj0oVKgQ9u/fjyZNmsDf3x8uLi4AgOjoaMydOxcbNmxAnjx5kD9/fgDAggULMGnSJIXZq2XLlsWzZ89Unq9OnTo4duwYAMDb2xsNGzZUeN7d3V3tPTEjIiJQunRplc9HR0cjISFBrb+rRKQ/hBCIS0jEokWLMGXSRCQkJCBfvnxYs269tkPTOq0WEsPCwlCrVi38+OOPOHbsGPLly4fAwEDkzp1bm2ERERFRVhACb96EYsKECVi/YSMAwM7ODgvmz9VyYEQEAIcPH4alpSUSExMRFxcHAwMDrFixAkDyLMHVq1djy5YtaNq0KYDkPehOnjyJjRs3wsvLK8Pnkcvl2LJlC6ysrAAAnTt3xunTpzFz5kx8+vQJGzduxI4dO9CgQQMAwNatW1GkSBGV45mbm8PS0hJGRkawt7eX2k+ePAl/f38EBQXBwcEBALBt2zaULVsW165dQ9WqVVWOOXLkSDRv3hwAMHXqVJQtWxaPHj1CqVKlMHv2bHh4eEiFLhcXFyxbtgx169bF6tWrYWZmhh49ekhjFStWDMuWLUPVqlXx6dMnWFpaSs9NmzYNjRolL5uLi4vDrFmzcOrUKdSoUUM69uLFi1i7di3q1q2L4OBgVKpUSZqE4eTkJI2VL18+AECePHkU3ocvCQ4OxubNmxEcHIxChQpJr//48ePYvHkzZs2aBSC5OLpq1Sq4uroqHF+/fn2MGDFCoe3o0aNISEhQeU5zc3PpzyEhIShQoIDC8wUKFEBkZCRiYmIU+qry+++/49q1a1ibzrYYo0ePRqFChdIULYmIAOD+w4e4B2uU+l8XGEybiv+1aIE1a9bALm9eHApUPZNdH2i1kDh37lw4ODhIV+qA/6bgExHpKiEEQkNDERcXp+1QiLKtpKQkHD1yGJ6/lMW64dVxzfscatVzR58+fWBrYwUkPQGinuB5XG7IDXNBBjkcZbEKbQCUtqvTNyNjxNmUhKllXq29V5SzGBsbY+zYsVo7tzp+/PFHrF69GlFRUVi8eDGMjIzQqlUrAMmzCBMSElCrVi2F8atVq4Z79+6pdR4nJyepiAgABQsWlJb9Pn78GPHx8ahevbr0vJ2dHUqWLKnWOQDg3r17cHBwkIqIAFCmTBnY2tri3r176RYSK1SooBAfALx58walSpWCn58fbt++rXBzDyEE5HI5goKCULp0ady4cQNTpkyBn58fwsLCpKVxwcHBKFOmjHRc6lVZjx49QnR0tFRYTBEfH49KlSoBAPr3749WrVrh5s2baNy4MVq2bImaNWuq/d6k5u/vj6SkJHz33XcK7XFxcciTJ4/02MTEROF9UfYaUqSeyZrZzpw5g+7du2P9+vUoW7as0j5z5szBnj17cPbsWZiZmSntQ0T6SS6XY8WKFZg0eQo2+dwBkHyhrFPHjpDJZEhUsh+svtFqIfHQoUNwd3dHmzZtcO7cORQuXBgDBgxA7969lfaPi4tT+MU9MjIyq0IlIpL4+fnh4MGD2g6DKNszN04EbnQDYl7glFcerHlmg/3798PcOBGjSm8BYl7AIiEP1jzrC2MjgzRticLkm/tmZAzD+7OBnwIAI/3aSFufZOVWOzKZ7KuXF2e1XLlyoUSJEgCATZs2wdXVFRs3bkTPnj0zdLyBgUGafRmVzUr7vMApk8mU3rhDm1LHmLLHY0qMnz59Qt++fTF48OA0xzk6OiIqKgru7u5wd3fHzp07kS9fPgQHB8Pd3T3NzUhy5col/fnTp08AgCNHjqBw4cIK/UxNTQEATZs2xbNnz3D06FGcPHkSDRo0wMCBA7FgwYKvfq2fPn2CoaEhbty4AUNDQ4XnUs+eNDc3V9jvUtlrSKHO0mZ7e/s0+1aGhobC2tr6i7MRz507h59++gmLFy9Gly5dlPZZsGAB5syZg1OnTikthBKR/nr27Bm6d++OM2fOwDTV902HDh2Uft/pK60WEp88eYLVq1dj+PDhGDduHK5du4bBgwfDxMQEXbt2TdN/9uzZmDp1qhYiJSL6z/v37wEAZmZmCgk1EaVPBoG3b9/i7bvk/4dccr8HYl4AAPIYv8d3+ePxJqkQChoHp2k3NDDIlL4ZGcMoJggIDwDyVsuid4qyErfayRgDAwOMGzcOw4cPR8eOHVG8eHGYmJjg0qVL0myzhIQEXLt2TVrimy9fPnz8+BFRUVFSccnX11et8xYvXhzGxsa4cuUKHB0dASR/Zg8fPkTdunVVHmdiYoKkJMW9VUuXLo3nz5/j+fPn0qzEu3fvIjw8XGFWoLrc3Nxw9+5dqej6OX9/f7x//x5z5syRznv9+vUvjpv6JibpvdZ8+fKha9eu6Nq1K+rUqQMvLy8sWLBAKlh//j58SaVKlZCUlIQ3b96gTp06ah2rijpLm2vUqJFm78iTJ09Ky7tVOXv2LFq0aIG5c+eqvMnLvHnzMHPmTJw4cYJ78hORRC6XY8u27Rg1ahTev30DCwsLLFi4SNth6SytFhLlcjmqVKki7bNRqVIlBAQEYM2aNUoLiWPHjsXw4cOlx5GRkQpLE4iIskLKDIRKlSqhcePGWo6GSPfJ5XJs27oZ3RqXAgDkcmmINm3bocO4WcD1G8CnQMDKBW3aTk2e9ZcQBRzbr9guRNo2TfTN4BiwLafld5EyC7faybg2bdrAy8sLK1euxMiRI9G/f394eXnBzs4Ojo6OmDdvHqKjo6UZi9WrV4eFhQXGjRuHwYMH48qVK9LdkzPK0tISPXv2hJeXl3RDj/Hjx8PAwCDd45ycnBAUFARfX18UKVIEVlZWaNiwIcqXLw8PDw8sWbIEiYmJGDBgAOrWrftNRaXRo0fj+++/h6enJ3r16oVcuXLh7t27OHnyJFasWAFHR0eYmJhg+fLl6NevHwICAjB9+vQvjmtlZYWRI0di2LBhkMvlqF27NiIiInDp0iVYW1uja9eumDRpEipXroyyZcsiLi4Ohw8flm4wkj9/fpibm+P48eMoUqQIzMzMYGNj88Xzfvfdd/Dw8ECXLl2wcOFCVKpUCW/fvsXp06dRoUIFaa9IdaiztLlfv35YsWIFRo0ahR49euCff/7B77//jiNHjkh9VqxYgf3790t3XD5z5gxatGiBIUOGoFWrVggJCQGQXFBOuZnK3LlzMWnSJOzatQtOTk5SH0tLy2x7YVgIofbd2L+WXC6X7jr/pf//SD8IIfAxCrh7R4by5QRy5ZKp3a4LfUNDQzF02HC0nrAMXiub4+iqblizaj6KOhfDwfsfEBxojPB8CbC2TB4jUS4QFwOFdmVtmuj7eXt0YcBaB76utFpILFiwYJqrf6VLl8a+ffuU9jc1NZWm8RMRaUvKlf3Pl/sQUVo3b95MvhvzbT90C0y+e+rff/+NWrX/neXSzDd5tp9tuf+WDhvnUt6eWX3VGYNyHHW32gH0d7sdIyMjeHp6Yt68eejfvz/mzJkDuVyOzp074+PHj6hSpQpOnDghzea0s7PDjh074OXlhfXr16NBgwaYMmWKytliqsyfPx+fPn3CTz/9BCsrK4wYMQIRERHpHtOqVSv8+eef+PHHHxEeHo7NmzejW7duOHjwIAYNGoQffvgBBgYGaNKkCZYvX/7V7wmQvH/iuXPnMH78eNSpUwdCCBQvXhzt2rUDkDxjcMuWLRg3bhyWLVsGNzc3LFiwAD///PMXx54+fTry5cuH2bNn48mTJ7C1tYWbmxvGjRsHILlQNnbsWDx9+hTm5uaoU6cO9uzZAyD581q2bBmmTZuGSZMmoU6dOjh79izOnj2LH3/8EUFBQQo3Z0lt8+bNmDFjBkaMGIGXL18ib968+P7779GiRYtveq8ywtnZGUeOHMGwYcOwdOlSFClSBBs2bIC7u7vU5927d3j8+LH0eOvWrYiOjsbs2bMV7opet25d6Y7cq1evRnx8PFq3bq1wvsmTJ2PKlCmZ+poygxDJs/wTExOz5HyJiYmIiIjA0aNHERUVlSXnJN2WkGSGTdtG4PUzI9jleY9+fdfAxCRRrXaZoZHW+5qYJKJ0mSoY0TLfv+1bsWOH4hjzVIwxT8n5NNn38/YNLgJ+voCFltNSmciqSxhKdOzYEc+fP8eFCxektmHDhuHKlSu4fPnyF4+PjIyEjY0NIiIiYG1tnZmhEhFJjhw5guvXr6Nu3bqoV6+etsMh0klhYWGYMGECVq9eDSEECuTPi5CbB5KfLPg9YMBCfArmM9qVcqOF4cOHo02bNrh27RqGDBmicoUMAEyZMkXpdjuff4axsbEICgqCs7Mzb+hAOiPlzst3795V+wY8pDsSEhLw9u3bLDtfYmIiXr58iUuXLrGQSACAl68dsX5td+lxr17rUaTIK7XaZYZGWu+b3WK7cgWolgm77aiTj2q1kHjt2jXUrFkTU6dORdu2bXH16lX07t0b69atg4eHxxePZ+JNRNpw6NAh3Lp1Cz/++CN++OEHbYdDpFOEXI5dO3dg/PjxePY8eY/BDh06YOH8eSiIfzfaZyFRAfMZ7TIxMUGVKlUULmIPHjwY165dg7e3t9JjlM1IdHBwYCGRsoU2bdqgbdu2aNOmjbZDoW+QUkg0MDBA/vz5M/18sbGxePr0KRwcHPh9RgCAyE8C5SsZ4PUzI5QoIXD9eiIsLNRrT5Rrr69M9gjGxlUxevQgeHqOQq1aufDokUzqL4RA1arGCm0WFkBUVNr2zOr7ebuLi4CvryxTZiSqk49qdWlz1apVsX//fowdOxbTpk2Ds7MzlixZkqEiIhGRtqTskcilzUSKbt++jRHDh+Lk1unw8N4DtxYDsGDhYtSvXx+QJwGvVd+xk0hb1N1qB+B2O5S97d27V9shkIZlxZ6FBgYGkMlkMDY25kxWAgDY2Mix8EAoggON0b+pHawtjdVuT5RnXd+PHz9iwvgxWHhgAoIDjbF9emds2nAC1f6d3ufnBwQEAOXKyWBhYayyzdY2a/umbc+8zzSj1P7GOX78OC5evCg9XrlyJSpWrIiOHTsiLCxM7QBatGgBf39/xMbG4t69e+nuR0NEpAu4RyKRosjISAwbNgxubm64fPm/GVw+Pj7JRUQiDdNkPlqrVi08ePBAoe3hw4dq3RyCiCirpSwslMlkWo6E9JmpOeBSISFNcUud9qzoe/78ebi6umLzls1Su7f3aamICCTvO1itmuL+g8rasrpveu3aonYh0cvLS9pQ2t/fHyNGjECzZs0QFBSkcEdlIqKcijMSiQAIAZGUiN9/24NSpUphyZIlSEpKQsuWv0hdTIxNtBgg5WSazEeHDRsGHx8fzJo1C48ePcKuXbuwbt06DBw4MDNCJyIioiw0duw41KtXD0FBQbDPnx+5Qx7iZ5cCsLQw13Zo2ZbaS5uDgoKk5R/79u1DixYtMGvWLNy8eRPNmjXTeIBERLomZUZiViwjIdJV9+7dRWmbcLSt7YDu4WFwcXHB8uXL4d6oIfDaR9vhUQ6nyXyUW+0QUXbEGYlEGbN8+TIIIdCzZ08sWrSI+1FrgNq/BZuYmCA6OhoAcOrUKTRu3BgAYGdnJ10ZJiLKybi0mfTZp0+fMHr0aHz//fdS26RJE+Hv7w93d3ctRkb6RNP5KLfaISIiyhkSEhIwc8ZM6XGBAgVw+PBhbNiwgUVEDVF7RmLt2rUxfPhw1KpVC1evXsVvv/0GIHkvmSJFimg8QCIiXcNCIukdISDkSThw8CAGDxmKFy9ewML8vzs2jh41mndhpizFfJSI9B1nJBKlde/ePXTr0gU3b96E6ZzZaNWqNW5cu4a8efNqO7QcRe0ZiStWrICRkRH++OMPrF69GoULFwYAHDt2DE2aNNF4gEREuoZ7JJK+CQx8CFnIFfyvuj0+vH8HZ2dn/PEH7/pJ2sN8lIiIiD5Xu3Zt3Lx5E3Z2dti6eTN2bt/GImImUHtGoqOjIw4fPpymffHixRoJiIhI13GPRNIX0dHRmDVrFlauWI6wO0cBAGPHjsWIkV4wNzXhXoikNcxHiUjfcUYiUbKgoKcAkm+cEhcXh2bNmmHDhg0oWLCgVuPKyb7qt+DHjx9jwoQJ6NChA968eQMg+QrwnTt3NBocEZEu4tJmyumEEDh48CDKlCmDmTNnIj4+XnpuwvjxMDfnXe5I+5iPUlaaMmUKKlasmG6fbt26oWXLllkSD6XFz4hIvwghsHbtWlSvXl1qW7FiJQ4fPswiYiZTu5B47tw5lC9fHleuXMGff/6JT58+AQD8/PwwefJkjQdIRKRrWEikHEsIBD15hNatfkXLli3x7NkzODg4YPfuXdqOjEgB89HM9/btW/Tv3x+Ojo4wNTWFvb093N3dcenSJamPk5MTZDIZZDIZLCwsUL58eWzYsEFhnLNnz0p9Uv9MmDDhm2N0cnLCkiVL1D5u/fr1qFOnDnLnzo3cuXOjYcOGuHr16jfHs3TpUmzZskV6XK9ePQwdOvSbx9UlsbGxGDhwIPLkyQNLS0u0atUKoaGh6R4jhMCkSZNQsGBBmJubo2HDhggMDEzT78iRI6hevTrMzc2RO3fuTCn4ff4Z6YKzZ8/Czc0NpqamKFGiRIbiu337Nho2bIhixYrB1dUV8+bNS9Nn7969KFWqFMzMzFC+fHkcPXpU4fmMfi5EuujVq9do2rQp+vXrh7D377BqUDdUMI5Fz+7dOEs3C6hdSBwzZgxmzJiBkydPwsTERGqvX78+fHy4xImIcj7ukUg5UWxsLGbPngln01DsWz4SNtZWGDt2LO7du4eff/pZ2+ERKWA+mvlatWqFW7duYevWrXj48CEOHTqEevXq4f379wr9pk2bhtevXyMgIACdOnVC7969cezYsTTjPXjwAK9fv5Z+xowZk1UvJY2zZ8+iQ4cOOHPmDLy9veHg4IDGjRvj5cuX3zSujY0NbG1tNROkBqWeVZ4iKSlJymfUMWzYMPz111/Yu3cvzp07h1evXuHXX39N95h58+Zh2bJlWLNmDa5cuYJcuXLB3d0dsbGxUp99+/ahc+fO6N69O/z8/HDp0iV07NhR7fi+RNc+o6CgIDRv3hw//vgjfH19MXToUPTq1QsnTpxQeUxkZCQaN24MBwcHHDt2DFOmTMGUKVOwbt06qc/ly5fRoUMH9OzZE7du3ULLli3RsmVLBAQESH0y8rkQ6aqqVavixIkTMDMzw+LFi/H38WMoUcyZRcSsItSUK1cu8eTJEyGEEJaWluLx48dCCCGCgoKEqampusN9k4iICAFAREREZOl5iUi/LV26VEyZMkUEBwdrOxQijTh69KgoXry4sDA3E+LFRSFeXBT37939r0NSotQukhJVt31NOzGf+Qq6lI8KofozjImJEXfv3hUxMTEaOU9UlBBXriT/NzOFhYUJAOLs2bPp9itatKhYvHixQpudnZ0YNmyY9PjMmTMCgAgLC0tz/NWrV0XDhg1Fnjx5hLW1tfjhhx/EjRs3pOflcrmYPHmycHBwECYmJqJgwYJi0KBBQggh6tatKwAo/HytxMREYWVlJbZu3aqyz+TJk4Wrq6tYs2aNKFKkiDA3Nxdt2rQR4eHhUp+uXbuKX375Rfrz5/EFBQWJDx8+iI4dO4q8efMKMzMzUaJECbFp0ya14r1w4YKoXbu2MDMzE0WKFBGDBg0Snz59kp4vWrSomDZtmujcubOwsrISXbt2FZs3bxY2Njbi4MGDonTp0sLQ0FAEBQWpdd7w8HBhbGws9u7dK7Xdu3dPABDe3t5Kj5HL5cLe3l7Mnz9fYRxTU1Oxe/duIYQQCQkJonDhwmLDhg1qxfM5dT8jIYQ4duyYqFWrlrCxsRF2dnaiefPm4tGjR9LzcXFxYuDAgcLe3l6YmpoKR0dHMWvWrG+KM7VRo0aJsmXLKrS1a9dOuLu7qzxm1apVInfu3OLDhw/i5cuX4v3792L06NGiZMmSUp+2bduK5s2bKxxXvXp10bdvXyFExj6Xz2n6+4yyv4SkJLHv/iux7/4rkZCU9FXt6vR9HRoqtZmam4uqVauKe/fuZdGrzfnUyUfVnpFoa2uL169fp2m/deuWdMc8IqKcjEubKUcQAs+Dn6JD+7Zo1qwZHj9+rLCfTMnvvtNicETp08d8NDoaqFgRqF49+b/R0Zl3LktLS1haWuLAgQOIi4vL0DFyuRz79u1DWFiYwizR9Hz8+BFdu3bFxYsX4ePjAxcXFzRr1gwfP34EkDxLbfHixVi7di0CAwNx4MABlC9fHgDw559/okiRItKMSGV/HzIqOjoaCQkJsLOzS7ffo0eP8Pvvv+Ovv/7C8ePHcevWLQwYMEBp36VLl6JGjRro3bu3FJ+DgwMmTpyIu3fv4tixY7h37x5Wr16t1h1FHz9+jCZNmqBVq1a4ffs2fvvtN1y8eBGenp4K/RYsWABXV1fcunULEydOlF7n3LlzsWHDBty5cwf58+fHzp07pc9b1c+FCxcAADdu3EBCQgIaNmwonadUqVJwdHSEt7e30niDgoIQEhKicIyNjQ2qV68uHXPz5k28fPkSBgYGqFSpEgoWLIimTZsqzJ7LKHU+IwCIiorC8OHDcf36dZw+fRoGBgb43//+J83WXLZsGQ4dOoTff/8dDx48wM6dO+Hk5CQd37Rp03Tfu7Jly6Ybr7e3t8J7AwDu7u4q38+UY3744QeF/8/c3d3x4MEDhIWFZWjcjHwuRLrk0KFDqFq1qvR4woSJuHz5MkqVKqXFqPSX2ndtbt++PUaPHo29e/dCJpNBLpfj0qVLGDlyJLp06ZIZMRIR6RQWEim7i4+Px/JlSzCiQy3sXjgER44cRZ++/TB50kTgo/q/uBFlNX3MRwMCgJTtywIDkx9Xq5Y55zIyMsKWLVvQu3dvrFmzBm5ubqhbty7at2+PChUqKPQdPXo0JkyYgLi4OCQmJsLOzg69evVKM2aRIkUUHj979gz169dXaFu3bh1sbW1x7tw5tGjRAsHBwbC3t0fDhg1hbGwMR0dHVPv3RdvZ2cHQ0BBWVlawt7f/ptc7evRoFCpUKE3h5XOxsbHYtm2bVKxevnw5mjdvjoULF6aJwcbGBiYmJrCwsFB4Ljg4GJUqVUKVKlUAQKEolRGzZ8+Gh4eHtPeii4sLli1bhrp162L16tUwMzMDkLzMf8SIEdJxFy5cQEJCAlatWgVXV1ep/eeff1a4UYEyKa83JCQEJiYmaZYGFyhQACEhIUqPTWkvUKCAymOePHkCIPlmKYsWLYKTkxMWLlyIevXq4eHDh18s8KamzmcEJC/hT23Tpk3Ily8f7t69i3LlyiE4OBguLi6oXbs2ZDIZihYtqtB/w4YNiImJURmPsbFxuvGGhIQofW8iIyMRExOj9OZmISEhcHZ2Vrhrc8oYISEhyJ07t8pxU97zjHwuRLqiX79+2Lh+PQBgesefsH79evxv7BguY9YitWckzpo1C6VKlYKDgwM+ffqEMmXK4IcffkDNmjU1smkyEZGu4x6JlJ2dPn0aFSpUwKRJ/92QwtvbGwsWLICVpaUWIyPKOH3MR8uVA1xckv/s4pL8ODO1atUKr169wqFDh9CkSRPphhCf3wjCy8sLvr6++Oeff1C9enUsXrwYJUqUSDPehQsX4OvrK/3kzp0boaGh6N27N1xcXGBjYwNra2t8+vQJwcHBAIA2bdogJiYGxYoVQ+/evbF//34kJiZq9HXOmTMHe/bswf79+6UinCqOjo4KM15r1KgBuVyOBw8eZPh8/fv3x549e1CxYkWMGjUKly9fVitePz8/bNmyRWHWm7u7O+RyOYKCgqR+KYXK1ExMTNIUgq2srFCiRIl0f5QVszQpJa8aP348WrVqhcqVK2Pz5s2QyWTYu3evWmOp+xkFBgaiQ4cOKFasGKytraXCbsrfwW7dusHX1xclS5bE4MGD8ffffyscX7hw4XTfu9SFx9SfWb9+/dR6XUT6bMeOHZDJZBg1ahR8Ll9CFbdKLCJqmdqFRBMTE6xfvx6PHz/G4cOHsWPHDty/fx/bt2/nL9VEpBdSZiQaGKj9FUqU9YQA5El49fI52rdvj4YNG+LBgwfIny+f1KVsmTJaDJBIffqYj1pYAL6+wJUryf+1sMj8c5qZmaFRo0aYODF5CVm3bt3S3BU7b968KFGiBOrUqYO9e/di8ODBuHv3bpqxnJ2dFQosBgYG6Nq1K3x9fbF06VJcvnwZvr6+yJMnj3RzEAcHBzx48ACrVq2Cubk5BgwYgB9++AEJCQkaeX0LFizAnDlz8Pfff6cpsGWWpk2b4tmzZxg2bBhevXqFBg0aYOTIkRk+/tOnT+jbt69CUdbPzw+BgYEoXry41C9XrlxpjjU3N0/zy7c6S5vt7e0RHx+P8PBwhTFCQ0NVzgpNaf/8zs6pj0nZVqNMqn+LTE1NUaxYMamgl1l++uknfPjwAevXr8eVK1dw5coVAP/doMbNzQ1BQUGYPn06YmJi0LZtW7Ru3Vo6Xp2lzak/s2nTpgFIfn+UvTfW1tYqC7gpx6SekZgyRsp7qmrc1M+ntKnqQ6Qt0dHRGDnSS3rs5OSM8+fPY+7cuTA1NdViZJRC7aXNKRwdHeHo6KjJWIiIsgUubabsJCEhDsZvb6AQgL8OHYSBgQEGDhyIaVOnANH3tB0e0TfRt3zUwiLzljNnRJkyZXDgwAGVzzs4OKBdu3YYO3YsDh48+MXxLl26hFWrVqFZs2YAgOfPn+Pdu3cKfczNzfHTTz/hp59+wsCBA1GqVCn4+/vDzc0NJiYm0r/J6po3bx5mzpyJEydOKJ29p0xwcDBevXqFQoUKAQB8fHxgYGCAkiVLKu2vKr58+fKha9eu6Nq1K+rUqQMvLy8sWLAgQzG4ubnh7t27Smd9fg11ljZXrlwZxsbGOH36tLQk+MGDBwgODkaNGjWUHuvs7Ax7e3ucPn0aFStWBJB81+ErV66gf//+0rimpqZ48OABateuDQBISEjA06dP0ywl/hJ1PqP379/jwYMHWL9+PerUqQMAuHjxYpp+1tbWaNeuHdq1a4fWrVujSZMm+PDhA+zs7NRa2qzsM6tRowaOHj2q0Hby5EmV72fKMePHj1coqJ88eRIlS5ZE7ty5pT6nT5+WlsB/Pm5GPhcibfDx8UHXrl3x7Plz/NB3pNRma22l5cgotQwVEocPH57hARctWvTVwRARZQcsJFJ2cf78eYwcPgxXDy4DAFSrVg2LFi9BpUqVAHkSkIk3ayDSNOajWef9+/do06YNevTogQoVKsDKygrXr1/HvHnz8Msvv6R77JAhQ1CuXDlcv379iwU6FxcXbN++HVWqVEFkZCS8vLwUZmFt2bIFSUlJqF69OiwsLLBjxw6Ym5tLxSUnJyecP38e7du3h6mpaYZvWjJ37lxMmjQJu3btgpOTk7QnXMosMlXMzMzQtWtXLFiwAJGRkRg8eDDatm2rcgaXk5MTrly5gqdPn8LS0hJ2dnaYMmUKKleujLJlyyIuLg6HDx9G6dKlMxQ3kLyf4/fffw9PT0/06tULuXLlwt27d3Hy5EmsWLEiw+OksLKygpVVxn5Bt7GxQc+ePTF8+HDY2dnB2toagwYNQo0aNfD9999L/UqVKoXZs2fjf//7H2QyGYYOHYoZM2bAxcUFzs7OmDhxIgoVKoSWLVsCSC7U9evXD5MnT4aDgwOKFi2K+fPnA0he3q4OdT6j3LlzI0+ePFi3bh0KFiyI4OBgjBkzRqHPokWLULBgQVSqVAkGBgbYu3cv7O3tpX0iv/XmTv369cOKFSswatQo9OjRA//88w9+//13HDlyROqzYsUK7N+/H6dPnwYAdOzYEVOnTsXAgQPRp08fPH36FEuXLsXixYulY4YMGYK6deti4cKFaN68Ofbs2YPr169j3bp1AJChz4Uoq02dOhWzZsyAXC5H4cKFkSs4AA0aNIAhlzHrnAwVEm/dupWhwbhOnYhyupR9fAAWEkl3hYSEwMvLCzt27ICF+X97fp0+dQoGRulv/E6kq5iPZh1LS0tpv8PHjx8jISEBDg4O6N27N8aNG5fusWXKlEHjxo0xadKkNDOtPrdx40b06dMHbm5ucHBwwKxZsxSW+dra2mLOnDkYPnw4kpKSUL58efz111/IkycPAGDatGno27cvihcvjri4OIWlnps3b0a3bt2Unnf16tWIj49XWKIKAJMnT8aUKVNUxluiRAn8+uuvaNasGT58+IAWLVpg1apVKvuPHDkSXbt2RZkyZRATE4OgoCCYmJhg7NixePr0KczNzVGnTh3s2bNHOqZevXpwcnJKsxdligoVKuDcuXMYP3486tSpAyEEihcvjnbt2qmMQ5MWL14MAwMDtGrVCnFxcXB3d0/zHjx48AARERHS41GjRiEqKgp9+vRBeHg4ateujePHjyvsSTl//nwYGRmhc+fOiImJQfXq1fHPP/9IM+yA5MJst27dNPYZGRgYYM+ePRg8eDDKlSuHkiVLYtmyZahXr57Ux8rKCvPmzUNgYCAMDQ1RtWpVHD16VGPb2zg7O+PIkSMYNmwYli5diiJFimDDhg1wd3eX+rx79w6PHz+WHtvY2ODvv/9Gv3790LRpU+TJkweTJk1Cnz59pD41a9bErl27MGHCBIwbNw4uLi44cOAAyqXaXDUjnwtRVpo/fz7kcjk6deqEZcuWKfz/T7pFJlL+xc2GIiMjYWNjg4iICFhbW2s7HCLSAwkJCZg1axYAYMyYMdyng3RKYkIC1q9fh2nTpiIk9C1kMhkGeQ7A0tEdkjsU/B4w+LcALk8CXvsotitr00Tf9NqJ+UwOoOozjI2NRVBQEJydnfnLeRYJCgrCd999h7t378Il5e402UjRokUxdepUlUVQfRUdHY08efLg2LFjCoU+fRYREYGoqChYWlpmyb8d/D6jzyXK5TgUmLzP5s8uBWD0b4E9o+2Qy7Fg0WJ890snAMCghtWxfOkS/Prrr1n9Ugjq5aPfdCnl+fPneP78+bcMQUSUrXBGIukqb29v1KlTG/1/qYjXN/ajdq2auHLlCpYuWart0IgyFfNRSu3o0aPo06dPtiwi3rlzBzY2NujSpYu2Q9E5Z86cQf369VlEJMohHgU+Qp06dTBlyn838Lp27SqLiNmE2oXExMRETJw4ETY2NnBycoKTkxNsbGwwYcIEjd1BjYhIV6XeNJ2FRNIFb9++Rc+ePVGzZk3cvn1baj975gyqVq2qxciIMg/zUVJl4MCBWLlypbbD+Cply5bF7du3NbZsNidp3ry5wr6BBIWl/ETZTY0aNeDj4wNTY2N8unYaP5XIj4IFCmg7LMogte/aPGjQIPz555+YN2+edNcnb29vTJkyBe/fv8fq1as1HiQRka5IKSTKZDImbqQ9QiApMQFbtm6B16gxCAsLAwCFWSwsdFNOxnyUiIgoe3n+/AWA5L26Y2Jj0LBhQ2zatAkODg7aDYzUpnYhcdeuXdizZw+aNm0qtVWoUAEODg7o0KEDEzciytF4x2bSBTdvXoebfTx6Ni2LwYNj4OrqilWrVqHm99X/24eQKAdjPkpE+o4zEim7EEJgy5Yt8Bo9Busu+AIAFi1chH59+3AGdjal9qdmamoKJyenNO3Ozs4wMTHRRExERDorZY9EFhJJGz58+ID+/fvjhx/qSm3z58/H9evXUbNmTS1GRpS1sls+mo3vbUhEBIDfY/R1QkND0bJlS/To0QPv377B0r4dUVb2Cf379WURMRtT+5Pz9PTE9OnTERcXJ7XFxcVh5syZ8PT01GhwRES6JmVGIv/hoywhBCBPgjwxAZs3b0bJkiWxZs0ahWR+QP/+MDJSe4EBUbaWXfJRY+PkJVzR0dFajoSIcpqsnpGY8j2W8r1GlBFVq1bDoUOHYGJigjlz5uCf06dQ8jsXzqTN5tT+zePWrVs4ffo0ihQpAldXVwCAn58f4uPj0aBBA4W77Pz555+ai5SISAdwaTNlKSEHXvvAAIDnwAGIjolF2bJlsXpV9ryRAJGmZJd81NDQELa2tnjz5g0AwMLCgr88EZFGxMfHIzExEXFxcZmalwohEB0djTdv3sDW1pY5MH1Ryt7dAPDhw3u4urpi+/btKF++vBajIk1Su5Boa2uLVq1aKbRxc0wi0hcsJFJWiYiIwMwZ0zBvaHJBJFcuC0ydNh1DhgyBsaEB90IkvZad8lF7e3sAkIqJRESaEBUVhYSEBFhYWGTJlg62trbS9xmRKsePH0f/gQOx8OhFAMCoUaMwYdw4ndx2hL6e2oXEzZs3Z0YcRETZAvdIpMwmhMCuXbswcuRIREaES4XEW7duoXARx+RO8iQtRkikfdkpH5XJZChYsCDy58+PhIQEbYdDRDnEoUOHEBwcjIYNG8LZ2TlTz2VsbMzcl9L16VMUxozywtq1awEAk9o0wfr16/G/yZM5Ez8H4qZKRERq4B6JlGmEwN27dzB8+DCc+PsUAMC1Qjnp6cKFCmsrMiLSAENDQ/4iTkQaExsbi6ioKBgaGsLMzEzb4ZCe+756dTy4fw8AMHjwYMyePRsWFhZajooyi9q/Cb9//x4DBw5EmTJlkDdvXtjZ2Sn8EBHlZFzaTJnh48ePGDd2DMrYRuD4pinIY5cbs2bNwpUrV7QdGpFOYj5KRPqOOSlpW2zsfzc8e/rsKRwdHXH69GksXbqURcQcTu0ZiZ07d8ajR4/Qs2dPFChQgNNUiUivMGkjTRJCYO/evRg2bBjCwz5g1qCfAQA3b96AY1FnLmEmUoH5KBHpu5TtdrhKhrThxo0b6Nm7DybtPgwg+d/lBfPmwcbGRsuRUVZQu5B44cIFXLx4UbpDHhGRPuEeifTNhACEHA8DAzHQcxBOnUpexlyubGmpi6ODo7aiI8oWmI8Skb7jxW3ShoSEBMyaNQszZsxAYmIihrrXwPLlK7BuzRpe1NMjal++KFWqFGJiYjIjFiIincc9EulbRUV9BF774DvL97h86SJMTU0xZcoUXLt2TduhEWUbzEeJSN9xRiJlJSEEAu7exQ/16mHKlClITExE69atcfP6dfzyUwsWEfWM2t86q1atwvjx43Hu3Dm8f/8ekZGRCj9ERDkZr/7S1xJC4MCBA6hcuYrU5u7ujjt37mDy5MkwM+VG6UQZxXyUiPQdc1LKKklJSVi8dCkeGuaG16Y/UKBgIezatQu///478ubNq+3wSAvUXtpsa2uLyMhI1K9fX6FdCAGZTCZ9oRER5URM2uhrPH78GIMGDcKxY8dgYf5fwXDfH39AZqj2P8VEeo/5KBHpO85IpKzw5MkTdOvWDVevX8eupu0AANeuXYND4UJajoy0Se3fXjw8PGBsbIxdu3Zxc2si0jvcI5HUERMdjUWLFmDhwkUIC4+AsbExvLy8pOf5byjR12E+SkT6joVEykxCCKxfvx7Dhw9HVFQUcuf5b+ZhwYL2WoyMdIHahcSAgADcunULJUuWzIx4iIh0GvdIpIw6cuQIRo8aiYC/N2B89wb4qc9MLFi0GCVdSgCvfbQdHlG2xnyUiPQdV8lQZhBC4MWr1xg4cAD+OngQAFCnTh1s3LwF/olaDo50htq/CVepUgXPnz/PjFiIiHQekzb6kqdPn6Jly5Zo0aIFgoKeSu2HDh1i0YNIQ5iPEpG+44xE0jQhBHb/9huufZKh29zVsLa1xYIFC3DmzBk4OztpOzzSIWrPSBw0aBCGDBkCLy8vlC9fHsbGxgrPV6hQQWPBERHpGhYSSSkhEBcXg6VLl2LK1OmIiYmBkZERhgwZInXh0ksizWE+SkT6jjkpadK7d+/Qv39//HXkCHbdegwAuHTpEsqVKQMASPy3cE0EfEUhsV275A02e/ToIbXJZDJubk1EeoFXf0mZ06dPoUFpC4zq9AOmThWoW7cuVq5cibKlS3EZM1EmYD5KRPqOOSlpyl9//YXevXsjNDQUuayspPZSpUppMSrSZWoXEoOCgjIjDiKibIFXfym1Fy9eYPjw4Thy+C9EBZ4CAGzatAlt27VPnoEoZzGDKDMwHyUifceclL5VREQERo4ahe3btyMuJgZlypTBlm3bwY1D6EvULiQWLVo0M+IgIsoWmLQRhEBCQhxWrliJCZMmIyoqCpa5LKSn27VtC3AZM1GmYj5KRPqOMxLpW5w5cwZ9+vXD3ENn0XT4FFzZsgxTJ0+GkYkJngeGajs80nFqFxJT3L17F8HBwYiPj1do//nnn785KCIiXcW7NtOFC+dRp7gRhrb7HuMnJKFmzZpYs2olgChth0akd5iPEpE+EkJACAGAF7dJPdHR0Rg7diyWLVsGU3NzqX3mzJkwMjDgXoiUIWoXEp88eYL//e9/8Pf3l/aiAf7bRJ570hBRTpZy9ZdJm/4JCQnByJEjsf/PfdIy5rVr1qBjp84wgOBeiERZiPkoEekzeapiDy9u05cIIZAkBK5du45uXTrj4cOHAICePXtpOTLKrtT+1hkyZAicnZ3x5s0bWFhY4M6dOzh//jyqVKmCs2fPZkKIRES6g0ub9U9iYiKWLl2KkiVLYufOnQp3X+7UqRMTeCItYD5KRPos9cUS5iH0JTFx8TgUGIrXtg549vw5ChUqhOPHj2Pp0iXaDo2yKbW/dby9vTFt2jTkzZsXBgYGMDAwQO3atTF79mwMHjw4M2IkItIZLCTqESHg430JtWvVxNChQxEZGYlq1arhwoXz2o6MSO8xHyUifZZ6RiJzUkrP7du3UbfuD9Ljdu3aISAgAO7u7lqMirI7tQuJSUlJsPr3luB58+bFq1evACRvev3gwQPNRkdEpGO4sbV+ePPmDfr27YPvHQGfPxejSOGCWLt2Lby9vVGpYiVth0ek95iPEpE+44xE+pKkpCTMmTMHVapUgb+/v9S+ceNG5M6dW4uRUU6g9h6J5cqVg5+fH5ydnVG9enXMmzcPJiYmWLduHYoVK5YZMRIR6QzOSMzZkpKSsHbtWowfPx7xcbFYO7kbAODWLV/kzZc/uZOce68RaRvzUSLSZykXtmUymcKWK0RCCDwMfIQ+ffrg/LmzAIBWv7TUakyU86h9+WLChAnSF9e0adMQFBSEOnXq4OjRo1i2bJnGAyQi0iUsJOZQQuDaVR/8UKc2Bg4ciPDwcLi6ukpP582TR4vBEdHnmI8SkT5jPkrKyOVyrF6zFneEJYas3YW8+Qtgy5Yt2L1nt7ZDoxxG7RmJqdfSlyhRAvfv38eHDx+QO3duXg0hohyPd23Oed6/f4/JkyZixTgPXNq7AIWq/Ipx4yeif98+wJtr2g6PiJRgPkpE+oxb7dDnnj9/jh49euDCpUvYdesXAMDVq1fhXNQRian21CTShG/+5omMjMT58+e5Hw0R6YWUK8BM3LI/uVyODRs2oGTJkti8ebPUfuuWLzw9PVksJspGmI8SkT5hIZFSCCGwdetWlCtXDqdOnYK5mbn0nINDES1GRjmZ2t88bdu2xYoVKwAAMTExqFKlCtq2bYvy5ctj3759Gg+QiEiXcClJNicEIE+C780bqFmzJnr37o3379+jbJkyUpcC+fNrMUAiygjmo0Skz5iPkhACr0ND0aZtO3Tr1g2RkZH4/vvv4e3tre3QSA+oXUg8f/486tSpAwDYv38/hBAIDw/HsmXLMGPGDI0HSESkS5i4ZW/h4WHAax9ULBAL/9t+sLS0xKJFi3Dp8iVth0ZEamA+SkT6jDMSaf+Bg/AOl6PjjKWwtLbGrFmzcOHCBZRwKaHt0EgPqP3NExERATs7OwDA8ePH0apVK1hYWKB58+YIDAzUeIBERLqEeyRmT0IIbNu2DZUqVpTa2rRpjQcPHmDYsGEwNjLWXnDZRVIsEHkXSIzWdiREzEeJSK/xwrb+CgsLQ+fOndHRo6PUdv78eYwdOxZGRmrfAoPoq6hdSHRwcIC3tzeioqJw/PhxNG7cGEDyX2gzMzONB0hEpEu4R2L24+/vjx9++AFdu3bFm7dvpYLYlvWrUKhQIW2HlzVUFQEzWhxMjAZudANu9QGOV2YxkbSO+SgR6TPOSNRPJ06cQPny5bFjxw6Fz758+fJajIr0kdrfPEOHDoWHhweKFCmCQoUKoV69egCSq+D8C0xEOR2vAGcTQiAyIhxjRnmhUqVKuHjxIiwsLDB7+gTdKIipM7vvW2cCqioCqlMcjAgAYl4k//lTIBAeoJnYiL4S81Ei0mfMR/WHEALhkR8xcNBgNGnSBC9fvoSLiwtOnTqt7dBIj6ldSBwwYAB8fHywadMmXLx4UaqEFytWjHvSEFGOx8RN9wkhsHfv77D+dAdzhrSEqYkxWrVqhXv37mFwl/rKC2KZ6fNiW3oFPHX6ZpSqIqCqdmVsKwCWLsl/tnIBbMtxliJpFfNRItJnnJGoPy5euox/Xn9CA8+xMDU3x6BBg+Dr64tq1apqOzTSY1+1iL5y5cqoXLmyQlvz5s01EhARkS7jHom67d69e/D09ISP92W0CTwFADiwfz8auTdJ7pCQJ7kg9inwv4JYZkoptsW8AALnA818lRfw8lZTry+QXHSMegLkqwCYWKmOIaUI+PlrVtWujHGu5HjCA5L7GVkAb71Vx0aUBZiPEpG+4oXtnC82NhaTJk3C8pUrsfPmIwDA4cOH0bB+fQBA4r+/kxBpAy9hEBGpgXsk6iAhEPUpEhMnjIerqyv++ecfhT3SGjVq9F/flIJY4ytAU9/kglgKZct0v3UJsrJCoLLZfer2VWdWo6rXrKpd1Ws2skguFKb0UxVbemNwKTQREdE344zEnO3WrVuoUqUK5s+fDyGE1J6yjQeRtvGbh4hIDbwCrFuEEDh4cD9yRfhjev9mMDYyxE8//YQbN66rPujzghigvDCniSXIyoptqgp46vRVtSxZVRzKXrOydnWWK6uKTRN7MhIREZFKLCTmTAkJCZgxazbq1K2LO3fuIH/+/Pjtt9+1HRZRGvzmISJSAwuJuiMwMBBNmzZFx44eUtvevb/j0KFDcCrqpN7sN2WFOXWKdar6qiq2KSvsqdNXnVmN6lD3eGWxaWJPRiIiIlKJ+WjOc+/ePdSrXx9lWnXDtmsP0K5DR9y5cwfNmzfTdmhEabCQSESkBu6RqEVCAPIkxER/wqRJk1CuXDmcOHECJiYmUpdmTf9NttSd/aasMKeJJciA6tmAymS0rzqzGtXxrcenN4YmxiYiIiLOSMxB5HI5Fi9eDDc3N9y4cUNq3759G/LmzavFyIhUU/tmK1evXoW3tzdCQkIAAPb29qhRowaqVeMG60SU83GPRC0ScuC1D8wBLFwwH/Hx8XB3d8eK5csAvFXsm95NSpRRdjMRQHmbspuUGFko75uZUoqOGXkdGfWtx6c3hibGJvoX81Ei0meckZi9CSGQJASePn2GXj2649y5cwCA5j/9JPWRyWTaCo/oizJcSHzz5g1atWqFS5cuwdHREQUKFAAAhIaGYtiwYahVqxb27duH/PnzZ1qwRETaJITgjEQtCQoKwiivkdi7dDgAoHDhwpg9Zy5+/fVXyIQceP1ZIVGdOxKnUFaYU6dYp6yvNnxrHJp4HarG0JX3iLIt5qNERJyRmN0lyuX469EbAGbwuXoVuXLlwsKFC9GjV69/24l0W4a/eQYMGICkpCTcu3cPT58+xZUrV3DlyhU8ffoU9+7dg1wux8CBAzMzViIirUpJ2gAWErNKbGwspk+fjjJlyuDo0aNS+61bN9GqVSvVV2vTuzuzJqizXJmINIb5KBERZyRmZ69fv0br1q2lxzVq1ISfnx/69u3LWYiUbWR4RuKJEydw/vx5lCxZMs1zJUuWxLJly3g7ciLK0VKSNoCJW6YTAqdO/o3hI4bDP+AuAKBpk8bS07kscn15DM5+I8pxmI8SEXFGYna1Z88eDBgwANGxseg6J7nt+PHjMDVWe8c5Iq3K8DePqakpIiMjVT7/8eNHmJqaaiQoIiJdlLqQyMQt8wQHB6Njx/ZoWNYSt4+vQzFnJ+zatQtHDh/RdmhEpGXMR4mI9LeQKIRA5Cc5LvvIERUlNNY3sz1//h6NGo1Hhw49EBYWhooVK0rPGRrq12dIOUOG/9a2a9cOXbt2xf79+xUSuMjISOzfvx/du3dHhw4dMiVIIiJdkHpps74lblkhPj4ec+bMQenSpXHw4CGp/datW+jQoQOXexAR81EiIujvzf8+RgmUKidHrRoGqFgJiI5ObldWNFSnryqa6Ltv3zE4O4fj1KmZAHwxdux0nDlzFnExQOBtYymuFKralVGnb2aOQfonw3NoFy1aBLlcjvbt2yMxMREmJiYAkn/xMzIyQs+ePbFgwYJMC5SISNtSJ20sammIEICQ4+y5c+g/YCDu378PAGjY4Eepi7WVlbaiIyIdw3yUiAh6e/O/gADg9bPkEsajQBkCAoBq1f4rGr5+ZoQSLgJ+vur1NTcX+BglEBAAuJaXIVeu5DxfWV8Li+Si4ef9P+974Xwkxo8fhk2b/AFc/fcVfIeWLScgIUGOES3z4fUzI2xINW50NNK0m5gpfy+U9bVIZ+vuuBggONAY0YUBa0vVY6g6n6oxSD9luJBoamqK1atXY+7cubh+/TpCQ0MBAPb29qhcuTKsra0zLUgiIl3Aja017/WrlyiIZ6j3nSmCnz1F/vz5MX/+fHT26AiEXNF2eESkY5iPEhHlrBmJyopyqtrLlQMKFk2UinXlyiX3VVY0VKdvqTLKC4bfUrisVKkzQkIOAbCAre0bhIfnh4tLcly+t5WPq+x8blWUv2+qYlNGVdFR1fkyWnRMr3BJOZvau3paW1ujfv36mRELEZFOYyFRcxISErB8+XLMnTMLobcOAgD69u2DSZOnwtbWFpAnpT8AEek15qNEpM9y0oxEVbP+VLUvPPAWwYHG6N/UDhYWycVBZUVDE7OM91VV2PvawiVkgQgJOQknJyds2bIFVavml/pYWCQXRku4CDwKlMEl1biq2pUV9lT1VUZV0VHZGOoUHVUVLinnU6uQ+O7dO2zatAne3t4ICQkBkHwFuGbNmujWrRvy5cuXKUESEemCnJS0adOFCxcwcOBA+Pv7w8L8v/UTixYuAgz43hJR+piPEpG+y0kzElUVqFTNljM1B1wqJCjMhlNWYEyUZ7yvqoKhOoVLP//rWHjAAcGBxpjU5Xt069IZCxYsgNW/W/SkLrrlyiWTZjGWKyeT4lPWHvlJeWFP1RjKqCo6Khvjsk/Gi46kvzL8zXPt2jV89913WLZsGWxsbPDDDz/ghx9+gI2NDZYtW4ZSpUrh+vXrmRkrEZFW5aSkTRtCQ0LQu1dPNHFvDH9/f+TJkwcrV67QdlhElI0wHyUiylkXt1OKcgD+Lcql366KsqJhRvumFAzn/P4ON24KhTHSK0bO+f0dvH3iMWvWBDRoUF/qu3//Lqxdu1YqIipjYZFcoPs83s/blRVUvzTG55ILhjJcuQL4+srSvJbUY6QUDAH8WzD88hikfzI8I3HQoEFo06YN1qxZk+YmA0II9OvXD4MGDYK3t7fGgyQi0gVc2vx1kpKSsHr1asyaOR2vrv+J9VN7wHPWTkydNh15ctsCr320HSIRZRPMR4mI/isk5oSL26pm/amaZZhZ1ClEpu7frFldXLuSvK/3/lljsWjRQuT9rrHG4vqamYDKlkKnFAy/JL2Zjhkdg3K+DBcS/fz8sGXLFqV3KpXJZBg2bBgqVaqk0eCIiHQJC4nq8/HxwYABA3Dr1i2FZcwrli9PXsbMvRCJSA3MR4mIct4qGVVFPHWLe1klKem/iubt27eRJ08erF69Gm3atNH4udRZwgxo5qYoLBjSl2T4m8fe3h5Xr15V+fzVq1dRoEABjQRFRKSLctIykkwlBN69fYOBA/qjRo0auHXrFmxtbbF48WJtR0ZE2RzzUSIi5qTa9OjRIzRu/N+Mw6ZNmyIgICBTiogpMrqEGUh/KTSRpmR4RuLIkSPRp08f3LhxAw0aNJCStNDQUJw+fRrr16/HggULMi1QIiJty2lXfzODXC7Hls0b0aNJGawc3wlbtmxB23btMXfuXOTPm4fLmInomzAfJSLKWUubswshBFatWgUvLy8kCSG1//777zDWoYIub4pCWSHDhcSBAwcib968WLx4MVatWqWwxK9y5crJvyy2bZtpgRIRaRuXNqfvxo0bGDBgAAL8b6NH4CkAwMmTJ1GzVu3kDlzGTETfiPkoERFzUm345ZdfcOzIEQBAvXr1UNE0Ho6ODjBUstWGNqm7FJroa2S4kAgA7dq1Q7t27ZCQkIB3794BAPLmzQtjY+NMCY6ISJcwafuMEICQIyw8HOMnTMSaNWsghECB/HmlLjVr1NBigESUEzEfJSJ9xxmJWUOkmnn4zz//wMzMDHPnzoWnp6dOv/fc45Ay21f97Tc2NoadnR3s7OyYtBGR3uB+NIrkSYnAax/kjrmPrVs2QwiBjh07wveWr7ZDIyI9wHyUiPQVL25nvjdv3qBjRw/pcZXKVeDr64vBgwfrdBGRKCuo9X/AyZMn0axZM+TOnRsWFhawsLBA7ty50axZM5w6dSqzYiQi0gncI/E/fn5+aOz+30bTpUuXwpkzZ7Bz507Y29trMTIiyumYjxKRvuOMxMy1f/9+lCtXDn/9dUhqO3X6NEqWLKnFqIh0R4a/ebZu3YpmzZrBxsYGixcvxuHDh3H48GEsXrwYtra2aNasGbZv356ZsRIRaRWv/gIREREYOnQoKleuDG/v/26c4u3tjXr16mkvMCLSC8xHiYhYSMxMvXv3xq+//oq3b9/iuxIl4BQTip9dCsDUWK1d4YhytAz/3zBz5kwsWbIEAwcOTPNct27dULt2bUybNg2dO3fWaIBERLpCnwuJQi7H77//hrFjxyLo6TMAwK+//ndDA2MjLiskoszHfJSISL9z0sy2e/duGBgYYNSoUZgyZQpMTU21HRKRzsnwJYzg4GA0bNhQ5fMNGjTAixcvNBIUEZEu0tc9Eu/evYtmzZqgXR1HPLm4ExXKl8WJEyewfRtn/RBR1mI+SkTEGYmaFBUVhWHDhkuPixUrjgsXLmD27NksIhKpkOFvnrJly2Ljxo0qn9+0aRPKlCmjkaCIiHSRvu2R+OnTJ4waNQqurq44f/6C1H716lU0btw4nSOJiDIH81EiIs5I1BQfnyuoWLEiVixbio6ViuPs6nm46uONmjVrajs0Ip2W4aXNCxcuRIsWLXD8+HE0bNgQBQoUAACEhobi9OnTePLkCY4cOZJpgRIRaZteJG1CQMiTsP/AAQweMhQvX74EAPz6v5ZSF1MTXp0lIu1gPkpExBmJmtK4cSPEREXBwcEBmzZtSnfGOxH9J8OFxHr16iEgIACrV6+Gj48PQkJCAAD29vZo2rQp+vXrBycnp8yKk4hI6/RhRuLDhw/wneV7/Pp9QXT+8B7Ozs5Yvnw5mjdtArz2+fIARESZiPkoEZGeXNzOJH5+twGL5ItQcrkcXbt2xdKlS2FjY6PlyIiyD7VuPeTk5IS5c+dmVixERDotJ++RGB0djZkzZ2LliuUIv3sMADBu3FgMH+EFc3NzQJ6k5QiJiJIxHyUifccZiepLTEzEnDlzMGfePGy79gAAsGfPb2j5809ajowo+/nme5gnJCTA2Jh36ySinC/HXf39dxnz4SOH4TloCIKDg2FhbiY9PX7ceMAgh7xWIsrRmI8SkT5hIVE9Dx8+RLcuXXDt2jUAwJ7Jw7Fs2VIU+KmFliMjyp4y/M3z+++/Iz4+Xnq8YsUKFC1aFGZmZsibNy+mTZuWKQESEemKnFZIDAp6DFnIFfxUOR/evX0DR0dH7NmzW9thERGpxHyUiCjn5aSZrWaNmrh27RpsbW2xY8cO/LZ7F+zz54dMJtN2aETZUoYLiR06dEB4eDgAYPPmzfDy8kK3bt3w119/YdiwYZg3bx42bNiQWXESEWldTtkjMTY2FlOnTkXlylWktpEjR+Lu3bv4qQWXdxCR7mI+SkTEGYkZ8exZsPTn2LhYuLu7w9/fHx4eHiwgEn2jDC9tFkJIf16zZg2mTZsGLy8vAECzZs1gZ2eHVatWoVevXpqPkohIB+SEPRKPHj2KQYMG4cmTJwrLmKdOmZK8jJl7IRKRDmM+SkTEGYnpEUJg48aNGD12HNZd8AUALFmyFH1792IBkUhD1LqEkfI/3pMnT9C4cWOF5xo3boxHjx5pLjIiIh2TbZM2IRD8LAjt27VF8+bN8eTJExQqVAjbtm3TdmRERGpjPkpE+o4zElVr06YNevXqhfdv32BZ/04oZxjNIiKRhqn1zXP8+HEcOnQIZmZmiI6OVnguNjaW/3MSUY6WHWckxsfHY8GCeXA0eoU9i4bAyjIXRowYgfv376PVr79qOzwiIrUxHyUifZdtL25ngePHj8PExATz5s3D6ZN/47sSxfnvApGGqXXX5q5du0p//ueff1CjRg3psY+PD4oXL665yIiIdEx22yPx1KlT8PT0xPPgZxjZ8RQAwNvbG2XLlU/uwGXMRJQNMR8lIn0mhOCMxFTev3+PIcOG49fxcwAAFStWxMb161G2bFktR0aUc2W4kJjyZaVKgQIFMHv27G8OiIhIV2WLq79C4NWrFxgzZgy279gFAHAu6ig9XbZMGW1FRkT0zZiPEpG+S71XrE7npFng6NGj6NmzJ8IiIqRC4pkzZ2FuaqLlyIhyNo1dwmjRogXc3d01NRwRkc7R9UJiQkICli5dgkIIxrY5A2CZywKDBw/GzVu3tB0aEVGWYD5KRDld6gsq+jwj0dPTE82bN0dISAicixZF4ciX+NmlAMxMjLUdGlGOp7/fPEREatLlPRLPnTuHSpUqYdy4cVLbpYsXsXTpUtja2GgxMiIiIiLSlJQL24B+FxK3bNkCmUyGYcOG4ebNm6hetQqMDAy4HyJRFtDfbx4iIjXp4h6JISEh6NSpE+rVq4c7d+4gb5480nMVKlTQYmREREREpGmpZyTq4sXtzBITE4MxY8ZKj4s6FsWZM2ewaNEimJubazEyIv2jO78NExHpOF1a2pyYkIBVK1egUsUK2LlzJ2QyGfr164dbvr7aDo2IiIiIMknqGYn6Mvvu5s1bcHNzw4oVy6W2K1euoG7dulqMikh/sZBIRJRBulJIvHz5MmrXroUBLSvh9Y39qF2rJq5cuYLVq1fDLndurcZGRERERJkn9R2b9aWQ+OOP9XD//n3ktrGByWNf/OxSADbWVtoOi0hvZfiuzURE+k7beyS+ffsWo0ePxubNm2Fhbia1nz1zBobGvDsdERERUU6nKxe2M9u9e/cAIzsAya+5ffv2WLFiBfKk2saHiLRDozMS69evj+nTpyM6OlqTwxIR6QSt7JEoBJIS4rFh/VqULFkSmzdvBgB07dpV6pLTE0kiInUwHyWinCz1jMScKCkpCfPnz0etWrWktm3btmH37t0sIhLpCI1++zg6OuL06dMoVaqUJoclItIJ2rgCfOPGNRi+uYZezcohLjYGFStWxOXLl7Fq5cosi4GIKDthPkpEOVlOLiQ+eRKEevXqYdSoUfgYEYFtYweimhXQplUrbYdGRKlodGnzli1bAACRkZGaHJaISCdkZSHxw4cPGDduHHZs34ZPD08CABYsWIDeffrCyMgIkCd9YQQiIv3EfJSIcrKcvLT5+++/R9j7d7C0tMTSpUvRvXt3vdkHkig70chljPDwcIXH1tbWmhiWiEinZPoeiUJAnpiArVs24bvvvsPatWshhJCe7t+vX3IRkYiI0mA+SkT6IKfNSHz16rX05+joKNSrVw/+/v7o0aMHi4hEOkrtb5+5c+fit99+kx63bdsWefLkQeHCheHn56fR4IiIdElm75F4288XBqFX0bVRScRER6Fs2bI4ceJEppyLiCg7Yz5KRPoqp8xIFEJgx44dqFq1qtQ2b948nD59Gk5OTtoLjIi+SO3fhtesWQMHBwcAwMmTJ3Hy5EkcO3YMTZs2hZeXl8YDJCLSFZmVuIWHh2Pw4MGoVbu21DZ79mzcunULtVNtNE1ERMmYjxKRvsoJMxLfvn2L1q1bo3PnzngT8hqLerVDKRGBQQMHZuvXRaQv1F4jFxISIiVuhw8fRtu2bdG4cWM4OTmhevXqGg+QiEhXaLqQmHIl1svLC6GhobAwN5OeGzxoEGBgyL0QiYiUYD5KRPoqu85IFEIgSQgcPnwEfXv3wps3b2BkZITJkydjzJgx3L6HKBtRu9yfO3duPH/+HABw/PhxNGzYEMC/XwxJ/IWXiHIuje2RKATuBPijiXsjdOnSBaGhoShZsiQOHz6sgSiJiHI+5qNEpK+y64zEsPAIHAoMhbxkFUR8/Ihy5crh6tWrmDBhAouIRNmM2t8+v/76Kzp27IhGjRrh/fv3aNq0KQDg1q1bKFGihMYDJCLSBXK5XLrxybckbh8/fsTYMaNRNnckTmyeirx57DB79mzcvn0bP9arp6FoiYhyNuajRKSvsuOMxNOnT6Na9WrS42HDhuH69euoVKmSFqMioq+ldul/8eLFcHJywvPnzzFv3jxYWloCAF6/fo0BAwZoPEAiIl2QcvUX+LrETQiB3377DSNGjEB42AfMHvwLAODmzRtwcHT69yScRUNElBHMR4lIX2WnGYlRUVEYPXo0Vq5cCVNzc6l9+vTpMMoG8RORcmoXEo2NjTFy5Mg07cOGDdNIQEREuij1Ujm1ColC4MGD+xgxfDiOHDsOAChXtrT0tEMRB43FSESkL5iPEpG+yg6FRCEELvtcQe/evXHvTgAAoHfvPlqOiog05au+fbZv347atWujUKFCePbsGQBgyZIlOHjwoEaDIyLSFakLiRlN3KKiojBp0kSUtPqAw+snwC63LaZOnYpr165lVphERHqD+SgR6SNdX9ocFxeHCZMmIdSuKGbs+xvFSpTA33//jcWLF2k7NCLSELULiatXr8bw4cPRtGlThIeHS19ktra2WLJkiabjIyLSCSnfdTKZ7IuFRCEE/vzzT5QuXRoLFy6U2q9fv4ZJkybBzNQsnaOJiOhLmI8Skb7S5RmJvr6+qFq1qkL+e/XqVTRq1EiLURGRpqn97bN8+XKsX78e48ePV7gKUqVKFfj7+2s0OCIiXfHFOzYLAciT8PhRIJo1a4ZWrVrh+fPncHR0lLo4OzlnRahERDke81Ei0le6OCMxMTERM2fORLVq1eDv74+8efNJz9nY2GgxMiLKDGoXEoOCgpTeXcnU1BRRUVEaCYqISNekJG2qrv7GxEQBr31Q3PwNzp87CxMTE0yYMAE3blzPyjCJiPQC81Ei0le6NCNRCIF7Dx7gx/oNMGHCBCQkJOB///sfrl27qu3QiCgTqf3t4+zsDF9f3zTtx48fR+nSpdMeQESUA6R39ffw4cOoUqWq9LhBgwbw9/fH9OnTYWFuASTFApF3gcToLIuXiCgnYz5KRPpKV2YkyuVyrFi1CvdgjWHr9yBfAXts27YN+/btQ758+b48ABFlW2rftXn48OEYOHAgYmNjIYTA1atXsXv3bsyePRsbNmzIjBiJiLROWdL29OlTDBkyBIcOHYKF+X/7Hh48cAAyw3+/XhOjgRvdgJgXQOB8oJkvYGCahZF/haRYIOoJkK8CYGKlub5ERBrCfJSI9JUuzEh89uwZunfvjss+Pth161cAyXshOjk6JHcQQmuxEVHmU7uQ2KtXL5ibm2PChAmIjo5Gx44dUahQISxduhTt27fPjBiJiLQu9R6JcbGxWLp0MebNm4/3H8JgZGSEYcOGSX1lMtl/B0YEJBcRAeBTIBAeANhVzsrQ1aOs8Glk8e19iYg0iPkoEekrbRUShRBIlMuxffsODB08CB8/fkRuuzzS80WKFM7SeIhIe77q28fDwwOBgYH49OkTQkJC8OLFC/Ts2VPTsRER6YyUGYmxsbGoVq0KRnX6Ae9u/4Um7o3g5+eHGdOnKz/QtgJg6ZL8ZysXwLbcvwOqsdw5M5dGfz62ssKnKur01URsRESpMB8lIn30pX27M8urkBD89egNbGs0RnxiImrWrAlvb+8sjYGIdMM3fftYWFggf/78moqFiEhnvX79GgDw4sULPHr0WGo/euQoypQpk/xAWeHLOFfyTL3GV4Cmvskz9lJm8t3qAxyvnH6hTJ2+6VEWm7KxVRU+lVGnr7pUvW5VxUUWHYn0FvNRItInqVfJZJW9e/eiatVq0uNp06bj/PnzKF6ieJbFQES6Q+2lzc7OzorL9j7z5MmTbwqIiEhnCIH4+FisXLESGzZtRtu2bSGXy+HpOVDaG1CWrwJgaJX+Ml8jCyDvf8mX0pl8qZ9PTZ2+KT7ft1BVbKrGbuab/GfbcopLlT8fN6VIqqyvOpTts6gsNuvSyl8Hl1gT6R3mo0Skr7JyRuKHDx/g6emJ3bt3w9TcXGofPnwYDA0MkPhvUZOI9IvahcShQ4cqPE5ISMCtW7dw/PhxeHl5aSouIiKtO3fuLOq6mGBY+xrYsnULAKBkyZIY0r8HcKSMYuFKnYJfyky+T4FpZ/J9XlRTpy+gvKimKjZVY39e+FQ1rpGF8r6qYlPWrmpcZbGF+Sl/HV9TbCWibI35KBHpq8yekSiEQJIQ+Pvvk+jVoztev34NQ0NDjB41OlPOR0TZj9qFxCFDhihtX7lyJa5fv/7NARERadvr168xYsQIHDywH1GBpwAAAwd64nVIKCwtLZUXrtIr+H1O1Uw+ZUU1dfqqmmWoKjZ1ZhSqU6xTFZs6RU5lsal6Heq890SUIzAfJSJ9ldkzEiMiP+KfkCjAuQI+hIejZMmS2LZtG9yqVMGhwNBMOScRZS8a+/Zp2rQp9u3bp6nhiIiyjhCAPAmJCXFYsmQJSpYsid27dyssm6tduzaAf6/+KtsbUNleiOlJmcmXup+qm5eo01fd2JSNrYw6+yGqii29IqeycT+PTdXrUPe9J6Ici/koEeV0mTkj8fz58/j++++lxwMGDMTNmzdRrRpXehDRf9SekajKH3/8ATs7O00NR0SUdYQceO0DIwDjx41FdEwsqlWrhjWrVwKIA/Df1V9DQ0PVM/lULfPNKHVm1qk7y/BbY1Nn9qI6MweNLNTbZ1HV6/jW10dEOQLzUSLK6VIKiZqckRgbG4vx48dj8eLFMDEzk9rnzZsLoyy+OzQR6T61C4mVKlVSmKUjhEBISAjevn2LVatWaTQ4IqLM9ubNG0wYPw7rpnQHANjZ5caSyVPRs2dPGEAAr30AAOLzq7+ZUbhSp1iXXt/MKqpldFxVsWVWkZOI9A7zUSLSV5osJAohcO3GTfTu3Ru3fW8BALp27frN4xJRzqZ2IbFly5YKjw0MDJAvXz7Uq1cPpUqV0lRcRESZKikpCWvXrsX48eMRHxcrFRJv3fJF3nz5kzvJk/7rL8+iO+SpU1TT5QIcZw4SUSZiPkpE+kphlcw3SEhIwKzZc1C+XS9M3nMEw5rUxMrly9GkWTPuhUhE6VK7kDh58uTMiIOIKGsIgWvXrmDo0GG47J0827DG99Wlp/PmyaP0ME0lbURE9O2YjxKRvtLEjMQ7d+6gS5cuuHPvHna16wUAuHbtGvLnzYvEf8cnIlIlQ4XEyMjIDA9obW391cEQEWWm9+/fY/KkiVgxzgOX9i5AoSq/YvyESejXpzfw5lq6x7KQSESkXcxHiYi+LSdNSkrC4sWLMWHCBMTFxcG+UGHpOe4vS0QZlaFCoq2trcI+NMoIISCTyaQvNiIiXSGXy7Fx40aMGTMGsTHRWDHOA0DyMuYC9gUVljCrHkMAYCGRiEhbmI8SEX3djEQhBB49CULfvn1x5vQpAECzZs2wdv0GXP2YKWESUQ6WoULimTNnMjsOIiLNEgIQcvj6+qLfgIG4cuUKAKBalcpSlwL582d4uJRfSjN9j0QiIlKK+SgRkfozEoUQWLdhI/L90ByeK7fBr7Yr5s6ehZ49eyJJCOAj90MkIvVkqJBYt27dzI6DiEijwsPDYBt9DxULAP63/WBlZYWpU6fCc2B/4O0Ntcfj0mYiIu1iPkpEpN6MxJcvX6JXr144c+4cdt1qDgC4cuUKShRzTu4gRKbFSUQ5l9o3W0kRHR2N4OBgxMfHK7RXqFDhm4MiIvpaQghs27YNkydOwFPvPQCAtm3aYObsOShUqFCGljErwxmJRES6h/koEembjBQShRDYvXs3Bg4ciPDwcNjY5paec3IqmukxElHOpnYh8e3bt+jevTuOHTum9HnuSUNE2nL79m0MHDgQFy9ehIW5mdS+efNmwODbZhKKf5M2zkgkItI+5qNEpK/SWyUjhMCbd+8wZMhQ/LZ7FwCgatWq2Lx1Kx5kaZRElJOpPbVm6NChCA8Px5UrV2Bubo7jx49j69atcHFxwaFDhzIjRiKidEVGRGD0qJGoXatmchHRwgIzpk/X6Dm4tJmISHcwHyUifZXejMRDh4/g0odEtJ28ALmsrDBt2jRcvnwZJUuWzOowiSgHU3tG4j///IODBw+iSpUqMDAwQNGiRdGoUSNYW1tj9uzZaN68eWbESUSURsqyjQnjx+HJxZ2YO+R/6DRqBWbPmQeHwoWA1z4aO1eSnIVEIiJdwXyUiPSVsovbERERGDp0KHb/9ht23XoMADh79hyquFUCACT+W3wkItIEtWckRkVFIf+/dzrNnTs33r59CwAoX748bt68qdnoiIhUuHv3Lho0aAAPDw+Ehv53t7kd23fAwcFB4+fjHolERLqD+SgR6auUGYkymQES5XKcPnMGFSpUwJYtWyCTyaR+FSu6aitEIsrh1P6NuGTJknjwIHmHBVdXV6xduxYvX77EmjVrULBgQY0HSEQkEQKfPkZgwvhxcHV1xZkzZ2BmZobJkydl+qnl3CORiEhnMB8lIn2VcnE7PiEBhwJDEVGoFELfvkWxYsXw94m/1R4vLgYIvG2M6GhNR0pEOZXahcQhQ4bg9evXAIDJkyfj2LFjcHR0xLJlyzBr1iyNB0hEBCQvYz5wYD8sIwMwY0BzmBgb4eeff8a9e/cwymtUpp8/KYmFRCIiXcF8lIj0VcrF7b59+0ptvXr1hp+fH2rUrKHWWNHRwIiW+TCmbV5UdpNptJjIAiVRzqX2HomdOnWS/ly5cmU8e/YM9+/fh6OjI/LmzavR4IiIACAwMBCenp64eOE8ogJPAQD++GMvmjZrkdxBnvl35+SMRCIi3cF8lIh0jRACH6MEAgIA1/Iy5MolS7f9a8THxyMsLAwymQzPgp9J7UuWLIaRQfJS57gYIDjQGNGFAWvL9McLCABeP0suCTwKlCEgAHCr8tXhSVIKlK+fGWGDi4CfL2Bi9u3jEpFuUHtG4sWLFxUeW1hYwM3NjUkbEWmWEIiO+oipUyajXLly+Pvvv2FiYiI93bRJ0ywNh3skEhHpDuajRPQlQghEfpLjso8cUVEi08f4GCVQqpwctWoYoGIlSDPxVLWrE0OiXA7f27dRtWpVREVFAQDc3d3T9FV3hqFreRlKuCS/LhcXgXLlkttVzSZU1q6sTVmBkohyDrV/I65fvz6cnZ0xbtw43L17NzNiIiLCkSN/wSL8Nib3bgwjQwM0adIE169f11o8yu6QR0RE2sF8lIi+RFUB71uLg6qOV1U8U6eopmzsuIRE7L0dihMPCuH+wxcwMkoea+rUqWmOV7eAlyuXDH6+Mly5Avj6ymBhoboYqaxdVV9VBUoiyhnULiS+evUKI0aMwLlz51CuXDlUrFgR8+fPx4sXLzIjPiLSM0+ePMFPP/2Etm3bSW27du3E0aNHUbxYMa3FJWchkYhIZzAfJaIvUVVU+9bioKoCZblyQMGiiQCAEqmKZ8raVZ3v87Fv336EBvVbSMU6EyN/mJrmBpCck34+G/BrCngWFkC1asn/Te99U9auqq+yAiUR5RxqFxLz5s0LT09PXLp0CY8fP0abNm2wdetWODk5oX79+pkRIxHpgdjYWEybNg1ly5bF4cOHpautAPDLz79AJvv6/WQ0QS64RyIRka5gPkpEX6KqsPetxUFVxTMLC2DhgbeY8/s73LgppOKZsnZV5/t87GrVeuDa9Rip7dOnQggNzQcAiI01SDMbML0CXkZvfqKqGKmsPb3C5ecFSnViICLd9k2bfTk7O2PMmDGYM2cOypcvj3PnzmkqLiLSF0Lg5InjqFrFDZMnT0ZsbCzq16+PK1euaDsyBdwjkYhINzEfJSJlVBX2vrU4qKpACQCm5oBLhYQ0M/A+b1d1vtRjQxaIuLjrqF3TGk7OCQD+3959h0VxdWEAf5fem4KgYscOig07duyamNiwRU1irxg1FuzYsEWjsTdsiZr42RI1omJFEbuIWNCINSIiiMDe7w/CxA11cZcd4P09zz7ZvXNn5uyAk8OZO3dSinWFCqU8sf5OmGGGMf+3gKfO3IkZFSPTa1dn5KE2nxBNRLkrx38Rnz59GkOGDIGTkxN69uyJqlWr4sCBA5qMjYjyucjISPTo0Q0tq1ri2u9rUKZ0KWzfvh1Hjx5FxQoVdB2eCs6RSEQkP8xHiSgz6RX2PrU4mFGBUh0Z3e68Z0+AtG1r66ZYvnwBjh7dhxvXDXH+PHD5MmBomFJUdK2KbN/GrO7ciekVIzNqz6jvp8ZARPJlkHUXVRMnTsSOHTvw5MkTtGzZEkuXLkWnTp1gxokPiCibPnz4gEWLFmHmzJmAUAL+IwEAly9fhpW1TUqnnD1cT2uSk3lrMxGRXDAfJaJPkVFxMDLcEIPb2MHMLPMpdTIaeZhd/93f27fP0aPHN/j9yBFsuxwBF7dEnD9/HBXKu0j969T5Nx8FACsrA1wJTSnIVa2a+WjA1FuQ74Yr/ik65v6UQXKIgYg0Q+1C4smTJzFu3Dh07doVhQsX1kZMRJQfCQEIJY4HBmLwkKEICwsDALRs8e9cVlaWlrqKLktKJQuJRERywXyUiDTtU4uDOd3fkT9+w6Bvv8HLly9haGiI8H0BGDVqFIwMHNOsk5qPAinT7ZiYpBQYs5JyCzKyVXTUFjnEQESaoXYh8fTp09qIg4jyuSdPHqMoItG0ggkeRT6Eg4MDFi5ciF49ewBP5TUfYno4RyIRkXwwHyWi/MK7lzcS4uNRrVo1bN68GW5ubhn2Tc1HAfVz0tRRjbokhxiI6NPxL2Ii0qrExET4+/vD3d1dahs8eBDCwsLQu3dvnT+NObs4RyIRERERacLRo0el93p6epg0aRIuXLiQaRERUB2RyJyUiHRF7RGJRERZ+uc25qDTpzF4yFBcv34dZqYm0uKFCxYCenkr+VGykEhEREREnyA29h0mfDcOGzdvxrbLEQCAo0ePoX5dj2ytn3phW6FQ5JmL8USU/3BEIhFp3LNnT4Goc2hYRh/3Iu6icOHCWLnyR12H9Uk4RyIRERERfYq6devip59+QkJ8PE6t9keLYlao55H9e31T81FOtUNEusQzEBFpTFJSEn744QdUr15NahswYADCwsLQp3cfHUb26ZKVnCORiIiIiNTz/n2C9P7Bg/soUaIEjh07hsX+C2FlYa7WyEJOtUNEcsC/iIlII86dO4fatWtjxIgRiIl5K7UvW7oUdnZ2OoxMM5i4EREREZE6QkJC0KhRI+lz7969cfXqVTRr1ixH2+OIRCKSg2zNkWhra5vtKyV///33JwVERHmIEHj58gWmTp2Klat+ApByvpg/z0/HgWkeb20mItIt5qNElFckJiZh9lw/zJo1C/qGhlL7ypUrYfAJRUAWEolIDrJVSFyyZIn0/tWrV5g1axa8vLxQr149AMDZs2fx+++/Y8qUKVoJkojkJzk5GRs3rMOANlXw4+Te2LRpE7p174F58+bBvpAdEHVO1yFqBQuJRES6wXyUiPKKZs2a4tyZMwCAzz77DA3sDFCoUCHof+IDUniHDBHJQbYKiX379pXed+nSBTNmzMCwYcOkthEjRmD58uU4evQoRo8erfkoiUhWLl68iCFDhuDG9WsYEH4UAHD06FHUq98gpcM/8wnmR7wCTESkG8xHiUjOkpOV0vvLly/D1tYWK1asQPfu3TX2hGWOSCQiOVD7DPT777+jdevWadpbt26No0ePaiQoIpIhIfD3q5cYOWIY6tSpg+DgYFhZWUqL69Wtq8Pgcg+vABMR6R7zUSKSk3v37qFNmzbS55YtW+L69evo0aOHxoqIAEckEpE8qF1ILFSoEH777bc07b/99hsKFSqkkaCISF6USiW2bNkEu/dhWDq+B0xNjOHt7Y3LIZd1HVqu4xVgIiLdYz5KRHIghMDq1avh5uaG48eOYmADN7w8dRC/7d2LokWLanx/HJFIRHKQrVubPzZ9+nQMHDgQgYGB8PDwAACcP38ehw8fxpo1azQeIBHpVmhoKIYOHYrQyyHo/c9tzIcOHUJjzyYptzBHPdBpfLlJT09Po1eViYgoZ5iPEpEcdOnSBf/756JG48aNsWHDBpQpU0Zr++OIRCKSA7UvZfTr1w+nT5+GlZUV9uzZgz179sDKygpBQUHo16+fFkIkolwlBKBMxpvo1xgxYgRq1qyJM2fOwNzcTOrSuFEjHQaoO0zaiIjkgfkoEemKEEJ6/8cff8DY2Bj+/v44fvy4VouIAEckEpE8qD0iEQA8PDwQEBCg6ViISAaEMhmKp+dhDWDd2jVQKpXo2rUrFvkvAPBI1+HpFAuJRETywXyUiHLby5cvMXzkKHw5dQEAwN3dHevWrEHlypVzZf8ckUhEcpCjSxkRERGYPHkyevbsiefPnwNIudXxxo0bGg2OiHLXjRs30KbtvxNFu7iUwx9//IGdO3eiWNFiOoxMHnj1l4hIPpiPElFuOnjwEKpWrYod2wLQp3YFXP95PU4cP55rRUSAIxKJSB7UPgOdOHECrq6uOH/+PHbv3o3Y2FgAwJUrV+Dr66vxAIlI+96+fQsfHx9Ur14dp04FSe3nz59Hy5YtdRiZvPDqLxGRPDAfJaLc1rXrl3j27BkqV66ME8ePY+rkSTAyMsrVGFhIJCI5UPsMNGHCBMyaNQtHjhxROXE2a9YM586d02hwRKRdQqnE7l9+Rg336vD390dSUhI6dOggLTc2MtZhdPLDQiIRkTwwHyWi3HDy5EnpvUKhwNixY3Hp0iXUrFlTJ/Hw1mYikgO1C4nXrl3DZ599lqbdwcEBL1++1EhQRKR9YWFh6NSxA7rUK4rwE5tRpXJF7N+/Hzu2b9d1aLLFpI2ISB6YjxKRNsXFxWHkyJFo27at1Hb40GEsXLgQJiYmOouLIxKJSA7UPgPZ2NggKioqTfvly5dRrBjnUCOSu7i4OHz//fdwdXXFsT//lNqDg4PRrl07HUYmf0zaiIjkgfkoEWlLcPBFuLu7Y9myZUiIj8exH+agmZMFGjdqqOvQOCKRiGRB7b+Ku3fvjvHjx+Pp06dQKBRQKpU4ffo0fHx80KdPH23ESESfSgiI5CT8b9+vqFSpEvz8/JCYmAgvLy+pi6mJqQ4DzBuYtBERyQPzUSLSlubNm+HOnTsoWrQoDh06hBXLf4CNlSUUCoWuQ+OIRCKSBbXPQHPmzEHFihXh7OyM2NhYVK5cGY0bN0b9+vUxefJkbcRIRJ/o3r27UDw9jw417fHyxXOUKFECe/fuxe5fftF1aHkKC4lERPLAfJSINOnjp70rlUr07NkT165dQ+vWrXUYVVockUhEcqB2IdHIyAhr1qxBREQE9u/fj61bt+L27dvYsmULT2hEMhMfH49p06ahVq3aUtu4ceNw8+ZNdO7cWRZXVvMSnuOIiOSB+SgRaUJyshLz5s1Dw4b/3ra8dctWBAQEwM7OToeRpY8jEolIDgxyumKJEiVQokQJTcZCRBp08OBBDB8+HPfu3YOZ6b+TQk/z9QX0+EdWTjBpIyKSF+ajRPQpWrVsiZMnAgEAW78fjh+W/4Cin6d9kJNcsJBIRHKQrULimDFjsr3BRYsW5TgYIvpEQiAy8gG++248du76GQBQrFgxLFu6RLdx5RMc5UJEpDvMR4lIE5RKIb0/f+E8rKyssHTpUvTt21f2d+uk3trMQiIR6VK2ComXL19W+RwSEoKkpCRUqFABAHDnzh3o6+ujZs2amo+QiLIlISEBy5YuxjjvRtixaCQOHTqEb74dhKlTp8LS3AyIOqfrEPM8FhKJiHSH+SgRfapHjx7hm0GD8PWitQAAT88mWPPTqjwzsjl1RCJzUiLSpWwVEo8fPy69X7RoESwtLbFp0ybY2toCAF6/fo2vvvoKjRo10k6URJSpo0ePYujQoXj8KBLjvI8CAM6ePYvKVaqmdFAm6zC6/INJGxGR7jAfJaKcEkJg06ZNGDFiBBISE/H1P+3/+9//YGSQd/I7jkgkIjlQ+wzk7+8PPz8/KWkDAFtbW8yaNQv+/v4aDY6IMiEE/nocid69eqJly5a4c+cOihQpIi2uXKmSDoPLn5i0ERHJA/NRIlJHj+490K9fP8TExMC9WjVUxlt0dCkCQ/28ldtxRCIRyYHaZ86YmBi8ePEiTfuLFy/w9u1bjQRFRJlLTEzE0iWLUUzxCFvmDYWFuRlGjhyZ5rYv0iwmbURE8sB8lIjUsf/AfhgaGmLOnDk4deoUKlYoDwM9PdnPifhfHJFIRHKg9hnos88+w1dffYU9e/bg8ePHePz4MXbv3o0BAwbg888/10aMRPSRwMBAVK9eHd9PmiS1nTl9GkuWLIG1lZUOI8v/mLQREckD81Eiykx0dDQGDhwofa5atSqCg4MxceJEGBhka3YvWeKIRCKSA7XPoqtWrYKPjw969uyJxMTElI0YGGDAgAFYsGCBxgMkKvCEAIQST58+hc934xEQEAAAKFG8mNTF1dVVV9EVKEzaiIjkgfkoEWXkjz/+QP/+/fHXX39h165dGDNmDIJOnoSJiYmuQ/tkqYVEXtwmIl1Su5BoZmaGH3/8EQsWLEBERAQAoGzZsjA3N9d4cEQEJCV9gMHzi3AEsHfPbigUCgwaNAizZs4A3ofpOrwChYVEIiJ5YD5KRB8TQuDN21hMnjwZK35YBgBwcXHB5s2bUbduXR1HpzksJBKRHOT4DGRubg43Nze4ubkxaSPSktOnT6Nhg4bS55o1a+LChQv48ccfYffRBPOUO1hIJCKSF+ajRAQAp8+cxZ9RsWg2dAKMTU0xfPhwhIaG5qsiIvDvHInMSYlIl9Qekfju3TvMnTsXx44dw/Pnz6WrIqnu3bunseCICqrnz59j/Pjx2LhxI8xM/70N4/iff0Lf0EiHkRVsvPpLRCQPzEeJCADev38PX19fLFu+HAEhdwEA+/fvR4tmzXQcmXZwRCIRyYHahcSBAwfixIkT6N27N5ycnPLck66I5Cw5KQnr16/FtGnT8CTqGQCgb9++0nJefdQtHn8iInlgPkpEly9fRu/evXHjxg0Ym5pK7U2aNNFdUFrGEYlEJAdqFxIPHTqEAwcOoEGDBtqIh6jACg4OxpjRo3Bq53x83W436n8xFosWL0HdOrWBqHPpr5T8Hnh3D7B3A4wsczfgnMhr8f4HkzYiInlgPkpUMAkhkJCYhIULF2K671QkJSXBwcEBq9euQ7Kug8sFHJFIRHKg9hnI1tYWdnZ22oiFqEB69eoVvv32W3h4eCAkJERqP3XyZObzuiTFAZf6AZe/AQ7XTPmsKcnvgZibabeZUXt2aDPeT40tm1hIJCKSB+ajRAXTzdu3cfD+S1Tu0g/6hob44osvcOPGDbRr11bXoeUKjkgkIjlQu5A4c+ZMTJ06FXFx2vtjnSjfEwLKpERs2rgeFSpUwOrVqyGEQM+ePaUuWSYIb64D8Y9T3seGA9HXcxbLfwtwGRX8MmrPbgEvs3g/tQiobmzptWcjBl79JSKSB+ajRAWLUqnE4sWL0aD+v6OQ169fj127dqFw4cI6jCx3cUQiEcmB2rc2+/v7IyIiAkWKFEGpUqVgaGiosvzjEVVElL4roZdRrdBr9PVIxtikWFStWhU//vgjGjWon/5tzOndEmzjBli4pBTlLF0Am6qZ7zS9baQW4OIfA+ELgLah6Rf8CtdJv92qUtr1DczS319G8aYXQ+o2skud2NLbnzI5y+9hoPjAq79ERDLBfJSo4Hjw4AH69euHEydOqMyF2LVr1wI3PyoLiUQkB2oXEjt37qyFMIgKhujoaEyZMgU7A9bh+bpCQPxjhC8rDIsvg2Boap1S0PpvAS6jQpuhecr76OspRTkDs5T105PRNtIrwGVU8Euv/fWV9IuO6e0vvXiBjAuXQPbnVFQntvT2J5Kz/B4DihXCQ0XrbP+siYhIe5iPEuV/SqUS6zduwvjx4/H3yxcwNzeH/+Ilug5Lp3hrMxHJgdqFRF9fX23EQZR/CQGhTMb27dsxeqwPnj9/jkaVjaTCla3BS+BdGGCaQQEus0Kbgdm/71OlV3zLaBvpFeAMzNIv+KVXCMyo6JjR/tKLV52RinrG6R9jdWJLr12ILL9HIcNXeJV0HwAn9ici0jXmo0T5W1RUFAYPHYo+fiuwJqg1fhjSG2tX/4SSpUtjX/gzXYenMxyRSERyoHYhkYjUc/36NVS1e4ueTcvg67cxqFixIqYvXQjEjc5eAU6dW5gzGnmY0TYyGiWYXsEvvfaM1lcnZnVGKtrVzHiUYnZjy6g9i+/x6oMdEkxdMv4eRERERPTJduzYgSFDhiDu/Xv08UtpO3z4MIwNDZD0TyGtoOKIRCKSA7ULiXp6epnORZF6ciMq6GJiYjB9+nSsWf0TYm7/DgCYOWMGho0YCSMjIyCpafYKcBmNEExPRiMBMyqeARkXDbMrvfUz2192t5HesVB3PsXsFkSz+B77A+biSmQyOte2yPx7EBFRrmA+SpT/vHr1CkOGDMGuXbsAAB716knL9PU5Ag/giEQikge1C4l79+5V+ZyYmIjLly9j06ZNmD59usYCI8qrhBDYuXMnxowZg6ioKJiZmkjLxowZA+j9cwVRnQJcdot9mY0E/NSCobo+dX/pHYsXZzO+zVtbDMzwLKkkksRjXv0lIpIJ5qNE+YcQAgcOHcbQoUMQ+eAB9PX1MXnyZIyf+D0OPXil6/BkhSMSiUgO1C4kdurUKU3bF198gSpVqmDnzp0YMGCARgIjynOEwO3btzB2zBgcPJwyArFs2bJYuWK5etv5lAKcuiMB5e6/x0LdJ1VrSOrVXyZtRETywHyUKH+IiYnBuPHj4TVqKhYfPoPp3dth3ZrVqFWrVoG/jTk9HJFIRHKgsTNQ3bp1cezYMU1tjihPiY2NxeTJk1DR6jUOrJ0CO1sbzJgxA9evX0fLli1zN5jU4lteLyKmJ7VQ2uo80CY0175j6tVfJm1ERPLGfJQo7wgMDISbmxs2bdoktQUFBaFWrVo6jEreWEgkIjnQyBkoPj4ey5YtQ7FixTSxOaI8QwiB3bt3o3Llyli8eLHUfunSRUyZMgUmJiaZrE05ooNCKW8jISKSP+ajRPImhECSUom37+IwatQoNG3aFA8fPkTJEiWlPqamzJ0zw5yUiORA7VubbW1tVSa3FkLg7du3MDMzw9atWzUaHJEsCQEIJe5GRGDY8BH4/feU25grVawgdSlVspSOgiNtYNJGRCQvzEeJ8p5kIbAv/BkAYNXq1QCAb775BvPmL8CfT9/pMrQ8gyMSiUgO1C4kLlmyROWznp4e7O3t4eHhAVtbW03FRSRbcXGxMIu+inJmwKmTJ2BkZITx48djwvhxQPRVXYdHWsA5EomI5IX5KFHe8uHDB8ye44dqPb4BADg6OuLH5cvRtm3blLkQWUjMFl7cJiI5ULuQ2LdvX23EQZQn/O9//8P478bh5tF1AIAWLVpgof8iuLi4AMpkIFq38ZF2cI5EIiJ5YT5KlHdcv34dffr0wc3bt7Htn0JicHAw7AsV0nFkeQ9HJBKRHKhdSASA6OhorFu3Drdu3QIAVKlSBf3794e1tbVGgyOSi/v372PkyJH43//+B7OP5m75de9eKPRz9M+I8hBe/SUikh/mo0TyJYTAh6RkLFu2DJO/n4gPHz7AqVhxaTlHDucMc1IikgO1L2VcvHgRZcuWxeLFi/H333/j77//xqJFi1C2bFmEhIRoI0YinUl4/x7z5s5BrZo18L///Q8GBgYYM2aMtPzj+Zko/2LSRkQkL8xHieQt/G4EDtx7gbLte0Chr4/27dsjOPiCrsPK01JHIwIckUhEuqX2GWj06NHo2LEjHjx4gD179mDPnj24f/8+2rdvj1GjRmkhRCLd+P3331G7dk2M7+2JV9f2o03rVrh69Spmzpih69Aol3GORCIieWE+SiRPQgj8+OOPqFu3rtT2448rsW/fPhQpUkSHkeV9HxcSmZMSkS6pfU/mxYsXsWbNGhgY/LuqgYEBvvvuO9SqVUujwRHpwqNHjzB69Gjs3r1b5TbmA/sPpNzGrEzWYXSkC5wjkYhIXpiPEsnPo0ePMGDAABw5cgTGpqZSe58+vVPu4hFCh9HlfRyRSERyofYZyMrKCpGRkWnaHz16BEtLS40ERZTrhMCHhHgs9l+ISpUqYffu3dDX18fwYcOkLryNuWBSKpUQ/yS+vPpLRCQPzEeJ5EEIgcTkZGwJCICrqyuOHDkCExMTLFiwQNeh5TupF7YBFhKJSLfUPgN169YNAwYMwM6dO/Ho0SM8evQIO3bswMCBA9GjRw9txEikdYGBx2H0MgSju9eDUCajYcOGCAkJwdy5c3UdGukYbyMhIpIf5qNE8vD0+XP87+5zmNdqhvcfPqBOnToIDQ3F4MGDdR1avsMRiUQkF2rf2rxw4UIoFAr06dMHSUlJAABDQ0MMHjyYRRfKc548eYKxY8di32+/4l34UQDAmtWr0cO7V8oIRN7GXOB9fPWXhUQiInlgPkqke3v37sXwkaOw7Mg5AMDUqb74zmcsDAwMkPRR0Ys04+OpdninFBHpklqFxOTkZJw7dw7Tpk2Dn58fIiIiAABly5aFmZmZVgIk0jghkJiYgJUrV2HS5CmIjY2Fhfm/v789e/YE+D9n+gdvIyEikhfmo0S6FR0djREjRmDLli0qcyF+9904GDBX0prUEYnMR4lI19Q6C+nr66NVq1aIjo6GmZkZXF1d4erqyqSN8pTTp4Ng+OISRnxRG8rkJHh4eODUyZO6DotkKjVpUygUTNyIiGSA+SiRbggh8MfRo6hZuza2bNkCPT09jBkzRtdhFRipF7d5hwwR6ZrafxVXrVoV9+7d00YsRFr17Nkz9O3bF61atZLaVqxYjjNnzqB69eq6C4xkjU9sJiKSH+ajRLnr3bt3GDFqNGKdq2DB/pOoVKUqTp06hRkzZug6tAKDIxKJSC7UPgvNmjULPj4+2L9/P6KiohATE6PyIpKb5ORkrFixAhUqVMDmzZtV5hTp17cf/2dMmeLVXyIi+WE+SpR7Ui+6r1mzWmo7e/Ys6tevr8OoCh4WEolILtR+2Erbtm0BAB07dlQpyAghoFAoVOYTI9IpIRAcfB4jR47C2XPnAQA1atTAqpUrAPD3lLKHhUQiIvlhPkqkfQkJCZg6dSoWLlwIpVKJMuXKScvMzTmVQG5jTkpEcqF2IfH48ePaiINIo16+fAnfqVOwYlIvnPnFH8Vqd8HkKb745ptvoK8AEHVO1yFSHpF69ZdJGxGRfDAfJdKus2evoFevubh37zcASvTp0weLlizBiefvP2m7CfFAZLgh4ooBVhaaibWg4IhEIpILtQuJnp6e2oiDSCOUSiXWrl2LiRMn4n18HFZM6gUAuHw5FA5FHP/pxFEKlH2cI5GISH6Yj5IcCSHw9p3A9etANVcFzM0VWa8kM0lJSZgxYyFmzvwcwHbo6UVg27ab6NatA5KUSuATColxccDYzvaIemiAtS4CV0IBPiMp+zgikYjkgn8ZU/4gBC6HXETTJp749ttv8ffff8O1alVpsYO9vQ6Do7yMSRsRERFlx9t3AhWrKtGgnh6qu6cUzoCUAmNMrBJnzinx7p3QbZCZuH37Nho0aICZM/cAKA8AUCrLonTpDhrZ/vXrQNTDlHEsd8MVuH5dI5uVJMQD4VcNpeOe33BEIhHJBc9ClOe9fv0ao0ePhHuRBJzYPhdFHApjyZIlCDodpOvQKB9gIZGIiIiyI6NCWXoFxoyKi+m1q1OIzEnRUqlUYunSpXB3d8eFCxdgZfUIjo4pDy1ycQE+ujb/Saq5KlDORfyzXaGy3YyKgNktDqaOdpzQtTBq1lDky2Iic1IikgsWEinPUiqV2LhxIypUqIDVq9dI7aGXQzFy5EgY6Kt95z5RGpwjkYiIiD6WUbGualXAqWQSAKDcR4Wy9AqMGY1eTK89o77pUacvADx48ABNmrTFqFEBeP9egVatWuHGjWBERFjh/HkgNFT19uP0CnvZLQKamytwJVTxz3YV0nYzKgKqUxzU9mhHOeCIRCKSi2ydhfbt24fExERtx0KUNSEAZTKuXb2Cxo0b46uvvsKLFy9QsWIFqYujo6MOA6T8hnMkEhHJA/NRkouMinVmZoD/ry8wd9dLXAoRUqEsvQJjRoWv9NrVKZJlt68QAuvWrYOrqwdOnVoG4AIcHJ5gz57DKF68OMzMgDp1VIuI6RX21C0CprdddY4FkH7hMrPRjvkFRyQSkVxk6y/jzz77DNHR0QBSTlzPnz/XZkxEGYqJeQNEnYNroVhcDrkEc3NzzJ8/H2fPntV1aJRPMWkjIpIH5qMkF5kV64xNARe3RJVCWXoFxoxGL6bXnlHf9EZGZtT3Y1FRUejQoQMGDhyI2NiSSJ0P8flzG9y4kfEDYtQpcqpT/MyoCJhee0YFyoxGO+YnHJFIRHKRrbOQvb09zp07ByDlf1gKRd57AhnlbUIIbNu2DdWrV5faPvusM27fvo1x48bByNBId8FRvsZCIhGRPDAfJbnITrHuv/5bYMxo9GJ67Rn1TW9kZEZ9hRBIUiqx65dfULVqVRw4cABGRkaYPbsnXKRiXebzIaZX2FOnCJiRjIqA6bVnVqBMb7RjfsJCIhHJRbYmkRs0aBA6deoEhUIBhUKR6a2jqX90E2nKzZs3MXToUAQGBsLM1ERq37plK6DH4g5pF+dIJCKSB+ajJBepxbrIcEMMbmMHM7OcFbXTG72YUXt6bekV1WrUSr/vi1evEPQqEQauDfAuPh41atTA5s2bUaVKFYwalbKtqlUzL8KlFPZS+6YW/NJry6hvxlKLgFm1pxYo74Yr/ilQFpwLCry4TURyka1C4rRp09C9e3fcvXsXHTt2xIYNG2BjY6Pl0KhAEwKxsTHw85uL+QsWIikpCaampvD1naLryKiA4RyJRETywHyU5CSjImBuSh0ZGfXQ4J+RkekX1Q4ePIghw4Zh0aHTAICJEybi+4kTYGhoCCDjIl560uub3SKgJqhboMxPOCKRiOQi24+1rVixIipWrAhfX198+eWXMCtIZ23KVUII7N2zG5/XdcLsoe2xZMkStGvXDkuWLEGpEs5A1Dldh0gFCK/+EhHJB/NRon+lNzIySfnv8ti3sfhunA/WrFkDY1NTJMQDkeGGGD1mEgwN824xShsFyryAOSkRyUW2C4mpfH19AQAvXrxAWFgYAKBChQqwt7fXbGRUIN25cwfDhg3D6aBT+Dz8KABg9+5f0LpNu5QOSt6qRLmLSRsRkfwwHyVKkdnISA8PD9wJuw2FQoFvvx2DsZ3tEfXQAGtdBK6E5t+5BPMrjkgkIrlQ+ywUFxeH/v37o2jRomjcuDEaN26MokWLYsCAAYhLfWwWkTqEQNy7t5g+zReurq44cuQIjI2NpcWtvVrrMDgq6DhHIhGR/DAfJUpffPx76f3DyIcoWbIkjh8/jm7dZmT7KcokT7y4TURyoXYhcfTo0Thx4gT27duH6OhoREdH47fffsOJEycwduxYbcRI+ZgQAvv374NZ9FX4ft0KBvp6aNOmDYKDg3UdGhEAzpFIRCRHzEeJ0rp48SIaNGggfe7Xrx+uXbsGT09PtZ6iTPLEEYlEJBdqn4V2796NdevWoU2bNrCysoKVlRXatm2LNWvW4JdfftFGjJRP3bt3Dx06dEC3bt2ltu3bt+HAgQMoW6aMDiMj+hev/hIRyQ/zUSJVs2fNRt26dXHtSihGt64Po4hQrFyxApaWlgBSH1KiwPnzQGhowXpISX7BQiIRyUWObm0uUqRImnYHBwfeSkKZEwJQJuN9/DtMnz4dlStXxoEDB6QnxgFAxw4doVCk/8Q5Il3giEQiIvlhPkqkym+uH5KTk9G9e3eEXLyI9m3bpMmpUx9SwiJi3sSclIjkQu2zUL169eDr64v37/+dfyM+Ph7Tp09HvXr1NBoc5TNCCUSdg8nfoZg/by4SEhLQvHlznD9/XteREWWIcyQSEckP81Eq6JKTk7FkyRLps62tHXbs2IHt27ejUKFCuguMtIY5KRHJhdpPbV66dCm8vLxQvHhxVKtWDQBw5coVmJiY4Pfff9d4gJQ/PHz4EOO/G4cdi0YCAJycnDB7jh+6du0KxT8FRiI54q3NRETyw3yUCrKIiAj069cPwZcuYVu7HgCA4OBgFC/qpOPISJs4IpGI5ELtQmLVqlURHh6OgIAA3L59GwDQo0cPeHt7w9TUVOMBUt724cMH+Pv7Y+bMmVBAAP8UEi9fvgxLK+uUTkKHARJlgYVEIiL5YT5KBdXatevgM2Y03r17BwsLC0Sf/QO9e/eCAYtL+R5HJBKRXKhdSAQAMzMzfP3115qOhfITIfDnn8cwduwYhF65BgBo1bK5tNjSwkJXkRGphVd/iYjkifkoFUSjRo1EQnw8mjRpgg0bNqBUqVK6DolyCXNSIpILnoVI4/766y/06dMLzSqa4vKBlShdsgS2bNmCw4cO6zo0IrXx6i8RERHpihACO3fulD6bGJtgyZIlOHbsGIuIBQxzUiKSCxYSSWMSExPh7++PihUrYvfuPVJ7yOXL6NWrF5/GTHkSb20mIiIiXXj58iW++OILDBgwQGo7c/YMRo4cyVFpBVBqIZE/eyLStRzd2kwkEQIQSpwKCsLgIUNx48YNAEDTJo2lLjbW1rqKjuiT8eovERER6ULt2rXxODISBgYGuL13M8aMGQNjQ0ddh0U6wkIiEckFz0L0SZ49jQKizqFRWQPcvxeBwoULY926dTh65KiuQyPSCM5HQ0RERLkl5k2M9P7FixeoWrUqLly4gO8njIeJkSHv8CnAeJcMEclFjv4yjo6Oxtq1azFx4kT8/fffAICQkBD89ddfGg2O5CspKQnLli1DdffqUtvAgQMQFhaG/v37s+hC+QaTNiIieWI+SvnNsWPHUMejjvR5zJgxuHjxItzd3XUYFckFRyQSkVyofWvz1atX0aJFC1hbW+PBgwf4+uuvYWdnhz179iAyMhKbN2/WRpwkI2fOnMGQIUNw5coVmJmaSO1LlywF9FhsofyFhUQiIvlhPkr5ybt3cZg0cQJWrFgBY1NTqX3GjBkwYNGI/sGclIjkQu3/M40ZMwb9+vVDeHg4TEz+LSK1bdsWJ0+e1GhwJC8vnj/HoG+/QcsWzXHlyhXY2tpi2bKlug6LSKs4RyIRkfwwH6X8pF69elixYgUAYMBXX6F5UUt0dCkCfd7GTB/hiEQikgu1z0LBwcH49ttv07QXK1YMT58+1UhQJC/JyclYtWoV3N2rYdXUvngXfhSDvv0GYWFhGNB/QNYbIMrDOEciEZH8MB+lvC4h4YP0/t69CBQrVgy///47VqxYAWtLCxjo6XE+RFLBEYlEJBdq/2VsbGyMmJiYNO137tyBvb29RoIi+QgODkbdunUxePBgvH4dLbWv/PFH/rypQGDSRkQkP8xHKS+7cuUKPD0bS5979OiB69evo1WrVjqMiuSOIxKJSC7UPgt17NgRM2bMQGJiIgBAoVAgMjIS48ePR5cuXTQeIOmAEPj71UuMGD4MHh4euHjxIqysrLBgwQJdR0aU61hIJCKSH+ajlFctWLAQtWvXxqXgYIxoWRe4dQHr166FjY2NrkMjmWMhkYjkQu2zkL+/P2JjY+Hg4ID4+Hh4enqiXLlysLS0xOzZs7URI+UipVKJzZs3wu59GJZN6AFTE2P06tULYWFhGDJ4sK7DI8p1nCORiEh+mI9SXjV9+jQkJiaic+fOCLkYjM87d+ItzJQtvLhNRHKh9lObra2tceTIEQQFBeHq1auIjY1FjRo10KJFC23ER7koNDQ05WnMoZfRJ/woAODw4cNo1NgzpYMyWYfREekG50gkIpIf5qOUVyiVSqxatQpFm38GALCysob/Tz+hV69eLCCSWjgikYjkQu1CYqqGDRuiYcOGmoyFcpsQgFDiTUwMpkz1xYoVK6BUKuFgX0jq0og/YyrgePWXiEi+mI+SnD18+BD9+/fH6bNnse1ySiHxwoULKFXCWceRUV7EnJSI5ELtQuKyZcvSbVcoFDAxMUG5cuXQuHFjnuDyAKFMhuLpeVgDWLd2DZRKJbp164ZF/gsAROo6PCJZYNJGRCQ/zEdJ7rZs2YqRw4fh7du3MDMzw7Pj+zDw64Ew4GgyyiGOSCQiuVC7kLh48WK8ePECcXFxsLW1BQC8fv0aZmZmsLCwwPPnz1GmTBkcP34czs682iZX169fx9gxo/D7hukAgPLlXbBg4aKUW4KUyUAUC4lEAOdIJCKSI+ajJHeDBw9CQnw86tevj40bN8LFxUXXIVEex4vbRCQXal/OmDNnDmrXro3w8HC8evUKr169wp07d+Dh4YGlS5ciMjISjo6OGD16tDbipU/09u1b+Pj4oHr16ggKOi21nz9/nvMKEaWDcyQSEckP81GSo7179krvjYyMMHfuXJw8eZJFRNIIjkgkIrlQe0Ti5MmTsXv3bpQtW1ZqK1euHBYuXIguXbrg3r17mD9/Prp06aLRQOnTCKUSu3f/ggkTJiDi3n0AQMeOn0vLjQyNdBUakazx6i8RkfwwHyU5+fvvvzFs2DDs+fVXbLscAQA4deoUqrm66jgyyk9YSCQiuVD7LBQVFYWkpKQ07UlJSXj69CkAoGjRonj79u2nR0cacfv2bXTs0B5f1C+Guye3oGqVSjh48CC2b9uu69CIZI+FRCIi+WE+SnLxxx9HULVqVWzfvh1JHz7gyvbVaF3SDm5Vq+o6NMpnmJMSkVyoXUhs2rQpvv32W1y+fFlqu3z5MgYPHoxmzZoBAK5du4bSpUtnua1p06ZBoVCovCpWrKhuSJSBd+/eYeLEiXBzc8Ofx49L7cHBwWjTpo0OIyPKG4QQnCORiEiGNJmPEn2Kzz//DFFRUahQoQLOnDmD6dN8YWZiDIVCoevQKJ/hiEQikgu1z0Lr1q2DnZ0datasCWNjYxgbG6NWrVqws7PDunXrAAAWFhbw9/fP1vaqVKmCqKgo6RUUFKRuSPQxISCSk7Dvt72oXLky5s6di8TERLRu3VrqYmJsosMAifKO1IQNYNJGRCQnms5HidRx+qN5xgFg5MiRCAkJQZ06dXQUERUEHJFIRHKh9hyJjo6OOHLkCG7fvo07d+4AACpUqIAKFSpIfZo2bZr9AAwM4OjoqG4YuebjEUl5wb2Iu3AxeYyO5V/i67cvUbp0aSxatAgd2rUFok4B7+4h2a4KYGQJKJOhn/xetQ1Qr10OffNibJQnJCYmSu+ZtBERyYem81Gi7Hj//j0mTZqEH1etQkDIXQDAwYMH0axJE90GRgUCRyQSkVwohBBCVzufNm0aFixYAGtra5iYmKBevXrw8/NDiRIl0u2fkJCAhIQE6XNMTAycnZ3x5s0bWFlZaSXGiIgIbN26VSvb1gZTwyR8V2kjEP8YrxILYdXDb5EkjNJtNzTQy3ZfTWxDW33zYmxJgg+3yWsmT57MYiIRaUVMTAysra21ms+QdvFnmP9dvHgRffr0wa1btwAA3wwahLl+c2FjbcXbmEnrhBCYMWMGAMDHxwfm5uY6joiI8ht1chm1RyQCwOPHj7Fv3z5ERkbiw4cPKssWLVqU7e14eHhg48aNqFChAqKiojB9+nQ0atQI169fh6Vl2lFbfn5+mD59ek5CzrcMDVKuSCUmpVyhsjd8DsQ/BgAUMnwFB6PneJJQPN12A329bPfVxDa01TcvxvYkobgGfvqUW0qWLMmrv0REMqOpfJQoMx8+fIDfvPmYP38e4mJj4ejoiDVr1qB9+/a6Do0KEE63Q0RyovaIxGPHjqFjx44oU6YMbt++japVq+LBgwcQQqBGjRr4888/cxxMdHQ0SpYsiUWLFmHAgAFplutiRGJycrLK7Y1y8ijyIVzMXwIA7Kq2g7WNLRb4TcfnpjOg9y4CSvNy+ND8PGBgBiS+g9GfHqrtQqRty6ivJrahrb55MTYDMx3/9pA6jI05aToRaQ9Hs6lPm/loTvBnmD/duHEDA77+Gt9t2A0A+GXmd/hh6RIUKlRIx5FRQZOYmIg5c+YAACZOnAgjI97dRESapU4uo3YhsU6dOmjTpg2mT58OS0tLXLlyBQ4ODvD29kbr1q0xePDgTwq+du3aaNGiBfz8/LLsW1CTtoSEBCxcuBCLF/nj5dX/AQAm/3gAEyZ+DwsLCyApDoi+DthUVS1YpdeuTl9NbIOxsYhIREQqCmo+8ym0nY+qiz/D/CU5ORmLFy/G5MmTAT09bLscAQDo6FIEBhwNRjqQkJCAuXPnAgAmTZoEA4Mc3VhIRJQhdXIZtf9PeOvWLfTp0wdAyoNS4uPjYWFhgRkzZmDevHk5i/gfsbGxiIiIgJOT0ydtJz/7448/4OrqismTJyM+Pl5qnzVzZkoREUgpVBWuk7ZglV67On01sQ3GBiIiIvo02sxHqWASQiBJqUR4xD00bdoU48aNQ0JCAlq1aqXr0IikJzYDvLWZiHRP7bOQubm5NA+Nk5MTIiIipGUvX75Ua1s+Pj44ceIEHjx4gDNnzuCzzz6Dvr4+evTooW5Y+ZsQePzoIbx7doeXlxfCw8Ph6OiI9evX6zoyIiIiolynyXyUCACSlErsC3+Ga0mmuHDxIiwsLLBmzRrs3r1b16ERcY5EIpIVtc9CdevWRVBQEACgbdu2GDt2LGbPno3+/fujbt26am3r8ePH6NGjBypUqICuXbuiUKFCOHfuHOzt7dUNK9/68OEDFi/yR3G9xwhYMByWFuYYNWoUbt++jW5du+o6PCIiIqJcp8l8lOivv/7C559/Ln1u2LARrl69ioEDB3KOZJKF1BGJ+vr6Oo6EiCgHT21etGgRYmNjAQDTp09HbGwsdu7cCRcXF7WfkLdjxw51d1+gHD9+HEOHDsXDB/cxuvtRAMDpoCC4Vque0kGZnPHKRERERPmUJvNRKriEENi+fTuGDh2K+IQEfPVP+8GDB2FkwIINyUfqiESORiQiOVCrkJicnIzHjx/Dzc0NQMptJatWrdJKYAWWEHga9QQTJ07Exs1bAAAlnYtLi11dXXUVGREREZHOMR+lTyWEwLMXLzBy5Cjs2rEdAFC/YUNpuZ4eRyGSvHBEIhHJiVqXNPT19dGqVSu8fv1aW/EUaElJSVi+/Ac4igfYMOdbmJuZYsiQIbgcGqrr0IiIiIhkgfkofar/HTiIM6+T0W2aP8wtLTFjxgwcO/anrsMiyhBHJBKRnKh9a3PVqlVx7949lC5dWhvxFFinT5/GkCFDcDf8DoZ9nnIb86lTJ+Feo1bKLczxWWyASEaSk5ORmJio6zCIiGTB0NCQo0g0jPko5cSbN28watQobN+5E9supzygJzDwBGrVcEfSRw+zIJIbFhKJSE7ULiTOmjULPj4+mDlzJmrWrAlzc3OV5VZWVhoLLl8TAhBKPH/xAt+Nn4BNmzYBAIoXc5K6uFd311V0RDkihMDTp08RHR2t61CIiGTFxsYGjo6OfHCDhjAfJXX9+eef+OqrrxAZGQkTMzOpvXr1ajqMiih7eGszEcmJ2oXEtm3bAgA6duyokgwLIaBQKKSTHGUuOSkR+s+D4QDg5107AQADBw6E35zZwIdw3QZHlEOpRUQHBweYmZnxD2YiKvCEEIiLi8Pz588BAE5OTlmsQdnBfJSyQwiBt+/iMHXqVCxdnPIQnjJlymDjps14oePYiNTBEYlEJCdqFxKPHz+ujTgKlPPnz2PM6FE4/fNCAEC1atWwaPES1K1bN+U25igWEinvSU5OloqIhQoV0nU4RESyYWpqCgB4/vw5HBwcOKJEA5iPUnacPX8BT21LoPG3Pli1aiX69+uH+fPnw8TMDPvCn+k6PKJs44hEIpITtQuJnp6e2oijQHj16hUmTpyItWvXwtTEWGo/dfIk9A2NdBgZ0adLnRPR7KPbhYiIKEXquTExMZF/CGoA81HKzIcPHzBt2jQsWbYMWy+lXKD/7bff4NWyJQBwPkTKczgikYjkJEdnolOnTqFXr16oX78+/vrrLwDAli1bEBQUpNHg8gUhoExKxMYN61C+fHmsWbMGQgh4e3tLXfgHBeUnvJ2ZiCgtnhs1j/kopefq1auoXbs2/Pz8pOILADRv3lyHURF9Go5IJCI5UbuQuHv3bnh5ecHU1BQhISFISEgAkPIUtDlz5mg8wLwu9HII9J5dQL9WFfE+Pg6urq44efIkVv/0k65DIyIiIsqTmI/SfyUmJmLu/AVo0KgRrl69isKFC2NbwDZdh0WkERyRSERyovaZaNasWVi1ahXWrFkDQ0NDqb1BgwYICQnRaHB52evXrzFs2DA0atxYaps3bx5CQkLQqFEjHUZGRPmVQqHAr7/+quswiIi0jvkofezOnTto3qIlynfqhU0XbqPLF1/i+vXr6Nipo65DI9IIjkgkIjlRu5AYFhaGxh8Vx1JZW1sjOjpaEzHlXUJAJCchYMtmVKhQAStWrFC5pWLY0KEwMFB7Wkoi0hKFQpHpa9q0aboOkYiI0sF8lICUUVrLly9H9erVcSH4gtS+fcd2FClSRIeREWkWRyQSkZyofSZydHTE3bt307QHBQWhTJkyGgkqr7p+/RoUT8/Du1lZvIt9i0qVKuHgwYO6DouIMhAVFSW9lixZAisrK5U2Hx8fqa8QAklJSTqMloiIUjEfpcjISLRq1QrDhw9HfHw8mjZtKi3jnKSU37CQSERyovaZ6Ouvv8bIkSNx/vx5KBQKPHnyBAEBAfDx8cHgwYO1EaPsxcTEYPTo0ahfv77UNmvmTISGhsIznavlRAWFEALv3r3L9ZcQIlvxOTo6Si9ra2soFArp8+3bt2FpaYlDhw6hZs2aMDY2RlBQEPr164fOnTurbGfUqFFo0qSJ9FmpVMLPzw+lS5eGqakpqlWrhl9++SXDOL7//nt4eHikaa9WrRpmzJgBAAgODkbLli1RuHBhWFtbw9PTM9Pb9wIDA6FQKFRG5oSGhkKhUODBgwdSW1BQEBo1agRTU1M4OztjxIgRePfuXeYHjohIx5iPFlxKpRIbN29Bzdp1cOzYMZiammL58uX47bd9ug6NSGt4azMRyYna99lOmDABSqUSzZs3R1xcHBo3bgxjY2P4+Phg+PDh2ohRtoQQ2L59O8aOHYunT5/CzNREWjZ69GhATx9QJuswQiLdiouLg4WFRa7vNzY2Fubm5hrZ1oQJE7Bw4UKUKVMGtra22VrHz88PW7duxapVq+Di4oKTJ0+iV69esLe3h6enZ5r+3t7e8PPzQ0REBMqWLQsAuHHjBq5evYrdu3cDAN6+fYu+ffvihx9+gBAC/v7+aNu2LcLDw2FpaZmj7xYREYHWrVtj1qxZWL9+PV68eIFhw4Zh2LBh2LBhQ462SUSUG5iPFkzPnj3DkKHD4D17GX46eRlLv+2JtWtWw8XFBUkfTSdElN9wRCIRyYnahUSFQoFJkyZh3LhxuHv3LmJjY1G5cmWdFAt0RgjcunUTY8eOwaHDfwAAXFxc8OPyH3QcGBFp2owZM9CyZcts909ISMCcOXNw9OhR1KtXDwBQpkwZBAUF4aeffkq3kFilShVUq1YN27Ztw5QpUwAAAQEB8PDwQLly5QAAzZo1U1ln9erVsLGxwYkTJ9C+ffscfTc/Pz94e3tj1KhRAFLOY8uWLYOnpydWrlwJExOTzDdARKQjzEcLnt27d2PQoEF4++4dvGcvAwD8ceQIjA05/zjlfxyRSERyovb/ebdu3YrPP/8cZmZmqFy5sjZikrXY2FjM9ZuDWUPa4eDaqSjkegGjx4zFuHHjUhKZqHO6DpFINszMzBAbG6uT/WpKrVq11Op/9+5dxMXFpSk+fvjwAe7u7hmu5+3tjfXr12PKlCnSaOcxY8ZIy589e4bJkycjMDAQz58/R3JyMuLi4hAZGaneF/rIlStXcPXqVQQEBEhtQggolUrcv38flSpVyvG2iYi0qaDnowWBEALJQiA6OhqjRoyQ/l9Vq04dqY++PkdnUcHAEYlEJCdqFxJHjx6NQYMGoWPHjujVqxe8vLwKxJURIQR2796N0aNH4+9XLzFrSDsAwKVLF1GqdMqtiLyNmUiVQqHQ2C3GuvLf+PX09NLMwZiYmCi9Ty2cHjhwAMWKFVPpZ2xsnOF+evTogfHjxyMkJATx8fF49OgRunXrJi3v27cvXr16haVLl6JkyZIwNjZGvXr18OHDh3S3l5pofhzrx3Gmxvrtt99ixIgRadYvUaJEhrESEelaQc1HC5JkIbAv/BkA4Jc9e6Cnp4eJEyfi+8lTcPjh3zqOjih3cUQiEcmJ2pc0oqKisGPHDigUCnTt2hVOTk4YOnQozpw5o434dE8I3A2/g04dO+DLL7/E48ePUbJkSWlxqZKldBcbEeU6e3t7REVFqbSFhoZK7ytXrgxjY2NERkaiXLlyKi9nZ+cMt1u8eHF4enoiICAAAQEBaNmyJRwcHKTlp0+fxogRI9C2bVtUqVIFxsbGePnyZaZxAlCJ9eM4AaBGjRq4efNmmjjLlSsHIyOj7BwOIiKdKHD5aAETGxuLkSNHSZ/LlXPB6dOnMWvWLBgZGeouMCIdSR2RyCeSE5EcqF1INDAwQPv27REQEIDnz59j8eLFePDgAZo2bSo9JCA/2bFjO8qZvcC+VRNhY22FKVOm4NKli7oOi4h0pFmzZrh48SI2b96M8PBw+Pr64vr169JyS0tL+Pj4YPTo0di0aRMiIiIQEhKCH374AZs2bcp0297e3tixYwd+/vlneHt7qyxzcXHBli1bcOvWLZw/fx7e3t4wNTXNcFuphctp06YhPDwcBw4cgL+/v0qf8ePH48yZMxg2bBhCQ0MRHh6O3377DcOGDcvBkSEiyj0FLR8tSIKCglCtWjWsW7dWajtz5gzq1q2rw6iIdCu1kMgRiUQkB580yYKZmRm8vLzQpk0buLi44MGDBxoKSz7q1KktvQ8ODsaMGTNgapLxH+9ElL95eXlhypQp+O6771C7dm28ffsWffr0Uekzc+ZMTJkyBX5+fqhUqRJat26NAwcOoHTp0plu+4svvsCrV68QFxeHzp07qyxbt24dXr9+jRo1aqB3794YMWKEyojF/zI0NMT27dtx+/ZtuLm5Yd68eZg1a5ZKHzc3N5w4cQJ37txBo0aN4O7ujqlTp6Jo0aLqHRQiIh0qCPlofieEQGxcPMZPnIjGjRvj3r17KqP4zcyYe1PBlnprM+dIJCI5yNFjzuLi4rB3714EBATg2LFjcHZ2Ro8ePfDLL79oOj6dK1O6DBD1HABQjle4ifKtfv36oV+/ftLnJk2apJkLMdX06dMxffr0DLelUCgwcuRIjBw5Uq0YbGxs8P79+3SXubu7Izg4WKXtiy++UPn833gbNGiAq1evZtqndu3a+OOPP9SKk4hIDgpSPprfXbocikhzR3j0GwGjpUvRs3t3LPRfhMDn8boOjUgWOCKRiORE7UJi9+7dsX//fpiZmaFr166YMmUK6tWrp43YiIiIiIjSYD6aPyQmJsLPzw/zFy7E5uAwAMCuXT+jY/t2SFIqARYSiQBwRCIRyYvahUR9fX3s2rUr3afjXb9+HVWrVtVYcERERERE/8V8NO+7efMm+vbti4sXL8L4ozl/27Zto8OoiOSJIxKJSE7ULiQGBASofH779i22b9+OtWvX4tKlS9LVEiIiIiIibWA+mjcJIZCYrMSKFcsxcfx4JCQkwNbWFitWrtR1aESyxhGJRCQnOT4TnTx5En379oWTkxMWLlyIZs2a4dy5c5qMjYiIiIgoQ8xH85aI+w+wP+I5SrbuCujpoXXr1rh+/Tq+/PJLXYdGJGsckUhEcqLWiMSnT59i48aNWLduHWJiYtC1a1ckJCTg119/ReXKlbUVIxERERERAOajeZEQAmvXrsWE7ydhTdAVAMCyZT/g6wH9oVAoUuZDJKIMpRYSOSKRiOQg22eiDh06oEKFCrh69SqWLFmCJ0+e4IcfftBmbEREREREEm3ko9OmTYNCoVB5VaxYUUMR05MnT9CuXTt88803ePcuVmrv3/8rKBQKHUZGlHewkEhEcpLtEYmHDh3CiBEjMHjwYLi4uGgzJiIiIiKiNLSVj1apUgVHjx6VPhsYqD2NOP2HEAI7f/4Zo0aNxrOoJzA2NsacOXN0HRZRnpQ6RyJvbSYiOch2lhQUFIR169ahZs2aqFSpEnr37o3u3btrMzYiIiIiIom28lEDAwM4OjpqIELtEELgSVQMbt7UQ5XKyTA3V0jtse+AW7f0pfb02jTRV51t/P333/CdPgNtRs3B6KVX8L8femPJopkoU7Ycfn8Yj8hwQzy1iIGlRcp2k5UCCfFQaU+vLaO+mtiGuvsjyk0JCQkAOCKRiOQh24XEunXrom7duliyZAl27tyJ9evXY8yYMVAqlThy5AicnZ1haWmpzViJiIiIqADTVj4aHh6OokWLwsTEBPXq1YOfnx9KlCiRYf+EhATpD3sAiImJydH3ya637wRq1zdH1EMD2BV6hUHfroKRURISk02wfvNYlXaFvkGaNk30VXcbJUpUxNjO9v+0b8Xevaug0D8m9Z2fwXbnp7PdrPpqYhvq7o9IFzgikYjkQO1LGubm5ujfvz+CgoJw7do1jB07FnPnzoWDgwM6duyojRiJiAqsJk2aYNSoUboOg4hIVjSZj3p4eGDjxo04fPgwVq5cifv376NRo0Z4+/Zthuv4+fnB2tpaejk7O3/qV8rU9etA1MOU6/9/vyqEV6+coK+vj1cvHdO0p9emib7Z3UZUVCEkJSXhWVQh2cWmyf3xxVduv6ytrVGyZElNnlqIiHJGaEBSUpLYu3ev6NChgyY2l21v3rwRAMSbN2+0t5PkJCEeB6W8kpMybtNEX01tg0gH4uPjxc2bN0V8fLyuQ1FL3759BQABQBgYGIhSpUqJcePGyeZ7eHp6ipEjR2a43NfXV1SrVi3X4pGj+/fvCwDi8uXLug5FbcePHxfu7u7CyMhIlC1bVmzYsCHL/h07dhSOjo7CzMxMVKtWTWzdulWlz+rVq0XDhg2FjY2NsLGxEc2bNxfnz5/X4reg7MjsHJkr+UwBoKl89PXr18LKykqsXbs2wz7v378Xb968kV6PHj3S6s/wzdtk4VQyUQBClHNRinfvMm7XVt/sbAOKOwIwE2PHjhUvX8aJci5KAQjh8k/f2FhlmjYh0m9Xp68mtqHu/oiIiPITdfJRjcwkra+vj86dO6Nz586a2BwRUa5q3bo1NmzYgMTERFy6dAl9+/aFQqHAvHnzdB1avieEQHJycp55sEFycjIUCkWaOYo+fPgAIyMjtbZ1//59tGvXDoMGDUJAQACOHTuGgQMHwsnJCV5eXumuc+bMGbi5uWH8+PEoUqQI9u/fjz59+sDa2hrt27cHAAQGBqJHjx6oX78+TExMMG/ePLRq1Qo3btxAsWLFcvbFifIATeWjNjY2KF++PO7evZthH2NjYxgbG3/SftRhZgb4//oCkeGGGNzGDmZmigzbk5Ta6ZteOxAPX9+p8P91LCLDDbFucjesXXMIjRs3BgBcCU0ZTVm1qgJmZgCgSKcNMDdPr12dvprYhnr7IyIiKqg4WysRaY0QAh8+fMj1lxBCrTiNjY3h6OgIZ2dndO7cGS1atMCRI0ek5QkJCRgxYgQcHBxgYmKChg0bIjg4WFq+ceNG2NjYqGzz119/hULx74Ts06ZNQ/Xq1bFlyxaUKlUK1tbW6N69u8qtc+/evUOfPn1gYWEBJycn+Pv7Zxr3xo0bMX36dFy5cgUKhQIKhQIbN24EAERGRqJTp06wsLCAlZUVunbtimfPnmW4rQcPHkChUGDPnj1o2rQpzMzMUK1aNZw9e1alX1BQEBo1agRTU1M4OztjxIgRePfunbR8y5YtqFWrFiwtLeHo6IiePXvi+fPn0vLAwEAoFAocOnQINWvWhLGxMYKCgqBUKuHn54fSpUvD1NQU1apVwy+//CKt9/r1a3h7e8Pe3h6mpqZwcXHBhg0bAAClS5cGALi7u0OhUKBJkyaZHrePJSQkwMfHB8WKFYO5uTk8PDwQGBiocoxtbGywb98+VK5cGcbGxoiMjESpUqUwc+ZM9OnTB1ZWVvjmm2+yvc9Uq1atQunSpeHv749KlSph2LBh+OKLL7B48eIM1/n+++8xc+ZM1K9fH2XLlsXIkSPRunVr7NmzR+oTEBCAIUOGoHr16qhYsSLWrl0LpVKJY8eOqR0jUUEUGxuLiIgIODk56ToUFcamgItbYppCVnrt2ur7cfuNGxfh7u6OlSt/lNouXAiUiohASuGxTh2obCO9Nk301cX+iIiICqK8MQSEiPKkxMRE+Pn55fp+J06cqPbosFTXr1/HmTNnVOag+e6777B7925s2rQJJUuWxPz58+Hl5YW7d+/Czs4u29uOiIjAr7/+iv379+P169fo2rUr5s6di9mzZwMAxo0bhxMnTuC3336Dg4MDvv/+e4SEhKB69erpbq9bt264fv06Dh8+jKNHjwIArK2toVQqpSLiiRMnkJSUhKFDh6Jbt24qRbL0TJo0CQsXLoSLiwsmTZqEHj164O7duzAwMEBERARat26NWbNmYf369Xjx4gWGDRuGYcOGSUW9xMREzJw5ExUqVMDz588xZswY9OvXDwcPHlTZz4QJE7Bw4UKUKVMGtra28PPzw9atW7Fq1Sq4uLjg5MmT6NWrF+zt7eHp6YkpU6bg5s2bOHToEAoXLoy7d+8iPj4eAHDhwgXUqVMHR48eRZUqVdT62Q8bNgw3b97Ejh07ULRoUezduxetW7fGtWvX4OLiAgCIi4vDvHnzsHbtWhQqVAgODg4AgIULF2Lq1Knw9fWVtlelShU8fPgww/01atQIhw4dAgCcPXsWLVq0UFnu5eWl9pyYb968QaVKlTJcHhcXh8TERLV+V4kKEh8fH3To0AElS5bEkydP4OvrC319ffTo0UPXocla8+bNEP/uHYoWLQrTB9fQsmUL6Cv4RGMiIqL8joVEIirw9u/fDwsLCyQlJSEhIQF6enpYvnw5gJRRgitXrsTGjRvRpk0bAMCaNWtw5MgRrFu3DuPGjcv2fpRKJTZu3Cg9UbR37944duwYZs+ejdjYWKxbtw5bt25F8+bNAQCbNm1C8eLFM9yeqakpLCwsYGBgAEdHR6n9yJEjuHbtGu7fvy89AGDz5s2oUqUKgoODUbt27Qy36ePjg3bt2gEApk+fjipVquDu3buoWLEi/Pz84O3tLRW6XFxcsGzZMnh6emLlypUwMTFB//79pW2VKVMGy5YtQ+3atREbGwsLCwtp2YwZM9CyZUsAKaMC58yZg6NHj6JevXrSukFBQfjpp5/g6emJyMhIuLu7o1atWgCAUqVKSduyt7cHABQqVEjlOGQlMjISGzZsQGRkJIoWLSp9/8OHD2PDhg2YM2cOgJTi6I8//ohq1aqprN+sWTOMHTtWpe3gwYNITEzMcJ+mpqbS+6dPn6JIkSIqy4sUKYKYmBjEx8er9M3Irl27EBwcjJ9++inDPuPHj0fRokXTFC2JKMXjx4/Ro0cPvHr1Cvb29mjYsCHOnTsnnVvoXzdu3ACMCgNI+X+at7c3fvjhB9ja2uo4MiIiIsotLCQSkdYYGhpi4sSJOtmvOpo2bYqVK1fi3bt3WLx4MQwMDNClSxcAKaMIExMT0aBBA5Xt16lTB7du3VJrP6VKlZKKiADg5OQk3fYbERGBDx8+wMPDQ1puZ2eHChUqqLUPALh16xacnZ1VniJauXJl2NjY4NatW5kWEt3c3FTiA4Dnz5+jYsWKuHLlCq5evYqAgACpjxACSqUS9+/fR6VKlXDp0iVMmzYNV65cwevXr6FUKgGkFO0qV64srZdaEASAu3fvIi4uTiospvrw4QPc3d0BAIMHD0aXLl0QEhKCVq1aoXPnzqhfv77ax+Zj165dQ3JyMsqXL6/SnpCQgEKFCkmfjYyMVI5Let8hVW4+TfH48eP46quvsGbNGlSpUiXdPnPnzsWOHTsQGBgIExOTXIuNKC/ZsWOHrkOQveTkZCxYsACz/fyw6cJtAMDWLVvxRZfPdRwZERER5TYWEolIaxQKRY5vMc5N5ubmKFeuHABg/fr1qFatGtatW4cBAwZka309Pb008zKmNyrtvwVOhUIhFdrk4uMYU+d4TI0xNjYW3377LUaMGJFmvRIlSuDdu3fw8vKCl5cXAgICYG9vj8jISHh5eeHDhw8q/c3NzaX3sbGxAIADBw6keRhI6sMM2rRpg4cPH+LgwYM4cuQImjdvjqFDh2LhwoU5/q6xsbHQ19fHpUuXoK+vr7Ls49GTpqamKvNdpvcdUqlza7Ojo2OaeSufPXsGKyurLEcjnjhxAh06dMDixYvRp0+fdPssXLgQc+fOxdGjR9MthBIRZUfE3Qh81a+vNGfu1u+H44flP6Do55/pODIiIiLSBRYSiYg+oqenh++//x5jxoxBz549UbZsWRgZGeH06dPSaLPExEQEBwdLt/ja29vj7du3ePfunVRcCg0NVWu/ZcuWhaGhIc6fP48SJUoASHnAyJ07d+Dp6ZnhekZGRkhOTlZpq1SpEh49eoRHjx5JoxJv3ryJ6OholVGB6qpRowZu3rwpFV3/69q1a3j16hXmzp0r7ffixYtZbvfjh5hk9l3t7e3Rt29f9O3bF40aNcK4ceOwcOFCqVj93+OQFXd3dyQnJ+P58+do1KiRWutmRJ1bm+vVq5dm7sgjR45It3dnJDAwEO3bt8e8efMyfMjL/PnzMXv2bPz+++/pjpwkIsquevXq4fXfr2BpaYmlS5eiX79+6V5cISIiooKBhUQiov/48ssvMW7cOKxYsQI+Pj4YPHgwxo0bBzs7O5QoUQLz589HXFycNGLRw8MDZmZm+P777zFixAicP39eenpydllYWGDAgAEYN26c9ECPSZMmQU9PL9P1SpUqhfv37yM0NBTFixeHpaUlWrRoAVdXV3h7e2PJkiVISkrCkCFD4Onp+UlFpfHjx6Nu3boYNmwYBg4cCHNzc9y8eRNHjhzB8uXLUaJECRgZGeGHH37AoEGDcP36dcycOTPL7VpaWsLHxwejR4+GUqlEw4YN8ebNG5w+fRpWVlbo27cvpk6dipo1a6JKlSpISEjA/v37pQeMODg4wNTUFIcPH0bx4sVhYmICa2vrLPdbvnx5eHt7o0+fPvD394e7uztevHiBY8eOwc3NTZorUh3q3No8aNAgLF++HN999x369++PP//8E7t27cKBAwekPsuXL8fevXulJy4fP34c7du3x8iRI9GlSxc8ffoUQEpBOfVhKvPmzcPUqVOxbds2lCpVSupjYWGhMtKSiCgjjx//hdQ/E+Li49C0aVNs2LAhV6dvICIiInnK/C9UIqICyMDAAMOGDcP8+fPx7t07zJ07F126dEHv3r1Ro0YN3L17F7///rs0ubydnR22bt2KgwcPwtXVFdu3b8e0adPU3u+CBQvQqFEjdOjQAS1atEDDhg1Rs2bNTNfp0qULWrdujaZNm8Le3h7bt2+HQqHAb7/9BltbWzRu3BgtWrRAmTJlsHPnzpwcDombmxtOnDiBO3fuoFGjRnB3d8fUqVOlB5XY29tj48aN+Pnnn1G5cmXMnTs327cez5w5E1OmTIGfnx8qVaqE1q1b48CBAyhdujSAlELZxIkT4ebmhsaNG0NfX1+a18zAwADLli3DTz/9hKJFi6JTp04AUkbuKRQKPHjwIMP9btiwAX369MHYsWNRoUIFdO7cGcHBwdKoUG0qXbo0Dhw4gCNHjqBatWrw9/fH2rVr4eXlJfV5+fIlIiIipM+bNm1CXFwc/Pz84OTkJL0+//zfecpWrlyJDx8+4IsvvlDp8ym3gRNRwSCEwKZNm1Tm0l24cCGOHj3KIiIREREBABTivxN75SExMTGwtrbGmzdvYGVlpZ2dKJOBqHMp753qAnr66bdpoq+mtkGkA+/fv8f9+/dRunRpPtSBZCH1ycs3b95U+wE8RJqW2TkyV/IZ0ipt/wyTlErsC0+ZU7WjSxEY/DNaPb32nPatZ6OHIYMG4ddffwUANGzUGKvXrEbF8uV5KzMREVE+p04uw1ubiYgoXzp48CDmzJnDIiIRUTbUqlUbTx4/gqGhIaZPn45x48bBwIB/KhAREZEqZgdERJQv/fzzz7oOgYhI1qKjo6X3r169hJubGzZv3oxq1arpLigiIiKSNc6RSERERERUwPzxxx+oU6eO9NnHxwcXLlxgEZGIiIgyxUIiEREREVEBMmrUaHh5eeF+RASmfOEFx9eRmDl9OoyNjXUdGhEREckcC4lERERERAXI2rVrAADDhw9H8PlzqF/Xgw9UISIiomxhIZGIiIiIKB97//49Jk+eLH0uXrw4jh49imXLlsHMzEyHkREREVFew0IiEREREVE+FRISglq1amHJkiVS24XzF9C8eXPdBUVERER5FguJRERERET50Ny58+Dh4YEbN27A2tIS+ncuoaNLEdjaWOs6NCIiIsqjWEgkIiIiIsqHZs2aiaSkJHzxxRe4ceMGOnVoDwM9Pc6HSERERDnGQiIREWnVxo0bYWNjk2mfadOmoXr16rkSD6XFnxFR/qBUKrF8+XLps7W1DQICArBr1y4ULlxYh5ERERFRfsFCIhEVaC9evMDgwYNRokQJGBsbw9HREV5eXjh9+rTUp1SpUlAoFFAoFDAzM4OrqyvWrl2rsp3AwECpz8evjye3z6lSpUqpzG2lCU2aNMGoUaPUXm/Pnj1o2bIl7O3tYWVlhXr16uH333//5Hh8fHxw7Ngx6XO/fv3QuXPnT96unAghMHXqVDg5OcHU1BQtWrRAeHh4puucPHkSHTp0QNGiRaFQKPDrr7+qLE9MTMT48ePh6uoKc3NzFC1aFH369MGTJ080Hv9/f0ZycPXqVTRq1AgmJiZwdnbG/Pnzs1xnxIgRqFmzJoyNjdMtjAYGBqJTp05wcnKCubk5qlevjoCAAJU+e/bsQa1atWBjYyP12bJli6a+FlGOPHwYiWbNmmHChAlSW3BwMHr27MkRiERERKQxLCTmhuT3QMxNIClOO/2JKMe6dOmCy5cvY9OmTbhz5w727duHJk2a4NWrVyr9ZsyYgaioKFy/fh29evXC119/jUOHDqXZXlhYGKKioqTXx3/Q5QcnT55Ey5YtcfDgQVy6dAlNmzZFhw4dcPny5U/aroWFBQoVKqShKDXnw4cPadqEEEhKSlJ7W/Pnz8eyZcuwatUqnD9/Hubm5vDy8sL79+8zXOfdu3eoVq0aVqxYke7yuLg4hISEYMqUKQgJCcGePXsQFhaGjh07qh1fVuT2M4qJiUGrVq1QsmRJXLp0CQsWLMC0adOwevXqLNft378/unXrlu6yM2fOwM3NDbt378bVq1fx1VdfoU+fPti/f7/Ux87ODpMmTcLZs2elPl999ZVGiupEOVWnTh2cOHECBnp6eHHyADqUc4BzsaK6DouIiIjyG5GHvXnzRgAQb9680d5OkpOEeByU8kpO+rft4VEhbq4WIiEm874JMULsKS5EAIT4zUWIxHeZbyO9/ultN6P9EelIfHy8uHnzpoiPj//0jSW+E+LF+X//vWjJ69evBQARGBiYab+SJUuKxYsXq7TZ2dmJ0aNHS5+PHz8uAIjXr1+nWf/ChQuiRYsWolChQsLKyko0btxYXLp0SVquVCqFr6+vcHZ2FkZGRsLJyUkMHz5cCCGEp6enAKDySnXq1CnRsGFDYWJiIooXLy6GDx8uYmNjpeUrVqwQ5cqVE8bGxsLBwUF06dJFCCFE375902zz/v372T1saVSuXFlMnz49w+UbNmwQ1tbWYu/evVI8rVq1EpGRkVIfX19fUa1aNen9f+M7fvy4SEhIEEOHDhWOjo7C2NhYlChRQsyZM0etWK9duyZat24tzM3NhYODg+jVq5d48eKFtNzT01MMHTpUjBw5UhQqVEg0adJE+tkePHhQ1KhRQxgaGorjx4+rtV+lUikcHR3FggULpLbo6GhhbGwstm/fnq1tABB79+7Nst+FCxcEAPHw4cNsx6fuzyh1Pzn9vdaEH3/8Udja2oqEhASpbfz48aJChQrZWv+/3yczbdu2FV999VWmfdzd3cXkyZMzXJ7ZOTJX8hnSKm3/DBOTk8Xu20/E7ttPRGJystT+6K8nUruxqalo2LChuHv3rlZiICIiovxLnVyGIxJzIikOuNQPuPwNcLhm5iMH31wH4h+nvI8NB6KvZ76NjPoTFRRJccCh6sAfHin/1eLIXAsLC1hYWODXX39FQkJCttZRKpXYvXs3Xr9+DSMjo2yt8/btW/Tt2xdBQUE4d+4cXFxc0LZtW7x9+xYAsHv3bixevBg//fQTwsPD8euvv8LV1RVAyi2UxYsXl0ZERkVFAQAiIiLQunVrdOnSBVevXsXOnTsRFBSEYcOGAQAuXryIESNGYMaMGQgLC8Phw4fRuHFjAMDSpUtRr149fP3119I2nZ2d1Tp2Hx+Pt2/fws7OLtN+cXFxmD17NjZv3ozTp08jOjoa3bt3T7evj48PunbtitatW0vx1a9fH8uWLcO+ffuwa9cuhIWFISAgAKVKlcp2rNHR0WjWrBnc3d1x8eJFHD58GM+ePUPXrl1V+m3atAlGRkY4ffo0Vq1aJbVPmDABc+fOxa1bt+Dm5oZTp05Jv0MZvVJvib1//z6ePn2KFi1aSNuztraGh4cHzp49m+3vkB1v3ryBQqHIcs7D/1LnZwR82u81AAwaNCjL45eZs2fPonHjxir/Dr28vBAWFobXr1+r9d2z8ubNmwx/x4UQOHbsGMLCwqR/Y0S5YefOnahdu7b0efbs2QgMDETZsmV1GBURERHldwa6DiBPSq/YV7hO+n1t3AALl5R+li6ATdXMt5FR/4wkvwfe3QPs3QAjS818PyJdir4OvP1n3ri3Wfz7+kQGBgbYuHEjvv76a6xatQo1atSAp6cnunfvDjc3N5W+48ePx+TJk5GQkICkpCTY2dlh4MCBabZZvHhxlc8PHz5Es2bNVNpWr14NGxsbnDhxAu3bt0dkZCQcHR3RokULGBoaokSJEqhTJ+U729nZQV9fH5aWlnB0dJS24efnB29vb2meQxcXFyxbtgyenp5YuXIlIiMjYW5ujvbt28PS0hIlS5aEu7s7gJQClpGREczMzFS2mRMLFy5EbGxsmmLcfyUmJmL58uXw8PAAkFKsq1SpEi5cuCB911QWFhYwNTVFQkKCSnyRkZFwcXFBw4YNoVAoULJkSbViXb58Odzd3TFnzhypbf369XB2dsadO3dQvnx5ACnH8uO59lKLtzNmzEDLli2l9lq1aiE0NDTTfRYpUgQA8PTpU5XPHy9PXaYJ79+/x/jx49GjRw9YWVmpta46PyMAn/R7DaQcTx8fnxx8yxRPnz5F6dKlVdo+Pt62trY53vbHdu3aheDgYPz0008q7W/evEGxYsWQkJAAfX19/Pjjjyq/H0Ta8vfff2PEsGHYuXMnAGD+V12wZs0afDZqFOdCJCIiIq3jiMTs+O+chanFPiBtse+/fQ3NgbahQKvzQJtQwMAs821k1D+9eRPVGRlJlFfYVE35NwFkr5j+ibp06YInT55g3759aN26NQIDA1GjRg1s3LhRpd+4ceMQGhqKP//8Ex4eHli8eDHKlSuXZnunTp1CaGio9LK1tcWzZ8/w9ddfw8XFBdbW1rCyskJsbCwiIyMBAF9++SXi4+NRpkwZfP3119i7d2+Wc/BduXIFGzduVBm95eXlBaVSifv376Nly5YoWbIkypQpg969eyMgIABxcZo9R2zbtg3Tp0/Hrl274ODgkGlfAwMDlZEzFStWhI2NDW7dupXt/fXr1w+hoaGoUKECRowYgT/++EOteK9cuYLjx4+rHLOKFSsCSBnhmapmzZrprl+rVi2Vz6ampihXrlymL0vL3LvAk5iYiK5du0IIgZUrV6q9vro/o0/9vXZwcMjy+KWqUqWK9DNr06aN2t8tp44fP46vvvoKa9asQZUqVVSWWVpaIjQ0FMHBwZg9ezbGjBmDwMDAXIuNCq7atWtj586d0NfXh6+vL06dOAHXKlVYRCQiIqJcwRGJWUkt1sU/BsIXpBT5Uot90ddTihypxb70+hqYpbz+O6Iqo20AaftntF11RkYS5RUGZilF9PT+bWiJiYkJWrZsiZYtW2LKlCkYOHAgfH190a9fP6lP4cKFpeLGzz//DFdXV9SqVQuVK1dW2Vbp0qXT3FLat29fvHr1CkuXLkXJkiVhbGyMevXqSQ/ycHZ2RlhYGI4ePYojR45gyJAhWLBgAU6cOAFDQ8N0Y46NjcW3336LESNGpFlWokQJGBkZISQkBIGBgfjjjz8wdepUTJs2DcHBwWrf8pqeHTt2YODAgfj5559VbtfVpho1auD+/fs4dOgQjh49iq5du6JFixb45ZdfsrV+bGwsOnTogHnz5qVZ5uTkJL03NzdPd/3/tp86dSrLotZPP/0Eb29vaWTls2fPVPb17NmzdJ8crK7UIuLDhw/x559/qj0aMSc+9fd60KBB2Lp1a6b7iI2NBQAcPHgQiYmJAFIKuADg6OiIZ8+eqfRP/fypI20B4MSJE+jQoQMWL16MPn36pFmup6cnFTurV6+OW7duwc/PD02aNPnkfRP9V+zbWOn9s2fPUKlSJWzevDnNBQ4iIiIibWMhMSsZFevSKw6qW9hLbxvqxKDubdBEeUV2/21oSeXKlfHrr79muNzZ2RndunXDxIkT8dtvv2W5vdOnT+PHH39E27ZtAQCPHj3Cy5cvVfqYmpqiQ4cO6NChA4YOHYqKFSvi2rVrqFGjBoyMjJCcnKzSv0aNGrh582a6oyJTGRgYoEWLFmjRogV8fX1hY2ODP//8E59//nm628yu7du3o3///tixYwfatWuXrXWSkpJw8eJF6dbWsLAwREdHo1KlSun2zyg+KysrdOvWDd26dcMXX3yB1q1b4++//85yjkYg5Zjt3r0bpUqVgoHBp//vT51bm0uXLg1HR0ccO3ZMKhzGxMTg/PnzGDx48CfFkVpEDA8Px/Hjx3P8ZGV1f0af+nutzq3N6d3GXq9ePUyaNAmJiYlSwf3IkSOoUKHCJ9/WHBgYiPbt22PevHn45ptvsrWOUqnM9lyrROpSKpXS++HDR2DGNF+pqE5ERESUm1hIzIo6xTptFfYy2m5moxqJKEuvXr3Cl19+if79+8PNzQ2Wlpa4ePEi5s+fj06dOmW67siRI1G1alVcvHgxyxEhLi4u2LJlC2rVqoWYmBiMGzdO5Q/AjRs3Ijk5GR4eHjAzM8PWrVthamoqFU9KlSqFkydPonv37jA2NkbhwoUxfvx41K1bF8OGDcPAgQNhbm6Omzdv4siRI1i+fDn279+Pe/fuoXHjxrC1tcXBgwehVCpRoUIFaZvnz5/HgwcPYGFhATs7O+jpZT3bxbZt29C3b18sXboUHh4e0vx+pqamsLa2znA9Q0NDDB8+HMuWLYOBgQGGDRuGunXrpjv3Xmp8v//+O8LCwlCoUCFYW1vjhx9+gJOTE9zd3aGnp4eff/4Zjo6O2R5hOXToUKxZswY9evTAd999Bzs7O9y9exc7duzA2rVroa+vn63tpEq9tTk7FAoFRo0ahVmzZsHFxQWlS5fGlClTULRoUXTu3Fnq17x5c3z22WfSQ3NiY2Nx9+5dafn9+/cRGhoKOzs7lChRAomJifjiiy8QEhKC/fv3Izk5WfqZ2NnZZfuBQID6P6NP/b12cHDI8pb4zPTs2RPTp0/HgAEDMH78eFy/fh1Lly7F4sWLpT579+7FxIkTcfv2bant7t27iI2NxdOnTxEfHy8VgytXrgwjIyMcP34c7du3x8iRI9GlSxfpeBoZGUkFaz8/P9SqVQtly5ZFQkICDh48iC1btuTolnKi7LC1sUbh69chhMD8uX68jZmIiIh0R9uPkNYmdR5P/UkS3wnx4nzKfzXZV1sxEOlAfHy8uHnzpoiPj9d1KNn2/v17MWHCBFGjRg1hbW0tzMzMRIUKFcTkyZNFXFyc1K9kyZJi8eLFadb38vISbdq0EUIIcfz4cQFAvH79Ok2/kJAQUatWLWFiYiJcXFzEzz//rLLNvXv3Cg8PD2FlZSXMzc1F3bp1xdGjR6X1z549K9zc3ISxsbH4+LR94cIF0bJlS2FhYSHMzc2Fm5ubmD17thBCiFOnTglPT09ha2srTE1NhZubm9i5c6e0blhYmKhbt64wNTUVAMT9+/el7+rr65vhMfP09BQA0rz69u2b4TobNmwQ1tbWYvfu3aJMmTLC2NhYtGjRQjx8+FDq4+vrK6pVqyZ9fv78ufTdAIjjx4+L1atXi+rVqwtzc3NhZWUlmjdvLkJCQqR1+vbtKzw9PTOMQwgh7ty5Iz777DNhY2MjTE1NRcWKFcWoUaOEUqmUvt/IkSNV1snsZ6sOpVIppkyZIooUKSKMjY1F8+bNRVhYmEqf/x7/1H1ndLzv37+f7vLUY5bK09NT4z+jT/291oQrV66Ihg0bCmNjY1GsWDExd+7cNN/rv6lORr/Dqf8G+vbtm+7yj3+3Jk2aJMqVKydMTEyEra2tqFevntixY0emsWZ2jsy1fIa0hj9DIiIiysvUyWUUQgih3VKl9sTExMDa2hpv3rzJlfmgiChj79+/x/3791G6dGmYmJjoOhzKgbi4OBQqVAiHDh3Kk/O8eXp6omnTppg2bZquQ5GdkiVLYvr06SrzflLuyuwcyXwm7+PPkIiIiPIydXIZ3tpMREQAUp5Q26xZszxZRHzz5g0iIiJw4MABXYciOzdu3IC1tXW6DwwhIiIiIiJSBwuJREQEAGjXrl22H54iN9bW1nj8+LGuw5ClKlWq4OrVq7oOg4iIiIiI8oGsZ9YnIiIiIiIiIiKiAo+FRCIiIiIiIiIiIsoSC4lEpFF5+PlNRERaw3MjEREREeUHLCQSkUYYGhoCSHnyLxERqUo9N6aeK4mIiIiI8iI+bIWINEJfXx82NjZ4/vw5AMDMzAwKhULHURER6ZYQAnFxcXj+/DlsbGygr6+v65CIiIiIiHKMhUQi0hhHR0cAkIqJRESUwsbGRjpHEhERERHlVSwkEpHGKBQKODk5wcHBAYmJiboOh4hIFgwNDTkSkYiIiIjyBRYSiUjj9PX1+UczERERERERUT7Dh60QERERERERERFRllhIJCIiIiIiIiIioiyxkEhERERERERERERZytNzJAohAAAxMTE6joSIiIgoZ1LzmNS8hvIe5qRERESUl6mTj+bpQuLbt28BAM7OzjqOhIiIiOjTvH37FtbW1roOg3KAOSkRERHlB9nJRxUiD1/+ViqVePLkCSwtLaFQKHQdjizExMTA2dkZjx49gpWVla7DyRd4TLWDx1U7eFy1g8dVO3hcUwgh8PbtWxQtWhR6epx1Ji9iTqqK/7a1g8dVO3hcNY/HVDt4XLWDxzWFOvlonh6RqKenh+LFi+s6DFmysrIq0P8ItIHHVDt4XLWDx1U7eFy1g8cVHImYxzEnTR//bWsHj6t28LhqHo+pdvC4agePa/bzUV72JiIiIiIiIiIioiyxkEhERERERERERERZYiExnzE2Noavry+MjY11HUq+wWOqHTyu2sHjqh08rtrB40qUP/HftnbwuGoHj6vm8ZhqB4+rdvC4qi9PP2yFiIiIiIiIiIiIcgdHJBIREREREREREVGWWEgkIiIiIiIiIiKiLLGQSERERERERERERFliIZGIiIiIiIiIiIiyxEJiHjJt2jQoFAqVV8WKFTNd5+eff0bFihVhYmICV1dXHDx4MJeizTvUPa5r1qxBo0aNYGtrC1tbW7Ro0QIXLlzIxYjlLye/q6l27NgBhUKBzp07azfIPCgnxzU6OhpDhw6Fk5MTjI2NUb58eZ4H/iMnx3XJkiWoUKECTE1N4ezsjNGjR+P9+/e5FHHe8ddff6FXr14oVKgQTE1N4erqiosXL2a6TmBgIGrUqAFjY2OUK1cOGzduzJ1giShbmI9qB/NR7WBOqnnMR7WD+aj2MB/VPANdB0DqqVKlCo4ePSp9NjDI+Ed45swZ9OjRA35+fmjfvj22bduGzp07IyQkBFWrVs2NcPMMdY5rYGAgevTogfr168PExATz5s1Dq1atcOPGDRQrViw3ws0T1DmmqR48eAAfHx80atRIm6Hlaeoc1w8fPqBly5ZwcHDAL7/8gmLFiuHhw4ewsbHJhUjzFnWO67Zt2zBhwgSsX78e9evXx507d9CvXz8oFAosWrQoN8LNE16/fo0GDRqgadOmOHToEOzt7REeHg5bW9sM17l//z7atWuHQYMGISAgAMeOHcPAgQPh5OQELy+vXIyeiDLDfFQ7mI9qB3NSzWM+qh3MRzWP+ah2sJCYxxgYGMDR0TFbfZcuXYrWrVtj3LhxAICZM2fiyJEjWL58OVatWqXNMPMcdY5rQECAyue1a9di9+7dOHbsGPr06aON8PIkdY4pACQnJ8Pb2xvTp0/HqVOnEB0drb3g8jB1juv69evx999/48yZMzA0NAQAlCpVSovR5V3qHNczZ86gQYMG6NmzJ4CUY9qjRw+cP39emyHmOfPmzYOzszM2bNggtZUuXTrTdVatWoXSpUvD398fAFCpUiUEBQVh8eLFTNyIZIT5qHYwH9UO5qSax3xUO5iPah7zUe3grc15THh4OIoWLYoyZcrA29sbkZGRGfY9e/YsWrRoodLm5eWFs2fPajvMPEed4/pfcXFxSExMhJ2dnRYjzHvUPaYzZsyAg4MDBgwYkEsR5k3qHNd9+/ahXr16GDp0KIoUKYKqVatizpw5SE5OzsWI8wZ1jmv9+vVx6dIl6Raye/fu4eDBg2jbtm1uhZsn7Nu3D7Vq1cKXX34JBwcHuLu7Y82aNZmuw/9vEeUNzEe1g/modjAn1Tzmo9rBfFTzmI9qBwuJeYiHhwc2btyIw4cPY+XKlbh//z4aNWqEt2/fptv/6dOnKFKkiEpbkSJF8PTp09wIN89Q97j+1/jx41G0aNE0J5uCTN1jGhQUhHXr1mV5Ui/o1D2u9+7dwy+//ILk5GQcPHgQU6ZMgb+/P2bNmpXLkcubuse1Z8+emDFjBho2bAhDQ0OULVsWTZo0wffff5/LkcvbvXv3sHLlSri4uOD333/H4MGDMWLECGzatCnDdTL6/1ZMTAzi4+O1HTIRZQPzUe1gPqodzEk1j/modjAf1Q7mo1oiKM96/fq1sLKyEmvXrk13uaGhodi2bZtK24oVK4SDg0NuhJdnZXVcP+bn5ydsbW3FlStXciGyvCuzYxoTEyNKlSolDh48KLX17dtXdOrUKRcjzJuy+l11cXERzs7OIikpSWrz9/cXjo6OuRVinpTVcT1+/LgoUqSIWLNmjbh69arYs2ePcHZ2FjNmzMjlSOXN0NBQ1KtXT6Vt+PDhom7duhmu4+LiIubMmaPSduDAAQFAxMXFaSVOIvo0zEe1g/modjAn1Tzmo9rBfFQzmI9qB+dIzMNsbGxQvnx53L17N93ljo6OePbsmUrbs2fP1JojpCDK6rimWrhwIebOnYujR4/Czc0tl6LLmzI7phEREXjw4AE6dOggtSmVSgAp84SEhYWhbNmyuRZrXpLV76qTkxMMDQ2hr68vtVWqVAlPnz7Fhw8fYGRklFuh5ilZHdcpU6agd+/eGDhwIADA1dUV7969wzfffINJkyZBT4+D/YGU37/KlSurtFWqVAm7d+/OcJ2M/r9lZWUFU1NTrcRJRJ+G+ah2MB/VDuakmsd8VDuYj2oG81Ht4G9XHhYbG4uIiAg4OTmlu7xevXo4duyYStuRI0dQr1693Agvz8rquALA/PnzMXPmTBw+fBi1atXKxejypsyOacWKFXHt2jWEhoZKr44dO6Jp06YIDQ2Fs7OzDiLOG7L6XW3QoAHu3r0rJcEAcOfOHTg5OTFpy0RWxzUuLi5NcpaaHAshtB5fXtGgQQOEhYWptN25cwclS5bMcB3+f4so72E+qh3MR7WDOanmMR/VDuajmsF8VEt0PSSSsm/s2LEiMDBQ3L9/X5w+fVq0aNFCFC5cWDx//lwIIUTv3r3FhAkTpP6nT58WBgYGYuHCheLWrVvC19dXGBoaimvXrunqK8iSusd17ty5wsjISPzyyy8iKipKer19+1ZXX0F21D2m/8XbSNKn7nGNjIwUlpaWYtiwYSIsLEzs379fODg4iFmzZunqK8iSusfV19dXWFpaiu3bt4t79+6JP/74Q5QtW1Z07dpVV19Bli5cuCAMDAzE7NmzRXh4uAgICBBmZmZi69atUp8JEyaI3r17S5/v3bsnzMzMxLhx48StW7fEihUrhL6+vjh8+LAuvgIRpYP5qHYwH9UO5qSax3xUO5iPagfzUe1gITEP6datm3BychJGRkaiWLFiolu3buLu3bvSck9PT9G3b1+VdXbt2iXKly8vjIyMRJUqVcSBAwdyOWr5U/e4lixZUgBI8/L19c394GUqJ7+rH2PSlr6cHNczZ84IDw8PYWxsLMqUKSNmz56tMkcNqX9cExMTxbRp00TZsmWFiYmJcHZ2FkOGDBGvX7/O/eBl7n//+5+oWrWqMDY2FhUrVhSrV69WWd63b1/h6emp0nb8+HFRvXp1YWRkJMqUKSM2bNiQewETUZaYj2oH81HtYE6qecxHtYP5qPYwH9U8hRAc90pERERERERERESZ4xyJRERERERERERElCUWEomIiIiIiIiIiChLLCQSERERERERERFRllhIJCIiIiIiIiIioiyxkEhERERERERERERZYiGRiIiIiIiIiIiIssRCIhEREREREREREWWJhUQiIiIiIiIiIiLKEguJRFQgrF69Gs7OztDT08OSJUswbdo0VK9eXddh5ViTJk0watQoXYdBRERERNnEfJSI8gMWEonok/Xr1w+dO3fO9f1u3LgRNjY2WfaLiYnBsGHDMH78ePz111/45ptvtBJPXk8GiYiIiPIq5qMpmI8SkbYZ6DoAIiJti4yMRGJiItq1awcnJyddh0NEREREBQzzUSLKLzgikYg0rkmTJhgxYgS+++472NnZwdHREdOmTVPpo1AosHLlSrRp0wampqYoU6YMfvnlF2l5YGAgFAoFoqOjpbbQ0FAoFAo8ePAAgYGB+Oqrr/DmzRsoFAooFIo0+wBSrhK7uroCAMqUKSOt/19KpRIzZsxA8eLFYWxsjOrVq+Pw4cMqfcaPH4/y5cvDzMwMZcqUwZQpU5CYmCjtZ/r06bhy5YoUz8aNG9Ps548//oCJiYnK9wKAkSNHolmzZgCAV69eoUePHihWrBjMzMzg6uqK7du3Z3C0/z2ev/76q0qbjY2NSgyPHj1C165dYWNjAzs7O3Tq1CndY0FERESU1zEfZT5KRNrBQiIRacWmTZtgbm6O8+fPY/78+ZgxYwaOHDmi0mfKlCno0qULrly5Am9vb3Tv3h23bt3K1vbr16+PJUuWwMrKClFRUYiKioKPj0+aft26dcPRo0cBABcuXEBUVBScnZ3T9Fu6dCn8/f2xcOFCXL16FV5eXujYsSPCw8OlPpaWlti4cSNu3ryJpUuXYs2aNVi8eLG0n7Fjx6JKlSpSPN26dUuzn+bNm8PGxga7d++W2pKTk7Fz5054e3sDAN6/f4+aNWviwIEDuH79Or755hv07t0bFy5cyNaxSU9iYiK8vLxgaWmJU6dO4fTp07CwsEDr1q3x4cOHHG+XiIiISK6YjzIfJSLNYyGRiLTCzc0Nvr6+cHFxQZ8+fVCrVi0cO3ZMpc+XX36JgQMHonz58pg5cyZq1aqFH374IVvbNzIygrW1NRQKBRwdHeHo6AgLC4s0/UxNTVGoUCEAgL29PRwdHaGvr5+m38KFCzF+/Hh0794dFSpUwLx581C9enUsWbJE6jN58mTUr18fpUqVQocOHeDj44Ndu3ZJ+7GwsICBgYEUj6mpaZr96Ovro3v37ti2bZvUduzYMURHR6NLly4AgGLFisHHxwfVq1dHmTJlMHz4cLRu3VraV07s3LkTSqUSa9euhaurKypVqoQNGzYgMjISgYGBOd4uERERkVwxH2U+SkSaxzkSiUgr3NzcVD47OTnh+fPnKm316tVL8zk0NFTboaURExODJ0+eoEGDBirtDRo0wJUrV6TPO3fuxLJlyxAREYHY2FgkJSXByspK7f15e3ujbt26ePLkCYoWLYqAgAC0a9dOmqg7OTkZc+bMwa5du/DXX3/hw4cPSEhIgJmZWY6/45UrV3D37l1YWlqqtL9//x4RERE53i4RERGRXDEfzRjzUSLKKRYSiUgrDA0NVT4rFAoolcpsr6+nlzJgWgghtaXO/6ILZ8+ehbe3N6ZPnw4vLy9YW1tjx44d8Pf3V3tbtWvXRtmyZbFjxw4MHjwYe/fuVZk7ZsGCBVi6dCmWLFkCV1dXmJubY9SoUZneTBaBagAAA3JJREFU8qFQKFSOFaB6vGJjY1GzZk0EBASkWdfe3l7t70BEREQkd8xHM8Z8lIhyioVEItKZc+fOoU+fPiqf3d3dAfybTERFRcHW1hYA0lwdNjIyQnJy8ifHYWVlhaJFi+L06dPw9PSU2k+fPo06deoAAM6cOYOSJUti0qRJ0vKHDx/mOB5vb28EBASgePHi0NPTQ7t27VT226lTJ/Tq1QtAysTbd+7cQeXKlTPcnr29PaKioqTP4eHhiIuLkz7XqFEDO3fuhIODQ46uWhMRERHlR8xHmY8SkXo4RyIR6czPP/+M9evX486dO/D19cWFCxcwbNgwAEC5cuXg7OyMadOmITw8HAcOHEhztbVUqVKIjY3FsWPH8PLlS5VERV3jxo3DvHnzsHPnToSFhWHChAkIDQ3FyJEjAQAuLi6IjIzEjh07EBERgWXLlmHv3r1p4rl//z5CQ0Px8uVLJCQkZLg/b29vhISEYPbs2fjiiy9gbGwsLXNxccGRI0dw5swZ3Lp1C99++y2ePXuWafzNmjXD8uXLcfnyZVy8eBGDBg1SuQrv7e2NwoULo1OnTjh16hTu37+PwMBAjBgxAo8fP87JISMiIiLK85iPMh8lIvWwkEhEOjN9+nTs2LEDbm5u2Lx5M7Zv3y5d5TQ0NMT27dtx+/ZtuLm5Yd68eZg1a5bK+vXr18egQYPQrVs32NvbY/78+TmOZcSIERgzZgzGjh0LV1dXHD58GPv27YOLiwsAoGPHjhg9ejSGDRuG6tWr48yZM5gyZYrKNrp06YLWrVujadOmsLe3x/bt2zPcX7ly5VCnTh1cvXpVejpeqsmTJ6NGjRrw8vJCkyZN4OjoiM6dO2cav7+/P5ydndGoUSP07NkTPj4+KnPYmJmZ4eTJkyhRogQ+//xzVKpUCQMGDMD79+95RZiIiIgKLOajzEeJSD0K8d9JDIiIcoFCocDevXuzTEiIiIiIiLSB+SgRkfo4IpGIiIiIiIiIiIiyxEIiERERERERERERZYm3NhMREREREREREVGWOCKRiIiIiIiIiIiIssRCIhEREREREREREWWJhUQiIiIiIiIiIiLKEguJRERERERERERElCUWEomIiIiIiIiIiChLLCQSERERERERERFRllhIJCIiIiIiIiIioiyxkEhERERERERERERZ+j8eT3C4/XhdWQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABRIAAAHaCAYAAAB8VbV4AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XdYU9cbB/Bv2CBLXDhAUKlbFFdd1bpwtfVXt7j3wC3uvffee2trraPOqnULbhCcqCgucDGUDTm/Pyi3RBIkGkgg38/z8NScnHvum8TGl/eec65MCCFARERERERERERElA4DbQdAREREREREREREuo+FRCIiIiIiIiIiIvoiFhKJiIiIiIiIiIjoi1hIJCIiIiIiIiIioi9iIZGIiIiIiIiIiIi+iIVEIiIiIiIiIiIi+iIWEomIiIiIiIiIiOiLWEgkIiIiIiIiIiKiL2IhkYiIiIiIiIiIiL6IhUQiIiIiIiIiIiL6IhYSiYiIiIiIiIiI6ItYSCQiomzHxsYGL1++TNMeFxeHAgUKIDIyUgtRERERERFlnKqcFmBeS7qLhUQiIspWgoODAQCFCxdO85ypqSlCQ0NhbW0NABBCwNLSEm/evMnSGImIiIiI0pNeTgso5rXMaUmXsJBIRETZSkBAAEqVKpWhvkFBQbCwsED+/PkzOSoiIiIiooxjTkvZFQuJRKQV8+bNQ6lSpSCXy7UdSrbw6dMnGBgYYPHixdoOJUssXLgQ7du3R+fOnWFjY4MyZcrg8ePHAJKTrsKFC6Njx46wsbHB999/j2fPngEAli5dip49ewIA7t27hzJlyiAsLAyWlpaoWrUq7t+/j4YNG8LOzg65c+fG4MGDvxjLmjVr4OjoiLi4uMx7wURERDlIdsrzdDlWfcv/VMnOudjX5rTAf3mtspwWAPNa0hoWEolU8Pf3R+vWrVG0aFGYmZmhcOHCaNSoEZYvXy712bJlC2QymfRjZGSEwoULo1u3bkr3uvi8f+qfMWPGaPw1XL58GVOmTEF4eLjGx/6Wc0RGRmLu3LkYPXo0DAz++xrq378/SpYsmQlRfpvbt2/Dw8MDhQsXhomJCezt7VG7dm1MnTpVod+JEycUPlNjY2OUKFECU6ZMQXx8fJpxP+8vk8lgbW2NatWq4cCBAwp9AwICIIRAhQoVpDYhBKZNm4YLFy5kyuvOqGvXrsHT0xNly5ZFrly54OjoiLZt2+Lhw4dfPaa/vz8uX74MT09PfPjwAeXKlcOmTZsAJL8Xly5dgqenJ969ewdnZ2dMnjwZQPJnlfIelS5dGpMnT0b//v3x6dMnXLt2DR4eHujTpw/ev3+PZ8+eoWvXrmnOPWfOHJiZmUmPu3Xrhvj4eKxdu/arXw8REekffc0lleV5uprjqcpJU2QkB9TX/A9I3sNv9OjRKFSoEMzNzVG9enWcPHkyQ8eePXtW5d9lHx8fhb5ZmYtpOq/92pwW+C+vVZbTAvhiXvt5TgswryXNMNJ2AES66PLly/jxxx/h6OiI3r17w97eHs+fP4ePjw+WLl2KQYMGKfSfNm0anJ2dERsbCx8fH2zZsgUXL15EQEBAmi/v1P1TK1euXKa8jqlTp6Jbt26wtbXV+Phfe45NmzYhMTERHTp0UGhPSEjQuatjf/75Jzp06ABHR0f07dsXhQoVQnBwME6dOoUdO3Yo/GPv5+cHAFi0aBHy5cuH6Oho7N27F1OnTkVcXBxmz56tMHZK/2XLliF37tyQy+V4/vw5li1bhjZt2sDf319a7lCtWjXExMTA1NRUOv7hw4eYPHlyhpdEZJa5c+fi0qVLaNOmDSpUqICQkBCsWLECbm5u8PHx+aq/2/7+/pgyZQqqV68OAHBxcYEQAkBy0jVx4kTUrFkTANC5c2eFQmKnTp2kcW7fvo369etLjx8/foz4+HjI5XJYW1ujcuXKac6dmJio8PfQzMwMXbt2xaJFizBo0CDIZDK1Xw8REekXfc4lleV5upjjAapzUiDjOaC+5n9AclHqjz/+wNChQ+Hi4oItW7agWbNmOHPmDGrXrp2hMQYPHizNsEtRokQJhcdZmYtpOq/92pwWUMxrP89pgS/ntZ/ntADzWtIQQURpNGvWTOTLl0+EhYWleS40NFT68+bNmwUAce3aNYU+o0ePFgDEb7/9ptCuqn9mmT9/vgAggoKCdOocFSpUEJ06dUrT3rNnT1G0aFHNBfeZunXriq5du2a4/4cPH4SNjY2oVauWiIuLS/P8y5cvFR57eHgIMzMzkZiYKLXFxcUJe3t74ezsnOZ4Dw8PYWtrm6Z9zZo1AoDYvXt3uvHt3LlTABCBgYEZfUlKffjwQezbt0/l87t27RKfPn1S+fylS5fSvD8PHz4UpqamwsPDQ6G9Vq1aAoDSn/HjxwshhEhMTBRmZmbi1atX0nG//PKL2Lp1q0hKShJmZmYK7/2WLVuEu7u7SEpKEhYWFuLdu3fSc2XKlBE+Pj7S46NHj4patWqJAgUKCC8vL5GQkJDm9UyfPl18/s/j9evXBQBx+vRple8DERFRCn3OJZXleZmd4wmhfp4nhOqcVJ0cMLvmf59T9/27cuWKACDmz58vtcXExIjixYuLGjVqfPH4M2fOCABi7969GTpfRnKxb81phch4XpuZOa0QIk1e+3lOK8SX81plOa0QzGvp23FpM5ESjx8/RtmyZZVeec3IBrd16tSRxlHXs2fPMGDAAJQsWRLm5ubIkycP2rRpg6dPnyr0+/jxI4YOHQonJyeYmpoif/78aNSoEW7evAkAmDJlCry8vAAAzs7O0lKB1OO8fPkSPXr0QIECBWBqaoqyZctKU+0zcp6MnONzQUFBuH37Nho2bJjh9+Tly5cwMzNDjx49FNpPnToFY2NjDBs2LMNjqePUqVOIiIhAz549YWJikub5QoUKKTz28/ND2bJlYWhoKLWZmJigUKFCiIiISHO8n58f3Nzc0rSHhIQASF6am6JRo0aoVauW9LhatWrw8PAAkHxlUyaTSX9fg4OD0atXLxQrVgxmZmawt7dHs2bN8OjRI6Wvc9WqVWjbti3279+f5rmNGzeiY8eO2Lp1q9JjAaBmzZpp3h8XFxeULVsW9+7dU2i/ePEihBBKf2bMmAEAePToEaytrVGwYEHpuJSlHY8ePUJsbCzy5csnPXfgwAE0bdoUjx49go2NDfLkyQMAiI+PR2BgoMKV46ZNm+LixYu4cuUKfvvtN/zzzz8qX1dqlStXhp2dHQ4ePJih/kREpN/0JZf8XHbK89KLVZ0cMLvmf9/qjz/+gKGhIfr06SO1mZmZoWfPnvD29sbz588zPNbHjx+RmJiYbp+M5GLfmtMCGc9rMzOnTTk2Ja9VltMCzGtJe7i0mUiJokWLwtvbGwEBAV+1TCQlwcqdO7fS5yMiIvDu3TuFtrx58wJI3pfj8uXLaN++PYoUKYKnT59i9erVqFevHu7evQsLCwsAQL9+/fDHH3/A09MTZcqUwfv373Hx4kXcu3cPbm5u+PXXX/Hw4UPs3r0bixcvlsZP+ccqNDQU33//PWQyGTw9PZEvXz4cO3YMPXv2RGRkJIYOHfrF83zpHMpcvnwZAJQmUKoULlwYvXr1wrp16zB58mQULVoU9+/fR5s2bdC0aVMsXLgww2OpIyoqCkDyP/hfEh8fjwcPHqBz584K7a9evcLdu3dRt25dpf3r1q0r/V0ICwvDiRMnMHfuXHh6esLV1VXqf/v2bfz666/S49GjR2PKlCmIi4vDpEmTAAC2trYIDQ1FlSpVkCdPHvTu3Rv58+fH8+fPsX//fhgZKf/KHz16NK5evYoOHTrgyJEjaNCgAYDkJT19+/ZFp06d0L9//y++B6kJIRAaGoqyZcuqdRyQvAQk9Wv/+PEjXr58iTJlyuDw4cMwMjLC7t270bFjR2zevBn+/v7YsWMHjh07prCH0MePHwEkv9e5cuXCvn374ObmBmdnZ4SFhSE+Pl6tZUFubm64dOmS2q+HiIj0jz7kkspkpzwvvVgzmgNm5/zvW926dQvfffcdrK2tFdqrVasGAPD19YWDg8MXx+nevTs+ffoEQ0ND1KlTB/Pnz0eVKlWU9v1SLpYZOS3w9Xnt1+a0gOK+35/ntACY15J2aWMaJJGu+/vvv4WhoaEwNDQUNWrUEKNGjRInTpwQ8fHxCv1SlpecOnVKvH37Vjx//lz88ccfIl++fMLU1FQ8f/5caX9lPymio6PTxOPt7S0AiG3btkltNjY2YuDAgem+jvSWo/Ts2VMULFhQYRmoEEK0b99e2NjYSHF86TzqLnmZMGGCACA+fvyoNCZVy15evHghTE1NRf/+/cW7d+9E8eLFRcWKFb+4PCE1dZdsPH36VFhYWAgAwsXFRYwaNUr8888/CktXUty6dUsAENOnTxdv374Vr169EsePHxeurq4iV65caZYgpfT//MfY2FgsWbJEoW9oaKgAIFatWqXQ7ujoKLp166bQtmDBAmFmZiYiIiIy/DqFSF6KUrduXWFpaSl8fHzEqVOnhKmpqWjRooXS5b9fsn37dgFAbNy4Ue1jJ02aJEaOHCk9vnz5sihXrpwQQoipU6eKAQMGiKZNmwobGxvRoEED8eTJE+k4Ly8vhbG6dOkiLC0tRfXq1cWgQYNEgQIFRK5cuUSFChXE4cOHlZ5f1TKQPn36CHNzc7VfDxER6R99yCWVUZXnfWlpszbyvPRy0ozmgNk9/0tN3fevbNmyon79+mna79y5IwCINWvWpHv8pUuXRKtWrcTGjRvFwYMHxezZs0WePHmEmZmZuHnzptJjMpKLaTqnFeLr89qvzWlTjk2d16bOaYUQGcprVeW0QjCvpW/DQiKRClevXhX/+9//pCQCgMiXL584ePCg1EdVMufk5CROnDiRZsyU/itXrhQnT55U+FEmPj5evHv3Trx9+1bY2tqKoUOHSs8VLVpUVKlSJc0+fampSv7kcrmwtbUVffr0EW/fvlX4SYnx4sWLGTqPuglm//79hZGRkdLnvpRkenp6ClNTU1G9enVRqFAh8eLFC5V94+Pj07y2mjVrivbt26dpT0pKUjmOn5+faNu2rciVK5f0+To6Oqb5zLZu3ar070K9evXErVu30oyb0n/r1q3S34EdO3aIqlWrClNTU3H58mWp78mTJwUAceHCBaktPDxcABCLFi1SGHfChAnC0NBQnDlzRuVrUiUiIkK4ubkJOzs7YWlpKX744Qelv4x8yb1794S1tbWoUaOG0qKrrlOVdKXsVxUVFaWFqIiIKLvJybmkKqryvIzskZjVeV56OakQGcsBs2v+p4n3r1ixYqJp06Zp2h8/fiwAiMWLF2coltQCAwOFubm5tE/g5zKai2kqpxUie+e16RUSmdfSt2AhkegL4uLixNWrV8XYsWOFmZmZMDY2Fnfu3BFCpE3m/vjjD9GsWTNhaWkpzp49m2asjGyQHR0dLSZOnCiKFCkiZDKZQlLSvXt3qd9vv/0mzMzMhIGBgahataqYPHmyePz4scJYqpK/lCuc6f38+eefGTpPVhYSnz59KgAIc3Nzcf369XTPk7KBc0Z+MhJ7XFycOHPmjOjevbuQyWQiT548Cv/wDh8+XAAQR44ckZLCsmXLCisrK4Wri6n7GxkZpZmZ8OLFCwFAdOzYUWpbtGiRACDCw8OltvPnz0szGFJ7+PChKFiwoAAg3NzcxLx58xQ2eP6Sf/75R3pfVF0NTs/r169FsWLFhIODQ7q/mOgyVUnXqFGjBICvTkSJiEg/5cRcUpVvKSRmdZ73pUJiivRywOya/2ni/fvWGYmqtG/fXpiYmCgt2qmTi31rTitE9s9r0yskMq+lb8E9Eom+wMTEBFWrVkXVqlXx3XffoXv37ti7dy8mT54s9alWrZq0l0fLli1Ru3ZtdOzYEQ8ePIClpaVa5xs0aBA2b96MoUOHokaNGrCxsYFMJkP79u0hl8ulfm3btkWdOnWwf/9+/P3335g/fz7mzp2LP//8U9qkV5WUcTp16oSuXbsq7ZOyJ8e3nEeZPHnyIDExER8/foSVlZVax86cORMAkJiYCDs7u3T7urq64uTJkwptI0aMgL29vbRxeAp7e/svntvExAT16tVDvXr18PbtWxw+fBgPHjxApUqVACTvY1K0aFE0a9ZMOsbNzQ1lypTBqlWrMH/+fIXxbt++jeLFi8PY2FihvXDhwrCwsMCLFy8U+jo6OsLGxkahLeV1pubi4oKHDx/izz//xF9//YWJEydi2rRpOH78uMJm3co8efIEHh4eKFWqFGJiYtCqVStcunRJYYPo9ERERKBp06YIDw/HhQsX0tyMJrsLCwuDhYUFzM3NtR0KERFlIzkxl1QlO+V5GY01vRwwu+Z/mnj/ChYsiJcvX6Zpf/36NYC0NyXMKAcHB8THxyMqKirN/osZzcW+NacFmNcSpUvblUyi7MTf318AEH379hVCqL4qnHKVb/bs2QrtGbmKbGNjo3C1WIjkvT4MDQ3T3bckNDRUFC5cWNSqVUtqW7BggdIriYmJicLKykp06NAhvZebofOoOocqO3bsEACEn59fmufSu1o9b948IZPJxIoVK4S5ubno2bOn2rGru/eLKq1atRIAFK7a58+fX7Ro0SJN3ypVqghnZ+c07fnz5xctW7ZM0/7mzRsBQLRt21Zqc3NzSzN2nz59RMGCBb8Y6/3794WxsbEYPHhwuv1evXolihUrJhwdHcXz58/Fw4cPRf78+UW5cuXE+/fvv3iemJgYUadOHWFhYaGwLCc7UnX1tmHDhqJy5cpaiIiIiHKKnJJLqqIqz/vSjERt5Hnp5aSqfJ4DZvf8LzV137+RI0cKQ0PDNPsyzpw5UwAQwcHBGR4rtVatWgkzMzOlS6ozkot9a04rRM7Ja9Obkci8lr6FQZZWLYmyiTNnzkAIkab96NGjAICSJUume3y9evVQrVo1LFmyBLGxsWqd29DQMM25ly9fjqSkJOlxUlISIiIiFPrkz58fhQoVQlxcnNSWclev8PDwNOdo1aoV9u3bh4CAgDQxvH37NsPnUXUOVWrUqAEAuH79eob6A8CBAwcwZswYTJ8+HQMHDkSfPn2wbds2BAUFZXgMdV28eBExMTFp2m/fvo3jx4+jUqVKKFasGAAgJCQEb968UXpXRnd3dwQFBeHevXtSW0r/0qVLp+k/d+5cAECrVq0AJH8Gd+/eVbgbMQAEBwejSJEiCm2f370RAMzNzZGUlJTuVdSwsDC4u7vj06dPOHXqFIoUKQIXFxecOHECz58/R/PmzaW7FyqTlJSEdu3awdvbG3v37pU+45zm5s2bqFmzprbDICKibCCn55KqZJc8D1Ada0ZzwOye/32r1q1bIykpCevWrZPa4uLisHnzZlSvXl3hjs3R0dG4f/++Qqwpv2+k5ufnh0OHDqFx48YwMEhbqvhSLvatOS3AvJYoI7i0mUiJQYMGITo6Gv/73/9QqlQpxMfH4/Lly/jtt9/g5OSE7t27f3EMLy8vtGnTBlu2bEG/fv0yfO4WLVpg+/btsLGxQZkyZeDt7Y1Tp04hT548Up+PHz+iSJEiaN26NVxdXWFpaYlTp07h2rVrWLhwodSvcuXKAIDx48ejffv2MDY2xk8//YRcuXJhzpw5OHPmDKpXr47evXujTJky+PDhA27evIlTp07hw4cPGTpPeudQplixYihXrhxOnTqFHj16fPH9uHHjBjw8PODh4YHx48cDAEaNGoU1a9Zg5syZ2LBhQ4bfW3WMGTMGDx8+RJs2beDq6orExET4+vpKn8327dulvn5+fgCA8uXLpxmncePGmDlzJo4cOSIljin937x5gx07dgBITgL//vtvHDt2DO3bt0ebNm0AAIGBgYiNjU0ztrOzM/755x/MmzcPhQoVQunSpbFgwQIEBATg559/hrOzM16/fo1169ahSJEi6N27t8rXumrVKjx//hxnz56Fi4uL1F6xYkUcPnwYjRs3xtatWzFgwAClx48YMQKHDh3CTz/9hA8fPkivKUWnTp1Unju7uHHjBj58+IBffvlF26EQEVE2oA+5pDLZJc9LL9aM5oDZPf/7VtWrV0ebNm0wduxYvHnzBiVKlMDWrVvx9OlTbNy4UaHv1atX8eOPP2Ly5MmYMmUKAKBdu3YwNzdHzZo1kT9/fty9exfr1q2DhYUF5syZk+Z8GcnFvjWnBZjXEmWIdidEEummY8eOiR49eohSpUoJS0tLYWJiIkqUKCEGDRokQkNDpX7pLS9JSkoSxYsXF8WLF5c2C87IcpSwsDDRvXt3kTdvXmFpaSnc3d3F/fv3RdGiRaXlBnFxccLLy0u4uroKKysrkStXLuHq6ipWrVqVZrzp06eLwoULCwMDgzRLU0JDQ8XAgQOFg4ODMDY2Fvb29qJBgwZi3bp1ap0nvXMos2jRImFpaZlmc9/Pl708f/5cFCxYUNSqVUvExsYq9O3fv78wNjZWupG1Kuos2fjzzz9Fhw4dRIkSJUSuXLmEmZmZKF26tPDy8hJv3rxR6Dtv3jyVS2Pi4+OFlZWV+PHHH9P0T/1jZWUlatWqJTZu3CjkcrnU9/fffxcApE3ZU7x8+VK4u7sLS0tLAUAsW7ZMbNy4UdSvX1/ky5dPmJqaihIlSojBgwenifdzCQkJIiAgQOXzfn5+CjF9rm7duulu0p3dKFsGMnr0aOHo6Jju+0BERJRCX3JJZZTlecqWNmszz0sv1ozmgNk9//vc17x/MTExYuTIkcLe3l6YmpqKqlWriuPHj6fpl7JUf/LkyVLb0qVLRbVq1YSdnZ0wMjISBQsWFJ06dRKBgYFKz5WRXOxbc1ohclZeq2ppM/Na+lYyIZTMuSciykQREREoVqwY5s2bh549e0rtvXr1wqlTp/D06VPtBUd6b8aMGZg4caK0LCwuLg5OTk4YM2YMhgwZouXoiIiIdJuyPE9XczxVOSnpFuZiX+fznBbge0mawT0SiSjL2djYYNSoUZg/f77C3QMB4NmzZ5DJZEr3myHKTEuWLIFMJsPEiRMV2jdv3gxjY2O1lpURERHpK1V5ni7meOnlpKQ7mIupR1VOC/C9JM3gjEQi0hkhISHSZt6mpqZwdnbWbkCkV8LCwhAaGio9LlWqlBajISIiyjmY4xFlHea0lNlYSCQiIiIiIiIiIqIv4tJmIiIiIiIiIiIi+iIWEomIiIiIiIiIiOiLjLQdwLeQy+V49eoVrKysIJPJtB0OERERkdqEEPj48SMKFSoEAwNe482OmJMSERFRdqZOPpqtC4mvXr2Cg4ODtsMgIiIi+mbPnz9HkSJFtB0GfQXmpERERJQTZCQfzdaFRCsrKwDJL9Ta2lrL0RARERGpLzIyEg4ODlJeQ9kPc1IiIiLKztTJR7N1ITFl6Yi1tTWTNiIiIsrWuCQ2+2JOSkRERDlBRvJRbsRDREREREREREREX8RCIhEREREREREREX0RC4lERERERERERET0Rdl6j0QiIiIiIl0nhEBiYiKSkpK0HQoRkdoMDQ1hZGTEvXyJCAALiUREREREmSY+Ph6vX79GdHS0tkMhIvpqFhYWKFiwIExMTLQdChFpGQuJRERERESZQC6XIygoCIaGhihUqBBMTEw4o4eIshUhBOLj4/H27VsEBQXBxcUFBgbcIY1In7GQSERERESUCeLj4yGXy+Hg4AALCwtth0NE9FXMzc1hbGyMZ8+eIT4+HmZmZtoOiYi0iJcSiIiIiIgyEWfvEFF2x+8xIkrBbwMiIiIiIiIiIiL6IhYSiYiIiIiIiIiI6ItYSCQiIiIiohxLJpPhwIED2g6DiIgoR2AhkYiIiIiIJDKZLN2fKVOmaDtEIiIi0hLetZmIiIjoc0IAQo6Pnz7BysoakMm0HRFRlnn9+rX0599++w2TJk3CgwcPpDZLS0vpz0IIJCUlwciIv1YQERFpmhACYeERsLaxhuG/F/S0jTMSiYiIiD7z4cN74LUPrD4GIDIyQtvhUA4ihEBUVJRWfoQQGYrR3t5e+rGxsYFMJpMe379/H1ZWVjh27BgqV64MU1NTXLx4Ed26dUPLli0Vxhk6dCjq1asnPZbL5Zg9ezacnZ1hbm4OV1dX/PHHHyrjGDduHKpXr56m3dXVFdOmTQMAXLt2DY0aNULevHlhY2ODunXr4ubNmyrHPHv2LGQyGcLDw6U2X19fyGQyPH36VGq7ePEi6tSpA3Nzczg4OGDw4MGIiopK/40jIiLSsN//+ANn38TgUGAokjL473hmYyGRiIiI6F9yuRwbN25ExYquUtvRo0e1GBHlNNHR0bC0tNTKT3R0tMZex5gxYzBnzhzcu3cPFSpUyNAxs2fPxrZt27BmzRrcuXMHw4YNQ6dOnXDu3Dml/T08PHD16lU8fvxYartz5w5u376Njh07AgA+fvyIrl274uLFi/Dx8YGLiwuaNWuGjx8/fvVre/z4MZo0aYJWrVrh9u3b+O2333Dx4kV4enp+9ZhERETqeP/+Pdq3b4+uXbtqO5Q0uAaBiIiICMCtW7cwcOBAeHt7w8LcTGpv366dFqMi0k3Tpk1Do0aNMtw/Li4Os2bNwqlTp1CjRg0AQLFixXDx4kWsXbsWdevWTXNM2bJl4erqil27dmHixIkAgJ07d6J69eooUaIEAKB+/foKx6xbtw62trY4d+4cWrRo8VWvbfbs2fDw8MDQoUMBAC4uLli2bBnq1q2L1atXw8zMLP0BiIiIvsHRo0fRs2dPhISEwCLVdiK6goVEIiIi0mvhYWGYPn0q1q1bj09RybPFZs6Yru2wKIeysLDAp0+ftHZuTalSpYpa/R89eoTo6Og0xcf4+HhUqlRJ5XEeHh7YtGkTJk6cCCEEdu/ejeHDh0vPh4aGYsKECTh79izevHmDpKQkREdHIzg4WL0XlIqfnx9u376NnTt3Sm1CCMjlcgQFBaF06dJfPTYREZEyQghERH7EmLFjsHb1agBAqVKlsGXbdrzUcmyfYyGRiIiI9JIQAjt27MDkiRPw5NIuLBzRBl3Hrsas2XNRuKA98NpH2yFSDiSTyZArVy5th/HNPn8NBgYGafZgTEhIkP6cUjw9cuQIChcurNDP1NRU5Xk6dOiA0aNH4+bNm4iJicHz58/RLtUs4a5du+L9+/dYunQpihYtClNTU9SoUQPx8fFKxzMwSN7ZKXWsqeNMibVv374YPHhwmuMdHR1VxkpERPS1zp4/jzD779B4yERs3boVA/r1w4wZM2BsaoqXgaHaDk8BC4lERESkdwICAjBgwABcuHBBYRnz1i1bAQNDQJ6kxeiIsp98+fIhICBAoc3X1xfGxsYAgDJlysDU1BTBwcFKlzGrUqRIEdStWxc7d+5ETEwMGjVqhPz580vPX7p0CatWrUKzZs0AAM+fP8e7d+/SjRNIvjN17ty5pThTc3Nzw927d6Xl00RERJklJiYG48aNw+q1a7HrVvKewMeOHUO9H34AACTK5doMTynebIWIiIj0gxD4GBmBsaNHoWLFislFRAsLTJs2VduREWV79evXx/Xr17Ft2zYEBgZi8uTJCoVFKysrjBw5EsOGDcPWrVvx+PFj3Lx5E8uXL8fWrVvTHdvDwwN79uzB3r174eHhofCci4sLtm/fjnv37uHKlSvw8PCAubm5yrFKlCgBBwcHTJkyBYGBgThy5AgWLlyo0Gf06NG4fPkyPD094evri8DAQBw8eJA3WyEiIo26du0a3NzcsGTJEoX22rVrayegDGIhkYiIiHI8IQT27v0dVh8DMHvwLzA1Mcb//vc/3Lt3DyOGj9B2eETZnru7OyZOnIhRo0ahatWq+PjxI7p06aLQZ/r06Zg4cSJmz56N0qVLo0mTJjhy5AicnZ3THbt169Z4//49oqOj0bJlS4XnNm7ciLCwMLi5uaFz584YPHiwwozFzxkbG2P37t24f/8+KlSogLlz52LGjBkKfSpUqIBz587h4cOHqFOnDipVqoRJkyahUKFC6r0pREREnxFCIDo2DlOmTkONGjVw//59FCxYEPv2/ant0DJMJj7fzCQbiYyMhI2NDSIiImBtba3tcIiIiEgH3b9/H56envC+fAlRgacAAH/7R6Jxk6bJHeRJ/+2HWPD7/5Y2f96WSZjPZH+qPsPY2FgEBQXB2dmZd/olomyN32dEmnE7IACPjPMAADpWKo5fW7bEihUrYG1ri0P/7oX4s0sBGP27p2+iXK60XdPUyUc5I5GIiIhyFiEAeRKiPkVi7NixqFChAk6fPq3wi0/jxo21GCARERER6ZOkpCTMmzdPYdnytm3bsGvXLtjZ2WkxMvWxkEhEREQ5ivh3NmGuCH8sW7oECQkJaN68Oa5fv6bt0IiIiIhIzzx69Ah169bF6NGjER8fL7X/+uuvWozq67GQSERERDnGo0eP8L9USZmjoyMOHjyIv/76C85O6e/DRkRERESkKXK5HKvXrkO16t/j0qVLsLKywqpVq7Ud1jdjIZGIiIiyvZiYGEyePBnlypXDyZMnpfYbN67j559/hkwm02J0RERERKRPXrx4gZ9++QUF6v2EDZf90bCxO27fvo0uXTprO7RvZqTtAIiIiIi+mhA4duwIRo70wt179wEAPzVvJj1tYW6hrciIiIiISM8IIbBz5054enoiNj4ePf9tP3LkCEyMDJEol2s1Pk3gjEQiIiLKloKCgtCmTWs0dc2NOyc3wKVEcezduxcHDx7UdmhEREREpCeEEEiUyxHy5g1at26Nzp07IyIiAlUqV5H6GBjknNUxLCQSERFRthIXF4cZM2agTJkyOHr0qNR+8+YNtG7dmsuYiYiIiCjLJAmBQ4GhuByWhCPHjsHIyAjTp0/HqdOntR1apmAhkYiIiHSfEIA8Caf+PoFy5cph4sSJiI2NRd26P0hdLHNZajFAIiIiItI34eHh6NOnj/S4TJmyuHr1KiZMmAAjI0MtRpZ5WEgkIiIinffiRTDw2gcNy1ri1csXKFiwIHbt2oUjh49oOzQiIiIi0kMnT55E+fLlsWvXLqntwoULqFSpkhajynwsJBIREZHOio+Px7x58+Dm5ia1eXoOxP3799GhQwcuYybSU/Xq1cPQoUO1HQYREekZIQQiPn7C4KHD0LhxY7x48QLOzsWk501NTbQYXdZgIZGIiIh0y7/LmM+dPYOKFSti9OjRiIqKlp6eO2curK2ttRggUc7XrVs3yGQyyGQyGBsbw9nZGaNGjUJsbKy2Q8uQKVOmoGLFitoOQ6uePn0KmUwGX19fbYeitrNnz8LNzQ2mpqYoUaIEtmzZ8sX+v/zyCwoWLIhcuXKhYsWK2Llzp0Kf9evXo06dOsidOzdy586Nhg0b4urVq5n4KogoJ7rk7YPTrz6iXv9RMDU3x4ABA+Dj46PtsLIUC4lERESkU0JevwJe+6CuiwmePQ1Cvnz5sG7tWm2HRaR3mjRpgtevX+PJkydYvHgx1q5di8mTJ2s7LL0ghEBiYqK2w8iwpKQkyOXyNO3x8fFqjxUUFITmzZvjxx9/hK+vL4YOHYpevXrhxIkTKo+5fPkyKlSogH379uH27dvo3r07unTpgsOHD0t9zp49iw4dOuDMmTPw9vaGg4MDGjdujJcvX6odIxHpn7i4OIwZMwaNGzeS2g4dOoSVK1ciVy4LLUaW9VhIJCIiIp2QmJiIJUuWoGKlilJb37598PDhQ3h4eGgvMCINEkIgPj5eKz9CCLViNTU1hb29PRwcHNCyZUs0bNgQJ0+elJ6Pi4vD4MGDkT9/fpiZmaF27dq4du2a9PyWLVtga2urMOaBAwcUtiRImTm4fft2ODk5wcbGBu3bt8fHjx+lPlFRUejSpQssLS1RsGBBLFy4MN24t2zZgqlTp8LPz0+aVZkyoy04OBi//PILLC0tYW1tjbZt2yI0NFTlWCmz+v7880/8+OOPsLCwgKurK7y9vRX6Xbx4EXXq1IG5uTkcHBwwePBgREVFSc9v374dVapUgZWVFezt7dGxY0e8efNGev7s2bOQyWQ4duwYKleuDFNTU1y8eBFyuRyzZ8+Gs7MzzM3N4erqij/++EM6LiwsDB4eHsiXLx/Mzc3h4uKCzZs3AwCcnZ0BAJUqVYJMJkO9evXSfd9Si4uLw8iRI1G4cGHkypUL1atXx9mzZxXeY1tbWxw6dAhlypSBqakpgoOD4eTkhOnTp6NLly6wtrZWuAFBRq1ZswbOzs5YuHAhSpcuDU9PT7Ru3RqLFy9Wecy4ceMwffp01KxZE8WLF8eQIUPQpEkT/Pnnn1KfnTt3YsCAAahYsSJKlSqFDRs2QC6X43QOvasqEWmOr68vqlatirlz5ypcNKlfv74Wo9IeI20H8PLlS4wePRrHjh1DdHQ0SpQogc2bN6NKlSraDo2IiIiyyMWLFzFgwAD4+/vDwtxMal+0cBFgYAjIk7QYHZHmJCQkYPbs2Vo599ixY2Fi8nV7NwUEBODy5csoWrSo1DZq1Cjs27cPW7duRdGiRTFv3jy4u7vj0aNHsLOzy/DYjx8/xoEDB3D48GGEhYWhbdu2mDNnDmbOnAkA8PLywrlz53Dw4EHkz58f48aNw82bN1UuXW7Xrh0CAgJw/PhxnDp1CgBgY2MDuVwuFRHPnTuHxMREDBw4EO3atVMokikzfvx4LFiwAC4uLhg/fjw6dOiAR48ewcjICI8fP0aTJk0wY8YMbNq0CW/fvoWnpyc8PT2lol5CQgKmT5+OkiVL4s2bNxg+fDi6deuGo0ePKpxnzJgxWLBgAYoVK4bcuXNj9uzZ2LFjB9asWQMXFxecP38enTp1Qr58+VC3bl1MnDgRd+/exbFjx5A3b148evQIMTExAICrV6+iWrVqOHXqFMqWLavWZ+/p6Ym7d+9iz549KFSoEPbv348mTZrA398fLi4uAIDo6GjMnTsXGzZsQJ48eZA/f34AwIIFCzBp0iSF2atly5bFs2fPVJ6vTp06OHbsGADA29sbDRs2VHje3d1d7T0xIyIiULp0aZXPR0dHIyEhQa2/q0SkP4QQiEtIxKJFizBl0kQkJCQgX758WLNuvbZD0zqtFhLDwsJQq1Yt/Pjjjzh27Bjy5cuHwMBA5M6dW5thERERUVYQAm/ehGLChAlYv2EjAMDOzg4L5s/VcmBEBACHDx+GpaUlEhMTERcXBwMDA6xYsQJA8izB1atXY8uWLWjatCmA5D3oTp48iY0bN8LLyyvD55HL5diyZQusrKwAAJ07d8bp06cxc+ZMfPr0CRs3bsSOHTvQoEEDAMDWrVtRpEgRleOZm5vD0tISRkZGsLe3l9pPnjwJf39/BAUFwcHBAQCwbds2lC1bFteuXUPVqlVVjjly5Eg0b94cADB16lSULVsWjx49QqlSpTB79mx4eHhIhS4XFxcsW7YMdevWxerVq2FmZoYePXpIYxUrVgzLli1D1apV8enTJ1haWkrPTZs2DY0aJS+bi4uLw6xZs3Dq1CnUqFFDOvbixYtYu3Yt6tati+DgYFSqVEmahOHk5CSNlS9fPgBAnjx5FN6HLwkODsbmzZsRHByMQoUKSa//+PHj2Lx5M2bNmgUguTi6atUquLq6Khxfv359jBgxQqHt6NGjSEhIUHlOc3Nz6c8hISEoUKCAwvMFChRAZGQkYmJiFPqq8vvvv+PatWtYm862GKNHj0ahQoXSFC2JiADg/sOHuAdrlPpfFxhMm4r/tWiBNWvWwC5vXhwKVD2TXR9otZA4d+5cODg4SFfqgP+m4BMR6SohBEJDQxEXF6ftUIiyraSkJBw9chiev5TFuuHVcc37HGrVc0efPn1ga2MFJD0Bop7geVxuyA1zQQY5HGWxCm0AlLar0zcjY8TZlISpZV6tvVeUsxgbG2Ps2LFaO7c6fvzxR6xevRpRUVFYvHgxjIyM0KpVKwDJswgTEhJQq1YthfGrVauGe/fuqXUeJycnqYgIAAULFpSW/T5+/Bjx8fGoXr269LydnR1Kliyp1jkA4N69e3BwcJCKiABQpkwZ2Nra4t69e+kWEitUqKAQHwC8efMGpUqVgp+fH27fvq1wcw8hBORyOYKCglC6dGncuHEDU6ZMgZ+fH8LCwqSlccHBwShTpox0XOpVWY8ePUJ0dLRUWEwRHx+PSpUqAQD69++PVq1a4ebNm2jcuDFatmyJmjVrqv3epObv74+kpCR89913Cu1xcXHIkyeP9NjExEThfVH2GlKknsma2c6cOYPu3btj/fr1KFu2rNI+c+bMwZ49e3D27FmYmZkp7UNE+kkul2PFihWYNHkKNvncAZB8oaxTx46QyWRIVLIfrL7RaiHx0KFDcHd3R5s2bXDu3DkULlwYAwYMQO/evZX2j4uLU/jFPTIyMqtCJSKS+Pn54eDBg9oOgyjbMzdOBG50A2Je4JRXHqx5ZoP9+/fD3DgRo0pvAWJewCIhD9Y86wtjI4M0bYnC5Jv7ZmQMw/uzgZ8CACP92khbn2TlVjsymeyrlxdntVy5cqFEiRIAgE2bNsHV1RUbN25Ez549M3S8gYFBmn0Zlc1K+7zAKZPJlN64Q5tSx5iyx2NKjJ8+fULfvn0xePDgNMc5OjoiKioK7u7ucHd3x86dO5EvXz4EBwfD3d09zc1IcuXKJf3506dPAIAjR46gcOHCCv1MTU0BAE2bNsWzZ89w9OhRnDx5Eg0aNMDAgQOxYMGCr36tnz59gqGhIW7cuAFDQ0OF51LPnjQ3N1fY71LZa0ihztJme3v7NPtWhoaGwtra+ouzEc+dO4effvoJixcvRpcuXZT2WbBgAebMmYNTp04pLYQSkf569uwZunfvjjNnzsA01fdNhw4dlH7f6SutFhKfPHmC1atXY/jw4Rg3bhyuXbuGwYMHw8TEBF27dk3Tf/bs2Zg6daoWIiUi+s/79+8BAGZmZgoJNRGlTwaBt2/f4u275P+HXHK/B2JeAADyGL/Hd/nj8SapEAoaB6dpNzQwyJS+GRnDKCYICA8A8lbLoneKshK32skYAwMDjBs3DsOHD0fHjh1RvHhxmJiY4NKlS9Jss4SEBFy7dk1a4psvXz58/PgRUVFRUnHJ19dXrfMWL14cxsbGuHLlChwdHQEkf2YPHz5E3bp1VR5nYmKCpCTFvVVLly6N58+f4/nz59KsxLt37yI8PFxhVqC63NzccPfuXano+jl/f3+8f/8ec+bMkc57/fr1L46b+iYm6b3WfPnyoWvXrujatSvq1KkDLy8vLFiwQCpYf/4+fEmlSpWQlJSEN2/eoE6dOmodq4o6S5tr1KiRZu/IkydPSsu7VTl79ixatGiBuXPnqrzJy7x58zBz5kycOHGCe/ITkUQul2PLtu0YNWoU3r99AwsLCyxYuEjbYeksrRYS5XI5qlSpIu2zUalSJQQEBGDNmjVKC4ljx47F8OHDpceRkZEKSxOIiLJCygyESpUqoXHjxlqOhkj3yeVybNu6Gd0alwIA5HJpiDZt26HDuFnA9RvAp0DAygVt2k5NnvWXEAUc26/YLkTaNk30zeAYsC2n5XeRMgu32sm4Nm3awMvLCytXrsTIkSPRv39/eHl5wc7ODo6Ojpg3bx6io6OlGYvVq1eHhYUFxo0bh8GDB+PKlSvS3ZMzytLSEj179oSXl5d0Q4/x48fDwMAg3eOcnJwQFBQEX19fFClSBFZWVmjYsCHKly8PDw8PLFmyBImJiRgwYADq1q37TUWl0aNH4/vvv4enpyd69eqFXLly4e7duzh58iRWrFgBR0dHmJiYYPny5ejXrx8CAgIwffr0L45rZWWFkSNHYtiwYZDL5ahduzYiIiJw6dIlWFtbo2vXrpg0aRIqV66MsmXLIi4uDocPH5ZuMJI/f36Ym5vj+PHjKFKkCMzMzGBjY/PF83733Xfw8PBAly5dsHDhQlSqVAlv377F6dOnUaFCBWmvSHWos7S5X79+WLFiBUaNGoUePXrgn3/+we+//44jR45IfVasWIH9+/dLd1w+c+YMWrRogSFDhqBVq1YICQkBkFxQTrmZyty5czFp0iTs2rULTk5OUh9LS8tse2FYCKH23di/llwul+46/6X//0g/CCHwMQq4e0eG8uUEcuWSqd2uC31DQ0MxdNhwtJ6wDF4rm+Poqm5Ys2o+ijoXw8H7HxAcaIzwfAmwtkweI1EuEBcDhXZlbZro+3l7dGHAWge+rrRaSCxYsGCaq3+lS5fGvn37lPY3NTWVpvETEWlLypX9z5f7EFFaN2/eTL4b820/dAtMvnvq33//jVq1/53l0sw3ebafbbn/lg4b51Lenll91RmDchx1t9oB9He7HSMjI3h6emLevHno378/5syZA7lcjs6dO+Pjx4+oUqUKTpw4Ic3mtLOzw44dO+Dl5YX169ejQYMGmDJlisrZYqrMnz8fnz59wk8//QQrKyuMGDECERER6R7TqlUr/Pnnn/jxxx8RHh6OzZs3o1u3bjh48CAGDRqEH374AQYGBmjSpAmWL1/+1e8JkLx/4rlz5zB+/HjUqVMHQggUL14c7dq1A5A8Y3DLli0YN24cli1bBjc3NyxYsAA///zzF8eePn068uXLh9mzZ+PJkyewtbWFm5sbxo0bByC5UDZ27Fg8ffoU5ubmqFOnDvbs2QMg+fNatmwZpk2bhkmTJqFOnTo4e/Yszp49ix9//BFBQUEKN2dJbfPmzZgxYwZGjBiBly9fIm/evPj+++/RokWLb3qvMsLZ2RlHjhzBsGHDsHTpUhQpUgQbNmyAu7u71Ofdu3d4/Pix9Hjr1q2Ijo7G7NmzFe6KXrduXemO3KtXr0Z8fDxat26tcL7JkydjypQpmfqaMoMQybP8ExMTs+R8iYmJiIiIwNGjRxEVFZUl5yTdlpBkhk3bRuD1MyPY5XmPfn3XwMQkUa12maGR1vuamCSidJkqGNEy37/tW7Fjh+IY81SMMU/J+TTZ9/P2DS4Cfr6AhZbTUpnIqksYSnTs2BHPnz/HhQsXpLZhw4bhypUruHz58hePj4yMhI2NDSIiImBtbZ2ZoRIRSY4cOYLr16+jbt26qFevnrbDIdJJYWFhmDBhAlavXg0hBArkz4uQmweSnyz4PWDAQnwK5jPalXKjheHDh6NNmza4du0ahgwZonKFDABMmTJF6XY7n3+GsbGxCAoKgrOzM2/oQDoj5c7Ld+/eVfsGPKQ7EhIS8Pbt2yw7X2JiIl6+fIlLly6xkEgAgJevHbF+bXfpca9e61GkyCu12mWGRlrvm91iu3IFqJYJu+2ok49qtZB47do11KxZE1OnTkXbtm1x9epV9O7dG+vWrYOHh8cXj2fiTUTacOjQIdy6dQs//vgjfvjhB22HQ6RThFyOXTt3YPz48Xj2PHmPwQ4dOmDh/HkoiH832mchUQHzGe0yMTFBlSpVFC5iDx48GNeuXYO3t7fSY5TNSHRwcGAhkbKFNm3aoG3btmjTpo22Q6FvkFJINDAwQP78+TP9fLGxsXj69CkcHBz4fUYAgMhPAuUrGeD1MyOUKCFw/XoiLCzUa0+Ua6+vTPYIxsZVMXr0IHh6jkKtWrnw6JFM6i+EQNWqxgptFhZAVFTa9szq+3m7i4uAr68sU2YkqpOPanVpc9WqVbF//36MHTsW06ZNg7OzM5YsWZKhIiIRkbak7JHIpc1Eim7fvo0Rw4fi5Nbp8PDeA7cWA7Bg4WLUr18fkCcBr1XfsZNIW9TdagfgdjuUve3du1fbIZCGZcWehQYGBpDJZDA2NuZMVgIA2NjIsfBAKIIDjdG/qR2sLY3Vbk+UZ13fjx8/YsL4MVh4YAKCA42xfXpnbNpwAtX+nd7n5wcEBADlyslgYWGsss3WNmv7pm3PvM80o9T+xjl+/DguXrwoPV65ciUqVqyIjh07IiwsTO0AWrRoAX9/f8TGxuLevXvp7kdDRKQLuEcikaLIyEgMGzYMbm5uuHz5vxlcPj4+yUVEIg3TZD5aq1YtPHjwQKHt4cOHat0cgogoq6UsLJTJZFqOhPSZqTngUiEhTXFLnfas6Hv+/Hm4urpi85bNUru392mpiAgk7ztYrZri/oPK2rK6b3rt2qJ2IdHLy0vaUNrf3x8jRoxAs2bNEBQUpHBHZSKinIozEokACAGRlIjff9uDUqVKYcmSJUhKSkLLlr9IXUyMTbQYIOVkmsxHhw0bBh8fH8yaNQuPHj3Crl27sG7dOgwcODAzQiciIqIsNHbsONSrVw9BQUGwz58fuUMe4meXArC0MNd2aNmW2kubg4KCpOUf+/btQ4sWLTBr1izcvHkTzZo103iARES6JmVGYlYsIyHSVffu3UVpm3C0re2A7uFhcHFxwfLly+HeqCHw2kfb4VEOp8l8lFvtEFF2xBmJRBmzfPkyCCHQs2dPLFq0iPtRa4DavwWbmJggOjoaAHDq1Ck0btwYAGBnZyddGSYiysm4tJn02adPnzB69Gh8//33UtukSRPh7+8Pd3d3LUZG+kTT+Si32iEiIsoZEhISMHPGTOlxgQIFcPjwYWzYsIFFRA1Re0Zi7dq1MXz4cNSqVQtXr17Fb7/9BiB5L5kiRYpoPEAiIl3DQiLpHSEg5Ek4cPAgBg8ZihcvXsDC/L87No4eNZp3YaYsxXyUiPQdZyQSpXXv3j1069IFN2/ehOmc2WjVqjVuXLuGvHnzaju0HEXtGYkrVqyAkZER/vjjD6xevRqFCxcGABw7dgxNmjTReIBERLqGeySSvgkMfAhZyBX8r7o9Prx/B2dnZ/zxB+/6SdrDfJSIiIg+V7t2bdy8eRN2dnbYunkzdm7fxiJiJlB7RqKjoyMOHz6cpn3x4sUaCYiISNdxj0TSF9HR0Zg1axZWrliOsDtHAQBjx47FiJFeMDc14V6IpDXMR4lI33FGIlGyoKCnAJJvnBIXF4dmzZphw4YNKFiwoFbjysm+6rfgx48fY8KECejQoQPevHkDIPkK8J07dzQaHBGRLuLSZsrphBA4ePAgypQpg5kzZyI+Pl56bsL48TA3513uSPuYj1JWmjJlCipWrJhun27duqFly5ZZEg+lxc+ISL8IIbB27VpUr15daluxYiUOHz7MImImU7uQeO7cOZQvXx5XrlzBn3/+iU+fPgEA/Pz8MHnyZI0HSESka1hIpBxLCAQ9eYTWrX5Fy5Yt8ezZMzg4OGD37l3ajoxIAfPRzPf27Vv0798fjo6OMDU1hb29Pdzd3XHp0iWpj5OTE2QyGWQyGSwsLFC+fHls2LBBYZyzZ89KfVL/TJgw4ZtjdHJywpIlS9Q+bv369ahTpw5y586N3Llzo2HDhrh69eo3x7N06VJs2bJFelyvXj0MHTr0m8fVJbGxsRg4cCDy5MkDS0tLtGrVCqGhoekeI4TApEmTULBgQZibm6Nhw4YIDAxM0+/IkSOoXr06zM3NkTt37kwp+H3+GemCs2fPws3NDaampihRokSG4rt9+zYaNmyIYsWKwdXVFfPmzUvTZ+/evShVqhTMzMxQvnx5HD16VOH5jH4uRLro1avXaNq0Kfr164ew9++walA3VDCORc/u3ThLNwuoXUgcM2YMZsyYgZMnT8LExERqr1+/Pnx8uMSJiHI+7pFIOVFsbCxmz54JZ9NQ7Fs+EjbWVhg7dizu3buHn3/6WdvhESlgPpr5WrVqhVu3bmHr1q14+PAhDh06hHr16uH9+/cK/aZNm4bXr18jICAAnTp1Qu/evXHs2LE04z148ACvX7+WfsaMGZNVLyWNs2fPokOHDjhz5gy8vb3h4OCAxo0b4+XLl980ro2NDWxtbTUTpAalnlWeIikpScpn1DFs2DD89ddf2Lt3L86dO4dXr17h119/TfeYefPmYdmyZVizZg2uXLmCXLlywd3dHbGxsVKfffv2oXPnzujevTv8/Pxw6dIldOzYUe34vkTXPqOgoCA0b94cP/74I3x9fTF06FD06tULJ06cUHlMZGQkGjduDAcHBxw7dgxTpkzBlClTsG7dOqnP5cuX0aFDB/Ts2RO3bt1Cy5Yt0bJlSwQEBEh9MvK5EOmqqlWr4sSJEzAzM8PixYvx9/FjKFHMmUXErCLUlCtXLvHkyRMhhBCWlpbi8ePHQgghgoKChKmpqbrDfZOIiAgBQERERGTpeYlIvy1dulRMmTJFBAcHazsUIo04evSoKF68uLAwNxPixUUhXlwU9+/d/a9DUqLULpISVbd9TTsxn/kKupSPCqH6M4yJiRF3794VMTExGjlPVJQQV64k/zczhYWFCQDi7Nmz6fYrWrSoWLx4sUKbnZ2dGDZsmPT4zJkzAoAICwtLc/zVq1dFw4YNRZ48eYS1tbX44YcfxI0bN6Tn5XK5mDx5snBwcBAmJiaiYMGCYtCgQUIIIerWrSsAKPx8rcTERGFlZSW2bt2qss/kyZOFq6urWLNmjShSpIgwNzcXbdq0EeHh4VKfrl27il9++UX68+fxBQUFiQ8fPoiOHTuKvHnzCjMzM1GiRAmxadMmteK9cOGCqF27tjAzMxNFihQRgwYNEp8+fZKeL1q0qJg2bZro3LmzsLKyEl27dhWbN28WNjY24uDBg6J06dLC0NBQBAUFqXXe8PBwYWxsLPbu3Su13bt3TwAQ3t7eSo+Ry+XC3t5ezJ8/X2EcU1NTsXv3biGEEAkJCaJw4cJiw4YNasXzOXU/IyGEOHbsmKhVq5awsbERdnZ2onnz5uLRo0fS83FxcWLgwIHC3t5emJqaCkdHRzFr1qxvijO1UaNGibJlyyq0tWvXTri7u6s8ZtWqVSJ37tziw4cP4uXLl+L9+/di9OjRomTJklKftm3biubNmyscV716ddG3b18hRMY+l89p+vuMsr+EpCSx7/4rse/+K5GQlPRV7er0fR0aKrWZmpuLqlWrinv37mXRq8351MlH1Z6RaGtri9evX6dpv3XrlnTHPCKinIxLmylHEALPg5+iQ/u2aNasGR4/fqywn0zJ777TYnBE6dPHfDQ6GqhYEahePfm/0dGZdy5LS0tYWlriwIEDiIuLy9Axcrkc+/btQ1hYmMIs0fR8/PgRXbt2xcWLF+Hj4wMXFxc0a9YMHz9+BJA8S23x4sVYu3YtAgMDceDAAZQvXx4A8Oeff6JIkSLSjEhlfx8yKjo6GgkJCbCzs0u336NHj/D777/jr7/+wvHjx3Hr1i0MGDBAad+lS5eiRo0a6N27txSfg4MDJk6ciLt37+LYsWO4d+8eVq9erdYdRR8/fowmTZqgVatWuH37Nn777TdcvHgRnp6eCv0WLFgAV1dX3Lp1CxMnTpRe59y5c7FhwwbcuXMH+fPnx86dO6XPW9XPhQsXAAA3btxAQkICGjZsKJ2nVKlScHR0hLe3t9J4g4KCEBISonCMjY0NqlevLh1z8+ZNvHz5EgYGBqhUqRIKFiyIpk2bKsyeyyh1PiMAiIqKwvDhw3H9+nWcPn0aBgYG+N///ifN1ly2bBkOHTqE33//HQ8ePMDOnTvh5OQkHd+0adN037uyZcumG6+3t7fCewMA7u7uKt/PlGN++OEHhf/P3N3d8eDBA4SFhWVo3Ix8LkS65NChQ6hatar0eMKEibh8+TJKlSqlxaj0l9p3bW7fvj1Gjx6NvXv3QiaTQS6X49KlSxg5ciS6dOmSGTESEekUFhIpu4uPj8fyZUswokMt7F44BEeOHEWfvv0wedJE4KP6v7gRZTV9zEcDAoCU7csCA5MfV6uWOecyMjLCli1b0Lt3b6xZswZubm6oW7cu2rdvjwoVKij0HT16NCZMmIC4uDgkJibCzs4OvXr1SjNmkSJFFB4/e/YM9evXV2hbt24dbG1tce7cObRo0QLBwcGwt7dHw4YNYWxsDEdHR1T790Xb2dnB0NAQVlZWsLe3/6bXO3r0aBQqVChN4eVzsbGx2LZtm1SsXr58OZo3b46FCxemicHGxgYmJiawsLBQeC44OBiVKlVClSpVAEChKJURs2fPhoeHh7T3oouLC5YtW4a6deti9erVMDMzA5C8zH/EiBHScRcuXEBCQgJWrVoFV1dXqf3nn39WuFGBMimvNyQkBCYmJmmWBhcoUAAhISFKj01pL1CggMpjnjx5AiD5ZimLFi2Ck5MTFi5ciHr16uHhw4dfLPCmps5nBCQv4U9t06ZNyJcvH+7evYty5cohODgYLi4uqF27NmQyGYoWLarQf8OGDYiJiVEZj7GxcbrxhoSEKH1vIiMjERMTo/TmZiEhIXB2dla4a3PKGCEhIcidO7fKcVPe84x8LkS6ol+/fti4fj0AYHrHn7B+/Xr8b+wYLmPWIrVnJM6aNQulSpWCg4MDPn36hDJlyuCHH35AzZo1NbJpMhGRruMeiZSdnT59GhUqVMCkSf/dkMLb2xsLFiyAlaWlFiMjyjh9zEfLlQNcXJL/7OKS/DgztWrVCq9evcKhQ4fQpEkT6YYQn98IwsvLC76+vvjnn39QvXp1LF68GCVKlEgz3oULF+Dr6yv95M6dG6GhoejduzdcXFxgY2MDa2trfPr0CcHBwQCANm3aICYmBsWKFUPv3r2xf/9+JCYmavR1zpkzB3v27MH+/fulIpwqjo6OCjNea9SoAblcjgcPHmT4fP3798eePXtQsWJFjBo1CpcvX1YrXj8/P2zZskVh1pu7uzvkcjmCgoKkfimFytRMTEzSFIKtrKxQokSJdH+UFbM0KSWvGj9+PFq1aoXKlStj8+bNkMlk2Lt3r1pjqfsZBQYGokOHDihWrBisra2lwm7K38Fu3brB19cXJUuWxODBg/H3338rHF+4cOF037vUhcfUn1m/fv3Uel1E+mzHjh2QyWQYNWoUfC5fQhW3SiwiapnahUQTExOsX78ejx8/xuHDh7Fjxw7cv38f27dv5y/VRKQXUmYkGhio/RVKlPWEAORJePXyOdq3b4+GDRviwYMHyJ8vn9SlbJkyWgyQSH36mI9aWAC+vsCVK8n/tbDI/HOamZmhUaNGmDgxeQlZt27d0twVO2/evChRogTq1KmDvXv3YvDgwbh7926asZydnRUKLAYGBujatSt8fX2xdOlSXL58Gb6+vsiTJ490cxAHBwc8ePAAq1atgrm5OQYMGIAffvgBCQkJGnl9CxYswJw5c/D333+nKbBllqZNm+LZs2cYNmwYXr16hQYNGmDkyJEZPv7Tp0/o27evQlHWz88PgYGBKF68uNQvV65caY41NzdP88u3Okub7e3tER8fj/DwcIUxQkNDVc4KTWn//M7OqY9J2VajTKp/i0xNTVGsWDGpoJdZfvrpJ3z48AHr16/HlStXcOXKFQD/3aDGzc0NQUFBmD59OmJiYtC2bVu0bt1aOl6dpc2pP7Np06YBSH5/lL031tbWKgu4KceknpGYMkbKe6pq3NTPp7Sp6kOkLdHR0Rg50kt67OTkjPPnz2Pu3LkwNTXVYmSUQu2lzSkcHR3h6OioyViIiLIFLm2m7CQhIQ7Gb2+gEIC/Dh2EgYEBBg4ciGlTpwDR97QdHtE30bd81MIi85YzZ0SZMmVw4MABlc87ODigXbt2GDt2LA4ePPjF8S5duoRVq1ahWbNmAIDnz5/j3bt3Cn3Mzc3x008/4aeffsLAgQNRqlQp+Pv7w83NDSYmJtK/yeqaN28eZs6ciRMnTiidvadMcHAwXr16hUKFCgEAfHx8YGBggJIlSyrtryq+fPnyoWvXrujatSvq1KkDLy8vLFiwIEMxuLm54e7du0pnfX4NdZY2V65cGcbGxjh9+rS0JPjBgwcIDg5GjRo1lB7r7OwMe3t7nD59GhUrVgSQfNfhK1euoH///tK4pqamePDgAWrXrg0ASEhIwNOnT9MsJf4SdT6j9+/f48GDB1i/fj3q1KkDALh48WKaftbW1mjXrh3atWuH1q1bo0mTJvjw4QPs7OzUWtqs7DOrUaMGjh49qtB28uRJle9nyjHjx49XKKifPHkSJUuWRO7cuaU+p0+flpbAfz5uRj4XIm3w8fFB165d8ez5c/zQd6TUZmttpeXIKLUMFRKHDx+e4QEXLVr01cEQEWUHLCRSdnH+/HmMHD4MVw8uAwBUq1YNixYvQaVKlQB5EpCJN2sg0jTmo1nn/fv3aNOmDXr06IEKFSrAysoK169fx7x58/DLL7+ke+yQIUNQrlw5XL9+/YsFOhcXF2zfvh1VqlRBZGQkvLy8FGZhbdmyBUlJSahevTosLCywY8cOmJubS8UlJycnnD9/Hu3bt4epqWmGb1oyd+5cTJo0Cbt27YKTk5O0J1zKLDJVzMzM0LVrVyxYsACRkZEYPHgw2rZtq3IGl5OTE65cuYKnT5/C0tISdnZ2mDJlCipXroyyZcsiLi4Ohw8fRunSpTMUN5C8n+P3338PT09P9OrVC7ly5cLdu3dx8uRJrFixIsPjpLCysoKVVcZ+QbexsUHPnj0xfPhw2NnZwdraGoMGDUKNGjXw/fffS/1KlSqF2bNn43//+x9kMhmGDh2KGTNmwMXFBc7Ozpg4cSIKFSqEli1bAkgu1PXr1w+TJ0+Gg4MDihYtivnz5wNIXt6uDnU+o9y5cyNPnjxYt24dChYsiODgYIwZM0ahz6JFi1CwYEFUqlQJBgYG2Lt3L+zt7aV9Ir/15k79+vXDihUrMGrUKPTo0QP//PMPfv/9dxw5ckTqs2LFCuzfvx+nT58GAHTs2BFTp07FwIED0adPHzx9+hRLly7F4sWLpWOGDBmCunXrYuHChWjevDn27NmD69evY926dQCQoc+FKKtNnToVs2bMgFwuR+HChZErOAANGjSAIZcx65wMFRJv3bqVocG4Tp2IcrqUfXwAFhJJd4WEhMDLyws7duyAhfl/e36dPnUKBkbpb/xOpKuYj2YdS0tLab/Dx48fIyEhAQ4ODujduzfGjRuX7rFlypRB48aNMWnSpDQzrT63ceNG9OnTB25ubnBwcMCsWbMUlvna2tpizpw5GD58OJKSklC+fHn89ddfyJMnDwBg2rRp6Nu3L4oXL464uDiFpZ6bN29Gt27dlJ539erViI+PV1iiCgCTJ0/GlClTVMZbokQJ/Prrr2jWrBk+fPiAFi1aYNWqVSr7jxw5El27dkWZMmUQExODoKAgmJiYYOzYsXj69CnMzc1Rp04d7NmzRzqmXr16cHJySrMXZYoKFSrg3LlzGD9+POrUqQMhBIoXL4527dqpjEOTFi9eDAMDA7Rq1QpxcXFwd3dP8x48ePAAERER0uNRo0YhKioKffr0QXh4OGrXro3jx48r7Ek5f/58GBkZoXPnzoiJiUH16tXxzz//SDPsgOTCbLdu3TT2GRkYGGDPnj0YPHgwypUrh5IlS2LZsmWoV6+e1MfKygrz5s1DYGAgDA0NUbVqVRw9elRj29s4OzvjyJEjGDZsGJYuXYoiRYpgw4YNcHd3l/q8e/cOjx8/lh7b2Njg77//Rr9+/dC0aVPkyZMHkyZNQp8+faQ+NWvWxK5duzBhwgSMGzcOLi4uOHDgAMql2lw1I58LUVaaP38+5HI5OnXqhGXLlin8/0+6RSZS/sXNhiIjI2FjY4OIiAhYW1trOxwi0gMJCQmYNWsWAGDMmDHcp4N0SmJCAtavX4dp06YiJPQtZDIZBnkOwNLRHZI7FPweMPi3AC5PAl77KLYra9NE3/TaiflMDqDqM4yNjUVQUBCcnZ35y3kWCQoKwnfffYe7d+/CJeXuNNlI0aJFMXXqVJVFUH0VHR2NPHny4NixYwqFPn0WERGBqKgoWFpaZsm/Hfw+o88lyuU4FJi8z+bPLgVg9G+BPaPtkMuxYNFifPdLJwDAoIbVsXzpEvz6669Z/VII6uWj33Qp5fnz53j+/Pm3DEFElK1wRiLpKm9vb9SpUxv9f6mI1zf2o3atmrhy5QqWLlmq7dCIMhXzUUrt6NGj6NOnT7YsIt65cwc2Njbo0qWLtkPROWfOnEH9+vVZRCTKIR4FPkKdOnUwZcp/N/C6du0qi4jZhNqFxMTEREycOBE2NjZwcnKCk5MTbGxsMGHCBI3dQY2ISFel3jSdhUTSBW/fvkXPnj1Rs2ZN3L59W2o/e+YMqlatqsXIiDIP81FSZeDAgVi5cqW2w/gqZcuWxe3btzW2bDYnad68ucK+gQSFpfxE2U2NGjXg4+MDU2NjfLp2Gj+VyI+CBQpoOyzKILXv2jxo0CD8+eefmDdvnnTXJ29vb0yZMgXv37/H6tWrNR4kEZGuSCkkymQyJm6kPUIgKTEBW7ZugdeoMQgLCwMAhVksLHRTTsZ8lIiIKHt5/vwFgOS9umNiY9CwYUNs2rQJDg4O2g2M1KZ2IXHXrl3Ys2cPmjZtKrVVqFABDg4O6NChAxM3IsrReMdm0gU3b16Hm308ejYti8GDY+Dq6opVq1ah5vfV/9uHkCgHYz5KRPqOMxIpuxBCYMuWLfAaPQbrLvgCABYtXIR+fftwBnY2pfanZmpqCicnpzTtzs7OMDEx0URMREQ6K2WPRBYSSRs+fPiA/v3744cf6kpt8+fPx/Xr11GzZk0tRkaUtbJbPpqN721IRASA32P0dUJDQ9GyZUv06NED79++wdK+HVFW9gn9+/VlETEbU/uT8/T0xPTp0xEXFye1xcXFYebMmfD09NRocEREuiZlRiL/4aMsIQQgT4I8MQGbN29GyZIlsWbNGoVkfkD//jAyUnuBAVG2ll3yUWPj5CVc0dHRWo6EiHKarJ6RmPI9lvK9RpQRVatWw6FDh2BiYoI5c+bgn9OnUPI7F86kzebU/s3j1q1bOH36NIoUKQJXV1cAgJ+fH+Lj49GgQQOFu+z8+eefmouUiEgHcGkzZSkhB177wACA58ABiI6JRdmyZbF6Vfa8kQCRpmSXfNTQ0BC2trZ48+YNAMDCwoK/PBGRRsTHxyMxMRFxcXGZmpcKIRAdHY03b97A1taWOTB9Ucre3QDw4cN7uLq6Yvv27ShfvrwWoyJNUruQaGtri1atWim0cXNMItIXLCRSVomIiMDMGdMwb2hyQSRXLgtMnTYdQ4YMgbGhAfdCJL2WnfJRe3t7AJCKiUREmhAVFYWEhARYWFhkyZYOtra20vcZkSrHjx9H/4EDsfDoRQDAqFGjMGHcOJ3cdoS+ntqFxM2bN2dGHERE2QL3SKTMJoTArl27MHLkSERGhEuFxFu3bqFwEcfkTvIkLUZIpH3ZKR+VyWQoWLAg8ufPj4SEBG2HQ0Q5xKFDhxAcHIyGDRvC2dk5U89lbGzM3JfS9elTFMaM8sLatWsBAJPaNMH69evxv8mTORM/B+KmSkREauAeiZRphMDdu3cwfPgwnPj7FADAtUI56enChQprKzIi0gBDQ0P+Ik5EGhMbG4uoqCgYGhrCzMxM2+GQnvu+enU8uH8PADB48GDMnj0bFhYWWo6KMovavwm/f/8eAwcORJkyZZA3b17Y2dkp/BAR5WRc2kyZ4ePHjxg3dgzK2Ebg+KYpyGOXG7NmzcKVK1e0HRqRTmI+SkT6jjkpaVts7H83PHv67CkcHR1x+vRpLF26lEXEHE7tGYmdO3fGo0eP0LNnTxQoUIDTVIlIrzBpI00SQmDv3r0YNmwYwsM+YNagnwEAN2/egGNRZy5hJlKB+SgR6buU7Xa4Soa04caNG+jZuw8m7T4MIPnf5QXz5sHGxkbLkVFWULuQeOHCBVy8eFG6Qx4RkT7hHon0zYQAhBwPAwMx0HMQTp1KXsZcrmxpqYujg6O2oiPKFpiPEpG+48Vt0oaEhATMmjULM2bMQGJiIoa618Dy5Suwbs0aXtTTI2pfvihVqhRiYmIyIxYiIp3HPRLpW0VFfQRe++A7y/e4fOkiTE1NMWXKFFy7dk3boRFlG8xHiUjfcUYiZSUhBALu3sUP9ephypQpSExMROvWrXHz+nX88lMLFhH1jNrfOqtWrcL48eNx7tw5vH//HpGRkQo/REQ5Ga/+0tcSQuDAgQOoXLmK1Obu7o47d+5g8uTJMDPlRulEGcV8lIj0HXNSyipJSUlYvHQpHhrmhtemP1CgYCHs2rULv//+O/Lmzavt8EgL1F7abGtri8jISNSvX1+hXQgBmUwmfaEREeVETNroazx+/BiDBg3CsWPHYGH+X8Fw3x9/QGao9j/FRHqP+SgR6TvOSKSs8OTJE3Tr1g1Xr1/HrqbtAADXrl2DQ+FCWo6MtEnt3148PDxgbGyMXbt2cXNrItI73COR1BETHY1FixZg4cJFCAuPgLGxMby8vKTn+W8o0ddhPkpE+o6FRMpMQgisX78ew4cPR1RUFHLn+W/mYcGC9lqMjHSB2oXEgIAA3Lp1CyVLlsyMeIiIdBr3SKSMOnLkCEaPGomAvzdgfPcG+KnPTCxYtBglXUoAr320HR5RtsZ8lIj0HVfJUGYQQuDFq9cYOHAA/jp4EABQp04dbNy8Bf6JWg6OdIbavwlXqVIFz58/z4xYiIh0HpM2+pKnT5+iZcuWaNGiBYKCnkrthw4dYtGDSEOYjxKRvuOMRNI0IQR2//Ybrn2Sodvc1bC2tcWCBQtw5swZODs7aTs80iFqz0gcNGgQhgwZAi8vL5QvXx7GxsYKz1eoUEFjwRER6RoWEkkpIRAXF4OlS5diytTpiImJgZGREYYMGSJ14dJLIs1hPkpE+o45KWnSu3fv0L9/f/x15Ah23XoMALh06RLKlSkDAEj8t3BNBHxFIbFdu+QNNnv06CG1yWQybm5NRHqBV39JmdOnT6FBaQuM6vQDpk4VqFu3LlauXImypUtxGTNRJmA+SkT6jjkpacpff/2F3r17IzQ0FLmsrKT2UqVKaTEq0mVqFxKDgoIyIw4iomyBV38ptRcvXmD48OE4cvgvRAWeAgBs2rQJbdu1T56BKGcxgygzMB8lIn3HnJS+VUREBEaOGoXt27cjLiYGZcqUwZZt28GNQ+hL1C4kFi1aNDPiICLKFpi0EYRAQkIcVq5YiQmTJiMqKgqWuSykp9u1bQtwGTNRpmI+SkT6jjMS6VucOXMGffr1w9xDZ9F0+BRc2bIMUydPhpGJCZ4Hhmo7PNJxahcSU9y9exfBwcGIj49XaP/555+/OSgiIl3FuzbThQvnUae4EYa2+x7jJyShZs2aWLNqJYAobYdGpHeYjxKRPhJCQAgBgBe3ST3R0dEYO3Ysli1bBlNzc6l95syZMDIw4F6IlCFqFxKfPHmC//3vf/D395f2ogH+20See9IQUU6WcvWXSZv+CQkJwciRI7H/z33SMua1a9agY6fOMIDgXohEWYj5KBHpM3mqYg8vbtOXCCGQJASuXbuObl064+HDhwCAnj17aTkyyq7U/tYZMmQInJ2d8ebNG1hYWODOnTs4f/48qlSpgrNnz2ZCiEREuoNLm/VPYmIili5dipIlS2Lnzp0Kd1/u1KkTE3giLWA+SkT6LPXFEuYh9CUxcfE4FBiK17YOePb8OQoVKoTjx49j6dIl2g6Nsim1v3W8vb0xbdo05M2bFwYGBjAwMEDt2rUxe/ZsDB48ODNiJCLSGSwk6hEh4ON9CbVr1cTQoUMRGRmJatWq4cKF89qOjEjvMR8lIn2WekYic1JKz+3bt1G37g/S43bt2iEgIADu7u5ajIqyO7ULiUlJSbD695bgefPmxatXrwAkb3r94MEDzUZHRKRjuLG1fnjz5g369u2D7x0Bnz8Xo0jhgli7di28vb1RqWIlbYdHpPeYjxKRPuOMRPqSpKQkzJkzB1WqVIG/v7/UvnHjRuTOnVuLkVFOoPYeieXKlYOfnx+cnZ1RvXp1zJs3DyYmJli3bh2KFSuWGTESEekMzkjM2ZKSkrB27VqMHz8e8XGxWDu5GwDg1i1f5M2XP7mTnHuvEWkb81Ei0mcpF7ZlMpnClitEQgg8DHyEPn364Py5swCAVr+01GpMlPOoffliwoQJ0hfXtGnTEBQUhDp16uDo0aNYtmyZxgMkItIlLCTmUELg2lUf/FCnNgYOHIjw8HC4urpKT+fNk0eLwRHR55iPEpE+Yz5KysjlcqxesxZ3hCWGrN2FvPkLYMuWLdi9Z7e2Q6McRu0ZianX0pcoUQL379/Hhw8fkDt3bl4NIaIcj3dtznnev3+PyZMmYsU4D1zauwCFqvyKceMnon/fPsCba9oOj4iUYD5KRPqMW+3Q554/f44ePXrgwqVL2HXrFwDA1atX4VzUEYmp9tQk0oRv/uaJjIzE+fPnuR8NEemFlCvATNyyP7lcjg0bNqBkyZLYvHmz1H7rli88PT1ZLCbKRpiPEpE+YSGRUgghsHXrVpQrVw6nTp2CuZm59JyDQxEtRkY5mdrfPG3btsWKFSsAADExMahSpQratm2L8uXLY9++fRoPkIhIl3ApSTYnBCBPgu/NG6hZsyZ69+6N9+/fo2yZMlKXAvnzazFAIsoI5qNEpM+Yj5IQAq9DQ9GmbTt069YNkZGR+P777+Ht7a3t0EgPqF1IPH/+POrUqQMA2L9/P4QQCA8Px7JlyzBjxgyNB0hEpEuYuGVv4eFhwGsfVCwQC//bfrC0tMSiRYtw6fIlbYdGRGpgPkpE+owzEmn/gYPwDpej44ylsLS2xqxZs3DhwgWUcCmh7dBID6j9zRMREQE7OzsAwPHjx9GqVStYWFigefPmCAwM1HiARES6hHskZk9CCGzbtg2VKlaU2tq0aY0HDx5g2LBhMDYy1l5w2UVSLBB5F0iM1nYkRMxHiUiv8cK2/goLC0Pnzp3R0aOj1Hb+/HmMHTsWRkZq3wKD6KuoXUh0cHCAt7c3oqKicPz4cTRu3BhA8l9oMzMzjQdIRKRLuEdi9uPv748ffvgBXbt2xZu3b6WC2Jb1q1CoUCFth5c1VBUBM1ocTIwGbnQDbvUBjldmMZG0jvkoEekzzkjUTydOnED58uWxY8cOhc++fPnyWoyK9JHa3zxDhw6Fh4cHihQpgkKFCqFevXoAkqvg/AtMRDkdrwBnE0IgMiIcY0Z5oVKlSrh48SIsLCwwe/oE3SiIqTO771tnAqoqAqpTHIwIAGJeJP/5UyAQHqCZ2Ii+EvNRItJnzEf1hxAC4ZEfMXDQYDRp0gQvX76Ei4sLTp06re3QSI+pXUgcMGAAfHx8sGnTJly8eFGqhBcrVox70hBRjsfETfcJIbB37++w/nQHc4a0hKmJMVq1aoV79+5hcJf6ygtimenzYlt6BTx1+maUqiKgqnZlbCsAli7Jf7ZyAWzLcZYiaRXzUSLSZ5yRqD8uXrqMf15/QgPPsTA1N8egQYPg6+uLatWqajs00mNftYi+cuXKqFy5skJb8+bNNRIQEZEu4x6Juu3evXvw9PSEj/dltAk8BQA4sH8/Grk3Se6QkCe5IPYp8L+CWGZKKbbFvAAC5wPNfJUX8PJWU68vkFx0jHoC5KsAmFipjiGlCPj5a1bVroxxruR4wgOS+xlZAG+9VcdGlAWYjxKRvuKF7ZwvNjYWkyZNwvKVK7Hz5iMAwOHDh9Gwfn0AQOK/v5MQaQMvYRARqYF7JOogIRD1KRITJ4yHq6sr/vnnH4U90ho1avRf35SCWOMrQFPf5IJYCmXLdL91CbKyQqCy2X3q9lVnVqOq16yqXdVrNrJILhSm9FMVW3pjcCk0ERHRN+OMxJzt1q1bqFKlCubPnw8hhNSeso0Hkbbxm4eISA28AqxbhBA4eHA/ckX4Y3r/ZjA2MsRPP/2EGzeuqz7o84IYoLwwp4klyMqKbaoKeOr0VbUsWVUcyl6zsnZ1liurik0TezISERGRSiwk5kwJCQmYMWs26tStizt37iB//vz47bfftR0WURr85iEiUgMLibojMDAQTZs2RceOHlLb3r2/49ChQ3Aq6qTe7DdlhTl1inWq+qoqtikr7KnTV51ZjepQ93hlsWliT0YiIiJSifloznPv3j3Uq18fZVp1w7ZrD9CuQ0fcuXMHzZs303ZoRGmwkEhEpAbukahFQgDyJMREf8KkSZNQrlw5nDhxAiYmJlKXZk3/TbbUnf2mrDCniSXIgOrZgMpktK86sxrV8a3HpzeGJsYmIiIizkjMQeRyORYvXgw3NzfcuHFDat++fRvy5s2rxciIVFP7ZitXr16Ft7c3QkJCAAD29vaoUaMGqlXjButElPNxj0QtEnLgtQ/MASxcMB/x8fFwd3fHiuXLALxV7JveTUqUUXYzEUB5m7KblBhZKO+bmVKKjhl5HRn1rcenN4Ymxib6F/NRItJnnJGYvQkhkCQEnj59hl49uuPcuXMAgOY//ST1kclk2gqP6IsyXEh88+YNWrVqhUuXLsHR0REFChQAAISGhmLYsGGoVasW9u3bh/z582dasERE2iSE4IxELQkKCsIor5HYu3Q4AKBw4cKYPWcufv31V8iEHHj9WSFRnTsSp1BWmFOnWKesrzZ8axyaeB2qxtCV94iyLeajRESckZjdJcrl+OvRGwBm8Ll6Fbly5cLChQvRo1evf9uJdFuGv3kGDBiApKQk3Lt3D0+fPsWVK1dw5coVPH36FPfu3YNcLsfAgQMzM1YiIq1KSdoAFhKzSmxsLKZPn44yZcrg6NGjUvutWzfRqlUr1Vdr07s7syaos1yZiDSG+SgREWckZmevX79G69atpcc1atSEn58f+vbty1mIlG1keEbiiRMncP78eZQsWTLNcyVLlsSyZct4O3IiytFSkjaAiVumEwKnTv6N4SOGwz/gLgCgaZPG0tO5LHJ9eQzOfiPKcZiPEhFxRmJ2tWfPHgwYMADRsbHoOie57fjx4zA1VnvHOSKtyvA3j6mpKSIjI1U+//HjR5iammokKCIiXZS6kMjELfMEBwejY8f2aFjWErePr0MxZyfs2rULRw4f0XZoRKRlzEeJiPS3kCiEQOQnOS77yBEVJTTWN7M9f/4ejRqNR4cOPRAWFoaKFStKzxka6tdnSDlDhv/WtmvXDl27dsX+/fsVErjIyEjs378f3bt3R4cOHTIlSCIiXZB6abO+JW5ZIT4+HnPmzEHp0qVx8OAhqf3WrVvo0KEDl3sQEfNRIiLo783/PkYJlConR60aBqhYCYiOTm5XVjRUp68qmui7b98xODuH49SpmQB8MXbsdJw5cxZxMUDgbWMprhSq2pVRp29mjkH6J8NzaBctWgS5XI727dsjMTERJiYmAJJ/8TMyMkLPnj2xYMGCTAuUiEjbUidtLGppiBCAkOPsuXPoP2Ag7t+/DwBo2OBHqYu1lZW2oiMiHcN8lIgIenvzv4AA4PWz5BLGo0AZAgKAatX+Kxq+fmaEEi4Cfr7q9TU3F/gYJRAQALiWlyFXruQ8X1lfC4vkouHn/T/ve+F8JMaPH4ZNm/wBXP33FXyHli0nICFBjhEt8+H1MyNsSDVudDTStJuYKX8vlPW1SGfr7rgYIDjQGNGFAWtL1WOoOp+qMUg/ZbiQaGpqitWrV2Pu3Lm4fv06QkNDAQD29vaoXLkyrK2tMy1IIiJdwI2tNe/1q5coiGeo950pgp89Rf78+TF//nx09ugIhFzRdnhEpGOYjxIR5awZicqKcqray5UDChZNlIp15col91VWNFSnb6kyyguG31K4rFSpM0JCDgGwgK3tG4SH54eLS3JcvreVj6vsfG5VlL9vqmJTRlXRUdX5Mlp0TK9wSTmb2rt6Wltbo379+pkRCxGRTmMhUXMSEhKwfPlyzJ0zC6G3DgIA+vbtg0mTp8LW1haQJ6U/ABHpNeajRKTPctKMRFWz/lS1LzzwFsGBxujf1A4WFsnFQWVFQxOzjPdVVdj72sIlZIEICTkJJycnbNmyBVWr5pf6WFgkF0ZLuAg8CpTBJdW4qtqVFfZU9VVGVdFR2RjqFB1VFS4p51OrkPju3Tts2rQJ3t7eCAkJAZB8BbhmzZro1q0b8uXLlylBEhHpgpyUtGnThQsXMHDgQPj7+8PC/L/1E4sWLgIM+N4SUfqYjxKRvstJMxJVFahUzZYzNQdcKiQozIZTVmBMlGe8r6qCoTqFSz//61h4wAHBgcaY1OV7dOvSGQsWLIDVv1v0pC665colk2Yxlisnk+JT1h75SXlhT9UYyqgqOiob47JPxouOpL8y/M1z7do1fPfdd1i2bBlsbGzwww8/4IcffoCNjQ2WLVuGUqVK4fr165kZKxGRVuWkpE0bQkNC0LtXTzRxbwx/f3/kyZMHK1eu0HZYRJSNMB8lIspZF7dTinIA/i3Kpd+uirKiYUb7phQM5/z+DjduCoUx0itGzvn9Hbx94jFr1gQ0aFBf6rt//y6sXbtWKiIqY2GRXKD7PN7P25UVVL80xueSC4YyXLkC+PrK0ryW1GOkFAwB/Fsw/PIYpH8yPCNx0KBBaNOmDdasWZPmJgNCCPTr1w+DBg2Ct7e3xoMkItIFXNr8dZKSkrB69WrMmjkdr67/ifVTe8Bz1k5MnTYdeXLbAq99tB0iEWUTzEeJiP4rJOaEi9uqZv2pmmWYWdQpRKbu36xZXVy7kryv9/5ZY7Fo0ULk/a6xxuL6mpmAypZCpxQMvyS9mY4ZHYNyvgwXEv38/LBlyxaldyqVyWQYNmwYKlWqpNHgiIh0CQuJ6vPx8cGAAQNw69YthWXMK5YvT17GzL0QiUgNzEeJiHLeKhlVRTx1i3tZJSnpv4rm7du3kSdPHqxevRpt2rTR+LnUWcIMaOamKCwY0pdk+JvH3t4eV69eVfn81atXUaBAAY0ERUSki3LSMpJMJQTevX2DgQP6o0aNGrh16xZsbW2xePFibUdGRNkc81EiIuak2vTo0SM0bvzfjMOmTZsiICAgU4qIKTK6hBlIfyk0kaZkeEbiyJEj0adPH9y4cQMNGjSQkrTQ0FCcPn0a69evx4IFCzItUCIibctpV38zg1wux5bNG9GjSRmsHN8JW7ZsQdt27TF37lzkz5uHy5iJ6JswHyUiyllLm7MLIQRWrVoFLy8vJAkhtf/+++8w1qGCLm+KQlkhw4XEgQMHIm/evFi8eDFWrVqlsMSvcuXKyb8stm2baYESEWkblzan78aNGxgwYAAC/G+jR+ApAMDJkydRs1bt5A5cxkxE34j5KBERc1Jt+OWXX3DsyBEAQL169VDRNB6Ojg4wVLLVhjapuxSa6GtkuJAIAO3atUO7du2QkJCAd+/eAQDy5s0LY2PjTAmOiEiXMGn7jBCAkCMsPBzjJ0zEmjVrIIRAgfx5pS41a9TQYoBElBMxHyUifccZiVlDpJp5+M8//8DMzAxz586Fp6enTr/33OOQMttX/e03NjaGnZ0d7OzsmLQRkd7gfjSK5EmJwGsf5I65j61bNkMIgY4dO8L3lq+2QyMiPcB8lIj0FS9uZ743b96gY0cP6XGVylXg6+uLwYMH63QRkSgrqPV/wMmTJ9GsWTPkzp0bFhYWsLCwQO7cudGsWTOcOnUqs2IkItIJ3CPxP35+fmjs/t9G06VLl8KZM2ewc+dO2NvbazEyIsrpmI8Skb7jjMTMtX//fpQrVw5//XVIajt1+jRKliypxaiIdEeGv3m2bt2KZs2awcbGBosXL8bhw4dx+PBhLF68GLa2tmjWrBm2b9+embESEWkVr/4CERERGDp0KCpXrgxv7/9unOLt7Y169eppLzAi0gvMR4mIWEjMTL1798avv/6Kt2/f4rsSJeAUE4qfXQrA1FitXeGIcrQM/98wc+ZMLFmyBAMHDkzzXLdu3VC7dm1MmzYNnTt31miARES6Qp8LiUIux++//4axY8ci6OkzAMCvv/53QwNjIy4rJKLMx3yUiEi/c9LMtnv3bhgYGGDUqFGYMmUKTE1NtR0Skc7J8CWM4OBgNGzYUOXzDRo0wIsXLzQSFBGRLtLXPRLv3r2LZs2aoF0dRzy5uBMVypfFiRMnsH0bZ/0QUdZiPkpExBmJmhQVFYVhw4ZLj4sVK44LFy5g9uzZLCISqZDhb56yZcti48aNKp/ftGkTypQpo5GgiIh0kb7tkfjp0yeMGjUKrq6uOH/+gtR+9epVNG7cOJ0jiYgyB/NRIiLOSNQUH58rqFixIlYsW4qOlYrj7Op5uOrjjZo1a2o7NCKdluGlzQsXLkSLFi1w/PhxNGzYEAUKFAAAhIaG4vTp03jy5AmOHDmSaYESEWmbXiRtQkDIk7D/wAEMHjIUL1++BAD8+r+WUhdTE16dJSLtYD5KRMQZiZrSuHEjxERFwcHBAZs2bUp3xjsR/SfDhcR69eohICAAq1evho+PD0JCQgAA9vb2aNq0Kfr16wcnJ6fMipOISOv0YUbiw4cP8J3le/z6fUF0/vAezs7OWL58OZo3bQK89vnyAEREmYj5KBGRnlzcziR+frcBi+SLUHK5HF27dsXSpUthY2Oj5ciIsg+1bj3k5OSEuXPnZlYsREQ6LSfvkRgdHY2ZM2di5YrlCL97DAAwbtxYDB/hBXNzc0CepOUIiYiSMR8lIn3HGYnqS0xMxJw5czBn3jxsu/YAALBnz29o+fNPWo6MKPv55nuYJyQkwNiYd+skopwvx139/XcZ8+Ejh+E5aAiCg4NhYW4mPT1+3HjAIIe8ViLK0ZiPEpE+YSFRPQ8fPkS3Ll1w7do1AMCeycOxbNlSFPiphZYjI8qeMvzN8/vvvyM+Pl56vGLFChQtWhRmZmbImzcvpk2blikBEhHpipxWSAwKegxZyBX8VDkf3r19A0dHR+zZs1vbYRERqcR8lIgo5+Wkma1mjZq4du0abG1tsWPHDvy2exfs8+eHTCbTdmhE2VKGC4kdOnRAeHg4AGDz5s3w8vJCt27d8Ndff2HYsGGYN28eNmzYkFlxEhFpXU7ZIzE2NhZTp05F5cpVpLaRI0fi7t27+KkFl3cQke5iPkpExBmJGfHsWbD059i4WLi7u8Pf3x8eHh4sIBJ9owwvbRZCSH9es2YNpk2bBi8vLwBAs2bNYGdnh1WrVqFXr16aj5KISAfkhD0Sjx49ikGDBuHJkycKy5inTpmSvIyZeyESkQ5jPkpExBmJ6RFCYOPGjRg9dhzWXfAFACxZshR9e/diAZFIQ9S6hJHyP96TJ0/QuHFjhecaN26MR48eaS4yIiIdk22TNiEQ/CwI7du1RfPmzfHkyRMUKlQI27Zt03ZkRERqYz5KRPqOMxJVa9OmDXr16oX3b99gWf9OKGcYzSIikYap9c1z/PhxHDp0CGZmZoiOjlZ4LjY2lv9zElGOlh1nJMbHx2PBgnlwNHqFPYuGwMoyF0aMGIH79++j1a+/ajs8IiK1MR8lIn2XbS9uZ4Hjx4/DxMQE8+bNw+mTf+O7EsX57wKRhql11+auXbtKf/7nn39Qo0YN6bGPjw+KFy+uuciIiHRMdtsj8dSpU/D09MTz4GcY2fEUAMDb2xtly5VP7sBlzESUDTEfJSJ9JoTgjMRU3r9/jyHDhuPX8XMAABUrVsTG9etRtmxZLUdGlHNluJCY8mWlSoECBTB79uxvDoiISFdli6u/QuDVqxcYM2YMtu/YBQBwLuooPV22TBltRUZE9M2YjxKRvku9V6xO56RZ4OjRo+jZsyfCIiKkQuKZM2dhbmqi5ciIcjaNXcJo0aIF3N3dNTUcEZHO0fVCYkJCApYuXYJCCMa2OQNgmcsCgwcPxs1bt7QdGhFRlmA+SkQ5XeoLKvo8I9HT0xPNmzdHSEgInIsWReHIl/jZpQDMTIy1HRpRjqe/3zxERGrS5T0Sz507h0qVKmHcuHFS26WLF7F06VLY2thoMTIiIiIi0pSUC9uAfhcSt2zZAplMhmHDhuHmzZuoXrUKjAwMuB8iURbQ328eIiI16eIeiSEhIejUqRPq1auHO3fuIG+ePNJzFSpU0GJkRERERKRpqWck6uLF7cwSExODMWPGSo+LOhbFmTNnsGjRIpibm2sxMiL9ozu/DRMR6ThdWtqcmJCAVStXoFLFCti5cydkMhn69euHW76+2g6NiIiIiDJJ6hmJ+jL77ubNW3Bzc8OKFcultitXrqBu3bpajIpIf7GQSESUQbpSSLx8+TJq166FAS0r4fWN/ahdqyauXLmC1atXwy53bq3GRkRERESZJ/Udm/WlkPjjj/Vw//595LaxgcljX/zsUgA21lbaDotIb2X4rs1ERPpO23skvn37FqNHj8bmzZthYW4mtZ89cwaGxrw7HREREVFOpysXtjPbvXv3ACM7AMmvuX379lixYgXypNrGh4i0Q6MzEuvXr4/p06cjOjpak8MSEekEreyRKASSEuKxYf1alCxZEps3bwYAdO3aVeqS0xNJIiJ1MB8lopws9YzEnCgpKQnz589HrVq1pLZt27Zh9+7dLCIS6QiNfvs4Ojri9OnTKFWqlCaHJSLSCdq4AnzjxjUYvrmGXs3KIS42BhUrVsTly5exauXKLIuBiCg7YT5KRDlZTi4kPnkShHr16mHUqFH4GBGBbWMHopoV0KZVK22HRkSpaHRp85YtWwAAkZGRmhyWiEgnZGUh8cOHDxg3bhx2bN+GTw9PAgAWLFiA3n36wsjICJAnfWEEIiL9xHyUiHKynLy0+fvvv0fY+3ewtLTE0qVL0b17d73ZB5IoO9HIZYzw8HCFx9bW1poYlohIp2T6HolCQJ6YgK1bNuG7777D2rVrIYSQnu7fr19yEZGIiNJgPkpE+iCnzUh89eq19Ofo6CjUq1cP/v7+6NGjB4uIRDpK7W+fuXPn4rfffpMet23bFnny5EHhwoXh5+en0eCIiHRJZu+ReNvPFwahV9G1UUnEREehbNmyOHHiRKaci4goO2M+SkT6KqfMSBRCYMeOHahatarUNm/ePJw+fRpOTk7aC4yIvkjt34bXrFkDBwcHAMDJkydx8uRJHDt2DE2bNoWXl5fGAyQi0hWZlbiFh4dj8ODBqFW7ttQ2e/Zs3Lp1C7VTbTRNRETJmI8Skb7KCTMS3759i9atW6Nz5854E/Iai3q1QykRgUEDB2br10WkL9ReIxcSEiIlbocPH0bbtm3RuHFjODk5oXr16hoPkIhIV2i6kJhyJdbLywuhoaGwMDeTnhs8aBBgYMi9EImIlGA+SkT6KrvOSBRCIEkIHD58BH1798KbN29gZGSEyZMnY8yYMdy+hygbUbvcnzt3bjx//hwAcPz4cTRs2BDAv18MSfyFl4hyLo3tkSgE7gT4o4l7I3Tp0gWhoaEoWbIkDh8+rIEoiYhyPuajRKSvsuuMxLDwCBwKDIW8ZBVEfPyIcuXK4erVq5gwYQKLiETZjNrfPr/++is6duyIRo0a4f3792jatCkA4NatWyhRooTGAyQi0gVyuVy68cm3JG4fP37E2DGjUTZ3JE5snoq8eewwe/Zs3L59Gz/Wq6ehaImIcjbmo0Skr7LjjMTTp0+jWvVq0uNhw4bh+vXrqFSpkhajIqKvpXbpf/HixXBycsLz588xb948WFpaAgBev36NAQMGaDxAIiJdkHL1F/i6xE0Igd9++w0jRoxAeNgHzB78CwDg5s0bcHB0+vcknEVDRJQRzEeJSF9lpxmJUVFRGD16NFauXAlTc3Opffr06TDKBvETkXJqFxKNjY0xcuTINO3Dhg3TSEBERLoo9VI5tQqJQuDBg/sYMXw4jhw7DgAoV7a09LRDEQeNxUhEpC+YjxKRvsoOhUQhBC77XEHv3r1x704AAKB37z5ajoqINOWrvn22b9+O2rVro1ChQnj27BkAYMmSJTh48KBGgyMi0hWpC4kZTdyioqIwadJElLT6gMPrJ8Auty2mTp2Ka9euZVaYRER6g/koEekjXV/aHBcXhwmTJiHUrihm7PsbxUqUwN9//43FixdpOzQi0hC1C4mrV6/G8OHD0bRpU4SHh0tfZLa2tliyZImm4yMi0gkp33UymeyLhUQhBP7880+ULl0aCxculNqvX7+GSZMmwczULJ2jiYjoS5iPEpG+0uUZib6+vqhatapC/nv16lU0atRIi1ERkaap/e2zfPlyrF+/HuPHj1e4ClKlShX4+/trNDgiIl3xxTs2CwHIk/D4USCaNWuGVq1a4fnz53B0dJS6ODs5Z0WoREQ5HvNRItJXujgjMTExETNnzkS1atXg7++PvHnzSc/Z2NhoMTIiygxqFxKDgoKU3l3J1NQUUVFRGgmKiEjXpCRtqq7+xsREAa99UNz8Dc6fOwsTExNMmDABN25cz8owiYj0AvNRItJXujQjUQiBew8e4Mf6DTBhwgQkJCTgf//7H65du6rt0IgoE6n97ePs7AxfX9807cePH0fp0qXTHkBElAOkd/X38OHDqFKlqvS4QYMG8Pf3x/Tp02FhbgEkxQKRd4HE6CyLl4goJ2M+SkT6SldmJMrlcqxYtQr3YI1h6/cgXwF7bNu2Dfv27UO+fPm+PAARZVtq37V5+PDhGDhwIGJjYyGEwNWrV7F7927Mnj0bGzZsyIwYiYi0TlnS9vTpUwwZMgSHDh2Chfl/+x4ePHAAMsN/v14To4Eb3YCYF0DgfKCZL2BgmoWRf4WkWCDqCZCvAmBipbm+REQawnyUiPSVLsxIfPbsGbp3747LPj7YdetXAMl7ITo5OiR3EEJrsRFR5lO7kNirVy+Ym5tjwoQJiI6ORseOHVGoUCEsXboU7du3z4wYiYi0LvUeiXGxsVi6dDHmzZuP9x/CYGRkhGHDhkl9ZTLZfwdGBCQXEQHgUyAQHgDYVc7K0NWjrPBpZPHtfYmINIj5KBHpK20VEoUQSJTLsX37DgwdPAgfP35Ebrs80vNFihTO0niISHu+6tvHw8MDgYGB+PTpE0JCQvDixQv07NlT07EREemMlBmJsbGxqFatCkZ1+gHvbv+FJu6N4OfnhxnTpys/0LYCYOmS/GcrF8C23L8DqrHcOTOXRn8+trLCpyrq9NVEbEREqTAfJSJ99KV9uzPLq5AQ/PXoDWxrNEZ8YiJq1qwJb2/vLI2BiHTDN337WFhYIH/+/JqKhYhIZ71+/RoA8OLFCzx69FhqP3rkKMqUKZP8QFnhyzhX8ky9xleApr7JM/ZSZvLd6gMcr5x+oUydvulRFpuysVUVPpVRp6+6VL1uVcVFFh2J9BbzUSLSJ6lXyWSVvXv3omrVatLjadOm4/z58yheoniWxUBEukPtpc3Ozs6Ky/Y+8+TJk28KiIhIZwiB+PhYrFyxEhs2bUbbtm0hl8vh6TlQ2htQlq8CYGiV/jJfIwsg73/Jl9KZfKmfT02dvik+37dQVWyqxm7mm/xn23KKS5U/HzelSKqsrzqU7bOoLDbr0spfB5dYE+kd5qNEpK+yckbihw8f4Onpid27d8PU3FxqHz58GAwNDJD4b1GTiPSL2oXEoUOHKjxOSEjArVu3cPz4cXh5eWkqLiIirTt37izquphgWPsa2LJ1CwCgZMmSGNK/B3CkjGLhSp2CX8pMvk+BaWfyfV5UU6cvoLyopio2VWN/XvhUNa6RhfK+qmJT1q5qXGWxhfkpfx1fU2wlomyN+SgR6avMnpEohECSEPj775Po1aM7Xr9+DUNDQ4weNTpTzkdE2Y/ahcQhQ4YobV+5ciWuX7/+zQEREWnb69evMWLECBw8sB9RgacAAAMHeuJ1SCgsLS2VF67SK/h9TtVMPmVFNXX6qpplqCo2dWYUqlOsUxWbOkVOZbGpeh3qvPdElCMwHyUifZXZMxIjIj/in5AowLkCPoSHo2TJkti2bRvcqlTBocDQTDknEWUvGvv2adq0Kfbt26ep4YiIso4QgDwJiQlxWLJkCUqWLIndu3crLJurXbs2gH+v/irbG1DZXojpSZnJl7qfqpuXqNNX3diUja2MOvshqootvSKnsnE/j03V61D3vSeiHIv5KBHldJk5I/H8+fP4/vvvpccDBgzEzZs3Ua0aV3oQ0X/UnpGoyh9//AE7OztNDUdElHWEHHjtAyMA48eNRXRMLKpVq4Y1q1cCiAPw39VfQ0ND1TP5VC3zzSh1ZtapO8vwW2NTZ/aiOjMHjSzU22dR1ev41tdHRDkC81EiyulSComanJEYGxuL8ePHY/HixTAxM5Pa582bC6Msvjs0Eek+tQuJlSpVUpilI4RASEgI3r59i1WrVmk0OCKizPbmzRtMGD8O66Z0BwDY2eXGkslT0bNnTxhAAK99AADi86u/mVG4UqdYl17fzCqqZXRcVbFlVpGTiPQO81Ei0leaLCQKIXDtxk307t0bt31vAQC6du36zeMSUc6mdiGxZcuWCo8NDAyQL18+1KtXD6VKldJUXEREmSopKQlr167F+PHjER8XKxUSb93yRd58+ZM7yZP+6y/PojvkqVNU0+UCHGcOElEmYj5KRPpKYZXMN0hISMCs2XNQvl0vTN5zBMOa1MTK5cvRpFkz7oVIROlSu5A4efLkzIiDiChrCIFr165g6NBhuOydPNuwxvfVpafz5smj9DBNJW1ERPTtmI8Skb7SxIzEO3fuoEuXLrhz7x52tesFALh27Rry582LxH/HJyJSJUOFxMjIyAwPaG1t/dXBEBFlpvfv32PypIlYMc4Dl/YuQKEqv2L8hEno16c38OZauseykEhEpF3MR4mIvi0nTUpKwuLFizFhwgTExcXBvlBh6TnuL0tEGZWhQqKtra3CPjTKCCEgk8mkLzYiIl0hl8uxceNGjBkzBrEx0VgxzgNA8jLmAvYFFZYwqx5DAGAhkYhIW5iPEhF93YxEIQQePQlC3759ceb0KQBAs2bNsHb9Blz9mClhElEOlqFC4pkzZzI7DiIizRICEHL4+vqi34CBuHLlCgCgWpXKUpcC+fNneLiUX0ozfY9EIiJSivkoEZH6MxKFEFi3YSPy/dAcniu3wa+2K+bOnoWePXsiSQjgI/dDJCL1ZKiQWLdu3cyOg4hIo8LDw2AbfQ8VCwD+t/1gZWWFqVOnwnNgf+DtDbXH49JmIiLtYj5KRKTejMSXL1+iV69eOHPuHHbdag4AuHLlCkoUc07uIESmxUlEOZfaN1tJER0djeDgYMTHxyu0V6hQ4ZuDIiL6WkIIbNu2DZMnTsBT7z0AgLZt2mDm7DkoVKhQhpYxK8MZiUREuof5KBHpm4wUEoUQ2L17NwYOHIjw8HDY2OaWnnNyKprpMRJRzqZ2IfHt27fo3r07jh07pvR57klDRNpy+/ZtDBw4EBcvXoSFuZnUvnnzZsDg22YSin+TNs5IJCLSPuajRKSv0lslI4TAm3fvMGTIUPy2excAoGrVqti8dSseZGmURJSTqT21ZujQoQgPD8eVK1dgbm6O48ePY+vWrXBxccGhQ4cyI0YionRFRkRg9KiRqF2rZnIR0cICM6ZP1+g5uLSZiEh3MB8lIn2V3ozEQ4eP4NKHRLSdvAC5rKwwbdo0XL58GSVLlszqMIkoB1N7RuI///yDgwcPokqVKjAwMEDRokXRqFEjWFtbY/bs2WjevHlmxElElEbKso0J48fhycWdmDvkf+g0agVmz5kHh8KFgNc+GjtXkpyFRCIiXcF8lIj0lbKL2xERERg6dCh2//Ybdt16DAA4e/YcqrhVAgAk/lt8JCLSBLVnJEZFRSH/v3c6zZ07N96+fQsAKF++PG7evKnZ6IiIVLh79y4aNGgADw8PhIb+d7e5Hdt3wMHBQePn4x6JRES6g/koEemrlBmJMpkBEuVynD5zBhUqVMCWLVsgk8mkfhUrumorRCLK4dT+jbhkyZJ48CB5hwVXV1esXbsWL1++xJo1a1CwYEGNB0hEJBECnz5GYML4cXB1dcWZM2dgZmaGyZMnZfqp5dwjkYhIZzAfJSJ9lXJxOz4hAYcCQxFRqBRC375FsWLF8PeJv9UeLy4GCLxtjOhoTUdKRDmV2oXEIUOG4PXr1wCAyZMn49ixY3B0dMSyZcswa9YsjQdIRAQkL2M+cGA/LCMDMGNAc5gYG+Hnn3/GvXv3MMprVKafPymJhUQiIl3BfJSI9FXKxe2+fftKbb169Yafnx9q1Kyh1ljR0cCIlvkwpm1eVHaTabSYyAIlUc6l9h6JnTp1kv5cuXJlPHv2DPfv34ejoyPy5s2r0eCIiAAgMDAQnp6euHjhPKICTwEA/vhjL5o2a5HcQZ75d+fkjEQiIt3BfJSIdI0QAh+jBAICANfyMuTKJUu3/WvEx8cjLCwMMpkMz4KfSe1LliyGkUHyUue4GCA40BjRhQFry/THCwgAXj9LLgk8CpQhIABwq/LV4UlSCpSvnxlhg4uAny9gYvbt4xKRblB7RuLFixcVHltYWMDNzY1JGxFplhCIjvqIqVMmo1y5cvj7779hYmIiPd20SdMsDYd7JBIR6Q7mo0T0JUIIRH6S47KPHFFRItPH+BglUKqcHLVqGKBiJUgz8VS1qxNDolwO39u3UbVqVURFRQEA3N3d0/RVd4aha3kZSrgkvy4XF4Fy5ZLbVc0mVNaurE1ZgZKIcg61fyOuX78+nJ2dMW7cONy9ezczYiIiwpEjf8Ei/DYm924MI0MDNGnSBNevX9daPMrukEdERNrBfJSIvkRVAe9bi4OqjldVPFOnqKZs7LiEROy9HYoTDwrh/sMXMDJKHmvq1Klpjle3gJcrlwx+vjJcuQL4+spgYaG6GKmsXVVfVQVKIsoZ1C4kvnr1CiNGjMC5c+dQrlw5VKxYEfPnz8eLFy8yIz4i0jNPnjzBTz/9hLZt20ltu3btxNGjR1G8WDGtxSVnIZGISGcwHyWiL1FVVPvW4qCqAmW5ckDBookAgBKpimfK2lWd7/Oxb99+hAb1W0jFOhMjf5ia5gaQnJN+Phvwawp4FhZAtWrJ/03vfVPWrqqvsgIlEeUcahcS8+bNC09PT1y6dAmPHz9GmzZtsHXrVjg5OaF+/fqZESMR6YHY2FhMmzYNZcuWxeHDh6WrrQDwy8+/QCb7+v1kNEEuuEciEZGuYD5KRF+iqrD3rcVBVcUzCwtg4YG3mPP7O9y4KaTimbJ2Vef7fOxq1Xrg2vUYqe3Tp0IIDc0HAIiNNUgzGzC9Al5Gb36iqhiprD29wuXnBUp1YiAi3fZNm305OztjzJgxmDNnDsqXL49z585pKi4i0hdC4OSJ46haxQ2TJ09GbGws6tevjytXrmg7MgXcI5GISDcxHyUiZVQV9r61OKiqQAkApuaAS4WENDPwPm9Xdb7UY0MWiLi466hd0xpOzgkA/t/efYdFcXVhAH+X3puCoGLHDooNO3bsmpjYsEVNYq8YNRbs2LBFo7E3bIma+NkSNaJiRRG7iFjQiDUiIojA3u8PwsQNdXGXHeD9Pc8+2b1zZ+bsgJPDmTt3Uop1hQqlPLH+TphhhjH/t4CnztyJGRUj02tXZ+ShNp8QTUS5K8d/EZ8+fRpDhgyBk5MTevbsiapVq+LAgQOajI2I8rnIyEj06NENLata4trva1CmdCls374dR48eRcUKFXQdngrOkUhEJD/MR4koM+kV9j61OJhRgVIdGd3uvGdPgLRta+umWL58AY4e3Ycb1w1x/jxw+TJgaJhSVHStimzfxqzu3InpFSMzas+o76fGQETyZZB1F1UTJ07Ejh078OTJE7Rs2RJLly5Fp06dYMaJD4gomz58+IBFixZh5syZgFAC/iMBAJcvX4aVtU1Kp5w9XE9rkpN5azMRkVwwHyWiT5FRcTAy3BCD29jBzCzzKXUyGnmYXf/d39u3z9Gjxzf4/cgRbLscARe3RJw/fxwVyrtI/evU+TcfBQArKwNcCU0pyFWtmvlowNRbkO+GK/4pOub+lEFyiIGINEPtQuLJkycxbtw4dO3aFYULF9ZGTESUHwkBCCWOBwZi8JChCAsLAwC0bPHvXFZWlpa6ii5LSiULiUREcsF8lIg07VOLgznd35E/fsOgb7/By5cvYWhoiPB9ARg1ahSMDBzTrJOajwIp0+2YmKQUGLOScgsyslV01BY5xEBEmqF2IfH06dPaiIOI8rknTx6jKCLRtIIJHkU+hIODAxYuXIhePXsAT+U1H2J6OEciEZF8MB8lovzCu5c3EuLjUa1aNWzevBlubm4Z9k3NRwH1c9LUUY26JIcYiOjT8S9iItKqxMRE+Pv7w93dXWobPHgQwsLC0Lt3b50/jTm7OEciEREREWnC0aNHpfd6enqYNGkSLly4kGkREVAdkciclIh0Re0RiUREWfrnNuag06cxeMhQXL9+HWamJtLihQsWAnp5K/lRspBIRERERJ8gNvYdJnw3Dhs3b8a2yxEAgKNHj6F+XY9srZ96YVuhUOSZi/FElP9wRCIRadyzZ0+BqHNoWEYf9yLuonDhwli58kddh/VJOEciEREREX2KunXr4qeffkJCfDxOrfZHi2JWqOeR/Xt9U/NRTrVDRLrEMxARaUxSUhJ++OEHVK9eTWobMGAAwsLC0Kd3Hx1G9umSlZwjkYiIiIjU8/59gvT+wYP7KFGiBI4dO4bF/gthZWGu1shCTrVDRHLAv4iJSCPOnTuH2rVrY8SIEYiJeSu1L1u6FHZ2djqMTDOYuBERERGROkJCQtCoUSPpc+/evXH16lU0a9YsR9vjiEQikoNszZFoa2ub7Sslf//99ycFRER5iBB4+fIFpk6dipWrfgKQcr6YP89Px4FpHm9tJiLSLeajRJRXJCYmYfZcP8yaNQv6hoZS+8qVK2HwCUVAFhKJSA6yVUhcsmSJ9P7Vq1eYNWsWvLy8UK9ePQDA2bNn8fvvv2PKlClaCZKI5Cc5ORkbN6zDgDZV8OPk3ti0aRO6de+BefPmwb6QHRB1TtchagULiUREusF8lIjyimbNmuLcmTMAgM8++wwN7AxQqFAh6H/iA1J4hwwRyUG2Col9+/aV3nfp0gUzZszAsGHDpLYRI0Zg+fLlOHr0KEaPHq35KIlIVi5evIghQ4bgxvVrGBB+FABw9OhR1KvfIKXDP/MJ5ke8AkxEpBvMR4lIzpKTldL7y5cvw9bWFitWrED37t019oRljkgkIjlQ+wz0+++/o3Xr1mnaW7dujaNHj2okKCKSISHw96uXGDliGOrUqYPg4GBYWVlKi+vVravD4HIPrwATEeke81EikpN79+6hTZs20ueWLVvi+vXr6NGjh8aKiABHJBKRPKhdSCxUqBB+++23NO2//fYbChUqpJGgiEhelEoltmzZBLv3YVg6vgdMTYzh7e2NyyGXdR1aruMVYCIi3WM+SkRyIITA6tWr4ebmhuPHjmJgAze8PHUQv+3di6JFi2p8fxyRSERykK1bmz82ffp0DBw4EIGBgfDw8AAAnD9/HocPH8aaNWs0HiAR6VZoaCiGDh2K0Msh6P3PbcyHDh1CY88mKbcwRz3QaXy5SU9PT6NXlYmIKGeYjxKRHHTp0gX/++eiRuPGjbFhwwaUKVNGa/vjiEQikgO1L2X069cPp0+fhpWVFfbs2YM9e/bAysoKQUFB6NevnxZCJKJcJQSgTMab6NcYMWIEatasiTNnzsDc3Ezq0rhRIx0GqDtM2oiI5IH5KBHpihBCev/HH3/A2NgY/v7+OH78uFaLiABHJBKRPKg9IhEAPDw8EBAQoOlYiEgGhDIZiqfnYQ1g3do1UCqV6Nq1Kxb5LwDwSNfh6RQLiURE8sF8lIhy28uXLzF85Ch8OXUBAMDd3R3r1qxB5cqVc2X/HJFIRHKQo0sZERERmDx5Mnr27Innz58DSLnV8caNGxoNjohy140bN9Cm7b8TRbu4lMMff/yBnTt3oljRYjqMTB549ZeISD6YjxJRbjp48BCqVq2KHdsC0Kd2BVz/eT1OHD+ea0VEgCMSiUge1D4DnThxAq6urjh//jx2796N2NhYAMCVK1fg6+ur8QCJSPvevn0LHx8fVK9eHadOBUnt58+fR8uWLXUYmbzw6i8RkTwwHyWi3Na165d49uwZKleujBPHj2Pq5EkwMjLK1RhYSCQiOVD7DDRhwgTMmjULR44cUTlxNmvWDOfOndNocESkXUKpxO5ffkYN9+rw9/dHUlISOnToIC03NjLWYXTyw0IiEZE8MB8lotxw8uRJ6b1CocDYsWNx6dIl1KxZUyfx8NZmIpIDtQuJ165dw2effZam3cHBAS9fvtRIUESkfWFhYejUsQO61CuK8BObUaVyRezfvx87tm/XdWiyxaSNiEgemI8SkTbFxcVh5MiRaNu2rdR2+NBhLFy4ECYmJjqLiyMSiUgO1D4D2djYICoqKk375cuXUawY51Ajkru4uDh8//33cHV1xbE//5Tag4OD0a5dOx1GJn9M2oiI5IH5KBFpS3DwRbi7u2PZsmVIiI/HsR/moJmTBRo3aqjr0DgikYhkQe2/irt3747x48fj6dOnUCgUUCqVOH36NHx8fNCnTx9txEhEn0oIiOQk/G/fr6hUqRL8/PyQmJgILy8vqYupiakOA8wbmLQREckD81Ei0pbmzZvhzp07KFq0KA4dOoQVy3+AjZUlFAqFrkPjiEQikgW1z0Bz5sxBxYoV4ezsjNjYWFSuXBmNGzdG/fr1MXnyZG3ESESf6N69u1A8PY8ONe3x8sVzlChRAnv37sXuX37RdWh5CguJRETywHyUiDTp46e9K5VK9OzZE9euXUPr1q11GFVaHJFIRHKgdiHRyMgIa9asQUREBPbv34+tW7fi9u3b2LJlC09oRDITHx+PadOmoVat2lLbuHHjcPPmTXTu3FkWV1bzEp7jiIjkgfkoEWlCcrIS8+bNQ8OG/962vHXLVgQEBMDOzk6HkaWPIxKJSA4McrpiiRIlUKJECU3GQkQadPDgQQwfPhz37t2Dmem/k0JP8/UF9PhHVk4waSMikhfmo0T0KVq1bImTJwIBAFu/H44flv+Aop+nfZCTXLCQSERykK1C4pgxY7K9wUWLFuU4GCL6REIgMvIBvvtuPHbu+hkAUKxYMSxbukS3ceUTHOVCRKQ7zEeJSBOUSiG9P3/hPKysrLB06VL07dtX9nfrpN7azEIiEelStgqJly9fVvkcEhKCpKQkVKhQAQBw584d6Ovro2bNmpqPkIiyJSEhAcuWLsY470bYsWgkDh06hG++HYSpU6fC0twMiDqn6xDzPBYSiYh0h/koEX2qR48e4ZtBg/D1orUAAE/PJljz06o8M7I5dUQic1Ii0qVsFRKPHz8uvV+0aBEsLS2xadMm2NraAgBev36Nr776Co0aNdJOlESUqaNHj2Lo0KF4/CgS47yPAgDOnj2LylWqpnRQJuswuvyDSRsRke4wHyWinBJCYNOmTRgxYgQSEhPx9T/t//vf/2BkkHfyO45IJCI5UPsM5O/vDz8/PylpAwBbW1vMmjUL/v7+Gg2OiDIhBP56HInevXqiZcuWuHPnDooUKSItrlypkg6Dy5+YtBERyQPzUSJSR4/uPdCvXz/ExMTAvVo1VMZbdHQpAkP9vJXbcUQiEcmB2mfOmJgYvHjxIk37ixcv8PbtW40ERUSZS0xMxNIli1FM8Qhb5g2FhbkZRo4cmea2L9IsJm1ERPLAfJSI1LH/wH4YGhpizpw5OHXqFCpWKA8DPT3Zz4n4XxyRSERyoPYZ6LPPPsNXX32FPXv24PHjx3j8+DF2796NAQMG4PPPP9dGjET0kcDAQFSvXh3fT5oktZ05fRpLliyBtZWVDiPL/5i0ERHJA/NRIspMdHQ0Bg4cKH2uWrUqgoODMXHiRBgYZGt2L1niiEQikgO1z6KrVq2Cj48PevbsicTExJSNGBhgwIABWLBggcYDJCrwhACEEk+fPoXPd+MREBAAAChRvJjUxdXVVVfRFShM2oiI5IH5KBFl5I8//kD//v3x119/YdeuXRgzZgyCTp6EiYmJrkP7ZKmFRF7cJiJdUruQaGZmhh9//BELFixAREQEAKBs2bIwNzfXeHBEBCQlfYDB84twBLB3z24oFAoMGjQIs2bOAN6H6Tq8AoWFRCIieWA+SkQfE0LgzdtYTJ48GSt+WAYAcHFxwebNm1G3bl0dR6c5LCQSkRzk+Axkbm4ONzc3uLm5MWkj0pLTp0+jYYOG0ueaNWviwoUL+PHHH2H30QTzlDtYSCQikhfmo0QEAKfPnMWfUbFoNnQCjE1NMXz4cISGhuarIiLw7xyJzEmJSJfUHpH47t07zJ07F8eOHcPz58+lqyKp7t27p7HgiAqq58+fY/z48di4cSPMTP+9DeP4n39C39BIh5EVbLz6S0QkD8xHiQgA3r9/D19fXyxbvhwBIXcBAPv370eLZs10HJl2cEQiEcmB2oXEgQMH4sSJE+jduzecnJzy3JOuiOQsOSkJ69evxbRp0/Ak6hkAoG/fvtJyXn3ULR5/IiJ5YD5KRJcvX0bv3r1x48YNGJuaSu1NmjTRXVBaxhGJRCQHahcSDx06hAMHDqBBgwbaiIeowAoODsaY0aNwaud8fN1uN+p/MRaLFi9B3Tq1gahz6a+U/B54dw+wdwOMLHM34JzIa/H+B5M2IiJ5YD5KVDAJIZCQmISFCxdiuu9UJCUlwcHBAavXrkOyroPLBRyRSERyoPYZyNbWFnZ2dtqIhahAevXqFb799lt4eHggJCREaj918mTm87okxQGX+gGXvwEO10z5rCnJ74GYm2m3mVF7dmgz3k+NLZtYSCQikgfmo0QF083bt3Hw/ktU7tIP+oaG+OKLL3Djxg20a9dW16HlCo5IJCI5ULuQOHPmTEydOhVxcdr7Y50o3xMCyqREbNq4HhUqVMDq1ashhEDPnj2lLlkmCG+uA/GPU97HhgPR13MWy38LcBkV/DJqz24BL7N4P7UIqG5s6bVnIwZe/SUikgfmo0QFi1KpxOLFi9Gg/r+jkNevX49du3ahcOHCOowsd3FEIhHJgdq3Nvv7+yMiIgJFihRBqVKlYGhoqLL84xFVRJS+K6GXUa3Qa/T1SMbYpFhUrVoVP/74Ixo1qJ/+bczp3RJs4wZYuKQU5SxdAJuqme80vW2kFuDiHwPhC4C2oekX/ArXSb/dqlLa9Q3M0t9fRvGmF0PqNrJLndjS258yOcvvYaD4wKu/REQywXyUqOB48OAB+vXrhxMnTqjMhdi1a9cCNz8qC4lEJAdqFxI7d+6shTCICobo6GhMmTIFOwPW4fm6QkD8Y4QvKwyLL4NgaGqdUtD6bwEuo0KboXnK++jrKUU5A7OU9dOT0TbSK8BlVPBLr/31lfSLjuntL714gYwLl0D251RUJ7b09ieSs/weA4oVwkNF62z/rImISHuYjxLlf0qlEus3bsL48ePx98sXMDc3h//iJboOS6d4azMRyYHahURfX19txEGUfwkBoUzG9u3bMXqsD54/f45GlY2kwpWtwUvgXRhgmkEBLrNCm4HZv+9TpVd8y2gb6RXgDMzSL/ilVwjMqOiY0f7Si1edkYp6xukfY3ViS69diCy/RyHDV3iVdB8AJ/YnItI15qNE+VtUVBQGDx2KPn4rsCaoNX4Y0htrV/+EkqVLY1/4M12HpzMckUhEcqB2IZGI1HP9+jVUtXuLnk3L4Ou3MahYsSKmL10IxI3OXgFOnVuYMxp5mNE2MholmF7BL732jNZXJ2Z1Rira1cx4lGJ2Y8uoPYvv8eqDHRJMXTL+HkRERET0yXbs2IEhQ4Yg7v179PFLaTt8+DCMDQ2Q9E8hraDiiEQikgO1C4l6enqZzkWRenIjKuhiYmIwffp0rFn9E2Ju/w4AmDljBoaNGAkjIyMgqWn2CnAZjRBMT0YjATMqngEZFw2zK731M9tfdreR3rFQdz7F7BZEs/ge+wPm4kpkMjrXtsj8exARUa5gPkqU/7x69QpDhgzBrl27AAAe9epJy/T1OQIP4IhEIpIHtQuJe/fuVfmcmJiIy5cvY9OmTZg+fbrGAiPKq4QQ2LlzJ8aMGYOoqCiYmZpIy8aMGQPo/XMFUZ0CXHaLfZmNBPzUgqG6PnV/6R2LF2czvs1bWwzM8CypJJLEY179JSKSCeajRPmHEAIHDh3G0KFDEPngAfT19TF58mSMn/g9Dj14pevwZIUjEolIDtQuJHbq1ClN2xdffIEqVapg586dGDBggEYCI8pzhMDt27cwdswYHDycMgKxbNmyWLliuXrb+ZQCnLojAeXuv8dC3SdVa0jq1V8mbURE8sB8lCh/iImJwbjx4+E1aioWHz6D6d3bYd2a1ahVq1aBv405PRyRSERyoLEzUN26dXHs2DFNbY4oT4mNjcXkyZNQ0eo1DqydAjtbG8yYMQPXr19Hy5YtczeY1OJbXi8ipie1UNrqPNAmNNe+Y+rVXyZtRETyxnyUKO8IDAyEm5sbNm3aJLUFBQWhVq1aOoxK3lhIJCI50MgZKD4+HsuWLUOxYsU0sTmiPEMIgd27d6Ny5cpYvHix1H7p0kVMmTIFJiYmmaxNOaKDQilvIyEikj/mo0TyJoRAklKJt+/iMGrUKDRt2hQPHz5EyRIlpT6mpsydM8OclIjkQO1bm21tbVUmtxZC4O3btzAzM8PWrVs1GhyRLAkBCCXuRkRg2PAR+P33lNuYK1WsIHUpVbKUjoIjbWDSRkQkL8xHifKeZCGwL/wZAGDV6tUAgG+++Qbz5i/An0/f6TK0PIMjEolIDtQuJC5ZskTls56eHuzt7eHh4QFbW1tNxUUkW3FxsTCLvopyZsCpkydgZGSE8ePHY8L4cUD0VV2HR1rAORKJiOSF+ShR3vLhwwfMnuOHaj2+AQA4Ojrix+XL0bZt25S5EFlIzBZe3CYiOVC7kNi3b19txEGUJ/zvf//D+O/G4ebRdQCAFi1aYKH/Iri4uADKZCBat/GRdnCORCIieWE+SpR3XL9+HX369MHN27ex7Z9CYnBwMOwLFdJxZHkPRyQSkRyoXUgEgOjoaKxbtw63bt0CAFSpUgX9+/eHtbW1RoMjkov79+9j5MiR+N///gezj+Zu+XXvXij0c/TPiPIQXv0lIpIf5qNE8iWEwIekZCxbtgyTv5+IDx8+wKlYcWk5Rw7nDHNSIpIDtS9lXLx4EWXLlsXixYvx999/4++//8aiRYtQtmxZhISEaCNGIp1JeP8e8+bOQa2aNfC///0PBgYGGDNmjLT84/mZKP9i0kZEJC/MR4nkLfxuBA7ce4Gy7XtAoa+P9u3bIzj4gq7DytNSRyMCHJFIRLql9hlo9OjR6NixIx48eIA9e/Zgz549uH//Ptq3b49Ro0ZpIUQi3fj9999Ru3ZNjO/tiVfX9qNN61a4evUqZs6YoevQKJdxjkQiInlhPkokT0II/Pjjj6hbt67U9uOPK7Fv3z4UKVJEh5HlfR8XEpmTEpEuqX1P5sWLF7FmzRoYGPy7qoGBAb777jvUqlVLo8ER6cKjR48wevRo7N69W+U25gP7D6TcxqxM1mF0pAucI5GISF6YjxLJz6NHjzBgwAAcOXIExqamUnufPr1T7uIRQofR5X0ckUhEcqH2GcjKygqRkZFp2h89egRLS0uNBEWU64TAh4R4LPZfiEqVKmH37t3Q19fH8GHDpC68jblgUiqVEP8kvrz6S0QkD8xHieRBCIHE5GRsCQiAq6srjhw5AhMTEyxYsEDXoeU7qRe2ARYSiUi31D4DdevWDQMGDMDOnTvx6NEjPHr0CDt27MDAgQPRo0cPbcRIpHWBgcdh9DIEo7vXg1Amo2HDhggJCcHcuXN1HRrpGG8jISKSH+ajRPLw9Plz/O/uc5jXaob3Hz6gTp06CA0NxeDBg3UdWr7DEYlEJBdq39q8cOFCKBQK9OnTB0lJSQAAQ0NDDB48mEUXynOePHmCsWPHYt9vv+Jd+FEAwJrVq9HDu1fKCETexlzgfXz1l4VEIiJ5YD5KpHt79+7F8JGjsOzIOQDA1Km++M5nLAwMDJD0UdGLNOPjqXZ4pxQR6ZJahcTk5GScO3cO06ZNg5+fHyIiIgAAZcuWhZmZmVYCJNI4IZCYmICVK1dh0uQpiI2NhYX5v7+/PXv2BPg/Z/oHbyMhIpIX5qNEuhUdHY0RI0Zgy5YtKnMhfvfdOBgwV9Ka1BGJzEeJSNfUOgvp6+ujVatWiI6OhpmZGVxdXeHq6sqkjfKU06eDYPjiEkZ8URvK5CR4eHjg1MmTug6LZCo1aVMoFEzciIhkgPkokW4IIfDH0aOoWbs2tmzZAj09PYwZM0bXYRUYqRe3eYcMEema2n8VV61aFffu3dNGLERa9ezZM/Tt2xetWrWS2lasWI4zZ86gevXquguMZI1PbCYikh/mo0S56927dxgxajRinatgwf6TqFSlKk6dOoUZM2boOrQCgyMSiUgu1D4LzZo1Cz4+Pti/fz+ioqIQExOj8iKSm+TkZKxYsQIVKlTA5s2bVeYU6de3H/9nTJni1V8iIvlhPkqUe1Ivuq9Zs1pqO3v2LOrXr6/DqAoeFhKJSC7UfthK27ZtAQAdO3ZUKcgIIaBQKFTmEyPSKSEQHHweI0eOwtlz5wEANWrUwKqVKwDw95Syh4VEIiL5YT5KpH0JCQmYOnUqFi5cCKVSiTLlyknLzM05lUBuY05KRHKhdiHx+PHj2oiDSKNevnwJ36lTsGJSL5z5xR/FanfB5Cm++Oabb6CvABB1TtchUh6RevWXSRsRkXwwHyXSrrNnr6BXr7m4d+83AEr06dMHi5YswYnn7z9puwnxQGS4IeKKAVYWmom1oOCIRCKSC7ULiZ6entqIg0gjlEol1q5di4kTJ+J9fBxWTOoFALh8ORQORRz/6cRRCpR9nCORiEh+mI+SHAkh8PadwPXrQDVXBczNFVmvJDNJSUmYMWMhZs78HMB26OlFYNu2m+jWrQOSlErgEwqJcXHA2M72iHpogLUuAldCAT4jKfs4IpGI5IJ/GVP+IAQuh1xE0yae+Pbbb/H333/DtWpVabGDvb0Og6O8jEkbERERZcfbdwIVqyrRoJ4eqrunFM6AlAJjTKwSZ84p8e6d0G2Qmbh9+zYaNGiAmTP3ACgPAFAqy6J06Q4a2f7160DUw5RxLHfDFbh+XSOblSTEA+FXDaXjnt9wRCIRyQXPQpTnvX79GqNHj4R7kQSc2D4XRRwKY8mSJQg6HaTr0CgfYCGRiIiIsiOjQll6BcaMiovptatTiMxJ0VKpVGLp0qVwd3fHhQsXYGX1CI6OKQ8tcnEBPro2/0mquSpQzkX8s12hst2MioDZLQ6mjnac0LUwatZQ5MtiInNSIpILFhIpz1Iqldi4cSMqVKiA1avXSO2hl0MxcuRIGOirfec+URqcI5GIiIg+llGxrmpVwKlkEgCg3EeFsvQKjBmNXkyvPaO+6VGnLwA8ePAATZq0xahRAXj/XoFWrVrhxo1gRERY4fx5IDRU9fbj9Ap72S0CmpsrcCVU8c92FdJ2MyoCqlMc1PZoRzngiEQikotsnYX27duHxMREbcdClDUhAGUyrl29gsaNG+Orr77CixcvULFiBamLo6OjDgOk/IZzJBIRyQPzUZKLjIp1ZmaA/68vMHfXS1wKEVKhLL0CY0aFr/Ta1SmSZbevEALr1q2Dq6sHTp1aBuACHByeYM+ewyhevDjMzIA6dVSLiOkV9tQtAqa3XXWOBZB+4TKz0Y75BUckEpFcZOsv488++wzR0dEAUk5cz58/12ZMRBmKiXkDRJ2Da6FYXA65BHNzc8yfPx9nz57VdWiUTzFpIyKSB+ajJBeZFeuMTQEXt0SVQll6BcaMRi+m155R3/RGRmbU92NRUVHo0KEDBg4ciNjYkkidD/H5cxvcuJHxA2LUKXKqU/zMqAiYXntGBcqMRjvmJxyRSERyka2zkL29Pc6dOwcg5X9YCkXeewIZ5W1CCGzbtg3Vq1eX2j77rDNu376NcePGwcjQSHfBUb7GQiIRkTwwHyW5yE6x7r/+W2DMaPRieu0Z9U1vZGRGfYUQSFIqseuXX1C1alUcOHAARkZGmD27J1ykYl3m8yGmV9hTpwiYkYyKgOm1Z1agTG+0Y37CQiIRyUW2JpEbNGgQOnXqBIVCAYVCkemto6l/dBNpys2bNzF06FAEBgbCzNREat+6ZSugx+IOaRfnSCQikgfmoyQXqcW6yHBDDG5jBzOznBW10xu9mFF7em3pFdVq1Eq/74tXrxD0KhEGrg3wLj4eNWrUwObNm1GlShWMGpWyrapVMy/CpRT2UvumFvzSa8uob8ZSi4BZtacWKO+GK/4pUBacCwq8uE1EcpGtQuK0adPQvXt33L17Fx07dsSGDRtgY2Oj5dCoQBMCsbEx8PObi/kLFiIpKQmmpqbw9Z2i68iogOEciURE8sB8lOQkoyJgbkodGRn10OCfkZHpF9UOHjyIIcOGYdGh0wCAiRMm4vuJE2BoaAgg4yJeetLrm90ioCaoW6DMTzgikYjkItuPta1YsSIqVqwIX19ffPnllzArSGdtylVCCOzdsxuf13XC7KHtsWTJErRr1w5LlixBqRLOQNQ5XYdIBQiv/hIRyQfzUaJ/pTcyMkn57/LYt7H4bpwP1qxZA2NTUyTEA5Hhhhg9ZhIMDfNuMUobBcq8gDkpEclFtguJqXx9fQEAL168QFhYGACgQoUKsLe312xkVCDduXMHw4YNw+mgU/g8/CgAYPfuX9C6TbuUDkreqkS5i0kbEZH8MB8lSpHZyEgPDw/cCbsNhUKBb78dg7Gd7RH10ABrXQSuhObfuQTzK45IJCK5UPssFBcXh/79+6No0aJo3LgxGjdujKJFi2LAgAGIS31sFpE6hEDcu7eYPs0Xrq6uOHLkCIyNjaXFrb1a6zA4Kug4RyIRkfwwHyVKX3z8e+n9w8iHKFmyJI4fP45u3WZk+ynKJE+8uE1EcqF2IXH06NE4ceIE9u3bh+joaERHR+O3337DiRMnMHbsWG3ESPmYEAL79++DWfRV+H7dCgb6emjTpg2Cg4N1HRoRAM6RSEQkR8xHidK6ePEiGjRoIH3u168frl27Bk9PT7WeokzyxBGJRCQXap+Fdu/ejXXr1qFNmzawsrKClZUV2rZtizVr1uCXX37RRoyUT927dw8dOnRAt27dpbbt27fhwIEDKFumjA4jI/oXr/4SEckP81EiVbNnzUbdunVx7UooRreuD6OIUKxcsQKWlpYAUh9SosD580BoaMF6SEl+wUIiEclFjm5tLlKkSJp2BwcH3kpCmRMCUCbjffw7TJ8+HZUrV8aBAwekJ8YBQMcOHaFQpP/EOSJd4IhEIiL5YT5KpMpvrh+Sk5PRvXt3hFy8iPZt26TJqVMfUsIiYt7EnJSI5ELts1C9evXg6+uL9+//nX8jPj4e06dPR7169TQaHOUzQglEnYPJ36GYP28uEhIS0Lx5c5w/f17XkRFliHMkEhHJD/NRKuiSk5OxZMkS6bOtrR127NiB7du3o1ChQroLjLSGOSkRyYXaT21eunQpvLy8ULx4cVSrVg0AcOXKFZiYmOD333/XeICUPzx8+BDjvxuHHYtGAgCcnJwwe44funbtCsU/BUYiOeKtzURE8sN8lAqyiIgI9OvXD8GXLmFbux4AgODgYBQv6qTjyEibOCKRiORC7UJi1apVER4ejoCAANy+fRsA0KNHD3h7e8PU1FTjAVLe9uHDB/j7+2PmzJlQQAD/FBIvX74MSyvrlE5ChwESZYGFRCIi+WE+SgXV2rXr4DNmNN69ewcLCwtEn/0DvXv3ggGLS/keRyQSkVyoXUgEADMzM3z99deajoXyEyHw55/HMHbsGIReuQYAaNWyubTY0sJCV5ERqYVXf4mI5In5KBVEo0aNREJ8PJo0aYINGzagVKlSug6JcglzUiKSC56FSOP++usv9OnTC80qmuLygZUoXbIEtmzZgsOHDus6NCK18eovERER6YoQAjt37pQ+mxibYMmSJTh27BiLiAUMc1IikgsWEkljEhMT4e/vj4oVK2L37j1Se8jly+jVqxefxkx5Em9tJiIiIl14+fIlvvjiCwwYMEBqO3P2DEaOHMlRaQVQaiGRP3si0rUc3dpMJBECEEqcCgrC4CFDcePGDQBA0yaNpS421ta6io7ok/HqLxEREelC7dq18TgyEgYGBri9dzPGjBkDY0NHXYdFOsJCIhHJBc9C9EmePY0Cos6hUVkD3L8XgcKFC2PdunU4euSorkMj0gjOR0NERES5JeZNjPT+xYsXqFq1Ki5cuIDvJ4yHiZEh7/ApwHiXDBHJRY7+Mo6OjsbatWsxceJE/P333wCAkJAQ/PXXXxoNjuQrKSkJy5YtQ3X36lLbwIEDEBYWhv79+7PoQvkGkzYiInliPkr5zbFjx1DHo470ecyYMbh48SLc3d11GBXJBUckEpFcqH1r89WrV9GiRQtYW1vjwYMH+Prrr2FnZ4c9e/YgMjISmzdv1kacJCNnzpzBkCFDcOXKFZiZmkjtS5csBfRYbKH8hYVEIiL5YT5K+cm7d3GYNHECVqxYAWNTU6l9xowZMGDRiP7BnJSI5ELt/zONGTMG/fr1Q3h4OExM/i0itW3bFidPntRocCQvL54/x6Bvv0HLFs1x5coV2NraYtmypboOi0irOEciEZH8MB+l/KRevXpYsWIFAGDAV1+heVFLdHQpAn3exkwf4YhEIpILtc9CwcHB+Pbbb9O0FytWDE+fPtVIUCQvycnJWLVqFdzdq2HV1L54F34Ug779BmFhYRjQf0DWGyDKwzhHIhGR/DAfpbwuIeGD9P7evQgUK1YMv//+O1asWAFrSwsY6OlxPkRSwRGJRCQXav9lbGxsjJiYmDTtd+7cgb29vUaCIvkIDg5G3bp1MXjwYLx+HS21r/zxR/68qUBg0kZEJD/MRykvu3LlCjw9G0ufe/TogevXr6NVq1Y6jIrkjiMSiUgu1D4LdezYETNmzEBiYiIAQKFQIDIyEuPHj0eXLl00HiDpgBD4+9VLjBg+DB4eHrh48SKsrKywYMECXUdGlOtYSCQikh/mo5RXLViwELVr18al4GCMaFkXuHUB69euhY2Nja5DI5ljIZGI5ELts5C/vz9iY2Ph4OCA+Ph4eHp6oly5crC0tMTs2bO1ESPlIqVSic2bN8LufRiWTegBUxNj9OrVC2FhYRgyeLCuwyPKdZwjkYhIfpiPUl41ffo0JCYmonPnzgi5GIzPO3fiLcyULby4TURyofZTm62trXHkyBEEBQXh6tWriI2NRY0aNdCiRQttxEe5KDQ0NOVpzKGX0Sf8KADg8OHDaNTYM6WDMlmH0RHpBudIJCKSH+ajlFcolUqsWrUKRZt/BgCwsrKG/08/oVevXiwgklo4IpGI5ELtQmKqhg0bomHDhpqMhXKbEIBQ4k1MDKZM9cWKFSugVCrhYF9I6tKIP2Mq4Hj1l4hIvpiPkpw9fPgQ/fv3x+mzZ7Htckoh8cKFCyhVwlnHkVFexJyUiORC7ULismXL0m1XKBQwMTFBuXLl0LhxY57g8gChTIbi6XlYA1i3dg2USiW6deuGRf4LAETqOjwiWWDSRkQkP8xHSe62bNmKkcOH4e3btzAzM8Oz4/sw8OuBMOBoMsohjkgkIrlQu5C4ePFivHjxAnFxcbC1tQUAvH79GmZmZrCwsMDz589RpkwZHD9+HM7OvNomV9evX8fYMaPw+4bpAIDy5V2wYOGilFuClMlAFAuJRADnSCQikiPmoyR3gwcPQkJ8POrXr4+NGzfCxcVF1yFRHseL20QkF2pfzpgzZw5q166N8PBwvHr1Cq9evcKdO3fg4eGBpUuXIjIyEo6Ojhg9erQ24qVP9PbtW/j4+KB69eoICjottZ8/f57zChGlg3MkEhHJD/NRkqO9e/ZK742MjDB37lycPHmSRUTSCI5IJCK5UHtE4uTJk7F7926ULVtWaitXrhwWLlyILl264N69e5g/fz66dOmi0UDp0wilErt3/4IJEyYg4t59AEDHjp9Ly40MjXQVGpGs8eovEZH8MB8lOfn7778xbNgw7Pn1V2y7HAEAOHXqFKq5uuo4MspPWEgkIrlQ+ywUFRWFpKSkNO1JSUl4+vQpAKBo0aJ4+/btp0dHGnH79m107NAeX9Qvhrsnt6BqlUo4ePAgtm/bruvQiGSPhUQiIvlhPkpy8ccfR1C1alVs374dSR8+4Mr21Whd0g5uVavqOjTKZ5iTEpFcqF1IbNq0Kb799ltcvnxZart8+TIGDx6MZs2aAQCuXbuG0qVLZ7mtadOmQaFQqLwqVqyobkiUgXfv3mHixIlwc3PDn8ePS+3BwcFo06aNDiMjyhuEEJwjkYhIhjSZjxJ9is8//wxRUVGoUKECzpw5g+nTfGFmYgyFQqHr0Cif4YhEIpILtc9C69atg52dHWrWrAljY2MYGxujVq1asLOzw7p16wAAFhYW8Pf3z9b2qlSpgqioKOkVFBSkbkj0MSEgkpOw77e9qFy5MubOnYvExES0bt1a6mJibKLDAInyjtSEDWDSRkQkJ5rOR4nUcfqjecYBYOTIkQgJCUGdOnV0FBEVBByRSERyofYciY6Ojjhy5Ahu376NO3fuAAAqVKiAChUqSH2aNm2a/QAMDODo6KhuGLnm4xFJecG9iLtwMXmMjuVf4uu3L1G6dGksWrQIHdq1BaJOAe/uIdmuCmBkCSiToZ/8XrUNUK9dDn3zYmyUJyQmJkrvmbQREcmHpvNRoux4//49Jk2ahB9XrUJAyF0AwMGDB9GsSRPdBkYFAkckEpFcKIQQQlc7nzZtGhYsWABra2uYmJigXr168PPzQ4kSJdLtn5CQgISEBOlzTEwMnJ2d8ebNG1hZWWklxoiICGzdulUr29YGU8MkfFdpIxD/GK8SC2HVw2+RJIzSbTc00Mt2X01sQ1t982JsSYIPt8lrJk+ezGIiEWlFTEwMrK2ttZrPkHbxZ5j/Xbx4EX369MGtW7cAAN8MGoS5fnNhY23F25hJ64QQmDFjBgDAx8cH5ubmOo6IiPIbdXIZtUckAsDjx4+xb98+REZG4sOHDyrLFi1alO3teHh4YOPGjahQoQKioqIwffp0NGrUCNevX4elZdpRW35+fpg+fXpOQs63DA1SrkglJqVcobI3fA7EPwYAFDJ8BQej53iSUDzddgN9vWz31cQ2tNU3L8b2JKG4Bn76lFtKlizJq79ERDKjqXyUKDMfPnyA37z5mD9/HuJiY+Ho6Ig1a9agffv2ug6NChBOt0NEcqL2iMRjx46hY8eOKFOmDG7fvo2qVaviwYMHEEKgRo0a+PPPP3McTHR0NEqWLIlFixZhwIABaZbrYkRicnKyyu2NcvIo8iFczF8CAOyqtoO1jS0W+E3H56YzoPcuAkrzcvjQ/DxgYAYkvoPRnx6q7UKkbcuorya2oa2+eTE2AzMd//aQOoyNOWk6EWkPR7OpT5v5aE7wZ5g/3bhxAwO+/hrfbdgNAPhl5nf4YekSFCpUSMeRUUGTmJiIOXPmAAAmTpwIIyPe3UREmqVOLqN2IbFOnTpo06YNpk+fDktLS1y5cgUODg7w9vZG69atMXjw4E8Kvnbt2mjRogX8/Pyy7FtQk7aEhAQsXLgQixf54+XV/wEAJv94ABMmfg8LCwsgKQ6Ivg7YVFUtWKXXrk5fTWyDsbGISEREKgpqPvMptJ2Pqos/w/wlOTkZixcvxuTJkwE9PWy7HAEA6OhSBAYcDUY6kJCQgLlz5wIAJk2aBAODHN1YSESUIXVyGbX/T3jr1i306dMHQMqDUuLj42FhYYEZM2Zg3rx5OYv4H7GxsYiIiICTk9MnbSc/++OPP+Dq6orJkycjPj5eap81c2ZKERFIKVQVrpO2YJVeuzp9NbENxgYiIiL6NNrMR6lgEkIgSalEeMQ9NG3aFOPGjUNCQgJatWql69CIpCc2A7y1mYh0T+2zkLm5uTQPjZOTEyIiIqRlL1++VGtbPj4+OHHiBB48eIAzZ87gs88+g76+Pnr06KFuWPmbEHj86CG8e3aHl5cXwsPD4ejoiPXr1+s6MiIiIqJcp8l8lAgAkpRK7At/hmtJprhw8SIsLCywZs0a7N69W9ehEXGORCKSFbXPQnXr1kVQUBAAoG3bthg7dixmz56N/v37o27dumpt6/Hjx+jRowcqVKiArl27olChQjh37hzs7e3VDSvf+vDhAxYv8kdxvccIWDAclhbmGDVqFG7fvo1uXbvqOjwiIiKiXKfJfJTor7/+wueffy59btiwEa5evYqBAwdyjmSShdQRifr6+jqOhIgoB09tXrRoEWJjYwEA06dPR2xsLHbu3AkXFxe1n5C3Y8cOdXdfoBw/fhxDhw7Fwwf3Mbr7UQDA6aAguFarntJBmZzxykRERET5lCbzUSq4hBDYvn07hg4diviEBHz1T/vBgwdhZMCCDclH6ohEjkYkIjlQq5CYnJyMx48fw83NDUDKbSWrVq3SSmAFlhB4GvUEEydOxMbNWwAAJZ2LS4tdXV11FRkRERGRzjEfpU8lhMCzFy8wcuQo7NqxHQBQv2FDabmeHkchkrxwRCIRyYlalzT09fXRqlUrvH79WlvxFGhJSUlYvvwHOIoH2DDnW5ibmWLIkCG4HBqq69CIiIiIZIH5KH2q/x04iDOvk9Ftmj/MLS0xY8YMHDv2p67DIsoQRyQSkZyofWtz1apVce/ePZQuXVob8RRYp0+fxpAhQ3A3/A6GfZ5yG/OpUyfhXqNWyi3M8VlsgEhGkpOTkZiYqOswiIhkwdDQkKNINIz5KOXEmzdvMGrUKGzfuRPbLqc8oCcw8ARq1XBH0kcPsyCSGxYSiUhO1C4kzpo1Cz4+Ppg5cyZq1qwJc3NzleVWVlYaCy5fEwIQSjx/8QLfjZ+ATZs2AQCKF3OSurhXd9dVdEQ5IoTA06dPER0dretQiIhkxcbGBo6Ojnxwg4YwHyV1/fnnn/jqq68QGRkJEzMzqb169Wo6jIooe3hrMxHJidqFxLZt2wIAOnbsqJIMCyGgUCikkxxlLjkpEfrPg+EA4OddOwEAAwcOhN+c2cCHcN0GR5RDqUVEBwcHmJmZ8Q9mIirwhBCIi4vD8+fPAQBOTk5ZrEHZwXyUskMIgbfv4jB16lQsXZzyEJ4yZcpg46bNeKHj2IjUwRGJRCQnahcSjx8/ro04CpTz589jzOhROP3zQgBAtWrVsGjxEtStWzflNuYoFhIp70lOTpaKiIUKFdJ1OEREsmFqagoAeP78ORwcHDiiRAOYj1J2nD1/AU9tS6Dxtz5YtWol+vfrh/nz58PEzAz7wp/pOjyibOOIRCKSE7ULiZ6entqIo0B49eoVJk6ciLVr18LUxFhqP3XyJPQNjXQYGdGnS50T0eyj24WIiChF6rkxMTGRfwhqAPNRysyHDx8wbdo0LFm2DFsvpVyg/+233+DVsiUAcD5EynM4IpGI5CRHZ6JTp06hV69eqF+/Pv766y8AwJYtWxAUFKTR4PIFIaBMSsTGDetQvnx5rFmzBkIIeHt7S134BwXlJ7ydmYgoLZ4bNY/5KKXn6tWrqF27Nvz8/KTiCwA0b95ch1ERfRqOSCQiOVG7kLh79254eXnB1NQUISEhSEhIAJDyFLQ5c+ZoPMC8LvRyCPSeXUC/VhXxPj4Orq6uOHnyJFb/9JOuQyMiIiLKk5iP0n8lJiZi7vwFaNCoEa5evYrChQtjW8A2XYdFpBEckUhEcqL2mWjWrFlYtWoV1qxZA0NDQ6m9QYMGCAkJ0Whwednr168xbNgwNGrcWGqbN28eQkJC0KhRIx1GRkT5lUKhwK+//qrrMIiItI75KH3szp07aN6iJcp36oVNF26jyxdf4vr16+jYqaOuQyPSCI5IJCI5UbuQGBYWhsYfFcdSWVtbIzo6WhMx5V1CQCQnIWDLZlSoUAErVqxQuaVi2NChMDBQe1pKItIShUKR6WvatGm6DpGIiNLBfJSAlFFay5cvR/Xq1XEh+ILUvn3HdhQpUkSHkRFpFkckEpGcqH0mcnR0xN27d9O0BwUFoUyZMhoJKq+6fv0aFE/Pw7tZWbyLfYtKlSrh4MGDug6LiDIQFRUlvZYsWQIrKyuVNh8fH6mvEAJJSUk6jJaIiFIxH6XIyEi0atUKw4cPR3x8PJo2bSot45yklN+wkEhEcqL2mejrr7/GyJEjcf78eSgUCjx58gQBAQHw8fHB4MGDtRGj7MXExGD06NGoX7++1DZr5kyEhobCM52r5UQFhRAC7969y/WXECJb8Tk6Okova2trKBQK6fPt27dhaWmJQ4cOoWbNmjA2NkZQUBD69euHzp07q2xn1KhRaNKkifRZqVTCz88PpUuXhqmpKapVq4Zffvklwzi+//57eHh4pGmvVq0aZsyYAQAIDg5Gy5YtUbhwYVhbW8PT0zPT2/cCAwOhUChURuaEhoZCoVDgwYMHUltQUBAaNWoEU1NTODs7Y8SIEXj37l3mB46ISMeYjxZcSqUSGzdvQc3adXDs2DGYmppi+fLl+O23fboOjUhreGszEcmJ2vfZTpgwAUqlEs2bN0dcXBwaN24MY2Nj+Pj4YPjw4dqIUbaEENi+fTvGjh2Lp0+fwszURFo2evRoQE8fUCbrMEIi3YqLi4OFhUWu7zc2Nhbm5uYa2daECROwcOFClClTBra2ttlax8/PD1u3bsWqVavg4uKCkydPolevXrC3t4enp2ea/t7e3vDz80NERATKli0LALhx4wauXr2K3bt3AwDevn2Lvn374ocffoAQAv7+/mjbti3Cw8NhaWmZo+8WERGB1q1bY9asWVi/fj1evHiBYcOGYdiwYdiwYUOOtklElBuYjxZMz549w5Chw+A9exl+OnkZS7/tibVrVsPFxQVJH00nRJTfcEQiEcmJ2oVEhUKBSZMmYdy4cbh79y5iY2NRuXJlnRQLdEYI3Lp1E2PHjsGhw38AAFxcXPDj8h90HBgRadqMGTPQsmXLbPdPSEjAnDlzcPToUdSrVw8AUKZMGQQFBeGnn35Kt5BYpUoVVKtWDdu2bcOUKVMAAAEBAfDw8EC5cuUAAM2aNVNZZ/Xq1bCxscGJEyfQvn37HH03Pz8/eHt7Y9SoUQBSzmPLli2Dp6cnVq5cCRMTk8w3QESkI8xHC57du3dj0KBBePvuHbxnLwMA/HHkCIwNOf845X8ckUhEcqL2/3m3bt2Kzz//HGZmZqhcubI2YpK12NhYzPWbg1lD2uHg2qko5HoBo8eMxbhx41ISmahzug6RSDbMzMwQGxurk/1qSq1atdTqf/fuXcTFxaUpPn748AHu7u4Zruft7Y3169djypQp0mjnMWPGSMufPXuGyZMnIzAwEM+fP0dycjLi4uIQGRmp3hf6yJUrV3D16lUEBARIbUIIKJVK3L9/H5UqVcrxtomItKmg56MFgRACyUIgOjoao0aMkP5fVatOHamPvj5HZ1HBwBGJRCQnahcSR48ejUGDBqFjx47o1asXvLy8CsSVESEEdu/ejdGjR+PvVy8xa0g7AMClSxdRqnTKrYi8jZlIlUKh0Ngtxrry3/j19PTSzMGYmJgovU8tnB44cADFihVT6WdsbJzhfnr06IHx48cjJCQE8fHxePToEbp16yYt79u3L169eoWlS5eiZMmSMDY2Rr169fDhw4d0t5eaaH4c68dxpsb67bffYsSIEWnWL1GiRIaxEhHpWkHNRwuSZCGwL/wZAOCXPXugp6eHiRMn4vvJU3D44d86jo4od3FEIhHJidqXNKKiorBjxw4oFAp07doVTk5OGDp0KM6cOaON+HRPCNwNv4NOHTvgyy+/xOPHj1GyZElpcamSpXQXGxHlOnt7e0RFRam0hYaGSu8rV64MY2NjREZGoly5ciovZ2fnDLdbvHhxeHp6IiAgAAEBAWjZsiUcHByk5adPn8aIESPQtm1bVKlSBcbGxnj58mWmcQJQifXjOAGgRo0auHnzZpo4y5UrByMjo+wcDiIinShw+WgBExsbi5EjR0mfy5VzwenTpzFr1iwYGRnqLjAiHUkdkcgnkhORHKhdSDQwMED79u0REBCA58+fY/HixXjw4AGaNm0qPSQgP9mxYzvKmb3AvlUTYWNthSlTpuDSpYu6DouIdKRZs2a4ePEiNm/ejPDwcPj6+uL69evScktLS/j4+GD06NHYtGkTIiIiEBISgh9++AGbNm3KdNve3t7YsWMHfv75Z3h7e6ssc3FxwZYtW3Dr1i2cP38e3t7eMDU1zXBbqYXLadOmITw8HAcOHIC/v79Kn/Hjx+PMmTMYNmwYQkNDER4ejt9++w3Dhg3LwZEhIso9BS0fLUiCgoJQrVo1rFu3Vmo7c+YM6tatq8OoiHQrtZDIEYlEJAefNMmCmZkZvLy80KZNG7i4uODBgwcaCks+6tSpLb0PDg7GjBkzYGqS8R/vRJS/eXl5YcqUKfjuu+9Qu3ZtvH37Fn369FHpM3PmTEyZMgV+fn6oVKkSWrdujQMHDqB06dKZbvuLL77Aq1evEBcXh86dO6ssW7duHV6/fo0aNWqgd+/eGDFihMqIxf8yNDTE9u3bcfv2bbi5uWHevHmYNWuWSh83NzecOHECd+7cQaNGjeDu7o6pU6eiaNGi6h0UIiIdKgj5aH4nhEBsXDzGT5yIxo0b4969eyqj+M3MmHtTwZZ6azPnSCQiOcjRY87i4uKwd+9eBAQE4NixY3B2dkaPHj3wyy+/aDo+nStTugwQ9RwAUI5XuInyrX79+qFfv37S5yZNmqSZCzHV9OnTMX369Ay3pVAoMHLkSIwcOVKtGGxsbPD+/ft0l7m7uyM4OFil7YsvvlD5/N94GzRogKtXr2bap3bt2vjjjz/UipOISA4KUj6a3126HIpIc0d49BsBo6VL0bN7dyz0X4TA5/G6Do1IFjgikYjkRO1CYvfu3bF//36YmZmha9eumDJlCurVq6eN2IiIiIiI0mA+mj8kJibCz88P8xcuxObgMADArl0/o2P7dkhSKgEWEokAcEQiEcmL2oVEfX197Nq1K92n412/fh1Vq1bVWHBERERERP/FfDTvu3nzJvr27YuLFy/C+KM5f9u2baPDqIjkiSMSiUhO1C4kBgQEqHx++/Yttm/fjrVr1+LSpUvS1RIiIiIiIm1gPpo3CSGQmKzEihXLMXH8eCQkJMDW1hYrVq7UdWhEssYRiUQkJzk+E508eRJ9+/aFk5MTFi5ciGbNmuHcuXOajI2IiIiIKEPMR/OWiPsPsD/iOUq27gro6aF169a4fv06vvzyS12HRiRrHJFIRHKi1ojEp0+fYuPGjVi3bh1iYmLQtWtXJCQk4Ndff0XlypW1FSMREREREQDmo3mREAJr167FhO8nYU3QFQDAsmU/4OsB/aFQKFLmQySiDKUWEjkikYjkINtnog4dOqBChQq4evUqlixZgidPnuCHH37QZmxERERERBJt5KPTpk2DQqFQeVWsWFFDEdOTJ0/Qrl07fPPNN3j3LlZq79//KygUCh1GRpR3sJBIRHKS7RGJhw4dwogRIzB48GC4uLhoMyYiIiIiojS0lY9WqVIFR48elT4bGKg9jTj9hxACO3/+GaNGjcazqCcwNjbGnDlzdB0WUZ6UOkcib20mIjnIdpYUFBSEdevWoWbNmqhUqRJ69+6N7t27azM2IiIiIiKJtvJRAwMDODo6aiBC7RBC4ElUDG7e1EOVyskwN1dI7bHvgFu39KX29No00Vedbfz999/wnT4DbUbNweilV/C/H3pjyaKZKFO2HH5/GI/IcEM8tYiBpUXKdpOVAgnxUGlPry2jvprYhrr7I8pNCQkJADgikYjkIduFxLp166Ju3bpYsmQJdu7cifXr12PMmDFQKpU4cuQInJ2dYWlpqc1YiYiIiKgA01Y+Gh4ejqJFi8LExAT16tWDn58fSpQokWH/hIQE6Q97AIiJicnR98mut+8Eatc3R9RDA9gVeoVB366CkVESEpNNsH7zWJV2hb5BmjZN9FV3GyVKVMTYzvb/tG/F3r2roNA/JvWdn8F256ez3az6amIb6u6PSBc4IpGI5EDtSxrm5ubo378/goKCcO3aNYwdOxZz586Fg4MDOnbsqI0YiYgKrCZNmmDUqFG6DoOISFY0mY96eHhg48aNOHz4MFauXIn79++jUaNGePv2bYbr+Pn5wdraWno5Ozt/6lfK1PXrQNTDlOv/f78qhFevnKCvr49XLx3TtKfXpom+2d1GVFQhJCUl4VlUIdnFpsn98cVXbr+sra1RsmRJTZ5aiIhyRmhAUlKS2Lt3r+jQoYMmNpdtb968EQDEmzdvtLeT5CQhHgelvJKTMm7TRF9NbYNIB+Lj48XNmzdFfHy8rkNRS9++fQUAAUAYGBiIUqVKiXHjxsnme3h6eoqRI0dmuNzX11dUq1Yt1+KRo/v37wsA4vLly7oORW3Hjx8X7u7uwsjISJQtW1Zs2LAhy/4dO3YUjo6OwszMTFSrVk1s3bpVpc/q1atFw4YNhY2NjbCxsRHNmzcX58+f1+K3oOzI7ByZK/lMAaCpfPT169fCyspKrF27NsM+79+/F2/evJFejx490urP8M3bZOFUMlEAQpRzUYp37zJu11bf7GwDijsCMBNjx44VL1/GiXIuSgEI4fJP39hYZZo2IdJvV6evJrah7v6IiIjyE3XyUY3MJK2vr4/OnTujc+fOmtgcEVGuat26NTZs2IDExERcunQJffv2hUKhwLx583QdWr4nhEBycnKeebBBcnIyFApFmjmKPnz4ACMjI7W2df/+fbRr1w6DBg1CQEAAjh07hoEDB8LJyQleXl7prnPmzBm4ublh/PjxKFKkCPbv348+ffrA2toa7du3BwAEBgaiR48eqF+/PkxMTDBv3jy0atUKN27cQLFixXL2xYnyAE3lozY2Nihfvjzu3r2bYR9jY2MYGxt/0n7UYWYG+P/6ApHhhhjcxg5mZooM25OU2umbXjsQD1/fqfD/dSwiww2xbnI3rF1zCI0bNwYAXAlNGU1ZtaoCZmYAoEinDTA3T69dnb6a2IZ6+yMiIiqoOFsrEWmNEAIfPnzI9ZcQQq04jY2N4ejoCGdnZ3Tu3BktWrTAkSNHpOUJCQkYMWIEHBwcYGJigoYNGyI4OFhavnHjRtjY2Khs89dff4VC8e+E7NOmTUP16tWxZcsWlCpVCtbW1ujevbvKrXPv3r1Dnz59YGFhAScnJ/j7+2ca98aNGzF9+nRcuXIFCoUCCoUCGzduBABERkaiU6dOsLCwgJWVFbp27Ypnz55luK0HDx5AoVBgz549aNq0KczMzFCtWjWcPXtWpV9QUBAaNWoEU1NTODs7Y8SIEXj37p20fMuWLahVqxYsLS3h6OiInj174vnz59LywMBAKBQKHDp0CDVr1oSxsTGCgoKgVCrh5+eH0qVLw9TUFNWqVcMvv/wirff69Wt4e3vD3t4epqamcHFxwYYNGwAApUuXBgC4u7tDoVCgSZMmmR63jyUkJMDHxwfFihWDubk5PDw8EBgYqHKMbWxssG/fPlSuXBnGxsaIjIxEqVKlMHPmTPTp0wdWVlb45ptvsr3PVKtWrULp0qXh7++PSpUqYdiwYfjiiy+wePHiDNf5/vvvMXPmTNSvXx9ly5bFyJEj0bp1a+zZs0fqExAQgCFDhqB69eqoWLEi1q5dC6VSiWPHjqkdI1FBFBsbi4iICDg5Oek6FBXGpoCLW2KaQlZ67drq+3H7jRsX4e7ujpUrf5TaLlwIlIqIQErhsU4dqGwjvTZN9NXF/oiIiAqivDEEhIjypMTERPj5+eX6fidOnKj26LBU169fx5kzZ1TmoPnuu++we/dubNq0CSVLlsT8+fPh5eWFu3fvws7OLtvbjoiIwK+//or9+/fj9evX6Nq1K+bOnYvZs2cDAMaNG4cTJ07gt99+g4ODA77//nuEhISgevXq6W6vW7duuH79Og4fPoyjR48CAKytraFUKqUi4okTJ5CUlIShQ4eiW7duKkWy9EyaNAkLFy6Ei4sLJk2ahB49euDu3bswMDBAREQEWrdujVmzZmH9+vV48eIFhg0bhmHDhklFvcTERMycORMVKlTA8+fPMWbMGPTr1w8HDx5U2c+ECROwcOFClClTBra2tvDz88PWrVuxatUquLi44OTJk+jVqxfs7e3h6emJKVOm4ObNmzh06BAKFy6Mu3fvIj4+HgBw4cIF1KlTB0ePHkWVKlXU+tkPGzYMN2/exI4dO1C0aFHs3bsXrVu3xrVr1+Di4gIAiIuLw7x587B27VoUKlQIDg4OAICFCxdi6tSp8PX1lbZXpUoVPHz4MMP9NWrUCIcOHQIAnD17Fi1atFBZ7uXlpfacmG/evEGlSpUyXB4XF4fExES1fleJChIfHx906NABJUuWxJMnT+Dr6wt9fX306NFD16HJWvPmzRD/7h2KFi0K0wfX0LJlC+gr+ERjIiKi/I6FRCIq8Pbv3w8LCwskJSUhISEBenp6WL58OYCUUYIrV67Exo0b0aZNGwDAmjVrcOTIEaxbtw7jxo3L9n6USiU2btwoPVG0d+/eOHbsGGbPno3Y2FisW7cOW7duRfPmzQEAmzZtQvHixTPcnqmpKSwsLGBgYABHR0ep/ciRI7h27Rru378vPQBg8+bNqFKlCoKDg1G7du0Mt+nj44N27doBAKZPn44qVarg7t27qFixIvz8/ODt7S0VulxcXLBs2TJ4enpi5cqVMDExQf/+/aVtlSlTBsuWLUPt2rURGxsLCwsLadmMGTPQsmVLACmjAufMmYOjR4+iXr160rpBQUH46aef4OnpicjISLi7u6NWrVoAgFKlSknbsre3BwAUKlRI5ThkJTIyEhs2bEBkZCSKFi0qff/Dhw9jw4YNmDNnDoCU4uiPP/6IatWqqazfrFkzjB07VqXt4MGDSExMzHCfpqam0vunT5+iSJEiKsuLFCmCmJgYxMfHq/TNyK5duxAcHIyffvopwz7jx49H0aJF0xQtiSjF48eP0aNHD7x69Qr29vZo2LAhzp07J51b6F83btwAjAoDSPl/mre3N3744QfY2trqODIiIiLKLSwkEpHWGBoaYuLEiTrZrzqaNm2KlStX4t27d1i8eDEMDAzQpUsXACmjCBMTE9GgQQOV7depUwe3bt1Saz+lSpWSiogA4OTkJN32GxERgQ8fPsDDw0NabmdnhwoVKqi1DwC4desWnJ2dVZ4iWrlyZdjY2ODWrVuZFhLd3NxU4gOA58+fo2LFirhy5QquXr2KgIAAqY8QAkqlEvfv30elSpVw6dIlTJs2DVeuXMHr16+hVCoBpBTtKleuLK2XWhAEgLt37yIuLk4qLKb68OED3N3dAQCDBw9Gly5dEBISglatWqFz586oX7++2sfmY9euXUNycjLKly+v0p6QkIBChQpJn42MjFSOS3rfIVVuPk3x+PHj+Oqrr7BmzRpUqVIl3T5z587Fjh07EBgYCBMTk1yLjSgv2bFjh65DkL3k5GQsWLAAs/38sOnCbQDA1i1b8UWXz3UcGREREeU2FhKJSGsUCkWObzHOTebm5ihXrhwAYP369ahWrRrWrVuHAQMGZGt9PT29NPMypjcq7b8FToVCIRXa5OLjGFPneEyNMTY2Ft9++y1GjBiRZr0SJUrg3bt38PLygpeXFwICAmBvb4/IyEh4eXnhw4cPKv3Nzc2l97GxsQCAAwcOpHkYSOrDDNq0aYOHDx/i4MGDOHLkCJo3b46hQ4di4cKFOf6usbGx0NfXx6VLl6Cvr6+y7OPRk6ampirzXab3HVKpc2uzo6Njmnkrnz17BisrqyxHI544cQIdOnTA4sWL0adPn3T7LFy4EHPnzsXRo0fTLYQSEWVHxN0IfNWvrzRn7tbvh+OH5T+g6Oef6TgyIiIi0gUWEomIPqKnp4fvv/8eY8aMQc+ePVG2bFkYGRnh9OnT0mizxMREBAcHS7f42tvb4+3bt3j37p1UXAoNDVVrv2XLloWhoSHOnz+PEiVKAEh5wMidO3fg6emZ4XpGRkZITk5WaatUqRIePXqER48eSaMSb968iejoaJVRgeqqUaMGbt68KRVd/+vatWt49eoV5s6dK+334sWLWW7344eYZPZd7e3t0bdvX/Tt2xeNGjXCuHHjsHDhQqlY/d/jkBV3d3ckJyfj+fPnaNSokVrrZkSdW5vr1auXZu7II0eOSLd3ZyQwMBDt27fHvHnzMnzIy/z58zF79mz8/vvv6Y6cJCLKrnr16uH1369gaWmJpUuXol+/fuleXCEiIqKCgYVEIqL/+PLLLzFu3DisWLECPj4+GDx4MMaNGwc7OzuUKFEC8+fPR1xcnDRi0cPDA2ZmZvj+++8xYsQInD9/Xnp6cnZZWFhgwIABGDdunPRAj0mTJkFPTy/T9UqVKoX79+8jNDQUxYsXh6WlJVq0aAFXV1d4e3tjyZIlSEpKwpAhQ+Dp6flJRaXx48ejbt26GDZsGAYOHAhzc3PcvHkTR44cwfLly1GiRAkYGRnhhx9+wKBBg3D9+nXMnDkzy+1aWlrCx8cHo0ePhlKpRMOGDfHmzRucPn0aVlZW6Nu3L6ZOnYqaNWuiSpUqSEhIwP79+6UHjDg4OMDU1BSHDx9G8eLFYWJiAmtr6yz3W758eXh7e6NPnz7w9/eHu7s7Xrx4gWPHjsHNzU2aK1Id6tzaPGjQICxfvhzfffcd+vfvjz///BO7du3CgQMHpD7Lly/H3r17pScuHz9+HO3bt8fIkSPRpUsXPH36FEBKQTn1YSrz5s3D1KlTsW3bNpQqVUrqY2FhoTLSkogoI48f/4XUPxPi4uPQtGlTbNiwIVenbyAiIiJ5yvwvVCKiAsjAwADDhg3D/Pnz8e7dO8ydOxddunRB7969UaNGDdy9exe///67NLm8nZ0dtm7dioMHD8LV1RXbt2/HtGnT1N7vggUL0KhRI3To0AEtWrRAw4YNUbNmzUzX6dKlC1q3bo2mTZvC3t4e27dvh0KhwG+//QZbW1s0btwYLVq0QJkyZbBz586cHA6Jm5sbTpw4gTt37qBRo0Zwd3fH1KlTpQeV2NvbY+PGjfj5559RuXJlzJ07N9u3Hs+cORNTpkyBn58fKlWqhNatW+PAgQMoXbo0gJRC2cSJE+Hm5obGjRtDX19fmtfMwMAAy5Ytw08//YSiRYuiU6dOAFJG7ikUCjx48CDD/W7YsAF9+vTB2LFjUaFCBXTu3BnBwcHSqFBtKl26NA4cOIAjR46gWrVq8Pf3x9q1a+Hl5SX1efnyJSIiIqTPmzZtQlxcHPz8/ODk5CS9Pv/833nKVq5ciQ8fPuCLL75Q6fMpt4ETUcEghMCmTZtU5tJduHAhjh49yiIiERERAQAU4r8Te+UhMTExsLa2xps3b2BlZaWdnSiTgahzKe+d6gJ6+um3aaKvprZBpAPv37/H/fv3Ubp0aT7UgWQh9cnLN2/eVPsBPESaltk5MlfyGdIqbf8Mk5RK7AtPmVO1o0sRGPwzWj299pz2rWejhyGDBuHXX38FADRs1Bir16xGxfLleSszERFRPqdOLsNbm4mIKF86ePAg5syZwyIiEVE21KpVG08eP4KhoSGmT5+OcePGwcCAfyoQERGRKmYHRESUL/3888+6DoGISNaio6Ol969evYSbmxs2b96MatWq6S4oIiIikjXOkUhEREREVMD88ccfqFOnjvTZx8cHFy5cYBGRiIiIMsVCIhERERFRATJq1Gh4eXnhfkQEpnzhBcfXkZg5fTqMjY11HRoRERHJHAuJREREREQFyNq1awAAw4cPR/D5c6hf14MPVCEiIqJsYSGRiIiIiCgfe//+PSZPnix9Ll68OI4ePYply5bBzMxMh5ERERFRXsNCIhERERFRPhUSEoJatWphyZIlUtuF8xfQvHlz3QVFREREeRYLiURERERE+dDcufPg4eGBGzduwNrSEvp3LqGjSxHY2ljrOjQiIiLKo1hIJCIiIiLKh2bNmomkpCR88cUXuHHjBjp1aA8DPT3Oh0hEREQ5xkIiERFp1caNG2FjY5Npn2nTpqF69eq5Eg+lxZ8RUf6gVCqxfPly6bO1tQ0CAgKwa9cuFC5cWIeRERERUX7BQiIRFWgvXrzA4MGDUaJECRgbG8PR0RFeXl44ffq01KdUqVJQKBRQKBQwMzODq6sr1q5dq7KdwMBAqc/Hr48nt8+pUqVKqcxtpQlNmjTBqFGj1F5vz549aNmyJezt7WFlZYV69erh999//+R4fHx8cOzYMelzv3790Llz50/erpwIITB16lQ4OTnB1NQULVq0QHh4eKbrnDx5Eh06dEDRokWhUCjw66+/qixPTEzE+PHj4erqCnNzcxQtWhR9+vTBkydPNB7/f39GcnD16lU0atQIJiYmcHZ2xvz587NcZ8SIEahZsyaMjY3TLYwGBgaiU6dOcHJygrm5OapXr46AgACVPnv27EGtWrVgY2Mj9dmyZYumvhZRjjx8GIlmzZphwoQJUltwcDB69uzJEYhERESkMSwk5obk90DMTSApTjv9iSjHunTpgsuXL2PTpk24c+cO9u3bhyZNmuDVq1cq/WbMmIGoqChcv34dvXr1wtdff41Dhw6l2V5YWBiioqKk18d/0OUHJ0+eRMuWLXHw4EFcunQJTZs2RYcOHXD58uVP2q6FhQUKFSqkoSg158OHD2nahBBISkpSe1vz58/HsmXLsGrVKpw/fx7m5ubw8vLC+/fvM1zn3bt3qFatGlasWJHu8ri4OISEhGDKlCkICQnBnj17EBYWho4dO6odX1bk9jOKiYlBq1atULJkSVy6dAkLFizAtGnTsHr16izX7d+/P7p165busjNnzsDNzQ27d+/G1atX8dVXX6FPnz7Yv3+/1MfOzg6TJk3C2bNnpT5fffWVRorqRDlVp04dnDhxAgZ6enhx8gA6lHOAc7Giug6LiIiI8huRh71580YAEG/evNHeTpKThHgclPJKTvq37eFRIW6uFiIhJvO+CTFC7CkuRACE+M1FiMR3mW8jvf7pbTej/RHpSHx8vLh586aIj4//9I0lvhPixfl//71oyevXrwUAERgYmGm/kiVLisWLF6u02dnZidGjR0ufjx8/LgCI169fp1n/woULokWLFqJQoULCyspKNG7cWFy6dElarlQqha+vr3B2dhZGRkbCyclJDB8+XAghhKenpwCg8kp16tQp0bBhQ2FiYiKKFy8uhg8fLmJjY6XlK1asEOXKlRPGxsbCwcFBdOnSRQghRN++fdNs8/79+9k9bGlUrlxZTJ8+PcPlGzZsENbW1mLv3r1SPK1atRKRkZFSH19fX1GtWjXp/X/jO378uEhISBBDhw4Vjo6OwtjYWJQoUULMmTNHrVivXbsmWrduLczNzYWDg4Po1auXePHihbTc09NTDB06VIwcOVIUKlRINGnSRPrZHjx4UNSoUUMYGhqK48ePq7VfpVIpHB0dxYIFC6S26OhoYWxsLLZv356tbQAQe/fuzbLfhQsXBADx8OHDbMen7s8odT85/b3WhB9//FHY2tqKhIQEqW38+PGiQoUK2Vr/v98nM23bthVfffVVpn3c3d3F5MmTM1ye2TkyV/IZ0ipt/wwTk5PF7ttPxO7bT0RicrLU/uivJ1K7sampaNiwobh7965WYiAiIqL8S51chiMScyIpDrjUD7j8DXC4ZuYjB99cB+Ifp7yPDQeir2e+jYz6ExUUSXHAoerAHx4p/9XiyFwLCwtYWFjg119/RUJCQrbWUSqV2L17N16/fg0jI6NsrfP27Vv07dsXQUFBOHfuHFxcXNC2bVu8ffsWALB7924sXrwYP/30E8LDw/Hrr7/C1dUVQMotlMWLF5dGREZFRQEAIiIi0Lp1a3Tp0gVXr17Fzp07ERQUhGHDhgEALl68iBEjRmDGjBkICwvD4cOH0bhxYwDA0qVLUa9ePXz99dfSNp2dndU6dh8fj7dv38LOzi7TfnFxcZg9ezY2b96M06dPIzo6Gt27d0+3r4+PD7p27YrWrVtL8dWvXx/Lli3Dvn37sGvXLoSFhSEgIAClSpXKdqzR0dFo1qwZ3N3dcfHiRRw+fBjPnj1D165dVfpt2rQJRkZGOH36NFatWiW1T5gwAXPnzsWtW7fg5uaGU6dOSb9DGb1Sb4m9f/8+nj59ihYtWkjbs7a2hoeHB86ePZvt75Adb968gUKhyHLOw/9S52cEfNrvNQAMGjQoy+OXmbNnz6Jx48Yq/w69vLwQFhaG169fq/Xds/LmzZsMf8eFEDh27BjCwsKkf2NEuWHnzp2oXbu29Hn27NkIDAxE2bJldRgVERER5XcGug4gT0qv2Fe4Tvp9bdwAC5eUfpYugE3VzLeRUf+MJL8H3t0D7N0AI0vNfD8iXYq+Drz9Z964t1n8+/pEBgYG2LhxI77++musWrUKNWrUgKenJ7p37w43NzeVvuPHj8fkyZORkJCApKQk2NnZYeDAgWm2Wbx4cZXPDx8+RLNmzVTaVq9eDRsbG5w4cQLt27dHZGQkHB0d0aJFCxgaGqJEiRKoUyflO9vZ2UFfXx+WlpZwdHSUtuHn5wdvb29pnkMXFxcsW7YMnp6eWLlyJSIjI2Fubo727dvD0tISJUuWhLu7O4CUApaRkRHMzMxUtpkTCxcuRGxsbJpi3H8lJiZi+fLl8PDwAJBSrKtUqRIuXLggfddUFhYWMDU1RUJCgkp8kZGRcHFxQcOGDaFQKFCyZEm1Yl2+fDnc3d0xZ84cqW39+vVwdnbGnTt3UL58eQApx/LjufZSi7czZsxAy5YtpfZatWohNDQ0030WKVIEAPD06VOVzx8vT12mCe/fv8f48ePRo0cPWFlZqbWuOj8jAJ/0ew2kHE8fH58cfMsUT58+RenSpVXaPj7etra2Od72x3bt2oXg4GD89NNPKu1v3rxBsWLFkJCQAH19ffz4448qvx9E2vL3339jxLBh2LlzJwBg/lddsGbNGnw2ahTnQiQiIiKt44jE7PjvnIWpxT4gbbHvv30NzYG2oUCr80CbUMDALPNtZNQ/vXkT1RkZSZRX2FRN+TcBZK+Y/om6dOmCJ0+eYN++fWjdujUCAwNRo0YNbNy4UaXfuHHjEBoaij///BMeHh5YvHgxypUrl2Z7p06dQmhoqPSytbXFs2fP8PXXX8PFxQXW1tawsrJCbGwsIiMjAQBffvkl4uPjUaZMGXz99dfYu3dvlnPwXblyBRs3blQZveXl5QWlUon79++jZcuWKFmyJMqUKYPevXsjICAAcXGaPUds27YN06dPx65du+Dg4JBpXwMDA5WRMxUrVoSNjQ1u3bqV7f3169cPoaGhqFChAkaMGIE//vhDrXivXLmC48ePqxyzihUrAkgZ4ZmqZs2a6a5fq1Ytlc+mpqYoV65cpi9Ly9y7wJOYmIiuXbtCCIGVK1eqvb66P6NP/b12cHDI8vilqlKlivQza9OmjdrfLaeOHz+Or776CmvWrEGVKlVUlllaWiI0NBTBwcGYPXs2xowZg8DAwFyLjQqu2rVrY+fOndDX14evry9OnTgB1ypVWEQkIiKiXMERiVlJLdbFPwbCF6QU+VKLfdHXU4ocqcW+9PoamKW8/juiKqNtAGn7Z7RddUZGEuUVBmYpRfT0/m1oiYmJCVq2bImWLVtiypQpGDhwIHx9fdGvXz+pT+HChaXixs8//wxXV1fUqlULlStXVtlW6dKl09xS2rdvX7x69QpLly5FyZIlYWxsjHr16kkP8nB2dkZYWBiOHj2KI0eOYMiQIViwYAFOnDgBQ0PDdGOOjY3Ft99+ixEjRqRZVqJECRgZGSEkJASBgYH4448/MHXqVEybNg3BwcFq3/Kanh07dmDgwIH4+eefVW7X1aYaNWrg/v37OHToEI4ePYquXbuiRYsW+OWXX7K1fmxsLDp06IB58+alWebk5CS9Nzc3T3f9/7afOnUqy6LWTz/9BG9vb2lk5bNnz1T29ezZs3SfHKyu1CLiw4cP8eeff6o9GjEnPvX3etCgQdi6dWum+4iNjQUAHDx4EImJiQBSCrgA4OjoiGfPnqn0T/38qSNtAeDEiRPo0KEDFi9ejD59+qRZrqenJxU7q1evjlu3bsHPzw9NmjT55H0T/Vfs21jp/bNnz1CpUiVs3rw5zQUOIiIiIm1jITErGRXr0isOqlvYS28b6sSg7m3QRHlFdv9taEnlypXx66+/Zrjc2dkZ3bp1w8SJE/Hbb79lub3Tp0/jxx9/RNu2bQEAjx49wsuXL1X6mJqaokOHDujQoQOGDh2KihUr4tq1a6hRowaMjIyQnJys0r9GjRq4efNmuqMiUxkYGKBFixZo0aIFfH19YWNjgz///BOff/55utvMru3bt6N///7YsWMH2rVrl611kpKScPHiRenW1rCwMERHR6NSpUrp9s8oPisrK3Tr1g3dunXDF198gdatW+Pvv//Oco5GIOWY7d69G6VKlYKBwaf/70+dW5tLly4NR0dHHDt2TCocxsTE4Pz58xg8ePAnxZFaRAwPD8fx48dz/GRldX9Gn/p7rc6tzendxl6vXj1MmjQJiYmJUsH9yJEjqFChwiff1hwYGIj27dtj3rx5+Oabb7K1jlKpzPZcq0TqUiqV0vvhw0dgxjRfqahORERElJtYSMyKOsU6bRX2MtpuZqMaiShLr169wpdffon+/fvDzc0NlpaWuHjxIubPn49OnTpluu7IkSNRtWpVXLx4McsRIS4uLtiyZQtq1aqFmJgYjBs3TuUPwI0bNyI5ORkeHh4wMzPD1q1bYWpqKhVPSpUqhZMnT6J79+4wNjZG4cKFMX78eNStWxfDhg3DwIEDYW5ujps3b+LIkSNYvnw59u/fj3v37qFx48awtbXFwYMHoVQqUaFCBWmb58+fx4MHD2BhYQE7Ozvo6WU928W2bdvQt29fLF26FB4eHtL8fqamprC2ts5wPUNDQwwfPhzLli2DgYEBhg0bhrp166Y7915qfL///jvCwsJQqFAhWFtb44cffoCTkxPc3d2hp6eHn3/+GY6OjtkeYTl06FCsWbMGPXr0wHfffQc7OzvcvXsXO3bswNq1a6Gvr5+t7aRKvbU5OxQKBUaNGoVZs2bBxcUFpUuXxpQpU1C0aFF07txZ6te8eXN89tln0kNzYmNjcffuXWn5/fv3ERoaCjs7O5QoUQKJiYn44osvEBISgv379yM5OVn6mdjZ2WX7gUCA+j+jT/29dnBwyPKW+Mz07NkT06dPx4ABAzB+/Hhcv34dS5cuxeLFi6U+e/fuxcSJE3H79m2p7e7du4iNjcXTp08RHx8vFYMrV64MIyMjHD9+HO3bt8fIkSPRpUsX6XgaGRlJBWs/Pz/UqlULZcuWRUJCAg4ePIgtW7bk6JZyouywtbFG4evXIYTA/Ll+vI2ZiIiIdEfbj5DWJnUeT/1JEt8J8eJ8yn812VdbMRDpQHx8vLh586aIj4/XdSjZ9v79ezFhwgRRo0YNYW1tLczMzESFChXE5MmTRVxcnNSvZMmSYvHixWnW9/LyEm3atBFCCHH8+HEBQLx+/TpNv5CQEFGrVi1hYmIiXFxcxM8//6yyzb179woPDw9hZWUlzM3NRd26dcXRo0el9c+ePSvc3NyEsbGx+Pi0feHCBdGyZUthYWEhzM3NhZubm5g9e7YQQohTp04JT09PYWtrK0xNTYWbm5vYuXOntG5YWJioW7euMDU1FQDE/fv3pe/q6+ub4THz9PQUANK8+vbtm+E6GzZsENbW1mL37t2iTJkywtjYWLRo0UI8fPhQ6uPr6yuqVasmfX7+/Ln03QCI48ePi9WrV4vq1asLc3NzYWVlJZo3by5CQkKkdfr27Ss8PT0zjEMIIe7cuSM+++wzYWNjI0xNTUXFihXFqFGjhFKplL7fyJEjVdbJ7GerDqVSKaZMmSKKFCkijI2NRfPmzUVYWJhKn/8e/9R9Z3S879+/n+7y1GOWytPTU+M/o0/9vdaEK1euiIYNGwpjY2NRrFgxMXfu3DTf67+pTka/w6n/Bvr27Zvu8o9/tyZNmiTKlSsnTExMhK2trahXr57YsWNHprFmdo7MtXyGtIY/QyIiIsrL1MllFEIIod1SpfbExMTA2toab968yZX5oIgoY+/fv8f9+/dRunRpmJiY6DocyoG4uDgUKlQIhw4dypPzvHl6eqJp06aYNm2arkORnZIlS2L69Okq835S7srsHMl8Ju/jz5CIiIjyMnVyGd7aTEREAFKeUNusWbM8WUR88+YNIiIicODAAV2HIjs3btyAtbV1ug8MISIiIiIiUgcLiUREBABo165dth+eIjfW1tZ4/PixrsOQpSpVquDq1au6DoOIiIiIiPKBrGfWJyIiIiIiIiIiogKPhUQiIiIiIiIiIiLKEguJRKRRefj5TUREWsNzIxERERHlBywkEpFGGBoaAkh58i8REalKPTemniuJiIiIiPIiPmyFiDRCX18fNjY2eP78OQDAzMwMCoVCx1EREemWEAJxcXF4/vw5bGxsoK+vr+uQiIiIiIhyjIVEItIYR0dHAJCKiURElMLGxkY6RxIRERER5VUsJBKRxigUCjg5OcHBwQGJiYm6DoeISBYMDQ05EpGIiIiI8gUWEolI4/T19flHMxEREREREVE+w4etEBERERERERERUZZYSCQiIiIiIiIiIqIssZBIREREREREREREWcrTcyQKIQAAMTExOo6EiIiIKGdS85jUvIbyHuakRERElJepk4/m6ULi27dvAQDOzs46joSIiIjo07x9+xbW1ta6DoNygDkpERER5QfZyUcVIg9f/lYqlXjy5AksLS2hUCh0HY4sxMTEwNnZGY8ePYKVlZWuw8kXeEy1g8dVO3hctYPHVTt4XFMIIfD27VsULVoUenqcdSYvYk6qiv+2tYPHVTt4XDWPx1Q7eFy1g8c1hTr5aJ4ekainp4fixYvrOgxZsrKyKtD/CLSBx1Q7eFy1g8dVO3hctYPHFRyJmMcxJ00f/21rB4+rdvC4ah6PqXbwuGoHj2v281Fe9iYiIiIiIiIiIqIssZBIREREREREREREWWIhMZ8xNjaGr68vjI2NdR1KvsFjqh08rtrB46odPK7aweNKlD/x37Z28LhqB4+r5vGYagePq3bwuKovTz9shYiIiIiIiIiIiHIHRyQSERERERERERFRllhIJCIiIiIiIiIioiyxkEhERERERERERERZYiGRiIiIiIiIiIiIssRCYh4ybdo0KBQKlVfFihUzXefnn39GxYoVYWJiAldXVxw8eDCXos071D2ua9asQaNGjWBrawtbW1u0aNECFy5cyMWI5S8nv6upduzYAYVCgc6dO2s3yDwoJ8c1OjoaQ4cOhZOTE4yNjVG+fHmeB/4jJ8d1yZIlqFChAkxNTeHs7IzRo0fj/fv3uRRx3vHXX3+hV69eKFSoEExNTeHq6oqLFy9muk5gYCBq1KgBY2NjlCtXDhs3bsydYIkoW5iPagfzUe1gTqp5zEe1g/mo9jAf1TwDXQdA6qlSpQqOHj0qfTYwyPhHeObMGfTo0QN+fn5o3749tm3bhs6dOyMkJARVq1bNjXDzDHWOa2BgIHr06IH69evDxMQE8+bNQ6tWrXDjxg0UK1YsN8LNE9Q5pqkePHgAHx8fNGrUSJuh5WnqHNcPHz6gZcuWcHBwwC+//IJixYrh4cOHsLGxyYVI8xZ1juu2bdswYcIErF+/HvXr18edO3fQr18/KBQKLFq0KDfCzRNev36NBg0aoGnTpjh06BDs7e0RHh4OW1vbDNe5f/8+2rVrh0GDBiEgIADHjh3DwIED4eTkBC8vr1yMnogyw3xUO5iPagdzUs1jPqodzEc1j/modrCQmMcYGBjA0dExW32XLl2K1q1bY9y4cQCAmTNn4siRI1i+fDlWrVqlzTDzHHWOa0BAgMrntWvXYvfu3Th27Bj69OmjjfDyJHWOKQAkJyfD29sb06dPx6lTpxAdHa294PIwdY7r+vXr8ffff+PMmTMwNDQEAJQqVUqL0eVd6hzXM2fOoEGDBujZsyeAlGPao0cPnD9/Xpsh5jnz5s2Ds7MzNmzYILWVLl0603VWrVqF0qVLw9/fHwBQqVIlBAUFYfHixUzciGSE+ah2MB/VDuakmsd8VDuYj2oe81Ht4K3NeUx4eDiKFi2KMmXKwNvbG5GRkRn2PXv2LFq0aKHS5uXlhbNnz2o7zDxHneP6X3FxcUhMTISdnZ0WI8x71D2mM2bMgIODAwYMGJBLEeZN6hzXffv2oV69ehg6dCiKFCmCqlWrYs6cOUhOTs7FiPMGdY5r/fr1cenSJekWsnv37uHgwYNo27ZtboWbJ+zbtw+1atXCl19+CQcHB7i7u2PNmjWZrsP/bxHlDcxHtYP5qHYwJ9U85qPawXxU85iPagcLiXmIh4cHNm7ciMOHD2PlypW4f/8+GjVqhLdv36bb/+nTpyhSpIhKW5EiRfD06dPcCDfPUPe4/tf48eNRtGjRNCebgkzdYxoUFIR169ZleVIv6NQ9rvfu3cMvv/yC5ORkHDx4EFOmTIG/vz9mzZqVy5HLm7rHtWfPnpgxYwYaNmwIQ0NDlC1bFk2aNMH333+fy5HL271797By5Uq4uLjg999/x+DBgzFixAhs2rQpw3Uy+v9WTEwM4uPjtR0yEWUD81HtYD6qHcxJNY/5qHYwH9UO5qNaIijPev36tbCyshJr165Nd7mhoaHYtm2bStuKFSuEg4NDboSXZ2V1XD/m5+cnbG1txZUrV3Ihsrwrs2MaExMjSpUqJQ4ePCi19e3bV3Tq1CkXI8ybsvpddXFxEc7OziIpKUlq8/f3F46OjrkVYp6U1XE9fvy4KFKkiFizZo24evWq2LNnj3B2dhYzZszI5UjlzdDQUNSrV0+lbfjw4aJu3boZruPi4iLmzJmj0nbgwAEBQMTFxWklTiL6NMxHtYP5qHYwJ9U85qPawXxUM5iPagfnSMzDbGxsUL58edy9ezfd5Y6Ojnj27JlK27Nnz9SaI6Qgyuq4plq4cCHmzp2Lo0ePws3NLZeiy5syO6YRERF48OABOnToILUplUoAKfOEhIWFoWzZsrkWa16S1e+qk5MTDA0Noa+vL7VVqlQJT58+xYcPH2BkZJRboeYpWR3XKVOmoHfv3hg4cCAAwNXVFe/evcM333yDSZMmQU+Pg/2BlN+/ypUrq7RVqlQJu3fvznCdjP6/ZWVlBVNTU63ESUSfhvmodjAf1Q7mpJrHfFQ7mI9qBvNR7eBvVx4WGxuLiIgIODk5pbu8Xr16OHbsmErbkSNHUK9evdwIL8/K6rgCwPz58zFz5kwcPnwYtWrVysXo8qbMjmnFihVx7do1hIaGSq+OHTuiadOmCA0NhbOzsw4izhuy+l1t0KAB7t69KyXBAHDnzh04OTkxactEVsc1Li4uTXKWmhwLIbQeX17RoEEDhIWFqbTduXMHJUuWzHAd/n+LKO9hPqodzEe1gzmp5jEf1Q7mo5rBfFRLdD0kkrJv7NixIjAwUNy/f1+cPn1atGjRQhQuXFg8f/5cCCFE7969xYQJE6T+p0+fFgYGBmLhwoXi1q1bwtfXVxgaGopr167p6ivIkrrHde7cucLIyEj88ssvIioqSnq9fftWV19BdtQ9pv/F20jSp+5xjYyMFJaWlmLYsGEiLCxM7N+/Xzg4OIhZs2bp6ivIkrrH1dfXV1haWort27eLe/fuiT/++EOULVtWdO3aVVdfQZYuXLggDAwMxOzZs0V4eLgICAgQZmZmYuvWrVKfCRMmiN69e0uf7927J8zMzMS4cePErVu3xIoVK4S+vr44fPiwLr4CEaWD+ah2MB/VDuakmsd8VDuYj2oH81HtYCExD+nWrZtwcnISRkZGolixYqJbt27i7t270nJPT0/Rt29flXV27dolypcvL4yMjESVKlXEgQMHcjlq+VP3uJYsWVIASPPy9fXN/eBlKie/qx9j0pa+nBzXM2fOCA8PD2FsbCzKlCkjZs+erTJHDal/XBMTE8W0adNE2bJlhYmJiXB2dhZDhgwRr1+/zv3gZe5///ufqFq1qjA2NhYVK1YUq1evVlnet29f4enpqdJ2/PhxUb16dWFkZCTKlCkjNmzYkHsBE1GWmI9qB/NR7WBOqnnMR7WD+aj2MB/VPIUQHPdKREREREREREREmeMciURERERERERERJQlFhKJiIiIiIiIiIgoSywkEhERERERERERUZZYSCQiIiIiIiIiIqIssZBIREREREREREREWWIhkYiIiIiIiIiIiLLEQiIRERERERERERFliYVEIiIiIiIiIiIiyhILiURUIKxevRrOzs7Q09PDkiVLMG3aNFSvXl3XYeVYkyZNMGrUKF2HQURERETZxHyUiPIDFhKJ6JP169cPnTt3zvX9bty4ETY2Nln2i4mJwbBhwzB+/Hj89ddf+Oabb7QST15PBomIiIjyKuajKZiPEpG2Geg6ACIibYuMjERiYiLatWsHJycnXYdDRERERAUM81Eiyi84IpGINK5JkyYYMWIEvvvuO9jZ2cHR0RHTpk1T6aNQKLBy5Uq0adMGpqamKFOmDH755RdpeWBgIBQKBaKjo6W20NBQKBQKPHjwAIGBgfjqq6/w5s0bKBQKKBSKNPsAUq4Su7q6AgDKlCkjrf9fSqUSM2bMQPHixWFsbIzq1avj8OHDKn3Gjx+P8uXLw8zMDGXKlMGUKVOQmJgo7Wf69Om4cuWKFM/GjRvT7OePP/6AiYmJyvcCgJEjR6JZs2YAgFevXqFHjx4oVqwYzMzM4Orqiu3bt2dwtP89nr/++qtKm42NjUoMjx49QteuXWFjYwM7Ozt06tQp3WNBRERElNcxH2U+SkTawUIiEWnFpk2bYG5ujvPnz2P+/PmYMWMGjhw5otJnypQp6NKlC65cuQJvb290794dt27dytb269evjyVLlsDKygpRUVGIioqCj49Pmn7dunXD0aNHAQAXLlxAVFQUnJ2d0/RbunQp/P39sXDhQly9ehVeXl7o2LEjwsPDpT6WlpbYuHEjbt68iaVLl2LNmjVYvHixtJ+xY8eiSpUqUjzdunVLs5/mzZvDxsYGu3fvltqSk5Oxc+dOeHt7AwDev3+PmjVr4sCBA7h+/Tq++eYb9O7dGxcuXMjWsUlPYmIivLy8YGlpiVOnTuH06dOwsLBA69at8eHDhxxvl4iIiEiumI8yHyUizWMhkYi0ws3NDb6+vnBxcUGfPn1Qq1YtHDt2TKXPl19+iYEDB6J8+fKYOXMmatWqhR9++CFb2zcyMoK1tTUUCgUcHR3h6OgICwuLNP1MTU1RqFAhAIC9vT0cHR2hr6+fpt/ChQsxfvx4dO/eHRUqVMC8efNQvXp1LFmyROozefJk1K9fH6VKlUKHDh3g4+ODXbt2SfuxsLCAgYGBFI+pqWma/ejr66N79+7Ytm2b1Hbs2DFER0ejS5cuAIBixYrBx8cH1atXR5kyZTB8+HC0bt1a2ldO7Ny5E0qlEmvXroWrqysqVaqEDRs2IDIyEoGBgTneLhEREZFcMR9lPkpEmsc5EolIK9zc3FQ+Ozk54fnz5ypt9erVS/M5NDRU26GlERMTgydPnqBBgwYq7Q0aNMCVK1ekzzt37sSyZcsQERGB2NhYJCUlwcrKSu39eXt7o27dunjy5AmKFi2KgIAAtGvXTpqoOzk5GXPmzMGuXbvw119/4cOHD0hISICZmVmOv+OVK1dw9+5dWFpaqrS/f/8eEREROd4uERERkVwxH80Y81EiyikWEolIKwwNDVU+KxQKKJXKbK+vp5cyYFoIIbWlzv+iC2fPnoW3tzemT58OLy8vWFtbY8eOHfD391d7W7Vr10bZsmWxY8cODB48GHv37lWZO2bBggVYunQplixZAldXV5ibm2PUqFGZ3kwWgWoAAANySURBVPKhUChUjhWgerxiY2NRs2ZNBAQEpFnX3t5e7e9AREREJHfMRzPGfJSIcoqFRCLSmXPnzqFPnz4qn93d3QH8m0xERUXB1tYWANJcHTYyMkJycvInx2FlZYWiRYvi9OnT8PT0lNpPnz6NOnXqAADOnDmDkiVLYtKkSdLyhw8f5jgeb29vBAQEoHjx4tDT00O7du1U9tupUyf06tULQMrE23fu3EHlypUz3J69vT2ioqKkz+Hh4YiLi5M+16hRAzt37oSDg0OOrloTERER5UfMR5mPEpF6OEciEenMzz//jPXr1+POnTvw9fXFhQsXMGzYMABAuXLl4OzsjGnTpiE8PBwHDhxIc7W1VKlSiI2NxbFjx/Dy5UuVREVd48aNw7x587Bz506EhYVhwoQJCA0NxciRIwEALi4uiIyMxI4dOxAREYFly5Zh7969aeK5f/8+QkND8fLlSyQkJGS4P29vb4SEhGD27Nn44osvYGxsLC1zcXHBkSNHcObMGdy6dQvffvstnj17lmn8zZo1w/Lly3H58mVcvHgRgwYNUrkK7+3tjcKFC6NTp044deoU7t+/j8DAQIwYMQKPHz/OySEjIiIiyvOYjzIfJSL1sJBIRDozffp07NixA25ubti8eTO2b98uXeU0NDTE9u3bcfv2bbi5uWHevHmYNWuWyvr169fHoEGD0K1bN9jb22P+/Pk5jmXEiBEYM2YMxo4dC1dXVxw+fBj79u2Di4sLAKBjx44YPXo0hg0bhurVq+PMmTOYMmWKyja6dOmC1q1bo2nTprC3t8f27dsz3F+5cuVQp04dXL16VXo6XqrJkyejRo0a8PLyQpMmTeDo6IjOnTtnGr+/vz+cnZ3RqFEj9OzZEz4+Pipz2JiZmeHkyZMoUaIEPv/8c1SqVAkDBgzA+/fveUWYiIiICizmo8xHiUg9CvHfSQyIiHKBQqHA3r17s0xIiIiIiIi0gfkoEZH6OCKRiIiIiIiIiIiIssRCIhEREREREREREWWJtzYTERERERERERFRljgikYiIiIiIiIiIiLLEQiIRERERERERERFliYVEIiIiIiIiIiIiyhILiURERERERERERJQlFhKJiIiIiIiIiIgoSywkEhERERERERERUZZYSCQiIiIiIiIiIqIssZBIREREREREREREWfo/Hk9wuP14XVkAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -884,7 +881,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtkAAAEuCAYAAABbMg6iAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB+n0lEQVR4nO3deVxU5f4H8M8w7Dsom8iOyA6yHEXriqWiWem9ZGlaWYqGe4u5/Cq3W5Zesz2v6VWra91LmS3mfrXMhcOiCOIughugyCowwMzz+wPn6MjibDBn4Pt+vXy95Jkz5zxnzizf+c73eR4JY4yBEEIIIYQQojcmhu4AIYQQQgghXQ0F2YQQQgghhOgZBdmEEEIIIYToGQXZhBBCCCGE6BkF2YQQQgghhOgZBdmEEEIIIYToGQXZhBBCCCGE6BkF2YQQQgghhOgZBdmEEEIIIYToGQXZhBBCCCGE6BkF2YQQQgghxGg4ODjg6tWrLdplMhnc3NxQVVVlgF61REE2IYQQQggxCkVFRQAAT0/PFrdZWFigpKQE9vb2YIzB1tYWpaWlnd1FAQXZhBBCCCHEKOTl5SE4OPiB2xUUFMDa2hqurq6d0KvWdbsge8mSJZBIJCptmzZtgkQiwaVLlwzTqU6UkZGBgQMHwsbGBhKJBMePH2/1/MX+mLR2Htoy5LmK/XHWhfK1dvPmTUN3BUDXfqwf5P73ve78WIjVypUrERwcDIVCYeiuPJCY+1pTUwMTExOsWbPG0F0xqLVr18Lb2xsymczQXdHY6tWrMW7cODz33HNwcHBAaGgoLly4INyel5cHT09PPPvss3BwcMCAAQNQWFgIAPjoo48wefJknDp1CqGhoSgvL4etrS3i4+MBAKdPn8bQoUPh7OwMJycnzJ49+4H90eWx1DjIVr45K/+ZmprC09MTkyZNarU+hohHY2Mjxo4di1u3bmHNmjX4+uuv4ePjY+huaayrnIehHD58GEuWLEFFRYWhu6J3XfncuoPc3Fw89dRT8PHxgaWlJTw9PTFs2DB88sknwjaafgbdv/29/xYsWKD3c9DmOVhVVYX3338f8+fPh4nJ3Y/l1NRU9O3bV+991EVbfVU6ceIEJkyYAE9PT5ibm8Pd3R0PPfQQli5dKmyza9culetgZmaGwMBALFmyBA0NDS32ef/2EokE9vb24DgO27ZtU9k2Ly8PjDFERkYKbYwxLFu2DAcPHtTfA6EDmUyG+fPno1evXrCyskL//v2xZ8+eB97vwIEDbT6Xjx49qrLtpEmT0NDQgH/+858ddRqCjIwMzJw5E2FhYbCxsYG3tzeefvppnD17Vqv95ebm4vDhw5g5cyZu3bqF8PBw/Otf/xJuz8vLw6FDhzBz5kzcvHkTfn5+WLx4MYDm519kZCRCQkKwePFipKamoqamBhkZGQCACRMmYOrUqSgrK0NhYSFeeOGFFsd/7733YGlpKfyty2NpqvE97li2bBn8/PxQX1+Po0ePYtOmTfjzzz+Rl5en0jlj8Nxzz2HcuHGwsLAwdFc61IULF1BYWIgvv/wSU6ZMEdqN7fzbOg9tGdv56+rw4cNYunQpJk2aBEdHR0N3R6/aO7fudp3bI8bH4vDhwxgyZAi8vb2RkpICd3d3XL58GUePHsVHH32EWbNmqWyv6WeQcvt7hYeHd8h5aPr6+te//oWmpiaMHz9epb2xsVF0mci2+goAW7duxfjx4+Ht7Y1p06ahV69eKCoqwt69e/HNN98IgVBOTg4A4IMPPoCLiwtqa2uRlpaGpUuXQiaTYcWKFSr7VW7/8ccfw8nJCQqFApcvX8bHH3+MsWPHIjc3Vygf4DgOdXV1Ks/ts2fPYvHixWqVGHSGSZMm4fvvv8fcuXPRp08fbNq0CY899hj279+Phx566IH3nz17tpCZVQoMDFT529LSEi+88AI++OADzJo1q8Uv+Pr0/vvv49ChQxg7diwiIyNRXFyMTz/9FDExMTh69KjGr7Pc3FwsWbIE/fv3BwD06dMHjDHh9ry8PLz11lsYOHAggOb3s3uD7IkTJwr/f+SRR1T2feHCBTQ0NEChUMDe3h6xsbEtjt/U1KTyutPpsWQa2rhxIwPAMjIyVNrnz5/PALD//Oc/mu6yUy1evJhpcdqiVFNTo9H2v//+OwPA0tLSHrit8joXFBRo2buOo8l5iJ0hHudVq1Z1yjGVr7UbN2506HHu1Vnn1hpNX4+dyRje9x577DHm4uLCysvLW9xWUlIi/F/Tz6C2tu8o2jwHIyMj2cSJE1u0T548mfn4+Oivc/cZPHgwe+GFFzS6T1t9vXXrFnNwcGCDBg1iMpmsxe1Xr14V/j9hwgRmaWnJmpqahDaZTMbc3d2Zn59fi/tOmDCBOTo6tmhfu3YtA8C+/fbbdvv873//mwFg586da3c7TWnz+KWnpzMAbNWqVUJbXV0dCwgIYAkJCe3ed//+/Rp99mVmZjIAbN++fe1ud+vWLfbDDz+0efuWLVvafX87dOhQi2t+9uxZZmFhwSZMmKDSPmjQIAag1X//93//x5qampilpSW7du2acJ/Ro0ezzZs3M8YYk8vlzNLSUuX5tGnTJpaUlMTkcjmztrZmN2/eZIwxFhoayo4ePapy/N9++40NGjSIubm5sXnz5rHGxsYW57N8+fIW75fqPpb301tN9sMPPwwAKnUzAHDs2DGMHDkS9vb2sLW1xaOPPtrqzxq+vr4t9tla/bSy7fz580KmwMHBAS+++CJqa2tVtv3zzz8RHx8PS0tLBAQEtJnqv78+UZNjAM0/4cTFxakcp7W+t0a53enTp/H000/D3t4ePXr0wJw5c1BfX99iu/z8fDz77LNwcnJS+cb7oMd50qRJGDx4MABg7NixkEgkSExMbPX823L16lW89NJLcHNzg4WFBcLCwlR+wlGqrq7G3Llz4evrCwsLC7i6umLYsGHIzs5+4OOhy3m0Rp2+tHX9z549i4kTJ8LBwQEuLi546623wBjD5cuXMXr0aNjb28Pd3R2rV69WOaa617Q96j7Wmp7vkiVLMG/ePACAn5+f8FOj8tzVeb0q+zd58mT06tULFhYW8PPzQ2pqaqs/9VZUVLT7OiosLMT06dPRt29fWFlZoUePHhg7dmyL56Ou59ba81yT87hXe69HdR9Ddd/3NH0/Uud9r7XHQpPjaPKed/r0aWE2gPZcuHABYWFhrWZ/1Rm41NZnkDrUfQ4C7T8PH/QcbE1BQQFOnDiBoUOHqt3fq1evwtLSEi+99JJK+969e2FmZoZXXnlF7X1por2+7t27F5WVlZg8eTLMzc1b3N6rVy/h/zk5OQgLC4NUKhXazM3N0atXL1RWVra4b05ODmJiYlq0FxcXAwBCQkKEtmHDhmHQoEHC3xzHYcKECQCaM6ISiUR4jhUVFWHKlCnw9/eHpaUl3N3d8dhjj+H8+fMPeii09v3330MqlWLq1KlCm6WlJSZPnowjR47g8uXLau2nuroaTU1N7W4TGxsLZ2dn/PTTT+1u9/nnn+Ppp5/Gjz/+2OK2DRs24Nlnn8XmzZvbvP/AgQNbXPM+ffogLCwMp06dUmn/888/wRhr9d/f//53nD9/Hvb29vDw8BDuoywBAYDz58+jvr4eLi4uwu3btm3DyJEjcf78eTg4OKBHjx5oaGjAuXPnWmTRR44ciT///BPp6en4z3/+g//973/tPjZK6j6W99O6XOR+yjcRJycnoe3kyZN4+OGHYW9vjzfeeANmZmb45z//icTERPz+++/CTwHaePrpp+Hn54cVK1YgOzsb69evh6urK95//30AzT83DB8+HC4uLliyZAmampqwePFiuLm56e0YQPMH6ogRI+Dh4YGlS5dCLpdj2bJlKk8AdY/l6+uLFStW4OjRo/j4449RXl6Or776SmW7sWPHok+fPnj33XeFn0/UeZynTZsGT09PvPvuu8JPTZo8FiUlJRgwYAAkEglmzpwJFxcX7NixA5MnT0ZVVRXmzp0rbPvyyy/j+++/x8yZMxEaGoqysjL8+eefOHXqVKtvlEodcR7a9gUAnnnmGYSEhOC9997D9u3b8fe//x3Ozs745z//iUceeQTvv/8+/v3vf+P1119HfHw8/vKXv6jcX91rqstjren5/u1vf8PZs2fx7bffYs2aNejZsycAwMXFRe3X67Vr18BxHCoqKjB16lQEBwfj6tWr+P7771FbW9vizfZBr6OMjAwcPnwY48aNQ+/evXHp0iV88cUXSExMRH5+PqytrXU+t9Zoeh6tuf/1aMj3PKBz3vc0fc8LCQnB4MGDceDAgXaP6+PjgyNHjiAvL0+rMo7WPoPuVVlZ2WIQrvI5ou5zEGj/eajpcxBoLi8B8MD3o3t5enpiypQpWLduHRYvXgwfHx+cPn0aY8eOxciRI1t88deX9vp6+/ZtAM0BUXsaGhpw5swZPPfccyrt165dQ35+vpBEuX/7wYMHC9evvLwcu3btwvvvv4+ZM2ciKipK2P7EiRP429/+Jvw9f/58LFmyBDKZDG+//TYAwNHRESUlJYiLi0OPHj2QkpICV1dXXL58GT/++CNMTfUWGrVw7NgxBAUFwd7eXqWd4zgAwPHjx+Hl5dXuPl588UXU1NRAKpXi4YcfxqpVqxAXF9fqtjExMTh06FC7+5s/fz54nsf48eOxfft2PProowCay3+mTZuGiRMnIjU1Vd1TBNBcB19SUoKwsDCN7pebm6tyPaurq3H16lWEhoYCaC4VMTU1xbfffotnn30WGzduRG5uLr755hvs2LFDCMarq6sBND9/bGxsAAA//PADYmJi4Ofnh/LycjQ0NGhUQqTOY9mCRnlvdvent71797IbN26wy5cvs++//565uLgwCwsLdvnyZWHbMWPGMHNzc3bhwgWh7dq1a8zOzo795S9/EdpeeOGFVn8Sa+0nTmXbSy+9pNL+17/+lfXo0UPl2JaWlqywsFBoy8/PZ1KptMU+7//JXt1jMMbYE088waytrVV+ujh37hwzNTVV6+dZ5bGefPJJlfbp06czACwnJ0dlu/Hjx7fYh7qPc1s/NbVWsnB/2+TJk5mHh4fwM4zSuHHjmIODA6utrRXaHBwc2IwZMx547vo+j9ao05e2rv/UqVOFbZqamljv3r2ZRCJh7733ntBeXl7OrKysVH4yVPeatnZsxjR7rLU537Z+zlb38X/++eeZiYlJqz+/KxQK4f/qvo5aO58jR44wAOyrr77Sy7kx1vKxVvc8WtPW61Hdx5Ax9d/3NHk/Uvd9r7XnnbrH0fQ9DwAbPHhwi/b77d69m0mlUiaVSllCQgJ744032K5du1hDQ4PKdpp8Bt27fWv/lNR9DjL24OehpuUib775JgPAqqurW9zWXrnIlStXmIWFBUtNTWU3b95kAQEBLDo6WqOyJU3LHdrr66VLl5i1tTUDwPr06cPeeOMN9r///U+lJIQxxo4dO8YAsOXLl7MbN26wa9eusZ07d7KoqChmY2PT4vWo3P7+f2ZmZuzDDz9U2bakpIQBYJ9//rlKu7e3N5s0aZJK2z/+8Q9maWnJKisr1T7/+2lTLhIWFsYeeeSRFu0nT55kANjatWvbvO+hQ4dYcnIy27BhA/vpp5/YihUrWI8ePZilpSXLzs5u9T5Tp05lVlZWD+xXXV0dGzx4MLO1tWVHjx5le/fuZRYWFuzxxx9vtaTiQb7++msGgG3YsEGj+7399tvs9ddfF/4+fPgwCw8PF/5eunQpmz59Ohs5ciRzcHBgjz76KLt48aJw33nz5gnbPv/888zW1pb179+fMcbYrFmzmJubG7OxsWGRkZHs119/bbUPrZWLMKb+Y3kvrctFhg4dChcXF3h5eeGpp56CjY0Nfv75Z/Tu3RsAIJfLsXv3bowZMwb+/v7C/Tw8PPDss8/izz//1GlFnpdfflnl74cffhhlZWWoqqqCXC7Hrl27MGbMGHh7ewvbhISEICkpSS/HAJrPce/evRgzZozKT2GBgYEYOXKkRuczY8YMlb+Vg3x+++23dvvU0Y8z0PyN9IcffsATTzwBxhhu3rwp/EtKSkJlZaVK+YWjoyPS09Nx7do1tY/RUeehTV+U7h1UKZVKERcXB8YYJk+erLL/vn374uLFiy3ur+41vZemj/X9tD1fdR9/hUKBbdu24Yknnmg1c9JaucCDXkdWVlbCbY2NjSgrK0NgYCAcHR11fl61RZvzaM2952bI9zzl8Tv6fU+b9zzG2AOz2EDzz/xHjhzBk08+iZycHKxcuRJJSUnw9PTEzz//3GL7B30G3e+zzz7Dnj17VP4pqfscBPT7PASAsrIymJqawtbWVqP7eXp6IiUlBf/6178watQo1NXV4ddffxWydvdrbGxUeT+5efOmMLDy/va2puZrr6/KXyKefvppXLt2DStXrsQjjzwCf39/7N27V9hOmel+66234OLigl69emHEiBFwcnLCn3/+2eL1qNx+8+bNwnX75ptvEB0djfnz5+PIkSMtto2IiBDaKisrUVRUpDLbCNBcxtbY2KhWGaO+Hj8ALQZlKikH69bV1bV534EDB+L777/HSy+9hCeffBILFizA0aNHIZFIsHDhwlbv4+TkhLq6ulZLy+4//s8//4ygoCA89thjGDNmDPr374///ve/Gmf2T58+jRkzZiAhIaHV2Tvas3TpUqxatUr4OyEhAbm5ucLfb7/9Nj777DP89ttvqKiowN69e4UBzUuXLsXKlSuFbTdv3ozq6mqhXO/jjz9GcXExampqkJOTg1GjRmnUN3Ufy3tpHWQr37C+//57PPbYY7h586bKE+fGjRuora1tdfqhkJAQYXSwtu79EAHu/kRYXl6OGzduoK6uDn369GlxP02mQ2rvGABQWlqKurq6FqN6gZYjfR/k/r4GBATAxMSkRS3f/aPjO/pxVh6joqIC69atg4uLi8q/F198EQBUVlRauXIl8vLy4OXlBY7jsGTJklaD0M44D236onT/9XdwcIClpaXwE/C97crnxL3Uvab30vSxvp+256vu43/jxg1UVVVp9HP+g15HdXV1ePvtt+Hl5QULCwv07NkTLi4uqKioUKnP1OVa3k+b82jNva9HQ77nKY/f0e97+nzPa018fDy2bt2K8vJy8DyPhQsXorq6Gk899RTy8/NVtn3QZ9D9OI7D0KFDVf4pqfscBPT7PNTV66+/DplMhhMnTuDnn39udQU8pUOHDrV4Tzl8+DC+++67Fu3q1NC3JjIyEv/5z39w69Yt7N+/Hy+++CIuX76McePGCYGJcqaQ7du3CwFzWFgYsrKy4ODg0GKfOTk5MDU1xfjx44XrNmHCBPz444+QyWT49NNPhW2Vwdi9QbYy8L4/yH7++efh6uqKIUOGIDY2FqtWrcL169c7/PGzsrJqdcYY5Xide7/wqSMwMBCjR4/G/v37IZfLW9zO7pSVqpM4sLe3xz/+8Q/cunULNTU1+PDDDzXuT3FxMUaNGgUHBweh/ryr0OSxVNK68IjjOOEb55gxY/DQQw/h2WefxZkzZzT+Rt5Wh1t7wii1deGUD4I+dMYx2tLWY6LpE14flN/KJ06c2Oa30nvfwJ5++mk8/PDD+PHHH7F7926sWrUK77//PrZu3apxhl9XuvSlteuvy3NCnRempo/1/cT02Cs96DGbNWsWNm7ciLlz5yIhIQEODg6QSCQYN26cSkZIjOemy+tR0/e9zno/MuT7npK5uTni4+MRHx+PoKAgvPjii0hLSxOm6QL0+xmk7nMQ0P/zsEePHmhqakJ1dTXs7Ow0uu8777wDoHnKMWdn53a3jYqKajEX82uvvQZ3d3dhsKaSu7u7Tn01NzdHYmIiEhMTcePGDfz66684c+YM+vXrhxMnTsDHxwePPfaYsH1MTAxCQ0Px+eefq2QxgeYgOSAgAGZmZirtnp6esLa2xpUrV1S29fb2VgnWlUH2vXW+QHMS5OzZs9i6dSt++eUXvPXWW1i2bBl27typMnBSSR+PH9D8y1Zr87krA/x7fyFSl5eXFxoaGnD79u0Wtd7l5eWwtrZW673q4sWLmDBhAoKDg1FXV4fk5GQcOnRIZRBieyorKzFy5EhUVFTg4MGDWp2LmGnyWCrppbpfKpVixYoVGDJkCD799FMsWLAALi4usLa2xpkzZ1psf/r0aZiYmAjF/U5OTq1O3K9cwUdTLi4usLKywrlz51rc1lp/tOXq6gpLS8tWRyJrOjr53LlzKlmx8+fPQ6FQtDr7wL00eZy15eLiAjs7O8jlcrVHwHt4eGD69OmYPn06SktLERMTg3feeafND6GOPA9N+6Iv2lxTbR7r+z3ofFsL7tR9/G1tbWFvb4+8vDyt+taa77//Hi+88ILKYK36+vpW3xO0ObfWuLi46P08NH0OG+P7nj7f89SlDKTbyzK29hmkCU2eg0D7z0NN5yNWDrwqKCho9wv0/VatWoX169fj008/xbx58/DOO+9g/fr1bW7v5OTU4j3FyckJHh4ear/XaNNX5a8LysD3xIkTwiA/pZCQEMTFxeGHH35oNchWzod8L+UvR/cGtPfOQnFvm4eHR4tfIAHA1tYWzz//PJ5//nmcOXMGERER+O9//9tqkK2Pxw8AoqOjsX//flRVVakExOnp6cLtmrp48SIsLS1b/XJZUFCgMvtKW65fv45hw4bBzMwMe/bsQV1dHR566CEMHz4cv//++wO/xNXX1+OJJ57A2bNnsXfvXmGgYlei7mN5L71N4ZeYmAiO4/Dhhx+ivr4eUqkUw4cPx08//aTy83hJSQm2bNmChx56SHiCBQQEoLKyUmVU8vXr11udTkYdUqkUSUlJ2LZtm8rPNqdOncKuXbu0O8E2jjN06FBs27ZNpT7v/Pnz2LFjh0b7+uyzz1T+Vq5wpk62Vd3HWVtSqRTJycn44YcfWg1Kbty4IfxfLpe3+HnV1dUVvXr1andRhY44D237oi/aXFNNHuv7qXu+yprNewMIdR9/ExMTjBkzBr/88gsyMzNb9EGbbKdUKm1xv08++UQlo6vLubWmo85Dk+ewMb7vafOep+4Ufvv372/1cVeOYXhQycv9n0GaUOc5CKj3PFT3OaiUkJAAAK0+D9uybds2LFiwAMuXL8eMGTMwdepUfPXVVygoKFB7H9poq69//vlnq7XEJ06cwM6dO9GvXz/4+/ujuLgYpaWlrZZpJSUloaCgQGXKN+X2rQU2ytlukpOTATRfm/z8/BZBdlFRUYs6/ftnmQGaf5WSy+Udnn196qmnIJfLsW7dOqFNJpNh48aN6N+/v/BFvLa2FqdPn1bpa2vv/zk5Ofj5558xfPjwVlfgzM7ObvVLyr3Ky8uRlJSEmpoa7N27F71790afPn2wa9cuXL58GaNGjRJmj2mNXC7HM888gyNHjiAtLU14nnQ16jyW99PrPDXz5s3D2LFjsWnTJrz88sv4+9//jj179uChhx7C9OnTYWpqin/+85+QyWQqxenjxo3D/Pnz8de//hWzZ89GbW0tvvjiCwQFBak9KOF+S5cuxc6dO/Hwww9j+vTpaGpqwieffIKwsLAHTjGkiSVLlmD37t0YNGgQUlNTIZfL8emnnyI8PBzHjx9Xez8FBQV48sknMWLECBw5cgTffPMNnn322RY/cbVG3cdZF++99x7279+P/v37IyUlBaGhobh16xays7Oxd+9e3Lp1C0DztDm9e/fGU089haioKNja2mLv3r3IyMh44LRS+j4PXfqiD9peU3Uf6/upe77KFa7+7//+D+PGjYOZmRmeeOIJtR//d999F7t378bgwYMxdepUhISE4Pr160hLS8Off/6p8SqSjz/+OL7++ms4ODggNDQUR44cwd69e9GjRw+9nVtrg8H0fR6AZs9hY33f0/Q9T90p/GbNmoXa2lr89a9/RXBwMBoaGnD48GH85z//ga+vrzAmoT33fwapS53nIKDe81CT5yAA+Pv7Izw8HHv37m0x73VrsrKyMGHCBEyYMAH/93//BwB44403sHbt2gdms3XVVl8XLFiAs2fPYuzYsYiKikJTUxOOHz8uPKZff/01gLv12PfWTCsNHz4c77zzDrZv3y4E1crtS0tL8c033wBoDpB3796NHTt2YNy4cRg7diyA5l8O6+vrW+zbz88P//vf/7By5Ur06tULISEh+Mc//oG8vDw8+eST8PPzw/Xr17Fu3Tr07t0bKSkpen7UVPXv3x9jx47FwoULUVpaisDAQGzevBmXLl3Chg0bhO14nseQIUOwePFiLFmyBEDztLJWVlYYOHAgXF1dkZ+fj3Xr1sHa2hrvvfdei2NlZWXh1q1bGD16dLt9+vzzz3H58mUcOHBAZUxHdHQ0fv31VwwfPhybN2/G9OnTW73/a6+9hp9//hlPPPEEbt26JVwrJeUKjMZM3ceyBY3mImHtr54ll8tZQEAACwgIEKbtyc7OZklJSczW1pZZW1uzIUOGsMOHD7e47+7du1l4eDgzNzdnffv2Zd988027U/jdv4pca1NS/f777yw2NpaZm5szf39/tnbt2lb32dYUbuocgzHG9u3bx/r168fMzc1ZQEAAW79+PXvttdeYpaVlu4/lvcfKz89nTz31FLOzs2NOTk5s5syZrK6u7oHnraTO46zLFH6MNU+PNGPGDObl5cXMzMyYu7s7e/TRR9m6deuEbWQyGZs3bx6LiopidnZ2zMbGhkVFRbWYUqktupzH/dTti7rX/4UXXmA2NjYtjjN48GAWFhYm/K3uNW3t2ErqPNbani9jzVMUeXp6MhMTE5Xjq/t6LSwsZM8//7wwbZq/vz+bMWOGyqpf6r6OysvL2Ysvvsh69uzJbG1tWVJSEjt9+jTz8fERpsfSx7m19lircx6tae/1qO5jyJh673uavh+p877X3hR+6hxHk/c8qDmF344dO9hLL73EgoODma2tLTM3N2eBgYFs1qxZaq34yFjrn0HqrPioznOQMfWfh209B9vywQcfMFtb2xZTCd4/hd/ly5eZh4cHGzRoEKuvr1fZNjU1lZmZmQnTmalDmynoWuvr1q1b2fjx41lgYCCzsbFhlpaWLCQkhM2bN4+VlpYK261cubLFNKZKDQ0NzM7Ojg0ZMqTF9vf+s7OzY4MGDWIbNmxQmWrzv//9LwPATp48qbLfq1evCq9HAOzjjz9mGzZsYI888ojwug8MDGSzZ89W6as6tHn8GGueLu/1119n7u7uzMLCgsXHx7OdO3eqbKP8nFu8eLHQ9tFHHzGO45izszMzNTVlHh4ebOLEiW2uZDl//nzm7e39wClJGxsbWV5eXpu35+TktLuPwYMHtzlNphZhpsG1NoWfuo/l/Yzv7I3E6NGjWWBg4AO3M8TS06Rj0TUl3ZG673mkpYqKCubs7MzWr1+v0t7Ry6pro62+EnGpr69n7u7uLeYSJw92f5Cty2Opt5rs7uz+WrRz587ht99+a3e5b0IIMVb0nqdfDg4OeOONN7Bq1aoWs5kUFhZCIpHoPN2kvrTXVyIeGzduhJmZmUZlU93dhx9+CIlEgrfeekulXZfHUsJYJ87L1EV5eHhg0qRJ8Pf3R2FhIb744gvIZDIcO3as1Tlr77VkyRIsXboUN27caHX0MzE+dE1JV6fLex5RX3FxsTCA0sLCosU6CYQQ/SkvL0dJSYnwtyZLrrdFrwMfu6sRI0bg22+/RXFxMSwsLJCQkIB3332XPmwIIV0Sved1Dnd393bnXCaE6I+Tk5Ow+Ja+UCabEEIIIYQQPaOabEIIIYQQQvSMgmxCCCGEEEL0jIJsQgghhBBC9KzLDnxUKBS4du0a7OzsIJFIDN0dQgghhBByH8YYqqur0atXr1aXhjdmXTbIvnbtGry8vAzdDUIIIYQQ8gCXL19G7969Dd0NveqyQbadnR2A5otmb29v4N4QQgghhJD7VVVVwcvLS4jbupIuG2QrS0Ts7e0pyCaEEEIIEbGuWNrbtYpfCCGEEEIIEQEKsgkhhBBCCNEzCrIJIYQQQgjRsy5bk60uuVyOxsZGQ3eDiJiZmRmkUqmhu0EIIYQQI9Jtg2zGGIqLi1FRUWHorhAj4OjoCHd39y45MIMQQggh+tdtg2xlgO3q6gpra2sKnkirGGOora1FaWkpAMDDw8PAPSKEEEKIMeiWQbZcLhcC7B49ehi6O0TkrKysAAClpaVwdXWl0hFCCCF6oVAocO7cOTg6OsLNzc3Q3SF61i2DbGUNtrW1tYF7QoyF8rnS2NhIQTYhhBCd1NXV4dixY8jIyEBFRQXCw8ORnJxs6G4RPeuWQbYSlYgQddFzhRBCiK5KSkrA8zxyc3OFhJ+lpSUcHR3BGKPPmi6mWwfZhBBCCCEdSaFQ4MyZM+B5HpcuXRLa3dzcwHEcIiIiYGZmZrgOkg5DQTYhhBBCiJ7V1tYiKysLmZmZqKqqAtD8q2hISAg4joO3tzdlrrs4CrIJIYQQQvTk2rVr4HkeeXl5kMvlAJrH9cTGxiIuLg729vYG7iHpLBRkG5nExERER0fjww8/NHRXCCGEEILmWcvy8/PB8zyuXLkitPfq1QscxyEsLAymphRydTd0xY3M1q1bDVK7RcE9IYQQoqqmpgaZmZnIyspCTU0NAMDExARhYWHgOA6enp5UEtKNUZBtZJydnQ3dBUIIIaTbYozh6tWr4HkeJ0+ehEKhAADY2toKJSG2trYG7iURAxNDd4BoJjExEXPnzhX+P3v2bLzxxhtwdnaGu7s7lixZ0mL7mTNnYubMmXBwcEDPnj3x1ltvgTEmbOPr69siQx0dHS3sa9KkSfj999/x0UcfQSKRQCKRqIyQvte3334LKysrXL9+XWh78cUXERkZicrKSl1PnxBCCDGIpqYm5OTkYP369diwYQNyc3OhUCjQu3dv/O1vf8PcuXORmJhIATYRUCYbzd9KlfNVdjYzMzOdfkravHkzXn31VaSnp+PIkSOYNGkSBg0ahGHDhqlsM3nyZPA8j8zMTEydOhXe3t5ISUlR6xgfffQRzp49i/DwcCxbtgwA4OLi0uq248aNw3vvvYd3330Xn3zyCRYvXoy9e/fi6NGjcHBw0Po8CSGEEEOoqqpCRkYGsrOzUVtbCwCQSqWIiIgAx3Hw8PAwcA+JWFGQjeZV/FasWGGQYy9cuBDm5uZa3z8yMhKLFy8GAPTp0weffvop9u3bpxJke3l5Yc2aNZBIJOjbty9yc3OxZs0atYNsBwcHmJubw9raGu7u7u1uK5FI8M477+Cpp56Cu7s7PvnkExw8eBCenp5anyMhhBDSmRhjKCoqAs/zOHXqlPDrr729PeLj49GvXz/Y2NgYuJdE7CjINnKRkZEqf3t4eKC0tFSlbcCAASrZ8oSEBKxevRpyubxDlgh//PHHERoaimXLlmH37t0ICwvT+zEIIYQQfWtsbMSJEyeQkZGBkpISod3X1xccx6Fv374wMaFKW6IeCrLRXLKxcOFCgx1bn/eXSCTCIAx1mZiYqNRoA9CpfGbnzp04ffo05HI53NzctN4PIYQQ0hnKy8uRkZGBY8eOob6+HkDz56uyJIQ+y4g2RBtkX716FfPnz8eOHTtQW1uLwMBAbNy4EXFxcXo/lkQi0alkQ+zS09NV/j569Cj69OkjZLFdXFxUBipWVVWhoKBA5T7m5ubCpPrtyc7OxtNPP40NGzZg06ZNeOutt5CWlqaHsyCEEEL0hzGGgoIC8DyPM2fOCO1OTk6Ij49HdHQ0rKysDNhDYuxEGWSXl5dj0KBBGDJkCHbs2AEXFxecO3cOTk5Ohu6aUSoqKsKrr76KadOmITs7G5988glWr14t3P7II49g06ZNeOKJJ+Do6Ii33367RRmJr68v0tPTcenSJdja2sLZ2bnFT2aXLl3CqFGjsGjRIowfPx7+/v5ISEhAdnY2YmJiOuVcCSGEkPbIZDLk5OQgIyMDN2/eFNoDAgLAcRwCAwOpJITohSiD7Pfffx9eXl7YuHGj0Obn52fAHhm3559/HnV1deA4DlKpFHPmzMHUqVOF2xcuXIiCggI8/vjjcHBwwPLly1tksl9//XW88MILCA0NRV1dHQoKCuDr6yvcfuvWLYwYMQKjR4/GggULAAD9+/fHyJEjsWjRIuzcubNTzpUQQghpTVlZGXieR05ODmQyGYDmX2mjoqLAcRx69uxp4B6SrkbC7i/GFYHQ0FAkJSXhypUr+P333+Hp6Ynp06e3OxuGTCYTXjRAc8mDl5cXKisrYW9vr7JtfX09CgoK4OfnB0tLyw47DzGglRr1Q93nTENhIW59/Q3YPc9FYnjVjTW4UH4ecvbgkifSieSNQH05IL6PIdIKWZOixfgdY8AYg4Ixlb5LAEhMTGAiktUYm7x6YdwH2w3dDYOoqqqCg4NDq/GasRNlJvvixYv44osv8Oqrr2LRokXIyMjA7NmzYW5ujhdeeKHV+6xYsQJLly7t5J4Soqps/XpUpH1v6G6QVvgaugOEENKGM3VFhu4C6QCiDLIVCgXi4uLw7rvvAgD69euHvLw8rF27ts0ge+HChXj11VeFv5WZbEI6k7yqGgBgO2QIrCIjDNwborT94m+4WHkRfg6+cLOiWQJEoyQPqL0JWPcELOwM3RvSjtsNctyslsFUKoGthShDBwCAQsHQJG+EXC4XfiCRSCQwlUphamqq0+JvHcnUy9fQXSAdQJSvFA8PD4SGhqq0hYSE4IcffmjzPhYWFrCwsOjorhmdAwcOGLoL3YqyTMTu0Ufg+NRTBu4NUTq69wT+vHoJywZOwcg+fzV0d4jS138DLpwBxrwDRI83dG9IO348dgXv/ScHD/fpia8n9zd0d1QoFAqcPXsWPM+rjCdycXEBx3GIjIzs0jOIEfESZZA9aNAglel0AODs2bPw8fExUI8IUQ9raA6yJfSFT1Qa5A0AAAspXRdRabozdsGUrovYyRqb11+wMBXPrBu1tbXIzs5GZmYmKisrATRnrYODgxEfHw9fX1/RZq5J9yDKIPuVV17BwIED8e677+Lpp58Gz/NYt24d1q1bZ+iuEdIuhaw5mJOYU9AgJjJ5czBHQbbINDUv+gHTrj0AvSuQNSmDbP2vEqyp4uJipKenIy8vD01NTQAAKysrxMTEID4+Hg4ODgbuISHNRBlkx8fH48cff8TChQuxbNky+Pn54cMPP8SECRMM3TVC2sUa7gTZFvTTpJgoM9nmUrouoiKnTLaxaGgybCZbLpfj9OnT4HkeRUV3Bwl6eHiA4ziEhYXpvIIyIfomyiAbAB5//HE8/vjjhu4GIRpR1mSbULmIqFC5iEgJ5SKUyRY7WVPz9JcWZp0bZNfU1CArKwtZWVmorm4eWG5iYoLQ0FBwHIfevXtTSQgRLdEG2YQYI2WQLaFBNqKiLBehTLbICOUi9OVH7JTlIubSzgmyr169Cp7ncfLkScjlzQG+jY0NYmNjERcXBzs7mo2GiB8F2YTokaKBarLFiMpFRIoGPhoNoSbbrONqspuampCfnw+e53H16lWhvXfv3oiPj0dYWBikUsPXhBOiLgqyCdEjIZNNNdmiIlPQwEdRooGPRkPWeKdcpANqsquqqpCZmYns7Gzcvn0bACCVShEWFgaO4+Dp6an3YxLSGSjIJkSPqCZbnCiTLVJNzdeFMtni1yDX78BHxhguX74Mnudx6tQpKBTN+7ezs0NcXBxiY2NhY2Ojl2MRYigUZJM2JSYmIjo6Gh9++KGhuyLw9fXF3LlzMXfuXEN3pVV3ZxehoEFMaOCjCDFGmWwjcneebN3KNRobG5GXlwee51FcXCy0e3t7g+M4BAcHU0kI6TLEM6s8UcuNGzeQmpoKb29vWFhYwN3dHUlJSTh06BAACJPvSyQSWFtbIyIiAuvXr1fZx4EDB4RtJBIJrKysEBYW1mIe8q1bt2L58uXC376+vh0ecKelpSE4OBiWlpaIiIjAb7/9pvE+6uvrMWPGDPTo0QO2trZITk5GSUmJyjZFRUUYNWoUrK2t4erqinnz5gnzrWqLKRRgjY0AKMgWkyZFE+Tszk/dFGSLh7wRwJ11rymTLXp3a7K1CxsqKiqwZ88erFmzBj///DOKi4thamqKfv36Ydq0aXjxxRep5pp0OZTJNjLJycloaGjA5s2b4e/vj5KSEuzbtw9lZWXCNsuWLUNKSgpqa2uRlpaGlJQUeHp6YuTIkSr7OnPmDOzt7VFXV4dffvkFqampCAgIwKOPPgoAcHZ27tRzO3z4MMaPH48VK1bg8ccfx5YtWzBmzBhkZ2cjPDxc7f288sor2L59O9LS0uDg4ICZM2fib3/7m/BFRC6XY9SoUXB3d8fhw4dx/fp1PP/88zAzM8O7776rdf+VWWwAkJhRWYJYKLPYAGBmQvPoioYyiw0A9OVH9JRT+GkyuwhjDJcuXQLP8zhz5gwYa/5S5ejoiLi4OMTExMDKyqpD+kuIGFAm24hUVFTg4MGDeP/99zFkyBD4+PiA4zgsXLgQTz75pLCdnZ0d3N3d4e/vj/nz58PZ2Rl79uxpsT9XV1e4u7vDz88Ps2fPhp+fH7Kzs4XbExMThbKMxMREFBYW4pVXXhEy4ABQWFiIJ554Ak5OTrCxsUFYWJhW2WcA+OijjzBixAjMmzcPISEhWL58OWJiYvDpp5+qbFddXY3x48fDxsYGnp6e+Oyzz4TbKisrsWHDBnzwwQd45JFHEBsbi40bN+Lw4cM4evQoAGD37t3Iz8/HN998g+joaIwcORLLly/HZ599hoZ7AmVNKeuxAcCEBj6KhnL6PoBqskWl6e51oUy2+GmSyW5oaEBGRga++OILfPXVVzh9+jQYY/Dz88MzzzyDWbNmYdCgQRRgky6PMtlo/rZdd2fkdGezMpOqPZG+ra0tbG1tsW3bNgwYMAAWDyhJUCgU+PHHH1FeXg7zduZtZoxh165dKCoqQv/+/VvdZuvWrYiKisLUqVORkpIitM+YMQMNDQ34448/YGNjg/z8fNja2qr0uT0TJ07E2rVrAQBHjhzBq6++qnJ7UlIStm3bptK2atUqLFq0CEuXLsWuXbswZ84cBAUFYdiwYcjKykJjYyOGDh0qbB8cHAxvb28cOXIEAwYMwJEjRxAREQE3NzeV46SmpuLkyZPo169fu31ui0IZZJuYAKb00hILZZBtKjGFqQldF9FQZrKlFgAtJiJ66tRk37p1CzzP4/jx45DdeT80MzNDVFQUOI6Di4tLp/SVELGgTxwAdY1yhL69yyDHzl+WBGtz9S6DqakpNm3ahJSUFKxduxYxMTEYPHgwxo0bh8jISGG7+fPn480334RMJkNTUxOcnZ0xZcqUFvvr3bs3AEAmk0GhUGDZsmX4y1/+0uqxnZ2dIZVKhSy5UlFREZKTkxEREQEA8Pf3V7nf8ePH2z0ne3t74f/FxcUqgS8AuLm5qQyOAYBBgwZhwYIFAICgoCAcOnQIa9aswbBhw1BcXAxzc3M4Ojq2uZ+2jqO8TVus4W49Nq1AJh6N8ubrQllskVGW8dCgR6Mga2N2EcYYLly4AJ7nce7cOaHd2dkZ8fHxiI6OhqUlXWPSPVGQbWSSk5MxatQoHDx4EEePHsWOHTuwcuVKrF+/HpMmTQIAzJs3D5MmTcL169cxb948TJ8+HYGBgS32dfDgQdjZ2UEmk4HnecycORPOzs5ITU1Vuz+zZ89Gamoqdu/ejaFDhyI5OVkl4G/tuLpKSEho8bcYZkBhDXem76PVHkVFmcmmQY8iQ6s9GpW782Q3Z7JlMhmOHz8Onudx69YtYbvAwEBwHIfAwEBKNpBuj4JsNJds5C9LMtixNWVpaYlhw4Zh2LBheOuttzBlyhQsXrxYCLJ79uyJwMBABAYGIi0tDREREYiLi0NoaKjKfvz8/ISMb1hYGNLT0/HOO+9oFGRPmTIFSUlJ2L59O3bv3o0VK1Zg9erVmDVrFgDNykXc3d1bzAJSUlKikjl/EHd3dzQ0NKCiokIlm33vftzd3cHzfIvjKG/TFi2pLk7KhWgoky0yFGQblYY7Ndm1NVXYvj0dJ06cEMawWFhYIDo6GvHx8ejRo4chu0mIqFCQDTRPd6dmyYYYhYaGtqhbVvLy8sIzzzyDhQsX4qeffmp3P1KpFHV1dW3ebm5uDrm8Ze26l5cXXn75Zbz88stYuHAhvvzySyHI1qRcJCEhAfv27VOZA3vPnj0tMtfKAYz3/h0SEgIAiI2NhZmZGfbt24fk5GQAzbOoFBUVCftJSEjAO++8g9LSUri6ugrHsbe3b/FFRBN3V3ukoEFMaCEakaIl1Y2GQqFATV3z9fp52w9wMakFALi4uCA+Ph5RUVHtjvshpLsy3siyGyorK8PYsWPx0ksvITIyEnZ2dsjMzMTKlSsxevToNu83Z84chIeHIzMzE3FxcUJ7aWkp6uvrhXKRr7/+Gk899VSb+/H19cUff/yBcePGwcLCAj179sTcuXMxcuRIBAUFoby8HPv37xcCXkCzcpE5c+Zg8ODBWL16NUaNGoXvvvsOmZmZLebvPnToEFauXIkxY8Zgz549SEtLw/bt2wEADg4OmDx5Ml599VU4OzvD3t4es2bNQkJCAgYMGAAAGD58OEJDQ/Hcc89h5cqVKC4uxptvvokZM2Y8cDBpexQyWohGjKhcRKRoIRrRq6urQ3Z2NjIzM1F12weAGUwlDH379gXHcfDz86OSEELaQUG2EbG1tUX//v2xZs0aXLhwAY2NjfDy8kJKSgoWLVrU5v1CQ0MxfPhwvP322yrT6/Xt2xdA84BKLy8vTJs2DUuWLGlzP8uWLcO0adMQEBAAmUwGxhjkcjlmzJiBK1euwN7eHiNGjMCaNWu0Or+BAwdiy5YtePPNN7Fo0SL06dMH27ZtazFH9muvvYbMzEwsXboU9vb2+OCDD5CUdLfcZ82aNTAxMUFycjJkMhmSkpLw+eefC7dLpVL8+uuvSE1NRUJCAmxsbPDCCy9g2bJlWvVbSVmTLaHp+0SFMtkiRUuqi1ZJSQnS09ORm5srLNKlkPgBDHjx+ecQ5e9h4B4SYhwkTDk7fBdTVVUFBwcHVFZWqpQkAM0rAhYUFMDPz49GPRO1qPOcqd63D1dmzIRVdDR8v/u2k3tI2rK3cC9eOfAK+rn2w1cjvzJ0d4jSyW1A2guAzyDgRe3m1if6o1AocPr0aaSnp6OoqEhod3NzA8dxGLe1BA1NChxe8Ah6OdL81kR/2ovXjB1lsgnRE6rJFidluQhlskWGarJF4fbt28jKykJWVhaqqqoANI9TCgkJAcdx8Pb2BgA0/Lf5i9D9U/gRQtpGQTYheiLUZNMAIFERykVM6LqIyr2L0ZBOd+3aNfA8j7y8PGFAu7W1NWJjYxEXF6eSUay/Z7E2cwqyCVEbBdmE6MndTDYFc2JCAx9FijLZnU4ulyM/Px88z+PKlStCe69evcBxHMLCwmDaymq1yiXVgfZXfCSEqKIgmxA9ubsYDQUNYkLlIiJFs4t0murqamRmZiIrKwu3b98GAJiYmCAsLAwcxwmr/7ZF1tScyZZIADMpzSZCiLooyCZETxRUky1KjYrmZdUpky0ycspkdyTGGK5cuQKe55Gfnw+FojkbbWtri7i4OMTGxj5wsTAl5UI0FqYmNGUfIRqgIJsQPWENynmyKWMqJpTJFimhXIQy2frU1NSEvLw88DyP69evC+1eXl7gOA4hISGQSjUr+ZAJQTaVihCiCQqyCdETRgMfRYlqskVKKBeh14s+VFZWIjMzE9nZ2aitbV6RUSqVIiIiAhzHwcND+7mtZY3NQTYNeiREMxRkE6InyoGPJlQuIiq0GI1IUSZbZ4wxFBYWgud5nD59GsplL+zt7REfH4+YmBhYW1vrfBxlTTZN30eIZijIJkRPFMoVH2ngo6hQuYhICZlser1oqqGhAbm5ueB5HqWlpUK7r68vOI5D3759YWKiv4BYdk9NNiFEfRRkkzYlJiYiOjoaH374oaG7IvD19cXcuXMxd+5cQ3elBaFchDLZoqLMZFO5iMgIy6pTJltd5eXl4Hkex48fR31985cUMzMzREZGguM4uLq6dshxG6gmmxCt0NdSI3Pjxg2kpqbC29sbFhYWcHd3R1JSEg4dOgSgOQiVSCSQSCSwtrZGREQE1q9fr7KPAwcOCNtIJBJYWVkhLCwM69atU9lu69atWL58ufC3r69vhwfcaWlpCA4OhqWlJSIiIvDbb5ovt1xfX48ZM2agR48esLW1RXJyMkpKSlS2mT17NmJjY2FhYYHo6Gi99F058NGEBj6KCgXZIkVT+KmFMYYLFy7g22+/xccff4yjR4+ivr4eTk5OGD58OF555RU8/vjjHRZgA/dkss0oZCBEE5TJNjLJycloaGjA5s2b4e/vj5KSEuzbtw9lZWXCNsuWLUNKSgpqa2uRlpaGlJQUeHp6YuTIkSr7OnPmDOzt7VFXV4dffvkFqampCAgIwKOPPgoAcHZ27tRzO3z4MMaPH48VK1bg8ccfx5YtWzBmzBhkZ2cjPDxc7f288sor2L59O9LS0uDg4ICZM2fib3/7m/BFROmll15Ceno6Tpw4oZf+C4vR0MBHUaFyEZFS1mTTdWmVTCZDTk4OeJ5XeX8PCAgAx3Ho06dPp02np6zJNpdSkE2IJugVY0QqKipw8OBBvP/++xgyZAh8fHzAcRwWLlyIJ598UtjOzs4O7u7u8Pf3x/z58+Hs7Iw9e/a02J+rqyvc3d3h5+eH2bNnw8/PD9nZ2cLtiYmJQllGYmIiCgsL8corrwgZcAAoLCzEE088AScnJ9jY2CAsLEyr7DMAfPTRRxgxYgTmzZuHkJAQLF++HDExMfj0009Vtquursb48eNhY2MDT09PfPbZZ8JtlZWV2LBhAz744AM88sgjiI2NxcaNG3H48GEcPXpU2O7jjz/GjBkz4O/vr1VfW0M12eJEmWyRokx2q27evIkdO3bggw8+wI4dO1BWVgZzc3NwHIcZM2Zg4sSJCAoK6tT5qpWzi1iYUbkIIZqgTDYAMAY01hrm2GbWzctoqcHW1ha2trbYtm0bBgwYAIsH1P4qFAr8+OOPKC8vh3k72VXGGHbt2oWioiL079+/1W22bt2KqKgoTJ06FSkpKUL7jBkz0NDQgD/++AM2NjbIz89XWeDgQYsdTJw4EWvXrgUAHDlyBK+++qrK7UlJSdi2bZtK26pVq7Bo0SIsXboUu3btwpw5cxAUFIRhw4YhKysLjY2NGDp0qLB9cHAwvL29ceTIEQwYMKDd/uiCarLFSchkm1DGVFRoWXUBYwznzp0Dz/O4cOGC0N6jRw9wHIeoqKgHvt93JBr4SIh2KMgGmgPsd3sZ5tiLrgHmNmptampqik2bNiElJQVr165FTEwMBg8ejHHjxiEyMlLYbv78+XjzzTchk8nQ1NQEZ2dnTJkypcX+lEvpymQyKBQKLFu2DH/5y19aPbazszOkUqmQJVcqKipCcnIyIiIiAKBFZvj48ePtnpO9vb3w/+LiYri5uanc7ubmhuLiYpW2QYMGYcGCBQCAoKAgHDp0CGvWrMGwYcNQXFwMc3NzODo6PnA/+iaUi1BNtqjQFH4iRZls1NXV4fjx48jIyEB5ebnQHhQUBI7j4O/vL4oVFmkKP0K0Q0G2kUlOTsaoUaNw8OBBHD16FDt27MDKlSuxfv16TJo0CQAwb948TJo0CdevX8e8efMwffp0BAYGttjXwYMHYWdnB5lMBp7nMXPmTDg7OyM1NVXt/syePRupqanYvXs3hg4diuTkZJWAv7Xj6iohIaHF32KYAYXmyRanBgWVi4iSXDm7SPe7LqWlpUhPT0dubi4aGxsBAJaWlujXrx/i4+Ph5ORk4B6qotlFCNEOBdlAc8nGomuGO7aGLC0tMWzYMAwbNgxvvfUWpkyZgsWLFwtBds+ePREYGIjAwECkpaUhIiICcXFxCA0NVdmPn5+fkPENCwtDeno63nnnHY2C7ClTpiApKQnbt2/H7t27sWLFCqxevRqzZs0CoFm5iLu7e4tZQEpKSlQy5w/i7u6OhoYGVFRUqGSzNd2PNlijcsXH7hc0iBkNfBSpbpbJVigUOHPmDHiex6VLl4R2V1dXcByHiIiIdsv6DIlmFyFEOxRkA8010WqWbIhRaGhoi7plJS8vLzzzzDNYuHAhfvrpp3b3I5VKUVdX1+bt5ubmkMvlrR7j5Zdfxssvv4yFCxfiyy+/FIJsTcpFEhISsG/fPpU5sPfs2dMic33vAEbl3yEhIQCA2NhYmJmZYd++fUhOTgbQPItKUVFRi/3om4KWVRclGvgoUkJNdtd+vdTW1iI7OxsZGRmoqqoCAEgkEgQHB4PjOPj4+IiiJKQ9NLsIIdqhINuIlJWVYezYsXjppZcQGRkJOzs7ZGZmYuXKlRg9enSb95szZw7Cw8ORmZmJuLg4ob20tBT19fVCucjXX3+Np556qs39+Pr64o8//sC4ceNgYWGBnj17Yu7cuRg5ciSCgoJQXl6O/fv3CwEvoFm5yJw5czB48GCsXr0ao0aNwnfffYfMzMwW83cfOnQIK1euxJgxY7Bnzx6kpaVh+/btAAAHBwdMnjwZr776KpydnWFvb49Zs2YhISFBZdDj+fPnUVNTg+LiYqEuEmj+wqJtNolqssWJMtki1cUz2devXwfP88jNzRWSE9bW1oiJiUFcXBwcHBwM3EP13Z1dhIJsQjRBQbYRsbW1Rf/+/bFmzRpcuHABjY2N8PLyQkpKChYtWtTm/UJDQzF8+HC8/fbbKtPr9e3bF0DzgEovLy9MmzYNS5YsaXM/y5Ytw7Rp0xAQEACZTAbGGORyOWbMmIErV67A3t4eI0aMwJo1a7Q6v4EDB2LLli148803sWjRIvTp0wfbtm1rMUf2a6+9hszMTCxduhT29vb44IMPkJSUJNy+Zs0amJiYIDk5GTKZDElJSfj8889V9jFlyhT8/vvvwt/9+vUDABQUFMDX11er/lNNtjhRkC1SQia76wTZcrkcp06dAs/zuHz5stDu4eEBjuMQHh4OU1Pj+9iVUU02IVqRMMaYoTvREaqqquDg4IDKykqVkgSgeUXAgoIC+Pn5wdKy67zBk46jznPmdEwsWG0tAvbshrmXVyf3kLQl/pt41MvrsTN5JzxtPQ3dHaK03BWQy4BXTgIOvQ3dG53U1NQgKysLmZmZqKmpAQCYmJggNDQUHMehd+/eoi8Jac/870/gP5mXMS+pL2YM0f9gdtK9tRevGTvj+0pNiEgpl1WngY/iwRgTMtlUky0ijDUH2IDRZrIZY7h69Sp4nsfJkyehUDRne21tbREbG4vY2FjY2dkZuJf6QVP4EaIdCrIJ0QPW1AQ0NQEAJOZmBu4NUWpSNIGh+cc6KhcREWWpCGB0y6o3NTXh5MmT4Hke167dnZWqd+/e4DgOoaGhkEq7VlkFLUZDiHYoyCZED5RZbIBqssVEmcUGKJMtKspBj4DRZLKrqqqQkZGB7Oxs1NY2rxAslUoRHh4OjuPQq5eBFjTrBFSTTYh2KMgmRA8UsrvBHE3hJx73BtlmJvQLg2gImWwJIBXvdWGMoaioCDzP49SpU1AOYbK3t0dcXBxiYmJgY2O807+qSygXodlFCNEIBdmE6IGQyTY1hcQIZw/oqpRzZJuZmMFEQgGCaNw7fZ8IBwQ2NjYiNzcXPM+rLJDl4+MDjuMQHBwME5Pu83wSpvCjchFCNELRACF6IEzfR1lsUaEl1UVKpEuqV1RUICMjA8eOHRMW5jI1NUVkZCQ4joObm5uBe2gYDXIqFyFEGxRkE6IHwswiVI8tKjRHtkiJaCEaxhgKCgrA8zzOnDkjtDs6OiI+Ph79+vWDlZWVAXtoeJTJJkQ7FGQTogfKmmyqxxYXWlJdpESwpHpDQwNycnLA8zxu3rwptPv7+4PjOPTp06dblYS0R1hWnYJsQjRCQTYhesBklMkWI8pki5QBM9llZWXIyMjA8ePHIbvz5djc3BxRUVHgOA49e/bs9D6JHc0uQoh2KMgmbUpMTER0dDQ+/PBDQ3dF4Ovri7lz52Lu3LmG7ooK1qBcUp2COTGhIFukhCC7c76UMsZw/vx58DyP8+fPC+3Ozs7gOA5RUVG0+m87hCCbZhchRCP0ijEyN27cQGpqKry9vWFhYQF3d3ckJSXh0KFDAJqDUIlEAolEAmtra0RERGD9+vUq+zhw4ICwjUQigZWVFcLCwrBu3TqV7bZu3Yrly5cLf/v6+nZ4wJ2Wlobg4GBYWloiIiICv/32m8b7WLduHRITE2Fvbw+JRIKKiooW29y6dQsTJkyAvb09HB0dMXnyZGE5ZG0woVyEMtli0ihvBABYmNB1EZUm5cDHjg1s6+vrcfToUXz66afYsmWLEGD36dMHEyZMwMyZM9G/f38KsB+ggRajIUQrlMk2MsnJyWhoaMDmzZvh7++PkpIS7Nu3D2VlZcI2y5YtQ0pKCmpra5GWloaUlBR4enpi5MiRKvs6c+YM7O3tUVdXh19++QWpqakICAjAo48+CqA5y9OZDh8+jPHjx2PFihV4/PHHsWXLFowZMwbZ2dkIDw9Xez+1tbUYMWIERowYgYULF7a6zYQJE3D9+nXs2bMHjY2NePHFFzF16lRs2bJFq74LNdlULiIqlMkWqQ4uF7lx4wZ4nkdOTg4aG+980bKwQL9+/RAfH9/p723G7u6y6lQuQogm6GupEamoqMDBgwfx/vvvY8iQIcKcrQsXLsSTTz4pbGdnZwd3d3f4+/tj/vz5cHZ2xp49e1rsz9XVFe7u7vDz88Ps2bPh5+eH7Oxs4fbExEShLCMxMRGFhYV45ZVXhAw4ABQWFuKJJ56Ak5MTbGxsEBYWplX2GQA++ugjjBgxAvPmzUNISAiWL1+OmJgYfPrppyrbVVdXY/z48bCxsYGnpyc+++wzldvnzp2LBQsWYMCAAa0e59SpU9i5cyfWr1+P/v3746GHHsInn3yC7777TmWZZE2whuYPchr4KC7KIJsGPoqMcuCjHr/8KBQKnD59Gl999RU+//xzZGZmorGxES4uLhg1ahReffVVJCUlUYCtIbmCoVHevAgPDXwkRDOUyUZzvV5dU51Bjm1laiUErA9ia2sLW1tbbNu2DQMGDIDFA7KmCoUCP/74I8rLy2HeTvDHGMOuXbtQVFSE/v37t7rN1q1bERUVhalTpyIlJUVonzFjBhoaGvDHH3/AxsYG+fn5sLW1VelzeyZOnIi1a9cCAI4cOYJXX31V5fakpCRs27ZNpW3VqlVYtGgRli5dil27dmHOnDkICgrCsGHD2j2W0pEjR+Do6Ii4uDihbejQoTAxMUF6ejr++te/qrWfewnlIlSTLSo0u4hI6TGTXVtbi2PHjiEjIwOVlZUAAIlEgr59+4LjOKGEjmhHWSoCULkIIZqiIBtAXVMd+m9pPbjsaOnPpsPazFqtbU1NTbFp0yakpKRg7dq1iImJweDBgzFu3DhERkYK282fPx9vvvkmZDIZmpqa4OzsjClTprTYX+/evQEAMpkMCoUCy5Ytw1/+8pdWj+3s7AypVCpkyZWKioqQnJyMiIgIAM3TX93r+PHj7Z6Tvb298P/i4uIWiz24ubmhuLhYpW3QoEFYsGABACAoKAiHDh3CmjVr1A6yi4uL4erqqtJmamoKZ2fnFsdSlzDwkWqyRUWZyTYT8dLd3ZIwhZ/2r5fi4mLwPI/c3Fw0NTUBAKysrBATE4O4uDg4OjrqoaNEWSoCUJBNiKYoyDYyycnJGDVqFA4ePIijR49ix44dWLlyJdavX49JkyYBAObNm4dJkybh+vXrmDdvHqZPn47AwMAW+zp48CDs7Owgk8nA8zxmzpwJZ2dnpKamqt2f2bNnIzU1Fbt378bQoUORnJysEvC3dlxdJSQktPjb0DOgUE22ODUq7tTjUiZbXOTKIFuzTLZcLsfp06fB8zyKioqEdnd3d3Ach/DwcJiZ0RcqfVJmsqUmEphKKcgmRBMUZKO5ZCP92XSDHVtTlpaWGDZsGIYNG4a33noLU6ZMweLFi4Ugu2fPnggMDERgYCDS0tIQERGBuLg4hIaGquzHz89PyPaEhYUhPT0d77zzjkZB9pQpU5CUlITt27dj9+7dWLFiBVavXo1Zs2YB0KxcxN3dHSUlJSq3l5SUqGTO9cHd3R2lpaUqbU1NTbh165bWx7o7TzaVi4gJ1WSLlIaZ7Nu3byMrKwuZmZmorq4GAJiYmCAkJAQcx8HLy4tKQjqIjGYWIURrFGSjuX5P3ZINMQoNDW1Rt6zk5eWFZ555BgsXLsRPP/3U7n6kUinq6tquTTc3N4dcLm/R7uXlhZdffhkvv/wyFi5ciC+//FIIsjUpF0lISMC+fftU5sDes2dPi8z10aNHW/wdEhLS7nHulZCQgIqKCmRlZSE2NhYA8L///Q8KhaLNmvQHUS6rbkKZbFGh2UVESs2a7KtXr4LneZw8eVJ477GxsUFsbCxiY2NV3j9Ix7g7swgF2YRoioJsI1JWVoaxY8fipZdeQmRkJOzs7JCZmYmVK1di9OjRbd5vzpw5CA8PR2Zmpspgv9LSUtTX1wvlIl9//TWeeuqpNvfj6+uLP/74A+PGjYOFhQV69uyJuXPnYuTIkQgKCkJ5eTn279+vEvBqUi4yZ84cDB48GKtXr8aoUaPw3XffITMzs8X83YcOHcLKlSsxZswY7NmzB2lpadi+fbtwe3FxMYqLi4U5cXNzc2FnZwdvb284OzsjJCQEI0aMEGrbGxsbMXPmTIwbNw69evVSu7/3UtZkS8womBMTGvgoUu0sqy6Xy3Hy5EnwPI+rV68K7Z6enuA4DqGhoTA1pY+uzlLf2JzJpplFCNEcvVMZEVtbW/Tv3x9r1qzBhQsX0NjYCC8vL6SkpGDRokVt3i80NBTDhw/H22+/rTK9Xt++fQE0D/rz8vLCtGnTsGTJkjb3s2zZMkybNg0BAQGQyWRgjEEul2PGjBm4cuUK7O3tMWLECKxZs0ar8xs4cCC2bNmCN998E4sWLUKfPn2wbdu2FnNkv/baa8jMzMTSpUthb2+PDz74AElJScLta9euxdKlS4W/lYM5N27cKJTU/Pvf/8bMmTPx6KOPwsTEBMnJyfj444+16jdANdliRZlskWolk11dXY3MzExkZWXh9u3bAJp/XQsLCwPHcfD09DRET7s9WlKdEO1RkG1ELCwssGLFCqxYsaLNbS5dutRq+86dO4X/JyYmgjH2wOMdOHBA5e8BAwYgJydHpe2TTz554H40MXbsWIwdO7bN29s6v3stWbKk3S8LQPNsKdouPNMaqskWJ2Um29yErouo3AmymdQCl4uKwPM8Tp06BYWiOaCzs7NDXFwcYmJiHjiug3QsKhchRHsUZBOiB8p5sqkmW1yoXEScFI31MAFwJCMbe/bXCO3e3t7gOA7BwcGQSilzKgbCkupmFGQToikKsgnRA6Emm+bJFhUqFxGXyspKZGRkwOtUHvoCKK+ug6mZKSIiIsBxnN5nEiK6o3IRQrRHQTYheqC4M7sILasuLpTJNjzGGC5dugSe53HmzBkwxjCeNX/5CQqNwJDHX4G1tfHO7tTVKYNsc5ojmxCNUZBNiB7crcmmYE5MKJNtOA0NDThx4gQyMjJU5qX38/OD5+2eQEkB+gSHAxRgi5qs8U5NNpWLEKIxCrIJ0YO7NdkUzIkJBdmd79atW8jIyMCxY8cgu/O6MDMzQ1RUFDiOg4uLC7Dh380b67CsOukctBgNIdqjIJsQPWA0hZ8o0bLqnYMxhgsXLoDneZw7d05od3JyAsdxiI6OhqXlPQvPaLmsOul8DVSTTYjWKMgmRA/u1mRTMCcmlMnuWDKZDMePH0dGRgbKysqE9sDAQHAch8DAwNaXO9dwWXViOJTJJkR7FGQTogd3M9kUzIkJDXzsGDdv3gTP88jJyUHDnS+YFhYWiI6ORnx8PHr06NH+DtRcVp0YnjBPNtVkE6IxCrIJ0QN2J9AwodlFREWZyaYgW3cKhQLnzp0Dz/O4ePGi0N6zZ09wHIfIyEhYqFsu1c6y6kRc7s4uQuUihGiKgmzSpsTERERHR+PDDz80dFcEvr6+mDt3LubOnWvorqigmmxxonIR3dXV1eHYsWPIzMxEeXm50N63b19wHAc/P7/WS0LaQ5lsoyFrpMVoCNEWvWqMzI0bN5Camgpvb29YWFjA3d0dSUlJOHToEIDmIFQikUAikcDa2hoRERFYv369yj4OHDggbCORSGBlZYWwsDCsW7dOZbutW7di+fLlwt++vr4dHnCnpaUhODgYlpaWiIiIwG+//abxPtatW4fExETY29tDIpGgoqKixTbvvPMOBg4cCGtrazg6Ourcb6Emm4JsUaFl1bVXUlKCX375BR988AH27NmD8vJyWFpaYuDAgZgzZw7GjRsHf39/zQNsgGqyjQgtq06I9iiTbWSSk5PR0NCAzZs3w9/fHyUlJdi3b5/KoKNly5YhJSUFtbW1SEtLQ0pKCjw9PTFy5EiVfZ05cwb29vaoq6vDL7/8gtTUVAQEBODRRx8FADg7O3fquR0+fBjjx4/HihUr8Pjjj2PLli0YM2YMsrOzER4ervZ+amtrMWLECIwYMQILFy5sdZuGhgaMHTsWCQkJ2LBhg859FzLZNPBRVKgmWzMKhQKnT58Gz/MoLCwU2t3c3MBxHCIiImBmZqb7gZpodhFjQbOLEKI9+mpqRCoqKnDw4EG8//77GDJkCHx8fMBxHBYuXIgnn3xS2M7Ozg7u7u7w9/fH/Pnz4ezsjD179rTYn6urK9zd3eHn54fZs2fDz88P2dnZwu2JiYlCWUZiYiIKCwvxyiuvCBlwACgsLMQTTzwBJycn2NjYICwsTKvsMwB89NFHGDFiBObNm4eQkBAsX74cMTEx+PTTT1W2q66uxvjx42FjYwNPT0989tlnKrfPnTsXCxYswIABA9o81tKlS/HKK68gIiJCq77eizFG82SLEGMMDYo7mWwqF2nX7du3cfDgQXz00UdIS0tDYWEhJBIJQkNDMWnSJEybNg0xMTH6CbAVcuDO1IoUZIsfzS5CiPYok407QVJdnUGOLbGyUvvnVltbW9ja2mLbtm0YMGDAAwcZKRQK/PjjjygvL4d5OwPyGGPYtWsXioqK0L9//1a32bp1K6KiojB16lSkpKQI7TNmzEBDQwP++OMP2NjYID8/H7a2tip9bs/EiROxdu1aAMCRI0fw6quvqtyelJSEbdu2qbStWrUKixYtwtKlS7Fr1y7MmTMHQUFBGDZsWLvH6jBNTQBjAGhZdTFRBtgAZbLbcu3aNfA8j7y8PMjlzWUB1tbWiImJQVxcHBwcHPR/UGUWGwDoy4/oKctFzCnIJkRjFGQDYHV1OBMTa5Bj983OgkTNZYVNTU2xadMmpKSkYO3atYiJicHgwYMxbtw4REZGCtvNnz8fb775JmQyGZqamuDs7IwpU6a02F/v3r0BNM91q1AosGzZMvzlL39p9djOzs6QSqVCllypqKgIycnJQkbY399f5X7Hjx9v95zs7e2F/xcXF8PNzU3ldjc3NxQXF6u0DRo0CAsWLAAABAUF4dChQ1izZo3BgmyF7G4wRzXZ4qEc9AhQkH0vuVyO/Px88DyPK1euCO29evUCx3EICwuDqWkHfjQoBz0ClMk2ApTJJkR7FGQbmeTkZIwaNQoHDx7E0aNHsWPHDqxcuRLr16/HpEmTAADz5s3DpEmTcP36dcybNw/Tp09HYGBgi30dPHgQdnZ2kMlk4HkeM2fOhLOzM1JTU9Xuz+zZs5Gamordu3dj6NChSE5OVgn4WzuurhISElr8bcgZUFjD3WCOMtnioazHlkACUxN6q6upqUFmZiaysrJQU1MDADAxMUFYWBg4joOnp6d2gxg1pcxkS6SAlK6L2N2dXYRqsgnRFL3Doblko292lsGOrSlLS0sMGzYMw4YNw1tvvYUpU6Zg8eLFQpDds2dPBAYGIjAwEGlpaYiIiEBcXBxCQ0NV9uPn5yfMrBEWFob09HS88847GgXZU6ZMQVJSErZv347du3djxYoVWL16NWbNmgVAs3IRd3d3lJSUqNxeUlKikjkXI2HQo5kZJCaU7RELYWYRqXnnBI8ixBjDlStXwPM88vPzoVA0B0y2traIi4tDbGzsA1+jekdLqhuVBjllsgnRFgXZQPNAPjVLNsQoNDS0Rd2ykpeXF5555hksXLgQP/30U7v7kUqlqGunNt3c3Fyo27z/GC+//DJefvllLFy4EF9++aUQZGtSLpKQkIB9+/apzIG9Z8+eFpnro0ePtvg7JCSk3eN0JJojW5y68xzZTU1NyMvLA8/zuH79utDeu3dvcByH0NBQSA21uAhN32dUaAo/QrRHQbYRKSsrw9ixY/HSSy8hMjISdnZ2yMzMxMqVKzF69Og27zdnzhyEh4cjMzMTcXFxQntpaSnq6+uFcpGvv/4aTz31VJv78fX1xR9//IFx48bBwsICPXv2xNy5czFy5EgEBQWhvLwc+/fvVwl4NSkXmTNnDgYPHozVq1dj1KhR+O6775CZmdli/u5Dhw5h5cqVGDNmDPbs2YO0tDRs375duL24uBjFxcU4f/48ACA3Nxd2dnbw9vYWpiUsKirCrVu3UFRUBLlcLnwZCAwM1Dizp6zJpiBbXLrj9H2VlZXIzMxEdnY2amtrATR/eY6IiADHcfDw8DBwD0EL0RgZoVyEpvAjRGMUZBsRW1tb9O/fH2vWrMGFCxfQ2NgILy8vpKSkYNGiRW3eLzQ0FMOHD8fbb7+tMr1e3759ATQPqPTy8sK0adOwZMmSNvezbNkyTJs2DQEBAZDJZGCMQS6XY8aMGbhy5Qrs7e0xYsQIrFmzRqvzGzhwILZs2YI333wTixYtQp8+fbBt27YWc2S/9tpryMzMxNKlS2Fvb48PPvgASUlJwu1r167F0qVLhb+Vgzk3btwolNS8/fbb2Lx5s7BNv379AAD79+9HYmKiRv1WLqlO9dji0l2WVGeMobCwEDzP4/Tp02B3Zrqxt7dHXFwcYmJiYGNjY+Be3oOWVDcqwrLqlMkmRGMSpnxH7mKqqqrg4OCAyspKlZIEAKivr0dBQQH8/PxgaUnZFPJg7T1narOyUDhhIsx9fBCwa6eBekjul1GcgZd2vQQ/Bz/8POZnQ3dH7xobG3HixAnwPI/S0lKh3dfXF/Hx8QgODoaJGMcIFPwBbH4CcAkGZqQbujfkAfq/uxclVTL8OushhHt2wJSOpNtrL14zdpTJJkRHVJMtTl11SfXy8nJkZGTg2LFjqK9vLr0wMzMTSkLunwZTdKgm26goM9mWZiL8wkaIyFGQTYiOFBRki1JXqslmjOHixYvgeR5nz54V2p2cnBAfH4/o6GhYaTFTkUHQkupGhZZVJ0R7FGQToiMmDHzsWhlTYydTGP/sIjKZDDk5OcjIyMDNmzeF9oCAAHAch8DAQHGWhLRHGPho/F9+ugNajIYQ7VGQTYiOlIvRmNDAR1Ex5kx2WVkZeJ7H8ePH0XBnYK25uTmioqLAcRx69uxp4B7qQJnJNsLr0t00yRWQK5qHbdHAR0I0162D7C465pN0gPaeK3dnF6GgQUyMbZ5sxhjOnTsHnudx4cIFob1Hjx5CSYhFVyhJoky20VBmsQEqFyFEG90yyDYzMwMA1NbWGk8dIzEo5ZzDyufOvagmW5yMJZNdX1+PY8eOISMjA+Xl5UJ7UFAQOI6Dv79/11qxkmqyjca9QTZlsgnRXLcMsqVSKRwdHYVpr6ytrbvWhxjRG8YYamtrUVpaCkdHx1ZXyaOabHG6d1l1MSotLQXP8zhx4gQaGxsBAJaWloiOjkZ8fLywcFKXQ8uqGw3loEczqQRSE/qMJERT3TLIBgB3d3cAUJlflpC2ODo6Cs+Z+wk12ZTJFhUxlosoFAqcOXMGPM/j0qVLQrurqys4jkNERATMu3ptP03hZzTuLqlOpSKEaKPbBtkSiQQeHh5wdXUVskiEtMbMzKzVDLaSUC5CNdmiIqZykdraWmRnZyMzMxOVlZUAmt+DgoODwXEcfHx8us+vabSsutGgmUUI0U23DbKVpFJpuwEUIQ9Cy6qLkxgy2cXFxUhPT0deXh6ampoAAFZWVoiJiUF8fDwcHLrhCnq0rLrRkDXSkuqE6KLbB9mE6IpqssVJGWR3diZbLpfj1KlT4Hkely9fFtrd3d3BcRzCw8NbHUDbbVAm22jcLRehIJsQbVCQTYiOlMuqU022uHR2uUhNTQ2ysrKQlZWF6upqAICJiQlCQ0PBcRx69+7dfUpC2kM12UZDRqs9EqITCrIJ0ZFy4CPVZItLg6I5yDYz6dis8ZUrV8DzPE6ePAmFojkosbGxQWxsLOLi4mBnZ9ehxzc6NIWf0RCWVDejTDYh2qAgmxAdKYRyEQqyxaQjM9lNTU04efIkeJ7HtWvXhPbevXuD4ziEhobSWI+20GI0RoPKRQjRDQXZhOiICbOLdOM6WxHqiJrsqqoqZGZmIjs7G7dv3wbQPHg6PDwcHMehV69eejtWl0XLqhsNZbkIDXwkRDsUZBOiI+XsIlSTLS76ml2EMYbLly+D53mcOnVKKAmxt7dHXFwcYmJiYGNjo3N/uw3KZBsN5ewiVJNNiHYoyCZER4yWVRclXctFGhsbkZubi4yMDBQXFwvtPj4+4DgOwcHBMDGhDJ/GqCbbaFC5CCG6oSCbEB0phHmyKcgWE22XVa+oqEBGRgaOHTuGuro6AICpqSkiIiLAcVybK38SNdGy6kaDFqMhRDcUZBOio7uZbJonW0w0KRdhjKGgoAA8z+Ps2bNgjAEAHB0dhZIQKyurDu1vt0FT+BkNmsKPEN1QkE2IjoR5smnFR1FRp1ykoaEBOTk5yMjIwI0bN4R2Pz8/cByHoKAgKgnRN6rJNho08JEQ3VCQTYiOhGXVqSZbVNrLZN+6dQs8z+P48eOQ3fmSZGZmhqioKHAcBxcXl07ta7dCmWyjQTXZhOiGgmxCdKSgIFuUhEy2SfN1YYzh/Pnz4Hke58+fF7ZzdnZGfHw8oqOjYWlJdcIdjpZVNxrC7CK0GA0hWqEgmxAd3Z0nm8pFxESZyYYcSE9PB8/zuHXrlnB7nz59wHEcAgICaLnzzkSZbKNBNdmE6IaCbEJ0JNRkUyZbVJSZ7M0bNsO0vvmtzsLCAtHR0eA4Ds7OzobsXvdFU/gZjQaaXYQQnVCQTYgOGGNUky0iCoUCZ8+exdH0o2hCEwBA3iCHh4sH4uPjERUVBXP6xcFw5E0Aa67zpUy2+FFNNiG6oSCbEB0oA2yAykUMqa6uDtnZ2cjMzERFRQWaJE2AT/NtE8dPREhACJWEiIGyHhugZdWNwN3ZRahchBBtUJBNiA5UgmzKZHe6kpISpKenIzc3F01NzZlrKysrBEUFYVvxNgBAkH8QBdhioSwVASiTbQRoMRpCdENBNiE6UNZjA4DEzMyAPek+FAoFTp8+DZ7nUVhYKLS7ubmB4zhERESgvLEcSAOkEilMTehtTjSUmWwTM8CEsqNiJ2u8Uy5Cs4sQohX69CFEB3dXe7SgbGkHu337NrKyspCVlYWqqioAgEQiQWhoKDiOg5eXl3ANGuq1W1KddDBaUt2oNMhpdhFCdEFBNiE6UMho0GNHu3btGnieR15eHuTy5syajY0NYmJiEBcXB3t7+xb3Uc4sQkG2yND0fUZFmCebykUI0QoF2YTogDXQHNkdQS6X4+TJk+B5HlevXhXae/XqBY7jEBYWBlPTtt++lHNkKxeiISJBS6obFeXsIrSsOiHaoSCbEB0Ic2RTkK0X1dXVyMzMRFZWFm7fvg0AMDExQXh4OOLj49G7d2+19tPekurEgCiTbVRo4CMhuqEgmxAd0BzZumOM4cqVK+B5Hvn5+VAomj/Y7ezsEBsbi9jYWNja2mq0T2FJdZomTlxoSXWjQis+EqIbCrIJ0QHVZGuvsbEReXl5yMjIwPXr14V2b29vxMfHIyQkBFKpdh/ulMkWKcpkGxWaXYQQ3VCQTYgOhJpsCwrm1FVZWYmMjAxkZ2ejrq4OAGBqaorw8HBwHAcPDw+dj9GgoIGPokRLqhuVu7OLUJBNiDYoyCZEB3drsikz1x7GGAoLC8HzPE6fPg3GGADAwcEBcXFxiImJgbW1td6OR+UiIkWZbKPBGKNyEUJ0REE2ITpQyGh2kfY0NDQgNzcXPM+jtLRUaPf19UX//v0RFBQEExP9Z8moXESklDXZ9OVH9BrlDHe+C9PsIoRoiYJsQnRAAx9bV15eDp7ncfz4cdTXNwdWZmZmiIyMBMdxcHV17dDjUyZbpGgKP6OhnL4PoHIRQrRFQTYhOmDCwEfKmDLGcPHiRfA8j7NnzwrtTk5OiI+PR79+/WBp2Tm1uJTJFimqyTYaylIRgIJsQrRFQTYhOlAOfOzONdkymQw5OTngeR5lZWVCe2BgIOLj49GnT59OX3KeMtkiJaeabGPRcCfINjc16fTXLyFdBQXZhOhAqMnuhuUiN2/eREZGBo4fP46GO2Uz5ubmiI6OBsdx6NGjh8H6JiyrbkKZbFGhTLbRoIVoCNEdBdmE6EAoF+kmAx8VCgXOnz8Pnudx4cIFob1nz56Ij49HVFQULETwhYPKRUSKarKNhrImm4JsQrRHQTYhOmCy7jFPdn19PY4dO4aMjAyUl5cL7UFBQeA4Dv7+/qL6SVkZZFO5iMjQFH5GQ9ZI0/cRoisKsgnRgXJ2ERMRZG87QmlpKdLT05Gbm4vGxkYAgKWlJfr164f4+Hg4OTkZuIeto5pskaJl1Y0GlYsQojsKsgnRgUK54mMXGvioUChw5swZ8DyPS5cuCe2urq7gOA4REREwF3l5DK34KFJNzdeFMtnid+/AR0KIdijIJkQHd6fwM/6goba2FllZWcjMzERVVRUAQCKRIDg4GBzHwcfHR1QlIe2hmmyRoky20RBqss2oXIQQbVGQTYgOukJN9vXr18HzPHJzcyGXN3+wWltbIyYmBnFxcXBwcDBwDzVH5SIiRTXZRoPKRQjRHQXZhOhAGWSbiLx84n5yuRz5+fnIyMjA5cuXhXYPDw9wHIfw8HCYmhrv2wNlskWKllU3GjS7CCG6M95PUUJEQKjJNpJykZqaGmRmZiIrKws1NTUAABMTE4SFhYHjOHh6ehpNSUh7KJMtUpTJNhp3ZxehIJsQbVGQTYgOWEPzjBtiHvjIGMPVq1fB8zxOnjwJhaL5w9PW1haxsbGIjY2FnZ2dgXupX5TJFimqyTYad8tFqCabEG1RkE2IDsRck93U1ISTJ0+C53lcu3ZNaO/duzc4jkNoaCik0q75AUqZbJGiZdWNRgPVZBOiMwqyCdGBUJMtonKRqqoqZGRkIDs7G7W1tQAAqVSK8PBwcByHXr16GbiHHY+WVRcpWlbdaNydXYSCbEK0RUE2ITq4O0+2YYM5xhiKiorA8zxOnToFxhgAwN7eHnFxcYiJiYGNjY1B+9iZqFxEpGhZdaOhLBcxl1KQTYi2KMgmRAfCPNkGqslubGxEbm4ueJ5HSUmJ0O7j4wOO4xAcHAwTk+73IUnlIiJFAx+NhlCTTfNkE6I1CrIJ0YFyWfXOrskuLy9HRkYGjh07hvr65uygqakpIiMjwXEc3NzcOrU/YiNTNAdzFGSLDA18NBqyRprCjxBdUZBNiA46syabMYaCggLwPI8zZ84I7Y6OjoiPj0e/fv1gZWXV4f0wBkJNNpWLiAstq240GuQ08JEQXVGQTYgOFA0dv6x6Q0MDcnJywPM8bt68KbT7+/uD4zj06dOnW5aEtIfKRUSIMcpkG5G782RTuQgh2qIgmxAtMbkcaLwzT3YHBNllZWXgeR45OTmQ3cmYm5ubIyoqChzHoWfPnno/ZlfQpGiCnDX/1E2ZbBGRNwJoHpBLmWzxu1uTTV/gCdEWBdmEaElZjw0AEjP9BHOMMZw/fx48z+P8+fNCu7OzMziOQ3R0NCxENF2gGCmz2AAF2aKizGIDtKy6EVBO4UezixCiPQqyCdGSsh4bAEx0HPhYX1+PY8eOISMjA+Xl5UJ7nz59wHEcAgICusRy551BOX0fQPNki0rT3etCmWzxo0w2IbqjIJsQLSnrsWFiAphq91K6ceOGUBLSeKf0xMLCAv369UN8fDycnZ311d1uQxlkm5qYQmpC9aSiocxkSy0A+sIoelSTTYjuKMgmREvsnkGPmmSZFQoFzp49C57nUVBQILS7uLiA4zhERkbC3MCL2xizRvmdLytUkiAuyjIeGvRoFGQ0uwghOqMgmxAtCdP3qRkQ19bWCiUhlZWVAACJRIK+ffuC4zj4+vpSSYgeCKs9UqmIuNBqj0bl7jzZlMkmRFsUZBOiJWWQ/aAl1YuLi8HzPHJzc9HU1AQAsLKyQkxMDOLi4uDo6NjRXe1WlAvR0KBHkaEg26g0KJdVp0w2IVqjIJsQLSmUQXYrs33I5XKcPn0aPM+jqKhIaHd3dwfHcQgPD4eZmVmn9bU7oTmyRYqWVDcqwsBHCrIJ0RoF2YRoiclaLkRz+/ZtZGVlITMzE9XV1QAAExMThISEgOM4eHl5UUlIBxPKRSiTLS60EI1RUU7hR7OLEKI9CrIJ0RJrVAbZ5rh69Sp4nsfJkychlzd/ONnY2CA2NhZxcXGws7MzZFe7FcpkixQtqW5U7mayqSabEG1RkE2IlppqawEANyoqsHP9eqHd09MTHMchNDQUplpO7Ue0R0G2SFEm26hQuQghuqMIgBANVVdXIzMzE9e2bUMMgLomOaRSKcLCwsBxHDw9PQ3dxW5NWS5iJqWad1GhmmyjwRgTBj5SkE2I9ijIJkQNjDFcvnwZPM/j1KlTUCgU8L2TyXZyccErr7wCGxsbA/eSAJTJFq17F6MhoqbMYgM0uwghuqAgm5B2NDY2Ii8vDzzPo7i4WGj39vZGnJ0dkM7D2cOdAmwRUWayKcgWGcpkG417g2yqySZEexRkE9KKiooKZGZmIjs7G3V1dQAAU1NTREREgOM4uLu749ZXX6EEgIk5BQ1iQrOLiBTVZBsN5cwiEglgJqXZkAjRFgXZhNzBGMOlS5fA8zzOnDkDxhgAwMHBAfHx8ejXrx+sra2F7dubJ5sYTqOCllUXJTllso3FvfXYNOUoIdqjIJt0ew0NDThx4gR4nseNGzeEdj8/P3Ach6CgIJiYtKxLvDtPNmVMxYSWVRcpoVyEMtliR9P3EaIfFGSTbuvWrVvIyMjAsWPHILuTlTYzM0NUVBQ4joOLi0u791d3WXXSuahcRKSEchG6LmIna6Ql1QnRBwqySbfCGMOFCxfA8zzOnTsntDs7OyM+Ph7R0dGwtFQv08YamoM5EyoXERWaXUSkKJNtNITVHinIJkQnFGSTbkEmk+H48ePIyMhAWVmZ0B4YGAiO4xAYGKhx7aFQk00DH0WFMtkiJWSy6fUidrQQDSH6QUE26dJu3rwJnueRk5ODhoY7GU4LC0RHRyM+Ph49evTQet+soXmAHQ18FBfKZIuUsKw6ZbLFroFqsgnRCwqySZejUChw7tw58DyPixcvCu09e/YEx3GIjIyEhR4CY2VNtgkNfBQVZZBNmWyRoSn8jIaQyTajTDYhuqAgm3QZdXV1OHbsGDIyMlBRUSG09+3bFxzHwc/PT6/TUSlrsmngo7hQuYhIKWuy6bqInrIm21xKQTYhuqAgmxi9kpIS8DyPEydOoKmpCQBgaWmJmJgYxMfHw9HRsUOOSzXZ4kTlIiJFmWyjoZxdxMKMykUI0QUF2cQoKRQKnD59GjzPo7CwUGh3c3MDx3GIiIiAmZlZh/bh7jzZFMyJCWWyRYqWVTcaNPCREP2gIJsYldu3byM7OxuZmZmoqqoCAEgkEoSEhIDjOHh7e3faCmWsgRajESMhk21CwZyoUCbbaNAUfoToBwXZxChcu3YNPM8jLy8PcnnzB4C1tTViY2MRFxcHe3v7Tu/T3YGPFMyJSYOCykVESa6cXYSui9jR7CKE6AcF2US05HI58vPzwfM8rly5IrT36tULHMchLCwMpqaGeworGqgmW4yoXESkKJNtNGh2EUL0g4JsIjrV1dXIyspCVlYWampqAAAmJiYICwsDx3Ho3bu3gXvYTKjJptlFRIWm8BMpoSabrovY0ewihOiHKIPsJUuWYOnSpSptffv2xenTpw3UI9LRGGO4cuUKeJ5Hfn4+FIrmTIqtrS3i4uIQGxsLW1tbA/dSlbJchGqyxUWZyaZyEZGhTLbRuDu7CAXZhOhClEE2AISFhWHv3r3C34YsCyAdp6mpCXl5eeB5HtevXxfavby8wHEcQkJCIJWKsy6QarLFicpFRErIZFOQLXYyqskmRC9EG7mamprC3d3d0N0gHaSyshKZmZnIzs5GbW0tAEAqlSIiIgIcx8HDw8PAPXwwRSMtqy5GjfLm60KZbJGhKfyMRgNN4UeIXog2yD537hx69eoFS0tLJCQkYMWKFfD29m5ze5lMBtmdzCIAYXq37mT3puUwX7fF0N1QmxRA/P2NvwFn0PxP7NyavxvguR9GoMq2c6YNJA9Wb9Z8LUo/HIY7v3oTEfBRNL8//21dFipNzhu4N6Q9pVV3Sq4oyCZEJ6IMsvv3749Nmzahb9++uH79OpYuXYqHH34YeXl5sLOza/U+K1asaFHH3d001FTC65ahe9G9VFsCZ+0kaDKlIFtMnORyhDVdRccuR0Q0dZPZ40QZ0ITbhu4KUYO/i42hu0CIUZMwxpihO/EgFRUV8PHxwQcffIDJkye3uk1rmWwvLy9UVlYaZA5lQ7h8IQ+5e8STyW5sbMCt8nJUVFRALm9OKZpIJHB0dICTkzMsukCZhczdGXI7K0N3g9ynt7kr7E3FNVCWAHUOgWiydDZ0N4ganGzMEeTWelKLEH2qqqqCg4NDl4zXRJnJvp+joyOCgoJw/nzbPzFaWFh0iaBNF14B4fAKeNegfWCM4eLFi+B5HmfPngVgBzh4w8nJCfHx8YiOjoaVFQWlhBBCCOnajCLIrqmpwYULF/Dcc88ZuiukDTKZDDk5OeB5HmVlZUJ7QEAAOI5DYGAgTEyovo8QQggh3YMog+zXX38dTzzxBHx8fHDt2jUsXrwYUqkU48ePN3TXyH3KysrA8zyOHz+OhoY7i4CYmyM6Ohrx8fHo2bOngXtICCGEENL5RBlkX7lyBePHj0dZWRlcXFzw0EMP4ejRo3BxcTF01wiaS0LOnTsHnudx4cIFob1Hjx7gOA5RUVHdvnSHEEIIId2bKIPs7777ztBdIK2or6/HsWPHkJGRgfLycqE9KCgIHMfB398fEgnNskEIIYQQIsogm4hLaWkpeJ7HiRMn0HhnARZLS0uhJMTZmWYLIIQQQgi5FwXZpFUKhQJnzpwBz/O4dOmS0O7q6gqO4xAREQFzc1q2mhBCCCGkNRRkExW1tbXIzs5GZmYmKisrAQASiQTBwcHgOA4+Pj5UEkIIIYQQ8gAUZBMAwPXr18HzPPLy8tDU1AQAsLKyQmxsLOLi4uDg4GDgHhJCCCGEGA8KsrsxuVyOU6dOged5XL58WWj38PAAx3EIDw+HqSk9RQghhBBCNEURVDdUU1ODrKwsZGVlobq6GgBgYmKC0NBQcByH3r17U0kIIYQQQogOKMjuRq5cuYKMjAycPHkScrkcAGBjYyOUhNjZ2Rm4h4QQQgghXQMF2V1cU1MTTp48CZ7nce3aNaG9d+/eiI+PR1hYGKRSqQF7SAghhBDS9VCQ3UVVVVUhMzMT2dnZuH37NgBAKpUiPDwcHMehV69eBu4hIYQQQkjXRUF2F8IYQ1FRETIyMnDq1CkoFAoAgJ2dHeLi4hAbGwsbGxsD95IQQgghpOujILsLyc7Oxq+//ir87ePjg/j4eAQHB1NJCCGEEEJIJ6IguwsJCQnB3r17ERISAo7j4O7ubuguEUIIIYR0SxLGGDN0JzpCVVUVHBwcUFlZCXt7e0N3p9M0NTXR3NaEEEIIMQpdOV4zMXQHiH5RgE0IIYQQYngUZBNCCCGEEKJnFGQTQgghhBCiZxRkE0IIIYQQomcUZBNCCCGEEKJnFGQTQgghhBCiZxRkE0IIIYQQomdddr435fTfVVVVBu4JIYQQQghpjTJO64rLtnTZILu6uhoA4OXlZeCeEEIIIYSQ9lRXV8PBwcHQ3dCrLrvio0KhwLVr12BnZweJRGLo7pB7VFVVwcvLC5cvX+5yqzsZO7o24kbXR7zo2ogXXRtxY4yhuroavXr1golJ16pi7rKZbBMTE/Tu3dvQ3SDtsLe3pzc8kaJrI250fcSLro140bURr66WwVbqWl8ZCCGEEEIIEQEKsgkhhBBCCNEzCrJJp7OwsMDixYthYWFh6K6Q+9C1ETe6PuJF10a86NoQQ+myAx8JIYQQQggxFMpkE0IIIYQQomcUZBNCCCGEEKJnFGQTQgghhBCiZxRkE0IIIYQQomcUZBOdLFmyBBKJROVfcHBwu/dJS0tDcHAwLC0tERERgd9++03ldsYY3n77bXh4eMDKygpDhw7FuXPnOvI0uiRNr82XX36Jhx9+GE5OTnBycsLQoUPB87zKNpMmTWqxzxEjRnT0qXRJml6fTZs2tdje0tJSZRt67eiHptcmMTGxxfYSiQSjRo0StqHXjv5cvXoVEydORI8ePWBlZYWIiAhkZma2e58DBw4gJiYGFhYWCAwMxKZNm1ps89lnn8HX1xeWlpbo379/i/c/QjRFQTbRWVhYGK5fvy78+/PPP9vc9vDhwxg/fjwmT56MY8eOYcyYMRgzZgzy8vKEbVauXImPP/4Ya9euRXp6OmxsbJCUlIT6+vrOOJ0uRZNrc+DAAYwfPx779+/HkSNH4OXlheHDh+Pq1asq240YMUJln99++21Hn0aXpcn1AZpXrLt3+8LCQpXb6bWjP5pcm61bt6psm5eXB6lUirFjx6psR68d3ZWXl2PQoEEwMzPDjh07kJ+fj9WrV8PJyanN+xQUFGDUqFEYMmQIjh8/jrlz52LKlCnYtWuXsM1//vMfvPrqq1i8eDGys7MRFRWFpKQklJaWdsZpka6KEaKDxYsXs6ioKLW3f/rpp9moUaNU2vr378+mTZvGGGNMoVAwd3d3tmrVKuH2iooKZmFhwb799lu99Lm70PTa3K+pqYnZ2dmxzZs3C20vvPACGz16tO6dIxpfn40bNzIHB4c2b6fXjv7o+tpZs2YNs7OzYzU1NUIbvXb0Y/78+eyhhx7S6D5vvPEGCwsLU2l75plnWFJSkvA3x3FsxowZwt9yuZz16tWLrVixQrcOk26NMtlEZ+fOnUOvXr3g7++PCRMmoKioqM1tjxw5gqFDh6q0JSUl4ciRIwCaMw7FxcUq2zg4OKB///7CNkR9mlyb+9XW1qKxsRHOzs4q7QcOHICrqyv69u2L1NRUlJWV6bvb3Yam16empgY+Pj7w8vLC6NGjcfLkSeE2eu3oly6vnQ0bNmDcuHGwsbFRaafXju5+/vlnxMXFYezYsXB1dUW/fv3w5ZdftnufB33uNDQ0ICsrS2UbExMTDB06lF47RCcUZBOd9O/fH5s2bcLOnTvxxRdfoKCgAA8//DCqq6tb3b64uBhubm4qbW5ubiguLhZuV7a1tQ1Rj6bX5n7z589Hr169VD54RowYga+++gr79u3D+++/j99//x0jR46EXC7vqNPosjS9Pn379sW//vUv/PTTT/jmm2+gUCgwcOBAXLlyBQC9dvRJl9cOz/PIy8vDlClTVNrptaMfFy9exBdffIE+ffpg165dSE1NxezZs7F58+Y279PW505VVRXq6upw8+ZNyOVyeu0Q/TN0Kp10LeXl5cze3p6tX7++1dvNzMzYli1bVNo+++wz5urqyhhj7NChQwwAu3btmso2Y8eOZU8//XTHdLqbeNC1udeKFSuYk5MTy8nJaXe7CxcuMABs7969+upmt6XJ9WGMsYaGBhYQEMDefPNNxhi9djqSJtdm6tSpLCIi4oHb0WtHO2ZmZiwhIUGlbdasWWzAgAFt3qdPnz7s3XffVWnbvn07A8Bqa2vZ1atXGQB2+PBhlW3mzZvHOI7TX+dJt0OZbKJXjo6OCAoKwvnz51u93d3dHSUlJSptJSUlcHd3F25XtrW1DdHOg66N0j/+8Q+899572L17NyIjI9vd1t/fHz179nzgPsmDqXt9lMzMzNCvXz9he3rtdBx1r83t27fx3XffYfLkyQ/cJ712tOPh4YHQ0FCVtpCQkHbLedr63LG3t4eVlRV69uwJqVRKrx2idxRkE72qqanBhQsX4OHh0ertCQkJ2Ldvn0rbnj17kJCQAADw8/ODu7u7yjZVVVVIT08XtiHaedC1AZpnp1i+fDl27tyJuLi4B+7zypUrKCsra3efRD3qXJ97yeVy5ObmCtvTa6fjqHtt0tLSIJPJMHHixAfuk1472hk0aBDOnDmj0nb27Fn4+Pi0eZ8Hfe6Ym5sjNjZWZRuFQoF9+/bRa4foxtCpdGLcXnvtNXbgwAFWUFDADh06xIYOHcp69uzJSktLGWOMPffcc2zBggXC9ocOHWKmpqbsH//4Bzt16hRbvHgxMzMzY7m5ucI27733HnN0dGQ//fQTO3HiBBs9ejTz8/NjdXV1nX5+xkzTa/Pee+8xc3Nz9v3337Pr168L/6qrqxljjFVXV7PXX3+dHTlyhBUUFLC9e/eymJgY1qdPH1ZfX2+QczRmml6fpUuXsl27drELFy6wrKwsNm7cOGZpaclOnjwpbEOvHf3Q9NooPfTQQ+yZZ55p0U6vHf3heZ6Zmpqyd955h507d479+9//ZtbW1uybb74RtlmwYAF77rnnhL8vXrzIrK2t2bx589ipU6fYZ599xqRSKdu5c6ewzXfffccsLCzYpk2bWH5+Pps6dSpzdHRkxcXFnXp+pGuhIJvo5JlnnmEeHh7M3NyceXp6smeeeYadP39euH3w4MHshRdeULnPf//7XxYUFMTMzc1ZWFgY2759u8rtCoWCvfXWW8zNzY1ZWFiwRx99lJ05c6YzTqdL0fTa+Pj4MAAt/i1evJgxxlhtbS0bPnw4c3FxYWZmZszHx4elpKTQh5CWNL0+c+fOZd7e3szc3Jy5ubmxxx57jGVnZ6vsk147+qHN+9rp06cZALZ79+4W+6PXjn798ssvLDw8nFlYWLDg4GC2bt06ldtfeOEFNnjwYJW2/fv3s+joaGZubs78/f3Zxo0bW+z3k08+EV5jHMexo0ePduBZkO5AwhhjhsykE0IIIYQQ0tVQTTYhhBBCCCF6RkE2IYQQQgghekZBNiGEEEIIIXpGQTYhhBBCCCF6RkE2IYQQQgghekZBNiGEEEIIIXpGQTYhhBBCCCF6RkE2IYQQQgghekZBNiGEEEIIIXpGQTYhhBBCCCF6RkE2IYQQQgghekZBNiGEEEIIIXr2/28HJZ5sp5TQAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtkAAAEuCAYAAABbMg6iAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAfp9JREFUeJzt3XlcVOX+B/DPMOw7KJvIjsgOshxF64qlolnpvWRpWlmKhnuLufwqt1uWXrM9r+lVq2vdS5kt5n61zIXDogjiLoIboMgqMMDM8/sD5+jI4mwwZ+D7fr18veSZM+c8Z84s3/nO93keCWOMgRBCCCGEEKI3JobuACGEEEIIIV0NBdmEEEIIIYToGQXZhBBCCCGE6BkF2YQQQgghhOgZBdmEEEIIIYToGQXZhBBCCCGE6BkF2YQQQgghhOgZBdmEEEIIIYToGQXZhBBCCCGE6BkF2YQQQgghhOgZBdmEEEIIIcRoODg44OrVqy3aZTIZ3NzcUFVVZYBetURBNiGEEEIIMQpFRUUAAE9Pzxa3WVhYoKSkBPb29mCMwdbWFqWlpZ3dRQEF2YQQQgghxCjk5eUhODj4gdsVFBTA2toarq6undCr1nW7IHvJkiWQSCQqbZs2bYJEIsGlS5cM06lOlJGRgYEDB8LGxgYSiQTHjx9v9fzF/pi0dh7aMuS5iv1x1oXytXbz5k1DdwVA136sH+T+973u/FiI1cqVKxEcHAyFQmHorjyQmPtaU1MDExMTrFmzxtBdMai1a9fC29sbMpnM0F3R2OrVqzFu3Dg899xzcHBwQGhoKC5cuCDcnpeXB09PTzz77LNwcHDAgAEDUFhYCAD46KOPMHnyZJw6dQqhoaEoLy+Hra0t4uPjAQCnT5/G0KFD4ezsDCcnJ8yePfuB/dHlsdQ4yFa+OSv/mZqawtPTE5MmTWq1PoaIR2NjI8aOHYtbt25hzZo1+Prrr+Hj42Pobmmsq5yHoRw+fBhLlixBRUWFobuid1353LqD3NxcPPXUU/Dx8YGlpSU8PT0xbNgwfPLJJ8I2mn4G3b/9vf8WLFig93PQ5jlYVVWF999/H/Pnz4eJyd2P5dTUVPTt21fvfdRFW31VOnHiBCZMmABPT0+Ym5vD3d0dDz30EJYuXSpss2vXLpXrYGZmhsDAQCxZsgQNDQ0t9nn/9hKJBPb29uA4Dtu2bVPZNi8vD4wxREZGCm2MMSxbtgwHDx7U3wOhA5lMhvnz56NXr16wsrJC//79sWfPngfe78CBA20+l48ePaqy7aRJk9DQ0IB//vOfHXUagoyMDMycORNhYWGwsbGBt7c3nn76aZw9e1ar/eXm5uLw4cOYOXMmbt26hfDwcPzrX/8Sbs/Ly8OhQ4cwc+ZM3Lx5E35+fli8eDGA5udfZGQkQkJCsHjxYqSmpqKmpgYZGRkAgAkTJmDq1KkoKytDYWEhXnjhhRbHf++992BpaSn8rctjaarxPe5YtmwZ/Pz8UF9fj6NHj2LTpk34888/kZeXp9I5Y/Dcc89h3LhxsLCwMHRXOtSFCxdQWFiIL7/8ElOmTBHaje382zoPbRnb+evq8OHDWLp0KSZNmgRHR0dDd0ev2ju37nad2yPGx+Lw4cMYMmQIvL29kZKSAnd3d1y+fBlHjx7FRx99hFmzZqlsr+lnkHL7e4WHh3fIeWj6+vrXv/6FpqYmjB8/XqW9sbFRdJnItvoKAFu3bsX48ePh7e2NadOmoVevXigqKsLevXvxzTffCIFQTk4OAOCDDz6Ai4sLamtrkZaWhqVLl0Imk2HFihUq+1Vu//HHH8PJyQkKhQKXL1/Gxx9/jLFjxyI3N1coH+A4DnV1dSrP7bNnz2Lx4sVqlRh0hkmTJuH777/H3Llz0adPH2zatAmPPfYY9u/fj4ceeuiB9589e7aQmVUKDAxU+dvS0hIvvPACPvjgA8yaNavFL/j69P777+PQoUMYO3YsIiMjUVxcjE8//RQxMTE4evSoxq+z3NxcLFmyBP379wcA9OnTB4wx4fa8vDy89dZbGDhwIIDm97N7g+yJEycK/3/kkUdU9n3hwgU0NDRAoVDA3t4esbGxLY7f1NSk8rrT6bFkGtq4cSMDwDIyMlTa58+fzwCw//znP5ruslMtXryYaXHaolRTU6PR9r///jsDwNLS0h64rfI6FxQUaNm7jqPJeYidIR7nVatWdcoxla+1GzdudOhx7tVZ59YaTV+PnckY3vcee+wx5uLiwsrLy1vcVlJSIvxf08+gtrbvKNo8ByMjI9nEiRNbtE+ePJn5+Pjor3P3GTx4MHvhhRc0uk9bfb116xZzcHBggwYNYjKZrMXtV69eFf4/YcIEZmlpyZqamoQ2mUzG3N3dmZ+fX4v7TpgwgTk6OrZoX7t2LQPAvv3223b7/O9//5sBYOfOnWt3O01p8/ilp6czAGzVqlVCW11dHQsICGAJCQnt3nf//v0affZlZmYyAGzfvn3tbnfr1i32ww8/tHn7li1b2n1/O3ToUItrfvbsWWZhYcEmTJig0j5o0CAGoNV///d//8eampqYpaUlu3btmnCf0aNHs82bNzPGGJPL5czS0lLl+bRp0yaWlJTE5HI5s7a2Zjdv3mSMMRYaGsqOHj2qcvzffvuNDRo0iLm5ubF58+axxsbGFuezfPnyFu+X6j6W99NbTfbDDz8MACp1MwBw7NgxjBw5Evb29rC1tcWjjz7a6s8avr6+LfbZWv20su38+fNCpsDBwQEvvvgiamtrVbb9888/ER8fD0tLSwQEBLSZ6r+/PlGTYwDNP+HExcWpHKe1vrdGud3p06fx9NNPw97eHj169MCcOXNQX1/fYrv8/Hw8++yzcHJyUvnG+6DHedKkSRg8eDAAYOzYsZBIJEhMTGz1/Nty9epVvPTSS3Bzc4OFhQXCwsJUfsJRqq6uxty5c+Hr6wsLCwu4urpi2LBhyM7OfuDjoct5tEadvrR1/c+ePYuJEyfCwcEBLi4ueOutt8AYw+XLlzF69GjY29vD3d0dq1evVjmmute0Peo+1pqe75IlSzBv3jwAgJ+fn/BTo/Lc1Xm9Kvs3efJk9OrVCxYWFvDz80NqamqrP/VWVFS0+zoqLCzE9OnT0bdvX1hZWaFHjx4YO3Zsi+ejrufW2vNck/O4V3uvR3UfQ3Xf9zR9P1Lnfa+1x0KT42jynnf69GlhNoD2XLhwAWFhYa1mf9UZuNTWZ5A61H0OAu0/Dx/0HGxNQUEBTpw4gaFDh6rd36tXr8LS0hIvvfSSSvvevXthZmaGV155Re19aaK9vu7duxeVlZWYPHkyzM3NW9zeq1cv4f85OTkICwuDVCoV2szNzdGrVy9UVla2uG9OTg5iYmJatBcXFwMAQkJChLZhw4Zh0KBBwt8cx2HChAkAmjOiEolEeI4VFRVhypQp8Pf3h6WlJdzd3fHYY4/h/PnzD3ootPb9999DKpVi6tSpQpulpSUmT56MI0eO4PLly2rtp7q6Gk1NTe1uExsbC2dnZ/z000/tbvf555/j6aefxo8//tjitg0bNuDZZ5/F5s2b27z/wIEDW1zzPn36ICwsDKdOnVJp//PPP8EYa/Xf3//+d5w/fx729vbw8PAQ7qMsAQGA8+fPo76+Hi4uLsLt27Ztw8iRI3H+/Hk4ODigR48eaGhowLlz51pk0UeOHIk///wT6enp+M9//oP//e9/7T42Suo+lvfTulzkfso3EScnJ6Ht5MmTePjhh2Fvb4833ngDZmZm+Oc//4nExET8/vvvwk8B2nj66afh5+eHFStWIDs7G+vXr4erqyvef/99AM0/NwwfPhwuLi5YsmQJmpqasHjxYri5uentGEDzB+qIESPg4eGBpUuXQi6XY9myZSpPAHWP5evrixUrVuDo0aP4+OOPUV5ejq+++kplu7Fjx6JPnz549913hZ9P1Hmcp02bBk9PT7z77rvCT02aPBYlJSUYMGAAJBIJZs6cCRcXF+zYsQOTJ09GVVUV5s6dK2z78ssv4/vvv8fMmTMRGhqKsrIy/Pnnnzh16lSrb5RKHXEe2vYFAJ555hmEhITgvffew/bt2/H3v/8dzs7O+Oc//4lHHnkE77//Pv7973/j9ddfR3x8PP7yl7+o3F/da6rLY63p+f7tb3/D2bNn8e2332LNmjXo2bMnAMDFxUXt1+u1a9fAcRwqKiowdepUBAcH4+rVq/j+++9RW1vb4s32Qa+jjIwMHD58GOPGjUPv3r1x6dIlfPHFF0hMTER+fj6sra11PrfWaHoerbn/9WjI9zygc973NH3PCwkJweDBg3HgwIF2j+vj44MjR44gLy9PqzKO1j6D7lVZWdliEK7yOaLucxBo/3mo6XMQaC4vAfDA96N7eXp6YsqUKVi3bh0WL14MHx8fnD59GmPHjsXIkSNbfPHXl/b6evv2bQDNAVF7GhoacObMGTz33HMq7deuXUN+fr6QRLl/+8GDBwvXr7y8HLt27cL777+PmTNnIioqStj+xIkT+Nvf/ib8PX/+fCxZsgQymQxvv/02AMDR0RElJSWIi4tDjx49kJKSAldXV1y+fBk//vgjTE31Fhq1cOzYMQQFBcHe3l6lneM4AMDx48fh5eXV7j5efPFF1NTUQCqV4uGHH8aqVasQFxfX6rYxMTE4dOhQu/ubP38+eJ7H+PHjsX37djz66KMAmst/pk2bhokTJyI1NVXdUwTQXAdfUlKCsLAwje6Xm5urcj2rq6tx9epVhIaGAmguFTE1NcW3336LZ599Fhs3bkRubi6++eYb7NixQwjGq6urATQ/f2xsbAAAP/zwA2JiYuDn54fy8nI0NDRoVEKkzmPZgkZ5b3b3p7e9e/eyGzdusMuXL7Pvv/+eubi4MAsLC3b58mVh2zFjxjBzc3N24cIFoe3atWvMzs6O/eUvfxHaXnjhhVZ/EmvtJ05l20svvaTS/te//pX16NFD5diWlpassLBQaMvPz2dSqbTFPu//yV7dYzDG2BNPPMGsra1Vfro4d+4cMzU1VevnWeWxnnzySZX26dOnMwAsJydHZbvx48e32Ie6j3NbPzW1VrJwf9vkyZOZh4eH8DOM0rhx45iDgwOrra0V2hwcHNiMGTMeeO76Po/WqNOXtq7/1KlThW2amppY7969mUQiYe+9957QXl5ezqysrFR+MlT3mrZ2bMY0e6y1Od+2fs5W9/F//vnnmYmJSas/vysUCuH/6r6OWjufI0eOMADsq6++0su5MdbysVb3PFrT1utR3ceQMfXf9zR5P1L3fa+15526x9H0PQ8AGzx4cIv2++3evZtJpVImlUpZQkICe+ONN9iuXbtYQ0ODynaafAbdu31r/5TUfQ4y9uDnoablIm+++SYDwKqrq1vc1l65yJUrV5iFhQVLTU1lN2/eZAEBASw6OlqjsiVNyx3a6+ulS5eYtbU1A8D69OnD3njjDfa///1PpSSEMcaOHTvGALDly5ezGzdusGvXrrGdO3eyqKgoZmNj0+L1qNz+/n9mZmbsww8/VNm2pKSEAWCff/65Sru3tzebNGmSSts//vEPZmlpySorK9U+//tpUy4SFhbGHnnkkRbtJ0+eZADY2rVr27zvoUOHWHJyMtuwYQP76aef2IoVK1iPHj2YpaUly87ObvU+U6dOZVZWVg/sV11dHRs8eDCztbVlR48eZXv37mUWFhbs8ccfb7Wk4kG+/vprBoBt2LBBo/u9/fbb7PXXXxf+Pnz4MAsPDxf+Xrp0KZs+fTobOXIkc3BwYI8++ii7ePGicN958+YJ2z7//PPM1taW9e/fnzHG2KxZs5ibmxuzsbFhkZGR7Ndff221D62VizCm/mN5L63LRYYOHQoXFxd4eXnhqaeego2NDX7++Wf07t0bACCXy7F7926MGTMG/v7+wv08PDzw7LPP4s8//9RpRZ6XX35Z5e+HH34YZWVlqKqqglwux65duzBmzBh4e3sL24SEhCApKUkvxwCaz3Hv3r0YM2aMyk9hgYGBGDlypEbnM2PGDJW/lYN8fvvtt3b71NGPM9D8jfSHH37AE088AcYYbt68KfxLSkpCZWWlSvmFo6Mj0tPTce3aNbWP0VHnoU1flO4dVCmVShEXFwfGGCZPnqyy/759++LixYst7q/uNb2Xpo/1/bQ9X3Uff4VCgW3btuGJJ55oNXPSWrnAg15HVlZWwm2NjY0oKytDYGAgHB0ddX5etUWb82jNvedmyPc85fE7+n1Pm/c8xtgDs9hA88/8R44cwZNPPomcnBysXLkSSUlJ8PT0xM8//9xi+wd9Bt3vs88+w549e1T+Kan7HAT0+zwEgLKyMpiamsLW1laj+3l6eiIlJQX/+te/MGrUKNTV1eHXX38Vsnb3a2xsVHk/uXnzpjCw8v72tqbma6+vyl8inn76aVy7dg0rV67EI488An9/f+zdu1fYTpnpfuutt+Di4oJevXphxIgRcHJywp9//tni9ajcfvPmzcJ1++abbxAdHY358+fjyJEjLbaNiIgQ2iorK1FUVKQy2wjQXMbW2NioVhmjvh4/AC0GZSopB+vW1dW1ed+BAwfi+++/x0svvYQnn3wSCxYswNGjRyGRSLBw4cJW7+Pk5IS6urpWS8vuP/7PP/+MoKAgPPbYYxgzZgz69++P//73vxpn9k+fPo0ZM2YgISGh1dk72rN06VKsWrVK+DshIQG5ubnC32+//TY+++wz/Pbbb6ioqMDevXuFAc1Lly7FypUrhW03b96M6upqoVzv448/RnFxMWpqapCTk4NRo0Zp1Dd1H8t7aR1kK9+wvv/+ezz22GO4efOmyhPnxo0bqK2tbXX6oZCQEGF0sLbu/RAB7v5EWF5ejhs3bqCurg59+vRpcT9NpkNq7xgAUFpairq6uhajeoGWI30f5P6+BgQEwMTEpEUt3/2j4zv6cVYeo6KiAuvWrYOLi4vKvxdffBEAVFZUWrlyJfLy8uDl5QWO47BkyZJWg9DOOA9t+qJ0//V3cHCApaWl8BPwve3K58S91L2m99L0sb6ftuer7uN/48YNVFVVafRz/oNeR3V1dXj77bfh5eUFCwsL9OzZEy4uLqioqFCpz9TlWt5Pm/Nozb2vR0O+5ymP39Hve/p8z2tNfHw8tm7divLycvA8j4ULF6K6uhpPPfUU8vPzVbZ90GfQ/TiOw9ChQ1X+Kan7HAT0+zzU1euvvw6ZTIYTJ07g559/bnUFPKVDhw61eE85fPgwvvvuuxbt6tTQtyYyMhL/+c9/cOvWLezfvx8vvvgiLl++jHHjxgmBiXKmkO3btwsBc1hYGLKysuDg4NBinzk5OTA1NcX48eOF6zZhwgT8+OOPkMlk+PTTT4VtlcHYvUG2MvC+P8h+/vnn4erqiiFDhiA2NharVq3C9evXO/zxs7KyanXGGOV4nXu/8KkjMDAQo0ePxv79+yGXy1vczu6UlaqTOLC3t8c//vEP3Lp1CzU1Nfjwww817k9xcTFGjRoFBwcHof68q9DksVTSuvCI4zjhG+eYMWPw0EMP4dlnn8WZM2c0/kbeVodbe8IotXXhlA+CPnTGMdrS1mOi6RNeH5TfyidOnNjmt9J738CefvppPPzww/jxxx+xe/durFq1Cu+//z62bt2qcYZfV7r0pbXrr8tzQp0XpqaP9f3E9NgrPegxmzVrFjZu3Ii5c+ciISEBDg4OkEgkGDdunEpGSIznpsvrUdP3vc56PzLk+56Subk54uPjER8fj6CgILz44otIS0sTpukC9PsZpO5zEND/87BHjx5oampCdXU17OzsNLrvO++8A6B5yjFnZ+d2t42KimoxF/Nrr70Gd3d3YbCmkru7u059NTc3R2JiIhITE3Hjxg38+uuvOHPmDPr164cTJ07Ax8cHjz32mLB9TEwMQkND8fnnn6tkMYHmIDkgIABmZmYq7Z6enrC2tsaVK1dUtvX29lYJ1pVB9r11vkBzEuTs2bPYunUrfvnlF7z11ltYtmwZdu7cqTJwUkkfjx/Q/MtWa/O5KwP8e38hUpeXlxcaGhpw+/btFrXe5eXlsLa2Vuu96uLFi5gwYQKCg4NRV1eH5ORkHDp0SGUQYnsqKysxcuRIVFRU4ODBg1qdi5hp8lgq6aW6XyqVYsWKFRgyZAg+/fRTLFiwAC4uLrC2tsaZM2dabH/69GmYmJgIxf1OTk6tTtyvXMFHUy4uLrCyssK5c+da3NZaf7Tl6uoKS0vLVkciazo6+dy5cypZsfPnz0OhULQ6+8C9NHmcteXi4gI7OzvI5XK1R8B7eHhg+vTpmD59OkpLSxETE4N33nmnzQ+hjjwPTfuiL9pcU20e6/s96HxbC+7UffxtbW1hb2+PvLw8rfrWmu+//x4vvPCCymCt+vr6Vt8TtDm31ri4uOj9PDR9Dhvj+54+3/PUpQyk28sytvYZpAlNnoNA+89DTecjVg68KigoaPcL9P1WrVqF9evX49NPP8W8efPwzjvvYP369W1u7+Tk1OI9xcnJCR4eHmq/12jTV+WvC8rA98SJE8IgP6WQkBDExcXhhx9+aDXIVs6HfC/lL0f3BrT3zkJxb5uHh0eLXyABwNbWFs8//zyef/55nDlzBhEREfjvf//bapCtj8cPAKKjo7F//35UVVWpBMTp6enC7Zq6ePEiLC0tW/1yWVBQoDL7SluuX7+OYcOGwczMDHv27EFdXR0eeughDB8+HL///vsDv8TV19fjiSeewNmzZ7F3715hoGJXou5jeS+9TeGXmJgIjuPw4Ycfor6+HlKpFMOHD8dPP/2k8vN4SUkJtmzZgoceekh4ggUEBKCyslJlVPL169dbnU5GHVKpFElJSdi2bZvKzzanTp3Crl27tDvBNo4zdOhQbNu2TaU+7/z589ixY4dG+/rss89U/laucKZOtlXdx1lbUqkUycnJ+OGHH1oNSm7cuCH8Xy6Xt/h51dXVFb169Wp3UYWOOA9t+6Iv2lxTTR7r+6l7vsqazXsDCHUffxMTE4wZMwa//PILMjMzW/RBm2ynVCptcb9PPvlEJaOry7m1pqPOQ5PnsDG+72nznqfuFH779+9v9XFXjmF4UMnL/Z9BmlDnOQio9zxU9zmolJCQAACtPg/bsm3bNixYsADLly/HjBkzMHXqVHz11VcoKChQex/aaKuvf/75Z6u1xCdOnMDOnTvRr18/+Pv7o7i4GKWlpa2WaSUlJaGgoEBlyjfl9q0FNsrZbpKTkwE0X5v8/PwWQXZRUVGLOv37Z5kBmn+VksvlHZ59feqppyCXy7Fu3TqhTSaTYePGjejfv7/wRby2thanT59W6Wtr7/85OTn4+eefMXz48FZX4MzOzm71S8q9ysvLkZSUhJqaGuzduxe9e/dGnz59sGvXLly+fBmjRo0SZo9pjVwuxzPPPIMjR44gLS1NeJ50Neo8lvfT6zw18+bNw9ixY7Fp0ya8/PLL+Pvf/449e/bgoYcewvTp02Fqaop//vOfkMlkKsXp48aNw/z58/HXv/4Vs2fPRm1tLb744gsEBQWpPSjhfkuXLsXOnTvx8MMPY/r06WhqasInn3yCsLCwB04xpIklS5Zg9+7dGDRoEFJTUyGXy/Hpp58iPDwcx48fV3s/BQUFePLJJzFixAgcOXIE33zzDZ599tkWP3G1Rt3HWRfvvfce9u/fj/79+yMlJQWhoaG4desWsrOzsXfvXty6dQtA87Q5vXv3xlNPPYWoqCjY2tpi7969yMjIeOC0Uvo+D136og/aXlN1H+v7qXu+yhWu/u///g/jxo2DmZkZnnjiCbUf/3fffRe7d+/G4MGDMXXqVISEhOD69etIS0vDn3/+qfEqko8//ji+/vprODg4IDQ0FEeOHMHevXvRo0cPvZ1ba4PB9H0egGbPYWN939P0PU/dKfxmzZqF2tpa/PWvf0VwcDAaGhpw+PBh/Oc//4Gvr68wJqE9938GqUud5yCg3vNQk+cgAPj7+yM8PBx79+5tMe91a7KysjBhwgRMmDAB//d//wcAeOONN7B27doHZrN11VZfFyxYgLNnz2Ls2LGIiopCU1MTjh8/LjymX3/9NYC79dj31kwrDR8+HO+88w62b98uBNXK7UtLS/HNN98AaA6Qd+/ejR07dmDcuHEYO3YsgOZfDuvr61vs28/PD//73/+wcuVK9OrVCyEhIfjHP/6BvLw8PPnkk/Dz88P169exbt069O7dGykpKXp+1FT1798fY8eOxcKFC1FaWorAwEBs3rwZly5dwoYNG4TteJ7HkCFDsHjxYixZsgRA87SyVlZWGDhwIFxdXZGfn49169bB2toa7733XotjZWVl4datWxg9enS7ffr8889x+fJlHDhwQGVMR3R0NH799VcMHz4cmzdvxvTp01u9/2uvvYaff/4ZTzzxBG7duiVcKyXlCozGTN3HsgWN5iJh7a+eJZfLWUBAAAsICBCm7cnOzmZJSUnM1taWWVtbsyFDhrDDhw+3uO/u3btZeHg4Mzc3Z3379mXffPNNu1P43b+KXGtTUv3+++8sNjaWmZubM39/f7Z27dpW99nWFG7qHIMxxvbt28f69evHzM3NWUBAAFu/fj177bXXmKWlZbuP5b3Hys/PZ0899RSzs7NjTk5ObObMmayuru6B562kzuOsyxR+jDVPjzRjxgzm5eXFzMzMmLu7O3v00UfZunXrhG1kMhmbN28ei4qKYnZ2dszGxoZFRUW1mFKpLbqcx/3U7Yu61/+FF15gNjY2LY4zePBgFhYWJvyt7jVt7dhK6jzW2p4vY81TFHl6ejITExOV46v7ei0sLGTPP/+8MG2av78/mzFjhsqqX+q+jsrLy9mLL77IevbsyWxtbVlSUhI7ffo08/HxEabH0se5tfZYq3MerWnv9ajuY8iYeu97mr4fqfO+194UfuocR5P3PKg5hd+OHTvYSy+9xIKDg5mtrS0zNzdngYGBbNasWWqt+MhY659B6qz4qM5zkDH1n4dtPQfb8sEHHzBbW9sWUwneP4Xf5cuXmYeHBxs0aBCrr69X2TY1NZWZmZkJ05mpQ5sp6Frr69atW9n48eNZYGAgs7GxYZaWliwkJITNmzePlZaWCtutXLmyxTSmSg0NDczOzo4NGTKkxfb3/rOzs2ODBg1iGzZsUJlq87///S8DwE6ePKmy36tXrwqvRwDs448/Zhs2bGCPPPKI8LoPDAxks2fPVumrOrR5/Bhrni7v9ddfZ+7u7szCwoLFx8eznTt3qmyj/JxbvHix0PbRRx8xjuOYs7MzMzU1ZR4eHmzixIltrmQ5f/585u3t/cApSRsbG1leXl6bt+fk5LS7j8GDB7c5TaYWYabBtTaFn7qP5f2M7+yNxOjRo1lgYOADtzPE0tOkY9E1Jd2Ruu95pKWKigrm7OzM1q9fr9Le0cuqa6OtvhJxqa+vZ+7u7i3mEicPdn+Qrctjqbea7O7s/lq0c+fO4bfffmt3uW9CCDFW9J6nXw4ODnjjjTewatWqFrOZFBYWQiKR6DzdpL6011ciHhs3boSZmZlGZVPd3YcffgiJRIK33npLpV2Xx1LCWCfOy9RFeXh4YNKkSfD390dhYSG++OILyGQyHDt2rNU5a++1ZMkSLF26FDdu3Gh19DMxPnRNSVeny3seUV9xcbEwgNLCwqLFOgmEEP0pLy9HSUmJ8LcmS663Ra8DH7urESNG4Ntvv0VxcTEsLCyQkJCAd999lz5sCCFdEr3ndQ53d/d251wmhOiPk5OTsPiWvlAmmxBCCCGEED2jmmxCCCGEEEL0jIJsQgghhBBC9IyCbEIIIYQQQvSsyw58VCgUuHbtGuzs7CCRSAzdHUIIIYQQch/GGKqrq9GrV69Wl4Y3Zl02yL527Rq8vLwM3Q1CCCGEEPIAly9fRu/evQ3dDb3qskG2nZ0dgOaLZm9vb+DeEEIIIYSQ+1VVVcHLy0uI27qSLhtkK0tE7O3tKcgmhBBCCBGxrlja27WKXwghhBBCCBEBCrIJIYQQQgjRMwqyCSGEEEII0bMuW5OtLrlcjsbGRkN3g4iYmZkZpFKpobtBCCGEECPSbYNsxhiKi4tRUVFh6K4QI+Do6Ah3d/cuOTCDEEIIIfrXbYNsZYDt6uoKa2trCp5IqxhjqK2tRWlpKQDAw8PDwD0ihBBCiDHolkG2XC4XAuwePXoYujtE5KysrAAApaWlcHV1pdIRQggheqFQKHDu3Dk4OjrCzc3N0N0hetYtg2xlDba1tbWBe0KMhfK50tjYSEE2IYQQndTV1eHYsWPIyMhARUUFwsPDkZycbOhuET3rlkG2EpWIEHXRc4UQQoiuSkpKwPM8cnNzhYSfpaUlHB0dwRijz5ouplsH2YQQQgghHUmhUODMmTPgeR6XLl0S2t3c3MBxHCIiImBmZma4DpIOQ0E2IYQQQoie1dbWIisrC5mZmaiqqgLQ/KtoSEgIOI6Dt7c3Za67OAqyCSGEEEL05Nq1a+B5Hnl5eZDL5QCax/XExsYiLi4O9vb2Bu4h6SwUZBuZxMREREdH48MPPzR0VwghhBCC5lnL8vPzwfM8rly5IrT36tULHMchLCwMpqYUcnU3dMWNzNatWw1Su0XBPSGEEKKqpqYGmZmZyMrKQk1NDQDAxMQEYWFh4DgOnp6eVBLSjVGQbWScnZ0N3QVCCCGk22KM4erVq+B5HidPnoRCoQAA2NraCiUhtra2Bu4lEQMTQ3eAaCYxMRFz584V/j979my88cYbcHZ2hru7O5YsWdJi+5kzZ2LmzJlwcHBAz5498dZbb4ExJmzj6+vbIkMdHR0t7GvSpEn4/fff8dFHH0EikUAikaiMkL7Xt99+CysrK1y/fl1oe/HFFxEZGYnKykpdT58QQggxiKamJuTk5GD9+vXYsGEDcnNzoVAo0Lt3b/ztb3/D3LlzkZiYSAE2EVAmG83fSpXzVXY2MzMznX5K2rx5M1599VWkp6fjyJEjmDRpEgYNGoRhw4apbDN58mTwPI/MzExMnToV3t7eSElJUesYH330Ec6ePYvw8HAsW7YMAODi4tLqtuPGjcN7772Hd999F5988gkWL16MvXv34ujRo3BwcND6PAkhhBBDqKqqQkZGBrKzs1FbWwsAkEqliIiIAMdx8PDwMHAPiVhRkI3mVfxWrFhhkGMvXLgQ5ubmWt8/MjISixcvBgD06dMHn376Kfbt26cSZHt5eWHNmjWQSCTo27cvcnNzsWbNGrWDbAcHB5ibm8Pa2hru7u7tbiuRSPDOO+/gqaeegru7Oz755BMcPHgQnp6eWp8jIYQQ0pkYYygqKgLP8zh16pTw66+9vT3i4+PRr18/2NjYGLiXROwoyDZykZGRKn97eHigtLRUpW3AgAEq2fKEhASsXr0acrm8Q5YIf/zxxxEaGoply5Zh9+7dCAsL0/sxCCGEEH1rbGzEiRMnkJGRgZKSEqHd19cXHMehb9++MDGhSluiHgqy0VyysXDhQoMdW5/3l0gkwiAMdZmYmKjUaAPQqXxm586dOH36NORyOdzc3LTeDyGEENIZysvLkZGRgWPHjqG+vh5A8+ersiSEPsuINkQbZF+9ehXz58/Hjh07UFtbi8DAQGzcuBFxcXF6P5ZEItGpZEPs0tPTVf4+evQo+vTpI2SxXVxcVAYqVlVVoaCgQOU+5ubmwqT67cnOzsbTTz+NDRs2YNOmTXjrrbeQlpamh7MghBBC9IcxhoKCAvA8jzNnzgjtTk5OiI+PR3R0NKysrAzYQ2LsRBlkl5eXY9CgQRgyZAh27NgBFxcXnDt3Dk5OTobumlEqKirCq6++imnTpiE7OxuffPIJVq9eLdz+yCOPYNOmTXjiiSfg6OiIt99+u0UZia+vL9LT03Hp0iXY2trC2dm5xU9mly5dwqhRo7Bo0SKMHz8e/v7+SEhIQHZ2NmJiYjrlXAkhhJD2yGQy5OTkICMjAzdv3hTaAwICwHEcAgMDqSSE6IUog+z3338fXl5e2Lhxo9Dm5+dnwB4Zt+effx51dXXgOA5SqRRz5szB1KlThdsXLlyIgoICPP7443BwcMDy5ctbZLJff/11vPDCCwgNDUVdXR0KCgrg6+sr3H7r1i2MGDECo0ePxoIFCwAA/fv3x8iRI7Fo0SLs3LmzU86VEEIIaU1ZWRl4nkdOTg5kMhmA5l9po6KiwHEcevbsaeAekq5Gwu4vxhWB0NBQJCUl4cqVK/j999/h6emJ6dOntzsbhkwmE140QHPJg5eXFyorK2Fvb6+ybX19PQoKCuDn5wdLS8sOOw8xoJUa9UPd50xDYSFuff0N2D3PRWJ41Y01uFB+HnL24JIn0onkjUB9OSC+jyHSClmTosX4HWPAGIOCMZW+SwBITExgIpLVGJu8emHcB9sN3Q2DqKqqgoODQ6vxmrETZSb74sWL+OKLL/Dqq69i0aJFyMjIwOzZs2Fubo4XXnih1fusWLECS5cu7eSeEqKqbP16VKR9b+hukFb4GroDhBDShjN1RYbuAukAogyyFQoF4uLi8O677wIA+vXrh7y8PKxdu7bNIHvhwoV49dVXhb+VmWxCOpO8qhoAYDtkCKwiIwzcG6K0/eJvuFh5EX4OvnCzolkCRKMkD6i9CVj3BCzsDN0b0o7bDXLcrJbBVCqBrYUoQwcAgELB0CRvhFwuF34gkUgkMJVKYWpqqtPibx3J1MvX0F0gHUCUrxQPDw+EhoaqtIWEhOCHH35o8z4WFhawsLDo6K4ZnQMHDhi6C92KskzE7tFH4PjUUwbuDVE6uvcE/rx6CcsGTsHIPn81dHeI0td/Ay6cAca8A0SPN3RvSDt+PHYF7/0nBw/36YmvJ/c3dHdUKBQKnD17FjzPq4wncnFxAcdxiIyM7NIziBHxEmWQPWjQIJXpdADg7Nmz8PHxMVCPCFEPa2gOsiX0hU9UGuQNAAALKV0XUWm6M3bBlK6L2Mkam9dfsDAVz6wbtbW1yM7ORmZmJiorKwE0Z62Dg4MRHx8PX19f0WauSfcgyiD7lVdewcCBA/Huu+/i6aefBs/zWLduHdatW2forhHSLoWsOZiTmFPQICYyeXMwR0G2yDQ1L/oB0649AL0rkDUpg2z9rxKsqeLiYqSnpyMvLw9NTU0AACsrK8TExCA+Ph4ODg4G7iEhzUQZZMfHx+PHH3/EwoULsWzZMvj5+eHDDz/EhAkTDN01QtrFGu4E2Rb006SYKDPZ5lK6LqIip0y2sWhoMmwmWy6X4/Tp0+B5HkVFdwcJenh4gOM4hIWF6byCMiH6JsogGwAef/xxPP7444buBiEaUdZkm1C5iKhQuYhICeUilMkWO1lT8/SXFmadG2TX1NQgKysLWVlZqK5uHlhuYmKC0NBQcByH3r17U0kIES3RBtmEGCNlkC2hQTaioiwXoUy2yAjlIvTlR+yU5SLm0s4Jsq9evQqe53Hy5EnI5c0Bvo2NDWJjYxEXFwc7O5qNhogfBdmE6JGigWqyxYjKRUSKBj4aDaEm26zjarKbmpqQn58Pnudx9epVob13796Ij49HWFgYpFLD14QToi4KsgnRIyGTTTXZoiJT0MBHUaKBj0ZD1ninXKQDarKrqqqQmZmJ7Oxs3L59GwAglUoRFhYGjuPg6emp92MS0hkoyCZEj6gmW5woky1STc3XhTLZ4tcg1+/AR8YYLl++DJ7ncerUKSgUzfu3s7NDXFwcYmNjYWNjo5djEWIoFGSTNiUmJiI6Ohoffvihobsi8PX1xdy5czF37lxDd6VVd2cXoaBBTGjgowgxRplsI3J3nmzdyjUaGxuRl5cHnudRXFwstHt7e4PjOAQHB1NJCOkyxDOrPFHLjRs3kJqaCm9vb1hYWMDd3R1JSUk4dOgQAAiT70skElhbWyMiIgLr169X2ceBAweEbSQSCaysrBAWFtZiHvKtW7di+fLlwt++vr4dHnCnpaUhODgYlpaWiIiIwG+//abxPurr6zFjxgz06NEDtra2SE5ORklJico2RUVFGDVqFKytreHq6op58+YJ861qiykUYI2NACjIFpMmRRPk7M5P3RRki4e8EcCdda8pky16d2uytQsbKioqsGfPHqxZswY///wziouLYWpqin79+mHatGl48cUXqeaadDmUyTYyycnJaGhowObNm+Hv74+SkhLs27cPZWVlwjbLli1DSkoKamtrkZaWhpSUFHh6emLkyJEq+zpz5gzs7e1RV1eHX375BampqQgICMCjjz4KAHB2du7Uczt8+DDGjx+PFStW4PHHH8eWLVswZswYZGdnIzw8XO39vPLKK9i+fTvS0tLg4OCAmTNn4m9/+5vwRUQul2PUqFFwd3fH4cOHcf36dTz//PMwMzPDu+++q3X/lVlsAJCYUVmCWCiz2ABgZkLz6IqGMosNAPTlR/SUU/hpMrsIYwyXLl0Cz/M4c+YMGGv+UuXo6Ii4uDjExMTAysqqQ/pLiBhQJtuIVFRU4ODBg3j//fcxZMgQ+Pj4gOM4LFy4EE8++aSwnZ2dHdzd3eHv74/58+fD2dkZe/bsabE/V1dXuLu7w8/PD7Nnz4afnx+ys7OF2xMTE4WyjMTERBQWFuKVV14RMuAAUFhYiCeeeAJOTk6wsbFBWFiYVtlnAPjoo48wYsQIzJs3DyEhIVi+fDliYmLw6aefqmxXXV2N8ePHw8bGBp6envjss8+E2yorK7FhwwZ88MEHeOSRRxAbG4uNGzfi8OHDOHr0KABg9+7dyM/PxzfffIPo6GiMHDkSy5cvx2effYaGewJlTSnrsQHAhAY+ioZy+j6AarJFpenudaFMtvhpksluaGhARkYGvvjiC3z11Vc4ffo0GGPw8/PDM888g1mzZmHQoEEUYJMujzLZaP62XXdn5HRnszKTqj2Rvq2tLWxtbbFt2zYMGDAAFg8oSVAoFPjxxx9RXl4O83bmbWaMYdeuXSgqKkL//v1b3Wbr1q2IiorC1KlTkZKSIrTPmDEDDQ0N+OOPP2BjY4P8/HzY2tqq9Lk9EydOxNq1awEAR44cwauvvqpye1JSErZt26bStmrVKixatAhLly7Frl27MGfOHAQFBWHYsGHIyspCY2Mjhg4dKmwfHBwMb29vHDlyBAMGDMCRI0cQEREBNzc3leOkpqbi5MmT6NevX7t9botCGWSbmACm9NISC2WQbSoxhakJXRfRUGaypRYALSYieurUZN+6dQs8z+P48eOQ3Xk/NDMzQ1RUFDiOg4uLS6f0lRCxoE8cAHWNcoS+vcsgx85flgRrc/Uug6mpKTZt2oSUlBSsXbsWMTExGDx4MMaNG4fIyEhhu/nz5+PNN9+ETCZDU1MTnJ2dMWXKlBb76927NwBAJpNBoVBg2bJl+Mtf/tLqsZ2dnSGVSoUsuVJRURGSk5MREREBAPD391e53/Hjx9s9J3t7e+H/xcXFKoEvALi5uakMjgGAQYMGYcGCBQCAoKAgHDp0CGvWrMGwYcNQXFwMc3NzODo6trmfto6jvE1brOFuPTatQCYejfLm60JZbJFRlvHQoEejIGtjdhHGGC5cuACe53Hu3Dmh3dnZGfHx8YiOjoalJV1j0j1RkG1kkpOTMWrUKBw8eBBHjx7Fjh07sHLlSqxfvx6TJk0CAMybNw+TJk3C9evXMW/ePEyfPh2BgYEt9nXw4EHY2dlBJpOB53nMnDkTzs7OSE1NVbs/s2fPRmpqKnbv3o2hQ4ciOTlZJeBv7bi6SkhIaPG3GGZAYQ13pu+j1R5FRZnJpkGPIkOrPRqVu/NkN2eyZTIZjh8/Dp7ncevWLWG7wMBAcByHwMBASjaQbo+CbDSXbOQvSzLYsTVlaWmJYcOGYdiwYXjrrbcwZcoULF68WAiye/bsicDAQAQGBiItLQ0RERGIi4tDaGioyn78/PyEjG9YWBjS09PxzjvvaBRkT5kyBUlJSdi+fTt2796NFStWYPXq1Zg1axYAzcpF3N3dW8wCUlJSopI5fxB3d3c0NDSgoqJCJZt9737c3d3B83yL4yhv0xYtqS5OyoVoKJMtMhRkG5WGOzXZtTVV2L49HSdOnBDGsFhYWCA6Ohrx8fHo0aOHIbtJiKhQkA00T3enZsmGGIWGhraoW1by8vLCM888g4ULF+Knn35qdz9SqRR1dXVt3m5ubg65vGXtupeXF15++WW8/PLLWLhwIb788kshyNakXCQhIQH79u1TmQN7z549LTLXygGM9/4dEhICAIiNjYWZmRn27duH5ORkAM2zqBQVFQn7SUhIwDvvvIPS0lK4uroKx7G3t2/xRUQTd1d7pKBBTGghGpGiJdWNhkKhQE1d8/X6edsPcDGpBQC4uLggPj4eUVFR7Y77IaS7Mt7IshsqKyvD2LFj8dJLLyEyMhJ2dnbIzMzEypUrMXr06DbvN2fOHISHhyMzMxNxcXFCe2lpKerr64Vyka+//hpPPfVUm/vx9fXFH3/8gXHjxsHCwgI9e/bE3LlzMXLkSAQFBaG8vBz79+8XAl5As3KROXPmYPDgwVi9ejVGjRqF7777DpmZmS3m7z506BBWrlyJMWPGYM+ePUhLS8P27dsBAA4ODpg8eTJeffVVODs7w97eHrNmzUJCQgIGDBgAABg+fDhCQ0Px3HPPYeXKlSguLsabb76JGTNmPHAwaXsUMlqIRoyoXESkaCEa0aurq0N2djYyMzNRddsHgBlMJQx9+/YFx3Hw8/OjkhBC2kFBthGxtbVF//79sWbNGly4cAGNjY3w8vJCSkoKFi1a1Ob9QkNDMXz4cLz99tsq0+v17dsXQPOASi8vL0ybNg1Llixpcz/Lli3DtGnTEBAQAJlMBsYY5HI5ZsyYgStXrsDe3h4jRozAmjVrtDq/gQMHYsuWLXjzzTexaNEi9OnTB9u2bWsxR/Zrr72GzMxMLF26FPb29vjggw+QlHS33GfNmjUwMTFBcnIyZDIZkpKS8Pnnnwu3S6VS/Prrr0hNTUVCQgJsbGzwwgsvYNmyZVr1W0lZky2h6ftEhTLZIkVLqotWSUkJ0tPTkZubKyzSpZD4AQx48fnnEOXvYeAeEmIcJEw5O3wXU1VVBQcHB1RWVqqUJADNKwIWFBTAz8+PRj0TtajznKnetw9XZsyEVXQ0fL/7tpN7SNqyt3AvXjnwCvq59sNXI78ydHeI0sltQNoLgM8g4EXt5tYn+qNQKHD69Gmkp6ejqKhIaHdzcwPHcRi3tQQNTQocXvAIejnS/NZEf9qL14wdZbIJ0ROqyRYnZbkIZbJFhmqyReH27dvIyspCVlYWqqqqADSPUwoJCQHHcfD29gYANPy3+YvQ/VP4EULaRkE2IXoi1GTTACBREcpFTOi6iMq9i9GQTnft2jXwPI+8vDxhQLu1tTViY2MRFxenklGsv2exNnMKsglRGwXZhOjJ3Uw2BXNiQgMfRYoy2Z1OLpcjPz8fPM/jypUrQnuvXr3AcRzCwsJg2spqtcol1YH2V3wkhKiiIJsQPbm7GA0FDWJC5SIiRbOLdJrq6mpkZmYiKysLt2/fBgCYmJggLCwMHMcJq/+2RdbUnMmWSAAzKc0mQoi6KMgmRE8UVJMtSo2K5mXVKZMtMnLKZHckxhiuXLkCnueRn58PhaI5G21ra4u4uDjExsY+cLEwJeVCNBamJjRlHyEaoCCbED1hDcp5siljKiaUyRYpoVyEMtn61NTUhLy8PPA8j+vXrwvtXl5e4DgOISEhkEo1K/mQCUE2lYoQogkKsgnRE0YDH0WJarJFSigXodeLPlRWViIzMxPZ2dmorW1ekVEqlSIiIgIcx8HDQ/u5rWWNzUE2DXokRDMUZBOiJ8qBjyZULiIqtBiNSFEmW2eMMRQWFoLneZw+fRrKZS/s7e0RHx+PmJgYWFtb63wcZU02Td9HiGYoyCZETxTKFR9p4KOoULmISAmZbHq9aKqhoQG5ubngeR6lpaVCu6+vLziOQ9++fWFior+AWHZPTTYhRH0UZJM2JSYmIjo6Gh9++KGhuyLw9fXF3LlzMXfuXEN3pQWhXIQy2aKizGRTuYjICMuqUyZbXeXl5eB5HsePH0d9ffOXFDMzM0RGRoLjOLi6unbIcRuoJpsQrdDXUiNz48YNpKamwtvbGxYWFnB3d0dSUhIOHToEoDkIlUgkkEgksLa2RkREBNavX6+yjwMHDgjbSCQSWFlZISwsDOvWrVPZbuvWrVi+fLnwt6+vb4cH3GlpaQgODoalpSUiIiLw22+aL7dcX1+PGTNmoEePHrC1tUVycjJKSkpUtpk9ezZiY2NhYWGB6OhovfRdOfDRhAY+igoF2SJFU/iphTGGCxcu4Ntvv8XHH3+Mo0ePor6+Hk5OThg+fDheeeUVPP744x0WYAP3ZLLNKGQgRBOUyTYyycnJaGhowObNm+Hv74+SkhLs27cPZWVlwjbLli1DSkoKamtrkZaWhpSUFHh6emLkyJEq+zpz5gzs7e1RV1eHX375BampqQgICMCjjz4KAHB2du7Uczt8+DDGjx+PFStW4PHHH8eWLVswZswYZGdnIzw8XO39vPLKK9i+fTvS0tLg4OCAmTNn4m9/+5vwRUTppZdeQnp6Ok6cOKGX/guL0dDAR1GhchGRUtZk03VplUwmQ05ODnieV3l/DwgIAMdx6NOnT6dNp6esyTaXUpBNiCboFWNEKioqcPDgQbz//vsYMmQIfHx8wHEcFi5ciCeffFLYzs7ODu7u7vD398f8+fPh7OyMPXv2tNifq6sr3N3d4efnh9mzZ8PPzw/Z2dnC7YmJiUJZRmJiIgoLC/HKK68IGXAAKCwsxBNPPAEnJyfY2NggLCxMq+wzAHz00UcYMWIE5s2bh5CQECxfvhwxMTH49NNPVbarrq7G+PHjYWNjA09PT3z22WfCbZWVldiwYQM++OADPPLII4iNjcXGjRtx+PBhHD16VNju448/xowZM+Dv769VX1tDNdniRJlskaJMdqtu3ryJHTt24IMPPsCOHTtQVlYGc3NzcByHGTNmYOLEiQgKCurU+aqVs4tYmFG5CCGaoEw2ADAGNNYa5thm1s3LaKnB1tYWtra22LZtGwYMGACLB9T+KhQK/PjjjygvL4d5O9lVxhh27dqFoqIi9O/fv9Vttm7diqioKEydOhUpKSlC+4wZM9DQ0IA//vgDNjY2yM/PV1ng4EGLHUycOBFr164FABw5cgSvvvqqyu1JSUnYtm2bStuqVauwaNEiLF26FLt27cKcOXMQFBSEYcOGISsrC42NjRg6dKiwfXBwMLy9vXHkyBEMGDCg3f7ogmqyxUnIZJtQxlRUaFl1AWMM586dA8/zuHDhgtDeo0cPcByHqKioB77fdyQa+EiIdijIBpoD7Hd7GebYi64B5jZqbWpqaopNmzYhJSUFa9euRUxMDAYPHoxx48YhMjJS2G7+/Pl48803IZPJ0NTUBGdnZ0yZMqXF/pRL6cpkMigUCixbtgx/+ctfWj22s7MzpFKpkCVXKioqQnJyMiIiIgCgRWb4+PHj7Z6Tvb298P/i4mK4ubmp3O7m5obi4mKVtkGDBmHBggUAgKCgIBw6dAhr1qzBsGHDUFxcDHNzczg6Oj5wP/omlItQTbao0BR+IkWZbNTV1eH48ePIyMhAeXm50B4UFASO4+Dv7y+KFRZpCj9CtENBtpFJTk7GqFGjcPDgQRw9ehQ7duzAypUrsX79ekyaNAkAMG/ePEyaNAnXr1/HvHnzMH36dAQGBrbY18GDB2FnZweZTAae5zFz5kw4OzsjNTVV7f7Mnj0bqamp2L17N4YOHYrk5GSVgL+14+oqISGhxd9imAGF5skWpwYFlYuIklw5u0j3uy6lpaVIT09Hbm4uGhsbAQCWlpbo168f4uPj4eTkZOAeqqLZRQjRDgXZQHPJxqJrhju2hiwtLTFs2DAMGzYMb731FqZMmYLFixcLQXbPnj0RGBiIwMBApKWlISIiAnFxcQgNDVXZj5+fn5DxDQsLQ3p6Ot555x2NguwpU6YgKSkJ27dvx+7du7FixQqsXr0as2bNAqBZuYi7u3uLWUBKSkpUMucP4u7ujoaGBlRUVKhkszXdjzZYo3LFx+4XNIgZDXwUqW6WyVYoFDhz5gx4nselS5eEdldXV3Ach4iIiHbL+gyJZhchRDsUZAPNNdFqlmyIUWhoaIu6ZSUvLy8888wzWLhwIX766ad29yOVSlFXV9fm7ebm5pDL5a0e4+WXX8bLL7+MhQsX4ssvvxSCbE3KRRISErBv3z6VObD37NnTInN97wBG5d8hISEAgNjYWJiZmWHfvn1ITk4G0DyLSlFRUYv96JuCllUXJRr4KFJCTXbXfr3U1tYiOzsbGRkZqKqqAgBIJBIEBweD4zj4+PiIoiSkPTS7CCHaoSDbiJSVlWHs2LF46aWXEBkZCTs7O2RmZmLlypUYPXp0m/ebM2cOwsPDkZmZibi4OKG9tLQU9fX1QrnI119/jaeeeqrN/fj6+uKPP/7AuHHjYGFhgZ49e2Lu3LkYOXIkgoKCUF5ejv379wsBL6BZucicOXMwePBgrF69GqNGjcJ3332HzMzMFvN3Hzp0CCtXrsSYMWOwZ88epKWlYfv27QAABwcHTJ48Ga+++iqcnZ1hb2+PWbNmISEhQWXQ4/nz51FTU4Pi4mKhLhJo/sKibTaJarLFiTLZItXFM9nXr18Hz/PIzc0VkhPW1taIiYlBXFwcHBwcDNxD9d2dXYSCbEI0QUG2EbG1tUX//v2xZs0aXLhwAY2NjfDy8kJKSgoWLVrU5v1CQ0MxfPhwvP322yrT6/Xt2xdA84BKLy8vTJs2DUuWLGlzP8uWLcO0adMQEBAAmUwGxhjkcjlmzJiBK1euwN7eHiNGjMCaNWu0Or+BAwdiy5YtePPNN7Fo0SL06dMH27ZtazFH9muvvYbMzEwsXboU9vb2+OCDD5CUlCTcvmbNGpiYmCA5ORkymQxJSUn4/PPPVfYxZcoU/P7778Lf/fr1AwAUFBTA19dXq/5TTbY4UZAtUkImu+sE2XK5HKdOnQLP87h8+bLQ7uHhAY7jEB4eDlNT4/vYlVFNNiFakTDGmKE70RGqqqrg4OCAyspKlZIEoHlFwIKCAvj5+cHSsuu8wZOOo85z5nRMLFhtLQL27Ia5l1cn95C0Jf6beNTL67EzeSc8bT0N3R2itNwVkMuAV04CDr0N3Rud1NTUICsrC5mZmaipqQEAmJiYIDQ0FBzHoXfv3qIvCWnP/O9P4D+ZlzEvqS9mDNH/YHbSvbUXrxk74/tKTYhIKZdVp4GP4sEYEzLZVJMtIow1B9iA0WayGWO4evUqeJ7HyZMnoVA0Z3ttbW0RGxuL2NhY2NnZGbiX+kFT+BGiHQqyCdED1tQENDUBACTmZgbuDVFqUjSBofnHOioXERFlqQhgdMuqNzU14eTJk+B5Hteu3Z2Vqnfv3uA4DqGhoZBKu1ZZBS1GQ4h2KMgmRA+UWWyAarLFRJnFBiiTLSrKQY+A0WSyq6qqkJGRgezsbNTWNq8QLJVKER4eDo7j0KuXgRY06wRUk02IdijIJkQPFLK7wRxN4Sce9wbZZib0C4NoCJlsCSAV73VhjKGoqAg8z+PUqVNQDmGyt7dHXFwcYmJiYGNjvNO/qksoF6HZRQjRCAXZhOiBkMk2NYXECGcP6KqUc2SbmZjBREIBgmjcO32fCAcENjY2Ijc3FzzPqyyQ5ePjA47jEBwcDBOT7vN8Eqbwo3IRQjRC0QAheiBM30dZbFGhJdVFSqRLqldUVCAjIwPHjh0TFuYyNTVFZGQkOI6Dm5ubgXtoGA1yKhchRBsUZBOiB8LMIlSPLSo0R7ZIiWghGsYYCgoKwPM8zpw5I7Q7OjoiPj4e/fr1g5WVlQF7aHiUySZEOxRkE6IHyppsqscWF1pSXaREsKR6Q0MDcnJywPM8bt68KbT7+/uD4zj06dOnW5WEtEdYVp2CbEI0QkE2IXrAZJTJFiPKZIuUATPZZWVlyMjIwPHjxyG78+XY3NwcUVFR4DgOPXv27PQ+iR3NLkKIdijIJm1KTExEdHQ0PvzwQ0N3ReDr64u5c+di7ty5hu6KCtagXFKdgjkxoSBbpIQgu3O+lDLGcP78efA8j/Pnzwvtzs7O4DgOUVFRtPpvO4Qgm2YXIUQj9IoxMjdu3EBqaiq8vb1hYWEBd3d3JCUl4dChQwCag1CJRAKJRAJra2tERERg/fr1Kvs4cOCAsI1EIoGVlRXCwsKwbt06le22bt2K5cuXC3/7+vp2eMCdlpaG4OBgWFpaIiIiAr/99pvG+1i3bh0SExNhb28PiUSCioqKFtvcunULEyZMgL29PRwdHTF58mRhOWRtMKFchDLZYtIobwQAWJjQdRGVJuXAx44NbOvr63H06FF8+umn2LJlixBg9+nTBxMmTMDMmTPRv39/CrAfoIEWoyFEK5TJNjLJycloaGjA5s2b4e/vj5KSEuzbtw9lZWXCNsuWLUNKSgpqa2uRlpaGlJQUeHp6YuTIkSr7OnPmDOzt7VFXV4dffvkFqampCAgIwKOPPgqgOcvTmQ4fPozx48djxYoVePzxx7FlyxaMGTMG2dnZCA8PV3s/tbW1GDFiBEaMGIGFCxe2us2ECRNw/fp17NmzB42NjXjxxRcxdepUbNmyRau+CzXZVC4iKpTJFqkOLhe5ceMGeJ5HTk4OGhvvfNGysEC/fv0QHx/f6e9txu7usupULkKIJuhrqRGpqKjAwYMH8f7772PIkCHCnK0LFy7Ek08+KWxnZ2cHd3d3+Pv7Y/78+XB2dsaePXta7M/V1RXu7u7w8/PD7Nmz4efnh+zsbOH2xMREoSwjMTERhYWFeOWVV4QMOAAUFhbiiSeegJOTE2xsbBAWFqZV9hkAPvroI4wYMQLz5s1DSEgIli9fjpiYGHz66acq21VXV2P8+PGwsbGBp6cnPvvsM5Xb586diwULFmDAgAGtHufUqVPYuXMn1q9fj/79++Ohhx7CJ598gu+++05lmWRNsIbmD3Ia+CguyiCbBj6KjHLgox6//CgUCpw+fRpfffUVPv/8c2RmZqKxsREuLi4YNWoUXn31VSQlJVGArSG5gqFR3rwIDw18JEQzlMlGc71eXVOdQY5tZWolBKwPYmtrC1tbW2zbtg0DBgyAxQOypgqFAj/++CPKy8th3k7wxxjDrl27UFRUhP79+7e6zdatWxEVFYWpU6ciJSVFaJ8xYwYaGhrwxx9/wMbGBvn5+bC1tVXpc3smTpyItWvXAgCOHDmCV199VeX2pKQkbNu2TaVt1apVWLRoEZYuXYpdu3Zhzpw5CAoKwrBhw9o9ltKRI0fg6OiIuLg4oW3o0KEwMTFBeno6/vrXv6q1n3sJ5SJUky0qNLuISOkxk11bW4tjx44hIyMDlZWVAACJRIK+ffuC4zihhI5oR1kqAlC5CCGaoiAbQF1THfpvaT247Gjpz6bD2sxarW1NTU2xadMmpKSkYO3atYiJicHgwYMxbtw4REZGCtvNnz8fb775JmQyGZqamuDs7IwpU6a02F/v3r0BADKZDAqFAsuWLcNf/vKXVo/t7OwMqVQqZMmVioqKkJycjIiICADN01/d6/jx4+2ek729vfD/4uLiFos9uLm5obi4WKVt0KBBWLBgAQAgKCgIhw4dwpo1a9QOsouLi+Hq6qrSZmpqCmdn5xbHUpcw8JFqskVFmck2E/HS3d2SMIWf9q+X4uJi8DyP3NxcNDU1AQCsrKwQExODuLg4ODo66qGjRFkqAlCQTYimKMg2MsnJyRg1ahQOHjyIo0ePYseOHVi5ciXWr1+PSZMmAQDmzZuHSZMm4fr165g3bx6mT5+OwMDAFvs6ePAg7OzsIJPJwPM8Zs6cCWdnZ6Smpqrdn9mzZyM1NRW7d+/G0KFDkZycrBLwt3ZcXSUkJLT429AzoFBNtjg1Ku7U41ImW1zkyiBbs0y2XC7H6dOnwfM8ioqKhHZ3d3dwHIfw8HCYmdEXKn1SZrKlJhKYSinIJkQTFGSjuWQj/dl0gx1bU5aWlhg2bBiGDRuGt956C1OmTMHixYuFILtnz54IDAxEYGAg0tLSEBERgbi4OISGhqrsx8/PT8j2hIWFIT09He+8845GQfaUKVOQlJSE7du3Y/fu3VixYgVWr16NWbNmAdCsXMTd3R0lJSUqt5eUlKhkzvXB3d0dpaWlKm1NTU24deuW1se6O082lYuICdVki5SGmezbt28jKysLmZmZqK6uBgCYmJggJCQEHMfBy8uLSkI6iIxmFiFEaxRko7l+T92SDTEKDQ1tUbes5OXlhWeeeQYLFy7ETz/91O5+pFIp6urark03NzeHXC5v0e7l5YWXX34ZL7/8MhYuXIgvv/xSCLI1KRdJSEjAvn37VObA3rNnT4vM9dGjR1v8HRIS0u5x7pWQkICKigpkZWUhNjYWAPC///0PCoWizZr0B1Euq25CmWxRodlFRErNmuyrV6+C53mcPHlSeO+xsbFBbGwsYmNjVd4/SMe4O7MIBdmEaIqCbCNSVlaGsWPH4qWXXkJkZCTs7OyQmZmJlStXYvTo0W3eb86cOQgPD0dmZqbKYL/S0lLU19cL5SJff/01nnrqqTb34+vriz/++APjxo2DhYUFevbsiblz52LkyJEICgpCeXk59u/frxLwalIuMmfOHAwePBirV6/GqFGj8N133yEzM7PF/N2HDh3CypUrMWbMGOzZswdpaWnYvn27cHtxcTGKi4uFOXFzc3NhZ2cHb29vODs7IyQkBCNGjBBq2xsbGzFz5kyMGzcOvXr1Uru/91LWZEvMKJgTExr4KFLtLKsul8tx8uRJ8DyPq1evCu2enp7gOA6hoaEwNaWPrs5S39icyaaZRQjRHL1TGRFbW1v0798fa9aswYULF9DY2AgvLy+kpKRg0aJFbd4vNDQUw4cPx9tvv60yvV7fvn0BNA/68/LywrRp07BkyZI297Ns2TJMmzYNAQEBkMlkYIxBLpdjxowZuHLlCuzt7TFixAisWbNGq/MbOHAgtmzZgjfffBOLFi1Cnz59sG3bthZzZL/22mvIzMzE0qVLYW9vjw8++ABJSUnC7WvXrsXSpUuFv5WDOTdu3CiU1Pz73//GzJkz8eijj8LExATJycn4+OOPteo3QDXZYkWZbJFqJZNdXV2NzMxMZGVl4fbt2wCaf10LCwsDx3Hw9PQ0RE+7PVpSnRDtUZBtRCwsLLBixQqsWLGizW0uXbrUavvOnTuF/ycmJoIx9sDjHThwQOXvAQMGICcnR6Xtk08+eeB+NDF27FiMHTu2zdvbOr97LVmypN0vC0DzbCnaLjzTGqrJFidlJtvchK6LqNwJspnUApeLisDzPE6dOgWFojmgs7OzQ1xcHGJiYh44roN0LCoXIUR7FGQTogfKebKpJltcqFxEnBSN9TABcCQjG3v21wjt3t7e4DgOwcHBkEopcyoGwpLqZhRkE6IpCrIJ0QOhJpvmyRYVKhcRl8rKSmRkZMDrVB76AiivroOpmSkiIiLAcZzeZxIiuqNyEUK0R0E2IXqguDO7CC2rLi6UyTY8xhguXboEnudx5swZMMYwnjV/+QkKjcCQx1+BtbXxzu7U1SmDbHOaI5sQjVGQTYge3K3JpmBOTCiTbTgNDQ04ceIEMjIyVOal9/Pzg+ftnkBJAfoEhwMUYIuarPFOTTaVixCiMQqyCdGDuzXZFMyJCQXZne/WrVvIyMjAsWPHILvzujAzM0NUVBQ4joOLiwuw4d/NG+uwrDrpHLQYDSHaoyCbED1gNIWfKNGy6p2DMYYLFy6A53mcO3dOaHdycgLHcYiOjoal5T0Lz2i5rDrpfA1Uk02I1ijIJkQP7tZkUzAnJpTJ7lgymQzHjx9HRkYGysrKhPbAwEBwHIfAwMDWlzvXcFl1YjiUySZEexRkE6IHdzPZFMyJCQ187Bg3b94Ez/PIyclBw50vmBYWFoiOjkZ8fDx69OjR/g7UXFadGJ4wTzbVZBOiMQqyCdEDdifQMKHZRURFmcmmIFt3CoUC586dA8/zuHjxotDes2dPcByHyMhIWKhbLtXOsupEXO7OLkLlIoRoioJs0qbExERER0fjww8/NHRXBL6+vpg7dy7mzp1r6K6ooJpscaJyEd3V1dXh2LFjyMzMRHl5udDet29fcBwHPz+/1ktC2kOZbKMha6TFaAjRFr1qjMyNGzeQmpoKb29vWFhYwN3dHUlJSTh06BCA5iBUIpFAIpHA2toaERERWL9+vco+Dhw4IGwjkUhgZWWFsLAwrFu3TmW7rVu3Yvny5cLfvr6+HR5wp6WlITg4GJaWloiIiMBvv/2m8T7WrVuHxMRE2NvbQyKRoKKiosU277zzDgYOHAhra2s4Ojrq3G+hJpuCbFGhZdW1V1JSgl9++QUffPAB9uzZg/LyclhaWmLgwIGYM2cOxo0bB39/f80DbIBqso0ILatOiPYok21kkpOT0dDQgM2bN8Pf3x8lJSXYt2+fyqCjZcuWISUlBbW1tUhLS0NKSgo8PT0xcuRIlX2dOXMG9vb2qKurwy+//ILU1FQEBATg0UcfBQA4Ozt36rkdPnwY48ePx4oVK/D4449jy5YtGDNmDLKzsxEeHq72fmprazFixAiMGDECCxcubHWbhoYGjB07FgkJCdiwYYPOfRcy2TTwUVSoJlszCoUCp0+fBs/zKCwsFNrd3NzAcRwiIiJgZmam+4GaaHYRY0GzixCiPfpqakQqKipw8OBBvP/++xgyZAh8fHzAcRwWLlyIJ598UtjOzs4O7u7u8Pf3x/z58+Hs7Iw9e/a02J+rqyvc3d3h5+eH2bNnw8/PD9nZ2cLtiYmJQllGYmIiCgsL8corrwgZcAAoLCzEE088AScnJ9jY2CAsLEyr7DMAfPTRRxgxYgTmzZuHkJAQLF++HDExMfj0009Vtquursb48eNhY2MDT09PfPbZZyq3z507FwsWLMCAAQPaPNbSpUvxyiuvICIiQqu+3osxRvNkixBjDA2KO5lsKhdp1+3bt3Hw4EF89NFHSEtLQ2FhISQSCUJDQzFp0iRMmzYNMTEx+gmwFXLgztSKFGSLH80uQoj2KJONO0FSXZ1Bji2xslL751ZbW1vY2tpi27ZtGDBgwAMHGSkUCvz4448oLy+HeTsD8hhj2LVrF4qKitC/f/9Wt9m6dSuioqIwdepUpKSkCO0zZsxAQ0MD/vjjD9jY2CA/Px+2trYqfW7PxIkTsXbtWgDAkSNH8Oqrr6rcnpSUhG3btqm0rVq1CosWLcLSpUuxa9cuzJkzB0FBQRg2bFi7x+owTU0AYwBoWXUxUQbYAGWy23Lt2jXwPI+8vDzI5c1lAdbW1oiJiUFcXBwcHBz0f1BlFhsA6MuP6CnLRcwpyCZEYxRkA2B1dTgTE2uQY/fNzoJEzWWFTU1NsWnTJqSkpGDt2rWIiYnB4MGDMW7cOERGRgrbzZ8/H2+++SZkMhmamprg7OyMKVOmtNhf7969ATTPdatQKLBs2TL85S9/afXYzs7OkEqlQpZcqaioCMnJyUJG2N/fX+V+x48fb/ec7O3thf8XFxfDzc1N5XY3NzcUFxertA0aNAgLFiwAAAQFBeHQoUNYs2aNwYJshexuMEc12eKhHPQIUJB9L7lcjvz8fPA8jytXrgjtvXr1AsdxCAsLg6lpB340KAc9ApTJNgKUySZEexRkG5nk5GSMGjUKBw8exNGjR7Fjxw6sXLkS69evx6RJkwAA8+bNw6RJk3D9+nXMmzcP06dPR2BgYIt9HTx4EHZ2dpDJZOB5HjNnzoSzszNSU1PV7s/s2bORmpqK3bt3Y+jQoUhOTlYJ+Fs7rq4SEhJa/G3IGVBYw91gjjLZ4qGsx5ZAAlMTequrqalBZmYmsrKyUFNTAwAwMTFBWFgYOI6Dp6endoMYNaXMZEukgJSui9jdnV2EarIJ0RS9w6G5ZKNvdpbBjq0pS0tLDBs2DMOGDcNbb72FKVOmYPHixUKQ3bNnTwQGBiIwMBBpaWmIiIhAXFwcQkNDVfbj5+cnzKwRFhaG9PR0vPPOOxoF2VOmTEFSUhK2b9+O3bt3Y8WKFVi9ejVmzZoFQLNyEXd3d5SUlKjcXlJSopI5FyNh0KOZGSQmlO0RC2FmEal55wSPIsQYw5UrV8DzPPLz86FQNAdMtra2iIuLQ2xs7ANfo3pHS6oblQY5ZbIJ0RYF2UDzQD41SzbEKDQ0tEXdspKXlxeeeeYZLFy4ED/99FO7+5FKpahrpzbd3NxcqNu8/xgvv/wyXn75ZSxcuBBffvmlEGRrUi6SkJCAffv2qcyBvWfPnhaZ66NHj7b4OyQkpN3jdCSaI1ucuvMc2U1NTcjLywPP87h+/brQ3rt3b3Ach9DQUEgNtbgITd9nVGgKP0K0R0G2ESkrK8PYsWPx0ksvITIyEnZ2dsjMzMTKlSsxevToNu83Z84chIeHIzMzE3FxcUJ7aWkp6uvrhXKRr7/+Gk899VSb+/H19cUff/yBcePGwcLCAj179sTcuXMxcuRIBAUFoby8HPv371cJeDUpF5kzZw4GDx6M1atXY9SoUfjuu++QmZnZYv7uQ4cOYeXKlRgzZgz27NmDtLQ0bN++Xbi9uLgYxcXFOH/+PAAgNzcXdnZ28Pb2FqYlLCoqwq1bt1BUVAS5XC58GQgMDNQ4s6esyaYgW1y64/R9lZWVyMzMRHZ2NmprawE0f3mOiIgAx3Hw8PAwcA9BC9EYGaFchKbwI0RjFGQbEVtbW/Tv3x9r1qzBhQsX0NjYCC8vL6SkpGDRokVt3i80NBTDhw/H22+/rTK9Xt++fQE0D6j08vLCtGnTsGTJkjb3s2zZMkybNg0BAQGQyWRgjEEul2PGjBm4cuUK7O3tMWLECKxZs0ar8xs4cCC2bNmCN998E4sWLUKfPn2wbdu2FnNkv/baa8jMzMTSpUthb2+PDz74AElJScLta9euxdKlS4W/lYM5N27cKJTUvP3229i8ebOwTb9+/QAA+/fvR2Jiokb9Vi6pTvXY4tJdllRnjKGwsBA8z+P06dNgd2a6sbe3R1xcHGJiYmBjY2PgXt6DllQ3KsKy6pTJJkRjEqZ8R+5iqqqq4ODggMrKSpWSBACor69HQUEB/Pz8YGlJ2RTyYO09Z2qzslA4YSLMfXwQsGungXpI7pdRnIGXdr0EPwc//DzmZ0N3R+8aGxtx4sQJ8DyP0tJSod3X1xfx8fEIDg6GiRjHCBT8AWx+AnAJBmakG7o35AH6v7sXJVUy/DrrIYR7dsCUjqTbay9eM3aUySZER1STLU5ddUn18vJyZGRk4NixY6ivby69MDMzE0pC7p8GU3SoJtuoKDPZlmYi/MJGiMhRkE2IjhQUZItSV6rJZozh4sWL4HkeZ8+eFdqdnJwQHx+P6OhoWGkxU5FB0JLqRoWWVSdEexRkE6IjJgx87FoZU2MnUxj/7CIymQw5OTnIyMjAzZs3hfaAgABwHIfAwEBxloS0Rxj4aPxffroDWoyGEO1RkE2IjpSL0ZjQwEdRMeZMdllZGXiex/Hjx9FwZ2Ctubk5oqKiwHEcevbsaeAe6kCZyTbC69LdNMkVkCuah23RwEdCNNetg+wuOuaTdID2nit3ZxehoEFMjG2ebMYYzp07B57nceHCBaG9R48eQkmIRVcoSaJMttFQZrEBKhchRBvdMsg2MzMDANTW1hpPHSMxKOWcw8rnzr2oJlucjCWTXV9fj2PHjiEjIwPl5eVCe1BQEDiOg7+/f9dasZJqso3GvUE2ZbIJ0Vy3DLKlUikcHR2Faa+sra271ocY0RvGGGpra1FaWgpHR8dWV8mjmmxxundZdTEqLS0Fz/M4ceIEGhsbAQCWlpaIjo5GfHy8sHBSl0PLqhsN5aBHM6kEUhP6jCREU90yyAYAd3d3AFCZX5aQtjg6OgrPmfsJNdmUyRYVMZaLKBQKnDlzBjzP49KlS0K7q6srOI5DREQEzLt6bT9N4Wc07i6pTqUihGij2wbZEokEHh4ecHV1FbJIhLTGzMys1Qy2klAuQjXZoiKmcpHa2lpkZ2cjMzMTlZWVAJrfg4KDg8FxHHx8fLrPr2m0rLrRoJlFCNFNtw2ylaRSabsBFCEPQsuqi5MYMtnFxcVIT09HXl4empqaAABWVlaIiYlBfHw8HBy64Qp6tKy60ZA10pLqhOii2wfZhOiKarLFSRlkd3YmWy6X49SpU+B5HpcvXxba3d3dwXEcwsPDWx1A221QJtto3C0XoSCbEG1QkE2IjpTLqlNNtrh0drlITU0NsrKykJWVherqagCAiYkJQkNDwXEcevfu3X1KQtpDNdlGQ0arPRKiEwqyCdGRcuAj1WSLS4OiOcg2M+nYrPGVK1fA8zxOnjwJhaI5KLGxsUFsbCzi4uJgZ2fXocc3OjSFn9EQllQ3o0w2IdqgIJsQHSmEchEKssWkIzPZTU1NOHnyJHiex7Vr14T23r17g+M4hIaG0liPttBiNEaDykUI0Q0F2YToiAmzi3TjOlsR6oia7KqqKmRmZiI7Oxu3b98G0Dx4Ojw8HBzHoVevXno7VpdFy6obDWW5CA18JEQ7FGQToiPl7CJUky0u+ppdhDGGy5cvg+d5nDp1SigJsbe3R1xcHGJiYmBjY6Nzf7sNymQbDeXsIlSTTYh2KMgmREeMllUXJV3LRRobG5Gbm4uMjAwUFxcL7T4+PuA4DsHBwTAxoQyfxqgm22hQuQghuqEgmxAdKYR5sinIFhNtl1WvqKhARkYGjh07hrq6OgCAqakpIiIiwHFcmyt/EjXRsupGgxajIUQ3FGQToqO7mWyaJ1tMNCkXYYyhoKAAPM/j7NmzYIwBABwdHYWSECsrqw7tb7dBU/gZDZrCjxDdUJBNiI6EebJpxUdRUadcpKGhATk5OcjIyMCNGzeEdj8/P3Ach6CgICoJ0TeqyTYaNPCREN1QkE2IjoRl1akmW1Tay2TfunULPM/j+PHjkN35kmRmZoaoqChwHAcXF5dO7Wu3Qplso0E12YTohoJsQnSkoCBblIRMtknzdWGM4fz58+B5HufPnxe2c3Z2Rnx8PKKjo2FpSXXCHY6WVTcawuwitBgNIVqhIJsQHd2dJ5vKRcREmcmGHEhPTwfP87h165Zwe58+fcBxHAICAmi5885EmWyjQTXZhOiGgmxCdCTUZFMmW1SUmezNGzbDtL75rc7CwgLR0dHgOA7Ozs6G7F73RVP4GY0Gml2EEJ1QkE2IDhhjVJMtIgqFAmfPnsXR9KNoQhMAQN4gh4eLB+Lj4xEVFQVz+sXBcORNAGuu86VMtvhRTTYhuqEgmxAdKANsgMpFDKmurg7Z2dnIzMxERUUFmiRNgE/zbRPHT0RIQAiVhIiBsh4boGXVjcDd2UWoXIQQbVCQTYgOVIJsymR3upKSEqSnpyM3NxdNTc2ZaysrKwRFBWFb8TYAQJB/EAXYYqEsFQEok20EaDEaQnRDQTYhOlDWYwOAxMzMgD3pPhQKBU6fPg2e51FYWCi0u7m5geM4REREoLyxHEgDpBIpTE3obU40lJlsEzPAhLKjYidrvFMuQrOLEKIV+vQhRAd3V3u0oGxpB7t9+zaysrKQlZWFqqoqAIBEIkFoaCg4joOXl5dwDRrqtVtSnXQwWlLdqDTIaXYRQnRBQTYhOlDIaNBjR7t27Rp4nkdeXh7k8ubMmo2NDWJiYhAXFwd7e/sW91HOLEJBtsjQ9H1GRZgnm8pFCNEKBdmE6IA10BzZHUEul+PkyZPgeR5Xr14V2nv16gWO4xAWFgZT07bfvpRzZCsXoiEiQUuqGxXl7CK0rDoh2qEgmxAdCHNkU5CtF9XV1cjMzERWVhZu374NADAxMUF4eDji4+PRu3dvtfbT3pLqxIAok21UaOAjIbqhIJsQHdAc2bpjjOHKlSvgeR75+flQKJo/2O3s7BAbG4vY2FjY2tpqtE9hSXWaJk5caEl1o0IrPhKiGwqyCdEB1WRrr7GxEXl5ecjIyMD169eFdm9vb8THxyMkJARSqXYf7pTJFinKZBsVml2EEN1QkE2IDoSabAsK5tRVWVmJjIwMZGdno66uDgBgamqK8PBwcBwHDw8PnY/RoKCBj6JES6oblbuzi1CQTYg2KMgmRAd3a7IpM9cexhgKCwvB8zxOnz4NxhgAwMHBAXFxcYiJiYG1tbXejkflIiJFmWyjwRijchFCdERBNiE6UMhodpH2NDQ0IDc3FzzPo7S0VGj39fVF//79ERQUBBMT/WfJqFxEpJQ12fTlR/Qa5Qx3vgvT7CKEaImCbEJ0QAMfW1deXg6e53H8+HHU1zcHVmZmZoiMjATHcXB1de3Q41MmW6RoCj+joZy+D6ByEUK0RUE2ITpgwsBHypgyxnDx4kXwPI+zZ88K7U5OToiPj0e/fv1gadk5tbiUyRYpqsk2GspSEYCCbEK0RUE2ITpQDnzszjXZMpkMOTk54HkeZWVlQntgYCDi4+PRp0+fTl9ynjLZIiWnmmxj0XAnyDY3Nen01y8hXQUF2YToQKjJ7oblIjdv3kRGRgaOHz+OhjtlM+bm5oiOjgbHcejRo4fB+iYsq25CmWxRoUy20aCFaAjRHQXZhOhAKBfpJgMfFQoFzp8/D57nceHCBaG9Z8+eiI+PR1RUFCxE8IWDykVEimqyjYayJpuCbEK0R0E2ITpgsu4xT3Z9fT2OHTuGjIwMlJeXC+1BQUHgOA7+/v6i+klZGWRTuYjI0BR+RkPWSNP3EaIrCrIJ0YFydhETEWRvO0JpaSnS09ORm5uLxsZGAIClpSX69euH+Ph4ODk5GbiHraOabJGiZdWNBpWLEKI7CrIJ0YFCueJjFxr4qFAocObMGfA8j0uXLgntrq6u4DgOERERMBd5eQyt+ChSTc3XhTLZ4nfvwEdCiHYoyCZEB3en8DP+oKG2thZZWVnIzMxEVVUVAEAikSA4OBgcx8HHx0dUJSHtoZpskaJMttEQarLNqFyEEG1RkE2IDrpCTfb169fB8zxyc3Mhlzd/sFpbWyMmJgZxcXFwcHAwcA81R+UiIkU12UaDykUI0R0F2YToQBlkm4i8fOJ+crkc+fn5yMjIwOXLl4V2Dw8PcByH8PBwmJoa79sDZbJFipZVNxo0uwghujPeT1FCRECoyTaScpGamhpkZmYiKysLNTU1AAATExOEhYWB4zh4enoaTUlIeyiTLVKUyTYad2cXoSCbEG1RkE2IDlhD84wbYh74yBjD1atXwfM8Tp48CYWi+cPT1tYWsbGxiI2NhZ2dnYF7qV+UyRYpqsk2GnfLRagmmxBtUZBNiA7EXJPd1NSEkydPgud5XLt2TWjv3bs3OI5DaGgopNKu+QFKmWyRomXVjUYD1WQTojMKsgnRgVCTLaJykaqqKmRkZCA7Oxu1tbUAAKlUivDwcHAch169ehm4hx2PllUXKVpW3WjcnV2EgmxCtEVBNiE6uDtPtmGDOcYYioqKwPM8Tp06BcYYAMDe3h5xcXGIiYmBjY2NQfvYmahcRKRoWXWjoSwXMZdSkE2ItijIJkQHwjzZBqrJbmxsRG5uLnieR0lJidDu4+MDjuMQHBwME5Pu9yFJ5SIiRQMfjYZQk03zZBOiNQqyCdGBcln1zq7JLi8vR0ZGBo4dO4b6+ubsoKmpKSIjI8FxHNzc3Dq1P2IjUzQHcxRkiwwNfDQaskaawo8QXVGQTYgOOrMmmzGGgoIC8DyPM2fOCO2Ojo6Ij49Hv379YGVl1eH9MAZCTTaVi4gLLatuNBrkNPCREF1RkE2IDhQNHb+sekNDA3JycsDzPG7evCm0+/v7g+M49OnTp1uWhLSHykVEiDHKZBuRu/NkU7kIIdqiIJsQLTG5HGi8M092BwTZZWVl4HkeOTk5kN3JmJubmyMqKgocx6Fnz556P2ZX0KRogpw1/9RNmWwRkTcCaB6QS5ls8btbk01f4AnRFgXZhGhJWY8NABIz/QRzjDGcP38ePM/j/PnzQruzszM4jkN0dDQsRDRdoBgps9gABdmiosxiA7SsuhFQTuFHs4sQoj0KsgnRkrIeGwBMdBz4WF9fj2PHjiEjIwPl5eVCe58+fcBxHAICArrEcuedQTl9H0DzZItK093rQpls8aNMNiG6oyCbEC0p67FhYgKYavdSunHjhlAS0nin9MTCwgL9+vVDfHw8nJ2d9dXdbkMZZJuamEJqQvWkoqHMZEstAPrCKHpUk02I7ijIJkRL7J5Bj5pkmRUKBc6ePQue51FQUCC0u7i4gOM4REZGwtzAi9sYs0b5nS8rVJIgLsoyHhr0aBRkNLsIITqjIJsQLQnT96kZENfW1golIZWVlQAAiUSCvn37guM4+Pr6UkmIHgirPVKpiLjQao9G5e482ZTJJkRbFGQToiVlkP2gJdWLi4vB8zxyc3PR1NQEALCyskJMTAzi4uLg6OjY0V3tVpQL0dCgR5GhINuoNCiXVadMNiFaoyCbEC0plEF2K7N9yOVynD59GjzPo6ioSGh3d3cHx3EIDw+HmZlZp/W1O6E5skWKllQ3KsLARwqyCdEaBdmEaInJWi5Ec/v2bWRlZSEzMxPV1dUAABMTE4SEhIDjOHh5eVFJSAcTykUoky0utBCNUVFO4UezixCiPQqyCdESa1QG2ea4evUqeJ7HyZMnIZc3fzjZ2NggNjYWcXFxsLOzM2RXuxXKZIsULaluVO5msqkmmxBtUZBNiJaaamsBADcqKrBz/Xqh3dPTExzHITQ0FKZaTu1HtEdBtkhRJtuoULkIIbqjCIAQDVVXVyMzMxPXtm1DDIC6JjmkUinCwsLAcRw8PT0N3cVuTVkuYialmndRoZpso8EYEwY+UpBNiPYoyCZEDYwxXL58GTzP49SpU1AoFPC9k8l2cnHBK6+8AhsbGwP3kgCUyRatexejIaKmzGIDNLsIIbqgIJuQdjQ2NiIvLw88z6O4uFho9/b2RpydHZDOw9nDnQJsEVFmsinIFhnKZBuNe4NsqskmRHsUZBPSioqKCmRmZiI7Oxt1dXUAAFNTU0RERIDjOLi7u+PWV1+hBICJOQUNYkKzi4gU1WQbDeXMIhIJYCal2ZAI0RYF2YTcwRjDpUuXwPM8zpw5A8YYAMDBwQHx8fHo168frK2the3bmyebGE6jgpZVFyU5ZbKNxb312DTlKCHaoyCbdHsNDQ04ceIEeJ7HjRs3hHY/Pz9wHIegoCCYmLSsS7w7TzZlTMWEllUXKaFchDLZYkfT9xGiHxRkk27r1q1byMjIwLFjxyC7k5U2MzNDVFQUOI6Di4tLu/dXd1l10rmoXESkhHIRui5iJ2ukJdUJ0QcKskm3whjDhQsXwPM8zp07J7Q7OzsjPj4e0dHRsLRUL9PGGpqDORMqFxEVml1EpCiTbTSE1R4pyCZEJxRkk25BJpPh+PHjyMjIQFlZmdAeGBgIjuMQGBioce2hUJNNAx9FhTLZIiVksun1Ina0EA0h+kFBNunSbt68CZ7nkZOTg4aGOxlOCwtER0cjPj4ePXr00HrfrKF5gB0NfBQXymSLlLCsOmWyxa6BarIJ0QsKskmXo1AocO7cOfA8j4sXLwrtPXv2BMdxiIyMhIUeAmNlTbYJDXwUFWWQTZlskaEp/IyGkMk2o0w2IbqgIJt0GXV1dTh27BgyMjJQUVEhtPft2xccx8HPz0+v01Epa7Jp4KO4ULmISClrsum6iJ6yJttcSkE2IbqgIJsYvZKSEvA8jxMnTqCpqQkAYGlpiZiYGMTHx8PR0bFDjks12eJE5SIiRZlso6GcXcTCjMpFCNEFBdnEKCkUCpw+fRo8z6OwsFBod3NzA8dxiIiIgJmZWYf24e482RTMiQllskWKllU3GjTwkRD9oCCbGJXbt28jOzsbmZmZqKqqAgBIJBKEhISA4zh4e3t32gplrIEWoxEjIZNtQsGcqFAm22jQFH6E6AcF2cQoXLt2DTzPIy8vD3J58weAtbU1YmNjERcXB3t7+07v092BjxTMiUmDgspFREmunF2ErovY0ewihOgHBdlEtORyOfLz88HzPK5cuSK09+rVCxzHISwsDKamhnsKKxqoJluMqFxEpCiTbTRodhFC9IOCbCI61dXVyMrKQlZWFmpqagAAJiYmCAsLA8dx6N27t4F72EyoyabZRUSFpvATKaEmm66L2NHsIoTohyiD7CVLlmDp0qUqbX379sXp06cN1CPS0RhjuHLlCnieR35+PhSK5kyKra0t4uLiEBsbC1tbWwP3UpWyXIRqssVFmcmmchGRoUy20bg7uwgF2YToQpRBNgCEhYVh7969wt+GLAsgHaepqQl5eXngeR7Xr18X2r28vMBxHEJCQiCVirMukGqyxYnKRURKyGRTkC12MqrJJkQvRBu5mpqawt3d3dDdIB2ksrISmZmZyM7ORm1tLQBAKpUiIiICHMfBw8PDwD18MEUjLasuRo3y5utCmWyRoSn8jEYDTeFHiF6INsg+d+4cevXqBUtLSyQkJGDFihXw9vZuc3uZTAbZncwiAGF6t+5k96blMF+3xdDdUJsUQPz9jb8BZ9D8T+zcmr8b4LkfRqDKtnOmDSQPVm/WfC1KPxyGO796ExHwUTS/P/9tXRYqTc4buDekPaVVd0quKMgmRCeiDLL79++PTZs2oW/fvrh+/TqWLl2Khx9+GHl5ebCzs2v1PitWrGhRx93dNNRUwuuWoXvRvVRbAmftJGgypSBbTJzkcoQ1XUXHLkdENHWT2eNEGdCE24buClGDv4uNobtAiFGTMMaYoTvxIBUVFfDx8cEHH3yAyZMnt7pNa5lsLy8vVFZWGmQOZUO4fCEPuXvEk8lubGzArfJyVFRUQC5vTimaSCRwdHSAk5MzLLpAmYXM3RlyOytDd4Pcp7e5K+xNxTVQlgB1DoFosnQ2dDeIGpxszBHk1npSixB9qqqqgoODQ5eM10SZyb6fo6MjgoKCcP582z8xWlhYdImgTRdeAeHwCnjXoH1gjOHixYvgeR5nz54FYAc4eMPJyQnx8fGIjo6GlRUFpYQQQgjp2owiyK6pqcGFCxfw3HPPGborpA0ymQw5OTngeR5lZWVCe0BAADiOQ2BgIExMqL6PEEIIId2DKIPs119/HU888QR8fHxw7do1LF68GFKpFOPHjzd018h9ysrKwPM8jh8/joaGO4uAmJsjOjoa8fHx6Nmzp4F7SAghhBDS+UQZZF+5cgXjx49HWVkZXFxc8NBDD+Ho0aNwcXExdNcImktCzp07B57nceHCBaG9R48e4DgOUVFR3b50hxBCCCHdmyiD7O+++87QXSCtqK+vx7Fjx5CRkYHy8nKhPSgoCBzHwd/fHxIJzbJBCCGEECLKIJuIS2lpKXiex4kTJ9B4ZwEWS0tLoSTE2ZlmCyCEEEIIuRcF2aRVCoUCZ86cAc/zuHTpktDu6uoKjuMQEREBc3NatpoQQgghpDUUZBMVtbW1yM7ORmZmJiorKwEAEokEwcHB4DgOPj4+VBJCCCGEEPIAFGQTAMD169fB8zzy8vLQ1NQEALCyskJsbCzi4uLg4OBg4B4SQgghhBgPCrK7MblcjlOnToHneVy+fFlo9/DwAMdxCA8Ph6kpPUUIIYQQQjRFEVQ3VFNTg6ysLGRlZaG6uhoAYGJigtDQUHAch969e1NJCCGEEEKIDijI7kauXLmCjIwMnDx5EnK5HABgY2MjlITY2dkZuIeEEEIIIV0DBdldXFNTE06ePAme53Ht2jWhvXfv3oiPj0dYWBikUqkBe0gIIYQQ0vVQkN1FVVVVITMzE9nZ2bh9+zYAQCqVIjw8HBzHoVevXgbuISGEEEJI10VBdhfCGENRUREyMjJw6tQpKBQKAICdnR3i4uIQGxsLGxsbA/eSEEIIIaTroyC7C8nOzsavv/4q/O3j44P4+HgEBwdTSQghhBBCSCeiILsLCQkJwd69exESEgKO4+Du7m7oLhFCCCGEdEsSxhgzdCc6QlVVFRwcHFBZWQl7e3tDd6fTNDU10dzWhBBCCDEKXTleMzF0B4h+UYBNCCGEEGJ4FGQTQgghhBCiZxRkE0IIIYQQomcUZBNCCCGEEKJnFGQTQgghhBCiZxRkE0IIIYQQomcUZBNCCCGEEKJnXXa+N+X031VVVQbuCSGEEEIIaY0yTuuKy7Z02SC7uroaAODl5WXgnhBCCCGEkPZUV1fDwcHB0N3Qqy674qNCocC1a9dgZ2cHiURi6O6Qe1RVVcHLywuXL1/ucqs7GTu6NuJG10e86NqIF10bcWOMobq6Gr169YKJSdeqYu6ymWwTExP07t3b0N0g7bC3t6c3PJGiayNudH3Ei66NeNG1Ea+ulsFW6lpfGQghhBBCCBEBCrIJIYQQQgjRMwqySaezsLDA4sWLYWFhYeiukPvQtRE3uj7iRddGvOjaEEPpsgMfCSGEEEIIMRTKZBNCCCGEEKJnFGQTQgghhBCiZxRkE0IIIYQQomcUZBNCCCGEEKJnFGQTnSxZsgQSiUTlX3BwcLv3SUtLQ3BwMCwtLREREYHffvtN5XbGGN5++214eHjAysoKQ4cOxblz5zryNLokTa/Nl19+iYcffhhOTk5wcnLC0KFDwfO8yjaTJk1qsc8RI0Z09Kl0SZpen02bNrXY3tLSUmUbeu3oh6bXJjExscX2EokEo0aNErah147+XL16FRMnTkSPHj1gZWWFiIgIZGZmtnufAwcOICYmBhYWFggMDMSmTZtabPPZZ5/B19cXlpaW6N+/f4v3P0I0RUE20VlYWBiuX78u/Pvzzz/b3Pbw4cMYP348Jk+ejGPHjmHMmDEYM2YM8vLyhG1WrlyJjz/+GGvXrkV6ejpsbGyQlJSE+vr6zjidLkWTa3PgwAGMHz8e+/fvx5EjR+Dl5YXhw4fj6tWrKtuNGDFCZZ/ffvttR59Gl6XJ9QGaV6y7d/vCwkKV2+m1oz+aXJutW7eqbJuXlwepVIqxY8eqbEevHd2Vl5dj0KBBMDMzw44dO5Cfn4/Vq1fDycmpzfsUFBRg1KhRGDJkCI4fP465c+diypQp2LVrl7DNf/7zH7z66qtYvHgxsrOzERUVhaSkJJSWlnbGaZGuihGig8WLF7OoqCi1t3/66afZqFGjVNr69+/Ppk2bxhhjTKFQMHd3d7Zq1Srh9oqKCmZhYcG+/fZbvfS5u9D02tyvqamJ2dnZsc2bNwttL7zwAhs9erTunSMaX5+NGzcyBweHNm+n147+6PraWbNmDbOzs2M1NTVCG7129GP+/PnsoYce0ug+b7zxBgsLC1Npe+aZZ1hSUpLwN8dxbMaMGcLfcrmc9erVi61YsUK3DpNujTLZRGfnzp1Dr1694O/vjwkTJqCoqKjNbY8cOYKhQ4eqtCUlJeHIkSMAmjMOxcXFKts4ODigf//+wjZEfZpcm/vV1taisbERzs7OKu0HDhyAq6sr+vbti9TUVJSVlem7292GptenpqYGPj4+8PLywujRo3Hy5EnhNnrt6Jcur50NGzZg3LhxsLGxUWmn147ufv75Z8TFxWHs2LFwdXVFv3798OWXX7Z7nwd97jQ0NCArK0tlGxMTEwwdOpReO0QnFGQTnfTv3x+bNm3Czp078cUXX6CgoAAPP/wwqqurW92+uLgYbm5uKm1ubm4oLi4Wble2tbUNUY+m1+Z+8+fPR69evVQ+eEaMGIGvvvoK+/btw/vvv4/ff/8dI0eOhFwu76jT6LI0vT59+/bFv/71L/z000/45ptvoFAoMHDgQFy5cgUAvXb0SZfXDs/zyMvLw5QpU1Ta6bWjHxcvXsQXX3yBPn36YNeuXUhNTcXs2bOxefPmNu/T1udOVVUV6urqcPPmTcjlcnrtEP0zdCqddC3l5eXM3t6erV+/vtXbzczM2JYtW1TaPvvsM+bq6soYY+zQoUMMALt27ZrKNmPHjmVPP/10x3S6m3jQtbnXihUrmJOTE8vJyWl3uwsXLjAAbO/evfrqZrelyfVhjLGGhgYWEBDA3nzzTcYYvXY6kibXZurUqSwiIuKB29FrRztmZmYsISFBpW3WrFlswIABbd6nT58+7N1331Vp2759OwPAamtr2dWrVxkAdvjwYZVt5s2bxziO01/nSbdDmWyiV46OjggKCsL58+dbvd3d3R0lJSUqbSUlJXB3dxduV7a1tQ3RzoOujdI//vEPvPfee9i9ezciIyPb3dbf3x89e/Z84D7Jg6l7fZTMzMzQr18/YXt67XQcda/N7du38d1332Hy5MkP3Ce9drTj4eGB0NBQlbaQkJB2y3na+tyxt7eHlZUVevbsCalUSq8doncUZBO9qqmpwYULF+Dh4dHq7QkJCdi3b59K2549e5CQkAAA8PPzg7u7u8o2VVVVSE9PF7Yh2nnQtQGaZ6dYvnw5du7cibi4uAfu88qVKygrK2t3n0Q96lyfe8nlcuTm5grb02un46h7bdLS0iCTyTBx4sQH7pNeO9oZNGgQzpw5o9J29uxZ+Pj4tHmfB33umJubIzY2VmUbhUKBffv20WuH6MbQqXRi3F577TV24MABVlBQwA4dOsSGDh3KevbsyUpLSxljjD333HNswYIFwvaHDh1ipqam7B//+Ac7deoUW7x4MTMzM2O5ubnCNu+99x5zdHRkP/30Eztx4gQbPXo08/PzY3V1dZ1+fsZM02vz3nvvMXNzc/b999+z69evC/+qq6sZY4xVV1ez119/nR05coQVFBSwvXv3spiYGNanTx9WX19vkHM0Zppen6VLl7Jdu3axCxcusKysLDZu3DhmaWnJTp48KWxDrx390PTaKD300EPsmWeeadFOrx394XmemZqasnfeeYedO3eO/fvf/2bW1tbsm2++EbZZsGABe+6554S/L168yKytrdm8efPYqVOn2GeffcakUinbuXOnsM13333HLCws2KZNm1h+fj6bOnUqc3R0ZMXFxZ16fqRroSCb6OSZZ55hHh4ezNzcnHl6erJnnnmGnT9/Xrh98ODB7IUXXlC5z3//+18WFBTEzM3NWVhYGNu+fbvK7QqFgr311lvMzc2NWVhYsEcffZSdOXOmM06nS9H02vj4+DAALf4tXryYMcZYbW0tGz58OHNxcWFmZmbMx8eHpaSk0IeQljS9PnPnzmXe3t7M3Nycubm5sccee4xlZ2er7JNeO/qhzfva6dOnGQC2e/fuFvuj145+/fLLLyw8PJxZWFiw4OBgtm7dOpXbX3jhBTZ48GCVtv3797Po6Ghmbm7O/P392caNG1vs95NPPhFeYxzHsaNHj3bgWZDuQMIYY4bMpBNCCCGEENLVUE02IYQQQgghekZBNiGEEEIIIXpGQTYhhBBCCCF6RkE2IYQQQgghekZBNiGEEEIIIXpGQTYhhBBCCCF6RkE2IYQQQgghekZBNiGEEEIIIXpGQTYhhBBCCCF6RkE2IYQQQgghekZBNiGEEEIIIXpGQTYhhBBCCCF69v9vByWebKeU0AAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -948,7 +945,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABRIAAAHyCAYAAACXqjIjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1gU59oG8HvpHQsoiA0FpSmKiLHFriEaS+y9UOy9x27svReQ2KLG2GPvRqOCHSUYBRXFBigKSBX2/f7wY48rbRcXl3L/rovrsLPzzjw7u4b7PDvzjkQIIUBERERERERERESUDQ11F0BERERERERERET5HxuJRERERERERERElCM2EomIiIiIiIiIiChHbCQSERERERERERFRjthIJCIiIiIiIiIiohyxkUhEREREREREREQ5YiORiIiIiIiIiIiIcsRGIhEREREREREREeWIjUQiIiIiIiIiIiLKERuJRERERGokkUgwc+ZM2eMtW7ZAIpEgLCxMZfuYOXMmJBKJyraXnQsXLkAikeDChQvfZH+qlNtj/+V7+K18y/eViIiICGAjkYiIqEC5d+8eOnXqhAoVKkBPTw9WVlZo0aIFVq9eLbdexYoVIZFIZD+GhoZwc3PDtm3bMmwzvfGT2U+3bt1UWv+VK1cwc+ZMvH//XqXbzS2pVIpt27ahTp06KFGiBIyNjVGlShX06dMH/v7+svW+PEaampooVaoUOnXqhPv376vxFeTevHnzcPDgQXWXQYVIfvv3TURERKonEUIIdRdBREREObty5QqaNGmC8uXLo2/fvrCwsEB4eDj8/f3x6NEjhIaGytatWLEiihcvjrFjxwIAXr16hU2bNuHhw4fw8fGBl5eXbN0LFy6gSZMmGDFiBGrXri23z4oVK6JBgwYqew1LlizB+PHj8eTJE1SsWFFl282tYcOGYe3atWjXrh2aNm0KLS0tPHjwAMePH0ePHj1kZ5l9eYw+fvyIu3fvYsOGDTA0NERQUBAsLCxyVYNEIsGMGTNk+0pLS8PHjx+hq6ursrPNUlNTkZqaCj09PdkyIyMjdOrUCVu2bFHJPtKlH6vz58+jcePGKt12XsvtsU9KSoKWlha0tLTysLqMMntf1Sm//fsmIiIi1fu2aYeIiIhybe7cuTA1NcX169dRrFgxueciIyMzrG9lZYVevXrJHvfr1w+VKlXC8uXL5RqJ6Ro2bIhOnTqpvO78KiIiAuvWrYOXlxd8fHzknluxYgWioqIyjPnyGFWtWhWDBw/Gtm3bMGHCBJXUpampCU1NTZVsK506mlx5LT4+HoaGhirdZm6PvboaeYXxfSUiIqL8jZc2ExERFRCPHj2Co6NjhiYiAJQqVSrH8ebm5rCzs8OjR4+U2m90dDTGjRuHatWqwcjICCYmJnB3d0dgYGCGdVevXg1HR0cYGBigePHicHV1xc6dOwF8ms9t/PjxAABra2vZZcJZzUc3bNgwGBkZISEhIcNz3bt3h4WFBdLS0gAAN27cQKtWrWBmZgZ9fX1YW1tjwIAB2b6uJ0+eQAiB+vXrZ3hOIpEodEwbNmwIAEof0+xkNk9fxYoV0aZNG1y4cAGurq7Q19dHtWrVZPMQ7t+/H9WqVYOenh5q1aqF27dvy23zy7n0JBIJ4uPjsXXrVtn70K9fP9nzL168wIABA1C6dGno6urC0dERv/32W4Zanz9/jvbt28PQ0BClSpXC6NGjkZycrPBrTX9dp06dQo0aNaCnpwcHBwfs378/02Py999/Y8iQIShVqhTKli0re/748eNo2LAhDA0NYWxsjNatW+Pff//NsL///vsPXbp0gbm5OfT19VG1alVMmTIlw34+P/aKfLYymyPx9u3bcHd3h4mJCYyMjNCsWTO5y+U/39/ly5cxZswYmJubw9DQEB06dMi0kf2lzOZIlEgkGDZsGA4ePAgnJyfZ+3fixIlMx6YfExMTE5QsWRIjR45EUlKSbL2wsDBIJJJMz1z9/HXn9O/79OnTaNCgAYoVKwYjIyNUrVoVv/zyS46vkYiIiPIXfoVJRERUQFSoUAFXr15FUFAQnJyclB6fmpqK58+fo3jx4pk+HxcXhzdv3sgtK1GiBB4/foyDBw+ic+fOsLa2RkREBDZu3IhGjRohODgYZcqUAQD4+vpixIgR6NSpk6wZcffuXQQEBKBHjx74+eef8fDhQ+zatQvLly+HmZkZgE8Nzsx07doVa9euxdGjR9G5c2fZ8oSEBBw+fBj9+vWDpqYmIiMj0bJlS5ibm2PSpEkoVqwYwsLCMjSjvlShQgUAwJ49e9C5c2cYGBgodiA/k94kyeqYqlJoaCh69OiBgQMHolevXliyZAl++uknbNiwAb/88guGDBkCAJg/fz66dOmCBw8eQEMj8++Mt2/fDk9PT7i5ucHb2xsAULlyZQCfztT87rvvZA0pc3NzHD9+HB4eHoiNjcWoUaMAAImJiWjWrBmePXuGESNGoEyZMti+fTvOnTun1OsKCQlB165dMWjQIPTt2xebN29G586dceLECbRo0UJu3SFDhsDc3BzTp09HfHy87LX07dsXrVq1wsKFC5GQkID169ejQYMGuH37tuwS27t376Jhw4bQ1taGt7c3KlasiEePHuHw4cOYO3duprXl9rP177//omHDhjAxMcGECROgra2NjRs3onHjxvj7779Rp04dufWHDx+O4sWLY8aMGQgLC8OKFSswbNgw7N69W6ljme6ff/7B/v37MWTIEBgbG2PVqlXo2LEjnj17hpIlS8qt26VLF1SsWBHz58+Hv78/Vq1ahXfv3mU6n2p2svv3/e+//6JNmzaoXr06Zs+eDV1dXYSGhuLy5cu5en1ERESkRoKIiIgKhFOnTglNTU2hqakp6tatKyZMmCBOnjwpUlJSMqxboUIF0bJlSxEVFSWioqLEvXv3RO/evQUAMXToULl1z58/LwBk+vPkyRORlJQk0tLS5MY8efJE6OrqitmzZ8uWtWvXTjg6Omb7GhYvXizbbk6kUqmwsrISHTt2lFv+559/CgDi4sWLQgghDhw4IACI69ev57jNL/Xp00cAEMWLFxcdOnQQS5YsEffv38+wXvox+u2330RUVJR4+fKlOHHihLCxsRESiURcu3ZN6X2nAyBmzJghe7x58+YMx6hChQoCgLhy5Yps2cmTJwUAoa+vL54+fSpbvnHjRgFAnD9/XrZsxowZ4svYZ2hoKPr27ZuhHg8PD2FpaSnevHkjt7xbt27C1NRUJCQkCCGEWLFihQAg/vzzT9k68fHxwsbGJsP+s5L+uvbt2ydbFhMTIywtLUXNmjUzHJMGDRqI1NRU2fK4uDhRrFgx4eXlJbfd169fC1NTU7nl33//vTA2NpY7VkJ8+px9uZ/0Y6/oZ+vL97B9+/ZCR0dHPHr0SLbs5cuXwtjYWHz//fcZ9te8eXO5OkaPHi00NTXF+/fvs91vZu8rAKGjoyNCQ0NlywIDAwUAsXr16gxj27ZtKzd+yJAhAoAIDAwUQnz6tw5AbN68OcfXndW/7+XLlwsAIioqKtvXQ0RERPkfL20mIiIqIFq0aIGrV6+ibdu2CAwMxKJFi9CqVStYWVnhr7/+yrD+qVOnYG5uDnNzc1SrVg3bt29H//79sXjx4ky3P336dJw+fVrux8LCArq6urIz29LS0vD27VvZpYm3bt2SjS9WrBieP3+O69evq+T1SiQSdO7cGceOHcOHDx9ky3fv3g0rKyvZTWDSL/U+cuQIPn78qNQ+Nm/ejDVr1sDa2hoHDhzAuHHjYG9vj2bNmuHFixcZ1h8wYADMzc1RpkwZ/PDDD4iJicH27dsz3KQmLzg4OKBu3bqyx+lntTVt2hTly5fPsPzx48dK70MIgX379uGnn36CEAJv3ryR/bRq1QoxMTGy9/zYsWOwtLSUmzPSwMBAdoajosqUKYMOHTrIHpuYmKBPnz64ffs2Xr9+Lbeul5eX3ByGp0+fxvv379G9e3e5WjU1NVGnTh2cP38eABAVFYWLFy9iwIABcscKQLY3VcnNZystLQ2nTp1C+/btUalSJdlyS0tL9OjRA//88w9iY2Plxnh7e8vV0bBhQ6SlpeHp06cK7fNLzZs3l51hCgDVq1eHiYlJpp+JoUOHyj0ePnw4gE/vr6qkH8dDhw5BKpWqbLtERET07bGRSEREVIDUrl0b+/fvx7t373Dt2jVMnjwZcXFx6NSpE4KDg+XWrVOnDk6fPo0TJ05gyZIlKFasGN69ewcdHZ1Mt12tWjU0b95c7kdPTw9SqRTLly+Hra0tdHV1YWZmBnNzc9y9excxMTGy8RMnToSRkRHc3Nxga2uLoUOHfvWli127dkViYqKsUfrhwwccO3YMnTt3ljVeGjVqhI4dO2LWrFkwMzNDu3btsHnzZoXm6tPQ0MDQoUNx8+ZNvHnzBocOHYK7uzvOnTuHbt26ZVg/vdl64MAB9OnTBzExMVlePqxqXzbATE1NAQDlypXLdPm7d++U3kdUVBTev38PHx8fWRM6/ad///4A/ndjn6dPn8LGxiZDI65q1apyjz98+IDXr1/Lfr6c+y+zbVSpUgUAMsyfaW1tLfc4JCQEwKdm6pf1njp1SlZregNN2SkBcvPZioqKQkJCQobjAAD29vaQSqUIDw+XW/7le5t+qXxu3sPMtpe+zcy2Z2trK/e4cuXK0NDQyHLu0tzo2rUr6tevD09PT5QuXRrdunXDn3/+yaYiERFRAcQ5EomIiAogHR0d1K5dG7Vr10aVKlXQv39/7NmzBzNmzJCtY2ZmhubNmwMAWrVqBTs7O7Rp0wYrV67EmDFjFN7XvHnzMG3aNAwYMAC//vorSpQoAQ0NDYwaNUquEWBvb48HDx7gyJEjOHHiBPbt24d169Zh+vTpmDVrVq5e53fffYeKFSvizz//RI8ePXD48GEkJiaia9eusnUkEgn27t0Lf39/HD58GCdPnsSAAQOwdOlS+Pv7w8jISKF9lSxZEm3btkXbtm1lc9k9ffpUNpci8L9mKwC0b98eCQkJ8PLyQoMGDTI09FQtq7sJZ7VcCKH0PtLfz169eqFv376ZrlO9enWltrlkyRK5979ChQq5blLp6+vLPU6vd/v27bCwsMiw/tfe0VhVn62cqPI9/NrtZXbzlsyk3+hIEfr6+rh48SLOnz+Po0eP4sSJE9i9ezeaNm2KU6dOqfwu5URERJR32EgkIiIq4FxdXQEAr169yna91q1bo1GjRpg3bx4GDhwIQ0NDhba/d+9eNGnSBH5+fnLL379/L7uhQjpDQ0N07doVXbt2RUpKCn7++WfMnTsXkydPhp6eXraXkWalS5cuWLlyJWJjY7F7925UrFgR3333XYb1vvvuO3z33XeYO3cudu7ciZ49e+KPP/6Ap6en0vt0dXXF33//jVevXsk1Er+0YMECHDhwAHPnzsWGDRuU3o86ZfZemJubw9jYGGlpabKGaVYqVKiAoKAgCCHktvXgwQO59fr06SO7DB3I2AwMDQ3NsI2HDx8CgOxGKVlJv3y3VKlS2dabfolxUFBQttvLijKfLXNzcxgYGGQ4DsCnu0ZraGjkedNZGSEhIXJneoaGhkIqlcqOffrZke/fv5cbl9ll19n9+9bQ0ECzZs3QrFkzLFu2DPPmzcOUKVNw/vz5HD9rRERElH/w0mYiIqIC4vz585meUZQ+l1lml1J+aeLEiXj79i18fX0V3q+mpmaG/e7ZsyfDHIJv376Ve6yjowMHBwcIIWTzy6U3L79sSmSna9euSE5OxtatW3HixAl06dJF7vl3795lqK9GjRoAkO0lqK9fv85wOTgApKSk4OzZs9DQ0ICNjU22tVWuXBkdO3bEli1bMsznl98ZGhpmeB80NTXRsWNH7Nu3L9Om2+eXJf/44494+fIl9u7dK1uWkJAAHx8fuTGVKlWSu1y+fv36cs+/fPkSBw4ckD2OjY3Ftm3bUKNGjUzPMvxcq1atYGJignnz5mU6h2F6vebm5vj+++/x22+/4dmzZ3LrZHeWXm4+W5qammjZsiUOHTokd+ZlREQEdu7ciQYNGsDExCTb1/UtrV27Vu7x6tWrAQDu7u4APs1ZaWZmhosXL8qtt27dugzbyurfd3R0dIZ1Ffk3SkRERPkPz0gkIiIqIIYPH46EhAR06NABdnZ2SElJwZUrV2Rn6aXPYZcdd3d3ODk5YdmyZRg6dCi0tbVzHNOmTRvMnj0b/fv3R7169XDv3j3s2LFD7kYSANCyZUtYWFigfv36KF26NO7fv481a9agdevWMDY2BgDUqlULADBlyhR069YN2tra+Omnn7I9O9LFxQU2NjaYMmUKkpOT5S5rBoCtW7di3bp16NChAypXroy4uDj4+vrCxMQEP/74Y5bbff78Odzc3NC0aVM0a9YMFhYWiIyMxK5duxAYGIhRo0ZlOOMyM+PHj8eff/6JFStWYMGCBQCACxcuoEmTJpgxYwZmzpyZ4zbUoVatWjhz5gyWLVuGMmXKwNraGnXq1MGCBQtw/vx51KlTB15eXnBwcEB0dDRu3bqFM2fOyJpCXl5eWLNmDfr06YObN2/C0tIS27dvh4GBgVJ1VKlSBR4eHrh+/TpKly6N3377DREREdi8eXOOY01MTLB+/Xr07t0bLi4u6NatG8zNzfHs2TMcPXoU9evXx5o1awAAq1atQoMGDeDi4gJvb29YW1sjLCwMR48exZ07dzLdfm4/W3PmzMHp06fRoEEDDBkyBFpaWti4cSOSk5OxaNEipY5PXnvy5Anatm2LH374AVevXsXvv/+OHj16wNnZWbaOp6cnFixYAE9PT7i6uuLixYuys0Y/l9W/79mzZ+PixYto3bo1KlSogMjISKxbtw5ly5aVO1uViIiI8j82EomIiAqIJUuWYM+ePTh27Bh8fHyQkpKC8uXLY8iQIZg6darszqg5GTduHPr164cdO3agX79+Oa7/yy+/ID4+Hjt37sTu3bvh4uKCo0ePYtKkSXLrDRw4EDt27MCyZcvw4cMHlC1bFiNGjMDUqVNl69SuXRu//vorNmzYgBMnTkAqleLJkyc5XmbdtWtXzJ07FzY2NnBxcZF7rlGjRrh27Rr++OMPREREwNTUFG5ubtixY0eGm3N8rmrVqlixYgWOHTuGdevWISIiAnp6enBycoKvry88PDxyPDbAp8ugGzdujPXr12Py5MkwNTWV3WXa0tJSoW2ow7Jly+Dt7Y2pU6ciMTERffv2RZ06dVC6dGlcu3YNs2fPxv79+7Fu3TqULFkSjo6OWLhwoWy8gYEBzp49i+HDh2P16tUwMDBAz5494e7ujh9++EHhOmxtbbF69WqMHz8eDx48gLW1NXbv3o1WrVopNL5Hjx4oU6YMFixYgMWLFyM5ORlWVlZo2LChXHPd2dkZ/v7+mDZtGtavX4+kpCRUqFAhwxmun8vtZ8vR0RGXLl3C5MmTMX/+fEilUtSpUwe///677K7a+cXu3bsxffp0TJo0CVpaWhg2bFiGO7tPnz4dUVFR2Lt3L/7880+4u7vj+PHjKFWqlNx6Wf37btu2LcLCwvDbb7/hzZs3MDMzQ6NGjTBr1izZzYGIiIioYJCI3M7iTERERESZmjBhAnbt2oXQ0FDo6uqqu5x8q2LFinBycsKRI0fUXUqRM3PmTMyaNQtRUVEKnXlLREREBHCORCIiIiKVO3/+PKZNm8YmIhEREREVKry0mYiIiEjFrl+/ru4SiIiIiIhUjmckEhERERERERERUY44RyIRERERERERERHliGckEhERERERERERUY7YSCQiIiIiIiIiIqIcsZFIREREREREREREOWIjkYiIiIiIiIiIiHLERiIRERERERERERHliI1EIiIiIiIiIiIiyhEbiUREVCSZmprixYsXmT6XnJyM0qVLIzY29htXRURERESUdVZlTiV1YyORiIiKnGfPngEArKysMn1eV1cXERERMDExgRACRkZGiIyM/JYlEhEREVERlV1WZU4ldWMjkYiIipygoCDY2dkptO6TJ09gYGCAUqVK5XFVRERERESKZ1XmVFIHNhKJCplFixbBzs4OUqlU3aXkKD/X+uHDB2hoaGD58uXqLkWtNmzYgPLlyyM5OVndpSht6dKl6NatG3r37g1TU1M4ODjg0aNHAD6FMysrK/To0QOmpqb47rvv8PTpU9nYlStXwsPDA/fv34eDgwPevXsHIyMj1K5dGwDw33//oXnz5ihRogSKFy+OESNG5FhPQT6WRESUf+Tn/KRK+eV1JiYmQlNTE/Pmzct2PVVmx6KaGYpS/s4upwLZZ1XmVFI3NhKpULp37x46deqEChUqQE9PD1ZWVmjRogVWr14tW2fLli2QSCSyHy0tLVhZWaFfv36ZzkXx5fqf/0yaNEnlr+HKlSuYOXMm3r9/r/CY2NhYLFy4EBMnToSGxqd/3oMHD0bVqlVVXt/XyqzWz929exc9e/aElZUVdHR0YGFhgQYNGmDWrFmydU6ePCn3Pmhra8PGxgYzZ85ESkpKhm1+ub5EIoGJiQnc3Nxw8OBBuXWDgoIghED16tVly4QQmD17Ni5duqS6A5FLycnJmDhxIsqUKQN9fX3UqVMHp0+fVmjshQsXsvws+/v7y63br18/pKSkYOPGjXnxMuRcv34dw4YNg6OjIwwNDVG+fHl06dIFDx8+zNX27t27hytXrmDYsGGIjo6Gk5MTfvvtNwCf3t/Lly9j2LBhePPmDaytrTFjxgzZ2Lt376J69eqwt7fHjBkzMHjwYHz48AHXr18HAPTs2RPe3t54+/Ytnj59ir59+8rte8GCBdDT05Nb9i2PJRERfTt5kTuzkpusp0heCg8PzzIbfPnz+PHjDNsNDg7OsN+ffvoJZcuWzbKOL3+2bduW7etUl+DgYEilUjg5OWW7niqzozoygyLZG1AufyuTvYGMxzA/Ze9vmVOB7LMqcyqpm5a6CyBStStXrqBJkyYoX748vLy8YGFhgfDwcPj7+2PlypUYPny43PqzZ8+GtbU1kpKS4O/vjy1btuCff/5BUFBQhv/Afr7+53IKFrl9HbNmzUK/fv1QrFgxhcb89ttvSE1NRffu3WXLPn78mC+/Wcqs1nT79+9H9+7dUb58eQwcOBBlypTBs2fPcObMGfz++++yP6KBgYEAgGXLlsHc3BwJCQnYs2cPZs2aheTkZMyfP19uu+nrr1q1CsWLF4dUKkV4eDhWrVqFzp074969e7JLCNzc3JCYmAhdXV3Z+IcPH2LGjBkKXxKbl/r164e9e/di1KhRsLW1xZYtW/Djjz/i/PnzaNCggULbGDFihOyby3Q2NjZyj/X09NC3b18sW7YMw4cPh0QiUdlr+NLChQtx+fJldO7cGdWrV8fr16+xZs0auLi4wN/fX+l/Z/fu3cPMmTNRp04dAICtrS2EEAA+hbNp06ahXr16AIDevXtnaCT26tVL9nvTpk3ltv3o0SOkpKRAKpXCxMQEtWrVkns+NTU1w7+7b3ksiYjo28jr3Pml3GQ9RfKSrq4utm/fLhuTmJgIb29vNGnSBAMGDJAtl0gkqFSpktx2NTQ0cOTIETg4OGTY7+dNtS9z2JdatWqV7etUl3v37gEAHB0ds11PldnxW2cGRbM3oFz+ViZ7AxmPYX7K3t8ypwLZZ1XmVFI7QVTI/Pjjj8Lc3Fy8e/cuw3MRERGy3zdv3iwAiOvXr8utM3HiRAFA7N69W255VuvnlcWLFwsA4smTJwqPqV69uujVq5fcMg8PD1GhQgXVFveFRo0aib59+yo1JrNahRAiOjpamJqaivr164vk5OQMz7948UL2e8+ePYWenp5ITU2VLUtOThYWFhbC2to6w9iePXuKYsWKZVi+YcMGAUDs2rUr25p37NghAIiQkJBs11OWsscvICBAABCLFy+WLUtMTBSVK1cWdevWzXH8+fPnBQCxZ88ehfZ348YNAUCcPXs2y3Wio6PFvn37snx+586d4sOHD9nu5/Llyxne84cPHwpdXV3Rs2dP2bL69esLAJn+TJkyRQghRGpqqtDT0xMvX76UjWvXrp3YunWrSEtLE3p6enKfpS1btohWrVoJIYRIS0sTBgYG4s2bN0IIIRwcHIS/v79cXceOHRP169cXpUuXFuPHjxcfP36Ue/7XX38Vmf2JVeRYEhFRwZFXuTMrucl6yuYlIYS4fv26ACCWLFmS7XZNTEyEu7u7aNCggdxz0dHRAoCYNGmS3PqmpqZCKpVm9xKFEFnnRHUYM2aMMDAwUKjuL31NdsxtZlA2VyqTvYVQ7vOUn7L312ZVRXOqEDln1exyqhAi26zKnEr5AS9tpkLn0aNHcHR0zPQsPkUmoW3YsKFsO8p6+vQphgwZgqpVq0JfXx8lS5ZE586dERYWJrdeXFwcRo0ahYoVK0JXVxelSpVCixYtcOvWLQDAzJkzMX78eACAtbW17FKAL7fzuSdPnuDu3bto3ry5wvW+ePECenp6ct80A8CZM2egra2N0aNHK7wtZWRX65kzZxATEwMPDw/o6OhkeL5MmTKy3wMDA+Ho6AhNTU3ZMh0dHZQpUwYxMTEZxgYGBsLFxSXD8tevXwMA7O3tZctatGiB+vXryx67ubmhZ8+eAD59YyiRSGSfsWfPnsHT0xOVKlWCnp4eLCws8OOPPyI0NDSnQ5Ere/fuhaamJry9vWXL9PT04OHhgatXryI8PFzhbcXFxSE1NTXbdWrVqoUSJUrg0KFDWa6zbt06dOnSBQcOHMjwnJ+fH3r06IGtW7dmu5969epleM9tbW3h6OiI+/fvy5b9888/EEJk+jNnzhwAQGhoKExMTGBpaSkbl34ZSGhoKJKSkmBubi577uDBg3B3d5eNNTU1RcmSJZGSkoKQkJAM3zK7u7vjn3/+QUBAAHbv3o1z585l+9rSKXIsiYio4PiWuTM3WQ9QPi8Bn/5mAkC1atWy3W61atXQpk0bXL16FW/fvpV7DkCGMxJr1qyZ45lOWb1OVebWJk2a4Pvvv8etW7fg7u4OY2NjWFlZYeXKlRnWvXfvHuzt7eHv74/GjRvD0NAQdnZ22LVrl9x6ymRHIOf8+K0ygzLZG1Du86RM9gbkj+HXHr8vfW1WVTSnAjln1exyKoBssypzKuUHbCRSoVOhQgXcvHkTQUFBuRqf3qzL7JILAIiJicGbN2/kftJdv34dV65cQbdu3bBq1SoMGjQIZ8+eRePGjZGQkCBbb9CgQVi/fj06duyIdevWYdy4cdDX15f9Efr5559ll3IsX74c27dvx/bt2+X+mHzpypUrAJDpH+usWFlZwdPTE7///rts8t7//vsPnTt3hru7O5YuXarwtpSRXa3x8fEA/hdgs5KSkoIHDx7A2dlZbvnLly8RHByc4ZLd9PXt7e1l71tISAjWrFmDhQsXYtiwYXLb+vyPOQBMnDgRTk5OsLW1lb0fv//+OyIiIuDq6orLly/Dy8sLa9euxaBBg/DixQtoaeXN7BG3b99GlSpVYGJiIrfczc0NAHDnzh2FttO/f3+YmJhAT08PTZo0wY0bN7Jc18XFBZcvX87y+YkTJ6J169bo3r07zp49K1u+f/9+DBw4EL169cLgwYMVqutzQghERETAzMxMqXH37t2Tez/j4uLw4sULODg4ICgoCFpaWti1axdSU1Ph6+uLe/fuwdPTE4D8ex8XFwcAcnP+7Nu3D0+ePAEAvHv3DikpKUpdcpPTsSQiooIjr3Pn53KT9ZTNS+nSc9jnWSir7bZp0wZpaWk4duxYhvHp+01f387OLkOOfvPmDT5+/Jjj61Rlbr137x7ev3+Pn376CbVq1cKSJUtgaWmJ0aNHyy5l/nzdDx8+oGvXrmjWrBkWLFgAiUSCHj16ICAgQO41K5IdASicH79FZlA0ewPKfZ6Uzd7pNaQfQ1Ucv8/lRVbNi5wKINusypxK+YI6ToMkykunTp0SmpqaQlNTU9StW1dMmDBBnDx5UqSkpMitl36JyZkzZ0RUVJQIDw8Xe/fuFebm5kJXV1eEh4dnun5mP+kSEhIy1HP16lUBQGzbtk22zNTUVAwdOjTb16Hspc1Tp04VAERcXJzc8pwud3n+/LnQ1dUVgwcPFm/evBGVK1cWNWrUyPEy1M8pewlFVrUKIURYWJgwMDAQAIStra2YMGGCOHfunNzlE0IIcfv2bQFA/PrrryIqKkq8fPlSnDhxQjg7OwtDQ8MMlw6lr//lj7a2tlixYoXcuhEREQKAWLdundzy8uXLi379+sktW7JkidDT0xMxMTEKv/4vKXv8HB0dRdOmTTMs//fffwUAsWHDhmzHX758WXTs2FH4+fmJQ4cOifnz54uSJUsKPT09cevWrUzHeHt7C319/Wy3m5iYKBo1aiSMjIyEv7+/OHPmjNDV1RVt2rTJcEmForZv3y4ACD8/P6XGTZ8+XYwbN072+MqVK8LJyUkIIcSsWbPEkCFDhLu7uzA1NRXNmjUTjx8/lhs7fvx42eM+ffoIIyMjUadOHSGEEMOHDxelS5cWhoaGonr16uLIkSMZ9p/VJSNCKHYsiYioYMir3JmZ3GQ9ZfNSuiZNmghzc/Msa0nfbnrmqFatmujcubPs+QEDBghdXV1Zfssqh6X/PHjwIMfXKYRqcuvLly8FAGFubi533IODgwUA2eWlQggRFRUlAIgSJUrIZfJnz54JHR0d4e3tLYRQLjsKoXh+zE1mUDZXKpq9hVDu86RM9hYi82P4tcfvS6rOqnmRU4XIPqsyp1J+wEYiFUrXrl0THTp0kP1RTA8Lhw4dkq2TVWOwYsWK4uTJkxm2mb7+2rVrxenTp+V+MpOSkiLevHkjoqKiRLFixcSoUaNkz1WoUEG4urpmmHPkc8o2EgcPHiy0tLQyLFdkjsRhw4YJXV1dUadOHVGmTBnx/PnzLNdNSUkRUVFRcj/16tUT3bp1y7A8LS1NqVrTBQYGii5dughDQ0PZ+1K+fHm5Y71169ZM37/GjRuL27dvZ9hm+vpbt26VvW+///67qF27ttDV1RVXrlyRrXv69GkBQFy6dEm27P379wKAWLZsmdx2p06dKjQ1NcX58+ezfD2qPn6VKlUS7u7uGZY/evRIABDLly9XqJbPhYSECH19fdk8gV9Kn8MpPj4+2+3ExMQIFxcXUaJECWFkZCS+//77TBvsirh//74wMTERdevWzTTM5mfZBTRFjyURERUMeZE7M5ObrKdsXkpnZmYmmjVrluXz6dtNz0+TJ08WJiYmsgZqrVq1hIuLS4b1t2zZkiFHnz59Wm7+wZxyojK5NTMnT54UAMSaNWvkloeEhGSYty99XumlS5dm2E61atVEixYthBDKZUchFM+POWUGVeRKIRTL3kIo93lSJntndgxVcfwyo6qsypxKRRkbiVSoJScni2vXronJkycLPT09oa2tLf79918hRMbG4N69e8WPP/4ojIyMxIULFzJsS5GbrSQkJIhp06aJsmXLColEIvcHtn///rL1du/eLfT09ISGhoaoXbu2mDFjhnj06JHctr5lIzEsLEwAEPr6+uLGjRvZrpseqBT5yar2nAJiuuTkZHH+/HnRv39/IZFIRMmSJWV/1MaMGSMAiKNHj8qCiaOjozA2NpY7uyzdmDFjhJaWVoYzBJ4/fy4AiB49esiWLVu2TAAQ79+/ly27ePGi7EyCzz18+FBYWloKAMLFxUUsWrRIbuLkvDh+X3tGYla6desmdHR0Mg1DEyZMEAAUClrnzp2TvYasznDMyatXr0SlSpVEuXLlsm2451fZBTRljiURERUcqsydmclN1lM2LwnxvzP2Pv8SPLPtSiQS2VmDly9fluWk9BtJfH4mWXoOy+xmHoq+znTK5NbMLFmyRADI0IA8fPhwhuyyatUqAUDuxjnpnJ2dRbt27YQQymVHIRTPjzllBlXkys9ll72FUO7zpEz2zuwYquL4ZeVrsypzKhV1eTOBF1E+oaOjg9q1a6N27dqoUqUK+vfvjz179mDGjBmyddzc3ODq6goAaN++PRo0aIAePXrgwYMHMDIyUmp/w4cPx+bNmzFq1CjUrVsXpqamkEgk6NatG6RSqWy9Ll26oGHDhjhw4ABOnTqFxYsXY+HChdi/f7/shg/KKlmyJFJTUxEXFwdjY2Olxs6dOxcAkJqaihIlSmS7rrOzM06fPi23bOzYsbCwsJDdICadhYXFV9Wqo6ODxo0bo3HjxoiKisKRI0fw4MED1KxZE3fv3kWFChXw448/ytZ3cXGBg4MD1q1bh8WLF8tt6+7du6hcuTK0tbXllltZWcHAwADPnz+XW7d8+fIwNTWVW5b++j9na2uLhw8fYv/+/Th8+DCmTZuG2bNn48SJE3ITbqdTxfGztLTEixcvMix/9eoVgIyTYiuqXLlySElJQXx8fIb5F9+9ewcDAwPo6+tnu43Hjx+jZ8+esLOzQ2JiIjp27IjLly/LTSadk5iYGLi7u+P9+/e4dOlSrl9PfqXosSQiooIlr3NnbrKesnkpfQyQ9fyI6etUqlRJVvN3330HMzMzHD58GGXKlEFSUlKGuaetra0zvZmHsq9TmdyaVe0WFhawsrKSWx4YGAgtLS3ZPHXAp7nsypQpk+HGOQkJCfjvv//Qtm1b2TYVzY6A4vkxp8ygilz5ueyyd/prUvTzpEz2Tl//82OoiuOXma/NqsypRLzZChUh6aEtvdmSGU1NTcyfPx8vX77EmjVrlN7H3r170bdvXyxduhSdOnVCixYt0KBBA7x//z7DupaWlhgyZAgOHjyIJ0+eoGTJkrJgBCDHO9p9KX0S3fTJdRW1ePFibNq0CWvWrIGWlpZcDZkpXrw4mjdvLvdTvHhxWFpaZliup6enslp1dXUBQC5cfHknQXt7e7i6umLfvn0Zxt+9ezfDneEAICoqCgkJCXLh6svJstOXWVpaZjqZspGREfr06YM9e/YgMDAQycnJ+PPPPzN9Hao4fjVq1MDDhw8RGxsrtzx9wu8aNWpkOi4njx8/hp6eXqb/R+bJkyeZHr/PvXr1Ci1atIC2tjZOnz6N06dPIz4+Hi1btkR0dLRCNSQlJeGnn37Cw4cPceTIEbkwX1gociyJiKhgy4vcmZv8pGxeAiC72UhOjcTPn9fQ0IC7uzsOHz6c6R2bs8phmcnudSqbWzPz5Y0uPq+xSpUqssyZvu7ndydOt3nzZiQnJ+Pnn3+WjVUmOwKK5cecMoMqcmVWvsze6a9J0c+TMtk7ff0vPzNfe/y+9LVZlTmV6BM2EqnQOX/+PIQQGZan30muatWq2Y5v3Lgx3NzcsGLFCiQlJSm1b01NzQz7Xr16NdLS0mSP09LSEBMTI7dOqVKlUKZMGSQnJ8uWGRoaAkCmTcjM1K1bFwCyvfPulw4ePIhJkybh119/xdChQ+Ht7Y1t27Yp3YxUVla1/vPPP0hMTMyw/t27d3HixAnUrFkTlSpVwuvXrxEZGQknJ6cM67Zq1QpPnjyR3QEbgGz9zP4oLly4EADQsWNHAJ/en+Dg4Axh8NmzZyhbtqzcss/v2J1OX18faWlpefrtZKdOnZCWlgYfHx/ZsuTkZGzevBl16tRBuXLlZMvTvzH/vNaoqKgM2wwMDMRff/2Fli1bQkMj45+GW7duoV69elnW9O7dO7Rq1QofPnzAmTNnULZsWdja2uLkyZMIDw9H69atZXcFzEpaWhq6du2Kq1evYs+ePbLPSWGT07EkIqKC41vmTmWznrJ5Kd3du3ehqamZZZMkfbtfNuPatGmDx48fY9euXQD+dyZZ+vqK3jk2q9epityalpaG+/fvZ9pIDAwMlMt/QggEBQXhxYsXePTokWx5VFQUFixYgLZt26JGjRpKZUdAufyY15lB0ewNKPd5UiZ7A5nnb1Ucv899bVZlTiX6H17aTIXO8OHDkZCQgA4dOsDOzg4pKSm4cuUKdu/ejYoVK6J///45bmP8+PHo3LkztmzZgkGDBim87zZt2mD79u0wNTWFg4MDrl69ijNnzqBkyZKydeLi4lC2bFl06tQJzs7OMDIywpkzZ3D9+nUsXbpUtl6tWrUAAFOmTEG3bt2gra2Nn376SdZg/FKlSpXg5OSEM2fOYMCAATnWevPmTfTs2RM9e/bElClTAAATJkzAhg0bMHfuXGzatEnh162srGqdNGkSHj58iM6dO8PZ2Rmpqam4c+eO7Jhu374dAGTfdH/5jSgAtGzZEnPnzsXRo0dl4SV9/cjISPz+++8APoWQU6dO4fjx4+jWrRs6d+4MAAgJCUFSUlKGbVtbW+PcuXNYtGgRypQpA3t7eyxZsgRBQUFo27YtrK2t8erVK/j4+KBs2bLw8vJS8VH7nzp16qBz586YPHkyIiMjYWNjg61btyIsLAx+fn5y6167dg1NmjTBjBkzMHPmTABA165doa+vj3r16qFUqVIIDg6Gj48PDAwMsGDBggz7u3nzJqKjo9GuXbssa1q3bh3Cw8Nx4cIF2NraypbXqFEDR44cQcuWLbF161YMGTIky22MHTsWf/31F3766SdER0fL3qt0vXr1UuTw5GuKHEsiIio4vmXuVDbrKZuX0t29exc2NjZZXtqY2RmHwKdmkra2tuzy5vT8m75+VFRUhr/twKeG4+c1ZvY6lc2tEokEjRo1woULF+SWp+e8LxuJiYmJCA0NRd++fWXLwsLC8OHDB9SqVQutW7fGiBEjkJCQgDVr1kBDQ0P2ha4y2bFWrVoYPny4QvnxW2QGRbM3oNznSZnsDWR+DL/2+H3pa7MqcyrRZ9Q7RSOR6h0/flwMGDBA2NnZCSMjI6GjoyNsbGzE8OHD5SZKzu7mKWlpaaJy5cqicuXKshtPKHKzlXfv3on+/fsLMzMzYWRkJFq1aiX+++8/UaFCBdG3b18hxKdJjMePHy+cnZ2FsbGxMDQ0FM7OzmLdunUZtvfrr78KKysroaGhodAkycuWLRNGRkZyk+NmNgF3eHi4sLS0FPXr1xdJSUlyzw0ePFhoa2tnOQF3Zho1aiR7fYrKrNb9+/eL7t27CxsbG2FoaCj09PSEvb29GD9+vIiMjJStt2jRIgFABAYGZthuSkqKMDY2Fk2aNMmw/uc/xsbGon79+sLPz0/uToF//vmnACCbHD3dixcvRKtWrYSRkZEAIFatWiX8/PxE06ZNhbm5udDV1RU2NjZixIgRcrUqIjfHLzExUYwbN05YWFgIXV1dUbt2bXHixIkM66VPwj1jxgzZspUrVwo3NzdRokQJoaWlJSwtLUWvXr1ESEhIpvuaOHGiKF++vNxx+tLHjx9FUFBQls8HBgZmO16IT8fhy/fp85+CJKtJrBU5lkREVHDkVe7MiqJZTwjl85IQn/6e6+joiM6dO2dZQ/p2Q0NDMzzXpEkTAUD88MMPGdbP6mfbtm3Zvk5lc2tcXJwAILp165Zhu+k578vMcu3aNQFAHDlyRLbs0KFDAoC4ffu2GDp0qDA1NRXFihUTffr0kbuxhzLZUQihcH7MbWZQJlcqmr2FUO7zpEz2FiLzY/i1x+9LX5tVmVOJ/kciRCbn4hNRgRQTE4NKlSph0aJF8PDwAAB4enrizJkzCAsLU29xX8isVsp/kpOTUbFiRUyaNAkjR45UdzkFxpw5czBt2jS5y914LImI6GsVpKz3Nb4mJx47dgxt2rRBYGBgpmfPFQTMDJSXmFPpa3GORKJCxNTUFBMmTMDixYvl7hL99OlTSCSSTOc0UZesaqX8ZfPmzdDW1lbqEv+ibMWKFZBIJJg2bVqG53gsiYjoaxWkrPc1viYnnj9/Ht26dSuwTUSAmYHyBnMqqQrPSCQq5F6/fi27YYuuri6sra3VWxBRIfbu3TtERETIHis6sTwREVFuMesRkSKYU0lV2EgkIiIiIiIiIiKiHPHSZiIiIiIiIiIiIsoRG4lERERERERERESUIzYSiYiIiIiIiIiIKEda6i7ga0ilUrx8+RLGxsaQSCTqLoeIiIhIaUIIxMXFoUyZMtDQ4He8BREzKRERERVkyuTRAt1IfPnyJcqVK6fuMoiIiIi+Wnh4OMqWLavuMigXmEmJiIioMFAkjxboRqKxsTGATy/UxMREzdUQERERKS82NhblypWT5RoqeJhJiYiIqCBTJo8W6EZi+qUjJiYmDG1ERERUoPGS2IKLmZSIiIgKA0XyKCfiISIiIiIiIiIiohyxkUhEREREREREREQ5YiORiIiIiIiIiIiIcsRGIhEREREREREREeWIjUQiIiIiIiIiIiLKERuJRERERERERERElCM2EomIiIiIiIiIiChHbCQSERERERERERFRjthIJCIiIiIiIiIiohyxkUhEREREREREREQ5YiORiIiIiIiIiIiIcsRGIhEREREREREREeWIjUQiIiIq1IQQiP0gxRV/KeLjhbrLISIiIiJSiBACscmxuBJ+BfEp8eouBwAbiURERFTIxcUL2DlJUb+uBmrUBBISch7D5iMRERERqVtcShzs1tqh/m/1UWNjDSR8VCDI5jE2EomIiKhQCwoCXj3VAgCEhkgQFJTzmNw0H4mIiIiIVCkoMgiv4l4BAEKjQxEUqUCQzWNsJBIREVGh5uQEWFZIBQDY2Ao4OeU8JjfNRyIiIiIiVXIq5QRLY0sAgE0JGziVUiDI5jEtdRdARERElJcMDIClB6PwLEQbg91LwMBAkuOY9Objq6da/998zHkMEREREZEqGWgbYFGbRQh/H46hzkNhoG2g7pLYSCQiIqLCT1cfsK3+EQYKZq/cNB+JiIiIiFRNV0sXNmY2+aKJCPDSZiIiIqJMKdt8JCIiIiIq7NhIJCIiIiIiIiIiohyxkUhEREREREREREQ5YiORiIiIiIiIiIiIcsRGIhERERERERERUT4THR2t7hIyYCORiIiI6Atnz56V/f7vv/+qsRIiIiIiKmqEENi9ezdcXFzUXUoGbCQSERER/b/o6Gj069cP7dq1ky2LjYlVY0VEREREVJQ8f/4c7dq1Q7du3fDmzRt1l5MBG4lERERU5AkhsGfPHtjb22Pr1q1ISUrCJZ+laGpphAb166m7PCIiIiIq5KRSKTZu3AhHR0ccPnwY2tramDxxMlqXaY0OFTtAU6Kp7hIBAFrqLoCIiIhInV68eIGhQ4fi0KFDAAAHBwds2rQJdevWVXNlRERERFQUPHz4EF5eXrh48SIAoE6dOvDz84Ojo6OaK8uIZyQSERFRkSSVSuHj4wMHBwccOnQI2tramDFjBm7dusUmIhERERHluY8fP2LBggWoXr06Ll68CAMDA6xYsQKXL1/Ol01EgGckEhERUREUEhICLy8v/P333wAANzc3+Pn5wcnJSc2VEREREVFRcOvWLXh6euL27dsAgJYtW2Ljxo2oWLGiegvLAc9IJCIioiIjNTUNixYtQvXq1fH333/DwMAAy5cvx5UrV9hEJCIiIqI8l5iYiEmTJsHNzQ23b99G8eLFsWXLFpw4cSLfNxEBnpFIRERERUjjxo0QcPUqAKBFixbYuHEjrK2t1VwVERERERVmQgikiTRcvnwZXh5eCAkJAQB06dIFq1atQunSpdVcoeLYSCQiIqJCLTExSfb7nTt3ULx4cSxfvhx9+vSBRCJRY2VEREREVBREx0TjXPQ5wAp49vwZypQpg/Xr16Nt27bqLk1pvLSZiIiICq2LFy/iu+++kz3u0OFnBAcHo2/fvmwiEhEREVGe++uvv+Bay1X2uP+A/ggODi6QTUSAjUQiIiIqhGJjYzF48GA0atQIjx6FypZv374NFhYWaqyMiIiIiIqCiIgIdO3aFe3atcOrV69ky1evWg1TU1M1VvZ1eGkzERERFSqHDx/G4MGD8eLFCwBA39690aiUHkxNTaHJsxCJiIiIKA8JIbB9+3aMHj0a0dHR0NTUxOjRo9VdlsqwkUhERESFQmRkJEaMGIHdu3cDAGxsbODr64vGjRurtzAiIiIiKhLCwsIwcOBAnDp1CgBQo0YN+Pn5oXqN6jgQdkDN1akGL20mIiKiAk0IgW3btsHe3h67d++GpqYmJkyYgLt377KJSERERER5Li0tDStXroSTkxNOnToFXV1dzJ8/H9euXYOLi4u6y1MpnpFIREREBVZYWBgGDRqEkydPAvjft76FLbARERERUf7077//wtPTE/7+/gCAhg0bwtfXF1WrVlVzZXmDZyQSERFRgfP5t74nT56Erq4u5s2bVyi/9SUiIiKi/CclJQWzZs1CzZo14e/vD2NjY6xfvx4XLlwotE1EgGckEhERUQEhhECaELh//z68i9C3vkRERESUfwgh4H/NH0OHDsXtm7cBAD/99BPWrVuHsmXLqrm6vKf0GYm3bt3CvXv3ZI8PHTqE9u3b45dffkFKSopKiyMiIiJKl5icgr9CIhCiVQK3AwOLzLe+lBHzKBEREalDfHw8xk0Yh+fmzzH5z8mwKmeFP/74A4cOHSoSTUQgF43EgQMH4uHDhwCAx48fo1u3bjAwMMCePXswYcIElRdIREREFBAQgPr168se/+j+I4KDgzFo0CBoaHCmlqKGeZSIiIi+tdOnT8PJyQlr166VLbt16xa6du0KiUSixsq+LaWT98OHD1GjRg0AwJ49e/D9999j586d2LJlC/bt26fq+oiIiKgIi4+Px+jRo1G3bl3cvx8sW777z91F5ltfyoh5lIiIiL6V6Oho9OvXDy1btkRYWBjKlSsne65EiRJqrEw9lG4kCiEglUoBAGfOnMGPP/4IAChXrhzevHmj2uqIiIioyEr/1nfFihUQQqB79+6y54rSt76UEfMoERER5TUhBPbs2QN7e3ts3boVEokEI0aMwPUb19Vdmlop3Uh0dXXFnDlzsH37dvz9999o3bo1AODJkycoXbq0ygskIiKiouXLb33Lly+P48ePw9fXV92lUT7BPEpERER56cWLF+jQoQO6dOmCyMhI2Nvb4/Lly1i5ciWMDI3UXZ5aKd1IXLFiBW7duoVhw4ZhypQpsLGxAQDs3bsX9erVU3mBREREVDRk9a3vv//+ix9++EHd5VE+ouo8+uLFC/Tq1QslS5aEvr4+qlWrhhs3bqi6bCIiIsrnpFIpfHx84ODggEOHDkFLSwvTp0/H7du3UbduXXWXly9oKTugevXqcnfJS7d48WJoamoqXcCLFy8wceJEHD9+HAkJCbCxscHmzZvh6uqq9LaIiIioYHrx4gWGDh2KQ4cOAQDs7e3h5+fHwEaZUmUefffuHerXr48mTZrg+PHjMDc3R0hICIoXL66qcomIiKgACA0NhZeXFy5cuAAAcHNzw6ZNm1CtWjX1FpbPKN1IBID3799j7969ePToEcaPH48SJUogODgYpUuXhpWVlcLbYXAjIiIq2qRSKTZt2oTx48cjNjYW2tramDx5Mn755Rfo6uqquzzKx1SVRxcuXIhy5cph8+bNsmXW1tZ5UTIRERHlQ6mpqVi2bBlmzJiBpKQkGBgYYM6cORgxYkSuTpgr7JS+tPnu3buwtbXFwoULsWTJErx//x4AsH//fkyePFmpbX0e3Nzc3GBtbY2WLVuicuXKypZFRJQ3EhKAa9c+/W9ejuG+uK98sC8hBGIj43FlczDio+LzbEy6oGtB6OTQDyMHjkJsbCzc3Nxw69YtzJo1K8smYnIiEHJXGwlvEpXa1zd9vyjPqTKP/vXXX3B1dUXnzp1RqlQp1KxZk/NxElH+ks/zA/fFfalynBACse9e48opP8S/j1J4N7kd5//PebT9vjJmTJ2IpKQkNG/eHPfu3cPo0aOzbSImpyYj9E0oEmIUv8lbbsYAyH+ZVCipWbNmYvz48UIIIYyMjMSjR4+EEEJcvnxZVKhQQalt2dvbi1GjRolOnToJc3NzUaNGDeHj45Pl+klJSSImJkb2Ex4eLgCImJgYZV8GEVHO4uOFsLUVAvj0v/HxeTOG++K+8sm+YiI+CMsKHwUghI3OExEflfO43Iz5+PGjmD9tvqiIBwIQoiIeiKW/LhWpqakq35cQ4tu+X7kQExPDPKMkVeZRXV1doaurKyZPnixu3bolNm7cKPT09MSWLVuyHMNMSkTfTAHID9wX96XKcTHRr4TlUkuBmRA2Y3VE/PsohXal7LjExEQxedxIUWE4BGZCVBwO4bNupZBKpXlSY25f17fKpMrkUaXPSLx+/ToGDhyYYbmVlRVev36t1LYeP36M9evXw9bWFidPnsTgwYMxYsQIbN26NdP158+fD1NTU9lPuXLllC2fiEhxQUFASMin30NCPj3OizHcF/eVT/YVdPQpXj39NOtJaEpFBB1+ovIxd+7cQZ06dbDt1/0IQxUAQBiqoIFVqxwvHclNfZ8GfsP3i74JVeZRqVQKFxcXzJs3DzVr1oS3tze8vLywYcOGLMcwkxLRN1MA8gP3xX2pclzQ9aN4FfcKABBqnIKggMOK7UqJcZcuXYKzszMO7lqJpyU/LQsrCThXNoZEIsmTGnP7uvJlJlW2S2lubi5u3bolhJD/BvjUqVOibNmySm1LW1tb1K1bV27Z8OHDxXfffZfp+vz2l4i+qXz+bR33xX2pel95eUZiQkKCmDRpktDU1BQAhIWppaisGfqpRO3HCu3rQ+QHYaPzRKkxQgiekVgIqTKPli9fXnh4eMgtW7dunShTpkyWY5hJieibKQD5gfvivlQ5Li/PSIyJiRGDBg0SAAQAUcGqlKg8SlNgJoTtGG2F9/XhXaSwGauj1LjcjBFC5MszEpVuJHp4eIj27duLlJQUYWRkJB4/fiyePn0qatasKUaOHKnUtnIT3D7H4E1EeS4+XoiAAOX+g52bMdwX95UP9vUxLU3svP1SLPgzSsREfFDZmL///lvY2trKQlvnzp3Fq1evRHxUvAj4LUjxhqAQuRrzaeA3fL+UxDyjPFXm0e7du4sGDRrILRs1alSGL7uzw/eQiPJUPs8P3Bf3pcpxH9M+iu0Ptot5AfNETPQrhXeT07jDhw+LsmXLyvKop6enePfunYh/HyUCTv6meGPv/+VmXG739S0yqTJZRiKEEMqcwRgTE4NOnTrhxo0biIuLQ5kyZfD69WvUrVsXx44dg6GhocLb6tGjB8LDw3Hp0iXZstGjRyMgIABXrlzJcXxsbCxMTU0RExMDExMTZV4GERERfSFVKsVfIREAgLa2paGlkfMMKNmNiY2NxcSJE2WXiJYpUwbr1q1Du3bt8qD6got5RnmqzKPXr19HvXr1MGvWLHTp0gXXrl2Dl5cXfHx80LNnT4W2wfeQiIhINVKlqTgQdgAA0KFiB2hpaH3VuMjISIwcORJ//PEHAKBSpUrw9fVF06ZN86D6gkuZLKPYO/IZU1NTnD59Gv/88w/u3r2LDx8+wMXFBc2bN1e60NGjR6NevXqYN2+eLLj5+PjAx8dH6W0RERFR/nH48GEMHjwYL168AAB4e3tj4cKFKFasmHoLo0JBlXm0du3aOHDgACZPnozZs2fD2toaK1asULiJSERERPmPEAI7duzAqFGj8PbtW2hoaGDMmDGYNWsWDAwM1F1egaZ0IzFdgwYN0KBBg6/aOYMbERFR4RIZGYkRI0Zg9+7dAAAbGxv4+vqicePG6i2MCiVV5FEAaNOmDdq0aaOCioiIiEjdnj17hmFDhuH48eMAgOrVq8PPzw+urq5qrqxwUKiRuGrVKoU3OGLECKUKYHAjIiIqHHbu3InRI0ciOjoampqaGDt2LGbOnAl9fX11l0aFQF7mUSIiIio8XGu74t2bd9DR0cH06dMxYcIEaGtrq7usQkOhRuLy5csV2phEImFwIyIiKqK8vb2RnJiIGjVqwM/PDy4uLuouiQoR5lEiIiLKyoMHDwDdT78nxCegfv362LRpE+zs7NRbWCGkUCPxyZMneV0HERERFTBpaWlYt349yrboCADQ1dXFjGnTMG7cOH7rSyrHPEpERERfSklJwcKFC7F46WL43fIDACxbvgyDvAZBQ4EbB5Lycj1HIvBp8krg0ze/REREVHQEBwfDw8MDtwMDsfP2p0aiv78/7KtWVXNlVNQwjxIRERVN165dg6enJ+7duwcA+H3s71ixYgUqeldkLshDuWrP+vn5wcnJCXp6etDT04OTkxM2bdqk6tqIiIgon0lJScGsWbNQo0YN+Pv7Q0dLC5F/H0GbyqVgV6WKusujIoR5lIiIqGiKj4/H2LFjUbduXdy7dw9mZmbYsWMHDu4/COsK1mwi5jGlz0icPn06li1bhuHDh6Nu3boAgKtXr2L06NF49uwZZs+erfIiiYiISP0CAgLg4eGBf//9FwDw008/Yd26dShbtqyaK6OihnmUiIioaDp79iy8vLxkU5707NkTy5cvh7m5uZorKzqUbiSuX78evr6+6N69u2xZ27ZtUb16dQwfPpzBjYiIqJCJj4/H1KlTsXLlSgghYG5ujtWrV6NLly78xpfUgnmUiIioaHn37h3Gjh2LzZs3AwDKlSuHDRs24Mcff1RzZUWP0o3Ejx8/wtXVNcPyWrVqITU1VSVFERERUf5w6tQpDBw4EGFhYQCA3r17Y/ny5ShZsqR6C6MijXmUiIio6Ni3bx+GDh2KiIgISCQSDBkyBPPnz4exsbG6SyuSlJ4jsXfv3li/fn2G5T4+PujZs6dKiiIiIiL1evfuHfr164dWrVohLCwM5cuXx/Hjx7Ft2zY2EUntmEeJiIgKv9evX+Pnn39Gp06dEBERATs7O1y6dAlr1qxhE1GNcnXXZj8/P5w6dQrfffcdgE9zJj179gx9+vTBmDFjZOstW7ZMNVUSERHRN+Xi4oLnz55BIpFg+PDhmDt3LoyMjNRdFpEM8ygREVHh5uLigqiIKGhpaWHSpEmYMmUK9PT01F1Wkad0IzEoKAguLi4AgEePHgEAzMzMYGZmhqCgINl6nDOJiIioYHn58hXSL1aIioqCg4MDNm3aJLuZBVF+wTxKRERUOD1+8hj4/z/fsbGxcHV1hZ+fH6pXr67ewkhGIoQQ6i4it2JjY2FqaoqYmBiYmJiouxwiIqICSSqVYtOmTZgybTo2XrwNALj3px8mTRgPXV1dNVdX+DHPFHx8D4mIiL5OamoqVqxYgTnz58D3ui8AIPyvcIwYNgJaWrm6mJaUoEyWUXqORCIiIio8QkJC0LRpUwwcOBBvIiOwzLMrbD6+xfSpU9hEJCIiIqI8FxgYiLp162L8+PGIiY7BpqGb4CycMXrkaDYR8yGl35GkpCSsXr0a58+fR2RkJKRSqdzzt27dUllxRERElDdSU1OxdOlSzJw5E0lJSTAwMMDcuXMxfPhwaGpqqrs8omwxjxIRERV8SUlJ+PXXX7Fo0SKkpqaiWLFiWLp0Kfr378/pSfIxpRuJHh4eOHXqFDp16gQ3Nze+uURERAXM7du34eHhgdu3P13G3KJFC2zcuBHW1tZqroxIMcyjREREBds///wDT09PPHjwAADQsWNHrF69GpaWlmqujHKidCPxyJEjOHbsGOrXr58X9RAREVEeSUxMxOzZs7F48WKkpaWhePHiWL58Ofr06cNGDBUozKNEREQFU2xsLCZPnox169YBACwsLLB27Vr8/PPPaq6MFKV0I9HKygrGxsZ5UQsRERHlkYsXL8LT0xMhISEAgM6dO2PVqlWwsLBQc2VEymMeJSIiKniOHj2KQYMG4fnz5wA+XWGwePFiFC9eXM2VkTKUvtnK0qVLMXHiRDx9+jQv6iEiIiIViomJwaBBg9CoUSOEhITA0tISBw4cwJ9//skmIhVYzKNEREQFR1RUFHr27Ik2bdrg+fPnqFSpEs6cOYNNmzaxiVgAKX1GoqurK5KSklCpUiUYGBhAW1tb7vno6GiVFUdERETKE0IgTQgcPXoMQwcPwosXLwAAXl5eWLRoEYoVK6beAom+EvMoERFR/ieVSvHHn39g/PjxePn8JTQ0NDB69GjMnj0bBgYG6i6PcknpRmL37t3x4sULzJs3D6VLl+acSkRERPnM68hIXH0vBarUwpvoaNjY2MDHxwdNmjRRd2lEKsE8SkRElL+Fh4dj2Ihh6LW0F1b8vQILui7AhnUbULt2bXWXRl9J6UbilStXcPXqVTg7O+dFPURERJRLQghs374dEyf/grXnrgMARo8ejelTp0JfX1/N1RGpDvMoERFR/iSVSrF+/XpMmjQJH9M+otfSXgCAS5cuwUCPZyEWBko3Eu3s7JCYmJgXtRAREVEuhYWFYdCgQTh58iR0P2sa/vrrr9DSUHpKZKJ8jXmUiIgo//nvv//g6emJy5cvAwAaNWkke05HR0ddZZGKKf3/LBYsWICxY8fiwoULePv2LWJjY+V+iIiI6NtJS0vDqlWr4OTk9KmJqKuLmTNnqbssojzFPEpERJR/fPz4EXPnzoWzszMuX74MIyMjrFmzBqdOnVJ3aZQHlD4j8YcffgAANGvWTG65EAISiQRpaWmqqYyIiIiyFRwcDA8PD/j7+wMAGjZsCF9fX1S2tcVfIRFqro4o7zCPEhER5Q83btyAh4cH7t69CwBwd3fHhg0bUL58eaRKU9VcHeUFpRuJ58+fz4s6iIiISEEpKSmYP38+5s6di48fP8LY2BiLFi2Ct7c3NDQ0kCqVqrtEojzFPEpERKReCQkJmD59OpYvXw6pVIqSJUti5cqV6NGjB2+CVsgp3Uhs1KhRzisRERFRnggICICnpyeCgoIAAG3atMH69etRtmxZNVdG9O0wjxIREanPuXPn4OXlhcePHwMAevTogRUrVsDc3FzNldG3oHQjMV1CQgKePXuGlJQUueXVq1f/6qKIiIjyMyEE4uIFgoIA52oSGBrm/K1rbsZ8Lj4+HlOnTsXKlSshhIC5uTlWrVqFrl278ltfKrKYR4mIiJQjhEBcShyCIoPgXNoZhjqGCo8JeByAHct2YOumrQCAsmXLYsOGDWjdunVel035iNKNxKioKPTv3x/Hjx/P9HnOSUNERIVdXLyAnZMUr55qwcZWIPAOYGCg+jHAp+B25tw5DBs6DA8f/AcA6N27N5YtWwYzM7MsxyUnAs9CtJFgBZgYKf7aiAoC5lEiIqLciUuJg91aO7yKewWbEjYIHBQIA+3sQ+nnY2AAQBsY4jUE8+fPh4mJSbZjk1OTEf4+HAlWCTDRzX5dKhiUvmvzqFGj8P79ewQEBEBfXx8nTpzA1q1bYWtri7/++isvaiQiIspXgoKAV08/fRcXGiLB/19lrPIx0dHR8Bo4EG9KOmDAr5dQyaY6jh8/jm3btmXbRExIAMa2N8ekLmao5SJBQoJCL4uowGAeJSIiyp2gyKBPDUEAodGhCIrMPpS+fv0aPw/6WTYGJYANBzZg7dq1OTYREz4mYMKRCfjl+C+o5VMLCR8ZSgsDpc9IPHfuHA4dOgRXV1doaGigQoUKaNGiBUxMTDB//nye0kpERIWekxNgWSFVdnahk1POlxYrM0YIgb1792L48OF4F/MRx06tw6unWqhc+Ra+/14zx31l1rR0c1P89RHld8yjREREueNUygmWxpayMxKdSjllup4QAps3b8bYsWORkJYAy5mfxlQuXhm9W/ZWaF+ZNS3drBhKCzqlG4nx8fEoVaoUAKB48eKIiopClSpVUK1aNdy6dUvlBRIREeU3BgbA0oNReBaijcHuJWBgkHMjUdExL1++xJAhQ3Do0CEAgI1tL4SGfPpz/eiRpkJNQedqEtjYCoSGSGCrYKOTqCBhHiUiIsodA20DLGqzCOHvwzHUeWimlzU/fvwY3t7eOHv2LACgVq1aWNVoFVAKcC7tnOOl0OmcSzvDpoQNQqNDYVvCNsumJRUsSl/aXLVqVTx48AAA4OzsjI0bN+LFixfYsGEDLC0tVV4gERFRfqSrD9hW/6jQPIeKjJFKpfDx8YG9vT0OHToELS0tTJ8+HQH+vrCxFQDw/03BnPdjaChB4B0JAgKAO3ckStVIVBAwjxIREeWerpYubMxsMjQE09LSsGzZMjg5OeHs2bPQ09PDokWL4O/vj3q16qFeuXoK3ZwlnaGOIQIHBSLAMwB3Bt1RuAFJ+ZvSZySOHDkSr159OjV1xowZ+OGHH7Bjxw7o6Ohgy5Ytqq6PiIio0AsNDYWXlxcuXLgAAHBzc8OmTZtQrVo1AEDgnU+XKzs5Kd4UNDDg5cxUeDGPEhERqda9e/fg4eGB69evAwAaN24MX19f2NjYfNV2DbQNeDlzIaN0I7FXr16y32vVqoWnT5/iv//+Q/ny5bOd+J2IiIjkpaamYtmyZZgxYwaSkpJgYGCAOXPmYMSIEdDU/N9ciGwKEsljHiUiIlKN5ORkzJ07F/Pnz0dqaipMTU2xePFieHp6QiLh9DiUkdKNxC/p6upCQ0ND7v/wEBERUfbu3LkDDw8P2XxuzZs3h4+PD6ytrdVcGVHBwzxKRESkPP8Af3h7eOP+/fsAgPbt22Pt2rUoU6aMmiuj/EzpORJHjRoFPz8/AJ+un//+++/h4uKCcuXKyS7JIiIioqzNnDkTrq6uuHXrFooXL47Nmzfj1KlTbCISKYh5lIiI6Ou1aN4C9+/fR6lSpbBnzx7s37+fTUTKkdKNxL1798LZ2RkAcPjwYYSFheG///7D6NGjMWXKFJUXSEREVNgsWbIEaWlp6Ny5M4KDg9GvXz9eOkKkBOZRIiKi3Dl9+rTsdyEE+vXrh/v376NTp07Mo6QQpRuJb968gYWFBQDg2LFj6Ny5M6pUqYIBAwbg3r17Ki+QiIiooIuNjcXIkaNkjy0sLHDgwAH8+eefsr+pRKQ45lEiIiLlvHnzBr1790aHDh1ky/766y9s3rwZJUqUUGNlVNAo3UgsXbo0goODkZaWhhMnTqBFixYAgISEBM5LQ0RE9IXDhw/DwcEB69asRo+alXF65RzcvnkT7du3V3dpRAUW8ygREZFihBDYtWsXHBwc8PvvvyMlKQX+6/3RslRLtGjWQt3lUQGk9M1W+vfvjy5dusDS0hISiQTNmzcHAAQEBMDOzk7lBRIRERVEkZGRGDlyJP744w8AgI2NDXx8fNCkSRM1V0ZU8DGPEhER5ez58+cYPHgwjhw5AgBwdHSEn58f6tSpo+bKqCBTupE4c+ZMODk5ITw8HJ07d4auri4AQFNTE5MmTVJ5gURERAWJEAK///47Ro0ahejoaGhqamLs2LGYOXMm9PX11V0eUaHAPEpERJQ1qVSKjRs3YuLEiYiLi4O2tjamTp2KSZMmQUdHR93lUQEnEUIIdReRW7GxsTA1NUVMTAxMTEzUXQ4RERURqVIp/gqJAAC0tS0NLY1PM4U8ffoUAwcOxMmTJwEANWrUgJ+fH1xcXNRWK+V/zDMFH99DIiLKLx48eAAvLy9cunQJAPDdd99h06ZNcHR0VHNllJ8pk2WUniORiIiI5KWlpWHVqlVwdHTEyZMnoauri3nz5uHatWtsIhIRERFRnvv48SPmz58PZ2dnXLp0CYaGhli5ciX++ecfNhFJpZS+tJmIiIj+57///oOXhwf8/f0BAA0bNoSvry+qVq2q5sqIiIiIqCi4efMmPD09cefOHQBAq1atsGHDBlSsWFGtdVHhxEYiERHRV6hbty4+xMbC2NgYixYtgre3NzQ0eMI/EREREeUdIQQ+JHzAvHnzsHjhYqSlpaFEiRJYsWIFevXqBYlEou4SqZBiI5GIiEhJ16/fAIqVA/DpMpI2bdpg/fr1KFu2rJorIyIiIqKi4MLFC3hT7g1cPFygtVwLndp2wsqVK1G6dGl1l0aFnNKNxNevXyMgIACvX78GAFhYWKBOnTqwsLBQeXFERET5SXx8PKZOnYoNPj7YcSsUALBlyxZ07dyZ3/oSfUPMo0REVFS9f/8eEyZMwLbft2F70HYAwO7du9Hup3ZqroyKCoUbifHx8Rg4cCD++OMPSCQSlChRAgAQHR0NIQS6d++OjRs3wsDAIM+KJSIiUpfTp0/D29sbYWFhAIDDi6ZiwYIFKMUmItE3wzxKRERF2aFDhzBkyBC8fPkSuvq6suWtW7dWY1VU1Cg8idPIkSNx7do1HD16FElJSYiIiEBERASSkpJw7NgxXLt2DSNHjszLWomIiL656Oho9OvXDy1btkRYWBjKly+P48ePY7OfH0qbm7OJSPQNMY8SEVFRFBERgS5duqB9+/Z4+fIlbG1tceLECXWXRUWURAghFFmxePHiOHr0KOrVq5fp85cvX0abNm3w7t07lRaYndjYWJiamiImJgYmJibfbL9ERFT4CSGwd+9eDBs2DJGRkZBIJBg2bBjmzp0LY2NjdZdHhQjzjOLyYx4F+B4SEVHeEEJg69atGDNmDN69ewdNTU2MHz8e06dPh7auNg6EHQAAdKjYAVoavAUG5Z4yWUbhT5pUKoWOjk6Wz+vo6EAqlSpeJRERUT718uVLDBkyBIcOHQIA2Nvbw8/PD3Xr1lVzZURFG/MoEREVFWFhYfD29sbp06cBADVr1oSfnx9q1qwJAEiVpqqzPCrCFL60uU2bNvD29sbt27czPHf79m0MHjwYP/30k0qLIyIi+pakUil8fHxgb2+PQ4cOQUtLC9OmTcPt27fZRCTKB5hHiYiosEtLS8OKFSvg6OiI06dPQ09PDwsWLEBAQICsiUikTgqfkbhmzRr06NEDtWrVQvHixVGqVCkAQGRkJN6/f49WrVphzZo1eVYoERFRXgoNDYWXlxcuXLgAAHBzc8OmTZtQrVo19RZGRDLMo0REVJgFBQXB09MTAQEBAIDvv/8evr6+qFKliporI/ofhRuJxYsXx/Hjx3H//n34+/vj9evXAAALCwvUrVsXdnZ2eVYkERFRXhBCIPljKlavXo3pU6cgKSkJBgYGmDNnDkaMGAFNTU11l0hEn2EeJSKiwigpKQkLlyzEksVL8CH2A0xMTLBo0SJ4eXlBQ0PhC0mJvgmlZ+O0t7eHvb19XtRCRET0Td0ODESYfmlUbtMdYtpUNG/eHD4+PrC2tlZ3aUSUDeZRIiIqLPz9/TFoyCBM2TsFv/X4Dbsm7sLqFathZWWl7tKIMqVUIzElJQUHDx7E1atX5b4BrlevHtq1a5ft5NdERET5RWJiImbPno1Va9Zg+42HAID16zegX5/ekEgkaq6OiLLDPEpERIXBhw8fMGXKFKxevRo6ev/727X7j93Q1tRWY2VE2VP4HNnQ0FDY29ujb9++uH37NqRSKaRSKW7fvo0+ffrA0dERoaGheVkrERHRV7t48SJq1KiBBQsWIC0tTba8d+9ebCIS5XPMo0REVBicOnUKTk5OWLVqFYQQ6NGjh+w55lHK7xQ+I3Hw4MGoVq0abt++DRMTE7nnYmNj0adPHwwdOhQnT55UeZFERERfKzY2FhMnTsSGDRsAAJaWlli7fgOEmusiIsUxjxIRUUH29u1bjBkzBtu2bQMAVKhQARs3bkSzFs1wIOyAmqsjUozCjcTLly/j2rVrGUIbAJiYmODXX39FnTp1VFocERGRKhw+fBiDBw/GixcvAABeXl5YtGgRjExM8FdIhJqrIyJFMY8SEVFBJITAn3/+iREjRiAyMhISiQTDhw/H3LlzYWRkhFRpqrpLJFKYwpc2FytWDGFhYVk+HxYWhmLFiqmgJCIiItWIjIxEt27d0LZtW7x48QKVK1fGuXPn4OPjw79ZRAUQ8ygRERU0L168QPv27dGtWzdERkbCwcEBly9fxsqVK2FkZKTu8oiUpnAj0dPTE3369MHy5ctx9+5dREREICIiAnfv3sXy5cvRr18/eHt752WtREREChFCYPv27bC3t8fu3buhoaGB8ePH4+7du2jSpIm6yyOiXGIeJSKib0UIgdjkWFwJv4L4lHilx0ulUmzcuBEODg7466+/oK2tjRkzZuDWrVuoW7duHlRM9G0ofGnz7NmzYWhoiMWLF2Ps2LGyCUCFELCwsMDEiRMxYcKEPCuUiIgoO0IIxMULnD0TgXVrB+HMmb8AAM7OzvDz80OtWrXUXCERfS3mUSIi+lbiUuJgt9YOr+JewaaEDQIHBcJA2yDbMUIIpIk0hISGYLD3YPz9998AADc3N/j5+cHJySnLscmpyQh/H44EqwSY6GacwkNVY4i+lkQIofQ8848fP0ZExKc5pSwsLGBtba3ywhQRGxsLU1NTxMTEZDpXDhERqVd6cy8oCHCuJoGhYc53ocvNGAB4F5MKR2fg1VMtQBICHW03zJw5AePGjYO2tnamY1KlUtkciW1tS0NLQ+ET9YlUhnkmd/JLHgX4HhIR5WdCCMSlxCEoMgjOpZ1hqGOo0Lgr4VdQ/7f6sscBngFws3LLdkxSShL2hu1F+PtwzGw+E1ppWpg7dy6GDx8OTU3NLMfFJscq3bTMzRiirCiTZRQ+I/FzlSpVQqVKlXJVHBERFR1x8QJ2TlK8eqoFG1uBwDuAQQ75JjdjgoOD0bPnKrx6+umOzBC2+P33O+jcuUKONSYnAs9CtJFgBZhwmhqiAoN5lIiIFJGbMwsBwKmUEyyNLWXjnEplfTYhANy+fRtew7zwsuNLvIp7BYMhBrjucR0Otg457isoMgiv4l4BAEKjQxEUGZRj0zI3Y4hUQalTL4KDgzFkyBDUrFkTlpaWsLS0RM2aNTFkyBAEBwfnVY1ERFRABQX9/xmCAEJDJAgKUu2YlJQUzJ49GzVq1EDwf3tgWeHTHe9sbARat865iZiQAIxtb45JXcxQy0WChISc6yMi9WIeJSIiZWTWcFOEgbYBFrVZhHnu83DT+2aWzcfExERMmjQJtWvXxt3Xd2X7StBPwAeDDwrty7m0M2xK2AAAbEvY5ti0zO0YIlVQ+IzE48ePo3379nBxcUG7du1QunRpAEBERAROnz4NFxcXHDp0CK1atcqzYomIqGBxcgIsK6TKzi50csr5MmVFxwQEBMDT0xNB/99pbNOqHhYteY1378rAuZokx7MYgcyblm78Ipco32IeJSIiZSl7ZuHndLV0YWNmk2UT8eLFi/D09ERISAgAoK1rW9wxvYMnMU+Uau4Z6hgicFAggiKD4FTKSaEzJnMzhkgVFJ4j0dnZGe3atcPs2bMzfX7mzJnYv38/7t69q9ICs8P5aIiI8rdUqRR77kbgWYg2BruXgIlRzifC5zQmPj4eU6dOxcqVKyGEgJmZGVavXo2uXbvKbrygqPh4gRo1PzURbW0F7txRrAFJpErMM4rLj3kU4HtIRJSfpUpT8UfoHwh/H46hzkMVvilJqjQVB8IOAAA6VOwALY3/nYcVExODiRMnYuPGjQCAMmXKYN26dWjXrh0SPiawuUcFjjJZRuFLmx8+fIiePXtm+Xz37t1lXXgiIqJ0uvqAbfWPSjXoshpz+vRpODk5YcWKFRBCoFevXrh//z66deumdBMRAAwNJQi8I0FAANhEJCoAmEeJiCg3cjqzUBl//fUXHB0dZU1Eb29v/Pvvv2jXrh2AT5dEu1m5sYlIhZbCjcSKFSvi6NGjWT5/9OhRVKiQ83xUREREyoqOjkb//v3RsmVLhIWFoXz58jh27Bi2b98OMzOzr9q2gcGny5nZRCTK/5hHiYhIXSIjI9GtWze0a9cOL168gI2NDc6fP4+NGzeiWLFi6i6P6JtReI7E2bNno0ePHrhw4QKaN28uNyfN2bNnceLECezcuTPPCiUioqJHCIE9e/Zg+PDhiIiIgEQiwdChQzFv3jwYGxuruzwi+saYR4mISB127tyJ0SNHIzo6Gpqamhg7dixmzpwJfX19dZdG9M0p3Ejs3LkzrKyssGrVKixduhSvX78GAFhYWKBu3bq4cOEC6tatm2eFEhFR0dO9W3fs27sHAGBnZwc/Pz/Uq1dPzVURkbowjxIRkTp4e3sjOTEZNWrUgJ+fH1xcXNRdEpHaKNxIBIB69erx/8AREVGe+vweYEeOHoGWlhYmT56MKVOmQFdXV42VEVF+wDxKRER5LS0tDes3rIeFuwUAQFdXFzOmzcC4ceOgra2t5uqI1EvhORI/FxMTgwcPHuDBgweIiYlRdU1ERFREhYaG4scfW8se16pVCzdv3sTs2bPZRCQiOcyjRESUF4KDg9GgQQOMHz9etszf3x+TJ09mE5EISjYSN23aBAcHB5QoUQIODg6wt7eX/e7n55dXNRIRUSGXmpqKRYsWoVq1ajhz6iQ86jrh6Yk/8ff586hevbq6yyOifIR5lIiI8kJKSgpmz56NGjVqwN/fHzpaOnh79i3alW8Huyp26i6PKN9Q+NLmxYsXY+bMmRgxYgRatWolN7n1qVOnMHLkSLx79w7jxo3Ls2KJiKjwuXPnDjw8PHDr1i0AQLNmzeDj44NKlSqpuTIiym+YR4mIKC8EBATA09MTQUFBAIA2bdpg/fr1KFu2rJorI8p/FG4krlmzBps3b0aXLl3kltvb26Nx48ZwdnbG+PHjGdyIiEghSUlJmD17NhYtWoS0tDQUK1YMy5YtQ79+/SCRSNRdHhHlQ8yjRESkSvHx8Zg6dSpWrlwJIQTMzc2xatUqdO3alXmUKAsKNxIjIyNRrVq1LJ+vVq0a3rx5o5KiiIiocLt06RI8PT3x8OFDAECnTp2wevVqWFhYqLkyIsrPmEeJiEhVzpw5Ay8vL4SFhQEAevfujWXLlsHMzEy9hRHlcwrPkVi7dm0sWLAAqampGZ5LS0vDwoULUbt2bZUWR0REhUtsbCyGDBmC77//Hg8fPoSFhQX279+PPXv2sIlIRDliHiUioq8VHR2N/v37o0WLFggLC0P58uVx/PhxbNu2jU1EIgUodWlzq1atYGFhge+//15uTpqLFy9CR0cHp06dyrNCiYioYDt+/ASGDBqI58+fAwA8PT2xePFiFCtWTL2FEVGBwTxKRERf48DBAxg+ZDgiIiIgkUgwbNgwzJ07F8bGxuoujajAULiRWL16dTx8+BC///47/P398fjxYwCAhYUF5syZgx49esDExCTPCiUiooKtc+dOSE5MRKVKleDr64umTZuquyQiKmCYR4mI6Gv07tUbyYnJsLe3x6ZNm1CvXj11l0RU4EiEEELdReRWbGwsTE1NERMTw9BIRJTPCCGwY9cuGNRqAgDoVcsWQwcPxqxZs2BgYKDm6ojyD+aZgo/vIRFR/iSEwKbfNqFYk2IAgP41+mPMqDGYMmUKdHV11VscUT6iTJZReI7EnHz8+BHPnj1T1eaIiKgAe/r0KVq3bg1PT0/ZsgsX/sbixYvZRCSiPMM8SkRE6UJDQ9GsWTMMHz5ctuzy5cuYPXs2m4hEX0FljcTg4GBYW1uranNERFQASaVSrF69Go6Ojjh+/DggleLBwe1wr1gStWu5qLs8IirkmEeJiCg1NRWLFy9GtWrVcP78eWhAA88PP0fbcm1R3am6ussjKvAUniORiIgoO8HBwfD09MTVq1cBAA0aNICvry/s7OzUXBkRERERFQV37tyBp6cnbt68CQBo1qwZfHx8UKlSJTVXRlR4KNxIdHHJ/kySxMTEry6GiIgKnpSUFCxcuBBz5sxBSkoKjIyMsHDhQgwaNAgaGio78Z2IiHmUiIgylZSUhF9//RULFy5EWloaihUrhmXLlqFfv36QSCTqLo+oUFG4kRgcHIxu3bplebnIq1ev8PDhQ5UVRkRE+d+1a9fg4eGBoKAgAEDr1q2xfv16lCtXTs2VEVFhxDxKRERfunTpEry8vPDgwQMAQKdOnbB69WpYWFiouTKiwknhRqKTkxPq1KmDwYMHZ/r8nTt34Ovrq7LCiIgo/4qPj8e0adOwcuVKSKVSmJmZYdWqVejWrRu/9SWiPMM8SkRE6WJjYzF58mSsW7cOAGBhYYF169ahQ4cOaq6MqHBTuJFYv359WYc/M8bGxvj+++9VUhQREeVfZ86cgbe3N548eQIA6NWrF5YvXw4zMzM1V0ZEhR3zKBFR0SaEQJpIw4kTJzB44GA8f/4cAODp6YnFixejWLFi6i2QqAiQCCGEuovIrdjYWJiamiImJgYmJibqLoeIqNASQuDtu3eYPHkyNvn4AADKlSuHjRs3wt3dXc3VERVszDMFH99DIqJv43Xka1z6cAkA0NupN6wsreDr64umTZuquTKigk2ZLMNZ8ImIKFtCCOzbfwAXo5LhPmYm9AwMMGzYMPz7779sIhIRERFRnhNCYMeOHXI33Ro5ciTu3bvHJiLRN6bwpc1ERFT0vHz5EkOHDsXxkyex8/YjAMDp02fQoF5dNVdGREREREXBs2fPMGjQIBw/fhy6+rqy5XPnzoWWBlsaRN8az0gkIqIMhBDYtGkTHBwccPDgQWhp/S+kffddHTVWRkRERERFgVQqxZo1a+Do6Ijjx49DR0cHM2bMUHdZREUeG4lERCQnNDQUzZo1g5eXF2JiYlC7dm1cvnxZ3WURERERURFx//59NGzYEMOHD8eHDx9Qv359BAYGYvz48eoujajIYyORiIgAAKmpqVi8eDGqVauG8+fPQ19fH0uXLsXVq1fh6Oio7vKIiIiIqJBLSUnBnDlzUKNGDVy5cgVGRkZYu3YtLl68CDs7O3WXR0TgHIlERAWWEAJx8QJBQYBzNQkMDSW53tadO3fg6emJmzdvAgCaNWsGHx8fVKpUCQCQKpWqpGYiIiIiosxcv34dHh4euHfvHgDgxx9/xPr161G+fHk1V0ZEn1PpGYlNmzbFr7/+ioSEBFVuloiIMhEXL2DnJEX9uhqoURNQ9D+9QgjEfpDiir8Ub98m4pdffoGrqytu3ryJYsWK4bfffsPp06dlTUQiooKEeZSI6NsSQiA2ORZXwq8gPiVe6TGR7yIxduxYfPfdd7h37x7MzMywY8cOHDlyhE1EonxIpWckli9fHmfPnoWvry+ePXumyk0TERVquTm7MCgIePX003/GQ0MkCAoC3Nxy3ld6A/LVUy3o6EQiJWUFgDR06tQJq1evhoWFRabjkhOBZyHaSLACTIyUeHFERN8Q8ygR0bcVlxIHu7V2eBX3CjYlbBA4KBAG2gYKj9GO08bH1R8BKdCzZ08sX74c5ubm36h6IlKWShuJW7ZsAQDExsaqcrNERIXe5809G1uBwDuAQfb5C05OgGWFVNkYJyfFLm2+FpCAV08/dQJTUiqgZMnG8PX1QocOHbIck5AAjG1vjldPtbBJwfqIiNSBeZSI6NsKigzCq7hXAIDQ6FAERQbBzSr7b7f9H/nLxnw0/ohSTqWwec5m/Pjjj3leLxF9HZVc2vz+/Xu5xyYmJqrYLBFRkZHZ2YU5MTAAlh6MwoI/3+DmLaFQY+/IkSPw8q4LywqpAABT0wjcvbsz2yZibusjIvqWmEeJiNTDqZQTLI0tAQA2JWzgVMop2/X37dsHj7YesjHF0orh7pm7CjcRk1OTEfomFAkfOYUFkToo3UhcuHAhdu/eLXvcpUsXlCxZElZWVggMDFRpcURERUX62YUA/v/sQsXG6eoDttU/5thEjIyMRPfu3fHTTz8h7HEQjPTqYM3aG3jxohTKlCmW436cq0lgYysAALZK1EdElBeYR4mI8g8DbQMsarMI89zn4ab3zSwva3716hU6duyITp064fmj5yixowQ2uG3A86nPUbpEaYX2lfAxAROOTMAvx39BLZ9abCYSqYHSjcQNGzagXLlyAIDTp0/j9OnTOH78ONzd3TF+/HiVF0hEVBTk5uxCRQghsH37djg4OOCPP/6AhoYGxo0bhzu3LmHoEFeF7/RsaChB4B0JAgKAO3ckvKyZiNSKeZSIKH/R1dKFjZlNpk1EIQT8/Pzg4OCA/fv3Q0tLC1OmTMGNyzcw0H0gDHUMFd5PZpdRE9G3pfQcia9fv5YFtyNHjqBLly5o2bIlKlasiDp16qi8QCKiokLRswsV9fTpUwwaNAgnTpwAAFSvXh1+fn5wdXXN1fYMDBS7mQsRUV5jHiUiKhgePXoEb29vnDt3DgDg6uoKPz8/VK9ePVfbcy7tDJsSNgiNDoVtCdscL6MmItVT+ozE4sWLIzw8HABw4sQJNG/eHMCnbxnS0tJUWx0RESlNKpVi9erVcHR0xIkTJ6Crq4u5c+fixo0buW4iEhHlJ8yjRET5W2pqKpYuXYpq1arh3Llz0NfXx5IlS3D16tVcNxEBwFDHEIGDAhHgGYA7g+7keHdoIlI9pc9I/Pnnn9GjRw/Y2tri7du3cHd3BwDcvn0bNjY2Ki+QiIgUFxwcDE9PT1y9ehUA0KBBA2zatAlVq1ZVc2VERKrDPEpElH/dvXsXHh4euHHjBgCgadOm8PHxQeXKlVWyfQNtgxzvCk1EeUfpRuLy5ctRsWJFhIeHY9GiRTAyMgLwaeLUIUOGqLxAIiLKWUrKR8xfvAhz5sxBSkoKjIyMsGjRIgwcOBAaGkqffE5ElK8xjxIR5U+zf52N+XPmIzU1Faampli6dCkGDBgAiUSxebmJKP+TCCGEuovIrdjYWJiamiImJgYmJibqLoeIKNdSpVL8FRIBAGhrWxpaCjT/Ph8zp2db3L756Vvf1q1bY/369bL5w4gof2OeKfj4HhJRUZYqTcWBsAMAgN5OvZGcmIyff/4Za9asgaWlpZqrIyJFKJNlcnWayvbt29GgQQOUKVMGT58+BQCsWLEChw4dys3miIgoF+LjE2S/Bwf/CzMzM+zcuROHDx9mE5GICj3mUSIi9YuLi8OYMWNkj0uXLo29e/di3759bCISFVJKNxLXr1+PMWPGwN3dHe/fv5dNaF2sWDGsWLFC1fUREVEmzpw5gzqf3UK5W7duuH//Prp3785LR4io0GMeJSJSv2PHjsHR0RE+Pj6yZTdv3kTHjh3VWBUR5TWlG4mrV6+Gr68vpkyZAk1NTdlyV1dX3Lt3T6XFERGRvHfv3mHAgAFo0aIFHvx3HxPbNobek7vY7OcHMzMzdZdHRPRNMI8SEanPmzdv0KtXL7Ru3Rrh4eGwsrRC8bDi6FCxA0oWL6nu8ogojyndSHzy5Alq1qyZYbmuri7i4+NVUhQREckTQmDv3r2wt7fH5s2bIZFIMHz4cNy6cQM//tCKZyESUZHCPEpE9O0JIbBz507Y29tjx44d0NDQwJgxY3D37l00b9ocWhpazKRERYDSd222trbGnTt3UKFCBbnlJ06cgL29vcoKIyKiT16+fImhQ4fi4MGDAAA7Ozv4+fmhXr166i2MiEhNmEeJiL6t8PBwDB48GEePHgUAVKtWDZs2bYLbZ1PtEFHRoHQjccyYMRg6dCiSkpIghMC1a9ewa9cuzJ8/H5s2bcqLGomIiiQhBDZt2oTx48cjJiYGWlpamDx5MqZMmQJdXV11l0dEpDbMo0RE34ZUKsWGDRswadIkxMXFQUdHB9OmTcOECROgo6Oj7vKISA2UbiR6enpCX18fU6dORUJCAnr06IEyZcpg5cqV6NatW17USERU5ISGhsLb2xvnz58HANSuXRt+fn6oVq2amisjIlI/5lEiorz34MEDeHp64p9//gEA1KtXD5s2beKZ30RFnEQIIXI7OCEhAR8+fECpUqVUWZPCYmNjYWpqipiYGJiYmKilBiIiVUiVSvFXSAQA4PHRXZg2ZQqSkpKgr6+PuXPnYsSIEXI3FCCiwoN55uuoO48CfA+JqHD5+PEjFi9ejNmzZyM5ORlGRkaYP38+hgwZAg0NpW+zQEQFgDJZRukzEj9nYGAAAwODr9kEERF9YerUqUhOSkLz5s2xceNGVKpUSd0lERHlW8yjRESqIYTAjVs3MGTIENy4dgMA4O7ujg0bNqB8+fJqro6I8otc3WwluzsxPX78+KsKIiIqapKSkjBn3jy49BwMADA1LYYFa9eiX79+vPMdEVEmmEeJiFQrISEBs+fMRi3PWpiwawJGfj8SixYsQs+ePZlHiUiO0o3EUaNGyT3++PEjbt++jRMnTmD8+PGqqouIqEi4dOkSPD098TQ8HDv/v5F469ZNWFlaqrkyIqL8i3mUiEh1zp8/Dy8vLzx/+RzbPbcDAG7evAnL0syjRJSR0o3EkSNHZrp87dq1uHHjxlcXRERUFMTGxmLSpElYv349AMDS0hK4fw1t2/4ETX7rS0SULeZRIqKv9/79e4wfP152t/tKNv+bTsfc3FxdZRFRPqeymVLd3d2xb98+VW2OiKjQOnLkCBwdHWVNRE9PTwQHB+Pn9u2gpaHBy0eIiHKJeZSISDEHDx6Eg4ODrIk4ePBgXL9xXc1VEVFB8FU3W/nc3r17UaJECVVtjoio0ImKisLIkSOxa9cuAEClSpXg6+uLpk2bqrkyIqLCgXmUiCh7r1+/xvDhw7F3714AQJUqVbBp0yY0bNgQqdJU4K2aCySifE/pRmLNmjXlzpYRQuD169eIiorCunXrVFocEVFhIITAjh07MGrUKLx9+xYaGhoYM2YMZs2axTuNEhHlAvMoEZFyhBDYsmULxo4di3fv3kFTUxMTJkzA9OnToaenp+7yiKgAUbqR2L59e7nHGhoaMDc3R+PGjWFnZ6equoiICoWnT59i8ODBOH78OACgevXq8PPzg6urq5orIyIquJhHiYgU9/jxYwwcOBBnzpwBALi4uMDPzw81atRQb2FEVCAp3UicMWNGXtRBRFQoCCGQJgSkUgGfDesxadIkxMfHQ0dHBzNmzMD48eOhra2t7jKJiAo05lEiouwJIZCSmoL169djyuQpSEhIgJ6eHmbPno3Ro0dDS0tls5wRURGj0H89YmNjFd6giYlJroshIiro0oTAXyERAIBxEyYgOTERDRo0gK+vL8+SISL6CsyjRESKu/fvPTwweACrNlZIm5SGxo0bw9fXFzY2NuoujYgKOIUaicWKFcvxLqJCCEgkEqSlpamkMCKigiYlJQWLliyFQ8d+AABDQyMsW7IEgwYNgoaGhnqLIyIq4JhHiYhylpycjHnz5mHZimX47fZvAIDVq1fDo78H8ygRqYRCjcTz58/ndR1ERAXa9evX4eHhgYehodj5/43EGzduwLpCefUWRkRUSDCPEhFl7+rVq/Dw8MD9+/ehq68rW96/f382EYlIZRRqJDZq1Civ6yAiKpDi4+Mxffp0rFixAlKpFGXKlpM9V65cWTVWRkRUuDCPEhFl7sOHD/jll1+wZs0aCCFQqlQprFm/Rt1lEVEhlesZVhMSEvDs2TOkpKTILa9evfpXF0VEVBCcPXsWXl5eePLkCQCgZ8+eWLp8OS5Hp6q5MiKiooF5lIiKupMnT2LgwIF4+vQpAKBfv35YunQpTIqZ4EDYATVXR0SFkdKNxKioKPTv3x/Hjx/P9HnOSUNEhd27d+8wduxYbN68GQBQrlw5bNy4Ee7u7kiVSoHoCDVXSERUuDGPElFR9/btW4wePRrbt28HAFSsWBE+Pj5o0aIFACBVyi+2iShvKD1RwqhRo/D+/XsEBARAX18fJ06cwNatW2Fra4u//vorL2okIpIRQiD2gxRX/KWIjxd5NiYr+/btg729PTZv3gyJRIJhw4bh33//hbu7+1dtl4iIFMc8SkQFkRACscmxuBJ+BfEp8bnexu7du2Fvb4/t27dDIpFg1KhRCAoKkjURiYjyktJnJJ47dw6HDh2Cq6srNDQ0UKFCBbRo0QImJiaYP38+WrdunRd1EhEBAOLiBeycpHj1VAs2tgKBdwADA9WPAT4Ftbh4gaAgoJRZBCZMGIoDBz5dImJnZ4dNmzahfv36X/2aiIhIOcyjRFQQxaXEwW6tHV7FvYJNCRsEDgqEgbYCofT/PX/+HEOGDMHhw4cBAI6OjvDz80OdOnXyqmQiogyUPiMxPj4epUqVAgAUL14cUVFRAIBq1arh1q1bqq2OiOgLQUHAq6efvgMJDZEgKChvxgD/a0DWr6uBqnYJOHDgBLS0tDB16lTcvn07yyZiciIQclcbCQmK7YeIiJTDPEpE6pTbMwuDIoPwKu4VACA0OhRBkYqF0g/JHzBp9STYV7fH4cOHoa2tjVmzZuHWrVtsIhLRN6f0GYlVq1bFgwcPULFiRTg7O2Pjxo2oWLEiNmzYAEtLy7yokYhIxskJsKyQKju70MlJkidjAODUyZd49fTTnZelaZVhb98Ff/wxJttJ/BMSgLHtzfHqqRY2KXH2IxERKY55lIjUKbdnFjqVcoKlsaVsnFMppxzHBAYH4rut3yHJIAnoBdS+WRubfTbD0dExx7HJqckIfx+OBKsEmOiaKPTacjOGiIoWiRBCqQnDfv/9d6SmpqJfv364efMmfvjhB0RHR0NHRwdbtmxB165d86rWDGJjY2FqaoqYmBiYmPA/ckRFQapUij13I/AsRBuD3UvAxCjnE6uVHZOamooVK1ZgztwVMDANw6unWjAzf4fHj0xgbKyZ7dgr/p/OYEwXEAC4uSn22oioaGKeUV5+yqMA30OiouZK+BXU/+1/V6YEeAbAzSrnwJcqTcUfoX8g/H04hjoPzbZR9/HjRyxduhTTN07Hx34f/7fv/ldQt3zdHPcVmxyrdLMzN2OIqHBQJssofUZir169ZL/XqlULT58+xX///Yfy5cvDzMxM+WqJiJSkqw/YVv+o1Jl+io4JDAyEh4cHbt68CQBwrd0Zq5auhvsPVjA0zPlMRudqEtjYCoSGSGCrxNmPRESkOOZRIlKn3JxZmE5XSxc2ZjbZNuhu3boFDw8P3LlzB9AGDBINkKCfANsStnC2dFZoP5ldRp1TszM3Y4io6FF6jsR//vlH7rGBgQFcXFwY2oioQEtKSsKUKVPg6uqKmzdvolixYvDz88Ppk/vRqWNZhZqIAGBoKEHgHQkCAoA7dyS8rJmIKA8wjxKROhloG2BRm0WY5z4PN71vquysvcTEREycOBFubm64c+cOSpQoga2btiJydiQCPANwZ9AdhfflXNoZNiVsAAC2JWwVanbmZgwRFT1Kn5HYtGlTWFlZoXv37ujVqxccHBzyoi4iom/mn3/+gaenJx48eAAA6NixI1avXp3rebYMDHg5MxFRXmIeJSJ1U+TMQmVcuHABXl5eCA0NBQB07doVK1euROnSpQFA6TMDDXUMETgoEEGRQXAq5aRQnbkZQ0RFj9JnJL58+RJjx47F33//DScnJ9SoUQOLFy/G8+fP86I+IqI8Exsbi6FDh6Jhw4Z48OABLCwssH//fuzdu5eT9RMR5WPMo0RUWLx//x7e3t5o0qQJQkNDUaZMGRw6dAh//PGHrImYWwbaBnCzclOqIZibMURUtCjdSDQzM8OwYcNw+fJlPHr0CJ07d8bWrVtRsWJFNG3aNC9qJCJSuaNHj8LR0RHr1q0DAHh6euL+/fvo0KGDmisjIqKcMI8SUWFw6NAhODo6wtfXFwAwcOBABAcHo23btmqujIgoa0pf2vw5a2trTJo0Cc7Ozpg2bRr+/vtvVdVFRJQn3rx5gzGjRmHXrl0AgEqVKsHX15f/x5OIqIBiHiWigqh37974Y+cfAABbW1v4+vqiUaNGaq6KiChnSp+RmO7y5csYMmQILC0t0aNHDzg5OeHo0aOqrI2ISOVcXGph165d0NDQwLhx43Dv3j02EYmICijmUSIqSIQQst8PHDgATU1NTJw4EYGBgWwiElGBofQZiZMnT8Yff/yBly9fokWLFli5ciXatWsHA96alIjyqWfPwgHoAACio9+ievXq8PPzg6urq3oLIyKiXGEeJaKC5smTJxg6fCj6r+oPAHB2dsb6tevh4uKi5sqIiJSj9BmJFy9exPjx4/HixQscOXIE3bt3Z2gjonxJKpVizZo1cg3D6dNn4MaNG2wiEhEVYMyjRFRQpKWlYcWKFXBycsK5c+dkyy9cuMAmIhEVSEqfkXj58uW8qIOISKXu378PT09PXLlyBQCwekhvrF27Bh0mToBEIlFzdURE9DWYR4moIAgKCoKnpycCAgIAAN9//z2cUp1ga2MLTYmmmqsjIsqdXM+RSESUH6WkpODXX39FjRo1cOXKFRgZGWHt2rU4e/oUHOzs2EQkIiIiojyVnJyMmTNnwsXFBQEBATAxMcGGDRtw/vx52Fexh5aGFjMpERVYX3XXZiKi/OTatWvw9PTEvXv3AACtW7fG+vXrUa5cOTVXRkRERERFgb+/Pzw8PBAcHAwAaNu2LdatWwcrKys1V0ZEpBo8I5GICrz4+HiMGTMGdevWxb1792BmZoYdO3bg8OHDbCISERERUZ778OEDRo4ciXr16iE4OBilSpXC7t27cfDgQTYRiahQ4RmJRFSgnT17Fl5eXnjy5AkAoGfPnlixYgXMzMzUXBkRERERFQWnTp2Ct7c3nj59CgDo06cPli1bhpIlS6q5MiIi1WMjkYgKrMGDB2OTjw8AoFy5cti4cSPc3d3VXBURERERFRXe3t7Y7LcZAFChQgVs3LgRrVq1UnNVRER5R6FGYvHixRWeDDY6OvqrCiIiUtT27dshkUgwdOhQzJs3D8bGxuouiYiI8gjzKBHlF0II2e87d+6ERCLBiBEjMGfOHBgZGamxMiKivKdQI3HFihWy39++fYs5c+agVatWqFu3LgDg6tWrOHnyJKZNm5YnRRIRAcDLly8xcvQYdJ+9HABQpUpVbFi3FvXq1VNzZURElNeYR4koP3jx4gWGjxqO7gu7AwDs7Oywfu162X+LiIgKO4n4/OsUBXTs2BFNmjTBsGHD5JavWbMGZ86cwcGDB1VZX7ZiY2NhamqKmJgYmJiYfLP9EtG3JYSAn58fxo0bh6SUFOy8/QgA0LJcMRgZ6Ku5OiKir8M8o7z8lEcBvodERYFUKoWvry8mTJiA2NhYGJkYYdz4cZg4biL09P6vvfuOiuL62wD+LL0jKAgqoghRFEHFGlSi0WAvIfYkGFGjorFhSSzYW8QSaxTUmFhji7EkMUSNvQMiqKgoFrAive99/+Blf1mpi7ss5fmcsyfszNyZ787g8uTOzB09dZdHRPReFMkyCj+1+c8//0SXLl3yTO/SpQv+/vtvRVdHRFSoe/fu4eOPP8aIESMQHx8PZycn2KW/RC+H6jDUZ2gjIqqMmEeJqDTdvXsXHTt2xKhRo5CQkIBWrVrh4vmL8Jvpx05EIqp0FO5IrFq1Kn777bc803/77Tc+lYqIlCYrKwvLly9H48aNcfLkSejr68Pf3x8XLlxAE2dnaGloFHusLCIiqliYR4moNGRlZWHp0qVwdnbG6dOnYWBggJUrV+LcuXNo1KiRussjIlILhZ/aPHfuXAwfPhynTp1Cq1atAACXLl3CH3/8gc2bNyu9QCKqfEJCQuDt7Y1r164BAD7++GNs2rQJdnZ2aq6MiIjKAuZRIlK1GzduwNvbGzdu3AAAdO7cGT/++CPq1q2r5sqIiNRL4SsShw4dinPnzsHExAQHDhzAgQMHYGJigrNnz2Lo0KEqKJGIKou0tDTMmDEDzZs3x7Vr11ClShVs2bIFJ06cYCciERHJMI8Skaqkpqbi22+/RYsWLXDjxg2YmZlh27Zt+PPPP9mJSESEEjxspSzhwNZEFceZM2cwYsQI3LlzB0DOQPpr166FlZWVmisjIlIt5pnyj8eQqGL4999/MXz4cERGRgIA+vXrhzVr1qB69epqroyISLVU+rAVALh//z5mzpyJwYMH48WLFwCA48eP49atWyVZHRFVUkIIxL2Nx9hvxqN9+/a4c+cOrKyscODAAezbt4+diEREVCDmUSJSBiEEXr99jTHjxsDd3R2RkZGoUaMGDh06hL1797ITkYjoHQp3JJ4+fRqNGzfGpUuXsH//fiQlJQHIGdPMz89P6QUSUcV19PgfOPk8BR19pkNXXx/Dhw9HREQE+vbtq+7SiIioDGMeJSJl+f3o7/jnzT/oMLEDdPV1MXLkSISHh6N3797qLo2IqExSuCNx+vTpWLBgAU6cOAEdHR3Z9I4dO+LixYtKLY6IKqaXL19i8ODB+OwzT9m0o0ePYvPmzahSpYr6CiMionKBeZSI3teLFy8wcOBA9O/fXzbt+PHj+PHHH2FqaqrGyoiIyjaFOxJv3ryZ79VClpaWePXqlVKKIqKKSQiBX375BY6Ojti1axc0NP73FeTu7q7GyoiIqDxhHiWikhJCYPv27XB0dMSePXugqakpm9euXTs1VkZEVD4o3JFYpUoVxMTE5Jl+48YN1KxZUylFEVHF8+jRI3Tv3h1ffPEFXr9+DWdnZ5w6dVrdZRERUTnEPEpEJfHo0SN07doVXl5eePPmDZo0aYLTp5lHiYgUoXBH4sCBAzFt2jTExsZCIpFAKpXi3Llz8PX1xZdffqmKGomoHJNKpVizZg0aNWqE48ePQ0dHBwsXLsTVq1fRrFlTdZdHRETlEPMoESkiOzsbP/zwAxo1aoQ///wTurq6WLRoES5fvowmTZqouzwionJFS9EGixYtgo+PD2xsbJCdnY2GDRsiOzsbgwcPxsyZM1VRIxGVU+Hh4Rg+fDguXLgAAHBzc0NAQAAaNGgAAMiSStVZHhERlVPMo0QVmxACiRmJCHsRBpfqLjDUMSzxusLDw+Ht7S0bP7Vdu3bYvHkz6tevDwDIkmYppWYiospC4Y5EHR0dbN68GbNmzUJYWBiSkpLQtGlTODg4qKI+IioHhBBITBYICwNcGkugrZ2JpUuXYsGCBcjIyICRkRGWLl2KUaNGyY2LSEREVBLMo0QVW2JGIhqsa4CYxBjYm9sjZFQIDLQNFFpHRkYGlixZggULFiAzMxPGxsZYtmwZRo4cyTxKRPQeFO5IzFW7dm3Url1bmbUQUTmVmCzQwEmKmEdasLFJg4lJe9y6dQUA0K1bN2zYsIHfF0REpHTMo0QVU9iLMMQk5oyDeu/NPYS9CEPLmi2L3f7SpUsYPnw4wsLCAAA9evTAhg0bUKtWLZXUS0RUmRSrI3HSpEnFXuGKFStKXAwRKc+7VwkaGkpUtq2wMCDmUc7XyePHegCAatWqYfXq1Rg0aBAkEtVtm4iIKgfmUaLKw8nSCdbG1rIrEp0snYrV7uXblxi/cDx2rd4FZAIWFhb44YcfMGDAAOZRIiIlKVZH4o0bN+TeX79+HVlZWbJxJe7evQtNTU24uroqv0IiKpH/XiVo7yAQEgwYFOOOkJJ0QL5+fRrWtu1yOhMlkRjQ3wlr1hyFhYVFkW3TU4HoSG2k1ARMjIrxwYiIqFJiHiWqPAy0DbCsxzI8fvsYPi4+xbqt+cifR9D3z77IMs0CRgED3w7EmhVrUK1atSLbpmel4/Hbx0ipmQITXRNlfAQiogqrWB2JJ0+elP28YsUKGBsb46effoKZmRkAIC4uDl999RXatWunmiqJSGH/vUrwXqQEYWFAy2LcEaJIB2RcXBwmT56Mnbt3Y+v5+4iO1Ia9VhQ8+24pVo0pKcDkPhaIeaSFAAU6O4mIqPJhHiWqXHS1dGFfzb7ITsQ3b95g8uTJ2HZiGzDi/ydWBSZOm1isTsSUzBRMPTIVMYkx2HJpS4nGYyQiqkwUHmXW398fixcvloU2ADAzM8OCBQvg7++v1OKIqOScnABr25yn0Nk7CDgV746QfDsg87N//344Ojpi69atSE9NxYVty/D1Jzr4tE/nYtdY3G0RERH9F/MoEQkhsG/fPjRs2BDbtm0DXgCmWaYAAAdzh2LfDp3feIxERFQwhR+2kpCQgJcvX+aZ/vLlSyQmJiqlKCJ6fwYGgP+hl4iO1MboruYwMCjeuDC5HZC5VyQ6Ocm3e/bsGcaOHYuDBw8CABo0aICAgAC4ubkpXKNLYwnsHQTuRUrgkM+2iIiI8sM8SlS5PXv2DD4+Pjh06BCAnDwaGBiIJi2aIOxFGJwsnYp9VaFLdRfYm9vj3pt7CnVAEhFVVgp3JPbt2xdfffUV/P390fL/75O8dOkSpkyZgk8//VTpBRJRyenqAw7OmQrdLlxQB6QQAoGBgfD19UV8fDy0tLQwbdo0zJw5E3p6eiWqz9BQgpDgnCsTnZwkvK2ZiIiKhXmUqHISQiAgIABTpkyR5dFvv/0WM2bMgK6uLgAo9HRnADDUMUTIqBCFOyCJiCorhTsSN27cCF9fXwwePBiZmZk5K9HSgre3N77//nulF0hEpe/dDsh79+5h5MiRsvGpmjdvjsDAQDg7O7/3tgwMijd2IxERUS7mUaLK59082qJFCwQEBCgnj2obKNwBSURUWSnckWhgYID169fj+++/x/379wEA9erVg6GhodKLIyL1ysrKxqofVmD27NlITU2Fvr4+5s+fj/Hjx0NLS+GvDyIiIqVgHiWqPLKysrBy9UrMnj0baWlp0NfXx4IFCzB+/HhoamqquzwiokqnxD0BhoaGSjn7Q0RlV8eOHXDh3Ln//7kjNm3ahHr16qm5KiIiohzMo0QVX4cOHXDx/EUAwMcff4xNmzbBzs5OzVUREVVeCnckJicnY8mSJQgKCsKLFy8glUrl5j948EBpxRFR6UtLS5f9fP36dZiammLFihX46quvIJHwYShERKR+zKNEFVtaWprs5xs3bqBKlSpYsWIFhg4dyjxKRKRmCnckDh8+HKdPn8YXX3wBa2trfpETVSBnz57FaJ+xmLv3OACgV6/eWL1yBaytrdVcGRER0f8wjxJVXGfOnMGYsWMw++BsAEDv3r2xasUq5lEiojJC4Y7E48eP4+jRo3Bzc1NFPUSkBgkJCfj222+xfv166Orry6bv3LkDWhoaaqyMiIgoL+ZRooonISEB06dPx4YNGwAAvh/7YsXKFdi9czdPFhARlSEKdySamZnB3NxcFbUQkRocPXoUo0aNwpMnTwAAnw8ejPYWuqhSpQo0GdqIiKgMYh4lqljezaO5T2A3MzNTc2VERPQuhS81mj9/PmbPno2UlBRV1ENEpeTly5cYMmQIevTogSdPnsDOzg5BQUEICAhANXNzaGlo8OwvERGVScyjRBXDy5cvMXjw4HzzKDsRiYjKJoWvSPT398f9+/dRvXp11KlTB9ra2nLzr1+/rrTiiEj5hBDYuXMnxo8fj9evX0NDQwOTJk3C3LlzYWBgoO7yiIiIisQ8SlS+MY8SEZVfCnck9unTRwVlEFFpiI6OxqhRo3D8eM7DVJydnREYGIjmzZuruTIiIqLiYx4lKr/yy6MBAQFo0aKFmisjIqLiULgj0c/PTxV1EJEKSaUCa9evxbfffoukpCTo6OjAz88PU6ZMyXMVBxERUVnHPEpU/kilUqxfv14uj86ePRtTp05lHiUiKkcU7kgkovKnc+fO+PfUSQCAm5sbAgIC0KBBAzVXRUREREQVmRAC2SIbd+7cwcjhI3H+/HkAzKNEROWZwh2JGkU8gCE7O/u9CiIi5cjIyJT9fOnSRRgZGWHp0qUYNWoUNDQUfs4SERFRmcE8SlQ+pKan4uizo4AucO3GNRgZGWHJkiUYPXo08ygRUTmlcEfiwYMH5d5nZmbixo0b+OmnnzB37lylFUZEJXflyhWMGjMGM345DADw8PDAmtWrUbt2bTVXRkRE9P6YR4nKvpw8OgrT90wHkJtH1zCPEhGVcxIhhFDGinbu3Ik9e/bgt99+U8bqiiUhIQGmpqaIj4+HiYlJqW2XqKxKTk7G7NmzsWrVKkilUtSoZYPvv1+Ggf3786wvEVEZxTyjPOrIowCPIdF/paSkYPbs2Vi5ciW0dbXxc9jPAIA+tn2grcmxEImIyiJFsozSehZat26NoKAgZa2OiBQUFBSExo0bY8WKFZBKpRgyZAhCblzH4IED2YlIRESVAvMokXrl5lF/f39IpVL0799fNq+w4QiIiKj8UErvQmpqKn744QfUrFlTGasjIgXExcVh2LBh6NSpE6KiomBjY4OjR4/il19+QbVq1dRdHhERUalgHiVSn7i4OHh7e6NTp0548OABbGxscOTIEWzZskXdpRERkZIpPEaimZmZ3NkkIQQSExNhYGCAX375RanFEVHh9u/fDx8fHzx//hwSiQRjxozB4sWLYWxsrO7SiIiIVIZ5lKjsOHDgAHx8fBAbGwsA8PHxkeXRLGmWmqsjIiJlU7gjcdWqVXLvNTQ0YGFhgVatWsHMzExZdRFRIWJiYuDj4yMbbL5BgwYICAiAm5ubmisjIiJSPeZRIvWLiYnB2LFjceDAAQBA/fr1ERAQgLZt26q5MiIiUiWFOxK9vLxUUQcRFYMQAoGBgfD19UV8fDy0tLQwbdo0zJw5E3p6euouj4iIqFQwjxKpjxACW7duxeTJk/H27VvmUSKiSkbhjkQAePv2LQIDAxEREQEAaNSoEYYNGwZTU1OlFkdEOYQQiLx3H2PHjcOJP/8AADRv3hyBgYFwdnZWc3VERESlj3mUqHQJIXAv6h7GjR2HP4//CQBwdXVFYGAgXFxc1FwdERGVFoUftnL16lXUq1cPK1euxJs3b/DmzRusWLEC9erVw/Xr11VRI1GllpWVhRWrViFMaohRq7egipk5li9fjgsXLrATkYiIKiXmUaLSlZWVhZWrVyIYwfBe6w1Tc1N8//33uHjxIjsRiYgqGYkQQijSoF27drC3t8fmzZuhpZVzQWNWVhaGDx+OBw8e4N9//1VJoflJSEiAqakp4uPjYWJiUmrbJSotISEh8Pb2Rlh4OHbeuA8AcNJMwQf29dRcGRERKQvzjOLKUh4FeAypYgsNDYW3tzdu3rqJn8N+BgC4CBd8UO+DIttmSbNw8GHOmN596/SFlkaJbogjIiIVUyTLlOiKxGnTpslCGwBoaWlh6tSpuHr1quLVElEeaWlpmDFjBpo3b45r167BxOR/t2nZ2dVVY2VERETqxzxKpHrp6emYNWsWXF1dcfXqVbn/sbSra6fGyoiISJ0U7kg0MTFBdHR0numPHz+GsbGxUooiqszOnj2LJk2aYNGiRcjKysKnn37K27SIiIj+g3mUSLXOnTuHJk2aYMGCBcjKykLfvn1x7do1dZdFRERlgMIdiQMGDIC3tzf27NmDx48f4/Hjx9i9ezeGDx+OQYMGqaJGokohISEBPj4+aNeuHe7cuQMrKyvs27cP+/fvh5VVdXWXR0REVGYwjxKpRmJiIsaNG4d27drh9u3bqF69Ovbt24cDBw7A2tpa3eUREVEZoPAgFcuXL4dEIsGXX36JrKwsAIC2tjZGjx6NJUuWKL1AIlUTQiAxWSAsDHBpLIGhoaTUazh69ChGjRqFJ0+eAACGDRuG5cuXw8zMrNRrISIiKuuYR4mU7/jx4/j666/x+PFjAMBXX32F5cuXw9zcXM2VERFRWaJQR2J2djYuXryIOXPmYPHixbh/P+fhD/Xq1YOBgYFKCiRStcRkgQZOUsQ80oK9g0BIMFBav84vX77E+PHjsWvXLgCAnZ0dNm3ahI8//jjPsumpQHSkNlJqAiZGpVMfERFRWcM8SqRcr169woQJE7Bjxw4AQN26dbFp0yZ06tRJzZUREVFZpNCtzZqamvjkk0/w9u1bGBgYoHHjxmjcuDFDG5VrYWFAzKOcPvV7kRKEhal+m0II7NixA46Ojti1axc0NDQwefJk3Lx5M99OxJQUYHIfC0zvXw2uzSRISVF9jURERGUR8yiRcgghsGvXLjg6OmLHjh3Q0NDApEmTcPPmzQI7EdOz0nHv1T2kZDKMEhFVVgqPkejk5IQHDx6oohYitXByAqxtc26LsncQcHIqXjshBBKSpDh/UYrkZFHs7d258xhubhPx+ecj8Pr1azRu3BgXL17E8uXLC/yfIHV0dhIREZVVzKNU0QghkJCegPOPzyM5I1nl23oY/RB9Pfti8ODBePXqFZycnHDhwgX4+/vD0NAw33YpmSmYemQqvjv+HVw3uRa7M5Gdj0REFYvCHYkLFiyAr68vjhw5gpiYGCQkJMi9iMobAwPA/9BLLNn7Cteui2Lf1px7S7RbGw00aYoirxKUSqVYsWIjHB3TceHCKgAhmDVrMa5evYoWLVoU2talsQT2DjmdlQ4KdHYSERFVRMyjVNEkZiSiwboGcNvihiY/NlFZp5tUKsXGzRtxJesKhiwfAmNTY8ybNw/Xrl1Dy5YtC20b9iIMMYkxAIB7b+4h7EXRZ7ZL2vlIRERll8IPW+nWrRsAoFevXpBI/vdQCiEEJBIJsrOzlVcdUSnR1QccnDMVGhsxv6sEC8pfERERGD58OM6fzwQw6v+nOqBHj+nQ0Sl6W4aGEoQE52zTyUlSamM4EhERlUXMo1TR5NdJ17Jm4R17wP8/NDAjEWEvwuBS3QWGOvlfTQgAd+7cwYgRI3D56mUEBAfg8dvHCPo3CC2cCz+hnculugvsze1x7809OJg7wMmy6DPbJf1cRERUdinckXjy5ElV1EFU7uTeEp37kBYnp7xPe87IyMCyZcswf/58ZGRkwNDQAgYGb/HyZRU4OEChKwsNDAruqCQiIqpMmEeponGydIK1sTViEmNgb25frE464H9XMua2CxkVAgNt+TPOmZmZ+P777zFv3jykp6ejilUVTD0yFTGJMdhivgUhjnnb5MdQxxAho0IQ9iIMTpZOxWpTks5HIiIq2xTuSHR3d1dFHUTlTu4t0dGR2hjd1RwGBvIdiVeuXIG3tzdu3rwJIOfqiQ0bNqBatSr/f2Vh6T0dmoiIqCJhHqWKxkDbAMt6LMPjt4/h4+JTrE46oOgr/q5evYrhw4cjJCQEANClSxeMnDcSnx77tMA2RdWpyBWFJel8JCKisk3hMRKJ6H/yuyU6JSUFvr6+aN26NW7evImqVatix44dOHLkCGrXri27spCdiERERESUS1dLF/bV7BXqbMu9khGA3JWMKSkpmDp1Klq1aoWQkBCYm5tj+/btOHbsGD5x+QT25vYAUCpXCeZ2PrITkYioYlD4ikQiKlhQUBBGjhwpe5Lk4MGDsWrVKlhYWKi5MiIiIiKqaPK7kvHkyZMYMWIE7t+/DwAYOHAgVq9eDUtLSwC8SpCIiN4POxKJlODt27eYNmUKtmzZAgCwsbHBhg0b0L17dzVXRkREREQVWe6VjJkpmRgxdgQCAgIAADVr1sSGDRvQs2fPPG0UvUWZiIgoV7FubT58+DAyMzNVXQtRueXq6irrRPTx8cGtW7fYiUhERKREzKNEhXN1dZV1Io4aNQq3bt3KtxORiIjofRSrI7Fv3754+/YtAEBTUxMvXrxQZU1E5UJs7HPZz8+fP0eDBg1w9uxZrF27FsbGxmqsjIiIqOJhHiXK6/nz/+XR2NhYfPDBBzh9+jQ2bNgAU1NTNVZGREQVVbE6Ei0sLHDx4kUAgBACEomkiBZEFZcQAlu2bIGrq6ts2tSpU3Hjxg24ubmpsTIiIqKKi3mU6H+EENi6datcHvX19UVISAjat2+vxsqIiKiiK1ZH4qhRo9C7d29oampCIpHAysoKmpqa+b6IKrIHDx6gc+fO8Pb2xovYGCz37ge79JeY6+cHPT09dZdHRERUYTGPEuV48OABPvnkEwwbNgzPY57D/3N/2MXbYf7c+cyjRESkcsV62MqcOXMwcOBA3Lt3D7169cLWrVtRpUoVFZdGVHZkZWVh9erVmDVrFlJTU6Gvr4/58+dj/Pjx0NLiM4uIiIhUjXmUKrvs7Gz88MMPmDlzJlJSUqCnp4e5c+di0qRJzKNERFRqiv0Xp0GDBmjQoAH8/PzQr18/GBgYqLIuojIjNDQU3t7euHr1KgCgY8eO2LRpE+rVq6fmyoiIiCoX5lGqrG7evInhw4fj8uXLAICPPvoImzZtgoODg5orIyKiykbhU1d+fn4AgJcvX+LOnTsAgPr168PCwkK5lRGpWVpaGhYsWIClS5ciKysLpqam8Pf3x7BhwzguExERkRoxj1JlkZ6ejkWLFmHRokXIysqCiYkJli9fDm9vb2hoFGuUKiIiIqVSuCMxJSUFY8eOxc8//4zs7GwAOU/O+/LLL7FmzRqeGaYK4ezZsxgxYgRu374NAPj000+xdu1aWFtbq7kyIiIiYh6lyuDChQvw9vZGREQEAKB3795Yt24datasqebKiIioMlP4NNbEiRNx+vRpHD58GG/fvsXbt2/x22+/4fTp05g8ebIqaiQqNYkJifDx8UG7du1w+/ZtWFlZYf/+/di/fz87EYmIiMoI5lGqyJKSk/DNN9/Azc0NERERsLS0xN69e3Hw4EF2IhIRkdopfEXi/v37sW/fPnz00Ueyad26dYO+vj769++PDRs2KLM+olLVvEVzPLh3DwDg7e2N77//HmZmZmquioiIiP6LeZQqshbNW+De3Zw8OnToUPj7+8Pc3FzNVREREeUo0a3N1atXzzPd0tISKSkpSimKqDS9evVK9vPTp09hZ2eHzZs3o2PHjmqsioiIiArCPEoVzZs3b2Q/P378GHXq1MGmTZvQuXNnNVZFRESUl8K3Nrdp0wZ+fn5IS0uTTUtNTcXcuXPRpk0bpRZHpEpCCOzYsQOurs1l07755hvcvHmTnYhERERlGPMoVRRCCOzevRvNmjWTTfPx8UFYWBg7EYmIqEySCCGEIg3CwsLg4eGB9PR0uLi4AABCQkKgp6eHP//8E40aNVJJoflJSEiAqakp4uPjYWJiUmrbpfIvOjoao0ePxrFjxwAAri1aYN269WjZ3JVPZCYiolLFPKO4spRHAR5DKpknT55g9OjROHLkCACgSbMmWL9+PVq3bM08SkREpUqRLKNwRyKQczvJjh07ZE+0dXR0xJAhQ6Cvr1+yikuIoY0UJZVKsWHDBkyfPh1JSUnQ0dHB7NmzMXXqVGhra6u7PCIiqoSYZ0qmrORRgMeQFCOVSrFp0yZMnToViYmJ0NbWxsyZMzF9+nTo6OiouzwiIqqEFMkyCo+RCAAGBgYYMWJEiYojUpfbt29j+PDhOHfuHADAzc0NAQEBaNCggZorIyIiIkUxj1J5dPfuXYwYMQL//vsvAKB169YICAgo9atoiYiISkrhMRKJypvMzEwsXLgQLi4uOHfuHIyMjLB27Vr8+++/7EQkIiIiIpXLzMzEkiVL4OzsjH///ReGhoZYvXo1zp49y05EIiIqV0p0RSJReXH16lV4e3sjNDQUANC1a1ds3LgRtWvXVnNlRERERFQZXL9+Hd7e3ggODgYAeHh4YOPGjahTp45a6yIiIioJXpFIFVJKSgp8fX3RqlUrhIaGomrVqvjll19w9OhRdiISERERkcqlpqZi2rRpaNmyJYKDg2Fubo7t27fj+PHj7EQkIqJyi1ckUoUihMA/p07Bx2cs7kSEAwAGDx6MVatWwcLCQs3VEREREVFFJ4TA6TOn4ePjg/CwnDw6YMAArF69GtWrV1dzdURERO+nRFckvn37FgEBAfj222/x5s0bADmX7D99+lSpxREpIi4uDqPGjEF8jQZYdPBv2Nnb48iRI9ixYwc7EYmIiCoY5lEqi+Lj4zFm3Bi8rPUSc36bg7r16uK3337D7t272YlIREQVgsJXJIaGhqJTp04wNTXFw4cPMWLECJibm+PAgQOIjo7G9u3bVVEnUaEOHDgAHx8fxMXHw2PCbADA1StXYVbFVM2VERERkbIxj1JZdPjwYYwePRqv416j46SOAIArV6+gapWqaq6MiIhIeRS+InHSpEkYOnQoIiMjoaenJ5verVs3/Pvvv0otjqgosbGx+Oyzz+Dp6YnY2Fg4OHwgm2dsYqzGyoiIiEhVmEepLHn+/DkGDBiA3r1749mzZ6hXr55snqkJT2oTEVHFonBH4pUrV/D111/nmV6zZk3ExsYqpSiiogghsGXLFjg6OmL//v3Q0tLCjBkzcOHCBXWXRkRERCrGPEplgRACP/30ExwdHbF3715oampi+vTpuHjxorpLIyIiUhmFb23W1dVFQkJCnul3797lOHRUKh48eICRI0ciKCgIAODq6orAwEC4uLggSypVc3VERESkasyjpG4PHz7E119/jb/++gsA0LRpUwQGBqJp06bIkmapuToiIiLVUfiKxF69emHevHnIzMwEAEgkEkRHR2PatGnw9PRUeoFEubKysuDv7w8nJycEBQVBX18f33//PS5evAgXFxd1l0dERESlhHmU1CU7OxurV6+Gk5MT/vrrL+jp6WHJkiW4dOkSmjZtqu7yiIiIVE7hjkR/f38kJSXB0tISqampcHd3h729PYyNjbFw4UJV1EiE0NBQtGnTBr6+vkhNTUWHDh1w8+ZN+Pr6QktL4QtriYiIqBxjHiV1uHXrFtzc3DBhwgQkJyejffv2CAkJwbRp06Ctra3u8oiIiEqFwj0wpqamOHHiBM6ePYvQ0FAkJSWhWbNm6NSpkyrqozJECIHEZIGwMMClsQSGhhKVtgOA9PR0LFiwAEuWLEFWVhZMTU3h7++PYcOGQSIp/nqIiIio4mAeJUUJIZCYkYiwF2Fwqe4CQx3DYrd9m/wWU5ZPwbal25CVmgUTExMsW7YMI0aMgIZG/tdlpGel4/Hbx0ipmQITXRNlfQwiIiK1kwghhLqLKKmEhASYmpoiPj4eJib8A61qCUlSNHCSIuaRFuwdBEKCJTAwUE07IQTOnb+AMT4+uBkSDAD49NNPsXbtWlhbWxfYLksqxa+hzxEdqY3RXc1hYqTwRbdERESlinmm/OMxLPsS0hPQYF0DxCTGwN7cHiGjQmCgXXSQPX3+ND458AkyjDOA10C36G7YtG4TatasqfRtERERqYsiWUbhKxJ/+OGHfKdLJBLo6enB3t4e7du3h6ampqKrpjIuLAyIeZTzK3MvUoKwMKBlS+W3S0xMxIxZs9Fm6FQMmXECaya3xeqVC4s15lFKCjC5jwViHmkhwEEgJBjF6uwkIiKi8oN5lBQV9iIMMYkxAIB7b+4h7EUYWtYsOJAmJSVh5syZWL1vNTDi/ydWBWZPnV1oJ2JJtkVERFSeKNyRuHLlSrx8+RIpKSkwMzMDAMTFxcHAwABGRkZ48eIF7OzscPLkSdjY2Ci9YFIfJyfA2jZLdmWhk1Pxbi1WpN2xY8cwatQoPH+ZjH2HvkfMIy3Y2d1C167F+x+BknZ2EhERUfnBPEqKcrJ0grWxtewqQSdLpwKX/euvv/D111/j4cOHgDZgnGGMRJ1EOJg7oHH1xkVuy6W6C+zN7XHvzT04mDsUui0iIqLyRuH7PhctWoQWLVogMjISr1+/xuvXr3H37l20atUKq1evRnR0NKysrDBx4kRV1EtqZGAA+B96iSV7X+HadVHsK/2K0+7ly5cYMmQIunfvjsePH8PKqrOsQ/DBA02EhRVvWy6NJbB3yLlb38FBwIm5jYiIqMJhHiVFGWgbYFmPZVjUdRGujbyW763Gb968wdChQ+Hh4YGHDx/C1tYWf/z+B2LnxOLS8EsIHhVcrFuUDXUMETIqRKE2RERE5YXCYyTWq1cP+/fvR5MmTeSm37hxA56ennjw4AHOnz8PT09PxMTEKLPWPDgeTenKkkpxOPI5AKCXQ3VoFTC4tCLthBDYuXMnJkyYgFevXkFDQwMTJkzAtGlz4dbWEPciJXBwEAgu5niMQM7tzWFhOVdC8rZmIiIq65hnFFeW8ijAY1geZEmzcPDhQQBA3zp9oaXxvxuzhBDYt28fxo4dixcvXkAikWDcuHFYuHAhjIyM1FUyERFRqVHpGIkxMTHIysrKMz0rKwuxsbEAgBo1aiAxMVHRVVMlEx0djdGjR+PYsWMAgMaNGyMwMBAtWrQAAIQE53YIFr8TEcjpPOTtzERERBUX8ygpy9OnT+Hj44PffvsNANCwYUMEBASgTZs2aq6MiIiobFL41uYOHTrg66+/xo0bN2TTbty4gdGjR6Njx44AgJs3b6Ju3brKq5IqFKlUinXr1qFRo0Y4duwYdHR0MH/+fFy9elXWiQj8r0OQVxUSERHRfzGP0vuSSqXYtGkTGjZsiN9++w3a2trw8/PD9evX2YlIRERUCIU7EgMDA2Fubg5XV1fo6upCV1cXzZs3h7m5OQIDAwEARkZG8Pf3V3qxVP7dvXsX7du3x9ixY5GUlAQ3NzcEBwdj5syZ0NHRUXd5REREVA4wj9L7uHf/Hjp27Iivv/4aCQkJaNmyJa5fv445c+ZAV1dX3eURERGVaQrf2mxlZYUTJ07g9u3buHv3LgCgfv36qF+/vmyZDh06KK9CqlBat26NxPh4GBkZYcmSJRg9ejQ0ijnWIhERERHAPErvp1WrVkiIS4CBgQEWLlyIcePGQVNTU91lERERlQsKdyTmatCgARo0aKDMWqiCun79BmBcAwCQkZGBrl27YuPGjahdu7aaKyMiIqLyjHmUiis0NBT4/7Hj09PS0alTJ2zatIm3vxMRESmoRB2JT548weHDhxEdHY2MjAy5eStWrFBKYVT+paSkYPbs2Vi/cSN+uRYJIOdWpMEDB0Iikai5OiIiIirPmEepOFJTUzFv3jz8sPYHbAvZBgDYuHEjvL7wYh4lIiIqAYU7EoOCgtCrVy/Y2dnh9u3bcHJywsOHDyGEQLNmzVRRI5VDQUFBGDlyJB48eAAAOLT4OyxbthTV2YlIRERE74l5lIrj33//xYgRI2S3vx+YdQDLly9HjS9qMI8SERGVkMKD03377bfw9fXFzZs3oaenh/379+Px48dwd3dHv379VFEjlSNxcXHw9vZGp06d8ODBA9SqVQtHjhzB9m1bYWVpydBGRERE7415lAqTkJCA0aNHw93dHXfv3oW1tTUOHjyIXTt2oaZ1TeZRIiKi96BwR2JERAS+/PJLAICWlhZSU1NhZGSEefPmYenSpUovkMqPAwcOoGHDhtiyZQsAYMyYMbh16xa6d++u5sqIiIioImEepYIcOXIEjRo1wsaNGwEAI0aMQHh4OPr06aPewoiIiCoIhTsSDQ0NZePQWFtb4/79+7J5r169Ul5lVG7ExMTA09MTnp6eiI2NRf369XHmzBmsW7cOJiYm6i6PiIiIKhjmUXrXixcvMGjQIPTs2RNPnjyBvb09/vnnH2zatAlVqlRRd3lEREQVhsJjJLZu3Rpnz56Fo6MjunXrhsmTJ+PmzZs4cOAAWrdurYoaqYwSQmDLli3w9fXF27dvoaWlhWnTpmHmzJnQ09NTd3lUCWRnZyMzM1PdZRARFUpbWxuamprqLqNCYR6lXEII/PLLL5gwYQLevHkDDQ0N+Pr6Ys6cOdDX11d3eUTvRSqV5nmYFBFRSSgzjyrckbhixQokJSUBAObOnYukpCTs2bMHDg4OfEJeJfLgQRRGfz0S//zzDwDA1dUVgYGBcHFxUXNlVBkIIRAbG4u3b9+quxQiomKpUqUKrKysODabkjCPEgA8evQIo0aNwh9//AEAcHFxQWBgIFxdXdVcGdH7y8jIQFRUFKRSqbpLIaIKQll5VKGOxOzsbDx58gTOzs4Acm4ryR1/hCqXVi1b4m3cG+jr62PevHmYMGECtLQU7pcmKpHcTkRLS0sYGBjwf8yJqMwSQiAlJQUvXrwAkHMbLr0f5lHKzs7Ghh83YLbfbMS9ioOuri78/Pzg6+sLbW1tdZdH9N6EEIiJiYGmpiZsbGygoaHwiGRERDLKzqMK9fxoamrik08+QUREBMcaqYTCwsIAXQsAQGpaKjp06IDNmzejXr16aq6MKpPs7GxZJ2LVqlXVXQ4RUZFyb6988eIFLC0teZvze2IerdzCw8MxymcUxgWOw49dfsT6Eeuxcf1G1K9fX92lESlNVlYWUlJSUKNGDRgYGKi7HCKqAJSZRxU+teHk5IQHDx6UeINU/qSlpWHmzJlo27atbNratesQFBTETkQqdbljIjJUEVF5kvudxXFdlYN5tPLJyMjA/Pnz0bRpU1y+dFk2/c8//2QnIlU42dnZAAAdHR01V0JEFYmy8qjCHYkLFiyAr68vjhw5gpiYGCQkJMi9qGI5d+4cmjZtioULFyI5MRG7Zk9ECyMB76+G8nZSUiv+/hFRecLvLOViHq1cLl++DFdXV8yePRsZGRno0qWLbB5v+aSKjH87iEiZlPWdovCgdt26dQMA9OrVS64IIQQkEons7AmVb4mJifj222+xfv16CCFQvXp1rFu3Dp6enuoujYiIiCo55tHKITk5GbNmzcLq1ashlUpRrVo1/PDDD/is/2c49OiQussjIiKqlBQ+hXfy5EnZ659//pG9ct9T+Xfs2DE0atQI69atgxACw4YNQ0REBDsRiUhGIpHg0KFDpbKt9u3bY+fOnQpt+/bt22jdujX09PTQpEkTPHz4EBKJBMHBwaottoILDw9HrVq1kJycrO5SqJJjHq34/v77bzRu3BgrV66EVCrF559/joiICAwaNIhXaRGRyjHrVk7MusWjcEeiu7t7oS8qv16+fIkhQ4age/fuePz4Mezs7PD3338jMDAQZmZm6i6PqFyTSCSFvubMmaPuEsukw4cP4/nz5xg4cKBC7fz8/GBoaIg7d+4gKChIJbUVFNhu3boFT09P1KlTBxKJBKtWrcq3/dOnT/H555+jatWq0NfXR+PGjXH16lWFavjv75CpqSnc3NzeqxPl7t276N27N6pVqwYTExO0bdsWJ0+elM1v2LAhWrdujRUrVpR4G0TKwDxaccXFxWHYsGHo3LkzoqKiYGNjg2PHjuHnn39GtWrV1F0eERWAWbdkmHULx6xbNpVoUJEzZ87g888/x4cffoinT58CAH7++WecPXtWqcVR6RBCYMeOHWjYsCF27twJDQ0NTJo0CaGhofj444/VXR5RhRATEyN7rVq1CiYmJnLTfH19ZcsKIZCVlaXGasuOH374AV999ZXCY2Ddv38fbdu2ha2tbak/3TslJQV2dnZYsmQJrKys8l0mLi4Obm5u0NbWxvHjxxEeHg5/f/8SnbTZunUrYmJicO7cOVSrVg09evQo8UMoevTogaysLPzzzz+4du0aXFxc0KNHD8TGxsqW+eqrr7Bhwwb+jpLaMY9WPPv374ejoyO2bt0KiUSCsWPH4tatW+jatau6SyOiIjDrlgyzbtGYdcsgoaB9+/YJfX19MXz4cKGrqyvu378vhBBizZo1omvXroqu7r3Ex8cLACI+Pr5Ut1uRPHr0SHTr1k0AEABE48aNxeXLl9VdFlGBUlNTRXh4uEhNTZVNk0qlIikpqdRfUqm0RJ9h69atwtTUVPb+5MmTAoA4duyYaNasmdDW1hYnT54UXl5eonfv3nJtx48fL9zd3WXvs7OzxaJFi0SdOnWEnp6ecHZ2Fr/++muB2/72229Fy5Yt80x3dnYWc+fOFUIIcfnyZdGpUydRtWpVYWJiItq3by+uXbsmtzwAcfDgQbn64+LiZPNv3LghAIioqCjZtDNnzoi2bdsKPT09UatWLTFu3DiRlJRUYK0vXrwQEolEhIWF5dn2+vXrRZcuXYSenp6oW7eu3GfO/T7Lffn5+YmoqCgBQNy4cUO23KlTp0SLFi2Ejo6OsLKyEtOmTROZmZmy+cePHxdubm7C1NRUmJubi+7du4t79+4VuJ3/Hpdctra2YuXKlXmmT5s2TbRt27bAz15c/z0OQgjx9OlTAUBs3LhR4XW9fPlSABD//vuvbFpCQoIAIE6cOCGblp6eLnR1dcXff//9XrVXNvl9d+VinlFcWcqjQvAYlpRUKhWZ2Zki+km06Nu3r+z7tEGDBuLcuXMFtsvMzhR77+8Ve+/vFZnZmQUuR1Revfs3Q11Zt6R5l1mXWZdZt2xSVh4t0VObN27ciM2bN0NbW1s23c3NDdevX1d0daQm2dnZWL9hI5q6NsexY8ego6OD+fPn4+rVq2jRooW6yyNSSEpKCoyMjEr9lZKSotTPMX36dCxZsgQRERFwdnYuVpvFixdj+/bt2LhxI27duoWJEyfi888/x+nTp/NdfsiQIbh8+TLu378vm3br1i2EhoZi8ODBAHIetuTl5YWzZ8/i4sWLcHBwQLdu3ZCYmFjiz3b//n106dIFnp6eCA0NxZ49e3D27FmMHTu2wDZnz56FgYEBHB0d88ybNWsWPD09ERISgiFDhmDgwIGIiIgAkHNGvFGjRpg8eXKeM+C5nj59im7duqFFixYICQnBhg0bEBgYiAULFsiWSU5OxqRJk3D16lUEBQVBQ0MDffv2hVQqBZDzFFEgZxyvmJgYHDhwoNj74/Dhw2jevDn69esHS0tLNG3aFJs3by52+4Lo6+sDADIyMgAAixYtKvL3ODo6GgBQtWpV1K9fH9u3b0dycjKysrLw448/wtLSEq6urrJt6OjooEmTJjhz5sx710tUUsyjFUOWNAsHHx7ExfSLOPbHMWhpaWHWrFkIDg7Ghx9+qO7yiMoMdWVdZeddZl15zLqKY9YtIxTtwdTX15f1uhsZGcnOAN+/f1/o6uoqurr3wrO/JRMRESHcO3QU+28/E/tvPxPuHTqK8PBwdZdFVCz5nUVJSkrKc8asNF6FnWEsTEFnaQ8dOiS3XFFnadPS0oSBgYE4f/683DLe3t5i0KBBBW7fxcVFzJs3T/b+22+/Fa1atSpw+ezsbGFsbCx+//132TQoeJbW29tbjBw5Um69Z86cERoaGvmeERNCiJUrVwo7O7s80wGIUaNGyU1r1aqVGD16tNxn9PPzk71/9yztd999J+rXry93ln3dunXCyMhIZGdn51tP7lnMmzdv5rvO/BR0llZXV1fo6uqKb7/9Vly/fl38+OOPQk9PT2zbtq3AdeXnv8chOTlZjBkzRmhqaoqQkBAhhBCvX78WkZGRhb7+e2b68ePHwtXVVUgkEqGpqSmsra3F9evX82y3b9++YujQoQrVWtnxikTlKkt5VAgew5KIjIwUnT06y64s/LDth7LvrqLwikSq6N79m6GurFvSvMusm4NZl1m3rFFWHtVStOPRysoK9+7dQ506deSmnz17FnZ2doqujkpRZmYmli1bhnnz5kGiqYlv/n/6X3/9BR0tTbXWRvQ+DAwMkJSUpJbtKlPz5s0VWv7evXtISUlB586d5aZnZGSgadOmBbYbMmQItmzZglmzZkEIgV27dmHSpEmy+c+fP8fMmTNx6tQpvHjxAtnZ2UhJSZGdzSuJkJAQhIaGYseOHbJpQghIpVJERUXleyY2NTUVenp6+a6vTZs2ed4r8pS6iIgItGnTRu7Jn25ubkhKSsKTJ09Qu3ZtREZGYvbs2bh06RJevXolOzsbHR0NJyenYm8rP1KpFM2bN8eiRYsAAE2bNkVYWBg2btwILy8vhdY1aNAgaGpqIjU1FRYWFggMDJSd5Tc3N4e5uXmx1iOEgI+PDywtLXHmzBno6+sjICAAPXv2xJUrV2BtbS1bVl9fX+lX5BIpgnm0/MrKysKqVaswe/ZsSCHFCIwAAPzzzz/Q1dZVc3VEZZO6sm7utpWFWVces27xMOuWPQp3JI4YMQLjx4/Hli1bIJFI8OzZM1y4cAG+vr6YNWuWKmokJbh69Sq8vb0RGhoKAOjZu7dsnoaGpKBmROWCRCKBoaGhust4b+9+Bg0NDQgh5KZlZmbKfs4NlEePHkXNmjXlltPVLfh/xgYNGoRp06bh+vXrSE1NxePHjzFgwADZfC8vL7x+/RqrV6+Gra0tdHV10aZNG9ktBO/KHRz6v7X+t87cWr/++mt88803eFft2rXzXW+1atUQFxdX4OdQtZ49e8LW1habN29GjRo1IJVK4eTkVOB+UIS1tTUaNmwoN83R0RH79+9XeF0rV65Ep06dYGpqCgsLC7l5ixYtkgW4goSHh6N27dr4559/cOTIEcTFxcHExAQAsH79epw4cQI//fQTpk+fLmvz5s0b1KtXT+FaiZSFebR8CgkJgbe3N65duwYA+KTLJ7J5mpo8qU1UEGZdZl1VYNZl1i0phTsSp0+fDqlUio8//hgpKSlo3749dHV14evri3HjxqmiRnoPKSkpmD17NlauXAmpVIqqVati9erV6D9wIH6/90Ld5RFRISwsLBAWFiY3LTg4WDYeWMOGDaGrq4vo6Gi4u7sXe721atWCu7s7duzYgdTUVHTu3BmWlpay+efOncP69evRrVs3AMDjx4/x6tWrQusEcsZryX0S27tnTJs1a4bw8HDY29sXu86mTZsiNjYWcXFxeZ7wdvHiRXz55Zdy7ws7M/2u3CAjhJCdqT137hyMjY1Rq1YtvH79Gnfu3MHmzZvRrl07AMjzJFgdHR0AOWPOKsrNzQ137tyRm3b37l3Y2toqvC4rK6sC9+uoUaPQv3//QtvXqFEDAGRnXd99aqCGhobsDHWusLAwfPbZZwrXSqQszKPlS1paGubPn49ly5YhKysLVapUgb+/P77w+gKHHh1Sd3lEpCbMusy6xcGsW/Yo3JEokUgwY8YMTJkyBffu3UNSUhIaNmwIIyMjVdRH7+Gff/7BiBEjZI9GHzx4MFatWgULCwtkvfMPhYjKno4dO+L777/H9u3b0aZNG/zyyy8ICwuThQhjY2P4+vpi4sSJkEqlaNu2LeLj43Hu3DmYmJgUetvAkCFD4Ofnh4yMDKxcuVJunoODA37++Wc0b94cCQkJmDJlimxg4/zY29vDxsYGc+bMwcKFC3H37l34+/vLLTNt2jS0bt0aY8eOxfDhw2FoaIjw8HCcOHECa9euzXe9TZs2RbVq1XDu3Dn06NFDbt6vv/6K5s2bo23bttixYwcuX76MwMDAQvfnf40ZMwarVq3CuHHjMHbsWNy5cwd+fn6YNGkSNDQ0YGZmhqpVq2LTpk2wtrZGdHS03FlKALC0tIS+vj7++OMP1KpVC3p6ejA1NUVGRgbCw8MB5Nx68/TpUwQHB8PIyEgWgiZOnIgPP/wQixYtQv/+/XH58mVs2rQJmzZtKvZnKA5Fbvdo06YNzMzM4OXlhdmzZ0NfXx+bN29GVFQUunfvLlvu4cOHePr0KTp16qTUWokUwTxafpw9exbDhw+X/Q+lp6cn1qxZA2tra2RJs9RcHRGpE7Mus+77YtZVE0UHZ/z5559FcnKyos3y5efnl2cw1/r16xe7PQe2zt+bN2+Et7e3bJ/WqlVLHDlyRG6ZzOxs2cNWMgsYbJWoLCpsgNjyoqABqP87gHOu2bNni+rVqwtTU1MxceJEMXbsWNkA1EIIIZVKxapVq0T9+vWFtra2sLCwEB4eHuL06dOF1hAXFyd0dXWFgYGBSExMlJt3/fp10bx5c6GnpyccHBzEr7/+mmcgZfxn4GMhhDh79qxo3Lix0NPTE+3atRO//vqr3ADUQghx+fJl0blzZ2FkZCQMDQ2Fs7OzWLhwYaF1Tp06VQwcOFBuGgCxbt060blzZ6Grqyvq1Kkj9uzZI7dMUQNQCyHEqVOnRIsWLYSOjo6wsrIS06ZNkxuM+cSJE8LR0VHo6uoKZ2dncerUqTyfe/PmzcLGxkZoaGjIjkvutt59/fe4CSHE77//LpycnISurq5o0KCB2LRpk9x8Pz8/YWtrW+j+ebee93XlyhXxySefCHNzc2FsbCxat24tjh07JrfMokWLhIeHh9K2WVnwYSvKVZbyqBA8hvmJj48XY8aMke1TKysrsX//frllSvrQFD5shSq68p53mXWZdYVg1i2LlJVHJUK8MyhBESwsLJCamopevXrh888/h4eHR4nHNJkzZw727duHv//+WzZNS0sL1apVK1b7hIQEmJqaIj4+XnaPe2V34MAB+Pj4IDY2FkDOmYjFixfn2T9ZUikORz4HAPRyqA6tdy7vJSqr0tLSEBUVhbp16xY4ODFVHLGxsWjUqBGuX79eolshyjMvLy9IJBJs27ZN3aXIZGRkwMHBATt37oSbm5u6yylXCvvuYp5RXFnKowCP4buOHj2KUaNG4cmTJwAAb29vfP/993lu3cuSZuHgw4MAgL51+kJLo3g3S5W0HVF5wbxbeTDrMuuWJmXlUYV7j2JiYrB7925IJBL0798f1tbW8PHxwfnz5xVdFYCcoGZlZSV7KRLaSk1KCnD5cs5/i0EIgYQXyTi/NRzJL5OLvZmStkt5lYK/Vp5Dv+794OnpidjYWNSvXx9nzpzBunXrCvwlSE8FIkO1kfIqtdjbUnRfvFc7bovbKohUmrO8IuN1ZGcDycmKtSG1s7KyQmBg4Hs9Ra88EkLg1KlTmD9/vrpLkRMdHY3vvvuuQgYrKl+YR4tHCIGEuFic/ysQyW9fqqxNrkf3b2OYZ2t81rcHnjx5Ajs7O/z9998ICAjI04mYKz0rHfde3UNKfMHjkymtXVnPRWW9Pm5LfduiCotZl1m3XHqfyyKTk5PFL7/8Irp16yZ0dHSEnZ2dQu39/PyEgYGBsLa2FnXr1hWDBw8Wjx49KnD5tLQ0ER8fL3s9fvxY9beRJCcL4eAgBJDz32LcRhP/PElY22YKQAh7nSiR/LJ4t96UpF3SiyRRT/OeAISwxR1hpGEkZsyYUeRl8CWqsQT7osTtuC1uqwCpb96I8BMnROqVK0KEhgqRlVX0drKycpZVpA0RkRLx1mbVKe08KoQaMmkJ/87Gv4kR1v7WAnMg7CfriOS3L1XSRiqVim2b14s64yAwB8J2HMTkb0YXeft5SbZV4nZlPReV9fq4rVLdVnm/tZmIyiZl5dH3up/VwMAAHh4e6Nq1KxwcHPDw4UOF2rdq1Qrbtm3DH3/8gQ0bNiAqKgrt2rVDYmJivssvXrwYpqamspeNjc37lF88YWFAZGTOz5GROe+LanL0EWIe5dxicS+jDsJ+jyrephRsd//+fXzZfgzuZ+c8lvwRPsDW2XuxYMGCIi+BL1GNJdgXJW7HbXFbBYmMBLL+f3D29HQgLa3oNmlpOcsq0oaIiMqF0s6jgBoyaQn/zoZdOYqYxBgAwD3jDIRd+l3pbaKjo9GjRw8snTMGD6vmTHtUFejfvQUMDAyUXl+J25X1XFTW6+O21LctIqKypiS9mLlnfrt27Sp0dHREvXr1xMyZM0VERERJVicTFxcnTExMREBAQL7zeUVijszMTLF8+XKhr68v9KAv6uBOTnnaD4q9raQXScJeJ0qxdhXoLB+3VX63xSsSiag84hWJyqeuPCoEr0gUQojs7Gyxdu1aYWRkJAAIE30tYTdeQ2AOhMMk7WJtKynuhbCfrKNQmxK3K+u5qKzXx22V6rZ4RSIRqYKy8qjCHYkDBgwQhoaGwsLCQvj4+Ijz588ruopCNW/eXEyfPr1Yy5Za8E5OFuLSpWL/gcjMzhY7bzwTS/a+FPHPk4q9meK0CwkJEc2bN5c9GalDhw4i7HKYuLQlrNidiLmSXyYr3k7BffFe7bgtbisfqampIjwsTKS+fq1Yh2BWlhBJSexEJCK1YEeicpWlPCpEKR3DEvydzczOFD/f+VksurRIxL+JUVqbiIgI4ebmJsujbm5uIjw8XCS/fSku/bml2B2CQogStSlxu7Kei8p6fdxWqW2LHYlEpApqe2rzkCFDMGTIkHyfjhcWFgYnJ6cSXx2ZlJSE2rVrY86cOfjmm2+KXL6sPiGvpE9ELqxdWloaFixYgKVLlyIrKwumpqZYvnw5vL29IZFIlP8hiMooPsWOiMojPrVZucpSHgXK7jEsydONC2uTmZmJZcuWYd68ecjIyICRkRGWLFmC0aNHQ6OYeZeIisa8S0SqoKw8WnSaeMeOHTvk3icmJmLXrl0ICAjAtWvXkK3AE1F9fX3Rs2dP2Nra4tmzZ/Dz84OmpiYGDRqkaFkV2tmzZzFixAjcvn0bANC3b1+sXbsWNWrUUHNlRERERKWPebT0Xb16Fd7e3ggNDQUAdO3aFRs3bkTt2rXVXBkRERGVphKfOvz333/h5eUFa2trLF++HB07dsTFixcVWseTJ08waNAg1K9fH/3790fVqlVx8eJFWFhYlLSsCiUxMRFjx45Fu3btcPv2bVSvXh379u3DgQMH2IlIRERElR7zqOqlpKTA19cXrVq1QmhoKKpWrYpffvkFR48eZSciERFRJaTQFYmxsbHYtm0bAgMDkZCQgP79+yM9PR2HDh1Cw4YNFd747t27FW5TWfz5518Y/fVIPH78GAAwbNgwLF++HGZmZmqujIiIiEh9mEdLz+nTpzFy+Eg8ePAAADB48GCsWrWKnaxERESVWLGvSOzZsyfq16+P0NBQrFq1Cs+ePcOaNWtUWVul5un5KR4/foy6devixIkTCAwMZCciEanURx99hAkTJqi7DCKiAjGPlq7u3bvjwYMHqFWrFo4cOYIdO3awE5GIyi1mXSLlKHZH4vHjx+Ht7Y25c+eie/fueQa2pvcjhMDevXtl7zU0NDBp0iTcvHkTnTp1UmNlRKQsQ4cOhUQigUQigba2NurWrYupU6ciLS1N3aUVy5w5c9CkSRN1l6FWDx8+hEQiQXBwsLpLUdipU6fQrFkz6Orqwt7eHtu2bSty+d69e8Pa2hqGhoZo0qRJnnHpNm/ejHbt2sHMzAxmZmbo1KkTLl++rMJPQZUd86jq/Xb4N7n3Y8aMwa1bt9C9e3c1VURE5QWzbvnHrMusWxzF7kg8e/YsEhMT4erqilatWmHt2rV49eqVKmurNB4/fowePXpg2LBhsmn//HMS/v7+MDQ0VGNlRKRsXbp0QUxMDB48eICVK1fixx9/hJ+fn7rLqhSEEMjKylJ3GcWWnZ0NqVSaZ3pGRobC64qKikL37t3RoUMHBAcHY8KECRg+fDj+/PPPAtucP38ezs7O2L9/P0JDQ/HVV1/hyy+/xJEjR2TLnDp1CoMGDcLJkydx4cIF2NjY4JNPPsHTp08VrpGoOJhHVSc2NhafffYZhgweIpv2519/Yt26dWXqSdREVLYx66oPsy6zbqkRCkpKShKBgYHCzc1NaGtrCw0NDbFq1SqRkJCg6KreW3x8vAAg4uPjS33bhcnMzhb7bz8T+28/E5nZ2QUul52dLdauXSuMjIwEAKGjoyMWLFosklPThFQqLcWKicqP1NRUER4eLlJTU5WzwuRkIS5dyvmvinl5eYnevXvLTfv0009F06ZNZe/T0tLEuHHjhIWFhdDV1RVubm7i8uXLsvlbt24Vpqamcus4ePCg+O/XuZ+fn3BxcRHbt28Xtra2wsTERAwYMEDuezopKUl88cUXwtDQUFhZWYnly5cLd3d3MX78+Hxr37p1qwAg99q6dasQQohHjx6JXr16CUNDQ2FsbCz69esnYmNjC9wPUVFRAoDYv3+/+Oijj4S+vr5wdnYW58+fl1vuzJkzom3btkJPT0/UqlVLjBs3TiQlJcnmb9++Xbi6ugojIyNRvXp1MWjQIPH8+XPZ/JMnTwoA4tixY6JZs2ZCW1tbnDx5UmRnZ4tFixaJOnXqCD09PeHs7Cx+/fVXWbs3b96IwYMHi2rVqgk9PT1hb28vtmzZIoQQefaBu7t7gZ/zXWlpaWLy5MmiRo0awsDAQLRs2VKcPHlSbh+bmpqK3377TTg6OgpNTU0RFRUlbG1txbx588QXX3whjI2NhZeXV7G3mWvq1KmiUaNGctMGDBggPDw8FFpPt27dxFdffVXg/KysLGFsbCx++uknhWus6Ar77iqreaYsK0t5VIiyewwzszPF3vt7xd77e0Vmdma+y0ilUhEYGCiqVKkiAAgtLS0xy2+WSExOZB4lUhOl5l1mXWZdZt1iq+hZV1l5VOGnNhsaGmLYsGE4e/Ysbt68icmTJ2PJkiWwtLREr169StqfWencvn0b7du3x9ixY5GUlIQPP/wQwcHBmPHtdBjo6UIikai7RKKKLyUFaNIEaNUq578pKaW6+bCwMJw/fx46OjqyaVOnTsX+/fvx008/4fr167C3t4eHhwfevHmj0Lrv37+PQ4cO4ciRIzhy5AhOnz6NJUuWyOZPmTIFp0+fxm+//Ya//voLp06dwvXr1wtc34ABAzB58mQ0atQIMTExiImJwYABAyCVStG7d2+8efMGp0+fxokTJ/DgwQMMGDCgyBpnzJgBX19fBAcH44MPPsCgQYNkZ1Hv37+PLl26wNPTE6GhodizZw/Onj2LsWPHytpnZmZi/vz5CAkJwaFDh/Dw4UMMHTo0z3amT5+OJUuWICIiAs7Ozli8eDG2b9+OjRs34tatW5g4cSI+//xznD59GgAwa9YshIeH4/jx44iIiMCGDRtQrVo1AJDdyvD3338jJiYGBw4cKPpg/L+xY8fiwoUL2L17N0JDQ9GvXz906dIFkZGRsmVSUlKwdOlSBAQE4NatW7C0tAQALF++HC4uLrhx4wZmzZoFAGjUqBGMjIwKfHXt2lW23gsXLuQZJsPDwwMXLlwodv0AEB8fD3Nz8wLnp6SkIDMzs9BliJSBeVQ5Hjx4gM6dO8Pb2xtv376Fq6srrl69inlz5sHIwIh5lKi8Y9Zl1mXWLXb9ALNusSmjVzMrK0scPHhQ9OzZUxmrK7aye/a34CsSMzIyxIIFC4SOjo4AIIyMjMSaNWtEdiFXLhLR/yj1DO2lS0IA/3tduvT+6yyEl5eX0NTUFIaGhkJXV1cAEBoaGmLfvn1CiJwzp9ra2mLHjh2yNhkZGaJGjRpi2bJlQojin6U1MDCQOys7ZcoU0apVKyGEEImJiUJHR0fs3btXNv/169dCX1+/wLO0uet1cXGRm/bXX38JTU1NER0dLZt269YtAUDu7PJ/5Z6lDQgIyNMmIiJCCCGEt7e3GDlypFy7M2fOCA0NjQKP/ZUrVwQAkZiYKIT431naQ4cOyZZJS0sTBgYGec4Ie3t7i0GDBgkhhOjZs2eBZyJza79x40a+8wvy6NEjoampKZ4+fSo3/eOPPxbffvutEOJ/Z8KDg4PllrG1tRV9+vTJs86HDx+KyMjIAl9PnjyRLevg4CAWLVok1/7o0aMCgEhJSSnWZ9izZ4/Q0dERYWFhBS4zevRoYWdnp7wrhisQXpGoeurKo0KU3WNY0BWJWVlZYvny5UJfX18AEPr6+uL7778XmZn5X7VIRKVLaXmXWVc2n1mXWbcolSHrKiuPaimjM1JTUxN9+vRBnz59lLG6Cuvq1avw9vZGaGgoAKBr167YuHEjateurebKiCopJyfAwQGIjMz5r5OTyjfZoUMHbNiwAcnJyVi5ciW0tLTg6ekJIOfMZGZmJtzc3GTLa2tro2XLloiIiFBoO3Xq1IGxsbHsvbW1NV68eCHbTkZGBlq1aiWbb25ujvr16yv8eSIiImBjYwMbGxvZtIYNG6JKlSqIiIhAixYtCmzr7OwsVx8AvHjxAg0aNEBISAhCQ0PlBjwWQkAqlSIqKgqOjo64du0a5syZg5CQEMTFxcnGWImOjkbDhg1l7Zo3by77+d69e0hJSUHnzp3lasnIyEDTpk0BAKNHj4anpyeuX7+OTz75BH369MGHH36o8L75r5s3byI7OxsffPCB3PT09HRUrVpV9l5HR0duv+T3GXLZ2tq+V02KOHnyJL766its3rwZjRo1yneZJUuWYPfu3Th16hT09PRKrTaiXMyjxRMaGorhw4fjypUrAHL+Lm3evBn16tVTc2VEpHTMurL5zLrMuoVh1lWMUjoSqXApKSmYPXs2Vq5cCalUiqpVq2LVqlUYMmQIbxkhUicDAyA4GAgLywlWBgYq36ShoSHs7e0BAFu2bIGLiwsCAwPh7e1drPYaGhoQQshNy8zMzLOctra23HuJRJLvYMbq9N8ac78Lc2tMSkrC119/jW+++SZPu9q1ayM5ORkeHh7w8PDAjh07YGFhgejoaHh4eOQZoPm/D61KSkoCABw9ehQ1a9aUW05XVxdAzkmeR48e4dixYzhx4gQ+/vhj+Pj4YPny5SX+rElJSdDU1MS1a9fyPGXWyMhI9rO+vn6+fxfye/BWo0aN8OjRowK32a5dOxw/fhwAYGVlhefPn8vNf/78OUxMTKCvr19o7adPn0bPnj2xcuVKfPnll/kus3z5cixZsgR///13vuGQiNQvPT0dcxfNxZIlS5CVlQVTU1P4+/tj2LBhzKNEFRWzrlox6+Zg1q142JGoYqdPn8bI4cPx4MEDAMCgQYOwevVqWFhYqLkyIgKQE6hatlTLpjU0NPDdd99h0qRJGDx4MOrVqwcdHR2cO3dOdgYuMzMTV65cwYQJEwAAFhYWSExMRHJysuwPbnBwsELbrVevHrS1tXHp0iXZFdFxcXG4e/cu3N3dC2yno6OD7OxsuWmOjo54/PgxHj9+LDtTGx4ejrdv38qdKVVUs2bNEB4eLgui77p58yZev36NJUuWyLZ79erVItfbsGFD6OrqIjo6utDPamFhAS8vL3h5eaFdu3aYMmUKli9fLhvj5939UJSmTZsiOzsbL168QLt27RRqW5Bjx47lG6xz/Tc0tWnTBseOHZObf+LECbRp06bQbZw6dQo9evTA0qVLMXLkyHyXWbZsGRYuXIg///wz37PJRFQ2tGnTBjdDbgIA+vbti7Vr16JGjRpqroqIVI5ZFwCz7ruYdXMw65YMOxJVrHv37khPTUWtWrWwceNGdO/eXd0lEVEZ0q9fP0yZMgXr1q2Dr68vRo8ejSlTpsDc3By1a9fGsmXLkJKSIjuL26pVKxgYGOC7777DN998g0uXLmHbtm0KbdPIyAje3t6YMmUKqlatCktLS8yYMQMaGoU/f6tOnTqIiopCcHAwatWqBWNjY3Tq1AmNGzfGkCFDsGrVKmRlZWHMmDFwd3d/rz+006ZNQ+vWrTF27FgMHz4choaGCA8Px4kTJ7B27VrUrl0bOjo6WLNmDUaNGoWwsDDMnz+/yPUaGxvD19cXEydOhFQqRdu2bREfH49z587BxMQEXl5emD17NlxdXdGoUSOkp6fjyJEjcHR0BABYWlpCX18ff/zxB2rVqgU9PT2YmpoWud0PPvgAQ4YMwZdffgl/f380bdoUL1++RFBQEJydnUv0t0GR2z1GjRqFtWvXYurUqRg2bBj++ecf7N27F0ePHpUts3btWhw8eBBBQUEAcm7x6NGjB8aPHw9PT0/ExsYCyAnZuQNML126FLNnz8bOnTtRp04d2TK5g2ATkXolJiXKfr579y6qV6+OdevWyW4zJCJSNWbd/DHrFo1ZtwxT9uCNpamsDmy9/+Ah2cNWdPX1xejRo8tcjUTllVIftlLKvLy8RO/evfNMX7x4sbCwsBBJSUkiNTVVjBs3TlSrVk3o6uoKNze3PAM5Hzx4UNjb2wt9fX3Ro0cPsWnTpjwDUL87UPTKlSuFra2t7H1iYqL4/PPPhYGBgahevbpYtmyZcHd3L3QA6rS0NOHp6SmqVKkiAIitW7cKIXIGV+7Vq5cwNDQUxsbGol+/fiI2NrbA9eQ3iHNcXJwAIE6ePCmbdvnyZdG5c2dhZGQkDA0NhbOzs1i4cKFs/s6dO0WdOnWErq6uaNOmjTh8+LDcenMHoI6Li5PbvlQqFatWrRL169cX2trawsLCQnh4eIjTp08LIYSYP3++cHR0FPr6+sLc3Fz07t1bPHjwQNZ+8+bNwsbGRmhoaAh3d3e5bUVFRRX4uTMyMsTs2bNFnTp1hLa2trC2thZ9+/YVoaGhQoj8BxcXImcA6pUrVxa43uI6efKkaNKkidDR0RF2dnay45fLz89P7nfEy8tLAMjzyv3MubXlt4yfn99711vR8GErFVtZPIZHjx4V9RzqyR62MuLrEeLNmzfqLouIiqG85l1m3RzMusy6ZZWy8qhEiHcGIChHEhISYGpqivj4eJiYmKi7HMTGxmLs2LE4cuwYdt64DwCo9uI+2rdrq+bKiCqOtLQ0REVFoW7dupV+kFsqO7Zu3YpFixYhPDw8z5g9REDh311lLc+Q4srSMXz16hUmTJiAHTt2QFdfFz+H/QwA6FunL7Q0eDMSUXnAvEtlDbNuxaCsPFr4tb1ULEIIbNmyBY6Ojti/fz+yMzNxY+dGfGJTBe3auhW9AiIiKteOHTuGRYsWMVgRkdoIIbBr1y44Ojpix44d0NDQgM9oH3xi+Qn61ukLTYlm0SshIiLKB7Mu/RdPS76nBw8eYOTIkbL77F1dXREYGAgXFxc1V0ZERKXl119/VXcJRFSJPX78GKNHj5aNBdW4cWMEBASgpZoesEBERBULsy79F69ILKHs7GysWLECTk5OCAoKgp6eHpYtW4aLFy+yE5GIiIiIVE4qlWLDhg1o1KgRjh49Ch0dHcybNw9Xr15lJyIRERGpBK9ILIGbN2/C29sbV65cAQB06NABmzZtKvDR7UREREREynTnzh2MGDECZ86cAQB8+OGH2Lx5Mxo2bKjmyoiIiKgi4xWJCkhPT8esWbPQrFkzXLlyBaampti8eTOCgoLYiUhEREREKpeZmYlFixbBxcUFZ86cgZGREdasWYMzZ86wE5GIiIhUjlckFkEIgWwhcPHiJYwc7o2IiAgAQN++fbF27VrUqFFDzRUSERERUUWWk0ezcePGDYzwHoGQkBAAQJcuXbBx40bY2tqquUIiIiKqLNiRWIT4hET8E5sMVK2DBw8fonr16li3bh08PT3VXRoRERERVQJJKUn44/kfgBlw++5tVK1aFatWrcKQIUMgkUjUXR4RERFVIry1uQg///Kz7OcvvvgC4eHh7EQkIiIiolKTlpYm+/mzzz5DeHg4Pv/8c3YiEhERUaljR2IRhg8fIft5w4YNMDc3V2M1RERERFTZmJmZyX7etm0bLC0t1VgNERERVWbsSCyCtjbv/iYiUoU5c+agSZMmhS4zdOhQ9OnTp1TqobyKs/8/+ugjTJgwoVTqISIiIiopZs+yj9mzfGBHIhFRKXn58iVGjx6N2rVrQ1dXF1ZWVvDw8MC5c+dky9SpUwcSiQQSiQQGBgZo3LgxAgIC5NZz6tQp2TL/fc2cOfO9a6xTpw5WrVqlcLsDBw6gefPmqFKlCgwNDdGkSRP8/PPPRTcswurVq7Ft2zbZ+4oYHNLS0uDj44OqVavCyMgInp6eeP78eaFthBCYPXs2rK2toa+vj06dOiEyMlJumV69eqF27drQ09ODtbU1vvjiCzx79kzp9R84cADz589X+nqL69SpU2jWrBl0dXVhb28v9/tSkNDQULRr1w56enqwsbHBsmXL5ObfunULnp6esn+P+f2b+O+/1f++fHx8lPTJiIiIyhdlZd3iYPYsOWZP5fv111/RoEED6OnpoXHjxjh27FiRbYqTYdetW4c6depAT08PrVq1wuXLl+Xml+RYKgM7EomISomnpydu3LiBn376CXfv3sXhw4fx0Ucf4fXr13LLzZs3DzExMQgLC8Pnn3+OESNG4Pjx43nWd+fOHcTExMhe06dPL62Pkoe5uTlmzJiBCxcuIDQ0FF999RW++uor/Pnnn++1XlNTU1SpUkU5RSpRRkZGnmnZ2dmQSqUKr2vixIn4/fff8euvv+L06dN49uwZPv3000LbLFu2DD/88AM2btyIS5cuwdDQEB4eHnLjqHXo0AF79+7FnTt3sH//fty/fx+fffaZwvUVxdzcHMbGxkpfb3FERUWhe/fu6NChA4KDgzFhwgQMHz680N+7hIQEfPLJJ7C1tcW1a9fw/fffY86cOdi0aZNsmZSUFNjZ2WHJkiWwsrLKdz1XrlyR+/d34sQJAEC/fv2U+yGJiIjKCWVn3cIwezJ7lhXnz5/HoEGD4O3tjRs3bqBPnz7o06cPwsLCCmxTnAy7Z88eTJo0CX5+frh+/TpcXFzg4eGBFy9eyJYpybFUClGOxcfHCwAiPj5eZdvIzM4W+28/E/tvPxOZ2dkq2w4RFU9qaqoIDw8XqampSllfcrIQly7l/FeV4uLiBABx6tSpQpeztbUVK1eulJtmbm4uJk6cKHt/8uRJAUDExcXlaX/58mXRqVMnUbVqVWFiYiLat28vrl27JpsvlUqFn5+fsLGxETo6OsLa2lqMGzdOCCGEu7u7ACD3eh9NmzYVM2fOLHC+n5+fcHFxERs3bhS1atUS+vr6ol+/fuLt27eyZby8vETv3r1lP79bX1RUlHjz5o0YPHiwqFatmtDT0xP29vZiy5YtCtV65swZ0bZtW6Gnpydq1aolxo0bJ5KSkmTzbW1txbx588QXX3whjI2NhZeXl9i6daswNTUVv/32m3B0dBSampoiKipKoe2+fftWaGtri19//VU2LSIiQgAQFy5cyLeNVCoVVlZW4vvvv5dbj66urti1a1eB2/rtt9+ERCIRGRkZxa4vd//PmTNHVKtWTRgbG4uvv/5apKeny5Zxd3cX48ePl73fvn27cHV1FUZGRqJ69epi0KBB4vnz57L5yjheuaZOnSoaNWokN23AgAHCw8OjwDbr168XZmZmcp9h2rRpon79+vkun9+/yfyMHz9e1KtXT0il0nznF/bdVRp5hlRL1ccwMztT7L2/V+y9v1dkZmeqZBtEVHYoM+8mZySLS08uieQM1YZdZWbdkmL2LBqz5/tlz/z0799fdO/eXW5aq1atxNdff11gm+Jk2JYtWwofHx/Z++zsbFGjRg2xePFiIUTJjqWy8iivSCSiSislBWjSBGjVKue/KSmq25aRkRGMjIxw6NAhpKenF6uNVCrF/v37ERcXBx0dnWK1SUxMhJeXF86ePYuLFy/CwcEB3bp1Q2JiIgBg//79WLlyJX788UdERkbi0KFDaNy4MYCc2wRq1aolO0scExNTos8qhEBQUBDu3LmD9u3bF7rsvXv3sHfvXvz+++/4448/cOPGDYwZMybfZVevXo02bdpgxIgRsvpsbGwwa9YshIeH4/jx44iIiMCGDRtQrVq1Ytd7//59dOnSBZ6enggNDcWePXtw9uxZjB07Vm655cuXw8XFBTdu3MCsWbMA5Fy5tnTpUgQEBODWrVuwtLTEjh07ZMe7oNeZM2cAANeuXUNmZiY6deok206DBg1Qu3ZtXLhwId96o6KiEBsbK9fG1NQUrVq1KrDNmzdvsGPHDnz44YfQ1tYu9r4BgKCgIERERODUqVPYtWsXDhw4gLlz5xa4fGZmJubPn4+QkBAcOnQIDx8+xNChQ2XzizpejRo1KnTfde3aVbbshQsX5PYDAHh4eBS4H3LbtG/fXu7flIeHB+7cuYO4uDhFdo1MRkYGfvnlFwwbNoxP0SUiojIjJTMFTTY2QauAVmiysQlSMlUXdksr6+aH2ZPZs7SyZ35KmkcLa5ORkYFr167JLaOhoYFOnTrJlinJsVQWPkmEiCqtsDAgd2iPyMic9y1bqmZbWlpa2LZtG0aMGIGNGzeiWbNmcHd3x8CBA+Hs7Cy37LRp0zBz5kykp6cjKysL5ubmGD58eJ511qpVS+79o0eP0LFjR7lpmzZtQpUqVXD69Gn06NED0dHRsLKyQqdOnaCtrY3atWuj5f9/aHNzc2hqasLY2LjA2zkLEx8fj5o1ayI9PR2amppYv349OnfuXGibtLQ0bN++HTVr1gQArFmzBt27d4e/v3+eGkxNTaGjowMDAwO5edHR0WjatCmaN28OIGfsHUUsXrwYQ4YMkY1/4+DggB9++AHu7u7YsGED9PT0AAAdO3bE5MmTZe3OnDmDzMxMrF+/Hi4uLrLpvXr1QqtWrQrdZu7njY2NhY6OTp5baKpXr47Y2Nh82+ZOr169epFtpk2bhrVr1yIlJQWtW7fGkSNHCq0rPzo6OtiyZQsMDAzQqFEjzJs3D1OmTMH8+fOhoZH3fOSwYcNkP9vZ2eGHH35AixYtkJSUBCMjoyKP17Fjx5CZmVlgPfr6+rKfY2Nj890PCQkJSE1NlVv2v23q1q2bp03uvP8+Hbe4Dh06hLdv38qFViIiInULexGGyDc5YTfyTSTCXoShZU3VhF1VZN2iMHvmYPYsveyZn4LyaEH7s7A2uRk2Li4O2dnZ+S5z+/Zt2ToUPZbKwisSiyE9FYgM1Vbp1UpEVPqcnAAHh5yfHRxy3quSp6cnnj17hsOHD6NLly6yAXbfHVh3ypQpCA4Oxj///INWrVph5cqVsLe3z7O+M2fOIDg4WPYyMzPD8+fPMWLECDg4OMDU1BQmJiZISkpCdHQ0gJzx21JTU2FnZ4cRI0bg4MGDyMrKUsrnMzY2RnBwMK5cuYKFCxdi0qRJOHXqVKFtateuLQs2ANCmTRtIpVLcuXOn2NsdPXo0du/ejSZNmmDq1Kk4f/68QnWHhIRg27ZtcmcePTw8IJVKERUVJVsuN3z8l46OTp5wbGxsDHt7+0JfRQUSZZkyZQpu3LiBv/76C5qamvjyyy8hhFBoHS4uLjAwMJC9b9OmDZKSkvD48eN8l7927Rp69uyJ2rVrw9jYGO7u7gAg+x0s6njZ2toWuu/++/tSVgQGBqJr166oUaOGukuhCiw9Kx33Xt1T6RVFRFSxOFk6wcE8J+w6mDvAyVK1YVfZWbcozJ45mD1LJ3tGR0fLHbNFixYp9LkqEnYkFiElBZjcxwLT+1eDazMJOxOJKhADAyA4GLh0Kee///l7pTJ6enro3LkzZs2ahfPnz2Po0KHw8/OTW6ZatWqwt7dHu3bt8Ouvv+Kbb75BeHh4nnXVrVtX7o+choYGvLy8EBwcjNWrV+P8+fMIDg5G1apVZQM029jY4M6dO1i/fj309fUxZswYtG/fvtCzcMWloaEBe3t7NGnSBJMnT8Znn32GxYsXv/d6i9K1a1c8evQIEydOxLNnz/Dxxx/D19e32O2TkpLw9ddfy3XKhoSEIDIyEvXq1ZMtZ2homKetvr5+nltZFbm9xMrKChkZGXj79q3cOp4/f17gVaG50999Ilt+bapVq4YPPvgAnTt3xu7du3Hs2DFcvHixeDumBJKTk+Hh4QETExPs2LEDV65cwcGDBwH8b5Dwoo6XIreXWFlZ5bsfTExMCgzMBbXJnaeoR48e4e+//y7RlRRExZWSmYKpR6biu+PfwXWTKzsTiahYDLQNEDwqGJeGX0LwqGAYaKs+7Coz6xaF2TMHs2fpZM8aNWrIHbNRo0YBKDhbFpYri8qw1apVg6amZqHrLcmxVBbe2lyEsDAg5lHObroXKVHprY9EVPoMDNT7b7phw4Y4dOhQgfNtbGwwYMAAfPvtt/jtt9+KXN+5c+ewfv16dOvWDQDw+PFjvHr1Sm4ZfX199OzZEz179oSPjw8aNGiAmzdvolmzZtDR0UF2dvZ7faZcUqm0yDFyoqOj8ezZM9mVXBcvXoSGhgbq16+f7/IF1WdhYQEvLy94eXmhXbt2mDJlCpYvX16sOps1a4bw8PASnQnPjyK3l7i6ukJbWxtBQUHw9PQEkPM07ujoaLRp0ybftnXr1oWVlRWCgoLQpEkTADlPIr506RJGjx5d4DZzn+pX3HGLcoWEhMjdJnzx4kUYGRnBxsYmz7K3b9/G69evsWTJEtn8q1ev5lmusOOlyO0lbdq0wbFjx+TmnzhxosB9l9tmxowZyMzMlI3Zc+LECdSvX79EtzVv3boVlpaW6N69u8JtiYor7EUYYhJzxq299+aeSm9PJKKKxUDbQK3fF8rOuoVh9iwYs+f7Z08tLa18j1mbNm0QFBQku1UdKF4eLSzD6ujowNXVFUFBQejTpw+AnP0ZFBQkG0uzJMdSWdiRWASXxhLYOwjci5TAwUHAyYmDqBOR4l6/fo1+/fph2LBhcHZ2hrGxMa5evYply5ahd+/ehbYdP348nJyccPXq1XxvcfgvBwcH/Pzzz2jevDkSEhIwZcoUuY6Xbdu2ITs7G61atYKBgQF++eUX6Ovrw9bWFkDOmCH//vsvBg4cCF1d3WIPHL148WI0b94c9erVQ3p6Oo4dO4aff/4ZGzZsKLSdnp4evLy8sHz5ciQkJOCbb75B//79CzyLVqdOHVy6dAkPHz6EkZERzM3NMWfOHLi6uqJRo0ZIT0/HkSNH4OjoWKy6gZyxXFq3bo2xY8di+PDhMDQ0RHh4OE6cOIG1a9cWez25jI2NYWxsXKxlTU1N4e3tjUmTJsHc3BwmJiYYN24c2rRpg9atW8uWa9CgARYvXoy+fftCIpFgwoQJWLBgARwcHFC3bl3MmjULNWrUkAWNS5cu4cqVK2jbti3MzMxw//59zJo1C/Xq1VM4WGRkZMDb2xszZ87Ew4cP4efnh7Fjx+Y7Rk3t2rWho6ODNWvWYNSoUQgLC8P8+fPllpk9e3ahxyv3d7E4Ro0ahbVr12Lq1KkYNmwY/vnnH+zduxdHjx6VLbN27VocPHgQQUFBAIDBgwdj7ty58Pb2xrRp0xAWFobVq1dj5cqVcp8598qIjIwMPH36FMHBwTAyMpILkFKpFFu3boWXlxe0tBipSHVcqrvA3twe997cK5XbE4mIFFVaWTcXs+f/MHuWXvbMz/jx4+Hu7g5/f390794du3fvxtWrV7Fp0ybZMt9++y2ePn2K7du3Ayhehp00aRK8vLzQvHlztGzZEqtWrUJycjK++uorAMU/lipR5HOdyzBFHk/9PpKThbh0Kee/RKRehT2yvixLS0sT06dPF82aNROmpqbCwMBA1K9fX8ycOVOkpKTIlrO1tRUrV67M097Dw0N07dpVCCHEyZMnBQARFxeXZ7nr16+L5s2bCz09PeHg4CB+/fVXuXUePHhQtGrVSpiYmAhDQ0PRunVr8ffff8vaX7hwQTg7OwtdXV3x3z8RAMTWrVsL/HwzZswQ9vb2Qk9PT5iZmYk2bdqI3bt3F7pP/Pz8hIuLi1i/fr2oUaOG0NPTE5999pl48+aNbBkvLy/Ru3dv2fs7d+6I1q1bC319fQFAREVFifnz5wtHR0ehr68vzM3NRe/evcWDBw9kbdzd3YWXl1ehtVy+fFl07txZGBkZCUNDQ+Hs7CwWLlwom5/fcdm6daswNTUtdL3FkZqaKsaMGSPMzMyEgYGB6Nu3r4iJiZFb5t39L5VKxaxZs0T16tWFrq6u+Pjjj8WdO3dk80NDQ0WHDh2Eubm50NXVFXXq1BGjRo0ST548KXS978rd/7NnzxZVq1YVRkZGYsSIESItLU22jLu7uxg/frzs/c6dO0WdOnWErq6uaNOmjTh8+LAAIG7cuCGEEEUeL0WdPHlSNGnSROjo6Ag7O7s8n8fPz0/Y2trKTQsJCRFt27YVurq6ombNmmLJkiVy86OiogSAPC93d3e55f78808BQG7fF6Sw767SyjOkOqVxDJMzksWlJ5dEcgYDKVFFVx7zrjKzrhDMnsyeZTd75mfv3r3igw8+EDo6OqJRo0bi6NGjeT7XuzmyqAwrhBBr1qwRtWvXFjo6OqJly5bi4sWLcvOLcyzfXV4ZeVQihIIjX5YhCQkJMDU1RXx8PExMTNRdDhGVgrS0NERFRaFu3bqyJ5qRakVFReGDDz5AeHg4HHKfTlOO2NraYu7cuXyi7jvK+3Etbwr77mKeKf94DIlImSp73i3vGYXZM3/l/bhWBMrKo3zYChERFerYsWMYOXJkufyDf+vWLZiamuLLL79UdyllTnk+rkRERFRxleeMwuxZsPJ8XEker0gkonKlsp+hJaLyiVckVmw8hkSkTMy7RKQKvCKRiIiIiIiIiIiISg07EomIiIiIiIiIiKhI7EgkonKpHI/KQESVEL+ziIhIUfzbQUTKpKzvFHYkElG5oq2tDQBISUlRcyVERMWX+52V+x1GRERUEE1NTQBARkaGmishoopEWXlUSxnFEBGVFk1NTVSpUgUvXrwAABgYGEAikai5KiKi/AkhkJKSghcvXqBKlSqy/zkkIiIqiJaWFgwMDPDy5Utoa2tDQ4PX/xBRySk7j7IjkYjKHSsrKwCQdSYSEZV1VapUkX13ERERFUYikcDa2hpRUVF49OiRusshogpCWXmUHYlEVO7khitLS0tkZmaquxwiokJpa2vzSkQiIlKIjo4OHBwceHszESmFMvMoOxKJqNzS1NTk/5wTERERUYWkoaEBPT09dZdBRCSHgy0QERERERERERFRkdiRSEREREREREREREViRyIREREREREREREVqVyPkSiEAAAkJCSouRIiIiKiksnNMbm5hsofZlIiIiIqzxTJo+W6IzExMREAYGNjo+ZKiIiIiN5PYmIiTE1N1V0GlQAzKREREVUExcmjElGOT39LpVI8e/YMxsbGkEgk6i5HbRISEmBjY4PHjx/DxMRE3eVUKNy3qsH9qhrcr6rB/ao63Lc5hBBITExEjRo1oKHBUWfKI2bSHPw3rRrcr6rB/aoa3K+qw32rGtyvORTJo+X6ikQNDQ3UqlVL3WWUGSYmJpX6F1+VuG9Vg/tVNbhfVYP7VXW4b8ErEcs5ZlJ5/DetGtyvqsH9qhrcr6rDfasa3K/Fz6M87U1ERERERERERERFYkciERERERERERERFYkdiRWArq4u/Pz8oKurq+5SKhzuW9XgflUN7lfV4H5VHe5booqF/6ZVg/tVNbhfVYP7VXW4b1WD+1Vx5fphK0RERERERERERFQ6eEUiERERERERERERFYkdiURERERERERERFQkdiQSERERERERERFRkdiRSEREREREREREREViR2IZN2fOHEgkErlXgwYNCm3z66+/okGDBtDT00Pjxo1x7NixUqq2fFF0327evBnt2rWDmZkZzMzM0KlTJ1y+fLkUKy4fSvI7m2v37t2QSCTo06ePaossh0qyX9++fQsfHx9YW1tDV1cXH3zwAb8P3lGS/bpq1SrUr18f+vr6sLGxwcSJE5GWllZKFZcvT58+xeeff46qVatCX18fjRs3xtWrVwttc+rUKTRr1gy6urqwt7fHtm3bSqdYIioUM6lqMI+qBvOo6jCTqgYzqeowjyqflroLoKI1atQIf//9t+y9llbBh+38+fMYNGgQFi9ejB49emDnzp3o06cPrl+/Dicnp9Iot1xRZN+eOnUKgwYNwocffgg9PT0sXboUn3zyCW7duoWaNWuWRrnlhiL7NdfDhw/h6+uLdu3aqbK0ck2R/ZqRkYHOnTvD0tIS+/btQ82aNfHo0SNUqVKlFCotXxTZrzt37sT06dOxZcsWfPjhh7h79y6GDh0KiUSCFStWlEa55UZcXBzc3NzQoUMHHD9+HBYWFoiMjISZmVmBbaKiotC9e3eMGjUKO3bsQFBQEIYPHw5ra2t4eHiUYvVElB9mUtVgHlUN5lHVYSZVDWZS5WMeVQ12JJYDWlpasLKyKtayq1evRpcuXTBlyhQAwPz583HixAmsXbsWGzduVGWZ5ZIi+3bHjh1y7wMCArB//34EBQXhyy+/VEV55ZYi+xUAsrOzMWTIEMydOxdnzpzB27dvVVdcOabIft2yZQvevHmD8+fPQ1tbGwBQp04dFVZXfimyX8+fPw83NzcMHjwYQM4+HTRoEC5duqTKEsulpUuXwsbGBlu3bpVNq1u3bqFtNm7ciLp168Lf3x8A4OjoiLNnz2LlypUMbkRlADOpajCPqgbzqOowk6oGM6nyMY+qBm9tLgciIyNRo0YN2NnZYciQIYiOji5w2QsXLqBTp05y0zw8PHDhwgVVl1kuKbJv35WSkoLMzEyYm5ursMLySdH9Om/ePFhaWsLb27uUKiyfFNmvhw8fRps2beDj44Pq1avDyckJixYtQnZ2dilWXD4osl8//PBDXLt2TXYb2YMHD3Ds2DF069attMotNw4fPozmzZujX79+sLS0RNOmTbF58+ZC2/BvGFHZxkyqGsyjqsE8qjrMpKrBTKp8zKOqwY7EMq5Vq1bYtm0b/vjjD2zYsAFRUVFo164dEhMT810+NjYW1atXl5tWvXp1xMbGlka55Yqi+/Zd06ZNQ40aNfJ8yVR2iu7Xs2fPIjAwsMgv9MpO0f364MED7Nu3D9nZ2Th27BhmzZoFf39/LFiwoJQrL9sU3a+DBw/GvHnz0LZtW2hra6NevXr46KOP8N1335Vy5WXfgwcPsGHDBjg4OODPP//E6NGj8c033+Cnn34qsE1Bf8MSEhKQmpqq6pKJqBDMpKrBPKoazKOqw0yqGsykqsE8qiKCypW4uDhhYmIiAgIC8p2vra0tdu7cKTdt3bp1wtLSsjTKK9eK2rf/tXjxYmFmZiZCQkJKobLyrbD9mpCQIOrUqSOOHTsmm+bl5SV69+5dihWWT0X9vjo4OAgbGxuRlZUlm+bv7y+srKxKq8Ryqaj9evLkSVG9enWxefNmERoaKg4cOCBsbGzEvHnzSrnSsk9bW1u0adNGbtq4ceNE69atC2zj4OAgFi1aJDft6NGjAoBISUlRSZ1EVDLMpKrBPKoazKOqw0yqGsykysE8qhocI7GcqVKlCj744APcu3cv3/lWVlZ4/vy53LTnz58rND5IZVXUvs21fPlyLFmyBH///TecnZ1Lqbryq7D9ev/+fTx8+BA9e/aUTZNKpQByxgi5c+cO6tWrV2q1lidF/b5aW1tDW1sbmpqasmmOjo6IjY1FRkYGdHR0SqvUcqWo/Tpr1ix88cUXGD58OACgcePGSE5OxsiRIzFjxgxoaPBC/1zW1tZo2LCh3DRHR0fs37+/wDYF/Q0zMTGBvr6+SuokopJhJlUN5lHVYB5VHWZS1WAmVQ7mUdXgb1c5k5SUhPv378Pa2jrf+W3atEFQUJDctBMnTqBNmzalUV65VtS+BYBly5Zh/vz5+OOPP9C8efNSrK78Kmy/NmjQADdv3kRwcLDs1atXL3To0AHBwcGwsbFRQ8XlQ1G/r25ubrh3754sCAPA3bt3YW1tzcBWiKL2a0pKSp5glhuMhRAqr688cXNzw507d+Sm3b17F7a2tgW24d8wovKDmVQ1mEdVg3lUdZhJVYOZVDmYR1VE3ZdEUuEmT54sTp06JaKiosS5c+dEp06dRLVq1cSLFy+EEEJ88cUXYvr06bLlz507J7S0tMTy5ctFRESE8PPzE9ra2uLmzZvq+ghllqL7dsmSJUJHR0fs27dPxMTEyF6JiYnq+ghlkqL79V28lSR/iu7X6OhoYWxsLMaOHSvu3Lkjjhw5IiwtLcWCBQvU9RHKJEX3q5+fnzA2Nha7du0SDx48EH/99ZeoV6+e6N+/v7o+Qpl1+fJloaWlJRYuXCgiIyPFjh07hIGBgfjll19ky0yfPl188cUXsvcPHjwQBgYGYsqUKSIiIkKsW7dOaGpqij/++EMdH4GI/oOZVDWYR1WDeVR1mElVg5lUNZhHVYMdiWXcgAEDhLW1tdDR0RE1a9YUAwYMEPfu3ZPNd3d3F15eXnJt9u7dKz744AOho6MjGjVqJI4ePVrKVZcPiu5bW1tbASDPy8/Pr/SLL8NK8jv7Xwxu+SvJfj1//rxo1aqV0NXVFXZ2dmLhwoVy49OQ4vs1MzNTzJkzR9SrV0/o6ekJGxsbMWbMGBEXF1f6xZcDv//+u3BychK6urqiQYMGYtOmTXLzvby8hLu7u9y0kydPiiZNmggdHR1hZ2cntm7dWnoFE1GBmElVg3lUNZhHVYeZVDWYSVWHeVT5JELwulciIiIiIiIiIiIqHMdIJCIiIiIiIiIioiKxI5GIiIiIiIiIiIiKxI5EIiIiIiIiIiIiKhI7EomIiIiIiIiIiKhI7EgkIiIiIiIiIiKiIrEjkYiIiIiIiIiIiIrEjkQiIiIiIiIiIiIqEjsSiahS2LRpE2xsbKChoYFVq1Zhzpw5aNKkibrLKrGPPvoIEyZMUHcZRERERFRMzKNEVBGwI5GI3tvQoUPRp0+fUt/utm3bUKVKlSKXS0hIwNixYzFt2jQ8ffoUI0eOVEk95T0MEhEREZVXzKM5mEeJSNW01F0AEZGqRUdHIzMzE927d4e1tbW6yyEiIiKiSoZ5lIgqCl6RSERK99FHH+Gbb77B1KlTYW5uDisrK8yZM0duGYlEgg0bNqBr167Q19eHnZ0d9u3bJ5t/6tQpSCQSvH37VjYtODgYEokEDx8+xKlTp/DVV18hPj4eEokEEokkzzaAnLPEjRs3BgDY2dnJ2r9LKpVi3rx5qFWrFnR1ddGkSRP88ccfcstMmzYNH3zwAQwMDGBnZ4dZs2YhMzNTtp25c+ciJCREVs+2bdvybOevv/6Cnp6e3OcCgPHjx6Njx44AgNevX2PQoEGoWbMmDAwM0LhxY+zatauAvf2//Xno0CG5aVWqVJGr4fHjx+jfvz+qVKkCc3Nz9O7dO999QURERFTeMY8yjxKRarAjkYhU4qeffoKhoSEuXbqEZcuWYd68eThx4oTcMrNmzYKnpydCQkIwZMgQDBw4EBEREcVa/4cffohVq1bBxMQEMTExiImJga+vb57lBgwYgL///hsAcPnyZcTExMDGxibPcqtXr4a/vz+WL1+O0NBQeHh4oFevXoiMjJQtY2xsjG3btiE8PByrV6/G5s2bsXLlStl2Jk+ejEaNGsnqGTBgQJ7tfPzxx6hSpQr2798vm5adnY09e/ZgyJAhAIC0tDS4urri6NGjCAsLw8iRI/HFF1/g8uXLxdo3+cnMzISHhweMjY1x5swZnDt3DkZGRujSpQsyMjJKvF4iIiKisop5lHmUiJSPHYlEpBLOzs7w8/ODg4MDvvzySzRv3hxBQUFyy/Tr1w/Dhw/HBx98gPnz56N58+ZYs2ZNsdavo6MDU1NTSCQSWFlZwcrKCkZGRnmW09fXR9WqVQEAFhYWsLKygqamZp7lli9fjmnTpmHgwIGoX78+li5diiZNmmDVqlWyZWbOnIkPP/wQderUQc+ePeHr64u9e/fKtmNkZAQtLS1ZPfr6+nm2o6mpiYEDB2Lnzp2yaUFBQXj79i08PT0BADVr1oSvry+aNGkCOzs7jBs3Dl26dJFtqyT27NkDqVSKgIAANG7cGI6Ojti6dSuio6Nx6tSpEq+XiIiIqKxiHmUeJSLl4xiJRKQSzs7Ocu+tra3x4sULuWlt2rTJ8z44OFjVpeWRkJCAZ8+ewc3NTW66m5sbQkJCZO/37NmDH374Affv30dSUhKysrJgYmKi8PaGDBmC1q1b49mzZ6hRowZ27NiB7t27ywbqzs7OxqJFi7B37148ffoUGRkZSE9Ph4GBQYk/Y0hICO7duwdjY2O56Wlpabh//36J10tERERUVjGPFox5lIhKih2JRKQS2tracu8lEgmkUmmx22to5FwwLYSQTcsd/0UdLly4gCFDhmDu3Lnw8PCAqakpdu/eDX9/f4XX1aJFC9SrVw+7d+/G6NGjcfDgQbmxY77//nusXr0aq1atQuPGjWFoaIgJEyYUesuHRCKR21eA/P5KSkqCq6srduzYkaethYWFwp+BiIiIqKxjHi0Y8ygRlRQ7EolIbS5evIgvv/xS7n3Tpk0B/C9MxMTEwMzMDADynB3W0dFBdnb2e9dhYmKCGjVq4Ny5c3B3d5dNP3fuHFq2bAkAOH/+PGxtbTFjxgzZ/EePHpW4niFDhmDHjh2oVasWNDQ00L17d7nt9u7dG59//jmAnIG37969i4YNGxa4PgsLC8TExMjeR0ZGIiUlRfa+WbNm2LNnDywtLUt01pqIiIioImIeZR4lIsVwjEQiUptff/0VW7Zswd27d+Hn54fLly9j7NixAAB7e3vY2Nhgzpw5iIyMxNGjR/Ocba1Tpw6SkpIQFBSEV69eyQUVRU2ZMgVLly7Fnj17cOfOHUyfPh3BwcEYP348AMDBwQHR0dHYvXs37t+/jx9++AEHDx7MU09UVBSCg4Px6tUrpKenF7i9IUOG4Pr161i4cCE+++wz6OrqyuY5ODjgxIkTOH/+PCIiIvD111/j+fPnhdbfsWNHrF27Fjdu3MDVq1cxatQoubPwQ4YMQbVq1dC7d2+cOXMGUVFROHXqFL755hs8efKkJLuMiIiIqNxjHmUeJSLFsCORiNRm7ty52L17N5ydnbF9+3bs2rVLdpZTW1sbu3btwu3bt+Hs7IylS5diwYIFcu0//PBDjBo1CgMGDICFhQWWLVtWbaPrCwAAAXFJREFU4lq++eYbTJo0CZMnT0bjxo3xxx9/4PDhw3BwcAAA9OrVCxMnTsTYsWPRpEkTnD9/HrNmzZJbh6enJ7p06YIOHTrAwsICu3btKnB79vb2aNmyJUJDQ2VPx8s1c+ZMNGvWDB4eHvjoo49gZWWFPn36FFq/v78/bGxs0K5dOwwePBi+vr5yY9gYGBjg33//Re3atfHpp5/C0dER3t7eSEtL4xlhIiIiqrSYR5lHiUgxEvHuIAZERKVAIpHg4MGDRQYSIiIiIiJVYB4lIlIcr0gkIiIiIiIiIiKiIrEjkYiIiIiIiIiIiIrEW5uJiIiIiIiIiIioSLwikYiIiIiIiIiIiIrEjkQiIiIiIiIiIiIqEjsSiYiIiIiIiIiIqEjsSCQiIiIiIiIiIqIisSORiIiIiIiIiIiIisSORCIiIiIiIiIiIioSOxKJiIiIiIiIiIioSOxIJCIiIiIiIiIioiKxI5GIiIiIiIiIiIiK9H8tfy6v04f9UAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABRIAAAHyCAYAAACXqjIjAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XdYFOfaBvB76R0LKIgNBaUpioixxa4hGkvsvVDsvcdu7L0XkNiixthj70ajgh0lGAUVxQYoCkgV9v3+8GOPK20XF5dy/66L67Cz8848O7uG+zw7845ECCFARERERERERERElA0NdRdARERERERERERE+R8biURERERERERERJQjNhKJiIiIiIiIiIgoR2wkEhERERERERERUY7YSCQiIiIiIiIiIqIcsZFIREREREREREREOWIjkYiIiIiIiIiIiHLERiIRERERERERERHliI1EIiIiIiIiIiIiyhEbiURERERqJJFIMHPmTNnjLVu2QCKRICwsTGX7mDlzJiQSicq2l50LFy5AIpHgwoUL32R/qpTbY//le/itfMv3lYiIiAhgI5GIiKhAuXfvHjp16oQKFSpAT08PVlZWaNGiBVavXi23XsWKFSGRSGQ/hoaGcHNzw7Zt2zJsM73xk9lPt27dVFr/lStXMHPmTLx//16l280tqVSKbdu2oU6dOihRogSMjY1RpUoV9OnTB/7+/rL1vjxGmpqaKFWqFDp16oT79++r8RXk3rx583Dw4EF1l0GFSH77901ERESqJxFCCHUXQURERDm7cuUKmjRpgvLly6Nv376wsLBAeHg4/P398ejRI4SGhsrWrVixIooXL46xY8cCAF69eoVNmzbh4cOH8PHxgZeXl2zdCxcuoEmTJhgxYgRq164tt8+KFSuiQYMGKnsNS5Yswfjx4/HkyRNUrFhRZdvNrWHDhmHt2rVo164dmjZtCi0tLTx48ADHjx9Hjx49ZGeZfXmMPn78iLt372LDhg0wNDREUFAQLCwsclWDRCLBjBkzZPtKS0vDx48foaurq7KzzVJTU5Gamgo9PT3ZMiMjI3Tq1AlbtmxRyT7SpR+r8+fPo3Hjxirddl7L7bFPSkqClpYWtLS08rC6jDJ7X9Upv/37JiIiItX7tmmHiIiIcm3u3LkwNTXF9evXUaxYMbnnIiMjM6xvZWWFXr16yR7369cPlSpVwvLly+UaiekaNmyITp06qbzu/CoiIgLr1q2Dl5cXfHx85J5bsWIFoqKiMoz58hhVrVoVgwcPxrZt2zBhwgSV1KWpqQlNTU2VbCudOppceS0+Ph6GhoYq3WZuj726GnmF8X0lIiKi/I2XNhMRERUQjx49gqOjY4YmIgCUKlUqx/Hm5uaws7PDo0ePlNpvdHQ0xo0bh2rVqsHIyAgmJiZwd3dHYGBghnVXr14NR0dHGBgYoHjx4nB1dcXOnTsBfJrPbfz48QAAa2tr2WXCWc1HN2zYMBgZGSEhISHDc927d4eFhQXS0tIAADdu3ECrVq1gZmYGfX19WFtbY8CAAdm+ridPnkAIgfr162d4TiKRKHRMGzZsCABKH9PsZDZPX8WKFdGmTRtcuHABrq6u0NfXR7Vq1WTzEO7fvx/VqlWDnp4eatWqhdu3b8tt88u59CQSCeLj47F161bZ+9CvXz/Z8y9evMCAAQNQunRp6OrqwtHREb/99luGWp8/f4727dvD0NAQpUqVwujRo5GcnKzwa01/XadOnUKNGjWgp6cHBwcH7N+/P9Nj8vfff2PIkCEoVaoUypYtK3v++PHjaNiwIQwNDWFsbIzWrVvj33//zbC///77D126dIG5uTn09fVRtWpVTJkyJcN+Pj/2iny2Mpsj8fbt23B3d4eJiQmMjIzQrFkzucvlP9/f5cuXMWbMGJibm8PQ0BAdOnTItJH9pczmSJRIJBg2bBgOHjwIJycn2ft34sSJTMemHxMTExOULFkSI0eORFJSkmy9sLAwSCSSTM9c/fx15/Tv+/Tp02jQoAGKFSsGIyMjVK1aFb/88kuOr5GIiIjyF36FSUREVEBUqFABV69eRVBQEJycnJQen5qaiufPn6N48eKZPh8XF4c3b97ILStRogQeP36MgwcPonPnzrC2tkZERAQ2btyIRo0aITg4GGXKlAEA+Pr6YsSIEejUqZOsGXH37l0EBASgR48e+Pnnn/Hw4UPs2rULy5cvh5mZGYBPDc7MdO3aFWvXrsXRo0fRuXNn2fKEhAQcPnwY/fr1g6amJiIjI9GyZUuYm5tj0qRJKFasGMLCwjI0o75UoUIFAMCePXvQuXNnGBgYKHYgP5PeJMnqmKpSaGgoevTogYEDB6JXr15YsmQJfvrpJ2zYsAG//PILhgwZAgCYP38+unTpggcPHkBDI/PvjLdv3w5PT0+4ubnB29sbAFC5cmUAn87U/O6772QNKXNzcxw/fhweHh6IjY3FqFGjAACJiYlo1qwZnj17hhEjRqBMmTLYvn07zp07p9TrCgkJQdeuXTFo0CD07dsXmzdvRufOnXHixAm0aNFCbt0hQ4bA3Nwc06dPR3x8vOy19O3bF61atcLChQuRkJCA9evXo0GDBrh9+7bsEtu7d++iYcOG0NbWhre3NypWrIhHjx7h8OHDmDt3bqa15faz9e+//6Jhw4YwMTHBhAkToK2tjY0bN6Jx48b4+++/UadOHbn1hw8fjuLFi2PGjBkICwvDihUrMGzYMOzevVupY5nun3/+wf79+zFkyBAYGxtj1apV6NixI549e4aSJUvKrdulSxdUrFgR8+fPh7+/P1atWoV3795lOp9qdrL79/3vv/+iTZs2qF69OmbPng1dXV2Ehobi8uXLuXp9REREpEaCiIiICoRTp04JTU1NoampKerWrSsmTJggTp48KVJSUjKsW6FCBdGyZUsRFRUloqKixL1790Tv3r0FADF06FC5dc+fPy8AZPrz5MkTkZSUJNLS0uTGPHnyROjq6orZs2fLlrVr1044Ojpm+xoWL14s225OpFKpsLKyEh07dpRb/ueffwoA4uLFi0IIIQ4cOCAAiOvXr+e4zS/16dNHABDFixcXHTp0EEuWLBH379/PsF76Mfrtt99EVFSUePnypThx4oSwsbEREolEXLt2Tel9pwMgZsyYIXu8efPmDMeoQoUKAoC4cuWKbNnJkycFAKGvry+ePn0qW75x40YBQJw/f162bMaMGeLL2GdoaCj69u2boR4PDw9haWkp3rx5I7e8W7duwtTUVCQkJAghhFixYoUAIP7880/ZOvHx8cLGxibD/rOS/rr27dsnWxYTEyMsLS1FzZo1MxyTBg0aiNTUVNnyuLg4UaxYMeHl5SW33devXwtTU1O55d9//70wNjaWO1ZCfPqcfbmf9GOv6Gfry/ewffv2QkdHRzx69Ei27OXLl8LY2Fh8//33GfbXvHlzuTpGjx4tNDU1xfv377Pdb2bvKwCho6MjQkNDZcsCAwMFALF69eoMY9u2bSs3fsiQIQKACAwMFEJ8+rcOQGzevDnH153Vv+/ly5cLACIqKirb10NERET5Hy9tJiIiKiBatGiBq1evom3btggMDMSiRYvQqlUrWFlZ4a+//sqw/qlTp2Bubg5zc3NUq1YN27dvR//+/bF48eJMtz99+nScPn1a7sfCwgK6urqyM9vS0tLw9u1b2aWJt27dko0vVqwYnj9/juvXr6vk9UokEnTu3BnHjh3Dhw8fZMt3794NKysr2U1g0i/1PnLkCD5+/KjUPjZv3ow1a9bA2toaBw4cwLhx42Bvb49mzZrhxYsXGdYfMGAAzM3NUaZMGfzwww+IiYnB9u3bM9ykJi84ODigbt26ssfpZ7U1bdoU5cuXz7D88ePHSu9DCIF9+/bhp59+ghACb968kf20atUKMTExsvf82LFjsLS0lJsz0sDAQHaGo6LKlCmDDh06yB6bmJigT58+uH37Nl6/fi23rpeXl9wchqdPn8b79+/RvXt3uVo1NTVRp04dnD9/HgAQFRWFixcvYsCAAXLHCkC2N1XJzWcrLS0Np06dQvv27VGpUiXZcktLS/To0QP//PMPYmNj5cZ4e3vL1dGwYUOkpaXh6dOnCu3zS82bN5edYQoA1atXh4mJSaafiaFDh8o9Hj58OIBP76+qpB/HQ4cOQSqVqmy7RERE9O2xkUhERFSA1K5dG/v378e7d+9w7do1TJ48GXFxcejUqROCg4Pl1q1Tpw5Onz6NEydOYMmSJShWrBjevXsHHR2dTLddrVo1NG/eXO5HT08PUqkUy5cvh62tLXR1dWFmZgZzc3PcvXsXMTExsvETJ06EkZER3NzcYGtri6FDh371pYtdu3ZFYmKirFH64cMHHDt2DJ07d5Y1Xho1aoSOHTti1qxZMDMzQ7t27bB582aF5urT0NDA0KFDcfPmTbx58waHDh2Cu7s7zp07h27dumVYP73ZeuDAAfTp0wcxMTFZXj6sal82wExNTQEA5cqVy3T5u3fvlN5HVFQU3r9/Dx8fH1kTOv2nf//+AP53Y5+nT5/CxsYmQyOuatWqco8/fPiA169fy36+nPsvs21UqVIFADLMn2ltbS33OCQkBMCnZuqX9Z46dUpWa3oDTdkpAXLz2YqKikJCQkKG4wAA9vb2kEqlCA8Pl1v+5Xubfql8bt7DzLaXvs3Mtmdrayv3uHLlytDQ0Mhy7tLc6Nq1K+rXrw9PT0+ULl0a3bp1w59//smmIhERUQHEORKJiIgKIB0dHdSuXRu1a9dGlSpV0L9/f+zZswczZsyQrWNmZobmzZsDAFq1agU7Ozu0adMGK1euxJgxYxTe17x58zBt2jQMGDAAv/76K0qUKAENDQ2MGjVKrhFgb2+PBw8e4MiRIzhx4gT27duHdevWYfr06Zg1a1auXud3332HihUr4s8//0SPHj1w+PBhJCYmomvXrrJ1JBIJ9u7dC39/fxw+fBgnT57EgAEDsHTpUvj7+8PIyEihfZUsWRJt27ZF27ZtZXPZPX36VDaXIvC/ZisAtG/fHgkJCfDy8kKDBg0yNPRULau7CWe1XAih9D7S389evXqhb9++ma5TvXp1pba5ZMkSufe/QoUKuW5S6evryz1Or3f79u2wsLDIsP7X3tFYVZ+tnKjyPfza7WV285bMpN/oSBH6+vq4ePEizp8/j6NHj+LEiRPYvXs3mjZtilOnTqn8LuVERESUd9hIJCIiKuBcXV0BAK9evcp2vdatW6NRo0aYN28eBg4cCENDQ4W2v3fvXjRp0gR+fn5yy9+/fy+7oUI6Q0NDdO3aFV27dkVKSgp+/vlnzJ07F5MnT4aenl62l5FmpUuXLli5ciViY2Oxe/duVKxYEd99912G9b777jt89913mDt3Lnbu3ImePXvijz/+gKenp9L7dHV1xd9//41Xr17JNRK/tGDBAhw4cABz587Fhg0blN6POmX2Xpibm8PY2BhpaWmyhmlWKlSogKCgIAgh5Lb14MEDufX69OkjuwwdyNgMDA0NzbCNhw8fAoDsRilZSb98t1SpUtnWm36JcVBQULbby4oyny1zc3MYGBhkOA7Ap7tGa2ho5HnTWRkhISFyZ3qGhoZCKpXKjn362ZHv37+XG5fZZdfZ/fvW0NBAs2bN0KxZMyxbtgzz5s3DlClTcP78+Rw/a0RERJR/8NJmIiKiAuL8+fOZnlGUPpdZZpdSfmnixIl4+/YtfH19Fd6vpqZmhv3u2bMnwxyCb9++lXuso6MDBwcHCCFk88ulNy+/bEpkp2vXrkhOTsbWrVtx4sQJdOnSRe75d+/eZaivRo0aAJDtJaivX7/OcDk4AKSkpODs2bPQ0NCAjY1NtrVVrlwZHTt2xJYtWzLM55ffGRoaZngfNDU10bFjR+zbty/TptvnlyX/+OOPePnyJfbu3StblpCQAB8fH7kxlSpVkrtcvn79+nLPv3z5EgcOHJA9jo2NxbZt21CjRo1MzzL8XKtWrWBiYoJ58+ZlOodher3m5ub4/vvv8dtvv+HZs2dy62R3ll5uPluamppo2bIlDh06JHfmZUREBHbu3IkGDRrAxMQk29f1La1du1bu8erVqwEA7u7uAD7NWWlmZoaLFy/Krbdu3boM28rq33d0dHSGdRX5N0pERET5D89IJCIiKiCGDx+OhIQEdOjQAXZ2dkhJScGVK1dkZ+mlz2GXHXd3dzg5OWHZsmUYOnQotLW1cxzTpk0bzJ49G/3790e9evVw79497NixQ+5GEgDQsmVLWFhYoH79+ihdujTu37+PNWvWoHXr1jA2NgYA1KpVCwAwZcoUdOvWDdra2vjpp5+yPTvSxcUFNjY2mDJlCpKTk+UuawaArVu3Yt26dejQoQMqV66MuLg4+Pr6wsTEBD/++GOW233+/Dnc3NzQtGlTNGvWDBYWFoiMjMSuXbsQGBiIUaNGZTjjMjPjx4/Hn3/+iRUrVmDBggUAgAsXLqBJkyaYMWMGZs6cmeM21KFWrVo4c+YMli1bhjJlysDa2hp16tTBggULcP78edSpUwdeXl5wcHBAdHQ0bt26hTNnzsiaQl5eXlizZg369OmDmzdvwtLSEtu3b4eBgYFSdVSpUgUeHh64fv06Spcujd9++w0RERHYvHlzjmNNTEywfv169O7dGy4uLujWrRvMzc3x7NkzHD16FPXr18eaNWsAAKtWrUKDBg3g4uICb29vWFtbIywsDEePHsWdO3cy3X5uP1tz5szB6dOn0aBBAwwZMgRaWlrYuHEjkpOTsWjRIqWOT1578uQJ2rZtix9++AFXr17F77//jh49esDZ2Vm2jqenJxYsWABPT0+4urri4sWLsrNGP5fVv+/Zs2fj4sWLaN26NSpUqIDIyEisW7cOZcuWlTtblYiIiPI/NhKJiIgKiCVLlmDPnj04duwYfHx8kJKSgvLly2PIkCGYOnWq7M6oORk3bhz69euHHTt2oF+/fjmu/8svvyA+Ph47d+7E7t274eLigqNHj2LSpEly6w0cOBA7duzAsmXL8OHDB5QtWxYjRozA1KlTZevUrl0bv/76KzZs2IATJ05AKpXiyZMnOV5m3bVrV8ydOxc2NjZwcXGRe65Ro0a4du0a/vjjD0RERMDU1BRubm7YsWNHhptzfK5q1apYsWIFjh07hnXr1iEiIgJ6enpwcnKCr68vPDw8cjw2wKfLoBs3boz169dj8uTJMDU1ld1l2tLSUqFtqMOyZcvg7e2NqVOnIjExEX379kWdOnVQunRpXLt2DbNnz8b+/fuxbt06lCxZEo6Ojli4cKFsvIGBAc6ePYvhw4dj9erVMDAwQM+ePeHu7o4ffvhB4TpsbW2xevVqjB8/Hg8ePIC1tTV2796NVq1aKTS+R48eKFOmDBYsWIDFixcjOTkZVlZWaNiwoVxz3dnZGf7+/pg2bRrWr1+PpKQkVKhQIcMZrp/L7WfL0dERly5dwuTJkzF//nxIpVLUqVMHv//+u+yu2vnF7t27MX36dEyaNAlaWloYNmxYhju7T58+HVFRUdi7dy/+/PNPuLu74/jx4yhVqpTceln9+27bti3CwsLw22+/4c2bNzAzM0OjRo0wa9Ys2c2BiIiIqGCQiNzO4kxEREREmZowYQJ27dqF0NBQ6OrqqrucfKtixYpwcnLCkSNH1F1KkTNz5kzMmjULUVFRCp15S0RERARwjkQiIiIilTt//jymTZvGJiIRERERFSq8tJmIiIhIxa5fv67uEoiIiIiIVI5nJBIREREREREREVGOOEciERERERERERER5YhnJBIREREREREREVGO2EgkIiIiIiIiIiKiHLGRSERERERERERERDliI5GIiIiIiIiIiIhyxEYiERERERERERER5YiNRCIiIiIiIiIiIsoRG4lERFQkmZqa4sWLF5k+l5ycjNKlSyM2NvYbV0VERERElHVWZU4ldWMjkYiIipxnz54BAKysrDJ9XldXFxERETAxMYEQAkZGRoiMjPyWJRIRERFREZVdVmVOJXVjI5GIiIqcoKAg2NnZKbTukydPYGBggFKlSuVxVUREREREimdV5lRSBzYSiQqZRYsWwc7ODlKpVN2l5Cg/1/rhwwdoaGhg+fLl6i5FrTZs2IDy5csjOTlZ3aUobenSpejWrRt69+4NU1NTODg44NGjRwA+hTMrKyv06NEDpqam+O677/D06VPZ2JUrV8LDwwP379+Hg4MD3r17ByMjI9SuXRsA8N9//6F58+YoUaIEihcvjhEjRuRYT0E+lkRElH/k5/ykSvnldSYmJkJTUxPz5s3Ldj1VZseimhmKUv7OLqcC2WdV5lRSNzYSqVC6d+8eOnXqhAoVKkBPTw9WVlZo0aIFVq9eLVtny5YtkEgksh8tLS1YWVmhX79+mc5F8eX6n/9MmjRJ5a/hypUrmDlzJt6/f6/wmNjYWCxcuBATJ06Ehsanf96DBw9G1apVVV7f18qs1s/dvXsXPXv2hJWVFXR0dGBhYYEGDRpg1qxZsnVOnjwp9z5oa2vDxsYGM2fOREpKSoZtfrm+RCKBiYkJ3NzccPDgQbl1g4KCIIRA9erVZcuEEJg9ezYuXbqkugORS8nJyZg4cSLKlCkDfX191KlTB6dPn1Zo7IULF7L8LPv7+8ut269fP6SkpGDjxo158TLkXL9+HcOGDYOjoyMMDQ1Rvnx5dOnSBQ8fPszV9u7du4crV65g2LBhiI6OhpOTE3777TcAn97fy5cvY9iwYXjz5g2sra0xY8YM2di7d++ievXqsLe3x4wZMzB48GB8+PAB169fBwD07NkT3t7eePv2LZ4+fYq+ffvK7XvBggXQ09OTW/YtjyUREX07eZE7s5KbrKdIXgoPD88yG3z58/jx4wzbDQ4OzrDfn376CWXLls2yji9/tm3blu3rVJfg4GBIpVI4OTllu54qs6M6MoMi2RtQLn8rk72BjMcwP2Xvb5lTgeyzKnMqqZuWugsgUrUrV66gSZMmKF++PLy8vGBhYYHw8HD4+/tj5cqVGD58uNz6s2fPhrW1NZKSkuDv748tW7bgn3/+QVBQUIb/wH6+/udyCha5fR2zZs1Cv379UKxYMYXG/Pbbb0hNTUX37t1lyz5+/Jgvv1nKrNZ0+/fvR/fu3VG+fHkMHDgQZcqUwbNnz3DmzBn8/vvvsj+igYGBAIBly5bB3NwcCQkJ2LNnD2bNmoXk5GTMnz9fbrvp669atQrFixeHVCpFeHg4Vq1ahc6dO+PevXuySwjc3NyQmJgIXV1d2fiHDx9ixowZCl8Sm5f69euHvXv3YtSoUbC1tcWWLVvw448/4vz582jQoIFC2xgxYoTsm8t0NjY2co/19PTQt29fLFu2DMOHD4dEIlHZa/jSwoULcfnyZXTu3BnVq1fH69evsWbNGri4uMDf31/pf2f37t3DzJkzUadOHQCAra0thBAAPoWzadOmoV69egCA3r17Z2gk9urVS/Z706ZN5bb96NEjpKSkQCqVwsTEBLVq1ZJ7PjU1NcO/u295LImI6NvI69z5pdxkPUXykq6uLrZv3y4bk5iYCG9vbzRp0gQDBgyQLZdIJKhUqZLcdjU0NHDkyBE4ODhk2O/nTbUvc9iXWrVqle3rVJd79+4BABwdHbNdT5XZ8VtnBkWzN6Bc/lYmewMZj2F+yt7fMqcC2WdV5lRSO0FUyPz444/C3NxcvHv3LsNzERERst83b94sAIjr16/LrTNx4kQBQOzevVtueVbr55XFixcLAOLJkycKj6levbro1auX3DIPDw9RoUIF1Rb3hUaNGom+ffsqNSazWoUQIjo6Wpiamor69euL5OTkDM+/ePFC9nvPnj2Fnp6eSE1NlS1LTk4WFhYWwtraOsPYnj17imLFimVYvmHDBgFA7Nq1K9uad+zYIQCIkJCQbNdTlrLHLyAgQAAQixcvli1LTEwUlStXFnXr1s1x/Pnz5wUAsWfPHoX2d+PGDQFAnD17Nst1oqOjxb59+7J8fufOneLDhw/Z7ufy5csZ3vOHDx8KXV1d0bNnT9my+vXrCwCZ/kyZMkUIIURqaqrQ09MTL1++lI1r166d2Lp1q0hLSxN6enpyn6UtW7aIVq1aCSGESEtLEwYGBuLNmzdCCCEcHByEv7+/XF3Hjh0T9evXF6VLlxbjx48XHz9+lHv+119/FZn9iVXkWBIRUcGRV7kzK7nJesrmJSGEuH79ugAglixZku12TUxMhLu7u2jQoIHcc9HR0QKAmDRpktz6pqamQiqVZvcShRBZ50R1GDNmjDAwMFCo7i99TXbMbWZQNlcqk72FUO7zlJ+y99dmVUVzqhA5Z9XscqoQItusypxK+QEvbaZC59GjR3B0dMz0LD5FJqFt2LChbDvKevr0KYYMGYKqVatCX18fJUuWROfOnREWFia3XlxcHEaNGoWKFStCV1cXpUqVQosWLXDr1i0AwMyZMzF+/HgAgLW1texSgC+387knT57g7t27aN68ucL1vnjxAnp6enLfNAPAmTNnoK2tjdGjRyu8LWVkV+uZM2cQExMDDw8P6OjoZHi+TJkyst8DAwPh6OgITU1N2TIdHR2UKVMGMTExGcYGBgbCxcUlw/LXr18DAOzt7WXLWrRogfr168seu7m5oWfPngA+fWMokUhkn7Fnz57B09MTlSpVgp6eHiwsLPDjjz8iNDQ0p0ORK3v37oWmpia8vb1ly/T09ODh4YGrV68iPDxc4W3FxcUhNTU123Vq1aqFEiVK4NChQ1mus27dOnTp0gUHDhzI8Jyfnx969OiBrVu3ZrufevXqZXjPbW1t4ejoiPv378uW/fPPPxBCZPozZ84cAEBoaChMTExgaWkpG5d+GUhoaCiSkpJgbm4ue+7gwYNwd3eXjTU1NUXJkiWRkpKCkJCQDN8yu7u7459//kFAQAB2796Nc+fOZfva0ilyLImIqOD4lrkzN1kPUD4vAZ/+ZgJAtWrVst1utWrV0KZNG1y9ehVv376Vew5AhjMSa9asmeOZTlm9TlXm1iZNmuD777/HrVu34O7uDmNjY1hZWWHlypUZ1r137x7s7e3h7++Pxo0bw9DQEHZ2dti1a5fcespkRyDn/PitMoMy2RtQ7vOkTPYG5I/h1x6/L31tVlU0pwI5Z9XsciqAbLMqcyrlB2wkUqFToUIF3Lx5E0FBQbkan96sy+ySCwCIiYnBmzdv5H7SXb9+HVeuXEG3bt2watUqDBo0CGfPnkXjxo2RkJAgW2/QoEFYv349OnbsiHXr1mHcuHHQ19eX/RH6+eefZZdyLF++HNu3b8f27dvl/ph86cqVKwCQ6R/rrFhZWcHT0xO///67bPLe//77D507d4a7uzuWLl2q8LaUkV2t8fHxAP4XYLOSkpKCBw8ewNnZWW75y5cvERwcnOGS3fT17e3tZe9bSEgI1qxZg4ULF2LYsGFy2/r8jzkATJw4EU5OTrC1tZW9H7///jsiIiLg6uqKy5cvw8vLC2vXrsWgQYPw4sULaGnlzewRt2/fRpUqVWBiYiK33M3NDQBw584dhbbTv39/mJiYQE9PD02aNMGNGzeyXNfFxQWXL1/O8vmJEyeidevW6N69O86ePStbvn//fgwcOBC9evXC4MGDFarrc0IIREREwMzMTKlx9+7dk3s/4+Li8OLFCzg4OCAoKAhaWlrYtWsXUlNT4evri3v37sHT0xOA/HsfFxcHAHJz/uzbtw9PnjwBALx79w4pKSlKXXKT07EkIqKCI69z5+dyk/WUzUvp0nPY51koq+22adMGaWlpOHbsWIbx6ftNX9/Ozi5Djn7z5g0+fvyY4+tUZW69d+8e3r9/j59++gm1atXCkiVLYGlpidGjR8suZf583Q8fPqBr165o1qwZFixYAIlEgh49eiAgIEDuNSuSHQEonB+/RWZQNHsDyn2elM3e6TWkH0NVHL/P5UVWzYucCiDbrMqcSvmCOk6DJMpLp06dEpqamkJTU1PUrVtXTJgwQZw8eVKkpKTIrZd+icmZM2dEVFSUCA8PF3v37hXm5uZCV1dXhIeHZ7p+Zj/pEhISMtRz9epVAUBs27ZNtszU1FQMHTo029eh7KXNU6dOFQBEXFyc3PKcLnd5/vy50NXVFYMHDxZv3rwRlStXFjVq1MjxMtTPKXsJRVa1CiFEWFiYMDAwEACEra2tmDBhgjh37pzc5RNCCHH79m0BQPz6668iKipKvHz5Upw4cUI4OzsLQ0PDDJcOpa//5Y+2trZYsWKF3LoRERECgFi3bp3c8vLly4t+/frJLVuyZInQ09MTMTExCr/+Lyl7/BwdHUXTpk0zLP/3338FALFhw4Zsx1++fFl07NhR+Pn5iUOHDon58+eLkiVLCj09PXHr1q1Mx3h7ewt9ff1st5uYmCgaNWokjIyMhL+/vzhz5ozQ1dUVbdq0yXBJhaK2b98uAAg/Pz+lxk2fPl2MGzdO9vjKlSvCyclJCCHErFmzxJAhQ4S7u7swNTUVzZo1E48fP5YbO378eNnjPn36CCMjI1GnTh0hhBDDhw8XpUuXFoaGhqJ69eriyJEjGfaf1SUjQih2LImIqGDIq9yZmdxkPWXzUromTZoIc3PzLGtJ32565qhWrZro3Lmz7PkBAwYIXV1dWX7LKoel/zx48CDH1ymEanLry5cvBQBhbm4ud9yDg4MFANnlpUIIERUVJQCIEiVKyGXyZ8+eCR0dHeHt7S2EUC47CqF4fsxNZlA2VyqavYVQ7vOkTPYWIvNj+LXH70uqzqp5kVOFyD6rMqdSfsBGIhVK165dEx06dJD9UUwPC4cOHZKtk1VjsGLFiuLkyZMZtpm+/tq1a8Xp06flfjKTkpIi3rx5I6KiokSxYsXEqFGjZM9VqFBBuLq6Zphz5HPKNhIHDx4stLS0MixXZI7EYcOGCV1dXVGnTh1RpkwZ8fz58yzXTUlJEVFRUXI/9erVE926dcuwPC0tTala0wUGBoouXboIQ0ND2ftSvnx5uWO9devWTN+/xo0bi9u3b2fYZvr6W7dulb1vv//+u6hdu7bQ1dUVV65cka17+vRpAUBcunRJtuz9+/cCgFi2bJncdqdOnSo0NTXF+fPns3w9qj5+lSpVEu7u7hmWP3r0SAAQy5cvV6iWz4WEhAh9fX3ZPIFfSp/DKT4+PtvtxMTECBcXF1GiRAlhZGQkvv/++0wb7Iq4f/++MDExEXXr1s00zOZn2QU0RY8lEREVDHmROzOTm6ynbF5KZ2ZmJpo1a5bl8+nbTc9PkydPFiYmJrIGaq1atYSLi0uG9bds2ZIhR58+fVpu/sGccqIyuTUzJ0+eFADEmjVr5JaHhIRkmLcvfV7ppUuXZthOtWrVRIsWLYQQymVHIRTPjzllBlXkSiEUy95CKPd5UiZ7Z3YMVXH8MqOqrMqcSkUZG4lUqCUnJ4tr166JyZMnCz09PaGtrS3+/fdfIUTGxuDevXvFjz/+KIyMjMSFCxcybEuRm60kJCSIadOmibJlywqJRCL3B7Z///6y9Xbv3i309PSEhoaGqF27tpgxY4Z49OiR3La+ZSMxLCxMABD6+vrixo0b2a6bHqgU+cmq9pwCYrrk5GRx/vx50b9/fyGRSETJkiVlf9TGjBkjAIijR4/Kgomjo6MwNjaWO7ss3ZgxY4SWllaGMwSeP38uAIgePXrIli1btkwAEO/fv5ctu3jxouxMgs89fPhQWFpaCgDCxcVFLFq0SG7i5Lw4fl97RmJWunXrJnR0dDINQxMmTBAAFApa586dk72GrM5wzMmrV69EpUqVRLly5bJtuOdX2QU0ZY4lEREVHKrMnZnJTdZTNi8J8b8z9j7/Ejyz7UokEtlZg5cvX5blpPQbSXx+Jll6DsvsZh6Kvs50yuTWzCxZskQAyNCAPHz4cIbssmrVKgFA7sY56ZydnUW7du2EEMplRyEUz485ZQZV5MrPZZe9hVDu86RM9s7sGKri+GXla7MqcyoVdXkzgRdRPqGjo4PatWujdu3aqFKlCvr37489e/ZgxowZsnXc3Nzg6uoKAGjfvj0aNGiAHj164MGDBzAyMlJqf8OHD8fmzZsxatQo1K1bF6amppBIJOjWrRukUqlsvS5duqBhw4Y4cOAATp06hcWLF2PhwoXYv3+/7IYPyipZsiRSU1MRFxcHY2NjpcbOnTsXAJCamooSJUpku66zszNOnz4tt2zs2LGwsLCQ3SAmnYWFxVfVqqOjg8aNG6Nx48aIiorCkSNH8ODBA9SsWRN3795FhQoV8OOPP8rWd3FxgYODA9atW4fFixfLbevu3buoXLkytLW15ZZbWVnBwMAAz58/l1u3fPnyMDU1lVuW/vo/Z2tri4cPH2L//v04fPgwpk2bhtmzZ+PEiRNyE26nU8Xxs7S0xIsXLzIsf/XqFYCMk2Irqly5ckhJSUF8fHyG+RffvXsHAwMD6OvrZ7uNx48fo2fPnrCzs0NiYiI6duyIy5cvy00mnZOYmBi4u7vj/fv3uHTpUq5fT36l6LEkIqKCJa9zZ26ynrJ5KX0MkPX8iOnrVKpUSVbzd999BzMzMxw+fBhlypRBUlJShrmnra2tM72Zh7KvU5ncmlXtFhYWsLKyklseGBgILS0t2Tx1wKe57MqUKZPhxjkJCQn477//0LZtW9k2Fc2OgOL5MafMoIpc+bnssnf6a1L086RM9k5f//NjqIrjl5mvzarMqUS82QoVIemhLb3ZkhlNTU3Mnz8fL1++xJo1a5Tex969e9G3b18sXboUnTp1QosWLdCgQQO8f/8+w7qWlpYYMmQIDh48iCdPnqBkyZKyYAQgxzvafSl9Et30yXUVtXjxYmzatAlr1qyBlpaWXA2ZKV68OJo3by73U7x4cVhaWmZYrqenp7JadXV1AUAuXHx5J0F7e3u4urpi3759GcbfvXs3w53hACAqKgoJCQly4erLybLTl1laWmY6mbKRkRH69OmDPXv2IDAwEMnJyfjzzz8zfR2qOH41atTAw4cPERsbK7c8fcLvGjVqZDouJ48fP4aenl6m/0fmyZMnmR6/z7169QotWrSAtrY2Tp8+jdOnTyM+Ph4tW7ZEdHS0QjUkJSXhp59+wsOHD3HkyBG5MF9YKHIsiYioYMuL3Jmb/KRsXgIgu9lITo3Ez5/X0NCAu7s7Dh8+nOkdm7PKYZnJ7nUqm1sz8+WNLj6vsUqVKrLMmb7u53cnTrd582YkJyfj559/lo1VJjsCiuXHnDKDKnJlVr7M3umvSdHPkzLZO339Lz8zX3v8vvS1WZU5legTNhKp0Dl//jyEEBmWp99JrmrVqtmOb9y4Mdzc3LBixQokJSUptW9NTc0M+169ejXS0tJkj9PS0hATEyO3TqlSpVCmTBkkJyfLlhkaGgJApk3IzNStWxcAsr3z7pcOHjyISZMm4ddff8XQoUPh7e2Nbdu2Kd2MVFZWtf7zzz9ITEzMsP7du3dx4sQJ1KxZE5UqVcLr168RGRkJJyenDOu2atUKT548kd0BG4Bs/cz+KC5cuBAA0LFjRwCf3p/g4OAMYfDZs2coW7as3LLP79idTl9fH2lpaXn67WSnTp2QlpYGHx8f2bLk5GRs3rwZderUQbly5WTL078x/7zWqKioDNsMDAzEX3/9hZYtW0JDI+Ofhlu3bqFevXpZ1vTu3Tu0atUKHz58wJkzZ1C2bFnY2tri5MmTCA8PR+vWrWV3BcxKWloaunbtiqtXr2LPnj2yz0lhk9OxJCKiguNb5k5ls56yeSnd3bt3oampmWWTJH27Xzbj2rRpg8ePH2PXrl0A/ncmWfr6it45NqvXqYrcmpaWhvv372faSAwMDJTLf0IIBAUF4cWLF3j06JFseVRUFBYsWIC2bduiRo0aSmVHQLn8mNeZQdHsDSj3eVImewOZ529VHL/PfW1WZU4l+h9e2kyFzvDhw5GQkIAOHTrAzs4OKSkpuHLlCnbv3o2KFSuif//+OW5j/Pjx6Ny5M7Zs2YJBgwYpvO82bdpg+/btMDU1hYODA65evYozZ86gZMmSsnXi4uJQtmxZdOrUCc7OzjAyMsKZM2dw/fp1LF26VLZerVq1AABTpkxBt27doK2tjZ9++knWYPxSpUqV4OTkhDNnzmDAgAE51nrz5k307NkTPXv2xJQpUwAAEyZMwIYNGzB37lxs2rRJ4detrKxqnTRpEh4+fIjOnTvD2dkZqampuHPnjuyYbt++HQBk33R/+Y0oALRs2RJz587F0aNHZeElff3IyEj8/vvvAD6FkFOnTuH48ePo1q0bOnfuDAAICQlBUlJShm1bW1vj3LlzWLRoEcqUKQN7e3ssWbIEQUFBaNu2LaytrfHq1Sv4+PigbNmy8PLyUvFR+586deqgc+fOmDx5MiIjI2FjY4OtW7ciLCwMfn5+cuteu3YNTZo0wYwZMzBz5kwAQNeuXaGvr4969eqhVKlSCA4Oho+PDwwMDLBgwYIM+7t58yaio6PRrl27LGtat24dwsPDceHCBdja2sqW16hRA0eOHEHLli2xdetWDBkyJMttjB07Fn/99Rd++uknREdHy96rdL169VLk8ORrihxLIiIqOL5l7lQ26ymbl9LdvXsXNjY2WV7amNkZh8CnZpK2trbs8ub0/Ju+flRUVIa/7cCnhuPnNWb2OpXNrRKJBI0aNcKFCxfklqfnvC8biYmJiQgNDUXfvn1ly8LCwvDhwwfUqlULrVu3xogRI5CQkIA1a9ZAQ0ND9oWuMtmxVq1aGD58uEL58VtkBkWzN6Dc50mZ7A1kfgy/9vh96WuzKnMq0WfUO0UjkeodP35cDBgwQNjZ2QkjIyOho6MjbGxsxPDhw+UmSs7u5ilpaWmicuXKonLlyrIbTyhys5V3796J/v37CzMzM2FkZCRatWol/vvvP1GhQgXRt29fIcSnSYzHjx8vnJ2dhbGxsTA0NBTOzs5i3bp1Gbb366+/CisrK6GhoaHQJMnLli0TRkZGcpPjZjYBd3h4uLC0tBT169cXSUlJcs8NHjxYaGtrZzkBd2YaNWoke32KyqzW/fv3i+7duwsbGxthaGgo9PT0hL29vRg/fryIjIyUrbdo0SIBQAQGBmbYbkpKijA2NhZNmjTJsP7nP8bGxqJ+/frCz89P7k6Bf/75pwAgmxw93YsXL0SrVq2EkZGRACBWrVol/Pz8RNOmTYW5ubnQ1dUVNjY2YsSIEXK1KiI3xy8xMVGMGzdOWFhYCF1dXVG7dm1x4sSJDOulT8I9Y8YM2bKVK1cKNzc3UaJECaGlpSUsLS1Fr169REhISKb7mjhxoihfvrzccfrSx48fRVBQUJbPBwYGZjteiE/H4cv36fOfgiSrSawVOZZERFRw5FXuzIqiWU8I5fOSEJ/+nuvo6IjOnTtnWUP6dkNDQzM816RJEwFA/PDDDxnWz+pn27Zt2b5OZXNrXFycACC6deuWYbvpOe/LzHLt2jUBQBw5ckS27NChQwKAuH37thg6dKgwNTUVxYoVE3369JG7sYcy2VEIoXB+zG1mUCZXKpq9hVDu86RM9hYi82P4tcfvS1+bVZlTif5HIkQm5+ITUYEUExODSpUqYdGiRfDw8AAAeHp64syZMwgLC1NvcV/IrFbKf5KTk1GxYkVMmjQJI0eOVHc5BcacOXMwbdo0ucvdeCyJiOhrFaSs9zW+JiceO3YMbdq0QWBgYKZnzxUEzAyUl5hT6WtxjkSiQsTU1BQTJkzA4sWL5e4S/fTpU0gkkkznNFGXrGql/GXz5s3Q1tZW6hL/omzFihWQSCSYNm1ahud4LImI6GsVpKz3Nb4mJ54/fx7dunUrsE1EgJmB8gZzKqkKz0gkKuRev34tu2GLrq4urK2t1VsQUSH27t07REREyB4rOrE8ERFRbjHrEZEimFNJVdhIJCIiIiIiIiIiohzx0mYiIiIiIiIiIiLKERuJRERERERERERElCM2EomIiIiIiIiIiChHWuou4GtIpVK8fPkSxsbGkEgk6i6HiIiISGlCCMTFxaFMmTLQ0OB3vAURMykREREVZMrk0QLdSHz58iXKlSun7jKIiIiIvlp4eDjKli2r7jIoF5hJiYiIqDBQJI8W6EaisbExgE8v1MTERM3VEBERESkvNjYW5cqVk+UaKniYSYmIiKggUyaPFuhGYvqlIyYmJgxtREREVKDxktiCi5mUiIiICgNF8ign4iEiIiIiIiIiIqIcsZFIREREREREREREOWIjkYiIiIiIiIiIiHLERiIRERERERERERHliI1EIiIiIiIiIiIiyhEbiURERERERERERJQjNhKJiIiIiIiIiIgoR2wkEhERERERERERUY7YSCQiIiIiIiIiIqIcsZFIREREREREREREOWIjkYiIiIiIiIiIiHLERiIRERERERERERHliI1EIiIiKtSEEIj9IMUVfyni44W6yyEiIiIiUogQArHJsbgSfgXxKfHqLgcAG4lERERUyMXFC9g5SVG/rgZq1AQSEnIew+YjEREREalbXEoc7Nbaof5v9VFjYw0kfFQgyOYxNhKJiIioUAsKAl491QIAhIZIEBSU85jcNB+JiIiIiFQpKDIIr+JeAQBCo0MRFKlAkM1jbCQSERFRoebkBFhWSAUA2NgKODnlPCY3zUciIiIiIlVyKuUES2NLAIBNCRs4lVIgyOYxLXUXQERERJSXDAyApQej8CxEG4PdS8DAQJLjmPTm46unWv/ffMx5DBERERGRKhloG2BRm0UIfx+Ooc5DYaBtoO6S2EgkIiKiwk9XH7Ct/hEGCmav3DQfiYiIiIhUTVdLFzZmNvmiiQjw0mYiIiKiTCnbfCQiIiIiKuzYSCQiIiIiIiIiIqIcsZFIREREREREREREOWIjkYiIiIiIiIiIiHLERiIREREREREREVE+Ex0dre4SMmAjkYiIiOgLZ8+elf3+77//qrESIiIiIipqhBDYvXs3XFxc1F1KBmwkEhEREf2/6Oho9OvXD+3atZMti42JVWNFRERERFSUPH/+HO3atUO3bt3w5s0bdZeTARuJREREVOQJIbBnzx7Y29tj69atSElKwiWfpWhqaYQG9eupuzwiIiIiKuSkUik2btwIR0dHHD58GNra2pg8cTJal2mNDhU7QFOiqe4SAQBa6i6AiIiISJ1evHiBoUOH4tChQwAABwcHbNq0CXXr1lVzZURERERUFDx8+BBeXl64ePEiAKBOnTrw8/ODo6OjmivLiGckEhERUZEklUrh4+MDBwcHHDp0CNra2pgxYwZu3brFJiIRERER5bmPHz9iwYIFqF69Oi5evAgDAwOsWLECly9fzpdNRIBnJBIREVERFBISAi8vL/z9998AADc3N/j5+cHJyUnNlRERERFRUXDr1i14enri9u3bAICWLVti48aNqFixonoLywHPSCQiIqIiIzU1DYsWLUL16tXx999/w8DAAMuXL8eVK1fYRCQiIiKiPJeYmIhJkybBzc0Nt2/fRvHixbFlyxacOHEi3zcRAZ6RSEREREVI48aNEHD1KgCgRYsW2LhxI6ytrdVcFREREREVZkIIpIk0XL58GV4eXggJCQEAdOnSBatWrULp0qXVXKHi2EgkIiKiQi0xMUn2+507d1C8eHEsX74cffr0gUQiUWNlRERERFQURMdE41z0OcAKePb8GcqUKYP169ejbdu26i5Naby0mYiIiAqtixcv4rvvvpM97tDhZwQHB6Nv375sIhIRERFRnvvrr7/gWstV9rj/gP4IDg4ukE1EgI1EIiIiKoRiY2MxePBgNGrUCI8ehcqWb9++DRYWFmqsjIiIiIiKgoiICHTt2hXt2rXDq1evZMtXr1oNU1NTNVb2dXhpMxERERUqhw8fxuDBg/HixQsAQN/evdGolB5MTU2hybMQiYiIiCgPCSGwfft2jB49GtHR0dDU1MTo0aPVXZbKsJFIREREhUJkZCRGjBiB3bt3AwBsbGzg6+uLxo0bq7cwIiIiIioSwsLCMHDgQJw6dQoAUKNGDfj5+aF6jeo4EHZAzdWpBi9tJiIiogJNCIFt27bB3t4eu3fvhqamJiZMmIC7d++yiUhEREREeS4tLQ0rV66Ek5MTTp06BV1dXcyfPx/Xrl2Di4uLustTKZ6RSERERAVWWFgYBg0ahJMnTwL437e+hS2wEREREVH+9O+//8LT0xP+/v4AgIYNG8LX1xdVq1ZVc2V5g2ckEhERUYHz+be+J0+ehK6uLubNm1cov/UlIiIiovwnJSUFs2bNQs2aNeHv7w9jY2OsX78eFy5cKLRNRIBnJBIREVEBIYRAmhC4f/8+vIvQt75ERERElH8IIeB/zR9Dhw7F7Zu3AQA//fQT1q1bh7Jly6q5uryn9BmJt27dwr1792SPDx06hPbt2+OXX35BSkqKSosjIiIiSpeYnIK/QiIQolUCtwMDi8y3vpQR8ygRERGpQ3x8PMZNGIfn5s8x+c/JsCpnhT/++AOHDh0qEk1EIBeNxIEDB+Lhw4cAgMePH6Nbt24wMDDAnj17MGHCBJUXSERERBQQEID69evLHv/o/iOCg4MxaNAgaGhwppaihnmUiIiIvrXTp0/DyckJa9eulS27desWunbtColEosbKvi2lk/fDhw9Ro0YNAMCePXvw/fffY+fOndiyZQv27dun6vqIiIioCIuPj8fo0aNRt25d3L8fLFu++8/dReZbX8qIeZSIiIi+lejoaPTr1w8tW7ZEWFgYypUrJ3uuRIkSaqxMPZRuJAohIJVKAQBnzpzBjz/+CAAoV64c3rx5o9rqiIiIqMhK/9Z3xYoVEEKge/fusueK0re+lBHzKBEREeU1IQT27NkDe3t7bN26FRKJBCNGjMD1G9fVXZpaKd1IdHV1xZw5c7B9+3b8/fffaN26NQDgyZMnKF26tMoLJCIioqLly299y5cvj+PHj8PX11fdpVE+wTxKREREeenFixfo0KEDunTpgsjISNjb2+Py5ctYuXIljAyN1F2eWindSFyxYgVu3bqFYcOGYcqUKbCxsQEA7N27F/Xq1VN5gURERFQ0ZPWt77///osffvhB3eVRPqLqPPrixQv06tULJUuWhL6+PqpVq4YbN26oumwiIiLK56RSKXx8fODg4IBDhw5BS0sL06dPx+3bt1G3bl11l5cvaCk7oHr16nJ3yUu3ePFiaGpqKl3AixcvMHHiRBw/fhwJCQmwsbHB5s2b4erqqvS2iIiIqGB68eIFhg4dikOHDgEA7O3t4efnx8BGmVJlHn337h3q16+PJk2a4Pjx4zA3N0dISAiKFy+uqnKJiIioAAgNDYWXlxcuXLgAAHBzc8OmTZtQrVo19RaWzyjdSASA9+/fY+/evXj06BHGjx+PEiVKIDg4GKVLl4aVlZXC22FwIyIiKtqkUik2bdqE8ePHIzY2Ftra2pg8eTJ++eUX6Orqqrs8ysdUlUcXLlyIcuXKYfPmzbJl1tbWeVEyERER5UOpqalYtmwZZsyYgaSkJBgYGGDOnDkYMWJErk6YK+yUvrT57t27sLW1xcKFC7FkyRK8f/8eALB//35MnjxZqW19Htzc3NxgbW2Nli1bonLlysqWRUSUNxISgGvXPv1vXo7hvrivfLAvIQRiI+NxZXMw4qPi82xMuqBrQejk0A8jB45CbGws3NzccOvWLcyaNSvLJmJyIhByVxsJbxKV2tc3fb8oz6kyj/71119wdXVF586dUapUKdSsWZPzcRJR/pLP8wP3xX2pcpwQArHvXuPKKT/Ev49SeDe5Hef/z3m0/b4yZkydiKSkJDRv3hz37t3D6NGjs20iJqcmI/RNKBJiFL/JW27GAMh/mVQoqVmzZmL8+PFCCCGMjIzEo0ePhBBCXL58WVSoUEGpbdnb24tRo0aJTp06CXNzc1GjRg3h4+OT5fpJSUkiJiZG9hMeHi4AiJiYGGVfBhFRzuLjhbC1FQL49L/x8XkzhvvivvLJvmIiPgjLCh8FIISNzhMRH5XzuNyM+fjxo5g/bb6oiAcCEKIiHoilvy4VqampKt+XEOLbvl+5EBMTwzyjJFXmUV1dXaGrqysmT54sbt26JTZu3Cj09PTEli1bshzDTEpE30wByA/cF/elynEx0a+E5VJLgZkQNmN1RPz7KIV2pey4xMREMXncSFFhOARmQlQcDuGzbqWQSqV5UmNuX9e3yqTK5FGlz0i8fv06Bg4cmGG5lZUVXr9+rdS2Hj9+jPXr18PW1hYnT57E4MGDMWLECGzdujXT9efPnw9TU1PZT7ly5ZQtn4hIcUFBQEjIp99DQj49zosx3Bf3lU/2FXT0KV49/TTrSWhKRQQdfqLyMXfu3EGdOnWw7df9CEMVAEAYqqCBVascLx3JTX2fBn7D94u+CVXmUalUChcXF8ybNw81a9aEt7c3vLy8sGHDhizHMJMS0TdTAPID98V9qXJc0PWjeBX3CgAQapyCoIDDiu1KiXGXLl2Cs7MzDu5aiaclPy0LKwk4VzaGRCLJkxpz+7ryZSZVtktpbm4ubt26JYSQ/wb41KlTomzZskptS1tbW9StW1du2fDhw8V3332X6fr89peIvql8/m0d98V9qXpfeXlGYkJCgpg0aZLQ1NQUAISFqaWorBn6qUTtxwrt60PkB2Gj80SpMUIInpFYCKkyj5YvX154eHjILVu3bp0oU6ZMlmOYSYnomykA+YH74r5UOS4vz0iMiYkRgwYNEgAEAFHBqpSoPEpTYCaE7Rhthff14V2ksBmro9S43IwRQuTLMxKVbiR6eHiI9u3bi5SUFGFkZCQeP34snj59KmrWrClGjhyp1LZyE9w+x+BNRHkuPl6IgADl/oOdmzHcF/eVD/b1MS1N7Lz9Uiz4M0rERHxQ2Zi///5b2NraykJb586dxatXr0R8VLwI+C1I8YagELka82ngN3y/lMQ8ozxV5tHu3buLBg0ayC0bNWpUhi+7s8P3kIjyVD7PD9wX96XKcR/TPortD7aLeQHzREz0K4V3k9O4w4cPi7Jly8ryqKenp3j37p2Ifx8lAk7+pnhj7//lZlxu9/UtMqkyWUYihBDKnMEYExODTp064caNG4iLi0OZMmXw+vVr1K1bF8eOHYOhoaHC2+rRowfCw8Nx6dIl2bLRo0cjICAAV65cyXF8bGwsTE1NERMTAxMTE2VeBhEREX0hVSrFXyERAIC2tqWhpZHzDCjZjYmNjcXEiRNll4iWKVMG69atQ7t27fKg+oKLeUZ5qsyj169fR7169TBr1ix06dIF165dg5eXF3x8fNCzZ0+FtsH3kIiISDVSpak4EHYAANChYgdoaWh91bjIyEiMHDkSf/zxBwCgUqVK8PX1RdOmTfOg+oJLmSyj2DvyGVNTU5w+fRr//PMP7t69iw8fPsDFxQXNmzdXutDRo0ejXr16mDdvniy4+fj4wMfHR+ltERERUf5x+PBhDB48GC9evAAAeHt7Y+HChShWrJh6C6NCQZV5tHbt2jhw4AAmT56M2bNnw9raGitWrFC4iUhERET5jxACO3bswKhRo/D27VtoaGhgzJgxmDVrFgwMDNRdXoGmdCMxXYMGDdCgQYOv2jmDGxERUeESGRmJESNGYPfu3QAAGxsb+Pr6onHjxuotjAolVeRRAGjTpg3atGmjgoqIiIhI3Z49e4ZhQ4bh+PHjAIDq1avDz88Prq6uaq6scFCokbhq1SqFNzhixAilCmBwIyIiKhx27tyJ0SNHIjo6Gpqamhg7dixmzpwJfX19dZdGhUBe5lEiIiIqPFxru+Ldm3fQ0dHB9OnTMWHCBGhra6u7rEJDoUbi8uXLFdqYRCJhcCMiIiqivL29kZyYiBo1asDPzw8uLi7qLokKEeZRIiIiysqDBw8A3U+/J8QnoH79+ti0aRPs7OzUW1ghpFAj8cmTJ3ldBxERERUwaWlpWLd+Pcq26AgA0NXVxYxp0zBu3Dh+60sqxzxKREREX0pJScHChQuxeOli+N3yAwAsW74Mg7wGQUOBGweS8nI9RyLwafJK4NM3v0RERFR0BAcHw8PDA7cDA7Hz9qdGor+/P+yrVlVzZVTUMI8SEREVTdeuXYOnpyfu3bsHAPh97O9YsWIFKnpXZC7IQ7lqz/r5+cHJyQl6enrQ09ODk5MTNm3apOraiIiIKJ9JSUnBrFmzUKNGDfj7+0NHSwuRfx9Bm8qlYFelirrLoyKEeZSIiKhoio+Px9ixY1G3bl3cu3cPZmZm2LFjBw7uPwjrCtZsIuYxpc9InD59OpYtW4bhw4ejbt26AICrV69i9OjRePbsGWbPnq3yIomIiEj9AgIC4OHhgX///RcA8NNPP2HdunUoW7asmiujooZ5lIiIqGg6e/YsvLy8ZFOe9OzZE8uXL4e5ubmaKys6lG4krl+/Hr6+vujevbtsWdu2bVG9enUMHz6cwY2IiKiQiY+Px9SpU7Fy5UoIIWBubo7Vq1ejS5cu/MaX1IJ5lIiIqGh59+4dxo4di82bNwMAypUrhw0bNuDHH39Uc2VFj9KNxI8fP8LV1TXD8lq1aiE1NVUlRREREVH+cOrUKQwcOBBhYWEAgN69e2P58uUoWbKkegujIo15lIiIqOjYt28fhg4dioiICEgkEgwZMgTz58+HsbGxuksrkpSeI7F3795Yv359huU+Pj7o2bOnSooiIiIi9Xr37h369euHVq1aISwsDOXLl8fx48exbds2NhFJ7ZhHiYiICr/Xr1/j559/RqdOnRAREQE7OztcunQJa9asYRNRjXJ112Y/Pz+cOnUK3333HYBPcyY9e/YMffr0wZgxY2TrLVu2TDVVEhER0Tfl4uKC58+eQSKRYPjw4Zg7dy6MjIzUXRaRDPMoERFR4ebi4oKoiChoaWlh0qRJmDJlCvT09NRdVpGndCMxKCgILi4uAIBHjx4BAMzMzGBmZoagoCDZepwziYiIqGB5+fIV0i9WiIqKgoODAzZt2iS7mQVRfsE8SkREVDg9fvIY+P8/37GxsXB1dYWfnx+qV6+u3sJIRiKEEOouIrdiY2NhamqKmJgYmJiYqLscIiKiAkkqlWLTpk2YMm06Nl68DQC496cfJk0YD11dXTVXV/gxzxR8fA+JiIi+TmpqKlasWIE58+fA97ovACD8r3CMGDYCWlq5upiWlKBMllF6jkQiIiIqPEJCQtC0aVMMHDgQbyIjsMyzK2w+vsX0qVPYRCQiIiKiPBcYGIi6deti/PjxiImOwaahm+AsnDF65Gg2EfMhpd+RpKQkrF69GufPn0dkZCSkUqnc87du3VJZcURERJQ3UlNTsXTpUsycORNJSUkwMDDA3LlzMXz4cGhqaqq7PKJsMY8SEREVfElJSfj111+xaNEipKamolixYli6dCn69+/P6UnyMaUbiR4eHjh16hQ6deoENzc3vrlEREQFzO3bt+Hh4YHbtz9dxtyiRQts3LgR1tbWaq6MSDHMo0RERAXbP//8A09PTzx48AAA0LFjR6xevRqWlpZqroxyonQj8ciRIzh27Bjq16+fF/UQERFRHklMTMTs2bOxePFipKWloXjx4li+fDn69OnDRgwVKMyjREREBVNsbCwmT56MdevWAQAsLCywdu1a/Pzzz2qujBSldCPRysoKxsbGeVELERER5ZGLFy/C09MTISEhAIDOnTtj1apVsLCwUHNlRMpjHiUiIip4jh49ikGDBuH58+cAPl1hsHjxYhQvXlzNlZEylL7ZytKlSzFx4kQ8ffo0L+ohIiIiFYqJicGgQYPQqFEjhISEwNLSEgcOHMCff/7JJiIVWMyjREREBUdUVBR69uyJNm3a4Pnz56hUqRLOnDmDTZs2sYlYACl9RqKrqyuSkpJQqVIlGBgYQFtbW+756OholRVHREREyhNCIE0IHD16DEMHD8KLFy8AAF5eXli0aBGKFSum3gKJvhLzKBERUf4nlUrxx59/YPz48Xj5/CU0NDQwevRozJ49GwYGBuouj3JJ6UZi9+7d8eLFC8ybNw+lS5fmnEpERET5zOvISFx9LwWq1MKb6GjY2NjAx8cHTZo0UXdpRCrBPEpERJS/hYeHY9iIYei1tBdW/L0CC7ouwIZ1G1C7dm11l0ZfSelG4pUrV3D16lU4OzvnRT1ERESUS0IIbN++HRMn/4K1564DAEaPHo3pU6dCX19fzdURqQ7zKBERUf4klUqxfv16TJo0CR/TPqLX0l4AgEuXLsFAj2chFgZKNxLt7OyQmJiYF7UQERFRLoWFhWHQoEE4efIkdD9rGv7666/Q0lB6SmSifI15lIiIKP/577//4OnpicuXLwMAGjVpJHtOR0dHXWWRiin9/ywWLFiAsWPH4sKFC3j79i1iY2PlfoiIiOjbSUtLw6pVq+Dk5PSpiairi5kzZ6m7LKI8xTxKRESUf3z8+BFz586Fs7MzLl++DCMjI6xZswanTp1Sd2mUB5Q+I/GHH34AADRr1kxuuRACEokEaWlpqqmMiIiIshUcHAwPDw/4+/sDABo2bAhfX19UtrXFXyERaq6OKO8wjxIREeUPN27cgIeHB+7evQsAcHd3x4YNG1C+fHmkSlPVXB3lBaUbiefPn8+LOoiIiEhBKSkpmD9/PubOnYuPHz/C2NgYixYtgre3NzQ0NJAqlaq7RKI8xTxKRESkXgkJCZg+fTqWL18OqVSKkiVLYuXKlejRowdvglbIKd1IbNSoUc4rERERUZ4ICAiAp6cngoKCAABt2rTB+vXrUbZsWTVXRvTtMI8SERGpz7lz5+Dl5YXHjx8DAHr06IEVK1bA3NxczZXRt6B0IzFdQkICnj17hpSUFLnl1atX/+qiiIiI8jMhBOLiBYKCAOdqEhga5vyta27GfC4+Ph5Tp07FypUrIYSAubk5Vq1aha5du/JbXyqymEeJiIiUI4RAXEocgiKD4FzaGYY6hgqPCXgcgB3LdmDrpq0AgLJly2LDhg1o3bp1XpdN+YjSjcSoqCj0798fx48fz/R5zklDRESFXVy8gJ2TFK+easHGViDwDmBgoPoxwKfgdubcOQwbOgwPH/wHAOjduzeWLVsGMzOzLMclJwLPQrSRYAWYGCn+2ogKAuZRIiKi3IlLiYPdWju8insFmxI2CBwUCAPt7EPp52NgAEAbGOI1BPPnz4eJiUm2Y5NTkxH+PhwJVgkw0c1+XSoYlL5r86hRo/D+/XsEBARAX18fJ06cwNatW2Fra4u//vorL2okIiLKV4KCgFdPP30XFxoiwf9fZazyMdHR0fAaOBBvSjpgwK+XUMmmOo4fP45t27Zl20RMSADGtjfHpC5mqOUiQUKCQi+LqMBgHiUiIsqdoMigTw1BAKHRoQiKzD6Uvn79Gj8P+lk2BiWADQc2YO3atTk2ERM+JmDCkQn45fgvqOVTCwkfGUoLA6XPSDx37hwOHToEV1dXaGhooEKFCmjRogVMTEwwf/58ntJKRESFnpMTYFkhVXZ2oZNTzpcWKzNGCIG9e/di+PDheBfzEcdOrcOrp1qoXPkWvv9eM8d9Zda0dHNT/PUR5XfMo0RERLnjVMoJlsaWsjMSnUo5ZbqeEAKbN2/G2LFjkZCWAMuZn8ZULl4ZvVv2VmhfmTUt3awYSgs6pRuJ8fHxKFWqFACgePHiiIqKQpUqVVCtWjXcunVL5QUSERHlNwYGwNKDUXgWoo3B7iVgYJBzI1HRMS9fvsSQIUNw6NAhAICNbS+Ehnz6c/3okaZCTUHnahLY2AqEhkhgq2Cjk6ggYR4lIiLKHQNtAyxqswjh78Mx1Hloppc1P378GN7e3jh79iwAoFatWljVaBVQCnAu7ZzjpdDpnEs7w6aEDUKjQ2FbwjbLpiUVLEpf2ly1alU8ePAAAODs7IyNGzfixYsX2LBhAywtLVVeIBERUX6kqw/YVv+o0DyHioyRSqXw8fGBvb09Dh06BC0tLUyfPh0B/r6wsRUA8P9NwZz3Y2goQeAdCQICgDt3JErVSFQQMI8SERHlnq6WLmzMbDI0BNPS0rBs2TI4OTnh7Nmz0NPTw6JFi+Dv7496teqhXrl6Ct2cJZ2hjiECBwUiwDMAdwbdUbgBSfmb0mckjhw5Eq9efTo1dcaMGfjhhx+wY8cO6OjoYMuWLaquj4iIqNALDQ2Fl5cXLly4AABwc3PDpk2bUK1aNQBA4J1Plys7OSneFDQw4OXMVHgxjxIREanWvXv34OHhgevXrwMAGjduDF9fX9jY2HzVdg20DXg5cyGjdCOxV69est9r1aqFp0+f4r///kP58uWznfidiIiI5KWmpmLZsmWYMWMGkpKSYGBggDlz5mDEiBHQ1PzfXIhsChLJYx4lIiJSjeTkZMydOxfz589HamoqTE1NsXjxYnh6ekIi4fQ4lJHSjcQv6erqQkNDQ+7/8BAREVH27ty5Aw8PD9l8bs2bN4ePjw+sra3VXBlRwcM8SkREpDz/AH94e3jj/v37AID27dtj7dq1KFOmjJoro/xM6TkSR40aBT8/PwCfrp///vvv4eLignLlyskuySIiIqKszZw5E66urrh16xaKFy+OzZs349SpU2wiEimIeZSIiOjrtWjeAvfv30epUqWwZ88e7N+/n01EypHSjcS9e/fC2dkZAHD48GGEhYXhv//+w+jRozFlyhSVF0hERFTYLFmyBGlpaejcuTOCg4PRr18/XjpCpATmUSIiotw5ffq07HchBPr164f79++jU6dOzKOkEKUbiW/evIGFhQUA4NixY+jcuTOqVKmCAQMG4N69eyovkIiIqKCLjY3FyJGjZI8tLCxw4MAB/Pnnn7K/qUSkOOZRIiIi5bx58wa9e/dGhw4dZMv++usvbN68GSVKlFBjZVTQKN1ILF26NIKDg5GWloYTJ06gRYsWAICEhATOS0NERPSFw4cPw8HBAevWrEaPmpVxeuUc3L55E+3bt1d3aUQFFvMoERGRYoQQ2LVrFxwcHPD7778jJSkF/uv90bJUS7Ro1kLd5VEBpPTNVvr3748uXbrA0tISEokEzZs3BwAEBATAzs5O5QUSEREVRJGRkRg5ciT++OMPAICNjQ18fHzQpEkTNVdGVPAxjxIREeXs+fPnGDx4MI4cOQIAcHR0hJ+fH+rUqaPmyqggU7qROHPmTDg5OSE8PBydO3eGrq4uAEBTUxOTJk1SeYFEREQFiRACv//+O0aNGoXo6Ghoampi7NixmDlzJvT19dVdHlGhwDxKRESUNalUio0bN2LixImIi4uDtrY2pk6dikmTJkFHR0fd5VEBJxFCCHUXkVuxsbEwNTVFTEwMTExM1F0OEREVEalSKf4KiQAAtLUtDS2NTzOFPH36FAMHDsTJkycBADVq1ICfnx9cXFzUVivlf8wzBR/fQyIiyi8ePHgALy8vXLp0CQDw3XffYdOmTXB0dFRzZZSfKZNllJ4jkYiIiOSlpaVh1apVcHR0xMmTJ6Grq4t58+bh2rVrbCISERERUZ77+PEj5s+fD2dnZ1y6dAmGhoZYuXIl/vnnHzYRSaWUvrSZiIiI/ue///6Dl4cH/P39AQANGzaEr68vqlatqubKiIiIiKgouHnzJjw9PXHnzh0AQKtWrbBhwwZUrFhRrXVR4cRGIhER0VeoW7cuPsTGwtjYGIsWLYK3tzc0NHjCPxERERHlHSEEPiR8wLx587B44WKkpaWhRIkSWLFiBXr16gWJRKLuEqmQYiORiIhISdev3wCKlQPw6TKSNm3aYP369ShbtqyaKyMiIiKiouDCxQt4U+4NXDxcoLVcC53adsLKlStRunRpdZdGhZzSjcTXr18jICAAr1+/BgBYWFigTp06sLCwUHlxRERE+Ul8fDymTp2KDT4+2HErFACwZcsWdO3cmd/6En1DzKNERFRUvX//HhMmTMC237dhe9B2AMDu3bvR7qd2aq6MigqFG4nx8fEYOHAg/vjjD0gkEpQoUQIAEB0dDSEEunfvjo0bN8LAwCDPiiUiIlKX06dPw9vbG2FhYQCAw4umYsGCBSjFJiLRN8M8SkRERdmhQ4cwZMgQvHz5Err6urLlrVu3VmNVVNQoPInTyJEjce3aNRw9ehRJSUmIiIhAREQEkpKScOzYMVy7dg0jR47My1qJiIi+uejoaPTr1w8tW7ZEWFgYypcvj+PHj2Oznx9Km5uziUj0DTGPEhFRURQREYEuXbqgffv2ePnyJWxtbXHixAl1l0VFlEQIIRRZsXjx4jh69Cjq1auX6fOXL19GmzZt8O7dO5UWmJ3Y2FiYmpoiJiYGJiYm32y/RERU+AkhsHfvXgwbNgyRkZGQSCQYNmwY5s6dC2NjY3WXR4UI84zi8mMeBfgeEhFR3hBCYOvWrRgzZgzevXsHTU1NjB8/HtOnT4e2rjYOhB0AAHSo2AFaGrwFBuWeMllG4U+aVCqFjo5Ols/r6OhAKpUqXiUREVE+9fLlSwwZMgSHDh0CANjb28PPzw9169ZVc2VERRvzKBERFRVhYWHw9vbG6dOnAQA1a9aEn58fatasCQBIlaaqszwqwhS+tLlNmzbw9vbG7du3Mzx3+/ZtDB48GD/99JNKiyMiIvqWpFIpfHx8YG9vj0OHDkFLSwvTpk3D7du32UQkygeYR4mIqLBLS0vDihUr4OjoiNOnT0NPTw8LFixAQECArIlIpE4Kn5G4Zs0a9OjRA7Vq1ULx4sVRqlQpAEBkZCTev3+PVq1aYc2aNXlWKBERUV4KDQ2Fl5cXLly4AABwc3PDpk2bUK1aNfUWRkQyzKNERFSYBQUFwdPTEwEBAQCA77//Hr6+vqhSpYqaKyP6H4UbicWLF8fx48dx//59+Pv74/Xr1wAACwsL1K1bF3Z2dnlWJBERUV4QQiD5YypWr16N6VOnICkpCQYGBpgzZw5GjBgBTU1NdZdIRJ9hHiUiosIoKSkJC5csxJLFS/Ah9gNMTEywaNEieHl5QUND4QtJib4JpWfjtLe3h729fV7UQkRE9E3dDgxEmH5pVG7THWLaVDRv3hw+Pj6wtrZWd2lElA3mUSIiKiz8/f0xaMggTNk7Bb/1+A27Ju7C6hWrYWVlpe7SiDKlVCMxJSUFBw8exNWrV+W+Aa5Xrx7atWuX7eTXRERE+UViYiJmz56NVWvWYPuNhwCA9es3oF+f3pBIJGqujoiywzxKRESFwYcPHzBlyhSsXr0aOnr/+9u1+4/d0NbUVmNlRNlT+BzZ0NBQ2Nvbo2/fvrh9+zakUimkUilu376NPn36wNHREaGhoXlZKxER0Ve7ePEiatSogQULFiAtLU22vHfvXmwiEuVzzKNERFQYnDp1Ck5OTli1ahWEEOjRo4fsOeZRyu8UPiNx8ODBqFatGm7fvg0TExO552JjY9GnTx8MHToUJ0+eVHmRREREXys2NhYTJ07Ehg0bAACWlpZYu34DhJrrIiLFMY8SEVFB9vbtW4wZMwbbtm0DAFSoUAEbN25EsxbNcCDsgJqrI1KMwo3Ey5cv49q1axlCGwCYmJjg119/RZ06dVRaHBERkSocPnwYgwcPxosXLwAAXl5eWLRoEYxMTPBXSISaqyMiRTGPEhFRQSSEwJ9//okRI0YgMjISEokEw4cPx9y5c2FkZIRUaaq6SyRSmMKXNhcrVgxhYWFZPh8WFoZixYqpoCQiIiLViIyMRLdu3dC2bVu8ePEClStXxrlz5+Dj48O/WUQFEPMoEREVNC9evED79u3RrVs3REZGwsHBAZcvX8bKlSthZGSk7vKIlKZwI9HT0xN9+vTB8uXLcffuXURERCAiIgJ3797F8uXL0a9fP3h7e+dlrURERAoRQmD79u2wt7fH7t27oaGhgfHjx+Pu3bto0qSJussjolxiHiUiom9FCIHY5FhcCb+C+JR4pcdLpVJs3LgRDg4O+Ouvv6CtrY0ZM2bg1q1bqFu3bh5UTPRtKHxp8+zZs2FoaIjFixdj7NixsglAhRCwsLDAxIkTMWHChDwrlIiIKDtCCMTFC5w9E4F1awfhzJm/AADOzs7w8/NDrVq11FwhEX0t5lEiIvpW4lLiYLfWDq/iXsGmhA0CBwXCQNsg2zFCCKSJNISEhmCw92D8/fffAAA3Nzf4+fnByckpy7HJqckIfx+OBKsEmOhmnMJDVWOIvpZECKH0PPOPHz9GRMSnOaUsLCxgbW2t8sIUERsbC1NTU8TExGQ6Vw4REalXenMvKAhwriaBoWHOd6HLzRgAeBeTCkdn4NVTLUASAh1tN8ycOQHjxo2DtrZ2pmNSpVLZHIltbUtDS0PhE/WJVIZ5JnfySx4F+B4SEeVnQgjEpcQhKDIIzqWdYahjqNC4K+FXUP+3+rLHAZ4BcLNyy3ZMUkoS9obtRfj7cMxsPhNaaVqYO3cuhg8fDk1NzSzHxSbHKt20zM0Yoqwok2UUPiPxc5UqVUKlSpVyVRwRERUdcfECdk5SvHqqBRtbgcA7gEEO+SY3Y4KDg9Gz5yq8evrpjswQtvj99zvo3LlCjjUmJwLPQrSRYAWYcJoaogKDeZSIiBSRmzMLAcCplBMsjS1l45xKZX02IQDcvn0bXsO88LLjS7yKewWDIQa47nEdDrYOOe4rKDIIr+JeAQBCo0MRFBmUY9MyN2OIVEGpUy+Cg4MxZMgQ1KxZE5aWlrC0tETNmjUxZMgQBAcH51WNRERUQAUF/f8ZggBCQyQIClLtmJSUFMyePRs1atRA8H97YFnh0x3vbGwEWrfOuYmYkACMbW+OSV3MUMtFgoSEnOsjIvViHiUiImVk1nBThIG2ARa1WYR57vNw0/tmls3HxMRETJo0CbVr18bd13dl+0rQT8AHgw8K7cu5tDNsStgAAGxL2ObYtMztGCJVUPiMxOPHj6N9+/ZwcXFBu3btULp0aQBAREQETp8+DRcXFxw6dAitWrXKs2KJiKhgcXICLCukys4udHLK+TJlRccEBATA09MTQf/faWzTqh4WLXmNd+/KwLmaJMezGIHMm5Zu/CKXKN9iHiUiImUpe2bh53S1dGFjZpNlE/HixYvw9PRESEgIAKCta1vcMb2DJzFPlGruGeoYInBQIIIig+BUykmhMyZzM4ZIFRSeI9HZ2Rnt2rXD7NmzM31+5syZ2L9/P+7evavSArPD+WiIiPK3VKkUe+5G4FmINga7l4CJUc4nwuc0Jj4+HlOnTsXKlSshhICZmRlWr16Nrl27ym68oKj4eIEaNT81EW1tBe7cUawBSaRKzDOKy495FOB7SESUn6VKU/FH6B8Ifx+Ooc5DFb4pSao0FQfCDgAAOlTsAC2N/52HFRMTg4kTJ2Ljxo0AgDJlymDdunVo164dEj4msLlHBY4yWUbhS5sfPnyInj17Zvl89+7dZV14IiKidLr6gG31j0o16LIac/r0aTg5OWHFihUQQqBXr164f/8+unXrpnQTEQAMDSUIvCNBQADYRCQqAJhHiYgoN3I6s1AZf/31FxwdHWVNRG9vb/z7779o164dgE+XRLtZubGJSIWWwo3EihUr4ujRo1k+f/ToUVSokPN8VERERMqKjo5G//790bJlS4SFhaF8+fI4duwYtm/fDjMzs6/atoHBp8uZ2UQkyv+YR4mISF0iIyPRrVs3tGvXDi9evICNjQ3Onz+PjRs3olixYuouj+ibUXiOxNmzZ6NHjx64cOECmjdvLjcnzdmzZ3HixAns3LkzzwolIqKiRwiBPXv2YPjw4YiIiIBEIsHQoUMxb948GBsbq7s8IvrGmEeJiEgddu7cidEjRyM6OhqampoYO3YsZs6cCX19fXWXRvTNKdxI7Ny5M6ysrLBq1SosXboUr1+/BgBYWFigbt26uHDhAurWrZtnhRIRUdHTvVt37Nu7BwBgZ2cHPz8/1KtXT81VEZG6MI8SEZE6eHt7IzkxGTVq1ICfnx9cXFzUXRKR2ijcSASAevXq8f/AERFRnvr8HmBHjh6BlpYWJk+ejClTpkBXV1eNlRFRfsA8SkREeS0tLQ3rN6yHhbsFAEBXVxczps3AuHHjoK2trebqiNRL4TkSPxcTE4MHDx7gwYMHiImJUXVNRERURIWGhuLHH1vLHteqVQs3b97E7Nmz2UQkIjnMo0RElBeCg4PRoEEDjB8/XrbM398fkydPZhORCEo2Ejdt2gQHBweUKFECDg4OsLe3l/3u5+eXVzUSEVEhl5qaikWLFqFatWo4c+okPOo64emJP/H3+fOoXr26ussjonyEeZSIiPJCSkoKZs+ejRo1asDf3x86Wjp4e/Yt2pVvB7sqduoujyjfUPjS5sWLF2PmzJkYMWIEWrVqJTe59alTpzBy5Ei8e/cO48aNy7NiiYio8Llz5w48PDxw69YtAECzZs3g4+ODSpUqqbkyIspvmEeJiCgvBAQEwNPTE0FBQQCANm3aYP369ShbtqyaKyPKfxRuJK5ZswabN29Gly5d5Jbb29ujcePGcHZ2xvjx4xnciIhIIUlJSZg9ezYWLVqEtLQ0FCtWDMuWLUO/fv0gkUjUXR4R5UPMo0REpErx8fGYOnUqVq5cCSEEzM3NsWrVKnTt2pV5lCgLCjcSIyMjUa1atSyfr1atGt68eaOSooiIqHC7dOkSPD098fDhQwBAp06dsHr1alhYWKi5MiLKz5hHiYhIVc6cOQMvLy+EhYUBAHr37o1ly5bBzMxMvYUR5XMKz5FYu3ZtLFiwAKmpqRmeS0tLw8KFC1G7dm2VFkdERIVLbGwshgwZgu+//x4PHz6EhYUF9u/fjz179rCJSEQ5Yh4lIqKvFR0djf79+6NFixYICwtD+fLlcfz4cWzbto1NRCIFKHVpc6tWrWBhYYHvv/9ebk6aixcvQkdHB6dOncqzQomIqGA7fvwEhgwaiOfPnwMAPD09sXjxYhQrVky9hRFRgcE8SkREX+PAwQMYPmQ4IiIiIJFIMGzYMMydOxfGxsbqLo2owFC4kVi9enU8fPgQv//+O/z9/fH48WMAgIWFBebMmYMePXrAxMQkzwolIqKCrXPnTkhOTESlSpXg6+uLpk2bqrskIipgmEeJiOhr9O7VG8mJybC3t8emTZtQr149dZdEVOBIhBBC3UXkVmxsLExNTRETE8PQSESUzwghsGPXLhjUagIA6FXLFkMHD8asWbNgYGCg5uqI8g/mmYKP7yERUf4khMCm3zahWJNiAID+NfpjzKgxmDJlCnR1ddVbHFE+okyWUXiOxJx8/PgRz549U9XmiIioAHv69Clat24NT09P2bILF/7G4sWL2UQkojzDPEpEROlCQ0PRrFkzDB8+XLbs8uXLmD17NpuIRF9BZY3E4OBgWFtbq2pzRERUAEmlUqxevRqOjo44fvw4IJXiwcHtcK9YErVruai7PCIq5JhHiYgoNTUVixcvRrVq1XD+/HloQAPPDz9H23JtUd2purrLIyrwFJ4jkYiIKDvBwcHw9PTE1atXAQANGjSAr68v7Ozs1FwZERERERUFd+7cgaenJ27evAkAaNasGXx8fFCpUiU1V0ZUeCjcSHRxyf5MksTExK8uhoiICp6UlBQsXLgQc+bMQUpKCoyMjLBw4UIMGjQIGhoqO/GdiIh5lIiIMpWUlIRff/0VCxcuRFpaGooVK4Zly5ahX79+kEgk6i6PqFBRuJEYHByMbt26ZXm5yKtXr/Dw4UOVFUZERPnftWvX4OHhgaCgIABA69atsX79epQrV07NlRFRYcQ8SkREX7p06RK8vLzw4MEDAECnTp2wevVqWFhYqLkyosJJ4Uaik5MT6tSpg8GDB2f6/J07d+Dr66uywoiIKP+Kj4/HtGnTsHLlSkilUpiZmWHVqlXo1q0bv/UlojzDPEpEROliY2MxefJkrFu3DgBgYWGBdevWoUOHDmqujKhwU7iRWL9+fVmHPzPGxsb4/vvvVVIUERHlX2fOnIG3tzeePHkCAOjVqxeWL18OMzMzNVdGRIUd8ygRUdEmhECaSMOJEycweOBgPH/+HADg6emJxYsXo1ixYuotkKgIkAghhLqLyK3Y2FiYmpoiJiYGJiYm6i6HiKjQEkLg7bt3mDx5Mjb5+AAAypUrh40bN8Ld3V3N1REVbMwzBR/fQyKib+N15Gtc+nAJANDbqTesLK3g6+uLpk2bqrkyooJNmSzDWfCJiChbQgjs238AF6OS4T5mJvQMDDBs2DD8+++/bCISERERUZ4TQmDHjh1yN90aOXIk7t27xyYi0Tem8KXNRERU9Lx8+RJDhw7F8ZMnsfP2IwDA6dNn0KBeXTVXRkRERERFwbNnzzBo0CAcP34cuvq6suVz586FlgZbGkTfGs9IJCKiDIQQ2LRpExwcHHDw4EFoaf0vpH33XR01VkZERERERYFUKsWaNWvg6OiI48ePQ0dHBzNmzFB3WURFHhuJREQkJzQ0FM2aNYOXlxdiYmJQu3ZtXL58Wd1lEREREVERcf/+fTRs2BDDhw/Hhw8fUL9+fQQGBmL8+PHqLo2oyGMjkYiIAACpqalYvHgxqlWrhvPnz0NfXx9Lly7F1atX4ejoqO7yiIiIiKiQS0lJwZw5c1CjRg1cuXIFRkZGWLt2LS5evAg7Ozt1l0dE4ByJREQFlhACcfECQUGAczUJDA0lud7WnTt34OnpiZs3bwIAmjVrBh8fH1SqVAkAkCqVqqRmIiIiIqLMXL9+HR4eHrh37x4A4Mcff8T69etRvnx5NVdGRJ9T6RmJTZs2xa+//oqEhARVbpaIiDIRFy9g5yRF/boaqFETUPQ/vUIIxH6Q4oq/FG/fJuKXX36Bq6srbt68iWLFiuG3337D6dOnZU1EIqKChHmUiOjbEkIgNjkWV8KvID4lXukxke8iMXbsWHz33Xe4d+8ezMzMsGPHDhw5coRNRKJ8SKVnJJYvXx5nz56Fr68vnj17pspNExEVark5uzAoCHj19NN/xkNDJAgKAtzcct5XegPy1VMt6OhEIiVlBYA0dOrUCatXr4aFhUWm45ITgWch2kiwAkyMlHhxRETfEPMoEdG3FZcSB7u1dngV9wo2JWwQOCgQBtoGCo/RjtPGx9UfASnQs2dPLF++HObm5t+oeiJSlkobiVu2bAEAxMbGqnKzRESF3ufNPRtbgcA7gEH2+QtOToBlhVTZGCcnxS5tvhaQgFdPP3UCU1IqoGTJxvD19UKHDh2yHJOQAIxtb45XT7WwScH6iIjUgXmUiOjbCooMwqu4VwCA0OhQBEUGwc0q+2+3/R/5y8Z8NP6IUk6lsHnOZvz44495Xi8RfR2VXNr8/v17uccmJiaq2CwRUZGR2dmFOTEwAJYejMKCP9/g5i2hUGPvyJEj8PKuC8sKqQAAU9MI3L27M9smYm7rIyL6lphHiYjUw6mUEyyNLQEANiVs4FTKKdv19+3bB4+2HrIxxdKK4e6Zuwo3EZNTkxH6JhQJHzmFBZE6KN1IXLhwIXbv3i173KVLF5QsWRJWVlYIDAxUaXFEREVF+tmFAP7/7ELFxunqA7bVP+bYRIyMjET37t3x008/IexxEIz06mDN2ht48aIUypQpluN+nKtJYGMrAAC2StRHRJQXmEeJiPIPA20DLGqzCPPc5+Gm980sL2t+9eoVOnbsiE6dOuH5o+cosaMENrhtwPOpz1G6RGmF9pXwMQETjkzAL8d/QS2fWmwmEqmB0o3EDRs2oFy5cgCA06dP4/Tp0zh+/Djc3d0xfvx4lRdIRFQU5ObsQkUIIbB9+3Y4ODjgjz/+gIaGBsaNG4c7ty5h6BBXhe/0bGgoQeAdCQICgDt3JLysmYjUinmUiCh/0dXShY2ZTaZNRCEE/Pz84ODggP3790NLSwtTpkzBjcs3MNB9IAx1DBXeT2aXURPRt6X0HImvX7+WBbcjR46gS5cuaNmyJSpWrIg6deqovEAioqJC0bMLFfX06VMMGjQIJ06cAABUr14dfn5+cHV1zdX2DAwUu5kLEVFeYx4lIioYHj16BG9vb5w7dw4A4OrqCj8/P1SvXj1X23Mu7QybEjYIjQ6FbQnbHC+jJiLVU/qMxOLFiyM8PBwAcOLECTRv3hzAp28Z0tLSVFsdEREpTSqVYvXq1XB0dMSJEyegq6uLuXPn4saNG7luIhIR5SfMo0RE+VtqaiqWLl2KatWq4dy5c9DX18eSJUtw9erVXDcRAcBQxxCBgwIR4BmAO4Pu5Hh3aCJSPaXPSPz555/Ro0cP2Nra4u3bt3B3dwcA3L59GzY2NiovkIiIFBccHAxPT09cvXoVANCgQQNs2rQJVatWVXNlRESqwzxKRJR/3b17Fx4eHrhx4wYAoGnTpvDx8UHlypVVsn0DbYMc7wpNRHlH6Ubi8uXLUbFiRYSHh2PRokUwMjIC8Gni1CFDhqi8QCIiyllKykfMX7wIc+bMQUpKCoyMjLBo0SIMHDgQGhpKn3xORJSvMY8SEeVPs3+djflz5iM1NRWmpqZYunQpBgwYAIlEsXm5iSj/kwghhLqLyK3Y2FiYmpoiJiYGJiYm6i6HiCjXUqVS/BUSAQBoa1saWgo0/z4fM6dnW9y++elb39atW2P9+vWy+cOIKH9jnin4+B4SUVGWKk3FgbADAIDeTr2RnJiMn3/+GWvWrIGlpaWaqyMiRSiTZXJ1msr27dvRoEEDlClTBk+fPgUArFixAocOHcrN5oiIKBfi4xNkvwcH/wszMzPs3LkThw8fZhORiAo95lEiIvWLi4vDmDFjZI9Lly6NvXv3Yt++fWwiEhVSSjcS169fjzFjxsDd3R3v37+XTWhdrFgxrFixQtX1ERFRJs6cOYM6n91CuVu3brh//z66d+/OS0eIqNBjHiUiUr9jx47B0dERPj4+smU3b95Ex44d1VgVEeU1pRuJq1evhq+vL6ZMmQJNTU3ZcldXV9y7d0+lxRERkbx3795hwIABaNGiBR78dx8T2zaG3pO72OznBzMzM3WXR0T0TTCPEhGpz5s3b9CrVy+0bt0a4eHhsLK0QvGw4uhQsQNKFi+p7vKIKI8p3Uh88uQJatasmWG5rq4u4uPjVVIUERHJE0Jg7969sLe3x+bNmyGRSDB8+HDcunEDP/7QimchElGRwjxKRPTtCSGwc+dO2NvbY8eOHdDQ0MCYMWNw9+5dNG/aHFoaWsykREWA0ndttra2xp07d1ChQgW55SdOnIC9vb3KCiMiok9evnyJoUOH4uDBgwAAOzs7+Pn5oV69euotjIhITZhHiYi+rfDwcAwePBhHjx4FAFSrVg2bNm2C22dT7RBR0aB0I3HMmDEYOnQokpKSIITAtWvXsGvXLsyfPx+bNm3KixqJiIokIQQ2bdqE8ePHIyYmBlpaWpg8eTKmTJkCXV1ddZdHRKQ2zKNERN+GVCrFhg0bMGnSJMTFxUFHRwfTpk3DhAkToKOjo+7yiEgNlG4kenp6Ql9fH1OnTkVCQgJ69OiBMmXKYOXKlejWrVte1EhEVOSEhobC29sb58+fBwDUrl0bfn5+qFatmporIyJSP+ZRIqK89+DBA3h6euKff/4BANSrVw+bNm3imd9ERZxECCFyOzghIQEfPnxAqVKlVFmTwmJjY2FqaoqYmBiYmJiopQYiIlVIlUrxV0gEAODx0V2YNmUKkpKSoK+vj7lz52LEiBFyNxQgosKDeebrqDuPAnwPiahw+fjxIxYvXozZs2cjOTkZRkZGmD9/PoYMGQINDaVvs0BEBYAyWUbpMxI/Z2BgAAMDg6/ZBBERfWHq1KlITkpC8+bNsXHjRlSqVEndJRER5VvMo0REqiGEwI1bNzBkyBDcuHYDAODu7o4NGzagfPnyaq6OiPKLXN1sJbs7MT1+/PirCiIiKmqSkpIwZ948uPQcDAAwNS2GBWvXol+/frzzHRFRJphHiYhUKyEhAbPnzEYtz1qYsGsCRn4/EosWLELPnj2ZR4lIjtKNxFGjRsk9/vjxI27fvo0TJ05g/PjxqqqLiKhIuHTpEjw9PfE0PBw7/7+ReOvWTVhZWqq5MiKi/It5lIhIdc6fPw8vLy88f/kc2z23AwBu3rwJy9LMo0SUkdKNxJEjR2a6fO3atbhx48ZXF0REVBTExsZi0qRJWL9+PQDA0tISuH8Nbdv+BE1+60tElC3mUSKir/f+/XuMHz9edrf7Sjb/m07H3NxcXWURUT6nsplS3d3dsW/fPlVtjoio0Dpy5AgcHR1lTURPT08EBwfj5/btoKWhwctHiIhyiXmUiEgxBw8ehIODg6yJOHjwYFy/cV3NVRFRQfBVN1v53N69e1GiRAlVbY6IqNCJiorCyJEjsWvXLgBApUqV4Ovri6ZNm6q5MiKiwoF5lIgoe69fv8bw4cOxd+9eAECVKlWwadMmNGzYEKnSVOCtmgskonxP6UZizZo15c6WEULg9evXiIqKwrp161RaHBFRYSCEwI4dOzBq1Ci8ffsWGhoaGDNmDGbNmsU7jRIR5QLzKBGRcoQQ2LJlC8aOHYt3795BU1MTEyZMwPTp06Gnp6fu8oioAFG6kdi+fXu5xxoaGjA3N0fjxo1hZ2enqrqIiAqFp0+fYvDgwTh+/DgAoHr16vDz84Orq6uaKyMiKriYR4mIFPf48WMMHDgQZ86cAQC4uLjAz88PNWrUUG9hRFQgKd1InDFjRl7UQURUKAghkCYEpFIBnw3rMWnSJMTHx0NHRwczZszA+PHjoa2tre4yiYgKNOZRIqLsCSGQkpqC9evXY8rkKUhISICenh5mz56N0aNHQ0tLZbOcEVERo9B/PWJjYxXeoImJSa6LISIq6NKEwF8hEQCAcRMmIDkxEQ0aNICvry/PkiEi+grMo0REirv37z08MHgAqzZWSJuUhsaNG8PX1xc2NjbqLo2ICjiFGonFihXL8S6iQghIJBKkpaWppDAiooImJSUFi5YshUPHfgAAQ0MjLFuyBIMGDYKGhoZ6iyMiKuCYR4mIcpacnIx58+Zh2Ypl+O32bwCA1atXw6O/B/MoEamEQo3E8+fP53UdREQF2vXr1+Hh4YGHoaHY+f+NxBs3bsC6Qnn1FkZEVEgwjxIRZe/q1avw8PDA/fv3oauvK1vev39/NhGJSGUUaiQ2atQor+sgIiqQ4uPjMX36dKxYsQJSqRRlypaTPVeuXFk1VkZEVLgwjxIRZe7Dhw/45ZdfsGbNGgghUKpUKaxZv0bdZRFRIZXrGVYTEhLw7NkzpKSkyC2vXr36VxdFRFQQnD17Fl5eXnjy5AkAoGfPnli6fDkuR6equTIioqKBeZSIirqTJ09i4MCBePr0KQCgX79+WLp0KUyKmeBA2AE1V0dEhZHSjcSoqCj0798fx48fz/R5zklDRIXdu3fvMHbsWGzevBkAUK5cOWzcuBHu7u5IlUqB6Ag1V0hEVLgxjxJRUff27VuMHj0a27dvBwBUrFgRPj4+aNGiBQAgVcovtokobyg9UcKoUaPw/v17BAQEQF9fHydOnMDWrVtha2uLv/76Ky9qJCKSEUIg9oMUV/yliI8XeTYmK/v27YO9vT02b94MiUSCYcOG4d9//4W7u/tXbZeIiBTHPEpEBZEQArHJsbgSfgXxKfG53sbu3bthb2+P7du3QyKRYNSoUQgKCpI1EYmI8pLSZySeO3cOhw4dgqurKzQ0NFChQgW0aNECJiYmmD9/Plq3bp0XdRIRAQDi4gXsnKR49VQLNrYCgXcAAwPVjwE+BbW4eIGgIKCUWQQmTBiKAwc+XSJiZ2eHTZs2oX79+l/9moiISDnMo0RUEMWlxMFurR1exb2CTQkbBA4KhIG2AqH0/z1//hxDhgzB4cOHAQCOjo7w8/NDnTp18qpkIqIMlD4jMT4+HqVKlQIAFC9eHFFRUQCAatWq4datW6qtjojoC0FBwKunn74DCQ2RICgob8YA/2tA1q+rgap2CThw4AS0tLQwdepU3L59O8smYnIiEHJXGwkJiu2HiIiUwzxKROqU2zMLgyKD8CruFQAgNDoUQZGKhdIPyR8wafUk2Fe3x+HDh6GtrY1Zs2bh1q1bbCIS0Ten9BmJVatWxYMHD1CxYkU4Oztj48aNqFixIjZs2ABLS8u8qJGISMbJCbCskCo7u9DJSZInYwDg1MmXePX0052XpWmVYW/fBX/8MSbbSfwTEoCx7c3x6qkWNilx9iMRESmOeZSI1Cm3ZxY6lXKCpbGlbJxTKaccxwQGB+K7rd8hySAJ6AXUvlkbm302w9HRMcexyanJCH8fjgSrBJjomij02nIzhoiKFokQQqkJw37//XekpqaiX79+uHnzJn744QdER0dDR0cHW7ZsQdeuXfOq1gxiY2NhamqKmJgYmJjwP3JERUGqVIo9dyPwLEQbg91LwMQo5xOrlR2TmpqKFStWYM7cFTAwDcOrp1owM3+Hx49MYGysme3YK/6fzmBMFxAAuLkp9tqIqGhinlFefsqjAN9DoqLmSvgV1P/tf1emBHgGwM0q58CXKk3FH6F/IPx9OIY6D822Uffx40csXboU0zdOx8d+H/+37/5XULd83Rz3FZscq3SzMzdjiKhwUCbLKH1GYq9evWS/16pVC0+fPsV///2H8uXLw8zMTPlqiYiUpKsP2Fb/qNSZfoqOCQwMhIeHB27evAkAcK3dGauWrob7D1YwNMz5TEbnahLY2AqEhkhgq8TZj0REpDjmUSJSp9ycWZhOV0sXNmY22Tbobt26BQ8PD9y5cwfQBgwSDZCgnwDbErZwtnRWaD+ZXUadU7MzN2OIqOhReo7Ef/75R+6xgYEBXFxcGNqIqEBLSkrClClT4Orqips3b6JYsWLw8/PD6ZP70aljWYWaiABgaChB4B0JAgKAO3ckvKyZiCgPMI8SkToZaBtgUZtFmOc+Dze9b6rsrL3ExERMnDgRbm5uuHPnDkqUKIGtm7YicnYkAjwDcGfQHYX35VzaGTYlbAAAtiVsFWp25mYMERU9Sp+R2LRpU1hZWaF79+7o1asXHBwc8qIuIqJv5p9//oGnpycePHgAAOjYsSNWr16d63m2DAx4OTMRUV5iHiUidVPkzEJlXLhwAV5eXggNDQUAdO3aFStXrkTp0qUBQOkzAw11DBE4KBBBkUFwKuWkUJ25GUNERY/SZyS+fPkSY8eOxd9//w0nJyfUqFEDixcvxvPnz/OiPiKiPBMbG4uhQ4eiYcOGePDgASwsLLB//37s3buXk/UTEeVjzKNEVFi8f/8e3t7eaNKkCUJDQ1GmTBkcOnQIf/zxh6yJmFsG2gZws3JTqiGYmzFEVLQo3Ug0MzPDsGHDcPnyZTx69AidO3fG1q1bUbFiRTRt2jQvaiQiUrmjR4/C0dER69atAwB4enri/v376NChg5orIyKinDCPElFhcOjQITg6OsLX1xcAMHDgQAQHB6Nt27ZqroyIKGtKX9r8OWtra0yaNAnOzs6YNm0a/v77b1XVRUSUJ968eYMxo0Zh165dAIBKlSrB19eX/8eTiKiAYh4looKod+/e+GPnHwAAW1tb+Pr6olGjRmquiogoZ0qfkZju8uXLGDJkCCwtLdGjRw84OTnh6NGjqqyNiEjlXFxqYdeuXdDQ0MC4ceNw7949NhGJiAoo5lEiKkiEELLfDxw4AE1NTUycOBGBgYFsIhJRgaH0GYmTJ0/GH3/8gZcvX6JFixZYuXIl2rVrBwPempSI8qlnz8IB6AAAoqPfonr16vDz84Orq6t6CyMiolxhHiWigubJkycYOnwo+q/qDwBwdnbG+rXr4eLioubKiIiUo/QZiRcvXsT48ePx4sULHDlyBN27d2doI6J8SSqVYs2aNXINw+nTZ+DGjRtsIhIRFWDMo0RUUKSlpWHFihVwcnLCuXPnZMsvXLjAJiIRFUhKn5F4+fLlvKiDiEil7t+/D09PT1y5cgUAsHpIb6xduwYdJk6ARCJRc3VERPQ1mEeJqCAICgqCp6cnAgICAADff/89nFKdYGtjC02JppqrIyLKnVzPkUhElB+lpKTg119/RY0aNXDlyhUYGRlh7dq1OHv6FBzs7NhEJCIiIqI8lZycjJkzZ8LFxQUBAQEwMTHBhg0bcP78edhXsYeWhhYzKREVWF9112Yiovzk2rVr8PT0xL179wAArVu3xvr161GuXDk1V0ZERERERYG/vz88PDwQHBwMAGjbti3WrVsHKysrNVdGRKQaPCORiAq8+Ph4jBkzBnXr1sW9e/dgZmaGHTt24PDhw2wiEhEREVGe+/DhA0aOHIl69eohODgYpUqVwu7du3Hw4EE2EYmoUOEZiURUoJ09exZeXl548uQJAKBnz55YsWIFzMzM1FwZERERERUFp06dgre3N54+fQoA6NOnD5YtW4aSJUuquTIiItVjI5GICqzBgwdjk48PAKBcuXLYuHEj3N3d1VwVERERERUV3t7e2Oy3GQBQoUIFbNy4Ea1atVJzVUREeUehRmLx4sUVngw2Ojr6qwoiIlLU9u3bIZFIMHToUMybNw/GxsbqLomIiPII8ygR5RdCCNnvO3fuhEQiwYgRIzBnzhwYGRmpsTIiorynUCNxxYoVst/fvn2LOXPmoFWrVqhbty4A4OrVqzh58iSmTZuWJ0USEQHAy5cvMXL0GHSfvRwAUKVKVWxYtxb16tVTc2VERJTXmEeJKD948eIFho8aju4LuwMA7OzssH7tetl/i4iICjuJ+PzrFAV07NgRTZo0wbBhw+SWr1mzBmfOnMHBgwdVWV+2YmNjYWpqipiYGJiYmHyz/RLRtyWEgJ+fH8aNG4eklBTsvP0IANCyXDEYGeiruToioq/DPKO8/JRHAb6HREWBVCqFr68vJkyYgNjYWBiZGGHc+HGYOG4i9PT+r737jori+tsA/iy9IygIKqIIURRBxRpUotFgLyH2JBhRo6KxYUks2FvEEmsU1JhYY4uxJDFEjb0DIqioKBawIr3vff/gZX9ZqYu7LOX5nLMn7Mzcme/O4PLkzswdPXWXR0T0XhTJMgo/tfnPP/9Ely5d8kzv0qUL/v77b0VXR0RUqHv37uHjjz/GiBEjEB8fD2cnJ9ilv0Qvh+ow1GdoIyKqjJhHiag03b17Fx07dsSoUaOQkJCAVq1a4eL5i/Cb6cdORCKqdBTuSKxatSp+++23PNN/++03PpWKiJQmKysLy5cvR+PGjXHy5Eno6+vD398fFy5cQBNnZ2hpaBR7rCwiIqpYmEeJqDRkZWVh6dKlcHZ2xunTp2FgYICVK1fi3LlzaNSokbrLIyJSC4Wf2jx37lwMHz4cp06dQqtWrQAAly5dwh9//IHNmzcrvUAiqnxCQkLg7e2Na9euAQA+/vhjbNq0CXZ2dmqujIiIygLmUSJStRs3bsDb2xs3btwAAHTu3Bk//vgj6tatq+bKiIjUS+ErEocOHYpz587BxMQEBw4cwIEDB2BiYoKzZ89i6NChKiiRiCqLtLQ0zJgxA82bN8e1a9dQpUoVbNmyBSdOnGAnIhERyTCPEpGqpKam4ttvv0WLFi1w48YNmJmZYdu2bfjzzz/ZiUhEhBI8bKUs4cDWRBXHmTNnMGLECNy5cwdAzkD6a9euhZWVlZorIyJSLeaZ8o/HkKhi+PfffzF8+HBERkYCAPr164c1a9agevXqaq6MiEi1VPqwFQC4f/8+Zs6cicGDB+PFixcAgOPHj+PWrVslWR0RVVJCCMS9jcfYb8ajffv2uHPnDqysrHDgwAHs27ePnYhERFQg5lEiUgYhBF6/fY0x48bA3d0dkZGRqFGjBg4dOoS9e/eyE5GI6B0KdySePn0ajRs3xqVLl7B//34kJSUByBnTzM/PT+kFElHFdfT4Hzj5PAUdfaZDV18fw4cPR0REBPr27avu0oiIqAxjHiUiZfn96O/4580/6DCxA3T1dTFy5EiEh4ejd+/e6i6NiKhMUrgjcfr06ViwYAFOnDgBHR0d2fSOHTvi4sWLSi2OiCqmly9fYvDgwfjsM0/ZtKNHj2Lz5s2oUqWK+gojIqJygXmUiN7XixcvMHDgQPTv31827fjx4/jxxx9hamqqxsqIiMo2hTsSb968me/VQpaWlnj16pVSiiKiikkIgV9++QWOjo7YtWsXNDT+9xXk7u6uxsqIiKg8YR4lopISQmD79u1wdHTEnj17oKmpKZvXrl07NVZGRFQ+KNyRWKVKFcTExOSZfuPGDdSsWVMpRRFRxfPo0SN0794dX3zxBV6/fg1nZ2ecOnVa3WUREVE5xDxKRCXx6NEjdO3aFV5eXnjz5g2aNGmC06eZR4mIFKFwR+LAgQMxbdo0xMbGQiKRQCqV4ty5c/D19cWXX36pihqJqByTSqVYs2YNGjVqhOPHj0NHRwcLFy7E1atX0axZU3WXR0RE5RDzKBEpIjs7Gz/88AMaNWqEP//8E7q6uli0aBEuX76MJk2aqLs8IqJyRUvRBosWLYKPjw9sbGyQnZ2Nhg0bIjs7G4MHD8bMmTNVUSMRlVPh4eEYPnw4Lly4AABwc3NDQEAAGjRoAADIkkrVWR4REZVTzKNEFZsQAokZiQh7EQaX6i4w1DEs8brCw8Ph7e0tGz+1Xbt22Lx5M+rXrw8AyJJmKaVmIqLKQuGORB0dHWzevBmzZs1CWFgYkpKS0LRpUzg4OKiiPiIqB4QQSEwWCAsDXBpLoK2diaVLl2LBggXIyMiAkZERli5dilGjRsmNi0hERFQSzKNEFVtiRiIarGuAmMQY2JvbI2RUCAy0DRRaR0ZGBpYsWYIFCxYgMzMTxsbGWLZsGUaOHMk8SkT0HhTuSMxVu3Zt1K5dW5m1EFE5lZgs0MBJiphHWrCxSYOJSXvcunUFANCtWzds2LCB3xdERKR0zKNEFVPYizDEJOaMg3rvzT2EvQhDy5oti93+0qVLGD58OMLCwgAAPXr0wIYNG1CrVi2V1EtEVJkUqyNx0qRJxV7hihUrSlwMESnPu1cJGhpKVLatsDAg5lHO18njx3oAgGrVqmH16tUYNGgQJBLVbZuIiCoH5lGiysPJ0gnWxtayKxKdLJ2K1e7l25cYv3A8dq3eBWQCFhYW+OGHHzBgwADmUSIiJSlWR+KNGzfk3l+/fh1ZWVmycSXu3r0LTU1NuLq6Kr9CIiqR/14laO8gEBIMGBTjjpCSdEC+fn0a1rbtcjoTJZEY0N8Ja9YchYWFRZFt01OB6EhtpNQETIyK8cGIiKhSYh4lqjwMtA2wrMcyPH77GD4uPsW6rfnIn0fQ98++yDLNAkYBA98OxJoVa1CtWrUi26ZnpePx28dIqZkCE10TZXwEIqIKq1gdiSdPnpT9vGLFChgbG+Onn36CmZkZACAuLg5fffUV2rVrp5oqiUhh/71K8F6kBGFhQMti3BGiSAdkXFwcJk+ejJ27d2Pr+fuIjtSGvVYUPPtuKVaNKSnA5D4WiHmkhQAFOjuJiKjyYR4lqlx0tXRhX82+yE7EN2/eYPLkydh2Yhsw4v8nVgUmTptYrE7ElMwUTD0yFTGJMdhyaUuJxmMkIqpMFB5l1t/fH4sXL5aFNgAwMzPDggUL4O/vr9TiiKjknJwAa9ucp9DZOwg4Fe+OkHw7IPOzf/9+ODo6YuvWrUhPTcWFbcvw9Sc6+LRP52LXWNxtERER/RfzKBEJIbBv3z40bNgQ27ZtA14AplmmAAAHc4di3w6d33iMRERUMIUftpKQkICXL1/mmf7y5UskJiYqpSgien8GBoD/oZeIjtTG6K7mMDAo3rgwuR2QuVckOjnJt3v27BnGjh2LgwcPAgAaNGiAgIAAuLm5KVyjS2MJ7B0E7kVK4JDPtoiIiPLDPEpUuT179gw+Pj44dOgQgJw8GhgYiCYtmiDsRRicLJ2KfVWhS3UX2Jvb496bewp1QBIRVVYKdyT27dsXX331Ffz9/dHy/++TvHTpEqZMmYJPP/1U6QUSUcnp6gMOzpkK3S5cUAekEAKBgYHw9fVFfHw8tLS0MG3aNMycORN6enolqs/QUIKQ4JwrE52cJLytmYiIioV5lKhyEkIgICAAU6ZMkeXRb7/9FjNmzICuri4AKPR0ZwAw1DFEyKgQhTsgiYgqK4U7Ejdu3AhfX18MHjwYmZmZOSvR0oK3tze+//57pRdIRKXv3Q7Ie/fuYeTIkbLxqZo3b47AwEA4Ozu/97YMDIo3diMREVEu5lGiyufdPNqiRQsEBAQoJ49qGyjcAUlEVFkp3JFoYGCA9evX4/vvv8f9+/cBAPXq1YOhoaHSiyMi9crKysaqH1Zg9uzZSE1Nhb6+PubPn4/x48dDS0vhrw8iIiKlYB4lqjyysrKwcvVKzJ49G2lpadDX18eCBQswfvx4aGpqqrs8IqJKp8Q9AYaGhko5+0NEZVfHjh1w4dy5//+5IzZt2oR69eqpuSoiIqIczKNEFV+HDh1w8fxFAMDHH3+MTZs2wc7OTs1VERFVXgp3JCYnJ2PJkiUICgrCixcvIJVK5eY/ePBAacURUelLS0uX/Xz9+nWYmppixYoV+OqrryCR8GEoRESkfsyjRBVbWlqa7OcbN26gSpUqWLFiBYYOHco8SkSkZgp3JA4fPhynT5/GF198AWtra36RE1UgZ8+exWifsZi79zgAoFev3li9cgWsra3VXBkREdH/MI8SVVxnzpzBmLFjMPvgbABA7969sWrFKuZRIqIyQuGOxOPHj+Po0aNwc3NTRT1EpAYJCQn49ttvsX79eujq68um79y5A1oaGmqsjIiIKC/mUaKKJyEhAdOnT8eGDRsAAL4f+2LFyhXYvXM3TxYQEZUhCnckmpmZwdzcXBW1EJEaHD16FKNGjcKTJ08AAJ8PHoz2FrqoUqUKNBnaiIioDGIeJapY3s2juU9gNzMzU3NlRET0LoUvNZo/fz5mz56NlJQUVdRDRKXk5cuXGDJkCHr06IEnT57Azs4OQUFBCAgIQDVzc2hpaPDsLxERlUnMo0QVw8uXLzF48OB88yg7EYmIyiaFr0j09/fH/fv3Ub16ddSpUwfa2tpy869fv6604ohI+YQQ2LlzJ8aPH4/Xr19DQ0MDkyZNwty5c2FgYKDu8oiIiIrEPEpUvjGPEhGVXwp3JPbp00cFZRBRaYiOjsaoUaNw/HjOw1ScnZ0RGBiI5s2bq7kyIiKi4mMeJSq/8sujAQEBaNGihZorIyKi4lC4I9HPz08VdRCRCkmlAmvXr8W3336LpKQk6OjowM/PD1OmTMlzFQcREVFZxzxKVP5IpVKsX79eLo/Onj0bU6dOZR4lIipHFO5IJKLyp3Pnzvj31EkAgJubGwICAtCgQQM1V0VEREREFZkQAtkiG3fu3MHI4SNx/vx5AMyjRETlmcIdiRpFPIAhOzv7vQoiIuXIyMiU/Xzp0kUYGRlh6dKlGDVqFDQ0FH7OEhERUZnBPEpUPqSmp+Los6OALnDtxjUYGRlhyZIlGD16NPMoEVE5pXBH4sGDB+XeZ2Zm4saNG/jpp58wd+5cpRVGRCV35coVjBozBjN+OQwA8PDwwJrVq1G7dm01V0ZERPT+mEeJyr6cPDoK0/dMB5CbR9cwjxIRlXMSIYRQxop27tyJPXv24LffflPG6oolISEBpqamiI+Ph4mJSaltl6isSk5OxuzZs7Fq1SpIpVLUqGWD779fhoH9+/OsLxFRGcU8ozzqyKMAjyHRf6WkpGD27NlYuXIltHW18XPYzwCAPrZ9oK3JsRCJiMoiRbKM0noWWrdujaCgIGWtjogUFBQUhMaNG2PFihWQSqUYMmQIQm5cx+CBA9mJSERElQLzKJF65eZRf39/SKVS9O/fXzavsOEIiIio/FBK70Jqaip++OEH1KxZUxmrIyIFxMXFYdiwYejUqROioqJgY2ODo0eP4pdffkG1atXUXR4REVGpYB4lUp+4uDh4e3ujU6dOePDgAWxsbHDkyBFs2bJF3aUREZGSKTxGopmZmdzZJCEEEhMTYWBggF9++UWpxRFR4fbv3w8fHx88f/4cEokEY8aMweLFi2FsbKzu0oiIiFSGeZSo7Dhw4AB8fHwQGxsLAPDx8ZHl0SxplpqrIyIiZVO4I3HVqlVy7zU0NGBhYYFWrVrBzMxMWXURUSFiYmLg4+MjG2y+QYMGCAgIgJubm5orIyIiUj3mUSL1i4mJwdixY3HgwAEAQP369REQEIC2bduquTIiIlIlhTsSvby8VFEHERWDEAKBgYHw9fVFfHw8tLS0MG3aNMycORN6enrqLo+IiKhUMI8SqY8QAlu3bsXkyZPx9u1b5lEiokpG4Y5EAHj79i0CAwMREREBAGjUqBGGDRsGU1NTpRZHRDmEEIi8dx9jx43DiT//AAA0b94cgYGBcHZ2VnN1REREpY95lKh0CSFwL+oexo0dhz+P/wkAcHV1RWBgIFxcXNRcHRERlRaFH7Zy9epV1KtXDytXrsSbN2/w5s0brFixAvXq1cP169dVUSNRpZaVlYUVq1YhTGqIUau3oIqZOZYvX44LFy6wE5GIiCol5lGi0pWVlYWVq1ciGMHwXusNU3NTfP/997h48SI7EYmIKhmJEEIo0qBdu3awt7fH5s2boaWVc0FjVlYWhg8fjgcPHuDff/9VSaH5SUhIgKmpKeLj42FiYlJq2yUqLSEhIfD29kZYeDh23rgPAHDSTMEH9vXUXBkRESkL84ziylIeBXgMqWILDQ2Ft7c3bt66iZ/DfgYAuAgXfFDvgyLbZkmzcPBhzpjefev0hZZGiW6IIyIiFVMky5ToisRp06bJQhsAaGlpYerUqbh69ari1RJRHmlpaZgxYwaaN2+Oa9euwcTkf7dp2dnVVWNlRERE6sc8SqR66enpmDVrFlxdXXH16lW5/7G0q2unxsqIiEidFO5INDExQXR0dJ7pjx8/hrGxsVKKIqrMzp49iyZNmmDRokXIysrCp59+ytu0iIiI/oN5lEi1zp07hyZNmmDBggXIyspC3759ce3aNXWXRUREZYDCHYkDBgyAt7c39uzZg8ePH+Px48fYvXs3hg8fjkGDBqmiRqJKISEhAT4+PmjXrh3u3LkDKysr7Nu3D/v374eVVXV1l0dERFRmMI8SqUZiYiLGjRuHdu3a4fbt26hevTr27duHAwcOwNraWt3lERFRGaDwIBXLly+HRCLBl19+iaysLACAtrY2Ro8ejSVLlii9QCJVE0IgMVkgLAxwaSyBoaGk1Gs4evQoRo0ahSdPngAAhg0bhuXLl8PMzKzUayEiIirrmEeJlO/48eP4+uuv8fjxYwDAV199heXLl8Pc3FzNlRERUVmiUEdidnY2Ll68iDlz5mDx4sW4fz/n4Q/16tWDgYGBSgokUrXEZIEGTlLEPNKCvYNASDBQWr/OL1++xPjx47Fr1y4AgJ2dHTZt2oSPP/44z7LpqUB0pDZSagImRqVTHxERUVnDPEqkXK9evcKECROwY8cOAEDdunWxadMmdOrUSc2VERFRWaTQrc2ampr45JNP8PbtWxgYGKBx48Zo3LgxQxuVa2FhQMyjnD71e5EShIWpfptCCOzYsQOOjo7YtWsXNDQ0MHnyZNy8eTPfTsSUFGByHwtM718Nrs0kSElRfY1ERERlEfMokXIIIbBr1y44Ojpix44d0NDQwKRJk3Dz5s0COxHTs9Jx79U9pGQyjBIRVVYKj5Ho5OSEBw8eqKIWIrVwcgKsbXNui7J3EHByKl47IQQSkqQ4f1GK5GRR7O3dufMYbm4T8fnnI/D69Ws0btwYFy9exPLlywv8nyB1dHYSERGVVcyjVNEIIZCQnoDzj88jOSNZ5dt6GP0QfT37YvDgwXj16hWcnJxw4cIF+Pv7w9DQMN92KZkpmHpkKr47/h1cN7kWuzORnY9ERBWLwh2JCxYsgK+vL44cOYKYmBgkJCTIvYjKGwMDwP/QSyzZ+wrXroti39ace0u0WxsNNGmKIq8SlEqlWLFiIxwd03HhwioAIZg1azGuXr2KFi1aFNrWpbEE9g45nZUOCnR2EhERVUTMo1TRJGYkosG6BnDb4oYmPzZRWaebVCrFxs0bcSXrCoYsHwJjU2PMmzcP165dQ8uWLQttG/YiDDGJMQCAe2/uIexF0We2S9r5SEREZZfCD1vp1q0bAKBXr16QSP73UAohBCQSCbKzs5VXHVEp0dUHHJwzFRobMb+rBAvKXxERERg+fDjOn88EMOr/pzqgR4/p0NEpeluGhhKEBOds08lJUmpjOBIREZVFzKNU0eTXSdeyZuEde8D/PzQwIxFhL8LgUt0Fhjr5X00IAHfu3MGIESNw+eplBAQH4PHbxwj6NwgtnAs/oZ3LpboL7M3tce/NPTiYO8DJsugz2yX9XEREVHYp3JF48uRJVdRBVO7k3hKd+5AWJ6e8T3vOyMjAsmXLMH/+fGRkZMDQ0AIGBm/x8mUVODhAoSsLDQwK7qgkIiKqTJhHqaJxsnSCtbE1YhJjYG9uX6xOOuB/VzLmtgsZFQIDbfkzzpmZmfj+++8xb948pKeno4pVFUw9MhUxiTHYYr4FIY552+THUMcQIaNCEPYiDE6WTsVqU5LORyIiKtsU7kh0d3dXRR1E5U7uLdHRkdoY3dUcBgbyHYlXrlyBt7c3bt68CSDn6okNGzagWrUq/39lYek9HZqIiKgiYR6lisZA2wDLeizD47eP4ePiU6xOOqDoK/6uXr2K4cOHIyQkBADQpUsXjJw3Ep8e+7TANkXVqcgVhSXpfCQiorJN4TESieh/8rslOiUlBb6+vmjdujVu3ryJqlWrYseOHThy5Ahq164tu7KQnYhERERElEtXSxf21ewV6mzLvZIRgNyVjCkpKZg6dSpatWqFkJAQmJubY/v27Th27Bg+cfkE9ub2AFAqVwnmdj6yE5GIqGJQ+IpEIipYUFAQRo4cKXuS5ODBg7Fq1SpYWFiouTIiIiIiqmjyu5Lx5MmTGDFiBO7fvw8AGDhwIFavXg1LS0sAvEqQiIjeDzsSiZTg7du3mDZlCrZs2QIAsLGxwYYNG9C9e3c1V0ZEREREFVnulYyZKZkYMXYEAgICAAA1a9bEhg0b0LNnzzxtFL1FmYiIKFexbm0+fPgwMjMzVV0LUbnl6uoq60T08fHBrVu32IlIRESkRMyjRIVzdXWVdSKOGjUKt27dyrcTkYiI6H0UqyOxb9++ePv2LQBAU1MTL168UGVNROVCbOxz2c/Pnz9HgwYNcPbsWaxduxbGxsZqrIyIiKjiYR4lyuv58//l0djYWHzwwQc4ffo0NmzYAFNTUzVWRkREFVWxOhItLCxw8eJFAIAQAhKJpIgWRBWXEAJbtmyBq6urbNrUqVNx48YNuLm5qbEyIiKiiot5lOh/hBDYunWrXB719fVFSEgI2rdvr8bKiIiooitWR+KoUaPQu3dvaGpqQiKRwMrKCpqamvm+iCqyBw8eoHPnzvD29saL2Bgs9+4Hu/SXmOvnBz09PXWXR0REVGExjxLlePDgAT755BMMGzYMz2Oew/9zf9jF22H+3PnMo0REpHLFetjKnDlzMHDgQNy7dw+9evXC1q1bUaVKFRWXRlR2ZGVlYfXq1Zg1axZSU1Ohr6+P+fPnY/z48dDS4jOLiIiIVI15lCq77Oxs/PDDD5g5cyZSUlKgp6eHuXPnYtKkScyjRERUaor9F6dBgwZo0KAB/Pz80K9fPxgYGKiyLqIyIzQ0FN7e3rh69SoAoGPHjti0aRPq1aun5sqIiIgqF+ZRqqxu3ryJ4cOH4/LlywCAjz76CJs2bYKDg4OaKyMiospG4VNXfn5+AICXL1/izp07AID69evDwsJCuZURqVlaWhoWLFiApUuXIisrC6ampvD398ewYcM4LhMREZEaMY9SZZGeno5FixZh0aJFyMrKgomJCZYvXw5vb29oaBRrlCoiIiKlUrgjMSUlBWPHjsXPP/+M7OxsADlPzvvyyy+xZs0anhmmCuHs2bMYMWIEbt++DQD49NNPsXbtWlhbW6u5MiIiImIepcrgwoUL8Pb2RkREBACgd+/eWLduHWrWrKnmyoiIqDJT+DTWxIkTcfr0aRw+fBhv377F27dv8dtvv+H06dOYPHmyKmokKjWJCYnw8fFBu3btcPv2bVhZWWH//v3Yv38/OxGJiIjKCOZRqsiSkpPwzTffwM3NDREREbC0tMTevXtx8OBBdiISEZHaKXxF4v79+7Fv3z589NFHsmndunWDvr4++vfvjw0bNiizPqJS1bxFczy4dw8A4O3tje+//x5mZmZqroqIiIj+i3mUKrIWzVvg3t2cPDp06FD4+/vD3NxczVURERHlKNGtzdWrV88z3dLSEikpKUopiqg0vXr1Svbz06dPYWdnh82bN6Njx45qrIqIiIgKwjxKFc2bN29kPz9+/Bh16tTBpk2b0LlzZzVWRURElJfCtza3adMGfn5+SEtLk01LTU3F3Llz0aZNG6UWR6RKQgjs2LEDrq7NZdO++eYb3Lx5k52IREREZRjzKFUUQgjs3r0bzZo1k03z8fFBWFgYOxGJiKhMkgghhCINwsLC4OHhgfT0dLi4uAAAQkJCoKenhz///BONGjVSSaH5SUhIgKmpKeLj42FiYlJq26XyLzo6GqNHj8axY8cAAK4tWmDduvVo2dyVT2QmIqJSxTyjuLKURwEeQyqZJ0+eYPTo0Thy5AgAoEmzJli/fj1at2zNPEpERKVKkSyjcEcikHM7yY4dO2RPtHV0dMSQIUOgr69fsopLiKGNFCWVSrFhwwZMnz4dSUlJ0NHRwezZszF16lRoa2uruzwiIqqEmGdKpqzkUYDHkBQjlUqxadMmTJ06FYmJidDW1sbMmTMxffp06OjoqLs8IiKqhBTJMgqPkQgABgYGGDFiRImKI1KX27dvY/jw4Th37hwAwM3NDQEBAWjQoIGaKyMiIiJFMY9SeXT37l2MGDEC//77LwCgdevWCAgIKPWraImIiEpK4TESicqbzMxMLFy4EC4uLjh37hyMjIywdu1a/Pvvv+xEJCIiIiKVy8zMxJIlS+Ds7Ix///0XhoaGWL16Nc6ePctORCIiKldKdEUiUXlx9epVeHt7IzQ0FADQtWtXbNy4EbVr11ZzZURERERUGVy/fh3e3t4IDg4GAHh4eGDjxo2oU6eOWusiIiIqCV6RSBVSSkoKfH190apVK4SGhqJq1ar45ZdfcPToUXYiEhEREZHKpaamYtq0aWjZsiWCg4Nhbm6O7du34/jx4+xEJCKicotXJFKFIoTAP6dOwcdnLO5EhAMABg8ejFWrVsHCwkLN1RERERFRRSeEwOkzp+Hj44PwsJw8OmDAAKxevRrVq1dXc3VERETvp0RXJL59+xYBAQH49ttv8ebNGwA5l+w/ffpUqcURKSIuLg6jxoxBfI0GWHTwb9jZ2+PIkSPYsWMHOxGJiIgqGOZRKovi4+MxZtwYvKz1EnN+m4O69erit99+w+7du9mJSEREFYLCVySGhoaiU6dOMDU1xcOHDzFixAiYm5vjwIEDiI6Oxvbt21VRJ1GhDhw4AB8fH8TFx8NjwmwAwNUrV2FWxVTNlREREZGyMY9SWXT48GGMHj0ar+Neo+OkjgCAK1evoGqVqmqujIiISHkUviJx0qRJGDp0KCIjI6Gnpyeb3q1bN/z7779KLY6oKLGxsfjss8/g6emJ2NhYODh8IJtnbGKsxsqIiIhIVZhHqSx5/vw5BgwYgN69e+PZs2eoV6+ebJ6pCU9qExFRxaJwR+KVK1fw9ddf55les2ZNxMbGKqUooqIIIbBlyxY4Ojpi//790NLSwowZM3DhwgV1l0ZEREQqxjxKZYEQAj/99BMcHR2xd+9eaGpqYvr06bh48aK6SyMiIlIZhW9t1tXVRUJCQp7pd+/e5Th0VCoePHiAkSNHIigoCADg6uqKwMBAuLi4IEsqVXN1REREpGrMo6RuDx8+xNdff42//voLANC0aVMEBgaiadOmyJJmqbk6IiIi1VH4isRevXph3rx5yMzMBABIJBJER0dj2rRp8PT0VHqBRLmysrLg7+8PJycnBAUFQV9fH99//z0uXrwIFxcXdZdHREREpYR5lNQlOzsbq1evhpOTE/766y/o6elhyZIluHTpEpo2baru8oiIiFRO4Y5Ef39/JCUlwdLSEqmpqXB3d4e9vT2MjY2xcOFCVdRIhNDQULRp0wa+vr5ITU1Fhw4dcPPmTfj6+kJLS+ELa4mIiKgcYx4ldbh16xbc3NwwYcIEJCcno3379ggJCcG0adOgra2t7vKIiIhKhcI9MKampjhx4gTOnj2L0NBQJCUloVmzZujUqZMq6qMyRAiBxGSBsDDApbEEhoYSlbYDgPT0dCxYsABLlixBVlYWTE1N4e/vj2HDhkEiKf56iIiIqOJgHiVFCSGQmJGIsBdhcKnuAkMdw2K3fZv8FlOWT8G2pduQlZoFExMTLFu2DCNGjICGRv7XZaRnpePx28dIqZkCE10TZX0MIiIitZMIIYS6iyiphIQEmJqaIj4+HiYm/AOtaglJUjRwkiLmkRbsHQRCgiUwMFBNOyEEzp2/gDE+PrgZEgwA+PTTT7F27VpYW1sX2C5LKsWvoc8RHamN0V3NYWKk8EW3REREpYp5pvzjMSz7EtIT0GBdA8QkxsDe3B4ho0JgoF10kD19/jQ+OfAJMowzgNdAt+hu2LRuE2rWrKn0bREREamLIllG4SsSf/jhh3ynSyQS6Onpwd7eHu3bt4empqaiq6YyLiwMiHmU8ytzL1KCsDCgZUvlt0tMTMSMWbPRZuhUDJlxAmsmt8XqlQuLNeZRSgowuY8FYh5pIcBBICQYxersJCIiovKDeZQUFfYiDDGJMQCAe2/uIexFGFrWLDiQJiUlYebMmVi9bzUw4v8nVgVmT51daCdiSbZFRERUnijckbhy5Uq8fPkSKSkpMDMzAwDExcXBwMAARkZGePHiBezs7HDy5EnY2NgovWBSHycnwNo2S3ZloZNT8W4tVqTdsWPHMGrUKDx/mYx9h75HzCMt2NndQteuxfsfgZJ2dhIREVH5wTxKinKydIK1sbXsKkEnS6cCl/3rr7/w9ddf4+HDh4A2YJxhjESdRDiYO6Bx9cZFbsulugvsze1x7809OJg7FLotIiKi8kbh+z4XLVqEFi1aIDIyEq9fv8br169x9+5dtGrVCqtXr0Z0dDSsrKwwceJEVdRLamRgAPgfeokle1/h2nVR7Cv9itPu5cuXGDJkCLp3747Hjx/DyqqzrEPwwQNNhIUVb1sujSWwd8i5W9/BQcCJuY2IiKjCYR4lRRloG2BZj2VY1HURro28lu+txm/evMHQoUPh4eGBhw8fwtbWFn/8/gdi58Ti0vBLCB4VXKxblA11DBEyKkShNkREROWFwmMk1qtXD/v370eTJk3kpt+4cQOenp548OABzp8/D09PT8TExCiz1jw4Hk3pypJKcTjyOQCgl0N1aBUwuLQi7YQQ2LlzJyZMmIBXr15BQ0MDEyZMwLRpc+HW1hD3IiVwcBAILuZ4jEDO7c1hYTlXQvK2ZiIiKuuYZxRXlvIowGNYHmRJs3Dw4UEAQN86faGl8b8bs4QQ2LdvH8aOHYsXL15AIpFg3LhxWLhwIYyMjNRVMhERUalR6RiJMTExyMrKyjM9KysLsbGxAIAaNWogMTFR0VVTJRMdHY3Ro0fj2LFjAIDGjRsjMDAQLVq0AACEBOd2CBa/ExHI6Tzk7cxEREQVF/MoKcvTp0/h4+OD3377DQDQsGFDBAQEoE2bNmqujIiIqGxS+NbmDh064Ouvv8aNGzdk027cuIHRo0ejY8eOAICbN2+ibt26yquSKhSpVIp169ahUaNGOHbsGHR0dDB//nxcvXpV1okI/K9DkFcVEhER0X8xj9L7kkql2LRpExo2bIjffvsN2tra8PPzw/Xr19mJSEREVAiFOxIDAwNhbm4OV1dX6OrqQldXF82bN4e5uTkCAwMBAEZGRvD391d6sVT+3b17F+3bt8fYsWORlJQENzc3BAcHY+bMmdDR0VF3eURERFQOMI/S+7h3/x46duyIr7/+GgkJCWjZsiWuX7+OOXPmQFdXV93lERERlWkK39psZWWFEydO4Pbt27h79y4AoH79+qhfv75smQ4dOiivQqpQWrdujcT4eBgZGWHJkiUYPXo0NIo51iIRERERwDxK76dVq1ZIiEuAgYEBFi5ciHHjxkFTU1PdZREREZULCnck5mrQoAEaNGigzFqogrp+/QZgXAMAkJGRga5du2Ljxo2oXbu2misjIiKi8ox5lIorNDQU+P+x49PT0tGpUyds2rSJt78TEREpqEQdiU+ePMHhw4cRHR2NjIwMuXkrVqxQSmFU/qWkpGD27NlYv3EjfrkWCSDnVqTBAwdCIpGouToiIiIqz5hHqThSU1Mxb948/LD2B2wL2QYA2LhxI7y+8GIeJSIiKgGFOxKDgoLQq1cv2NnZ4fbt23BycsLDhw8hhECzZs1UUSOVQ0FBQRg5ciQePHgAADi0+DssW7YU1dmJSERERO+JeZSK499//8WIESNkt78fmHUAy5cvR40vajCPEhERlZDCg9N9++238PX1xc2bN6Gnp4f9+/fj8ePHcHd3R79+/VRRI5UjcXFx8Pb2RqdOnfDgwQPUqlULR44cwfZtW2FlacnQRkRERO+NeZQKk5CQgNGjR8Pd3R13796FtbU1Dh48iF07dqGmdU3mUSIiovegcEdiREQEvvzySwCAlpYWUlNTYWRkhHnz5mHp0qVKL5DKjwMHDqBhw4bYsmULAGDMmDG4desWunfvrubKiIiIqCJhHqWCHDlyBI0aNcLGjRsBACNGjEB4eDj69Omj3sKIiIgqCIU7Eg0NDWXj0FhbW+P+/fuyea9evVJeZVRuxMTEwNPTE56enoiNjUX9+vVx5swZrFu3DiYmJuouj4iIiCoY5lF614sXLzBo0CD07NkTT548gb29Pf755x9s2rQJVapUUXd5REREFYbCYyS2bt0aZ8+ehaOjI7p164bJkyfj5s2bOHDgAFq3bq2KGqmMEkJgy5Yt8PX1xdu3b6GlpYVp06Zh5syZ0NPTU3d5VAlkZ2cjMzNT3WUQERVKW1sbmpqa6i6jQmEepVxCCPzyyy+YMGEC3rx5Aw0NDfj6+mLOnDnQ19dXd3lE70UqleZ5mBQRUUkoM48q3JG4YsUKJCUlAQDmzp2LpKQk7NmzBw4ODnxCXiXy4EEURn89Ev/88w8AwNXVFYGBgXBxcVFzZVQZCCEQGxuLt2/fqrsUIqJiqVKlCqysrDg2m5IwjxIAPHr0CKNGjcIff/wBAHBxcUFgYCBcXV3VXBnR+8vIyEBUVBSkUqm6SyGiCkJZeVShjsTs7Gw8efIEzs7OAHJuK8kdf4Qql1YtW+Jt3Bvo6+tj3rx5mDBhArS0FO6XJiqR3E5ES0tLGBgY8H/MiajMEkIgJSUFL168AJBzGy69H+ZRys7OxoYfN2C232zEvYqDrq4u/Pz84OvrC21tbXWXR/TehBCIiYmBpqYmbGxsoKGh8IhkREQyys6jCvX8aGpq4pNPPkFERATHGqmEwsLCAF0LAEBqWio6dOiAzZs3o169emqujCqT7OxsWSdi1apV1V0OEVGRcm+vfPHiBSwtLXmb83tiHq3cwsPDMcpnFMYFjsOPXX7E+hHrsXH9RtSvX1/dpREpTVZWFlJSUlCjRg0YGBiouxwiqgCUmUcVPrXh5OSEBw8elHiDVP6kpaVh5syZaNu2rWza2rXrEBQUxE5EKnW5YyIyVBFReZL7ncVxXZWDebTyycjIwPz589G0aVNcvnRZNv3PP/9kJyJVONnZ2QAAHR0dNVdCRBWJsvKowh2JCxYsgK+vL44cOYKYmBgkJCTIvahiOXfuHJo2bYqFCxciOTERu2ZPRAsjAe+vhvJ2UlIr/v4RUXnC7yzlYh6tXC5fvgxXV1fMnj0bGRkZ6NKli2web/mkiox/O4hImZT1naLwoHbdunUDAPTq1UuuCCEEJBKJ7OwJlW+JiYn49ttvsX79egghUL16daxbtw6enp7qLo2IiIgqOebRyiE5ORmzZs3C6tWrIZVKUa1aNfzwww/4rP9nOPTokLrLIyIiqpQUPoV38uRJ2euff/6RvXLfU/l37NgxNGrUCOvWrYMQAsOGDUNERAQ7EYlIRiKR4NChQ6Wyrfbt22Pnzp0Kbfv27dto3bo19PT00KRJEzx8+BASiQTBwcGqLbaCCw8PR61atZCcnKzuUqiSYx6t+P7++280btwYK1euhFQqxeeff46IiAgMGjSIV2kRkcox61ZOzLrFo3BHoru7e6EvKr9evnyJIUOGoHv37nj8+DHs7Ozw999/IzAwEGZmZuouj6hck0gkhb7mzJmj7hLLpMOHD+P58+cYOHCgQu38/PxgaGiIO3fuICgoSCW1FRTYbt26BU9PT9SpUwcSiQSrVq3Kt/3Tp0/x+eefo2rVqtDX10fjxo1x9epVhWr47++Qqakp3Nzc3qsT5e7du+jduzeqVasGExMTtG3bFidPnpTNb9iwIVq3bo0VK1aUeBtEysA8WnHFxcVh2LBh6Ny5M6KiomBjY4Njx47h559/RrVq1dRdHhEVgFm3ZJh1C8esWzaVaFCRM2fO4PPPP8eHH36Ip0+fAgB+/vlnnD17VqnFUekQQmDHjh1o2LAhdu7cCQ0NDUyaNAmhoaH4+OOP1V0eUYUQExMje61atQomJiZy03x9fWXLCiGQlZWlxmrLjh9++AFfffWVwmNg3b9/H23btoWtrW2pP907JSUFdnZ2WLJkCaysrPJdJi4uDm5ubtDW1sbx48cRHh4Of3//Ep202bp1K2JiYnDu3DlUq1YNPXr0KPFDKHr06IGsrCz8888/uHbtGlxcXNCjRw/ExsbKlvnqq6+wYcMG/o6S2jGPVjz79++Ho6Mjtm7dColEgrFjx+LWrVvo2rWruksjoiIw65YMs27RmHXLIKGgffv2CX19fTF8+HChq6sr7t+/L4QQYs2aNaJr166Kru69xMfHCwAiPj6+VLdbkTx69Eh069ZNABAAROPGjcXly5fVXRZRgVJTU0V4eLhITU2VTZNKpSIpKanUX1KptESfYevWrcLU1FT2/uTJkwKAOHbsmGjWrJnQ1tYWJ0+eFF5eXqJ3795ybcePHy/c3d1l77Ozs8WiRYtEnTp1hJ6ennB2dha//vprgdv+9ttvRcuWLfNMd3Z2FnPnzhVCCHH58mXRqVMnUbVqVWFiYiLat28vrl27Jrc8AHHw4EG5+uPi4mTzb9y4IQCIqKgo2bQzZ86Itm3bCj09PVGrVi0xbtw4kZSUVGCtL168EBKJRISFheXZ9vr160WXLl2Enp6eqFu3rtxnzv0+y335+fmJqKgoAUDcuHFDttypU6dEixYthI6OjrCyshLTpk0TmZmZsvnHjx8Xbm5uwtTUVJibm4vu3buLe/fuFbid/x6XXLa2tmLlypV5pk+bNk20bdu2wM9eXP89DkII8fTpUwFAbNy4UeF1vXz5UgAQ//77r2xaQkKCACBOnDghm5aeni50dXXF33///V61Vzb5fXflYp5RXFnKo0LwGJaUVCoVmdmZIvpJtOjbt6/s+7RBgwbi3LlzBbbLzM4Ue+/vFXvv7xWZ2ZkFLkdUXr37N0NdWbekeZdZl1mXWbdsUlYeLdFTmzdu3IjNmzdDW1tbNt3NzQ3Xr19XdHWkJtnZ2Vi/YSOaujbHsWPHoKOjg/nz5+Pq1ato0aKFussjUkhKSgqMjIxK/ZWSkqLUzzF9+nQsWbIEERERcHZ2LlabxYsXY/v27di4cSNu3bqFiRMn4vPPP8fp06fzXX7IkCG4fPky7t+/L5t269YthIaGYvDgwQByHrbk5eWFs2fP4uLFi3BwcEC3bt2QmJhY4s92//59dOnSBZ6enggNDcWePXtw9uxZjB07tsA2Z8+ehYGBARwdHfPMmzVrFjw9PRESEoIhQ4Zg4MCBiIiIAJBzRrxRo0aYPHlynjPguZ4+fYpu3bqhRYsWCAkJwYYNGxAYGIgFCxbIlklOTsakSZNw9epVBAUFQUNDA3379oVUKgWQ8xRRIGccr5iYGBw4cKDY++Pw4cNo3rw5+vXrB0tLSzRt2hSbN28udvuC6OvrAwAyMjIAAIsWLSry9zg6OhoAULVqVdSvXx/bt29HcnIysrKy8OOPP8LS0hKurq6ybejo6KBJkyY4c+bMe9dLVFLMoxVDljQLBx8exMX0izj2xzFoaWlh1qxZCA4Oxocffqju8ojKDHVlXWXnXWZdecy6imPWLSMU7cHU19eX9bobGRnJzgDfv39f6OrqKrq698KzvyUTEREh3Dt0FPtvPxP7bz8T7h06ivDwcHWXRVQs+Z1FSUpKynPGrDRehZ1hLExBZ2kPHTokt1xRZ2nT0tKEgYGBOH/+vNwy3t7eYtCgQQVu38XFRcybN0/2/ttvvxWtWrUqcPns7GxhbGwsfv/9d9k0KHiW1tvbW4wcOVJuvWfOnBEaGhr5nhETQoiVK1cKOzu7PNMBiFGjRslNa9WqlRg9erTcZ/Tz85O9f/cs7XfffSfq168vd5Z93bp1wsjISGRnZ+dbT+5ZzJs3b+a7zvwUdJZWV1dX6Orqim+//VZcv35d/Pjjj0JPT09s27atwHXl57/HITk5WYwZM0ZoamqKkJAQIYQQr1+/FpGRkYW+/ntm+vHjx8LV1VVIJBKhqakprK2txfXr1/Nst2/fvmLo0KEK1VrZ8YpE5SpLeVQIHsOSiIyMFJ09OsuuLPyw7Yey766i8IpEquje/Zuhrqxb0rzLrJuDWZdZt6xRVh7VUrTj0crKCvfu3UOdOnXkpp89exZ2dnaKro5KUWZmJpYtW4Z58+ZBoqmJb/5/+l9//QUdLU211kb0PgwMDJCUlKSW7SpT8+bNFVr+3r17SElJQefOneWmZ2RkoGnTpgW2GzJkCLZs2YJZs2ZBCIFdu3Zh0qRJsvnPnz/HzJkzcerUKbx48QLZ2dlISUmRnc0riZCQEISGhmLHjh2yaUIISKVSREVF5XsmNjU1FXp6evmur02bNnneK/KUuoiICLRp00buyZ9ubm5ISkrCkydPULt2bURGRmL27Nm4dOkSXr16JTs7Gx0dDScnp2JvKz9SqRTNmzfHokWLAABNmzZFWFgYNm7cCC8vL4XWNWjQIGhqaiI1NRUWFhYIDAyUneU3NzeHubl5sdYjhICPjw8sLS1x5swZ6OvrIyAgAD179sSVK1dgbW0tW1ZfX1/pV+QSKYJ5tPzKysrCqlWrMHv2bEghxQiMAAD8888/0NXWVXN1RGWTurJu7raVhVlXHrNu8TDrlj0KdySOGDEC48ePx5YtWyCRSPDs2TNcuHABvr6+mDVrlipqJCW4evUqvL29ERoaCgDo2bu3bJ6GhqSgZkTlgkQigaGhobrLeG/vfgYNDQ0IIeSmZWZmyn7ODZRHjx5FzZo15ZbT1S34f8YGDRqEadOm4fr160hNTcXjx48xYMAA2XwvLy+8fv0aq1evhq2tLXR1ddGmTRvZLQTvyh0c+r+1/rfO3Fq//vprfPPNN3hX7dq1811vtWrVEBcXV+DnULWePXvC1tYWmzdvRo0aNSCVSuHk5FTgflCEtbU1GjZsKDfN0dER+/fvV3hdK1euRKdOnWBqagoLCwu5eYsWLZIFuIKEh4ejdu3a+Oeff3DkyBHExcXBxMQEALB+/XqcOHECP/30E6ZPny5r8+bNG9SrV0/hWomUhXm0fAoJCYG3tzeuXbsGAPikyyeyeZqaPKlNVBBmXWZdVWDWZdYtKYU7EqdPnw6pVIqPP/4YKSkpaN++PXR1deHr64tx48apokZ6DykpKZg9ezZWrlwJqVSKqlWrYvXq1eg/cCB+v/dC3eURUSEsLCwQFhYmNy04OFg2HljDhg2hq6uL6OhouLu7F3u9tWrVgru7O3bs2IHU1FR07twZlpaWsvnnzp3D+vXr0a1bNwDA48eP8erVq0LrBHLGa8l9Etu7Z0ybNWuG8PBw2NvbF7vOpk2bIjY2FnFxcXme8Hbx4kV8+eWXcu8LOzP9rtwgI4SQnak9d+4cjI2NUatWLbx+/Rp37tzB5s2b0a5dOwDI8yRYHR0dADljzirKzc0Nd+7ckZt29+5d2NraKrwuKyurAvfrqFGj0L9//0Lb16hRAwBkZ13ffWqghoaG7Ax1rrCwMHz22WcK10qkLMyj5UtaWhrmz5+PZcuWISsrC1WqVIG/vz++8PoChx4dUnd5RKQmzLrMusXBrFv2KNyRKJFIMGPGDEyZMgX37t1DUlISGjZsCCMjI1XUR+/hn3/+wYgRI2SPRh88eDBWrVoFCwsLZL3zD4WIyp6OHTvi+++/x/bt29GmTRv88ssvCAsLk4UIY2Nj+Pr6YuLEiZBKpWjbti3i4+Nx7tw5mJiYFHrbwJAhQ+Dn54eMjAysXLlSbp6DgwN+/vlnNG/eHAkJCZgyZYpsYOP82Nvbw8bGBnPmzMHChQtx9+5d+Pv7yy0zbdo0tG7dGmPHjsXw4cNhaGiI8PBwnDhxAmvXrs13vU2bNkW1atVw7tw59OjRQ27er7/+iubNm6Nt27bYsWMHLl++jMDAwEL353+NGTMGq1atwrhx4zB27FjcuXMHfn5+mDRpEjQ0NGBmZoaqVati06ZNsLa2RnR0tNxZSgCwtLSEvr4+/vjjD9SqVQt6enowNTVFRkYGwsPDAeTcevP06VMEBwfDyMhIFoImTpyIDz/8EIsWLUL//v1x+fJlbNq0CZs2bSr2ZygORW73aNOmDczMzODl5YXZs2dDX18fmzdvRlRUFLp37y5b7uHDh3j69Ck6deqk1FqJFME8Wn6cPXsWw4cPl/0PpaenJ9asWQNra2tkSbPUXB0RqROzLrPu+2LWVRNFB2f8+eefRXJysqLN8uXn55dnMNf69esXuz0Hts7fmzdvhLe3t2yf1qpVSxw5ckRumczsbNnDVjILGGyVqCwqbIDY8qKgAaj/O4BzrtmzZ4vq1asLU1NTMXHiRDF27FjZANRCCCGVSsWqVatE/fr1hba2trCwsBAeHh7i9OnThdYQFxcndHV1hYGBgUhMTJSbd/36ddG8eXOhp6cnHBwcxK+//ppnIGX8Z+BjIYQ4e/asaNy4sdDT0xPt2rUTv/76q9wA1EIIcfnyZdG5c2dhZGQkDA0NhbOzs1i4cGGhdU6dOlUMHDhQbhoAsW7dOtG5c2ehq6sr6tSpI/bs2SO3TFEDUAshxKlTp0SLFi2Ejo6OsLKyEtOmTZMbjPnEiRPC0dFR6OrqCmdnZ3Hq1Kk8n3vz5s3CxsZGaGhoyI5L7rbeff33uAkhxO+//y6cnJyErq6uaNCggdi0aZPcfD8/P2Fra1vo/nm3nvd15coV8cknnwhzc3NhbGwsWrduLY4dOya3zKJFi4SHh4fStllZ8GErylWW8qgQPIb5iY+PF2PGjJHtUysrK7F//365ZUr60BQ+bIUquvKed5l1mXWFYNYti5SVRyVCvDMoQREsLCyQmpqKXr164fPPP4eHh0eJxzSZM2cO9u3bh7///ls2TUtLC9WqVStW+4SEBJiamiI+Pl52j3tld+DAAfj4+CA2NhZAzpmIxYsX59k/WVIpDkc+BwD0cqgOrXcu7yUqq9LS0hAVFYW6desWODgxVRyxsbFo1KgRrl+/XqJbIcozLy8vSCQSbNu2Td2lyGRkZMDBwQE7d+6Em5ubusspVwr77mKeUVxZyqMAj+G7jh49ilGjRuHJkycAAG9vb3z//fd5bt3Lkmbh4MODAIC+dfpCS6N4N0uVtB1RecG8W3kw6zLrliZl5VGFe49iYmKwe/duSCQS9O/fH9bW1vDx8cH58+cVXRWAnKBmZWUleykS2kpNSgpw+XLOf4tBCIGEF8k4vzUcyS+Ti72ZkrZLeZWCv1aeQ7/u/eDp6YnY2FjUr18fZ86cwbp16wr8JUhPBSJDtZHyKrXY21J0X7xXO26L2yqIVJqzvCLjdWRnA8nJirUhtbOyskJgYOB7PUWvPBJC4NSpU5g/f766S5ETHR2N7777rkIGKypfmEeLRwiBhLhYnP8rEMlvX6qsTa5H929jmGdrfNa3B548eQI7Ozv8/fffCAgIyNOJmCs9Kx33Xt1DSnzB45MprV1Zz0VlvT5uS33bogqLWZdZt1x6n8sik5OTxS+//CK6desmdHR0hJ2dnULt/fz8hIGBgbC2thZ169YVgwcPFo8ePSpw+bS0NBEfHy97PX78WPW3kSQnC+HgIASQ899i3EYT/zxJWNtmCkAIe50okfyyeLfelKRd0oskUU/zngCEsMUdYaRhJGbMmFHkZfAlqrEE+6LE7bgtbqsAqW/eiPATJ0TqlStChIYKkZVV9HaysnKWVaQNEZES8dZm1SntPCqEGjJpCf/Oxr+JEdb+1gJzIOwn64jkty9V0kYqlYptm9eLOuMgMAfCdhzE5G9GF3n7eUm2VeJ2ZT0XlfX6uK1S3VZ5v7WZiMomZeXR97qf1cDAAB4eHujatSscHBzw8OFDhdq3atUK27Ztwx9//IENGzYgKioK7dq1Q2JiYr7LL168GKamprKXjY3N+5RfPGFhQGRkzs+RkTnvi2py9BFiHuXcYnEvow7Cfo8q3qYUbHf//n182X4M7mfnPJb8ET7A1tl7sWDBgiIvgS9RjSXYFyVux21xWwWJjASy/n9w9vR0IC2t6DZpaTnLKtKGiIjKhdLOo4AaMmkJ/86GXTmKmMQYAMA94wyEXfpd6W2io6PRo0cPLJ0zBg+r5kx7VBXo370FDAwMlF5fiduV9VxU1uvjttS3LSKisqYkvZi5Z367du0qdHR0RL169cTMmTNFRERESVYnExcXJ0xMTERAQEC+83lFYo7MzEyxfPlyoa+vL/SgL+rgTk552g+Kva2kF0nCXidKsXYV6Cwft1V+t8UrEomoPOIVicqnrjwqBK9IFEKI7OxssXbtWmFkZCQACBN9LWE3XkNgDoTDJO1ibSsp7oWwn6yjUJsStyvruais18dtleq2eEUiEamCsvKowh2JAwYMEIaGhsLCwkL4+PiI8+fPK7qKQjVv3lxMnz69WMuWWvBOThbi0qVi/4HIzM4WO288E0v2vhTxz5OKvZnitAsJCRHNmzeXPRmpQ4cOIuxymLi0JazYnYi5kl8mK95OwX3xXu24LW4rH6mpqSI8LEykvn6tWIdgVpYQSUnsRCQitWBHonKVpTwqRCkdwxL8nc3MzhQ/3/lZLLq0SMS/iVFam4iICOHm5ibLo25ubiI8PFwkv30pLv25pdgdgkKIErUpcbuynovKen3cVqltix2JRKQKantq85AhQzBkyJB8n44XFhYGJyenEl8dmZSUhNq1a2POnDn45ptvily+rD4hr6RPRC6sXVpaGhYsWIClS5ciKysLpqamWL58Oby9vSGRSJT/IYjKKD7FjojKIz61WbnKUh4Fyu4xLMnTjQtrk5mZiWXLlmHevHnIyMiAkZERlixZgtGjR0OjmHmXiIrGvEtEqqCsPFp0mnjHjh075N4nJiZi165dCAgIwLVr15CtwBNRfX190bNnT9ja2uLZs2fw8/ODpqYmBg0apGhZFdrZs2cxYsQI3L59GwDQt29frF27FjVq1FBzZURERESlj3m09F29ehXe3t4IDQ0FAHTt2hUbN25E7dq11VwZERERlaYSnzr8999/4eXlBWtrayxfvhwdO3bExYsXFVrHkydPMGjQINSvXx/9+/dH1apVcfHiRVhYWJS0rAolMTERY8eORbt27XD79m1Ur14d+/btw4EDB9iJSERERJUe86jqpaSkwNfXF61atUJoaCiqVq2KX375BUePHmUnIhERUSWk0BWJsbGx2LZtGwIDA5GQkID+/fsjPT0dhw4dQsOGDRXe+O7duxVuU1n8+edfGP31SDx+/BgAMGzYMCxfvhxmZmZqroyIiIhIfZhHS8/p06cxcvhIPHjwAAAwePBgrFq1ip2sRERElVixr0js2bMn6tevj9DQUKxatQrPnj3DmjVrVFlbpebp+SkeP36MunXr4sSJEwgMDGQnIhGp1EcffYQJEyaouwwiogIxj5au7t2748GDB6hVqxaOHDmCHTt2sBORiMotZl0i5Sh2R+Lx48fh7e2NuXPnonv37nkGtqb3I4TA3r17Ze81NDQwadIk3Lx5E506dVJjZUSkLEOHDoVEIoFEIoG2tjbq1q2LqVOnIi0tTd2lFcucOXPQpEkTdZehVg8fPoREIkFwcLC6S1HYqVOn0KxZM+jq6sLe3h7btm0rcvnevXvD2toahoaGaNKkSZ5x6TZv3ox27drBzMwMZmZm6NSpEy5fvqzCT0GVHfOo6v12+De592PGjMGtW7fQvXt3NVVEROUFs275x6zLrFscxe5IPHv2LBITE+Hq6opWrVph7dq1ePXqlSprqzQeP36MHj16YNiwYbJp//xzEv7+/jA0NFRjZUSkbF26dEFMTAwePHiAlStX4scff4Sfn5+6y6oUhBDIyspSdxnFlp2dDalUmmd6RkaGwuuKiopC9+7d0aFDBwQHB2PChAkYPnw4/vzzzwLbnD9/Hs7Ozti/fz9CQ0Px1Vdf4csvv8SRI0dky5w6dQqDBg3CyZMnceHCBdjY2OCTTz7B06dPFa6RqDiYR1UnNjYWn332GYYMHiKb9udff2LdunVl6knURFS2MeuqD7Mus26pEQpKSkoSgYGBws3NTWhrawsNDQ2xatUqkZCQoOiq3lt8fLwAIOLj40t924XJzM4W+28/E/tvPxOZ2dkFLpednS3Wrl0rjIyMBACho6MjFixaLJJT04RUKi3FionKj9TUVBEeHi5SU1OVs8LkZCEuXcr5r4p5eXmJ3r17y0379NNPRdOmTWXv09LSxLhx44SFhYXQ1dUVbm5u4vLly7L5W7duFaampnLrOHjwoPjv17mfn59wcXER27dvF7a2tsLExEQMGDBA7ns6KSlJfPHFF8LQ0FBYWVmJ5cuXC3d3dzF+/Ph8a9+6dasAIPfaunWrEEKIR48eiV69eglDQ0NhbGws+vXrJ2JjYwvcD1FRUQKA2L9/v/joo4+Evr6+cHZ2FufPn5db7syZM6Jt27ZCT09P1KpVS4wbN04kJSXJ5m/fvl24uroKIyMjUb16dTFo0CDx/Plz2fyTJ08KAOLYsWOiWbNmQltbW5w8eVJkZ2eLRYsWiTp16gg9PT3h7Owsfv31V1m7N2/eiMGDB4tq1aoJPT09YW9vL7Zs2SKEEHn2gbu7e4Gf811paWli8uTJokaNGsLAwEC0bNlSnDx5Um4fm5qait9++004OjoKTU1NERUVJWxtbcW8efPEF198IYyNjYWXl1ext5lr6tSpolGjRnLTBgwYIDw8PBRaT7du3cRXX31V4PysrCxhbGwsfvrpJ4VrrOgK++4qq3mmLCtLeVSIsnsMM7Mzxd77e8Xe+3tFZnZmvstIpVIRGBgoqlSpIgAILS0tMctvlkhMTmQeJVITpeZdZl1mXWbdYqvoWVdZeVThpzYbGhpi2LBhOHv2LG7evInJkydjyZIlsLS0RK9evUran1np3L59G+3bt8fYsWORlJSEDz/8EMHBwZjx7XQY6OlCIpGou0Siii8lBWjSBGjVKue/KSmluvmwsDCcP38eOjo6smlTp07F/v378dNPP+H69euwt7eHh4cH3rx5o9C679+/j0OHDuHIkSM4cuQITp8+jSVLlsjmT5kyBadPn8Zvv/2Gv/76C6dOncL169cLXN+AAQMwefJkNGrUCDExMYiJicGAAQMglUrRu3dvvHnzBqdPn8aJEyfw4MEDDBgwoMgaZ8yYAV9fXwQHB+ODDz7AoEGDZGdR79+/jy5dusDT0xOhoaHYs2cPzp49i7Fjx8raZ2ZmYv78+QgJCcGhQ4fw8OFDDB06NM92pk+fjiVLliAiIgLOzs5YvHgxtm/fjo0bN+LWrVuYOHEiPv/8c5w+fRoAMGvWLISHh+P48eOIiIjAhg0bUK1aNQCQ3crw999/IyYmBgcOHCj6YPy/sWPH4sKFC9i9ezdCQ0PRr18/dOnSBZGRkbJlUlJSsHTpUgQEBODWrVuwtLQEACxfvhwuLi64ceMGZs2aBQBo1KgRjIyMCnx17dpVtt4LFy7kGSbDw8MDFy5cKHb9ABAfHw9zc/MC56ekpCAzM7PQZYiUgXlUOR48eIDOnTvD29sbb9++haurK65evYp5c+bByMCIeZSovGPWZdZl1i12/QCzbrEpo1czKytLHDx4UPTs2VMZqyu2snv2t+ArEjMyMsSCBQuEjo6OACCMjIzEmjVrRHYhVy4S0f8o9QztpUtCAP97Xbr0/usshJeXl9DU1BSGhoZCV1dXABAaGhpi3759QoicM6fa2tpix44dsjYZGRmiRo0aYtmyZUKI4p+lNTAwkDsrO2XKFNGqVSshhBCJiYlCR0dH7N27Vzb/9evXQl9fv8CztLnrdXFxkZv2119/CU1NTREdHS2bduvWLQFA7uzyf+WepQ0ICMjTJiIiQgghhLe3txg5cqRcuzNnzggNDY0Cj/2VK1cEAJGYmCiE+N9Z2kOHDsmWSUtLEwYGBnnOCHt7e4tBgwYJIYTo2bNngWcic2u/ceNGvvML8ujRI6GpqSmePn0qN/3jjz8W3377rRDif2fCg4OD5ZaxtbUVffr0ybPOhw8fisjIyAJfT548kS3r4OAgFi1aJNf+6NGjAoBISUkp1mfYs2eP0NHREWFhYQUuM3r0aGFnZ6e8K4YrEF6RqHrqyqNClN1jWNAViVlZWWL58uVCX19fABD6+vri+++/F5mZ+V+1SESlS2l5l1lXNp9Zl1m3KJUh6yorj2opozNSU1MTffr0QZ8+fZSxugrr6tWr8Pb2RmhoKACga9eu2LhxI2rXrq3myogqKScnwMEBiIzM+a+Tk8o32aFDB2zYsAHJyclYuXIltLS04OnpCSDnzGRmZibc3Nxky2tra6Nly5aIiIhQaDt16tSBsbGx7L21tTVevHgh205GRgZatWolm29ubo769esr/HkiIiJgY2MDGxsb2bSGDRuiSpUqiIiIQIsWLQps6+zsLFcfALx48QINGjRASEgIQkND5QY8FkJAKpUiKioKjo6OuHbtGubMmYOQkBDExcXJxliJjo5Gw4YNZe2aN28u+/nevXtISUlB586d5WrJyMhA06ZNAQCjR4+Gp6cnrl+/jk8++QR9+vTBhx9+qPC++a+bN28iOzsbH3zwgdz09PR0VK1aVfZeR0dHbr/k9xly2dravldNijh58iS++uorbN68GY0aNcp3mSVLlmD37t04deoU9PT0Sq02olzMo8UTGhqK4cOH48qVKwBy/i5t3rwZ9erVU3NlRKR0zLqy+cy6zLqFYdZVjFI6EqlwKSkpmD17NlauXAmpVIqqVati1apVGDJkCG8ZIVInAwMgOBgIC8sJVgYGKt+koaEh7O3tAQBbtmyBi4sLAgMD4e3tXaz2GhoaEELITcvMzMyznLa2ttx7iUSS72DG6vTfGnO/C3NrTEpKwtdff41vvvkmT7vatWsjOTkZHh4e8PDwwI4dO2BhYYHo6Gh4eHjkGaD5vw+tSkpKAgAcPXoUNWvWlFtOV1cXQM5JnkePHuHYsWM4ceIEPv74Y/j4+GD58uUl/qxJSUnQ1NTEtWvX8jxl1sjISPazvr5+vn8X8nvwVqNGjfDo0aMCt9muXTscP34cAGBlZYXnz5/LzX/+/DlMTEygr69faO2nT59Gz549sXLlSnz55Zf5LrN8+XIsWbIEf//9d77hkIjULz09HXMXzcWSJUuQlZUFU1NT+Pv7Y9iwYcyjRBUVs65aMevmYNateNiRqGKnT5/GyOHD8eDBAwDAoEGDsHr1alhYWKi5MiICkBOoWrZUy6Y1NDTw3XffYdKkSRg8eDDq1asHHR0dnDt3TnYGLjMzE1euXMGECRMAABYWFkhMTERycrLsD25wcLBC261Xrx60tbVx6dIl2RXRcXFxuHv3Ltzd3Qtsp6Ojg+zsbLlpjo6OePz4MR4/fiw7UxseHo63b9/KnSlVVLNmzRAeHi4Lou+6efMmXr9+jSVLlsi2e/Xq1SLX27BhQ+jq6iI6OrrQz2phYQEvLy94eXmhXbt2mDJlCpYvXy4b4+fd/VCUpk2bIjs7Gy9evEC7du0UaluQY8eO5Rusc/03NLVp0wbHjh2Tm3/ixAm0adOm0G2cOnUKPXr0wNKlSzFy5Mh8l1m2bBkWLlyIP//8M9+zyURUNrRp0wY3Q24CAPr27Yu1a9eiRo0aaq6KiFSOWRcAs+67mHVzMOuWDDsSVax79+5IT01FrVq1sHHjRnTv3l3dJRFRGdKvXz9MmTIF69atg6+vL0aPHo0pU6bA3NwctWvXxrJly5CSkiI7i9uqVSsYGBjgu+++wzfffINLly5h27ZtCm3TyMgI3t7emDJlCqpWrQpLS0vMmDEDGhqFP3+rTp06iIqKQnBwMGrVqgVjY2N06tQJjRs3xpAhQ7Bq1SpkZWVhzJgxcHd3f68/tNOmTUPr1q0xduxYDB8+HIaGhggPD8eJEyewdu1a1K5dGzo6OlizZg1GjRqFsLAwzJ8/v8j1Ghsbw9fXFxMnToRUKkXbtm0RHx+Pc+fOwcTEBF5eXpg9ezZcXV3RqFEjpKen48iRI3B0dAQAWFpaQl9fH3/88Qdq1aoFPT09mJqaFrndDz74AEOGDMGXX34Jf39/NG3aFC9fvkRQUBCcnZ1L9LdBkds9Ro0ahbVr12Lq1KkYNmwY/vnnH+zduxdHjx6VLbN27VocPHgQQUFBAHJu8ejRowfGjx8PT09PxMbGAsgJ2bkDTC9duhSzZ8/Gzp07UadOHdkyuYNgE5F6JSYlyn6+e/cuqlevjnXr1sluMyQiUjVm3fwx6xaNWbcMU/bgjaWprA5svf/gIdnDVnT19cXo0aPLXI1E5ZVSH7ZSyry8vETv3r3zTF+8eLGwsLAQSUlJIjU1VYwbN05Uq1ZN6OrqCjc3tzwDOR88eFDY29sLfX190aNHD7Fp06Y8A1C/O1D0ypUrha2trex9YmKi+Pzzz4WBgYGoXr26WLZsmXB3dy90AOq0tDTh6ekpqlSpIgCIrVu3CiFyBlfu1auXMDQ0FMbGxqJfv34iNja2wPXkN4hzXFycACBOnjwpm3b58mXRuXNnYWRkJAwNDYWzs7NYuHChbP7OnTtFnTp1hK6urmjTpo04fPiw3HpzB6COi4uT275UKhWrVq0S9evXF9ra2sLCwkJ4eHiI06dPCyGEmD9/vnB0dBT6+vrC3Nxc9O7dWzx48EDWfvPmzcLGxkZoaGgId3d3uW1FRUUV+LkzMjLE7NmzRZ06dYS2trawtrYWffv2FaGhoUKI/AcXFyJnAOqVK1cWuN7iOnnypGjSpInQ0dERdnZ2suOXy8/PT+53xMvLSwDI88r9zLm15beMn5/fe9db0fBhKxVbWTyGR48eFfUc6sketjLi6xHizZs36i6LiIqhvOZdZt0czLrMumWVsvKoRIh3BiAoRxISEmBqaor4+HiYmJiouxzExsZi7NixOHLsGHbeuA8AqPbiPtq3a6vmyogqjrS0NERFRaFu3bqVfpBbKju2bt2KRYsWITw8PM+YPURA4d9dZS3PkOLK0jF89eoVJkyYgB07dkBXXxc/h/0MAOhbpy+0NHgzElF5wLxLZQ2zbsWgrDxa+LW9VCxCCGzZsgWOjo7Yv38/sjMzcWPnRnxiUwXt2roVvQIiIirXjh07hkWLFjFYEZHaCCGwa9cuODo6YseOHdDQ0IDPaB98YvkJ+tbpC02JZtErISIiygezLv0XT0u+pwcPHmDkyJGy++xdXV0RGBgIFxcXNVdGRESl5ddff1V3CURUiT1+/BijR4+WjQXVuHFjBAQEoKWaHrBAREQVC7Mu/RevSCyh7OxsrFixAk5OTggKCoKenh6WLVuGixcvshORiIiIiFROKpViw4YNaNSoEY4ePQodHR3MmzcPV69eZSciERERqQSvSCyBmzdvwtvbG1euXAEAdOjQAZs2bSrw0e1ERERERMp0584djBgxAmfOnAEAfPjhh9i8eTMaNmyo5sqIiIioIuMViQpIT0/HrFmz0KxZM1y5cgWmpqbYvHkzgoKC2IlIRERERCqXmZmJRYsWwcXFBWfOnIGRkRHWrFmDM2fOsBORiIiIVI5XJBZBCIFsIXDx4iWMHO6NiIgIAEDfvn2xdu1a1KhRQ80VEhEREVFFlpNHs3Hjxg2M8B6BkJAQAECXLl2wceNG2NraqrlCIiIiqizYkViE+IRE/BObDFStgwcPH6J69epYt24dPD091V0aEREREVUCSSlJ+OP5H4AZcPvubVStWhWrVq3CkCFDIJFI1F0eERERVSK8tbkIP//ys+znL774AuHh4exEJCIiIqJSk5aWJvv5s88+Q3h4OD7//HN2IhIREVGpY0diEYYPHyH7ecOGDTA3N1djNURERERU2ZiZmcl+3rZtGywtLdVYDREREVVm7EgsgrY27/4mIlKFOXPmoEmTJoUuM3ToUPTp06dU6qG8irP/P/roI0yYMKFU6iEiIiIqKWbPso/Zs3xgRyIRUSl5+fIlRo8ejdq1a0NXVxdWVlbw8PDAuXPnZMvUqVMHEokEEokEBgYGaNy4MQICAuTWc+rUKdky/33NnDnzvWusU6cOVq1apXC7AwcOoHnz5qhSpQoMDQ3RpEkT/Pzzz0U3LMLq1auxbds22fuKGBzS0tLg4+ODqlWrwsjICJ6ennj+/HmhbYQQmD17NqytraGvr49OnTohMjJSbplevXqhdu3a0NPTg7W1Nb744gs8e/ZM6fUfOHAA8+fPV/p6i+vUqVNo1qwZdHV1YW9vL/f7UpDQ0FC0a9cOenp6sLGxwbJly+Tm37p1C56enrJ/j/n9m/jvv9X/vnx8fJT0yYiIiMoXZWXd4mD2LDlmT+X79ddf0aBBA+jp6aFx48Y4duxYkW2Kk2HXrVuHOnXqQE9PD61atcLly5fl5pfkWCoDOxKJiEqJp6cnbty4gZ9++gl3797F4cOH8dFHH+H169dyy82bNw8xMTEICwvD559/jhEjRuD48eN51nfnzh3ExMTIXtOnTy+tj5KHubk5ZsyYgQsXLiA0NBRfffUVvvrqK/z555/vtV5TU1NUqVJFOUUqUUZGRp5p2dnZkEqlCq9r4sSJ+P333/Hrr7/i9OnTePbsGT799NNC2yxbtgw//PADNm7ciEuXLsHQ0BAeHh5y46h16NABe/fuxZ07d7B//37cv38fn332mcL1FcXc3BzGxsZKX29xREVFoXv37ujQoQOCg4MxYcIEDB8+vNDfu4SEBHzyySewtbXFtWvX8P3332POnDnYtGmTbJmUlBTY2dlhyZIlsLKyync9V65ckfv3d+LECQBAv379lPshiYiIygllZ93CMHsye5YV58+fx6BBg+Dt7Y0bN26gT58+6NOnD8LCwgpsU5wMu2fPHkyaNAl+fn64fv06XFxc4OHhgRcvXsiWKcmxVApRjsXHxwsAIj4+XmXbyMzOFvtvPxP7bz8TmdnZKtsOERVPamqqCA8PF6mpqUpZX3KyEJcu5fxXleLi4gQAcerUqUKXs7W1FStXrpSbZm5uLiZOnCh7f/LkSQFAxMXF5Wl/+fJl0alTJ1G1alVhYmIi2rdvL65duyabL5VKhZ+fn7CxsRE6OjrC2tpajBs3TgghhLu7uwAg93ofTZs2FTNnzixwvp+fn3BxcREbN24UtWrVEvr6+qJfv37i7du3smW8vLxE7969ZT+/W19UVJR48+aNGDx4sKhWrZrQ09MT9vb2YsuWLQrVeubMGdG2bVuhp6cnatWqJcaNGyeSkpJk821tbcW8efPEF198IYyNjYWXl5fYunWrMDU1Fb/99ptwdHQUmpqaIioqSqHtvn37Vmhra4tff/1VNi0iIkIAEBcuXMi3jVQqFVZWVuL777+XW4+urq7YtWtXgdv67bffhEQiERkZGcWuL3f/z5kzR1SrVk0YGxuLr7/+WqSnp8uWcXd3F+PHj5e93759u3B1dRVGRkaievXqYtCgQeL58+ey+co4XrmmTp0qGjVqJDdtwIABwsPDo8A269evF2ZmZnKfYdq0aaJ+/fr5Lp/fv8n8jB8/XtSrV09IpdJ85xf23VUaeYZUS9XHMDM7U+y9v1fsvb9XZGZnqmQbRFR2KDPvJmcki0tPLonkDNWGXWVm3ZJi9iwas+f7Zc/89O/fX3Tv3l1uWqtWrcTXX39dYJviZNiWLVsKHx8f2fvs7GxRo0YNsXjxYiFEyY6lsvIor0gkokorJQVo0gRo1SrnvykpqtuWkZERjIyMcOjQIaSnpxerjVQqxf79+xEXFwcdHZ1itUlMTISXlxfOnj2LixcvwsHBAd26dUNiYiIAYP/+/Vi5ciV+/PFHREZG4tChQ2jcuDGAnNsEatWqJTtLHBMTU6LPKoRAUFAQ7ty5g/bt2xe67L1797B37178/vvv+OOPP3Djxg2MGTMm32VXr16NNm3aYMSIEbL6bGxsMGvWLISHh+P48eOIiIjAhg0bUK1atWLXe//+fXTp0gWenp4IDQ3Fnj17cPbsWYwdO1ZuueXLl8PFxQU3btzArFmzAORcubZ06VIEBATg1q1bsLS0xI4dO2THu6DXmTNnAADXrl1DZmYmOnXqJNtOgwYNULt2bVy4cCHfeqOiohAbGyvXxtTUFK1atSqwzZs3b7Bjxw58+OGH0NbWLva+AYCgoCBERETg1KlT2LVrFw4cOIC5c+cWuHxmZibmz5+PkJAQHDp0CA8fPsTQoUNl84s6Xo0aNSp033Xt2lW27IULF+T2AwB4eHgUuB9y27Rv317u35SHhwfu3LmDuLg4RXaNTEZGBn755RcMGzaMT9ElIqIyIyUzBU02NkGrgFZosrEJUjJVF3ZLK+vmh9mT2bO0smd+SppHC2uTkZGBa9euyS2joaGBTp06yZYpybFUFj5JhIgqrbAwIHdoj8jInPctW6pmW1paWti2bRtGjBiBjRs3olmzZnB3d8fAgQPh7Owst+y0adMwc+ZMpKenIysrC+bm5hg+fHieddaqVUvu/aNHj9CxY0e5aZs2bUKVKlVw+vRp9OjRA9HR0bCyskKnTp2gra2N2rVro+X/f2hzc3NoamrC2Ni4wNs5CxMfH4+aNWsiPT0dmpqaWL9+PTp37lxom7S0NGzfvh01a9YEAKxZswbdu3eHv79/nhpMTU2ho6MDAwMDuXnR0dFo2rQpmjdvDiBn7B1FLF68GEOGDJGNf+Pg4IAffvgB7u7u2LBhA/T09AAAHTt2xOTJk2Xtzpw5g8zMTKxfvx4uLi6y6b169UKrVq0K3Wbu542NjYWOjk6eW2iqV6+O2NjYfNvmTq9evXqRbaZNm4a1a9ciJSUFrVu3xpEjRwqtKz86OjrYsmULDAwM0KhRI8ybNw9TpkzB/PnzoaGR93zksGHDZD/b2dnhhx9+QIsWLZCUlAQjI6Mij9exY8eQmZlZYD36+vqyn2NjY/PdDwkJCUhNTZVb9r9t6tatm6dN7rz/Ph23uA4dOoS3b9/KhVYiIiJ1C3sRhsg3OWE38k0kwl6EoWVN1YRdVWTdojB75mD2LL3smZ+C8mhB+7OwNrkZNi4uDtnZ2fkuc/v2bdk6FD2WysIrEoshPRWIDNVW6dVKRFT6nJwAB4ecnx0cct6rkqenJ549e4bDhw+jS5cusgF23x1Yd8qUKQgODsY///yDVq1aYeXKlbC3t8+zvjNnziA4OFj2MjMzw/PnzzFixAg4ODjA1NQUJiYmSEpKQnR0NICc8dtSU1NhZ2eHESNG4ODBg8jKylLK5zM2NkZwcDCuXLmChQsXYtKkSTh16lShbWrXri0LNgDQpk0bSKVS3Llzp9jbHT16NHbv3o0mTZpg6tSpOH/+vEJ1h4SEYNu2bXJnHj08PCCVShEVFSVbLjd8/JeOjk6ecGxsbAx7e/tCX0UFEmWZMmUKbty4gb/++guampr48ssvIYRQaB0uLi4wMDCQvW/Tpg2SkpLw+PHjfJe/du0aevbsidq1a8PY2Bju7u4AIPsdLOp42draFrrv/vv7UlYEBgaia9euqFGjhrpLoQosPSsd917dU+kVRURUsThZOsHBPCfsOpg7wMlStWFX2Vm3KMyeOZg9Syd7RkdHyx2zRYsWKfS5KhJ2JBYhJQWY3McC0/tXg2szCTsTiSoQAwMgOBi4dCnnv//5e6Uyenp66Ny5M2bNmoXz589j6NCh8PPzk1umWrVqsLe3R7t27fDrr7/im2++QXh4eJ511a1bV+6PnIaGBry8vBAcHIzVq1fj/PnzCA4ORtWqVWUDNNvY2ODOnTtYv3499PX1MWbMGLRv377Qs3DFpaGhAXt7ezRp0gSTJ0/GZ599hsWLF7/3eovStWtXPHr0CBMnTsSzZ8/w8ccfw9fXt9jtk5KS8PXXX8t1yoaEhCAyMhL16tWTLWdoaJinrb6+fp5bWRW5vcTKygoZGRl4+/at3DqeP39e4FWhudPffSJbfm2qVauGDz74AJ07d8bu3btx7NgxXLx4sXg7pgSSk5Ph4eEBExMT7NixA1euXMHBgwcB/G+Q8KKOlyK3l1hZWeW7H0xMTAoMzAW1yZ2nqEePHuHvv/8u0ZUURMWVkpmCqUem4rvj38F1kys7E4moWAy0DRA8KhiXhl9C8KhgGGirPuwqM+sWhdkzB7Nn6WTPGjVqyB2zUaNGASg4WxaWK4vKsNWqVYOmpmah6y3JsVQW3tpchLAwIOZRzm66FylR6a2PRFT6DAzU+2+6YcOGOHToUIHzbWxsMGDAAHz77bf47bffilzfuXPnsH79enTr1g0A8PjxY7x69UpuGX19ffTs2RM9e/aEj48PGjRogJs3b6JZs2bQ0dFBdnb2e32mXFKptMgxcqKjo/Hs2TPZlVwXL16EhoYG6tevn+/yBdVnYWEBLy8veHl5oV27dpgyZQqWL19erDqbNWuG8PDwEp0Jz48it5e4urpCW1sbQUFB8PT0BJDzNO7o6Gi0adMm37Z169aFlZUVgoKC0KRJEwA5TyK+dOkSRo8eXeA2c5/qV9xxi3KFhITI3SZ88eJFGBkZwcbGJs+yt2/fxuvXr7FkyRLZ/KtXr+ZZrrDjpcjtJW3atMGxY8fk5p84caLAfZfbZsaMGcjMzJSN2XPixAnUr1+/RLc1b926FZaWlujevbvCbYmKK+xFGGISc8atvffmnkpvTySiisVA20Ct3xfKzrqFYfYsGLPn+2dPLS2tfI9ZmzZtEBQUJLtVHSheHi0sw+ro6MDV1RVBQUHo06cPgJz9GRQUJBtLsyTHUlnYkVgEl8YS2DsI3IuUwMFBwMmJg6gTkeJev36Nfv36YdiwYXB2doaxsTGuXr2KZcuWoXfv3oW2HT9+PJycnHD16tV8b3H4LwcHB/z8889o3rw5EhISMGXKFLmOl23btiE7OxutWrWCgYEBfvnlF+jr68PW1hZAzpgh//77LwYOHAhdXd1iDxy9ePFiNG/eHPXq1UN6ejqOHTuGn3/+GRs2bCi0nZ6eHry8vLB8+XIkJCTgm2++Qf/+/Qs8i1anTh1cunQJDx8+hJGREczNzTFnzhy4urqiUaNGSE9Px5EjR+Do6FisuoGcsVxat26NsWPHYvjw4TA0NER4eDhOnDiBtWvXFns9uYyNjWFsbFysZU1NTeHt7Y1JkybB3NwcJiYmGDduHNq0aYPWrVvLlmvQoAEWL16Mvn37QiKRYMKECViwYAEcHBxQt25dzJo1CzVq1JAFjUuXLuHKlSto27YtzMzMcP/+fcyaNQv16tVTOFhkZGTA29sbM2fOxMOHD+Hn54exY8fmO0ZN7dq1oaOjgzVr1mDUqFEICwvD/Pnz5ZaZPXt2occr93exOEaNGoW1a9di6tSpGDZsGP755x/s3bsXR48elS2zdu1aHDx4EEFBQQCAwYMHY+7cufD29sa0adMQFhaG1atXY+XKlXKfOffKiIyMDDx9+hTBwcEwMjKSC5BSqRRbt26Fl5cXtLQYqUh1XKq7wN7cHvfe3CuV2xOJiBRVWlk3F7Pn/zB7ll72zM/48ePh7u4Of39/dO/eHbt378bVq1exadMm2TLffvstnj59iu3btwMoXoadNGkSvLy80Lx5c7Rs2RKrVq1CcnIyvvrqKwDFP5YqUeRzncswRR5P/T6Sk4W4dCnnv0SkXoU9sr4sS0tLE9OnTxfNmjUTpqamwsDAQNSvX1/MnDlTpKSkyJaztbUVK1euzNPew8NDdO3aVQghxMmTJwUAERcXl2e569evi+bNmws9PT3h4OAgfv31V7l1Hjx4ULRq1UqYmJgIQ0ND0bp1a/H333/L2l+4cEE4OzsLXV1d8d8/EQDE1q1bC/x8M2bMEPb29kJPT0+YmZmJNm3aiN27dxe6T/z8/ISLi4tYv369qFGjhtDT0xOfffaZePPmjWwZLy8v0bt3b9n7O3fuiNatWwt9fX0BQERFRYn58+cLR0dHoa+vL8zNzUXv3r3FgwcPZG3c3d2Fl5dXobVcvnxZdO7cWRgZGQlDQ0Ph7OwsFi5cKJuf33HZunWrMDU1LXS9xZGamirGjBkjzMzMhIGBgejbt6+IiYmRW+bd/S+VSsWsWbNE9erVha6urvj444/FnTt3ZPNDQ0NFhw4dhLm5udDV1RV16tQRo0aNEk+ePCl0ve/K3f+zZ88WVatWFUZGRmLEiBEiLS1Ntoy7u7sYP3687P3OnTtFnTp1hK6urmjTpo04fPiwACBu3LghhBBFHi9FnTx5UjRp0kTo6OgIOzu7PJ/Hz89P2Nrayk0LCQkRbdu2Fbq6uqJmzZpiyZIlcvOjoqIEgDwvd3d3ueX+/PNPAUBu3xeksO+u0sozpDqlcQyTM5LFpSeXRHIGAylRRVce864ys64QzJ7MnmU3e+Zn79694oMPPhA6OjqiUaNG4ujRo3k+17s5sqgMK4QQa9asEbVr1xY6OjqiZcuW4uLFi3Lzi3Ms311eGXlUIoSCI1+WIQkJCTA1NUV8fDxMTEzUXQ4RlYK0tDRERUWhbt26sieakWpFRUXhgw8+QHh4OBxyn05Tjtja2mLu3Ll8ou47yvtxLW8K++5inin/eAyJSJkqe94t7xmF2TN/5f24VgTKyqN82AoRERXq2LFjGDlyZLn8g3/r1i2Ympriyy+/VHcpZU55Pq5ERERUcZXnjMLsWbDyfFxJHq9IJKJypbKfoSWi8olXJFZsPIZEpEzMu0SkCrwikYiIiIiIiIiIiEoNOxKJiIiIiIiIiIioSOxIJKJyqRyPykBElRC/s4iISFH820FEyqSs7xR2JBJRuaKtrQ0ASElJUXMlRETFl/udlfsdRkREVBBNTU0AQEZGhporIaKKRFl5VEsZxRARlRZNTU1UqVIFL168AAAYGBhAIpGouSoiovwJIZCSkoIXL16gSpUqsv85JCIiKoiWlhYMDAzw8uVLaGtrQ0OD1/8QUckpO4+yI5GIyh0rKysAkHUmEhGVdVWqVJF9dxERERVGIpHA2toaUVFRePTokbrLIaIKQll5lB2JRFTu5IYrS0tLZGZmqrscIqJCaWtr80pEIiJSiI6ODhwcHHh7MxEphTLzKDsSiajc0tTU5P+cExEREVGFpKGhAT09PXWXQUQkh4MtEBERERERERERUZHYkUhERERERERERERFYkciERERERERERERFalcj5EohAAAJCQkqLkSIiIiopLJzTG5uYbKH2ZSIiIiKs8UyaPluiMxMTERAGBjY6PmSoiIiIjeT2JiIkxNTdVdBpUAMykRERFVBMXJoxJRjk9/S6VSPHv2DMbGxpBIJOouR20SEhJgY2ODx48fw8TERN3lVCjct6rB/aoa3K+qwf2qOty3OYQQSExMRI0aNaChwVFnyiNm0hz8N60a3K+qwf2qGtyvqsN9qxrcrzkUyaPl+opEDQ0N1KpVS91llBkmJiaV+hdflbhvVYP7VTW4X1WD+1V1uG/BKxHLOWZSefw3rRrcr6rB/aoa3K+qw32rGtyvxc+jPO1NRERERERERERERWJHIhERERERERERERWJHYkVgK6uLvz8/KCrq6vuUioc7lvV4H5VDe5X1eB+VR3uW6KKhf+mVYP7VTW4X1WD+1V1uG9Vg/tVceX6YStERERERERERERUOnhFIhERERERERERERWJHYlERERERERERERUJHYkEhERERERERERUZHYkUhERERERERERERFYkdiGTdnzhxIJBK5V4MGDQpt8+uvv6JBgwbQ09ND48aNcezYsVKqtnxRdN9u3rwZ7dq1g5mZGczMzNCpUydcvny5FCsuH0ryO5tr9+7dkEgk6NOnj2qLLIdKsl/fvn0LHx8fWFtbQ1dXFx988AG/D95Rkv26atUq1K9fH/r6+rCxscHEiRORlpZWShWXL0+fPsXnn3+OqlWrQl9fH40bN8bVq1cLbXPq1Ck0a9YMurq6sLe3x7Zt20qnWCIqFDOpajCPqgbzqOowk6oGM6nqMI8qn5a6C6CiNWrUCH///bfsvZZWwYft/PnzGDRoEBYvXowePXpg586d6NOnD65fvw4nJ6fSKLdcUWTfnjp1CoMGDcKHH34IPT09LF26FJ988glu3bqFmjVrlka55YYi+zXXw4cP4evri3bt2qmytHJNkf2akZGBzp07w9LSEvv27UPNmjXx6NEjVKlSpRQqLV8U2a87d+7E9OnTsWXLFnz44Ye4e/cuhg4dColEghUrVpRGueVGXFwc3Nzc0KFDBxw/fhwWFhaIjIyEmZlZgW2ioqLQvXt3jBo1Cjt27EBQUBCGDx8Oa2treHh4lGL1RJQfZlLVYB5VDeZR1WEmVQ1mUuVjHlUNdiSWA1paWrCysirWsqtXr0aXLl0wZcoUAMD8+fNx4sQJrF27Fhs3blRlmeWSIvt2x44dcu8DAgKwf/9+BAUF4csvv1RFeeWWIvsVALKzszFkyBDMnTsXZ86cwdu3b1VXXDmmyH7dsmUL3rx5g/Pnz0NbWxsAUKdOHRVWV34psl/Pnz8PNzc3DB48GEDOPh00aBAuXbqkyhLLpaVLl8LGxgZbt26VTatbt26hbTZu3Ii6devC398fAODo6IizZ89i5cqVDG5EZQAzqWowj6oG86jqMJOqBjOp8jGPqgZvbS4HIiMjUaNGDdjZ2WHIkCGIjo4ucNkLFy6gU6dOctM8PDxw4cIFVZdZLimyb9+VkpKCzMxMmJubq7DC8knR/Tpv3jxYWlrC29u7lCosnxTZr4cPH0abNm3g4+OD6tWrw8nJCYsWLUJ2dnYpVlw+KLJfP/zwQ1y7dk12G9mDBw9w7NgxdOvWrbTKLTcOHz6M5s2bo1+/frC0tETTpk2xefPmQtvwbxhR2cZMqhrMo6rBPKo6zKSqwUyqfMyjqsGOxDKuVatW2LZtG/744w9s2LABUVFRaNeuHRITE/NdPjY2FtWrV5ebVr16dcTGxpZGueWKovv2XdOmTUONGjXyfMlUdoru17NnzyIwMLDIL/TKTtH9+uDBA+zbtw/Z2dk4duwYZs2aBX9/fyxYsKCUKy/bFN2vgwcPxrx589C2bVtoa2ujXr16+Oijj/Ddd9+VcuVl34MHD7BhwwY4ODjgzz//xOjRo/HNN9/gp59+KrBNQX/DEhISkJqaquqSiagQzKSqwTyqGsyjqsNMqhrMpKrBPKoigsqVuLg4YWJiIgICAvKdr62tLXbu3Ck3bd26dcLS0rI0yivXitq3/7V48WJhZmYmQkJCSqGy8q2w/ZqQkCDq1Kkjjh07Jpvm5eUlevfuXYoVlk9F/b46ODgIGxsbkZWVJZvm7+8vrKysSqvEcqmo/Xry5ElRvXp1sXnzZhEaGioOHDggbGxsxLx580q50rJPW1tbtGnTRm7auHHjROvWrQts4+DgIBYtWiQ37ejRowKASElJUUmdRFQyzKSqwTyqGsyjqsNMqhrMpMrBPKoaHCOxnKlSpQo++OAD3Lt3L9/5VlZWeP78udy058+fKzQ+SGVV1L7NtXz5cixZsgR///03nJ2dS6m68quw/Xr//n08fPgQPXv2lE2TSqUAcsYIuXPnDurVq1dqtZYnRf2+WltbQ1tbG5qamrJpjo6OiI2NRUZGBnR0dEqr1HKlqP06a9YsfPHFFxg+fDgAoHHjxkhOTsbIkSMxY8YMaGjwQv9c1tbWaNiwodw0R0dH7N+/v8A2Bf0NMzExgb6+vkrqJKKSYSZVDeZR1WAeVR1mUtVgJlUO5lHV4G9XOZOUlIT79+/D2to63/lt2rRBUFCQ3LQTJ06gTZs2pVFeuVbUvgWAZcuWYf78+fjjjz/QvHnzUqyu/CpsvzZo0AA3b95EcHCw7NWrVy906NABwcHBsLGxUUPF5UNRv69ubm64d++eLAgDwN27d2Ftbc3AVoii9mtKSkqeYJYbjIUQKq+vPHFzc8OdO3fkpt29exe2trYFtuHfMKLyg5lUNZhHVYN5VHWYSVWDmVQ5mEdVRN2XRFLhJk+eLE6dOiWioqLEuXPnRKdOnUS1atXEixcvhBBCfPHFF2L69Omy5c+dOye0tLTE8uXLRUREhPDz8xPa2tri5s2b6voIZZai+3bJkiVCR0dH7Nu3T8TExMheiYmJ6voIZZKi+/VdvJUkf4ru1+joaGFsbCzGjh0r7ty5I44cOSIsLS3FggUL1PURyiRF96ufn58wNjYWu3btEg8ePBB//fWXqFevnujfv7+6PkKZdfnyZaGlpSUWLlwoIiMjxY4dO4SBgYH45ZdfZMtMnz5dfPHFF7L3Dx48EAYGBmLKlCkiIiJCrFu3Tmhqaoo//vhDHR+BiP6DmVQ1mEdVg3lUdZhJVYOZVDWYR1WDHYll3IABA4S1tbXQ0dERNWvWFAMGDBD37t2TzXd3dxdeXl5ybfbu3Ss++OADoaOjIxo1aiSOHj1aylWXD4ruW1tbWwEgz8vPz6/0iy/DSvI7+18MbvkryX49f/68aNWqldDV1RV2dnZi4cKFcuPTkOL7NTMzU8yZM0fUq1dP6OnpCRsbGzFmzBgRFxdX+sWXA7///rtwcnISurq6okGDBmLTpk1y8728vIS7u7vctJMnT4omTZoIHR0dYWdnJ7Zu3Vp6BRNRgZhJVYN5VDWYR1WHmVQ1mElVh3lU+SRC8LpXIiIiIiIiIiIiKhzHSCQiIiIiIiIiIqIisSORiIiIiIiIiIiIisSORCIiIiIiIiIiIioSOxKJiIiIiIiIiIioSOxIJCIiIiIiIiIioiKxI5GIiIiIiIiIiIiKxI5EIiIiIiIiIiIiKhI7EomoUti0aRNsbGygoaGBVatWYc6cOWjSpIm6yyqxjz76CBMmTFB3GURERERUTMyjRFQRsCORiN7b0KFD0adPn1Lf7rZt21ClSpUil0tISMDYsWMxbdo0PH36FCNHjlRJPeU9DBIRERGVV8yjOZhHiUjVtNRdABGRqkVHRyMzMxPdu3eHtbW1usshIiIiokqGeZSIKgpekUhESvfRRx/hm2++wdSpU2Fubg4rKyvMmTNHbhmJRIINGzaga9eu0NfXh52dHfbt2yebf+rUKUgkErx9+1Y2LTg4GBKJBA8fPsSpU6fw1VdfIT4+HhKJBBKJJM82gJyzxI0bNwYA2NnZydq/SyqVYt68eahVqxZ0dXXRpEkT/PHHH3LLTJs2DR988AEMDAxgZ2eHWbNmITMzU7aduXPnIiQkRFbPtm3b8mznr7/+gp6entznAoDx48ejY8eOAIDXr19j0KBBqFmzJgwMDNC4cWPs2rWrgL39v/156NAhuWlVqlSRq+Hx48fo378/qlSpAnNzc/Tu3TvffUFERERU3jGPMo8SkWqwI5GIVOKnn36CoaEhLl26hGXLlmHevHk4ceKE3DKzZs2Cp6cnQkJCMGTIEAwcOBARERHFWv+HH36IVatWwcTEBDExMYiJiYGvr2+e5QYMGIC///4bAHD58mXExMTAxsYmz3KrV6+Gv78/li9fjtDQUHh4eKBXr16IjIyULWNsbIxt27YhPDwcq1evxubNm7Fy5UrZdiZPnoxGjRrJ6hkwYECe7Xz88ceoUqUK9u/fL5uWnZ2NPXv2YMiQIQCAtLQ0uLq64ujRowgLC8PIkSPxxRdf4PLly8XaN/nJzMyEh4cHjI2NcebMGZw7dw5GRkbo0qULMjIySrxeIiIiorKKeZR5lIiUjx2JRKQSzs7O8PPzg4ODA7788ks0b94cQUFBcsv069cPw4cPxwcffID58+ejefPmWLNmTbHWr6OjA1NTU0gkElhZWcHKygpGRkZ5ltPX10fVqlUBABYWFrCysoKmpmae5ZYvX45p06Zh4MCBqF+/PpYuXYomTZpg1apVsmVmzpyJDz/8EHXq1EHPnj3h6+uLvXv3yrZjZGQELS0tWT36+vp5tqOpqYmBAwdi586dsmlBQUF4+/YtPD09AQA1a9aEr68vmjRpAjs7O4wbNw5dunSRbask9uzZA6lUioCAADRu3BiOjo7YunUroqOjcerUqRKvl4iIiKisYh5lHiUi5eMYiUSkEs7OznLvra2t8eLFC7lpbdq0yfM+ODhY1aXlkZCQgGfPnsHNzU1uupubG0JCQmTv9+zZgx9++AH3799HUlISsrKyYGJiovD2hgwZgtatW+PZs2eoUaMGduzYge7du8sG6s7OzsaiRYuwd+9ePH36FBkZGUhPT4eBgUGJP2NISAju3bsHY2NjuelpaWm4f/9+iddLREREVFYxjxaMeZSISoodiUSkEtra2nLvJRIJpFJpsdtraORcMC2EkE3LHf9FHS5cuIAhQ4Zg7ty58PDwgKmpKXbv3g1/f3+F19WiRQvUq1cPu3fvxujRo3Hw4EG5sWO+//57rF69GqtWrULjxo1haGiICRMmFHrLh0QikdtXgPz+SkpKgqurK3bs2JGnrYWFhcKfgYiIiKisYx4tGPMoEZUUOxKJSG0uXryIL7/8Uu5906ZNAfwvTMTExMDMzAwA8pwd1tHRQXZ29nvXYWJigho1auDcuXNwd3eXTT937hxatmwJADh//jxsbW0xY8YM2fxHjx6VuJ4hQ4Zgx44dqFWrFjQ0NNC9e3e57fbu3Ruff/45gJyBt+/evYuGDRsWuD4LCwvExMTI3kdGRiIlJUX2vlmzZtizZw8sLS1LdNaaiIiIqCJiHmUeJSLFcIxEIlKbX3/9FVu2bMHdu3fh5+eHy5cvY+zYsQAAe3t72NjYYM6cOYiMjMTRo0fznG2tU6cOkpKSEBQUhFevXskFFUVNmTIFS5cuxZ49e3Dnzh1Mnz4dwcHBGD9+PADAwcEB0dHR2L17N+7fv48ffvgBBw8ezFNPVFQUgoOD8erVK6Snpxe4vSFDhuD69etYuHAhPvvsM+jq6srmOTg44MSJEzh//jwiIiLw9ddf4/nz54XW37FjR6xduxY3btzA1atXMWrUKLmz8EOGDEG1atXQu3dvnDlzBlFRUTh16hS++eYbPHnypCS7jIiIiKjcYx5lHiUixbAjkYjUZu7cudi9ezecnZ2xfft27Nq1S3aWU1tbG7t27cLt27fh7OyMpUuXYsGCBXLtP/zwQ4waNQoDBgyAhYUFli1bVm2j6wsAAAFxSURBVOJavvnmG0yaNAmTJ09G48aN8ccff+Dw4cNwcHAAAPTq1QsTJ07E2LFj0aRJE5w/fx6zZs2SW4enpye6dOmCDh06wMLCArt27Spwe/b29mjZsiVCQ0NlT8fLNXPmTDRr1gweHh746KOPYGVlhT59+hRav7+/P2xsbNCuXTsMHjwYvr6+cmPYGBgY4N9//0Xt2rXx6aefwtHREd7e3khLS+MZYSIiIqq0mEeZR4lIMRLx7iAGRESlQCKR4ODBg0UGEiIiIiIiVWAeJSJSHK9IJCIiIiIiIiIioiKxI5GIiIiIiIiIiIiKxFubiYiIiIiIiIiIqEi8IpGIiIiIiIiIiIiKxI5EIiIiIiIiIiIiKhI7EomIiIiIiIiIiKhI7EgkIiIiIiIiIiKiIrEjkYiIiIiIiIiIiIrEjkQiIiIiIiIiIiIqEjsSiYiIiIiIiIiIqEjsSCQiIiIiIiIiIqIisSORiIiIiIiIiIiIivR/LX8ur9OH/VAAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -1038,7 +1035,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8cAAAPuCAYAAAAlrG+kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXxTZd4+/it7931J06ZZAJEiiA6CuIEjWpXx0XnQkXlmHFEpAiKDMyKD44oLiAuI409HUdHR5+sMo+KGiPKIorK4MS4oIknTNW0p3bcs5/z+SHPDsQsttE3SXO/Xy5cl5+45d5qmyZXPvahkWZZBREREREREFMXUoe4AERERERERUagxHBMREREREVHUYzgmIiIiIiKiqMdwTERERERERFGP4ZiIiIiIiIiiHsMxERERERERRT2GYyIiIiIiIop6DMdEREREREQU9RiOiYiIiIiIKOoxHBMREREREVHUYzgmIopC33zzDS6//HJYLBbExMQgNzcX559/Ph577DHRxmq1QqVSif/i4+MxadIkvPDCCyHsOREREdHgUMmyLIe6E0RENHQ+/fRTnHvuucjPz8fVV18No9GI0tJS7Ny5EwcOHMBPP/0EIBCOU1NT8ec//xkAUFlZiXXr1uHHH3/EU089haKiolDeDSIiIqIBxXBMRBRlZsyYgc8++ww//vgjUlJSFMeqq6uRlZUFIBCOTzrpJLz11lvieE1NDex2O8xmM/bu3TuU3SYiIiIaVBxWTUQUZQ4cOICxY8d2CcYARDDuSWZmJk488UQcOHBgkHpHREREFBoMx0REUcZiseCLL77At99+2+/v9fl8KCsrQ2pq6iD0jIiIiCh0GI6JiKLMzTffjNbWVkyYMAFnnHEGli5dii1btsDr9XZp6/V6cfDgQRw8eBDffvstrr32Wrjdblx++eUh6DkRERHR4OGcYyKiKPTZZ59hxYoVePfdd9Ha2gogMGR63bp1+K//+i8AgTnHLpery/dec801ePzxxxEbGzukfSYiIiIaTKwcExFFodNOOw2vvvoq6urqsHv3bixbtgxNTU24/PLLFQttTZ48Ge+99x42b96Mhx56CCkpKairq4Nerw9h74mIiIgGHsMxEVEU0+v1OO2003D//ffjiSeegNfrxYYNG8TxjIwMTJ8+HYWFhfjzn/+MF198ERs3bsSjjz4awl4TERERDTyGYyIiAgBMnDgRQGA/457MmDEDU6dOxf3334+Wlpah6hoRERHRoGM4JiKKMh988AG6W25i06ZNAIDRo0f3+v1Lly5FbW0tnn766UHpHxEREVEocEEuIqIoc9JJJ6G1tRW//vWvceKJJ8Lj8eDTTz/FP//5T5jNZnz11VdISUmB1WrFSSedhLfeeqvLOcaNG4eGhgYcOHAAOp0uBPeCiIiIaGCxckxEFGUeeughnHvuudi0aRP+9Kc/4U9/+hN2796NBQsWYNeuXUhJSTnqOW6++WaUlpbipZdeGvwOExEREQ0BVo6JiIiIiIgo6rFyTERERERERFGP4ZiIiIiIiIiiHsMxERERERERRT2GYyIiIiIiIop6DMdEREREREQU9RiOiYiIiIiIKOpph/qCkiShoqICiYmJUKlUQ315IiIiIqJhQ5ZlNDU1wWQyQa1m3YvoeAx5OK6oqIDZbB7qyxIRERERDVulpaXIy8sLdTeIItqQh+PExEQAgSdwUlLSUF+eBpkkSfjhhx8AACeeeCI/wSQiIgoRviZHh8bGRpjNZvEem4iO3ZCH4+BQ6qSkJIbjYUiSJCQkJAAIPMZ8ISYiIgoNviZHF05XJDp+/CtJREREREREUY/hmIiIiIiIiKIewzERERERERFFPYZjIiIiIiIiinoMx0RERERERBT1GI6JiIiIiIgo6jEcExERERERUdRjOCYiIiIiIqKox3BMREREREREUY/hmIiIiIiIiKIewzERERERERFFPYZjIiIiIiIiinoMx0RERERERBT1GI6JiIiIiIgo6jEcExERERERUdRjOCYiIiKisNDY2Ig9e/bgrbfegizLoe4OEUUZbag7QERERETRqb29HcXFxXA4HHA6nTh48KA4NnHiRBiNxhD2joiiDcMxEREREQ0Jn8+H0tJSEYYrKioUFWKVSgWTyQSbzYaYmJgQ9pSIohHDMRERERENClmW4Xa74XA44HA4UFJSAp/Pp2iTnp4Ou90Ou90Oq9XKUExEIcNwTEREREQDQpZl1NXVicqw0+lEW1ubok1CQgLsdjtsNhvsdjuSkpJC1FsiIiWGYyIiIiI6Zi0tLXA6naI63NDQoDiu1+thtVpFIM7MzIRKpQpRb4mIesZwTERERER95vF44HK5RHW4qqpKcVytVsNsNovKsMlkgkajCVFviYj6juGYiIiIiHrk9/tRUVEhwnBpaSkkSVK0yc7OFvOG8/PzodfrQ9RbIqJjx3BMRERERIIsy6ipqRFhuLi4GB6PR9EmOTlZhGGbzYb4+PgQ9ZaIaOAwHBMRERFFuYaGBjFv2Ol0orm5WXE8NjZWDJO22WxITU3lvGEiGnb6HY7Ly8uxdOlSvPPOO2htbcXIkSPx3HPPYeLEiYPRPyIiIiIaYG1tbSguLhZhuLa2VnFcq9XCYrGIQGw0GhmGiWjY61c4rqurw5lnnolzzz0X77zzDjIzM7F//36kpqYOVv+IiIiI6Dj5fD6Ul5eLMFxRUQFZlsVxlUoFk8kkhkrn5eVBq+UAQyKKLv36q/fAAw/AbDbjueeeE7fZbLYB7xRRtJBaW9Hw+uvwNzUfvTGFjF/y4ftD36PN13b0xhSd2uqB9oajNqPQ6vD60ebzh7obQ0etxbgFawAA/zv/PEiejsDNAPIAqNRqaNQaqDXqwGrSFUDV50BVjyccWpMXrYK9YFKou0FEUaRf4fiNN95AYWEhrrjiCnz44YfIzc3FggULUFRU1OP3dHR0oKOjQ/y7sbHx2HtLNMzU//vfqLp/Rai7QX2QHeoOEBH1k2wwQFoQ+HrS501QHfF+LBJU/eobhmMiGlL9CscOhwNPPPEE/vSnP+HWW2/FZ599hkWLFkGv1+Pqq6/u9ntWrFiBu+++e0A6SzTcdDgcAICYggIYTjwxxL2hnnxX+y321+1Hoj4JqQZOI6Gf8XuAhhIAasCQEOreUA9kWUZLR6BqrNUMn7mzsiwDMiBDBo4YJg0AKp0WYzq//n6MAbJ36Pt3PMZmW0LdBSKKMipZ/tlf0l7o9XpMnDgRn376qbht0aJF+Oyzz7Bjx45uv6e7yrHZbEZDQwOSkpKOo+sUjiRJwt69ewEABQUFUKvVIe5ReCuZOxctH22H8Z7lSL3iilB3h3pwy4e34J3id3DzxJtx9djuPwikKLb/PeCly4Hsk4D5n4S6N9SDL1yHMPOJHchNicUnf/llqLtzTDweD1wul5g3XFWlHACtVqthNpvFIlo5OTn44YcfAPA1eThrbGxEcnIy31sTDYB+VY5zcnJQUFCguG3MmDF45ZVXevweg8EAg8FwbL0jGuZ8lZUAAF2OKcQ9od5UtgQeJ2O8McQ9obDUUBr4f3JeaPtBvSqvbwcA5KbEhrgnfef3+1FeXi62WCorK4MkSYo2RqNRhOH8/Hzo9Xpx7OdtiYiod/0Kx2eeeSb27dunuO3HH3+ExcJhL0T9JcsyvOUVAACdieE4nAXDsSmejxN1o6Es8P9kc2j7Qb2qqA8sqJebGr7hWJZl1NTUiMpwcXExPB6Pok1KSorYa9hmsyE+Pj5EvSUiGn76FY5vuukmnHHGGbj//vvxm9/8Brt378ZTTz2Fp556arD6RzRsSU1NkFpbAQC6HFYkw5VX8qKmrQYAkJOQE+LeUFgS4ZiV43AWDMemlJgQ90SpoaFBVIadTieam5W7F8TGxorKsN1u5/aZRESDqF/h+LTTTsNrr72GZcuWYfny5bDZbFizZg1+97vfDVb/iIYtb+eQak1qKtSx4VvJiHY1rTWQZAk6tQ5pMWmh7g6FI4bjiHA4HIf2721bWxuKi4tFGK6trVUc12q1sFgsIhAbjUaoVMNnATEionDW793df/WrX+FXv/rVYPSFKKqIIdU5rEaGs4rmwONkjDdCreJiNtSN+uCcYw6rDmdldaEJxz6fD6WlpXA4HHA4HKisrMSRa6GqVCrk5uaKMJyXlwettt9vz4iIaADwry9RiHgrO8NxLuexhrPgfOOceH6IQd2Q/EBjeeBrVo7DmphzPMjhWJIkuN1uURkuKSmBz+dTtMnIyBDDpC0WC2JiwmuoNxFRtGI4JgqR4ErVWlaOw5q7xQ2A4Zh60OQGZD+g1gKJXDsgXDW1e9HYHgioA105lmUZhw4dUswbbm9vV7RJTEwUlWGbzcbtdigk/H4/vN4I2+yaaADodDpoNJo+tWU4JgoRbwW3cYoEonLMxbioO8H5xkkmQN23F14aepUNgbCaHKtDguH43/o0NzcrwnBDQ4PiuMFggNVqFdXh9PR0zhumkJFlGW63G/X19aHuClHIpKSk9GkNB4ZjohDxVnDOcSSoaAk8TqwcU7caON84EpQf53xjj8cDl8sl5g1XV1crjms0GpjNZlEdNplMUKu5RgGFh2AwzsrKQlxcHD+ooagiyzJaW1vF3+2co7zvZjgmCpHgatU6E0NXOHM3B4ZVG+M5ZJa6IcIx5xuHs3Ix37hvc3v9fj/Ky8tFZbisrAySJCnaGI1GURnOz8+HTqcb8H4THS+/3y+CcXp6eqi7QxQSsZ27wlRXVyMrK6vXIdYMx0QhIHu98HV+gqUzcVh1uJJlWQyrNsXzcaJuiG2cWDkOZ0dbjEuWZVRXV4uh0i6XCx6PR9EmNTVVMW84Li5u0PtNdLyCc4z5+0rRLvgc8Hq9DMdE4cZbVQ3IMlR6PTRp3Ds3XDV6GtHqawXAyjH1gHscR4Tu9jhuaGgQlWGHw4GWlhbF98TFxSnCcGpq6pD2mWggcSg1Rbu+PgcYjolCwFsR2PpFm2OEivPSwlawapwWk4YYLbdaoW5wj+OIEBxWLbccwttv/wCHw4FDhw4p2uh0OlgsFhGIs7OzGSiIiKIMwzFRCAS3ceJK1eGtsjnwOLFqTD1i5Ths+Xw+lJSUwOFwYF9ZCwAtvtn5Iao0gQqxSqVCbm6uqAzn5eVBq+XbIiKiaMZXAaIQOLwYF8NxOON8Y+pVewPQ0bmFD8NxyEmShMrKSjFMuqSkBH6/H5IMNPl+AQDIz0jE+FFjYbfbYbFYEBPDESFEkWbatGmYMGEC1qxZ06f2xcXFsNls+OqrrzBhwoRB7dtQslqtWLx4MRYvXjygbY/V+vXrsXjx4ojfMozhmCgEDu9xzJWqw5m7hStVUy8aAtMjEJsKGBJC25coJMsyDh06JOYNO51OtLe3K9okJiYiNdcO+SsVtGoVliycC7WaQ6WJwt3s2bPx/PPPd7l9//79ePXVV/u1OrzZbEZlZSUyMjIAANu2bcO5556Luro6pKSkDFSXh9xnn32G+Pj4AW97rK688kpcfPHFg3qN7gz0hx8Mx0QhwG2cIkOwcsw9jqlbHFI95JqbmxWLaDU2NiqOGwwG2Gw2MW84PT0dX7jqgK92ICclhsGYKIJceOGFeO655xS3ZWZm9rrScHc0Gg2MxvD5kNvj8UCv1x/3eTIzMwel7bGKjY0VWyZFMq4ERBQC3ooKAKwch7uKlsDjlJPAx4m60VAS+D8X4xo0HR0d+PHHH7F582Y88cQTePjhh/Haa69hz549aGxshEajgdVqxS9/+Utcd911uOWWW3DllVdi0qRJyMjIgEqlEotxmZIj/00b0fGSZRkejyck/8my3K++GgwGGI1GxX8ajQbTpk1TDA+2Wq24//77ce211yIxMRH5+fl46qmnxPHi4mKoVCrs2bMHxcXFOPfccwEEtmdTqVSYPXs2gMDUjBUrVsBmsyE2NhYnn3wy/v3vf/fax/Xr1yMlJQUbN27EqFGjEBMTg8LCQpSWloo2d911FyZMmIB169bBZrOJ6Rz19fWYM2cOMjMzkZSUhF/+8pf4z3/+ozj/m2++idNOOw0xMTHIyMjAr3/9a8X9Dg4tl2UZd911F/Lz82EwGGAymbBo0aJu2wJASUkJLr30UiQkJCApKQm/+c1vUFVV1aXP//jHP2C1WpGcnIxZs2ahqanpqD+L/pxj2rRpWLhwIRYuXIjk5GRkZGTg9ttvV/yuqFQqbNy4UXGtlJQUrF+/HgBgs9kAAKeccgpUKhWmTZvWYx/7gpVjoiEmyzLnHEcId3NgWDXnHFO3uMfxgPP7/SgrKxPV4fLyckiSpGiTk5MjKsP5+flHHV4ZDMe5qQzHRF6vFytWrAjJtZctWzYgFdPuPPzww7jnnntw66234t///jfmz5+PqVOnYvTo0Yp2ZrMZr7zyCmbOnIl9+/YhKSlJVDtXrFiBF198EU8++SRGjRqFjz76CL///e+RmZmJqVOn9njt1tZW3HfffXjhhReg1+uxYMECzJo1C5988olo89NPP+GVV17Bq6++KirfV1xxBWJjY/HOO+8gOTkZf//733Heeefhxx9/RFpaGt5++238+te/xl//+le88MIL8Hg82LRpU7d9eOWVV7B69Wq8/PLLGDt2LNxud5egHSRJkgjGH374IXw+H2644QZceeWV2LZtm2h34MABbNy4EW+99Rbq6urwm9/8BitXrsR9993Xp8ekr+d4/vnncd1112H37t34/PPPMXfuXOTn56OoqKhP19i9ezcmTZqE999/H2PHjj3u3zGGY6IhJjU0QG4N7J2rDaNhPqTk9XtR01YDgHOOqQccVn3cZFlGdXW1CMPFxcXwer2KNqmpqWJFaZvNhri4uH5dI7jHcW4KwzFRJHnrrbeQkHB4PYeLLroIGzZs6LbtxRdfjAULFgAAli5ditWrV+ODDz7oEo41Gg3S0tIAAFlZWaLS2dHRgfvvvx/vv/8+pkyZAgCw2+34+OOP8fe//73XcOz1evG3v/0NkydPBhAIe2PGjBGhDQgMpX7hhRfE8OaPP/4Yu3fvRnV1NQwGAwDgoYcewsaNG/Hvf/8bc+fOxX333YdZs2bh7rvvFtc6+eSTu+1DSUkJjEYjpk+fDp1Oh/z8fHHtn9u6dSu++eYbOJ1OmM2BD3dfeOEFjB07Fp999hlOO+00AIEQvX79eiQmJgIArrrqKmzdurVf4bgv5zCbzVi9ejVUKhVGjx6Nb775BqtXr+5zOA7+TNPT0wdk+DzDMdEQC1aNNenpUHOl1LBV1VoFGTL0aj3SYtJC3R0KRwzHx6S+vl6xiFZLS4vieFxcnCIMp6amHtf1KuoDi3SZGI6JoNPpsGzZspBduz/OPfdcPPHEE+LfvS0oNX78ePG1SqWC0WhEdXV1n6/1008/obW1Feeff77ido/Hg1NOOQUAMHbsWLhcLgDA2WefjXfeeQcAoNVqRaAEgBNPPBEpKSn4/vvvRUC1WCyKeb//+c9/0NzcjPT0dMX12tracODAAQDAnj17+hwQr7jiCqxZswZ2ux0XXnghLr74YlxyySXdbk/3/fffw2w2i2AMAAUFBaLPwftitVpFqAUCo3b68zPt6zlOP/10xZ7yU6ZMwcMPPwy/39/v+eUDgeGYaIhxvnFkEItxJeQo/mgTCfWdc8o4rLpXra2tKC4uFoH40KFDiuM6nQ4Wi0UMlc7Ozh7Q51x5XeecY4ZjIqhUqkEb2jzQ4uPjMXLkyD61/XnwVqlUXaZk9Ka5uRkA8PbbbyM3N1dxLFjZ3bRpkxjZ0t+Fp34e7Jubm5GTk6MYxhwUrGb35xpmsxn79u3D+++/j/feew8LFizAgw8+iA8//LDfH0oEHe/PdKDOoVKpusxX//kIo4HEcEw0xMQ2TpxvHNaC4ZhDqqlbfh/QFPigi5VjJa/Xi9LSUjgcDjgcDlR2jpYJUqlUyM3Nhc1mw4gRI5CXlzeo1YHDw6o5UoeIID4c8Pv94raCggIYDAaUlJT0OITaYrF0e7vP58Pnn38uqsT79u1DfX09xowZ02MfTj31VLjdbmi1Wlit1m7bjB8/Hlu3bsU111zTl7uF2NhYXHLJJbjkkktwww034MQTT8Q333yDU089VdFuzJgxKC0tRWlpqage7927F/X19SgoKOjTtQbSrl27FP/euXMnRo0aJV4XMjMzFa8j+/fvR2vn9ESg+8fzeDAcEw0xsRgXK8dhrbI58DhxMS7qVlMlIEuAWgckZIe6NyElSRIqKytFZbikpKTLm5TMzExRGbZaraISM9ga271o6vABYOWYiAIsFgtUKhXeeustXHzxxYiNjUViYiJuvvlm3HTTTZAkCWeddRYaGhrwySefICkpCVdffXWP59PpdLjxxhuxdu1aaLVaLFy4EKeffnqPc34BYPr06ZgyZQouu+wyrFq1CieccAIqKirEIlwTJ07EnXfeifPOOw8jRozArFmz4PP5sGnTJixdurTL+davXw+/34/JkycjLi4OL774ImJjY7sN9NOnT8e4cePwu9/9DmvWrIHP58OCBQswdepUTJw48dh+qMehpKQEf/rTn3D99dfjyy+/xGOPPYaHH35YHP/lL3+Jv/3tb5gyZQr8fj+WLl2qqEhnZWUhNjYWmzdvRl5eHmJiYpCcnHzM/WE4Jhpi3srOYdXc4ziscY9j6pWYb5wLqKNrV0RZlnHo0CFRGS4uLkZ7e7uiTWJiIux2u5g7fOScs6EUrBqnxukQp+dbHiICcnNzcffdd+Mvf/kLrrnmGvzhD3/A+vXrcc899yAzMxMrVqyAw+FASkoKTj31VNx66629ni8uLg5Lly7F//zP/6C8vBxnn302nnnmmV6/R6VSYdOmTfjrX/+Ka665BjU1NTAajTjnnHOQnR34wHXatGnYsGED7rnnHqxcuRJJSUk455xzuj1fSkoKVq5ciT/96U/w+/0YN24c3nzzzS5zmoPXfv3113HjjTfinHPOgVqtxoUXXojHHnusjz/BgfWHP/wBbW1tmDRpEjQaDf74xz9i7ty54vjDDz+Ma665BmeffTZMJhMeffRRfPHFF+K4VqvF2rVrsXz5ctxxxx04++yzux2u3lcqub+bjh2nxsZGJCcno6GhAUlJSUN5aRoCkiRh7969AAJDVNRR9qaxL5xXXon2/3yN3LWPIumCC0LdHerB9e9dj08rPsXyM5bj16N+ffRvoOjy9b+AV4sA69nA7LdC3ZtB19zcLCrDDocDjY2NiuMGg0EsoGW325Genh4Wc/W3fl+F657/HGNNSXh70dmh7s6Q42tydOjtvXV7ezucTqdif10aOOvXr8fixYtRX18f6q5EpGnTpmHChAmKPZgHS1+fC/wYlWiI+cSc49yjtKRQOnJBLqIuGoKLcQ3P+cYdHR1wuVyiOlxTU6M4rtFoYDabRXU4JycnLINXsHLMIdVERNQXDMdEQ0jyeODrfJPJYdXhS5ZluFvcADjnmHoghlUPj5Wq/X4/ysrKRHW4rKysy+qgOTk5ojKcn59/zCugDqXyzm2cuMcxERH1BcMx0RDyVVUBAFQGAzTHuXcnDZ6Gjga0+QIVp+z46F5siXoQ4Xscy7KM6upqURl2uVxdtsZITU0VlWGr1Yq4uLgQ9fbYHV6pmuGYiAbe7NmzMXv27FB3I2Idz9zgwcJwTDSEvOWH9zgOh/l41L2KlsDjlB6TDoNmaFbVpQhTH3nDquvr6xXzho/cCgMILCoTXEDLbreLvTYjWTmHVRMRUT8wHBMNIbGNE/c4DmtcqZp6JctHzDkO32HVra2tKC4uFtXhuro6xXGdTgeLxSKqw1lZWcPuQ7vDc465EBERER0dwzHREApu46TlfOOwFpxvzMW4qFvtDYCnOfB1GFWOvV4vSkpKRHW4svPDuCCVSoW8vDxRGc7Ly4NGowlRbwef1y+hqrFzznEqK8dERHR0DMdEQ8gXrBznMHSFs8pmVo6pF8H5xnHpgD5083AlSUJlZaUIwyUlJfD7/Yo2mZmZojJssVhgMETPNIGqxnZIMqDXqJERHz33m4iIjh3DMdEQ8ga3ccrhsOpwxmHV1KsQLcYlyzJqa2tFGC4uLkZ7e7uiTVJSkpg3bLPZkJiYOKR9DCcVnStV56TEQK0eXsPFiYhocDAcEw0hb0XnglyccxzWGI6pV0M437ipqQlOp1MsotXY2Kg4bjAYxDBpu92OtLS0YTdv+FiV1wcWHDMlc0g1ERH1DcMx0RCRZfmIBbkYusJZMBwbE4wh7gmFpYbBW6m6o6NDLKLldDpR07kvepBGo0F+fr4IxDk5OVCr1QPej+EgWDnmStVEdDTTpk3DhAkTsGbNmlB3pc+Ki4ths9nw1VdfYcKECaHuzrDBV1SiIeKvr4fcOQRSa2ToClcevwcH2w4CAEzxrPBTN8Sw6uOvHPv9frhcLnzwwQd49tln8cADD+Dll1/G7t27RTDOycnBmWeeiauuugpLly7FH/7wB5x99tnIzc1lMO5FcBsnLsZFFHlqamowf/585Ofnw2AwwGg0orCwEJ988oloY7VaoVKpoFKpEBcXh3HjxmHdunWK82zbtk20UalUiI2NxdixY/HUU08p2r366qu45557FOcOdVCWZRl33HEHcnJyEBsbi+nTp2P//v39Pk9JSQlmzJiBuLg4ZGVlYcmSJfD5fIo227Ztw6mnngqDwYCRI0di/fr1A3QvIg8rx0RDJDikWpOZAbVeH+LeUE+qWqoAADGaGKQYUkLbGQpPxzHnWJZlVFVVicqwy+WC1+tVtElLSxOVYZvNhthYhrtjEdzGKZfbOBFFnJkzZ8Lj8eD555+H3W5HVVUVtm7ditraWkW75cuXo6ioCK2trdiwYQOKioqQm5uLiy66SNFu3759SEpKQltbG958803Mnz8fI0aMwHnnnQcg8Hc33KxatQpr167F888/D5vNhttvvx2FhYXYu3cvYmL69nfN7/djxowZMBqN+PTTT1FZWYk//OEP0Ol0uP/++wEATqcTM2bMwLx58/DSSy9h69atmDNnDnJyclBYWDiYdzEsMRwTDREx35iLcYW1ipbA42SMN3LuJnWvvn9zjuvr68Vew06nE62trYrjcXFxYs6wzWZDSkrKAHc4OpXXBfc45ocLREGyLKPN6z96w0EQq9P06XW1vr4e27dvx7Zt2zB16lQAgMViwaRJk7q0TUxMhLFzNN7SpUuxatUqvPfee13CcVZWlvjbumjRIqxduxZffvmlCMdHDqueNm0aXC4XbrrpJtx0000AAj83l8uFhQsX4uOPP4bH44HVasWDDz6Iiy+++Jh/Jj2RZRlr1qzBbbfdhksvvRQA8MILLyA7OxsbN27ErFmzRNsffvgBCxYswJdffomRI0fi8ccfFz+3LVu2YO/evXj//feRnZ2NCRMm4J577sHSpUtx1113Qa/X48knn4TNZsPDDz8MABgzZgw+/vhjrF69muGYiAaP2MaJi3GFNS7GRb3ye4Gmzv2De6gct7a2igW0nE4n6urqFMd1Oh2sVqtYUTo7O5sfxAwwWZZF5ZjhmOiwNq8fBXe8G5Jr711eiDj90aNHQkICEhISsHHjRpx++ul92oJOkiS89tprqKurg76X0XmyLOPdd99FSUkJJk+e3G2bV199FSeffDLmzp2LoqIicfsNN9wAj8eDjz76CPHx8di7dy8SEhJ6vNa8efPw4osv9trv5ubmbm93Op1wu92YPn26uC05ORmTJ0/Gjh07FOF4yZIlWLNmDQoKCvDII4/gkksugdPpRHp6Onbs2IFx48YhOztbtC8sLMT8+fPx3Xff4ZRTTsGOHTsU1wm2Wbx4ca99H64YjomGyOFtnBi6wlkwHJsS+CEGdaOxAoAMaAxAfCYAwOv1oqSkRFSH3W634ltUKhXy8vJEZTgvLw8ajSYEnY8ejW0+tHgC1bFchmOiiKLVarF+/XoUFRXhySefxKmnnoqpU6di1qxZGD9+vKLt0qVLcdttt6GjowM+nw9paWmYM2dOl3Pm5QU+zOzo6IAkSVi+fDnOOeecbq+flpYGjUajqEoDgbm7M2fOxLhx4wAAdru91/uxfPly3Hzzzf2670HB15EjQ23w3z9/jVm4cCFmzpwJAHjiiSewefNmPPPMM7jlllvgdru7PceR1+ipTWNjI9ra2qJuag/DMdEQEStVMxyHNXdL4MXCGM9F06gbnfONvfHZ2PHxx3A6nSgtLYXfrxymmJWVJeYNWyyWPlU+aOAEF+NKj9cjRscPIoiCYnUa7F0emqGysf14Ls6cORMzZszA9u3bsXPnTrzzzjtYtWoV1q1bh9mzZ4t2S5YswezZs1FZWYklS5ZgwYIFGDlyZJfzbd++HYmJiejo6MDu3buxcOFCpKWlYf78+X3u06JFizB//nxs2bIF06dPx8yZM7uE9SNlZWUhKyurz+c/VlOmTBFfa7VaTJw4Ed9///2gX3e4YjgmGiKH9zhmOA5nFc2Bx4nDqilIlmXU1tbC4XBA+moDTgdQ2ijjgw8+EG2SkpJEZdhmsyExMTF0HSYRjjmkmkhJpVL1aWhzOIiJicH555+P888/H7fffjvmzJmDO++8UxGOMzIyMHLkSIwcORIbNmzAuHHjMHHiRBQUFCjOdeR6DmPHjsWuXbtw33339Sscz5kzB4WFhXj77bexZcsWrFixAg8//DBuvPHGbtsfz7DqYMW6qqoKOUcUVaqqqvq1bZPRaMTu3bsVt1VVVSmuYTQaxW1HtklKSoq6qjHAcEw0ZLyccxwRgpVjhuPo1tTUJOYMOxwONDU1AQDOln8EALRoUjFm9BhRHU5LS+O84TByeL4xV6omGi4KCgqwcePGHo+bzWZceeWVWLZsGV5//fVez6XRaNDW1tbjcb1e32VEUPAa8+bNw7x587Bs2TI8/fTTPYbj4xlWbbPZYDQasXXrVhGGGxsbsWvXri6BfufOnWKIuM/nwxdffIGFCxcCCFSV77vvPlRXV4sq9nvvvYekpCTxAcKUKVOwadMmxTnfe+89RUU6mjAcEw0BqaMD/oOBvXO1HFYdtmRZPrwgVwIfp2jS3t4Ol8slAnFwj+EgjUaD/Px8jGnfC1QAJ515Ecb98jch6i0dzeFtnOJC3BMi6q/a2lpcccUVuPbaazF+/HgkJibi888/x6pVq8TKzT354x//iJNOOgmff/45Jk6cKG6vrq5Ge3u7GFb9j3/8A5dffnmP57Farfjoo48wa9YsGAwGZGRkYPHixbjoootwwgknoK6uDh988AHGjBnT4zmOZ1i1SqXC4sWLce+992LUqFFiKyeTyYTLLrtM0fbxxx/HqFGjMGbMGKxevRp1dXW49tprAQAXXHABCgoKcNVVV2HVqlVwu9247bbbcMMNN4jpPvPmzcPf/vY33HLLLbj22mvxf//3f/jXv/6Ft99++5j6HukYjomGgK9z0QNVbCw03KYlbNV11KHD3wEVVMiOyz76N1DE8vl8KCsrE2G4vLwcsiwr2phMJlEZNpvN0Ol0wIuBaoQqpW/bOFFolLNyTBSxEhISMHnyZKxevRoHDhyA1+uF2WxGUVERbr311l6/t6CgABdccAHuuOMORTV09OjRAAJzcs1mM66//nrcddddPZ5n+fLluP766zFixAh0dHRAlmX4/X7ccMMNKCsrQ1JSEi688EKsXr16QO5zd2655Ra0tLRg7ty5qK+vx1lnnYXNmzd32eN45cqVWLlyJfbs2YORI0fijTfeQEZGBoDAB7tvvfUW5s+fjylTpiA+Ph5XX301li9fLr7fZrPh7bffxk033YRHH30UeXl5WLduXVRu4wQAKvnn7wYGWWNjI5KTk9HQ0ICkpKShvDQNAUmSsHfvXgCBP1BqtTrEPQoPLTt3omT2NdDb7RixKTo/iYsE39V+h1lvzUJmbCb+7zf/F+ru0ACSZRlVVVUiDLtcLni9XkWbtLQ0sd+w1Wrtfq7V45OBmh+AqzYCI84dms5Tv/33//cJviypxxO/OxUXjYveUSB8TY4Ovb23bm9vh9PphM1m6xKqiKJJX58LrBwTDQFveXAxLs43DmeVzdzjeDipq6sTYdjpdKK1tVVxPD4+XrGIVsrRRnXIMlBfGvg6mZXjcMYFuYiI6FgwHBMNAW7jFBk43ziytba2igW0nE4n6urqFMd1Oh2sVqsIxFlZWf1bRKutDvC2BL5Ozh3AntNA8vgkVDd1AAByUxmOiYio7xiOiYaAt5LbOEUCEY5ZOY4IXq9XsYiWu3Nuf5BarUZeXp6YN5ybmwuN5jj2vO3c4xjxmYCOoStcVTW2Q5YBvVaN9Hh9qLtDREQRhOGYaAj4OivHXKk6vAW3cTLGG0PcE+qOJEmoqKiAw+GAw+FAWVlZl602srKyRBi2WCxiNc4BEQzHyXkDd04acOVipepYbq9FRET9wnBMNAQ45zgyVDQHHidWjsODLMs4ePCgqAwXFxejo6ND0SYpKUksomWz2ZCQkDB4HWoIzjdmOA5n5XVcqZqIiI4NwzHRIJNl+fCcY4bjsMZh1aHX2Ngo5g07HA40NzcrjsfExIgFtOx2O9LS0oauOtjAxbgiQXCPY1Myh74TEVH/MBwTDTL/oUOQPR5ApYLuGDeDp8HX7mvHofZDAABTAj/EGCrt7e0oLi4W1eGDBw8qjms0GlgsFhGGjUZj6LajEcOqGY7DWUVD57BqLsZFRET9xHBMNMi8FZ3zjTMzodJzcZhwVdVaBQCI1cYiSc892AeLz+dDWVmZCMPl5eWQZVnRxmQyiTBsNpuh0+lC1Nuf4ZzjiFBe3w6A2zgREVH/MRwTDTJvBecbR4Ij5xtzEZ+BI8sy3G63CMMulws+n0/RJj09XYRhq9WK2NgwDTX1nHMcCcrrAvtZ5zIcExFRPzEcEw0ybuMUGYIrVXO+8fGrq6sTYdjhcKCtrU1xPD4+XrGIVnJycoh62g++DqC5c6soDqsOW7Iso4KVYyLqp2nTpmHChAlYs2ZNqLvSZ8XFxbDZbPjqq68wYcKEUHdn2AjRxC2i6MFtnCKDWIwrgY9Tf7W0tODbb7/Fm2++iUcffRRr167FW2+9he+++w5tbW3Q6/U44YQTUFhYiPnz5+PPf/4z/vu//xsTJkyIjGAMAI2BD7mgjQHiM0LbF+pRfasXbd7A9l45yVytmihS1dTUYP78+cjPz4fBYIDRaERhYSE++eQT0cZqtUKlUkGlUiEuLg7jxo3DunXrFOfZtm2baKNSqRAbG4uxY8fiqaeeUrR79dVXcc899yjOHeqgLMsy7rjjDuTk5CA2NhbTp0/H/v37+32ekpISzJgxA3FxccjKysKSJUsUI7gqKyvxP//zPzjhhBOgVquxePHiAbwXkYeVY6JBFpxzrMvhsOpwxpWq+87j8aCkpERUh91ut+K4Wq1GXl6eqA6bTCZoNJoQ9XaAHDnfmMPuw1Zwj+OMBANidBH+O0cUxWbOnAmPx4Pnn38edrsdVVVV2Lp1K2praxXtli9fjqKiIrS2tmLDhg0oKipCbm4uLrroIkW7ffv2ISkpCW1tbXjzzTcxf/58jBgxAueddx4AIC0tbcjuW1+tWrUKa9euxfPPPw+bzYbbb78dhYWF2Lt3L2Ji+vbhn9/vx4wZM2A0GvHpp5+isrISf/jDH6DT6XD//fcDADo6OpCZmYnbbrsNq1evHsy7FBEYjokGGeccR4bKZobjnkiShPLychGGS0tLIUmSok12draYN2yxWKAfbovPcY/jiBAMx7nc45ioe7IMeFtDc21dXJ8+XKyvr8f27duxbds2TJ06FQBgsVgwadKkLm0TExNhNBoBAEuXLsWqVavw3nvvdQnHWVlZSElJAQAsWrQIa9euxZdffinC8ZHDqqdNmwaXy4WbbroJN910E4BAFdflcmHhwoX4+OOP4fF4YLVa8eCDD+Liiy8+5h9JT2RZxpo1a3Dbbbfh0ksvBQC88MILyM7OxsaNGzFr1izR9ocffsCCBQvw5ZdfYuTIkXj88cfFz23Lli3Yu3cv3n//fWRnZ2PChAm45557sHTpUtx1113Q6/WwWq149NFHAQDPPvvsgN+XSMNwTDTIDu9xzNAVzoKVY2O8McQ9CT1ZlnHw4EERhouLi9HR0aFok5ycLOYM22w2JCQkhKi3Q4QrVUcEsccx5xsTdc/bCtwfog/rb60A9PFHbZaQkICEhARs3LgRp59+OgwGw1G/R5IkvPbaa6irq+v1w1lZlvHuu++ipKQEkydP7rbNq6++ipNPPhlz585FUVGRuP2GG26Ax+PBRx99hPj4eOzdu7fX17558+bhxRdf7LXfzc3N3d4eHJU1ffp0cVtycjImT56MHTt2KMLxkiVLsGbNGhQUFOCRRx7BJZdcAqfTifT0dOzYsQPjxo1Ddna2aB+c4vTdd9/hlFNO6bV/0YjhmGgQSe3t8B8K7J2r45zjsCXJkliQK1r3OG5sbFQsovXzF+yYmBhRGbbb7UhNTY2uVb1F5Tg/tP2gXlWIyjHDMVGk0mq1WL9+PYqKivDkk0/i1FNPxdSpUzFr1iyMHz9e0Xbp0qW47bbb0NHRAZ/Ph7S0NMyZM6fLOfPyAh9sdnR0QJIkLF++HOecc063109LS4NGo1FUpYHA3N2ZM2di3LhxAAC73d7r/Vi+fDluvvnmft33oOB0pSNDbfDfP5/KtHDhQsycORMA8MQTT2Dz5s145plncMstt8Dtdnd7jiOvQUoMx0SDKFg1VsfFQZ3EvXPD1aH2Q/BIHqigQlZcVqi7MyTa29tRXFwsAvHBgwcVx7VaLcxmswjDRqMRanUUr+HIynFE4ErVREehiwtUcEN17T6aOXMmZsyYge3bt2Pnzp145513sGrVKqxbtw6zZ88W7ZYsWYLZs2ejsrISS5YswYIFCzBy5Mgu59u+fTsSExPR0dGB3bt3Y+HChUhLS8P8+fP73KdFixZh/vz52LJlC6ZPn46ZM2d2CetHysrKQlbW4L+nmDJlivhaq9Vi4sSJ+P777wf9usMVwzHRIAquVK3LNUVXlS3CBKvGmXGZ0Kl1Ie7N4PD5fCgtLRVhuKKiArIsi+MqlQo5OTkiDJvNZmi1fIkQGI4jQjmHVRP1TqXq09DmcBATE4Pzzz8f559/Pm6//XbMmTMHd955pyIcZ2RkYOTIkRg5ciQ2bNiAcePGYeLEiSgoKFCcy2aziTnHY8eOxa5du3Dffff1KxzPmTMHhYWFePvtt7FlyxasWLECDz/8MG688cZu2x/PsOpgxbqqqgo5R4w8rKqq6te2TUajEbt371bcVlVVpbgGKfGdD9EgCi7GxW2cwltFc+BxGk6LccmyDLfbDYfDAYfDgZKSEsXWDQCQnp4uhkpbrVbExjJQdEuWgXouyBUJyjmsmmjYKigowMaNG3s8bjabceWVV2LZsmV4/fXXez2XRqNBW1tbj8f1ej38fn+315g3bx7mzZuHZcuW4emnn+4xHB/PsGqbzQaj0YitW7eKMNzY2Ihdu3Z1CfQ7d+4UQ8R9Ph+++OILLFy4EECgqnzfffehurpaVLHfe+89JCUldfkAgQIYjokGEbdxigzDYRsnWZZRV1cnKsNOp7PLC39CQoIIwzabLXL2GA611kOAr/NnmZQb2r5Qjzp8ftQ0BRaOM3G1aqKIVVtbiyuuuALXXnstxo8fj8TERHz++edYtWqVWLm5J3/84x9x0kkn4fPPP8fEiRPF7dXV1WhvbxfDqv/xj3/g8ssv7/E8VqsVH330EWbNmgWDwYCMjAwsXrwYF110EU444QTU1dXhgw8+wJgxY3o8x/EMq1apVFi8eDHuvfdejBo1SmzlZDKZcNlllynaPv744xg1ahTGjBmD1atXo66uDtdeey0A4IILLkBBQQGuuuoqrFq1Cm63G7fddhtuuOEGxUJne/bsARCoZNfU1GDPnj3Q6/VRGaAZjokGkVipmpXjsBYcVp2TEFmPU0tLi1hAy+l0or6+XnE8uEVDMBBnZmZyeP+xCC7GlZAN6Bi6wpW7ITDfOEanRlr8MNtKjCiKJCQkYPLkyVi9ejUOHDgAr9cLs9mMoqIi3Hrrrb1+b0FBAS644ALccccd2LRpk7h99OjRAA6vp3H99dfjrrvu6vE8y5cvx/XXX48RI0ago6MDsizD7/fjhhtuQFlZGZKSknDhhRcO6r7At9xyC1paWjB37lzU19fjrLPOwubNm7vscbxy5UqsXLkSe/bswciRI/HGG28gIyMDQKBC/tZbb2H+/PmYMmUK4uPjcfXVV2P58uWKcxy5avUXX3yB//3f/4XFYkFxcfGg3b9wxXBMNIi4jVNkiJTKscfjgcvlEoE4OG8oSK1Ww2w2izBsMpmg0WhC1NthhPONI8KR8435IRBR5DIYDFixYgVWrFjRa7uegtvmzZvF19OmTVOsr9GTbdu2Kf59+umn4z//+Y/itscee+yo5xlIKpUKy5cv7xJkg6xWq7hvv/3tb3s8j8ViUXxQ0J2+/IyiBcMx0SAKzjnWmTisOpyF65xjSZJQXl4uKsOlpaWQJEnRJjs7WwyTtlgsve7vSMeogfONI0F5HecbExHR8WE4JhoksiQdXq2aw6rDmhhWHeJwLMsyDh48KBbRKi4uhsfjUbRJTk4WK0rbbDbEx0fGqqMRTVSOzaHtB/VKbOOUzHBMRETHhuGYaJD4a2she72AWg3tEOxzR8emzdeGuo46AKGZc9zY2Cgqww6Ho8u2DrGxsbDZbGKodGpqKoeMDjVROWY4DmcVwZWqUxmOiYjo2DAcEw2S4HxjbVYWVLrhuXfucBCsGsfr4pGoSxz067W3t4vVpB0OB2praxXHtVotLBaLCMNGo5FhONQ45zgiVDRwj2MiIjo+DMdEg4TzjSNDZfPhxbgGI4T6fD6UlpaK6nBFRYVi4QuVSgWTySTCsNlshlbLP81hhXscR4TgnGNu40RERMeK78CIBsnhPY453zicBVeqNsYbB+R8kiTB7XaLynBJSQl8Pp+iTUZGhgjDVqu1y7YMFEa87UBLdeBrDqsOW7Isi9WquSAXEREdK4ZjokHCbZwiQzAcm+KPrcIvyzLq6upEZdjpdKKtrU3RJiEhQYRhu92OpKSk4+43DZHG8sD/dXFAXFpo+0I9OtTiQYdPgkoFGJP5YRMRER0bhmOiQeKtDAyr1rJyHNbEHsf9WIyrpaVFVIYdDgcaGhoUx/V6PaxWqwjDGRkZnDccqY6cb8zHMGwFV6rOTDDAoOXe3kREdGwYjokGiS84rJpzjsNacEGu3oZVezweuFwuUR2uqqpSHFer1TCbzaI6nJubC7VaPaj9piHCxbgiQnBINRfjIqJjMW3aNEyYMAFr1qwJdVf6rLi4GDabDV999RUmTJgQ6u4MG3z3RjRIxIJcOQzH4ayiOfA4HbnHsd/vR2lpKT788EM899xzeOCBB/C///u/2LlzpwjGRqMRU6ZMwe9+9zssXboUs2fPxtSpU2E2mxmMh5MGLsYVCTjfmGh4qampwfz585Gfnw+DwQCj0YjCwkJ88sknoo3VaoVKpYJKpUJcXBzGjRuHdevWKc6zbds20UalUiE2NhZjx47FU089pWj36quv4p577lGcO9RBWZZl3HHHHcjJyUFsbCymT5+O/fv39/s8ixYtwi9+8QsYDIYeQ/TXX3+Ns88+GzExMTCbzVi1atVx9j5ysXJMNAik1lb46+sBcM5xOJNkCe7WQOVY367Hzp074XQ6UVxcDI/Ho2ibkpIiKsM2mw3x8fGh6DINNRGO80PbD+oV9zgmGl5mzpwJj8eD559/Hna7HVVVVdi6dWuX7Q+XL1+OoqIitLa2YsOGDSgqKkJubi4uuugiRbt9+/YhKSkJbW1tePPNNzF//nyMGDEC5513HgAgLS381pRYtWoV1q5di+effx42mw233347CgsLsXfv3n4v5Hnttddi165d+Prrr7sca2xsxAUXXIDp06fjySefxDfffINrr70WKSkpmDt37kDdnYjBcEw0CLzuQOBSJyRAkzj4e+dS/zU0NOCrH7+CT/JBJavw7/X/hvqIwTSxsbGKRbRSU1ND2FsKGQ6rjgjBcGziYlxEEa++vh7bt2/Htm3bMHXqVACAxWLBpEmTurRNTEyE0RiYFrV06VKsWrUK7733XpdwnJWVhZSUFACBSuratWvx5ZdfinB85LDqadOmweVy4aabbsJNN90EIFDFdblcWLhwIT7++GN4PB5YrVY8+OCDuPjiiwf8ZyDLMtasWYPbbrsNl156KQDghRdeQHZ2NjZu3IhZs2aJtj/88AMWLFiAL7/8EiNHjsTjjz8ufm4AsHbtWgCBanx34fill16Cx+PBs88+C71ej7Fjx2LPnj145JFHGI6JaGB4Od847LS1taG4uFjMG66trUWtvhYwATH+GOi1elgsFhGIjUYjF9EihuMIUcE5x0R9Issy2nxtR284CGK1sX16XU1ISEBCQgI2btyI008/HQaD4ajfI0kSXnvtNdTV1UGv1/fYTpZlvPvuuygpKcHkyZO7bfPqq6/i5JNPxty5c1FUVCRuv+GGG+DxePDRRx8hPj4ee/fuRUJCQo/XmjdvHl588cVe+93c3Nzt7U6nE263G9OnTxe3JScnY/LkydixY4ciHC9ZsgRr1qxBQUEBHnnkEVxyySVwOp1IT0/v9dpBO3bswDnnnKP4uRUWFuKBBx5AXV1d1BUHGI6JBoG3IrD9C/c4Dh2fz4fS0lKxonRlZSVkWRbHVSoVYrICVSZrmhVLr14KrZZ/EukIssxwHCG4IBdR37T52jD5f7sPhYNt1//sQpwu7qjttFot1q9fj6KiIjz55JM49dRTMXXqVMyaNQvjx49XtF26dCluu+02dHR0wOfzIS0tDXPmzOlyzry8wN/wjo4OSJKE5cuX45xzzun2+mlpadBoNIqqNACUlJRg5syZGDduHADAbrf3ej+WL1+Om2+++aj3tzvuzhGI2dnZituzs7PFsaCFCxdi5syZAIAnnngCmzdvxjPPPINbbrmlz9ey2WxdrhM8xnBMRMctuMexlvONh4wkSXC73aIyXFJSAp/Pp2iTnp4uhklbrVa8/NPLeOeLd2BNtzIYU1ctBwFfOwAVkJQb6t5QD9q9fhxsDqwRwAW5iIaHmTNnYsaMGdi+fTt27tyJd955B6tWrcK6deswe/Zs0W7JkiWYPXs2KisrsWTJEixYsAAjR47scr7t27cjMTERHR0d2L17NxYuXIi0tDTMnz+/z31atGgR5s+fjy1btmD69OmYOXNml7B+pKysLGRlZfXrfh+LKVOmiK+1Wi0mTpyI77//ftCvO1zx3SDRIBDbOHGl6kEjyzIOHTokwrDT6UR7e7uiTUJCglhAy263IykpSXE8uMexKZ6PE3UjuBhXohHQ9jxMj0KrsiHwvI/Ta5ASpwtxb4jCW6w2Frv+Z1fIrt0fMTExOP/883H++efj9ttvx5w5c3DnnXcqwnFGRgZGjhyJkSNHYsOGDRg3bhwmTpyIgoICxblsNpuYczx27Fjs2rUL9913X7/C8Zw5c1BYWIi3334bW7ZswYoVK/Dwww/jxhtv7Lb98QyrDlasq6qqkHPEKMSqqqoB37bJaDR22aLyyJ05og3DMdEgCFaOOed4YDU3N8PpdIpA3NDQoDiu1+ths9lEGM7IyOh1flMwHB+5jRORwCHVEeHI+cZcJ4CodyqVqk9Dm8NRQUEBNm7c2ONxs9mMK6+8EsuWLcPrr7/e67k0Gg3a2nqee63X6+H3+7u9xrx58zBv3jwsW7YMTz/9dI/h+HiGVdtsNhiNRmzdulWE4cbGRuzatatLoN+5c6cYIu7z+fDFF19g4cKFfb7WlClT8Ne//hVerxc6XeADxvfeew+jR4+OuiHVAMMx0aAQexxzWPVx8Xg8cLlcYt5wdXW14rharYbZbBbV4dzc3H7tMSzCcQIfJ+oG9ziOCOV1nG9MNJzU1tbiiiuuwLXXXovx48cjMTERn3/+OVatWiVWbu7JH//4R5x00kn4/PPPMXHiRHF7dXU12tvbxbDqf/zjH7j88st7PI/VasVHH32EWbNmwWAwICMjA4sXL8ZFF12EE044AXV1dfjggw8wZsyYHs9xPMOqVSoVFi9ejHvvvRejRo0SWzmZTCZcdtlliraPP/44Ro0ahTFjxmD16tWoq6vDtddeK47/9NNPaG5uhtvtRltbG/bs2QMg8GGDXq/H//zP/+Duu+/Gddddh6VLl+Lbb7/Fo48+itWrVx9T3yMdwzHRAJP9fng7h6NwQa7+8fv9KC8vF5XhsrIySJKkaJOdnS3mDefn5/e6KuXRBMOxMT76hg1RH7ByHBGCi3HlpnAbJ6LhICEhAZMnT8bq1atx4MABeL1emM1mFBUV4dZbb+31ewsKCnDBBRfgjjvuwKZNm8Tto0ePBhCYk2s2m3H99dfjrrvu6vE8y5cvx/XXX48RI0ago6MDsizD7/fjhhtuQFlZGZKSknDhhRcOaoC85ZZb0NLSgrlz56K+vh5nnXUWNm/e3GWP45UrV2LlypXYs2cPRo4ciTfeeAMZGRni+Jw5c/Dhhx+Kf59yyikAAitiW61WJCcnY8uWLbjhhhvwi1/8AhkZGbjjjjuichsnAFDJRy7fOgQaGxuRnJyMhoaGLvP/KPJJkoS9e/cCCPyB6k8Vb7jwVlXjp6lTAY0GJ/5nD1Rc6KlHsiyjpqZGVIZdLhc8Ho+iTUpKimIRrfj4+AG5dqu3VazYueO3O5Cg73k7BopS//w98P2bwEUPApOj801CJFiy4T/Y8EUZbr7gBCz85ahQdyes8DU5OvT23rq9vR1OpxM2m61LqCKKJn19LvBdO9EA81V2DqnOzmYw7kZDQ4OoDDscDrS0tCiOx8bGKhbRGqz5Lu6WwFYIibpEBmPqHivHEaGigcOqiYhoYPCdO9EAC8435jZOAW1tbSguLhaBuLa2VnFcq9XCYrGI6nB2dvaQLKpT0RJ4nIwJHFJNPajnnONIwDnHREQ0UBiOiQaYWKk6Srdx8vl8KCkpEWG4srISR87eUKlUyM3NFZXhvLy8kOwxzJWqqVfeNqD1YOBrhuOwJUkyKjq3cuIex0REdLwYjokGmFfscRwdoUuSJLjdbhGGS0pK4PP5FG0yMjJEZdhisYTFvKfKZoZj6kVDeeD/+gQgNvq2sogUtS0eeHwSVCrAmBz6vytERBTZGI6JBthw3+NYlmUcOnRIhGGn04n29nZFm8TERMW84cTExBD1tmfBOccMx9StI7dx4t65YSu4x3F2Ygx0Gi42RUREx4fhmGiAHQ7Hwyd0NTc3iwW0nE4nGhoaFMcNBgOsVquoDqenpw/JvOHjwWHV1CsuxhURguHYxG2ciIhoADAcEw2w4IJckTysuqOjAy6XS4Th6upqxXGNRgOz2SwqwyaTKeK2CBHhOCFyHycaRA1cjCsSlNdzMS4iIho4DMdEA8jf3AKps6qqjaBw7Pf7UV5eLvYbLi8vhyRJijZGo1EMlc7Pz4derw9Rb4+fX/KjqqUKACvH1ANWjiNCMBxzMS4iIhoIDMdEA8jnDlQj1UlJ0CSE7965siyjurpaVIaLi4vh9XoVbVJTU0Vl2GazIS4uLkS9HXgH2w7CJ/ugUWmQGZsZ6u5QOBKV4/zQ9oN6FRxWnZvKcExERMeP4ZhoAIXzYlz19fWKecMtLS2K43FxcYownJo6fFfoDQ6pzo7LhkatCXFvKCyxchwRKuoDiwGakhmOiejYTZs2DRMmTMCaNWtC3ZU+Ky4uhs1mw1dffYUJEyaEujvDRmRNEiQKc97y8Jlv3NbWhr179+Ktt97CY489hkcffRRvvPEGvv32W7S0tECn02HkyJE4//zzcf311+Pmm2/G5ZdfjlNPPXVYB2PgcDg2xhtD3BMKS5LEcBwhOOeYaHiqqanB/PnzkZ+fD4PBAKPRiMLCQnzyySeijdVqhUqlgkqlQlxcHMaNG4d169YpzrNt2zbRRqVSITY2FmPHjsVTTz2laPfqq6/innvuUZw71EFZlmXccccdyMnJQWxsLKZPn479+/f3+zyLFi3CL37xCxgMhm5DdHt7O2bPno1x48ZBq9XisssuO/7ORzBWjokGkKgchyAce71elJaWinnDlZ19CVKpVMjNzRUrSufl5UGjic6qKRfjol611AB+D6BSA0nhNwqEAto8fhxq8QDgnGOi4WbmzJnweDx4/vnnYbfbUVVVha1bt6K2tlbRbvny5SgqKkJrays2bNiAoqIi5Obm4qKLLlK027dvH5KSktDW1oY333wT8+fPx4gRI3DeeecBANLS0obsvvXVqlWrsHbtWjz//POw2Wy4/fbbUVhYiL179yImpn8r9F977bXYtWsXvv766y7H/H4/YmNjsWjRIrzyyisD1f2IxXBMNIC8lZ2V4yHYxkmSJFRWVoph0iUlJfD7/Yo2mZmZYqi01WqFwWAY9H5FgsrmQDg2xTP4UDeCVePEHECjC21fqEcVDYGqcYJBi6RYvp0hGi7q6+uxfft2bNu2DVOnTgUAWCwWTJo0qUvbxMREGI2BUWBLly7FqlWr8N5773UJx1lZWUhJSQEQqKSuXbsWX375pQjHRw6rnjZtGlwuF2666SbcdNNNAAJVXJfLhYULF+Ljjz+Gx+OB1WrFgw8+iIsvvnjAfwayLGPNmjW47bbbcOmllwIAXnjhBWRnZ2Pjxo2YNWuWaPvDDz9gwYIF+PLLLzFy5Eg8/vjj4ucGAGvXrgUQqMZ3F47j4+PxxBNPAAA++eQT1NfXD/j9iSR8NSEaQL6KwZtzLMsyDh06JCrDxcXFaG9vV7RJTEwUlWGbzYbExMQB78dw4G5xA+CwauoBt3GKCEfucRzu+6oThQtZliG3tYXk2qrY2D49VxMSEpCQkICNGzfi9NNP79MH+5Ik4bXXXkNdXV2vu2nIsox3330XJSUlmDx5crdtXn31VZx88smYO3cuioqKxO033HADPB4PPvroI8THx2Pv3r1I6GXx1Xnz5uHFF1/std/Nzc3d3u50OuF2uzF9+nRxW3JyMiZPnowdO3YowvGSJUuwZs0aFBQU4JFHHsEll1wCp9OJ9PT0Xq9N3WM4JhpAwT2OB2obp+bmZlEZdjgcaGxsVBw3GAyw2WyiOpyens43iX1Q0RJ4nLiNE3WL4TgilNdxvjFRf8ltbdh36i9Ccu3RX34BVR92vtBqtVi/fj2Kiorw5JNP4tRTT8XUqVMxa9YsjB8/XtF26dKluO2229DR0QGfz4e0tDTMmTOnyznz8gJ/zzs6OiBJEpYvX45zzjmn2+unpaVBo9EoqtIAUFJSgpkzZ2LcuHEAALvd3uv9WL58OW6++eaj3t/uuN2BD/Gzs7MVt2dnZ4tjQQsXLsTMmTMBAE888QQ2b96MZ555BrfccssxXTvaMRwTDRDZ74e3KrB37rFWjjs6OuByuUQgrq6uVhzXaDQwm82iOpyTkwO1muvq9ZeYc8xwTN3hYlwRoYKLcRENWzNnzsSMGTOwfft27Ny5E++88w5WrVqFdevWYfbs2aLdkiVLMHv2bFRWVmLJkiVYsGABRo4c2eV827dvR2JiIjo6OrB7924sXLgQaWlpmD9/fp/7tGjRIsyfPx9btmzB9OnTMXPmzC5h/UhZWVnIysrq1/0+FlOmTBFfa7VaTJw4Ed9///2gX3e4YjgmGiC+mhrA7we0WmgzMvr0PX6/H2VlZSIMl5eXQ5IkRZucnBxRGc7Pz4dOxzmQx6PZ04wmTxMALshFPRDh2BzaflCvyju3ceJiXER9p4qNxegvvwjZtfsjJiYG559/Ps4//3zcfvvtmDNnDu68805FOM7IyMDIkSMxcuRIbNiwAePGjcPEiRNRUFCgOJfNZhNzjseOHYtdu3bhvvvu61c4njNnDgoLC/H2229jy5YtWLFiBR5++GHceOON3bY/nmHVwYp1VVUVco4YjVhVVcVtmwYZwzHRAPEG5xsbjVD1sAq0LMuorq4W84ZdLhe8Xq+iTWpqqpgzbLPZENeHIUjUd8H5xkn6JMTr4kPcGwpLYlg1w3E4C1aOGY6J+k6lUvVpaHM4KigowMaNG3s8bjabceWVV2LZsmV4/fXXez2XRqNBWy9zr/V6fZdFToPXmDdvHubNm4dly5bh6aef7jEcH8+wapvNBqPRiK1bt4ow3NjYiF27dnUJ9Dt37hRDxH0+H7744gssXLjwmK5LDMdEA0asVP2z+cb19fWiMux0OtHS0qI4HhcXJyrDNptt2O8xHGocUk1HxWHVESG4WjWHVRMNL7W1tbjiiitw7bXXYvz48UhMTMTnn3+OVatWiZWbe/LHP/4RJ510Ej7//HNMnDhR3F5dXY329nYxrPof//gHLr/88h7PY7Va8dFHH2HWrFkwGAzIyMjA4sWLcdFFF+GEE05AXV0dPvjgA4wZM6bHcxzPsGqVSoXFixfj3nvvxahRo8RWTiaTqcs+xI8//jhGjRqFMWPGYPXq1airq8O1114rjv/0009obm6G2+1GW1sb9uzZAyDwYUNw8bK9e/fC4/Hg0KFDaGpqEm2isUrNcEw0QIKLcamysrB3714RiA8dOqRop9PpYLFYRCDOzs7mIlpDiOGYeuVpAVo799FkOA5bkiSjsnNYtSmlf/t9ElF4S0hIwOTJk7F69WocOHAAXq8XZrMZRUVFuPXWW3v93oKCAlxwwQW44447sGnTJnH76NGjAQTm5JrNZlx//fW46667ejzP8uXLcf3112PEiBHo6OiALMvw+/244YYbUFZWhqSkJFx44YVYvXr1gNzn7txyyy1oaWnB3LlzUV9fj7POOgubN2/ussfxypUrsXLlSuzZswcjR47EG2+8gYwjpvfNmTMHH374ofj3KaecAiCwIrbVagUAXHzxxXC5XF3ayLI8WHcvbKnkIb7XjY2NSE5ORkNDA5KSkoby0jQEJEnC3r17AQT+QEXDYlFerxelpaWoXbESCdu3Y+/YAnx7xAINKpUKeXl5Igzn5eVB08Owaxp8j375KNZ9sw6/PfG3uHVy7y+yFIVqfgQePw0wJAHLSkPdG+pBdWM7Jt2/FWoV8OO9F0GrGf6vNcciGl+To1Fv763b29vhdDphs9m6hCqiaNLX5wIrx0T9JEkSKisrRWW4pKQEfr8fZx04gAQArXHxyMzMFMOkrVZrn/boo6HByjH1its4RYTyzvnGxqQYBmMiIhowDMdERyHLMmpra8Vew8XFxWhvb1e0SUxMRLocWGX6wqt+j8wLLghFV6kPKpsZjqkXnG8cESrEkGrONyYiooHDcEzUjaamJrGAlsPhQGNjo+K4wWBQLKKVnp6OH//fy5AAJI0YEZpOU58EK8fGeGOIe0JhiZXjiFBe3wqA4ZiIiAYWwzERgI6ODrhcLrHFUk1NjeK4RqNBfn6+CMQ5OTmKuVv+piZITYG9c3++WjWFD5/kQ3VrNQBWjqkHrBxHBFaOiYhoMDAcU1Ty+/0oKysT84bLysq6rMiXk5MDu90Ou90Os9kMnU7X4/m8lYFqpCYlBeoI3T8wGhxsOwi/7IdWrUVmXGaou0PhSITj/ND2g3oVnHOcm8pwTNQX0bjqMNGR+vocYDimqCDLMqqqqkQYdrlc8Hq9ijZpaWmKodKxsX1/0+XrDMdaE6uR4Sw4pDo7LhtqFRfxoW5wWHVEqAiGY27jRNSr4Af7ra2t/XpfQzTctLYGpuP0VuwCGI5pGKuvrxfDpJ1Op3hSBMXHxyvCcEpKyjFfK7jHsS7HdDxdpkFW0Rx4nDikmrolSUBDeeBrhuOwFqwcc1g1Ue80Gg1SUlJQXR2YUhQXFweVShXiXhENHVmW0draiurqaqSkpBx1O1WGYxo2WltbxQJaTqcTdXV1iuM6nQ5Wq1UE4qysrAF7gfBWBCqSnG8c3riNE/WquQqQvIBKAyTydyRctXT4UN8aGPnDcEx0dEZjYAHKYEAmikYpKSniudAbhmOKWF6vFyUlJSIMV3YObQ5SqVTIy8sTleG8vLyjflp0zH3pvLbOxMpxOHO3uAEAOQkMPtSN4HzjJBOg4ctjuKpsCFSNE2O0SIrpfXgcEQXeD+Xk5CArK6vLlDKiaKDT6fqcAfjqTxFDkiRUVFSI6nBpaSn8fr+iTWZmplhEy2KxwGAwDEnfDodjhq5wxsox9YrzjSNCeedK1bmsGhP1i0ajGbQiAdFwwXBMYUuWZdTW1orKsNPpREdHh6JNUlKSqAzbbDYkJiaGpK+H5xwzdIUzzjmmXjEcR4TyOs43JiKiwcFwTGGlqalJVIYdDgeaOvcODoqJiRFB2G63Iy0tLeQLS8g+H3xVVQAALcNxWBPDqhmOqTvc4zgiVIjFuLhSNRERDSyGYwqpjo4OFBcXi+pwTU2N4rhGo0F+fr4Iwzk5OVCrw2sLHl91NSBJUOl00GZkhLo71IMmTxOavc0AAGP80RdkoCgkwrE5tP2gXh3exol7yhMR0cDqVzi+6667cPfddytuGz16NH744YcB7RQNXz6fD2VlZaI6XF5e3mVT7pycHDFv2Gw2H3U/slALzjfW5uRAFWbBnQ4LzjdOMaQgTsc31dQNMaya4TiclbNyTEREg6TfleOxY8fi/fffP3wCLYvP1DNZllFVVSUqwy6Xq8tKiWlpaSIMW63WiNuknts4RQYOqaaj4rDqiFDREKwcR9ZrBRERhb9+J1utVtunPaLo+O3Z/jqaDlaEuhv9o1IjdeSZAID1D92CukO18Po84rAaQILOgJTkZCSnJCMlJQUGgxbwlODgDyU4GIGDEGI//ALxAGr1Xjg/fy3U3aEefFL3OQAgSYqBc+9nIe4NhRuVrwPWtsDe6Ps7UiC5m47yHRQKMmRUdq5WzQW5iIhooPU7HO/fvx8mkwkxMTGYMmUKVqxYgfz8/B7bd3R0KFYYbmxsPLaeRiHXyr/ihAP+ozcMI7LBAOmlQDg+/aX3ofrZ6tLD2dvSV/jXd1+Huht0FCNcH8H21euh7gaFqUY5Duf/f1+Fuht0FBq1CtlJHFZNREQDq1/hePLkyVi/fj1Gjx6NyspK3H333Tj77LPx7bff9riFzooVK7rMU6a+8Rm0aIyLrHAMPRDf+WVTLIAo2U6v1QB8PwpI9Uuh7gr1IlaScUaLCrVIDnVXKAzJUGGj+jxkJOhD3RU6iktONkGjDu1OBURENPyo5J+vhtQP9fX1sFgseOSRR3Ddddd126a7yrHZbEZDQwOSkpKO9dI0hCRJQkVFhZg3XFpaCr9fGdqzsrLEFkvBOcUFBQVht7I0ERFRtJAkCXv37gXA1+ThrLGxEcnJyXxvTTQAjms1rZSUFJxwwgn46aefemxjMBhgMBiO5zI0xGRZxsGDB0UYLi4uVnzAAQBJSUliES2bzYaEhAQAyhdiIiIiIiKiSHFc4bi5uRkHDhzAVVddNVD9oRBpbGwU2ys5nU40NSkXo4mJiRGVYbvdjrS0NKhUHNJGRERERETDQ7/C8c0334xLLrkEFosFFRUVuPPOO6HRaPDb3/52sPpHg6S9vR0ulwsOhwMOhwMHDx5UHNdoNMjPzxfVYaPRyOFYREREREQ0bPUrHJeVleG3v/0tamtrkZmZibPOOgs7d+5EZmbmYPWPBojP50NZWZmoDJeXl+Pn081NJpOoDJvNZuh0uhD1loiIiIiIaGj1Kxy//PLLg9UPGmCyLKOqqkpUhl0uF3w+n6JNenq6CMNWqxWxsdwzkoiIiIiIotNxzTmm8FJXVycqw06nE62trYrj8fHxYgEtu92O5GRuZ0NERERERAQwHEe01tZWsYiWw+FAfX294rher4fVahVhODMzk4toERERERERdYPhOIJ4PB6UlJSI6rDb7VYcV6vVyMvLE9Xh3NxcaDSaEPWWiIiIiIgocjAchzFJklBeXi6qw6WlpZAkSdEmOztbVIYtFgv0en2IektERERERBS5GI7D2LPPPovy8nLFbcnJySIM22w2JCQkhKh3REREREREwwfDcRjLzc1FbW2tCMN2ux2pqamcN0xERERERDTAGI7D2C9/+UsUFhZCrVaHuitERERERETDGsNxGDMYDKHuAhERERERUVRgSZKIiIiIiIiiHsMxERERERERRT2GYyIiIiIiIop6DMdEREREREQU9RiOiYiIiIiIKOoxHBMREREREVHUYzgmIiIiIiKiqMdwTERERERERFGP4ZiIiIiIiIiiHsMxERERERERRT2GYyIiIiIiIop6DMdEREREREQU9RiOiYiIiIiIKOoxHBMREREREVHUYzgmIiIiIiKiqMdwTERERERERFFPO9QXlGUZANDY2DjUl6YhIEkSmpubAQQeY7Wan78QERGFAl+To0PwPXXwPTYRHbshD8dNTU0AALPZPNSXJiIiIiIalpqampCcnBzqbhBFNJU8xB8zSZKEiooKJCYmQqVSDeWlaYg0NjbCbDajtLQUSUlJoe4ODQI+xsMfH+Phj49xdODjPPzJsoympiaYTCaODiA6TkNeOVar1cjLyxvqy1IIJCUl8YV4mONjPPzxMR7++BhHBz7OwxsrxkQDgx8vERERERERUdRjOCYiIiIiIqKox3BMA85gMODOO++EwWAIdVdokPAxHv74GA9/fIyjAx9nIqK+G/IFuYiIiIiIiIjCDSvHREREREREFPUYjomIiIiIiCjqMRwTERERERFR1GM4JiIiIiIioqjHcEy9uuuuu6BSqRT/nXjiib1+z4YNG3DiiSciJiYG48aNw6ZNmxTHZVnGHXfcgZycHMTGxmL69OnYv3//YN4N6kV/H+Onn34aZ599NlJTU5Gamorp06dj9+7dijazZ8/ucs4LL7xwsO8K9aC/j/H69eu7tI+JiVG04fM4vPT3MZ42bVqX9iqVCjNmzBBt+DwOP+Xl5fj973+P9PR0xMbGYty4cfj88897/Z5t27bh1FNPhcFgwMiRI7F+/foubR5//HFYrVbExMRg8uTJXf6mExFFC4ZjOqqxY8eisrJS/Pfxxx/32PbTTz/Fb3/7W1x33XX46quvcNlll+Gyyy7Dt99+K9qsWrUKa9euxZNPPoldu3YhPj4ehYWFaG9vH4q7Q93oz2O8bds2/Pa3v8UHH3yAHTt2wGw244ILLkB5ebmi3YUXXqg45//7f/9vsO8G9aI/jzEAJCUlKdq7XC7FcT6Pw09/HuNXX31V0fbbb7+FRqPBFVdcoWjH53H4qKurw5lnngmdTod33nkHe/fuxcMPP4zU1NQev8fpdGLGjBk499xzsWfPHixevBhz5szBu+++K9r885//xJ/+9Cfceeed+PLLL3HyySejsLAQ1dXVQ3G3iIjCijbUHaDwp9VqYTQa+9T20UcfxYUXXoglS5YAAO655x689957+Nvf/oYnn3wSsixjzZo1uO2223DppZcCAF544QVkZ2dj48aNmDVr1qDdD+pZfx7jl156SfHvdevW4ZVXXsHWrVvxhz/8QdxuMBj6fE4afP15jAFApVL12J7P4/DUn8c4LS1N8e+XX34ZcXFxXcIxn8fh44EHHoDZbMZzzz0nbrPZbL1+z5NPPgmbzYaHH34YADBmzBh8/PHHWL16NQoLCwEAjzzyCIqKinDNNdeI73n77bfx7LPP4i9/+csg3RsiovDEyjEd1f79+2EymWC32/G73/0OJSUlPbbdsWMHpk+frritsLAQO3bsABD4FNvtdivaJCcnY/LkyaINDb3+PMY/19raCq/X2+XN9rZt25CVlYXRo0dj/vz5qK2tHehuUz/09zFubm6GxWKB2WzGpZdeiu+++04c4/M4PB3P8/iZZ57BrFmzEB8fr7idz+Pw8cYbb2DixIm44oorkJWVhVNOOQVPP/10r99ztNdkj8eDL774QtFGrVZj+vTpfC4TUVRiOKZeTZ48GevXr8fmzZvxxBNPwOl04uyzz0ZTU1O37d1uN7KzsxW3ZWdnw+12i+PB23pqQ0Orv4/xzy1duhQmk0nx5urCCy/ECy+8gK1bt+KBBx7Ahx9+iIsuugh+v3+w7gb1or+P8ejRo/Hss8/i9ddfx4svvghJknDGGWegrKwMAJ/H4eh4nse7d+/Gt99+izlz5ihu5/M4vDgcDjzxxBMYNWoU3n33XcyfPx+LFi3C888/3+P39PSa3NjYiLa2Nhw8eBB+v5/PZSKiThxWTb266KKLxNfjx4/H5MmTYbFY8K9//QvXXXddCHtGA+V4HuOVK1fi5ZdfxrZt2xQLNh05rHbcuHEYP348RowYgW3btuG8884b+DtBvervYzxlyhRMmTJF/PuMM87AmDFj8Pe//x333HPPkPSZ+ud4nsfPPPMMxo0bh0mTJilu5/M4vEiShIkTJ+L+++8HAJxyyin49ttv8eSTT+Lqq68Oce+IiIYHVo6pX1JSUnDCCSfgp59+6va40WhEVVWV4raqqioxZy34/97aUGgd7TEOeuihh7By5Ups2bIF48eP77Wt3W5HRkbGUc9JQ6Ovj3GQTqfDKaecItrzeRz++voYt7S04OWXX+7Th518HodWTk4OCgoKFLeNGTOm1+HzPb0mJyUlITY2FhkZGdBoNHwuExF1YjimfmlubsaBAweQk5PT7fEpU6Zg69atitvee+89UYWy2WwwGo2KNo2Njdi1a5eiUkWhc7THGAisVHzPPfdg8+bNmDhx4lHPWVZWhtra2l7PSUOnL4/xkfx+P7755hvRns/j8NfXx3jDhg3o6OjA73//+6Oek8/j0DrzzDOxb98+xW0//vgjLBZLj99ztNdkvV6PX/ziF4o2kiRh69atfC4TUXSSiXrx5z//Wd62bZvsdDrlTz75RJ4+fbqckZEhV1dXy7Isy1dddZX8l7/8RbT/5JNPZK1WKz/00EPy999/L995552yTqeTv/nmG9Fm5cqVckpKivz666/LX3/9tXzppZfKNptNbmtrG/L7R/1/jFeuXCnr9Xr53//+t1xZWSn+a2pqkmVZlpuamuSbb75Z3rFjh+x0OuX3339fPvXUU+VRo0bJ7e3tIbmP0a6/j/Hdd98tv/vuu/KBAwfkL774Qp41a5YcExMjf/fdd6INn8fhpb+PcdBZZ50lX3nllV1u5/M4/OzevVvWarXyfffdJ+/fv19+6aWX5Li4OPnFF18Ubf7yl7/IV111lfi3w+GQ4+Li5CVLlsjff/+9/Pjjj8sajUbevHmzaPPyyy/LBoNBXr9+vbx371557ty5ckpKiux2u4f0/hERhQOGY+rVlVdeKefk5Mh6vV7Ozc2Vr7zySvmnn34Sx6dOnSpfffXViu/517/+JZ9wwgmyXq+Xx44dK7/99tuK45IkybfffrucnZ0tGwwG+bzzzpP37ds3FHeHutHfx9hiscgAuvx35513yrIsy62trfIFF1wgZ2ZmyjqdTrZYLHJRURHfaIVQfx/jxYsXy/n5+bJer5ezs7Pliy++WP7yyy8V5+TzOLwcy9/qH374QQYgb9mypcv5+DwOT2+++aZ80kknyQaDQT7xxBPlp556SnH86quvlqdOnaq47YMPPpAnTJgg6/V62W63y88991yX8z722GPiOT9p0iR5586dg3gviIjCl0qWZTmUlWsiIiIiIiKiUOOcYyIiIiIiIop6DMdEREREREQU9RiOiYiIiIiIKOoxHBMREREREVHUYzgmIiIiIiKiqMdwTERERERERFGP4ZiIiIiIiIiiHsMxERERERERRT2GYyIiIiIiIop6DMdEREREREQU9RiOiYiIiIiIKOoxHBMREREREVHUYzgmIiIiIiKiqMdwTEREA2b9+vVQqVQoLi4+alur1YrZs2cPep+IiIiI+oLhmIgownzzzTe4/PLLYbFYEBMTg9zcXJx//vl47LHHRBur1QqVSiX+i4+Px6RJk/DCCy/0eN6SkhLMmzcPVqsVBoMBWVlZuOyyy/DJJ58Mxd0iIiIiCiltqDtARER99+mnn+Lcc89Ffn4+ioqKYDQaUVpaip07d+LRRx/FjTfeKNpOmDABf/7znwEAlZWVWLduHa6++mp0dHSgqKhIcd5PPvkEF198MQBgzpw5KCgogNvtxvr163H22Wd3OTcRERHRcMNwTEQUQe677z4kJyfjs88+Q0pKiuJYdXW14t+5ubn4/e9/L/49e/Zs2O12rF69WhGO6+rqcPnllyM2NhaffPIJRowYIY796U9/QmFhIRYvXoxf/OIXOOOMMwbnjhERERGFGIdVExFFkAMHDmDs2LFdgjEAZGVl9fq9mZmZOPHEE3HgwAHF7X//+9/hdrvx4IMPKoIxAMTGxuL555+HSqXC8uXLFce+++47/PKXv0RsbCzy8vJw7733QpKkLteVZRn33nsv8vLyEBcXh3PPPRffffddH+8xERER0dBg5ZiIKIJYLBbs2LED3377LU466aR+fa/P50NZWRlSU1MVt7/55puIiYnBb37zm26/z2az4ayzzsL//d//oa2tDbGxsXC73Tj33HPh8/nwl7/8BfHx8XjqqacQGxvb5fvvuOMO3Hvvvbj44otx8cUX48svv8QFF1wAj8fTr/4TERERDSaGYyKiCHLzzTfjoosuwoQJEzBp0iScffbZOO+883DuuedCp9Mp2nq9Xhw8eBAA4Ha7sWrVKrjdbtxwww2Kdnv37sXo0aNhMBh6vO7JJ5+MDz/8ED/99BPGjRuHBx54ADU1Ndi1axcmTZoEALj66qsxatQoxffV1NRg1apVmDFjBt58802oVCoAwF//+lfcf//9x/3zICIiIhooHFZNRBRBzj//fOzYsQP/9V//hf/85z9YtWoVCgsLkZubizfeeEPRdsuWLcjMzERmZibGjRuHf/zjH7jmmmvw4IMPKto1NTUhMTGx1+sGjzc2NgIANm3ahNNPP10EYyAwbPt3v/ud4vvef/99eDwe3HjjjSIYA8DixYv7fd+JiIiIBhPDMRFRhDnttNPw6quvoq6uDrt378ayZcvQ1NSEyy+/HHv37hXtJk+ejPfeew+bN2/GQw89hJSUFNTV1UGv1yvOl5iYiKampl6vGTweDMkul6tLlRgARo8erfi3y+UCgC5tMzMzuwzvJiIiIgolhmMiogil1+tx2mmn4f7778cTTzwBr9eLDRs2iOMZGRmYPn06CgsL8ec//xkvvvgiNm7ciEcffVRxnjFjxmDfvn3o6Ojo8Vpff/01dDpdt4GYiIiIaDhgOCYiGgYmTpwIILCfcU9mzJiBqVOn4v7770dLS4u4/Ve/+hXa29sVwfpIxcXF2L59u1iZGggsDLZ///4ubfft26f4t8ViAYAubWtqalBXV9eHe0ZEREQ0NBiOiYgiyAcffABZlrvcvmnTJgBdhzX/3NKlS1FbW4unn35a3Hb99dcjKysLS5YsgcPhULRvb2/HNddcA1mWcccdd4jbL774YuzcuRO7d+8Wt9XU1OCll15SfP/06dOh0+nw2GOPKfq9Zs2ao99ZIiIioiGkkrt7l0VERGHppJNOQmtrK37961/jxBNPhMfjwaeffop//vOfMJvN+Oqrr5CSkgKr1YqTTjoJb731VpdzjBs3Dg0NDThw4IBY4Xr79u2YMWMG1Go15syZg4KCArjdbqxfvx4//fQTHn30Udx4443iHJWVlRg3bhwkScIf//hHxVZOX3/9NZxOJ6xWKwDg1ltvxYoVK8RWTl999RXeeecdeDwezJgxA+vXrx+KHx0RERFRr7iVExFRBHnooYewYcMGbNq0CU899RQ8Hg/y8/OxYMEC3HbbbUhJSTnqOW6++WbMnj0bL730EmbPng0AOPvss/H111/j/vvvx4YNG1BZWYnk5GScccYZePbZZ3HWWWcpzpGTk4MPPvgAN954I1auXIn09HTMmzcPJpMJ1113naLtvffei5iYGDz55JP44IMPMHnyZGzZsgUzZswYqB8LERER0XFj5ZiIiIiIiIiiHuccExERERERUdRjOCYiIiIiIqKox3BMREREREREUY/hmIiIiIiIiKIewzERERERERFFPYZjIiIiIiIiinpDvs+xJEmoqKhAYmIiVCrVUF+eiIiIiGjYkGUZTU1NMJlMUKtZ9yI6HkMejisqKmA2m4f6skREREREw1ZpaSny8vJC3Q2iiDbk4TgxMRFA4AmclJQ01JenQSZJEn744QcAwIknnshPMImIiEKEr8nRobGxEWazWbzHJqJjN+ThODiUOikpieF4GJIkCQkJCQACjzFfiImIiEKDr8nRhdMViY4f/0oSERERERFR1GM4JiIiIiIioqjHcExERERERERRj+GYiIiIiIiIoh7DMREREREREUU9hmMiIiIiIiKKegzHREREREREFPUYjomIiIiIiCjqMRwTERERERFR1GM4JiIiIiIioqjHcExERERERERRj+GYiIiIiIiIoh7DMREREREREUU9hmMiIiIiIiKKegzHREREREREFPUYjomIiIgobMiyjIMHD4a6G0QUhbSh7gARERERRbe6ujo4HA44nU44nU60trZiyZIliIuLC3XXiCiKMBwTERER0ZBqaWkRQdjhcKC+vl5xXK/X4+DBg8jPzw9NB4koKjEcExEREdGg8ng8KCkpEdVht9utOK5Wq5GXlwe73Q6bzYbc3FxoNJoQ9ZaIohXDMRERERENKEmSUF5eLsJwaWkpJElStMnOzobNZoPdbofFYoFerw9Rb4mIAhiOiYiIiOi4BBfRCobh4uJidHR0KNokJyeLyrDNZkNCQkKIektE1D2GYyIiIiLqt8bGRhGGHQ4HmpubFcdjYmJEGLbb7UhNTYVKpQpRb4mIjo7hmIiIiIiOqr29HcXFxSIQ/3y7Ja1Wi/z8fBGGjUYj1GruGkpEkYPhmIiIiIi68Pl8KCsrg8PhgMPhQEVFBWRZFsdVKhVMJpMIw2azGVot31oSUeTiXzAiIiIigizLcLvdojLscrng8/kUbdLT00UYtlqtiI2NDVFviYgGXr/DcXl5OZYuXYp33nkHra2tGDlyJJ577jlMnDhxMPpHRERERIOkrq5OVIadTifa2toUxxMSEhSLaCUnJ4eop0REg69f4biurg5nnnkmzj33XLzzzjvIzMzE/v37kZqaOlj9IyIiIqIB0tLSIhbQcjqdqK+vVxzX6/WwWq2iOpyZmclFtIgoavQrHD/wwAMwm8147rnnxG02m23AO0UUaWSfD/jZ/o1EQZIswc/fj/AnS4DkO3o7ilpeScIRU27D3pH7Cm96ayNcrmIcrK5VtFGpVDDl5SA/Px/5+Rbk5ORAo9aI4y2NdUPW35+LjU+ChnOYiWgI9esvzhtvvIHCwkJcccUV+PDDD5Gbm4sFCxagqKiox+/p6OhQ7HPX2Nh47L0lCkP1r76GyjvvBLzeUHeFiIhIkA0G4KUXAQD225djxM/2He7SHkDFEPSrr+ofuhlTfnVdqLtBRFGkX+vrOxwOPPHEExg1ahTeffddzJ8/H4sWLcLzzz/f4/esWLECycnJ4j+z2XzcnSYKJ03vv89gTEREREQU4VSy3PcBQnq9HhMnTsSnn34qblu0aBE+++wz7Nixo9vv6a5ybDab0dDQgKSkpOPoOoUjSZKwd+9eAEBBQUFU7G/o+PV/o+P775G7ZjXizzwz1N2hMPP/vv9frP3qMZybfy5unXRrqLtDPfn2VWDLbUD+FOCS1aHuDYUZj1/GjLXbAQDPXzMZSbGhHerb3NyEivJKVFRUoKKyHG2t7YrjeoMeJpMJuXm5yM47AQCQEqeKuLnDGUYrDLFxoe5G2GtsbERycjLfWxMNgH79dc/JyUFBQYHitjFjxuCVV17p8XsMBgMMBsOx9Y4oAvgqAoPQ9HY7NImJIe4NhZty1KMtRoXsLBuS03NC3R3qidQI6CTANAowjQ51byjMuGpbUK0xIUanxoljxg15yGxra0NxcbFYRKu29sh5w3po4+KQn58Pu90Ou90Oo9EIlUql+MDaZB0TFR9YExEdj36F4zPPPBP79u1T3Pbjjz/CYrEMaKeIIoXU0gJ/QwMAQGcyhbg3FI4qmgMfnuTEMxiHtYbSwP+T80LbDwpL5XWB7Y1MKbFDEox9Ph9KS0tFGK6oqMCRA/1UKhVMJpNYUdpsNkPLhauIiI5bv/6S3nTTTTjjjDNw//334ze/+Q12796Np556Ck899dRg9Y8orHkrKwEA6sREaBISQtwbCkeVLYHfEYbjMCfCMdfFoK7K6wPhODcldlDOL0kS3G632GKppKQEPp9y5fT09HRRGbZarYiJiRmUvhARRbN+hePTTjsNr732GpYtW4bly5fDZrNhzZo1+N3vfjdY/SMKa8FwzKox9cTd4gbAcBz2GsoC/2c4pm5U1Afm9A5UOJZlGXV1daIy7HQ60dbWpmiTkJAAu90uqsOcS0pENPj6PQbnV7/6FX71q18NRl+IIo63ojMc5zD4UFdtvjbUdQT2CM1J4O9I2JIkoKE88DWHVVM3KuoPD6s+Vi0tLaIy7HA40NA5JSdIr9fDarWK6nBGRkbELaBFRBTpOEGF6Dh4Oxfj0pkYfKir4JDqeF08EnVcrC1stdQA/g4AKiCJo0Coq/JjCMcejwcul0tUh6uqqhTH1Wo1zGazqAzn5uZywSwiohBjOCY6Dt7KQDjWsnJM3XA3Hx5SzQpQGAsOqU7MATS60PaFwtLhynHP83z9fj8qKipEZbisrAySJCnaGI1GEYbz8/Oh1+sHtd9ERNQ/DMdEx8FXwTnH1DMuxhUhgotxpXC+MXUly7KoHOelxClur6mpEZXh4uJieDwexfempKSIMGyz2RAfHz+kfSciov5hOCY6DmJBrhyGY+qK4ThCiMW4ON+YujrU4kGHT4JKBcSiA3v2/CgCcXNzs6JtbGysCMN2ux2pqakh6jURER0LhmOiYyT7/fB2ziHjnGPqjgjHXIwrvDEcUw/a2trwyZ59AIA4lQ//39/WKo5rtVpYLBYRiI1GI6dQEBFFMIZjomPkq6kBfD5Aq4U2MzPU3aEwFAzHxnhjiHtCveIex9TJ5/OhpKRErCpdWVkJpy8ZwEjEye1QqVQwmUyiMpyXlwetlm+liIiGC/5FJzpGYhun7GyoNJoQ94bCUWVz4HfEFM9h92GN4ThqSZIEt9sthkmXlJTA5/MpG8WlAR5gjCUbt8y+FDExPS/KRUREkY3hmOgYBVeq5h7H1B1JluBuPbxaNYUxDquOGrIs49ChQyIMO51OtLe3K9okJCSIyrDNZsOjH5Xhg4+dODE/m8GYiGiYYzgmOka+zsW4tJxvTN2obauFT/JBrVIjM47D7sOWpxVorQ18zXA8LDU3N4th0k6nEw0NDYrjer0eNptNzBvOyMhQzBsW2zglMxgTEQ13DMdEx8hbEawcc8gsdVXREvj9yIrLglbNP7VhK1g11icCMcmh7QsNCI/HA5fLJfYbrq6uVhxXq9Uwm82iOmwymaBWq3s8X7nY4zh2UPtNREShx3dsRMdIzDnmsGrqBrdxihBivnEewFWGI5Lf70d5ebmoDJeVlUGSJEUbo9EoKsP5+fnQ6/V9Pn8FwzERUdRgOCY6RmKP41xWjqkrdzPnG0eEYOU4hYtxRQpZllFTUyMqwy6XCx6PR9EmNTVVhGGr1Yr4+Phjula714+DzYFz56UyHBMRDXcMx0THSIRjVo6pG6wcRwguxhURGhoaRGXY4XCgpaVFcTwuLk4xbzg1NXVArlvZEFisK06vQXKsbkDOSURE4YvhmOgY+JubITU2AgC0RoYf6io455jhOMwdOayawkZbWxuKi4tFdfjQoUOK41qtFhaLRcwbzs7OViyiNVDK6w4PqR6M8xMRUXhhOCY6BsHFuNTJydAkHNtwPRre3C2dw6oTGI7Dmqgcc1h1KPl8PpSUlIjqcEXn39gglUqF3NxcURnOy8uDVjv4b2E435iIKLowHBMdg+A2TjoT5xtT9zisOkKIyjHD8VCSJAlut1tUhktKSuD3+xVtMjIyRGXYYrGEZI/h4ErVuQzHRERRgeGY6BhwvjH1ptXbioaOwF6qDMdhTJKAhvLA1xxWPahkWcahQ4dEZdjpdKK9vV3RJjExEXa7XcwdTkpKClFvD6sQ4Zh7HBMRRQOGY6Jj4C0P7nHM4ENdBavGibpEJOgTQtwb6lFzFSB5AZUaSORzeaA1NzeLBbQcDgcaO9dpCDIYDLBarSIQZ2RkhN28Xu5xTEQUXRiOiY6BqByb+IaaugqGY2OCMcQ9oV4F5xsnmgANXw6PV0dHB1wul6gOV1dXK45rNBqYzWYxb9hkMkGtVoeot33DOcdERNGF7waIjoGXc46pF8FwbIrn70dYC8435h7Hx8Tv96O8vFyE4bKyMkiSpGhjNBpFZTg/Px96vT5Eve0/SZJR0bmVE+ccExFFB4ZjomPgreSwaupZZXNn5TieleOwxj2O+0WWZVRXV4uh0i6XCx6PR9EmNTVVVIZtNhvi4uJC1NvjV9vigccnQaUCjMmcc0xEFA0Yjon6Sfb54KsKDBfU5rAySF2JbZy4GFd4Yzg+qoaGBlEZdjgcaGlpURyPi4tThOHU1NQQ9XTgBYdUZyfGQKcJ7+HfREQ0MBiOifrJV10N+P2ATgdtZkaou0NhqKIlMLKA4TjMiW2cGI6D2traxGrSDocDhw4dUhzX6XSwWCwiEGdnZ4fdIloD5fBiXKwaExFFC4Zjon4S842zs6EK88VkKDRE5TiB4TiscY9jeL1elJaWiupwRUWF4rhKpUJubq7YbzgvLw8ajSZEvR1aXIyLiCj6MBwT9ZO3gotxUc/8kh9VLVUAWDkOe2JYdfSEY0mSUFlZKcJwSUkJ/H6/ok1mZqaoDFutVhgMhhD1NrSClePcVIZjIqJowXBM1E+icszFuKgbB9sOwif7oFFpkBmbGeruUE86moG2usDXw3hYtSzLOHTokNhruLi4GO3t7Yo2iYmJojJss9mQmJgYot6Gl2DlmCtVExFFD4Zjon7yVpQDALTc45i6EdzGKTsuGxp1dAw/jUjBqrEhGYhJCm1fBlhzc7NiEa3GxkbFcYPBAJvNJqrD6enpw3be8PEQc46TGY6JiKIFwzFRP7FyTL0JhmNu4xTmhtFK1R0dHXC5XKI6XFNToziu0WhgNptFdTgnJwdqrpdwVBX1gQo75xwTEUUPhmOifvKJOce5Ie4JhaNgODYlcE56WAsuxpUSefON/X4/ysrKRHW4vLwckiQp2uTk5IjKcH5+PnQ6XYh6G5naPH4cagns4cw5x0RE0YPhmKifROWYw6qpG5XNgd8PLsYV5iKocizLMqqrq0Vl2OVywev1KtqkpqaKyrDVakVcXFyIejs8VDQEhlQnGLRIiuFbJSKiaMG/+ET94G9shNTcDADQGTlslrrisOoIEeZ7HNfX14vKsNPpREtLi+J4XFycWEDLZrMhNTU1RD0dnsrrDu9xzPnYRETRg+GYqB+CVWNNSgrUrMxQN4LhmJXjMBdm2zi1traiuLhYBOJDhw4pjut0OlgsFhGIs7OzGdoGEfc4JiKKTgzHRP3gragAwD2OqWeccxwhROU4NOHY6/WipKRErChd2fnBW5BKpUJeXp6YN5yXlweNhqufDxVu40REFJ0Yjon6IVg55jZO1J1mTzOaPE0AOKw6rEl+oDHwQddQDauWJAmVlZWiMlxSUgK/369ok5mZKSrDVqsVBoNhSPpGXZVzpWoioqjEcEzUDz6xjROrgtSVu8UNAEjSJyFeFx/i3lCPmqsAyQeoNEDi4HyIIcsyamtrRRguLi5Ge3u7ok1SUpJi3nBiYuKg9IX6j5VjIqLoxHBM1A/e8s5h1dzjmLpR0RL4/eB84zBX3zmkOikXUA/cUOWmpiYxTNrpdKKxsVFx3GAwiCBst9uRnp7OecNhqpxzjomIohLDMVE/cBsn6k2wcsxwHOYGaKXqjo4OxSJaNTU1iuMajQb5+fkiDOfk5ECtVh/XNWnwSZKMyobDq1UTEVH0YDgm6ofD4ZjDqqkrsVJ1AsNxWAuuVJ3Sv8W4/H4/ysrKxH7D5eXlkGVZ0SYnJ0eE4fz8fOh0uoHqNQ2Rg80d8PplqFWAMYnhmIgomjAcE/WR7PXCV10NgMOqqXvcxilCiG2ceq8cy7KMqqoqURl2uVzwer2KNmlpaSIMW61WxHGLt4gXHFJtTIqBVsNKPxFRNGE4Juojb1U1IElQ6XTQpKeHujsUhiqbGY4jQi/Dquvr60Vl2Ol0orW1VXE8Li5OLKJlt9uRkpIyBB2mocT5xkRE0YvhmKiPfJWBxZa0OTlQcd4gdSNYOeY2TmFOVI7NaG1tVSyiVVdXp2iq0+lgsVhgt9tht9uRlZXFRbSGuQqGYyKiqMVwTNRHnG9MvfFJPlS3BobdmxL4OxKuvF4v1HUuaAD8890d+KH2U8VxlUqFvLw8URnOy8uDRjNwK1pT+Kvo3OM4N5XhmIgo2jAcE/WRtyK4xzGHzFJXB9sOwi/7oVVrkRGbEeruUCdJklBRUSGqw1UlP+EWfxMAwHGwA1DpkZWVJcKwxWKBwWAIca8plDismogoejEcE/WRt4J7HFPPKpoDvx/ZcdlQqzjsPlRkWUZtba0YJu10OtHR0SGOZ8r1AACPJh4zLr0SNpsNiYmJIeothaPyukA4zuU2TkREUYfhmKiPuMcx9YYrVYdOU1OTqAw7HA40NTUpjsfExMBms8Fms2G02gW8+QL0GXaMHz8+RD2mcFbRwMoxEVG0Yjgm6iNv54JcnHNM3QmGY843Hnzt7e1wuVyiOlxTU6M4rtFokJ+fL1aVzsnJgTq4iN5nXwf+3889jik6tHT4UN8a2K4rl+GYiCjqMBwT9YEsy/B1zjnWclg1dcPd4gbAlaoHg8/nQ1lZmagOl5eXQ5ZlRRuTySTmDZvNZuh0uu5P1sc9jik6VXZWjRNjtEiM6eF3iIiIhi2GY6I+kBobIXXud8o5x9QdDqseOLIso6qqSlSGXS4XvF6vok1aWprYXslqtSI2to9VPoZj6kV5cKVqVo2JiKISwzFRHwQX49KkpUEdw0VaqKvgglwMx8emrq5Osd9wa+eHUUHx8fFimLTNZkNKSsqxXaihNPB/hmPqRnAxLs43JiKKTgzHRH3APY7paILDqnMSGI77orW1VRGG6+rqFMd1Oh2sVqsYKp2VlQWVSnX8FxaV4/zjPxcNOxX1wZWqGY6JiKIRwzFRH3CPY+pNk6cJzd5mAIAxjnOOu+P1elFSUiJWlHa73YrjarUaubm5ojqcl5cHjUYzsJ3w+4DGQIWflWPqTgX3OCYiimoMx0R9cHilaoZj6io43zjFkII4XVyIexMeJElCRUWFqAyXlpbC7/cr2mRlZYnKsMVigcFgGNxONbsB2Q+odUBC9uBeiyJSuQjHnD5DRBSNGI6J+iA455grVVN3Kpu5GJcsy6itrRWV4eLiYnR0dCjaJCUliUW0bDYbEhIShraT9Z3zjZNMQHBrJ6IjlHNYNRFRVGM4JuoDnxhWzTnH1FWwchxt2zg1NTWJyrDD4UBTU5PieExMjFhAy263Iy0tbWDmDR8rMd+YexxTV35JhrshsFo1h1UTEUUnhmOiPuCCXNSbYDg2JQzv34/29na4XC5RHT548KDiuEajgcViEYE4JycH6nCq0AZXqk5hOKauapo64JNkaNQqZCdxWDURUTRiOCY6Ctnjga+mBgDnHFP3husexz6fD2VlZaI6XF5eDlmWFW1MJpOoDJvNZuh0uhD1tg+4xzH1Ijik2pgUA406hCMciIgoZBiOiY7CW1UFyDJUej00aWmh7g6FoeCc40gfVi3LMtxutxgm7XK54PP5FG3S09NFGLZarYiNjaDhp9zjmHrB+cZERMRwTHQUR27jFNL5khS2IrlyXFdXJyrDTqcTra2tiuPx8fFiAS273Y7k5OQQ9XQAsHJMvajgStVERFGP4ZjoKMQ2TrnDez4pHRuv5EVNW2DYfSTMOW5paRFB2OFwoL6+XnFcr9fDarWKecNZWVnD50MhEY7zQ9sPCkvBcJybysoxEVG0YjgmOgpf52Jc3MaJulPTWgNJlqBT65AWE37D7j0eD0pKSkR12O12K46r1Wrk5eWJynBubi40Gk2IejuI2huAjsbA18m5oe0LhaXDlWOGYyKiaMVwTHQUwT2OuY0TdaeiOfD7YYw3Qq0K/crMkiShvLxcVIZLS0shSZKiTVZWlthv2GKxQK/Xh6i3Qyi4x3FsGqCPD21fKCyV1TEcExFFO4ZjoqM4cs4x0c+Fer6xLMs4ePCgqAwXFxejo6ND0SY5OVlUhm02GxISEkLS15DifGM6igouyEVEFPUYjomOQuxxzDnH1A13S2CY8lCG48bGRhGGHQ4HmpubFcdjYmIUYTgtLW34zBs+VmKPY843pq6a2r1obA+szM7KMRFR9GI4JuqFLMuHwzErx9QNUTlOGLzfj/b2dhQXF4tAfPDgQcVxrVaL/Px8EYiNRiPU6tAP8Q4rrBxTLyob2gEAybE6JBj41oiIKFrxFYCoF/76eshtgaF2WmNk72FLg2MwhlX7fD6UlpaKynBFRQVkWRbHVSoVTCaTCMNmsxlaLf+c94rhmHpRzsW4iIgIDMdEvQouxqXJyIDaYAhxbygcVTYHwrEx/tg/PJFlGW63W1SGXS4XfD6fok16eroIw1arFbGxfBPfL8Fh1QzH1I3yuuB8Y+5xTEQUzRiOiXrh45Bq6oUsy8dcOa6rq4PD4RCBuK1zhEJQQkKCmDNss9mQnJw8YP2OSqJybA5tPygscRsnIiICGI6JeiVWqjZxMS7qqtHTiFZfK4Cjh+OWlhYxTNrpdKK+vl5xXK/Xw2q1iupwZmYmF9EaKH4v0BR4LjMcU3e4UjUREQEMx0S94mJc1JvgStVpMWmI0SqHY3o8HpSUlIjqcFVVleK4Wq1GXl6e2G/YZDJBo9EMWd+jSlMlIEuARg/EZ4a6NxSGKuoDC3KxckxEFN0Yjol6EZxzrDMxHFNXFc2B3w9jvBGSJKG8vFxUhktLSyFJkqJ9VlaWCMMWiwV6vT4U3Y4+9Z3zjZNyAa7iTd3gglxERAQwHBP1Klg51rJyTD8jyzL2V+0HAPgO+fDAAw/A4/Eo2iQnJyvmDSckJISiq8SVqqkXPr8Ed2Ogcsxh1URE0Y3hmKgX3spg5ZhzjglobGwUlWGHw4FPdZ8CyYBUL8Hj8SA2NlYEYbvdjtTUVM4bDgfBlapT8kPbDwpL1U0d8EsydBoVshK5KwERUTRjOCbqgeTxwF9zEADDcbRqb2+H0+kUYbi2tlZ5PCtQbZowYgLmnjoXRqORYTgcsXJMvQguxmVMjoFazecvEVE0Yzgm6kFwGydVTAw0KSmh7QwNCZ/Ph9LSUlEdrqiogCzL4rhKpYLJZBKV4X179wEHgTNOOgM5HHofvrjHMfVCzDdO5pBqIqJox3BM1IMjV6pmNXB4kmUZbrdbrChdUlICn8+naJOenq6YNxwTc3hV6qrPAitQ93ePYxpirBxTL8q5jRMREXViOCbqAfc4Hn5kWUZdXZ2oDDudTrS1tSnaJCQkiDBst9uRlJTU7bm8fi9q2moAMByHNVk+IhxzzjF1JfY4TmU4JiKKdgzHRD04vBgXg08ka2lpEXOGnU4n6uvrFcf1ej2sVqvYYikjI6NPIwWqWqsgQ4ZerUdaTNog9Z6OW3s94GkOfJ2cG9KuUHjiHsdERBTEcEzUA27jFJk8Hg9cLpcIw1VVVYrjarUaZrNZVIZNJhM0Gk2/r1PZEvj9yEngsPuwFqwax2UAOoYf6qqCexwTEVEnhmOiHvgqOivHORxWHc78fj8qKirEvOGysjJIkqRok52dLYZKWywW6PX6475uMBwb443HfS4aRPVcjIt6V14XnHMcc5SWREQ03DEcE/WAc47DkyzLqKmpEZXh4uJieDweRZvk5GQxTNpmsyE+Pn7A+1HZHPj9MMXz9yOsBSvHKebQ9oPCUmO7F00dgUX4WDkmIiKGY6JuyLJ8eLVqzjkOuYaGBsW84ebmZsXx2NhYMUzaZrMhNTV10Ic6i2HVXIwrvIltnBiOqavgkOrUOB3i9HxLREQU7fhKQNQNf10d5I4OQKWCNjs71N2JOm1tbSguLhZhuLa2VnFcq9XCYrGIQGw0God83q+7xQ2Aw6rDHrdxol5wvjERER2J4ZioG97ywHxjbUYG1AMwP5V65/P5UFpaKuYNV1ZWQpZlcVylUsFkMokwbDabodWG9s9XRUvgdyQngZXjsNbAOcfUs+B8Y4ZjIiICGI6JuhXcxknLIdWDQpIkuN1uURkuKSmBz+dTtMnIyBBh2Gq1IiYmfBbLkWVZVI45rDrMsXJMvSjv3MYpl+GYiIjAcEzULV8lF+MaSLIso66uTlSGnU4n2tvbFW0SEhLEnGG73Y6kpKQQ9fboGjoa0OYLVJw4rDqM+TxAU+BDDCTnh7YvFJaCw6oZjomICGA4JuqWWKma2zgds+bmZsUiWg0NDYrjer0eNptNhOGMjIyI2S84uBhXekw6DBpDiHtDPWqqACADGgMQnxHq3lAY4pxjIiI6EsMxUTe8Yo9jDpntK4/HA5fLJcJwVVWV4rharYbZbBbV4dzcXKjV6hD19viI+cYcUh3ejtzjOEI+eKGhVS7CcfhM2yAiotBhOCbqBrdxOjq/34/y8nJRHS4rK4MkSYo2RqNRVIbz8/OhHyaLm4n5xlyMK7xxvjH1wuuXUNXIOcdERHQYwzFRN7ycc9yFLMuoqakRleHi4mJ4PB5Fm5SUFFEZttlsiI+PD1FvB1dlM/c4jgjBcJzCPY6pq6rGdkgyoNeokZHA6RFERMRwTNSF1N4Of+e+utE+rLqhoUGEYafTiebmZsXx2NhYURm22+1ITU0NUU+HVnDOMcNxmBPbODEcU1cVnStV56TEQK3msHsiImI4JurC5w4MmVXFxUGdnBzi3gyttrY2FBcXi0Bc2/khQZBWq4XFYhGB2Gg0RswiWgOJ2zhFCA6rpl6IxbiSOaSaiIgCGI6JfubIxbiGe/Dz+XwoKSkRYbiyshKyLIvjKpUKubm5Igzn5eVBq+WfjeCCXMYEbuMU1hqOWJCL6GfKuVI1ERH9DN/lEv3McJ5vLEkS3G63CMMlJSXw+XyKNhkZGSIMW61WxMRwFdcjefweHGw7CAAwxQ+/35FhQ5aPqBxzWDV1FQzHuakMx0REFMBwTPQzh/c4jvwhs7Is49ChQ4p5w+3t7Yo2iYmJIgzbbDYkJSWFqLeRoaolsEVVjCYGKYaU0HaGetZWB3hbA18n5Ya2LxSWgsOqc7mNExERdWI4JvqZSN/Gqbm5WWyv5HQ60dDQoDhuMBhgtVpFIM7IyBj2w8cHUnAxLmN8dM63jhjBIdXxWYCO4Ye6quCwaiIi+hmGY6KfOXLOcSTweDxwuVxwOBxwOByorq5WHFer1cjPzxdh2GQyQa1Wh6i3kS8435iLcYW5es43pp7JsozyOoZjIiJSYjgm+hlvZSD8aMM0HPv9fpSXl4vKcFlZGSRJUrQxGo1imHR+fj70en2Iejv8iG2cEsLz94M6caVq6kVjmw8tHj8ArlZNRESHMRwTHUGWJPgqA9v06EzhMU9RlmVUV1eLodIulwsej0fRJjU1VbGIVnx8fIh6O/xxG6cIERxWnZIf2n5QWAouxpUer0esXhPi3hARUbhgOCY6gv/QIcgeD6BSQZedFbJ+NDQ0iMqww+FAS0uL4nhcXBxsNpsIxKmpqSHqafSpbO6sHDMchzdWjqkXnG9MRETdYTgmOkJwvrE2KwsqnW7IrtvW1iZWk3Y4HDh06JDiuFarVSyilZ2dzcWgQkQMq2Y4Dm/c45h6cXiPYy7WRkREhzEcEx1hqLZx8nq9KC0tFdXhis5QHqRSqZCbmyvCcF5eHrRaPl1DTZZlhuNIwcox9YKVYyIi6g7fbRMd4fA2TqYBPa8kSaisrBRhuKSkBH6/X9EmIyMDdrsddrsdFosFMTGsaISbuo46dPg7oIIK2fHZoe4O9cTXATQH9qNG8v/P3p/HR17W+d7/u/bsW2etrBUEmqUZF5Yfmww/W5ZBR48DAqMMMIhzO94yHoRxOaOAHAEdcBn1FkWFcWBEUUc9oyzKoT230iyKoyA7VVkrS3c6+1rLdf+R1EV/6e50qpNKJd96PR+PfnR3fa9UfcKX6uSdz7Ww5hj76rdnHBOOAQCvIhwDe8nsVL3aM46NMdqzZ489Xqmrq0tzc3OOMeXl5XZH6UgkooqKilW9JnIv0zWuLa5V0McO4BvWRP/i7/5iqaQmv7VgQ4oTjgEA+0E4BvZi1xwfwrTqqakpxyZaExMTjuuhUEgdHR22O7xlyxbWDW8ybMa1Sex9xjHvMexHP9OqAQD7QTgG9pK0a44PPq16fn5e3d3dNhAPDw87rvt8PrW2ttp1w+FwWF6vNyd1Y31kOseNpY15rgTLYr0xlrGQTGt4cl4S4RgA4EQ4BvZi1xw37xuOU6mU+vr6bBju7+9XOp12jGlqarJhuK2tTYF13PEauZcJx+GytV2TjjWWCcdVrfmtAxvS0MScjJGCfq9qy1geAQB4FeEYWJKenVVqdFTS4m7VxhgNDw/bMNzV1aVEIuH4mOrqahuGI5GISkpK8lE61sng9KAkOscbnj3GiXCMfe29GRdLWwAAeyMcA0sSA4vBxxQX68cPPaRYV5emp6cdY0pKShxhuLq6Oh+lIk9Yc7xJMK0ay4hzxjEA4AAIxyhos7OzdgOt8V/9Sm+UNBEM6pk//UmSFAgE1N7ebgNxQ0MDnYYCFp9e3LCNcLzBje+1IRfwGv2jS+G4kvXGAAAnwjEKSiKRUG9vrz1iaWBpjbEkRYYWz0VNb6nRm9/8ZnV2dqqlpUU+ny9f5WIDmUvOac/cHkmE4w3NGDrHWFZ8nJ2qAQD7RziGq6XTaQ0MDNh1wz09PUqlUo4xdXV16uzsVHsqLT3xpCInnqimM8/MU8XYqIZmFn94UuwvVmWoMs/V4IBmRqTknCSPVNGc72qwAfWPLZ4531xNOAYAOBGO4SrGGI2MjNip0l1dXZqbm3OMKS8vt2cNRyIRlZeXS5LiO36lca3sGCcUnsxO1U2lTUyt38gyU6rLGiR/KL+1YEOK77UhFwAAeyMcY9ObnJxULBazgXhiYsJxPRQKKRKJ2HXDW7Zs2W+4ScQX15MGwkyZxb7YjGuTGGO9MQ7MGPPqmmPCMQDgNQjH2HTm5+fV1dVlw/CuXbsc130+n1pbW213uKmpSV6v96DPa884biL8YF+ZzjHHOG1wrDfGMsZmEppNLC6taapkt2oAgBPhGBteKpVSX1+fXTfc19cnY4xjTFNTk+0Mt7W1KRAIZPUaJp1WYnDxKKdAmGnV2FcmHIfL+P9jQ8uE4yrOOMa+Mmcc15aFVBRgs0UAgBPhGBuOMUZDQ0M2DHd3dyuRSDjGVFdX285wR0eHSkpKVvWayd27pURC8nrlr69f1XPBnfZec4wNzB7jRDjGvl5db0zXGACwL8IxNoSxsTEbhqPRqGZmZhzXS0pK7AZanZ2dqqqqWtPXTy6tN/Y3NMjj522BfWXWHDOteoPjjGMsI9M5Zr0xAGB/SAHIi5mZGccmWqOjo47rgUBA7e3ttjtcX1+f0x2CWW+M5aRNWoPTi9Pu6RxvcKw5xjLihGMAwDKyCsfXX3+9brjhBsdjRx55pJ5//vk1LQruk0gk1NPTY7vDA0thNMPj8ailpcV2hltaWuTzrd96sER8KRyz3hj7sWdujxbSC/LIo4bShnyXgwNJzErTSxv0Ma0a+xHPnHFMOAYA7EfWneNjjjlGv/zlL199Aqag4gDi8bjtDPf29iqVSjmu19fX2zDc3t6uUCh/Z5LSOcZyMl3jupI6BbzZbfaGdTSxuDxCgVKpuDq/tWBDYlo1AGA5WSdbv9+vxsaVr7mbn5/X/Py8/ftrz6DFgd17xWkq6x09+MANxBMMqf2W70iS/vB/vV1mYV5bJG1xjrJ/Skp6celXPjXsTqtM0r+9cpd+9/W781wNNppJb1oKSpVje/T0zWfmuxwcQImZ1mGS+s0WfezbT+S7HGxAzw8ufg9C5xgAsD9Zh+OXXnpJ4XBYRUVFOvnkk3XzzTerra3tgONvvvnmfaZiY2WKB8d0WE8632VkxYTSylQc6TXyzJv9jVrPkrKyszmtF4oSBx+IgvT6uVFtm4/muwwcxFPzYf2/L+3OdxnYoIoCXrXXru6EAwCAO3nMaw+MXcb999+vqakpHXnkkRoYGNANN9yg/v5+PfPMMyovL9/vx+yvc9za2qrx8XFVVFSs/jNwsZ997eOa6d8434injVFiYUGJREILCwtKppKvGeFRUXGpTnrfzZKk5+67RUptnqA5Xx7SaKRGyuHGX9i8/B6fjg20qdgTzHcpWIbx+jVcd4oSwcp8l4IN6sjGch3VVBjff6TTaT377LOSpKOPPlperzfPFSEXJiYmVFlZyffWwBrIKhy/1tjYmNrb2/X5z39eV1xxxYo+hjfw5pFMJtXX12fXDff39+u1/7uEw2G7bri1tVU+n48vxAAAbACE48LA99bA2lnVblpVVVU64ogj9PLLL69VPcgjY4yGhobsjtLd3d1KJJyd35qaGhuGI5GIioud67bS6c01DRwAAAAApFWG46mpKb3yyiu65JJL1qoerLOxsTFFo1EbiGdmZhzXS0pK7FnDkUhEVVVV+SkUAAAAAHIoq3B8zTXX6O1vf7va29sVj8d13XXXyefz6eKLL85VfVhjMzMzdpp0LBbT6KhzN+xAIKCOjg7bHa6vr5eHNbgAAAAAXC6rcNzX16eLL75YIyMjqqur02mnnabHHntMdXV1uaoPq5RIJNTT02PD8MDSeb4ZHo9HLS0ttjvc3Nwsn8+Xp2oBAAAAID+yCsf33ntvrurAGkmn04rH47Y73Nvbq1Qq5RhTX19vO8Pt7e0KhUJ5qhYAAAAANoZVrTlG/hljNDIyYjvDsVjMcXSWJFVUVDjWDZeVleWpWgAAAADYmAjHm9Dk5KQNw9FoVJOTk47rRUVFikQitjtcU1PDumEAAAAAWAbheBOYm5tTd3e33VV69+7djus+n09tbW22O9zY2MhZhgAAAACQBcLxBvab3/xGzz//vPr7+2WMcVwLh8O2M9za2qpAIJCnKgEAAABg8yMcb2B9fX3q6+uTJNXU1NjOcEdHh4qLi/NcHQAAAAC4B+F4Azv++ON1xBFHqLOzU5WVlfkuBwAAAABci3C8gR122GH5LgEAAAAACgK7NgEAAAAACh7hGAAAAABQ8AjHAAAAAICCRzgGAAAAABQ8wjEAAAAAoOARjgEAAAAABY9wDAAAAAAoeIRjAAAAAEDBIxwDAAAAAAoe4RgAAAAAUPAIxwAAAACAgkc4BgAAAAAUPMIxAAAAAKDgEY4BAAAAAAWPcAwAAAAAKHiEYwAAAABAwfOv9wsaYyRJExMT6/3SWAfpdFpTU1OSFu+x18vPXwAAyAe+JheGzPfUme+xARy6dQ/Hk5OTkqTW1tb1fmkAAADAlSYnJ1VZWZnvMoBNzWPW+cdM6XRa8Xhc5eXl8ng86/nSWCcTExNqbW1Vb2+vKioq8l0OcoB77H7cY/fjHhcG7rP7GWM0OTmpcDjM7ABglda9c+z1etXS0rLeL4s8qKio4Auxy3GP3Y977H7c48LAfXY3OsbA2uDHSwAAAACAgkc4BgAAAAAUPMIx1lwoFNJ1112nUCiU71KQI9xj9+Meux/3uDBwnwFg5dZ9Qy4AAAAAADYaOscAAAAAgIJHOAYAAAAAFDzCMQAAAACg4BGOAQAAAAAFj3AMAAAAACh4hGMs6/rrr5fH43H82rp167Ifc99992nr1q0qKirStm3b9POf/9xx3RijT33qU2pqalJxcbG2b9+ul156KZefBpaR7T2+4447dPrpp6u6ulrV1dXavn27nnjiCceYyy67bJ/nPOecc3L9qeAAsr3Hd9111z7ji4qKHGN4H28s2d7jP//zP99nvMfj0XnnnWfH8D7eePr7+/Xe975XW7ZsUXFxsbZt26bf/va3y37Mjh079MY3vlGhUEive93rdNddd+0z5qtf/ao6OjpUVFSkk046aZ9/0wGgUBCOcVDHHHOMBgYG7K9f//rXBxz76KOP6uKLL9YVV1yh3//+93rnO9+pd77znXrmmWfsmM997nP6l3/5F91+++16/PHHVVpaqrPPPltzc3Pr8elgP7K5xzt27NDFF1+sRx55RDt37lRra6vOOuss9ff3O8adc845juf87ne/m+tPA8vI5h5LUkVFhWN8d3e34zrv440nm3v8ox/9yDH2mWeekc/n0wUXXOAYx/t44xgdHdWpp56qQCCg+++/X88++6xuu+02VVdXH/BjYrGYzjvvPJ155pn6r//6L334wx/W+973Pj344IN2zPe+9z1dffXVuu666/TUU0/pz/7sz3T22WdreHh4PT4tANhQ/PkuABuf3+9XY2PjisZ+6Utf0jnnnKNrr71WknTjjTfqF7/4hb7yla/o9ttvlzFGX/ziF/VP//RPesc73iFJ+s53vqOGhgb9+Mc/1kUXXZSzzwMHls09vueeexx//+Y3v6kf/vCHevjhh/U3f/M39vFQKLTi50TuZXOPJcnj8RxwPO/jjSmbe1xTU+P4+7333quSkpJ9wjHv443js5/9rFpbW3XnnXfaxyKRyLIfc/vttysSiei2226TJB111FH69a9/rS984Qs6++yzJUmf//zndeWVV+ryyy+3H/Ozn/1M3/72t/Wxj30sR58NAGxMdI5xUC+99JLC4bA6Ozv1nve8Rz09PQccu3PnTm3fvt3x2Nlnn62dO3dKWvwp9uDgoGNMZWWlTjrpJDsG6y+be/xaMzMzSiQS+3yzvWPHDtXX1+vII4/UBz7wAY2MjKx12chCtvd4ampK7e3tam1t1Tve8Q796U9/std4H29Mq3kff+tb39JFF12k0tJSx+O8jzeOn/70pzr++ON1wQUXqL6+Xm94wxt0xx13LPsxB/uavLCwoN/97neOMV6vV9u3b+e9DKAgEY6xrJNOOkl33XWXHnjgAX3ta19TLBbT6aefrsnJyf2OHxwcVENDg+OxhoYGDQ4O2uuZxw40Busr23v8Wh/96EcVDocd31ydc845+s53vqOHH35Yn/3sZ/WrX/1K5557rlKpVK4+DSwj23t85JFH6tvf/rZ+8pOf6O6771Y6ndYpp5yivr4+SbyPN6LVvI+feOIJPfPMM3rf+97neJz38cYSjUb1ta99TYcffrgefPBBfeADH9BVV12lf/3Xfz3gxxzoa/LExIRmZ2e1e/dupVIp3ssAsIRp1VjWueeea/983HHH6aSTTlJ7e7u+//3v64orrshjZVgrq7nHt9xyi+69917t2LHDsWHT3tNqt23bpuOOO06HHXaYduzYobe85S1r/0lgWdne45NPPlknn3yy/fspp5yio446Sl//+td14403rkvNyM5q3sff+ta3tG3bNp144omOx3kfbyzpdFrHH3+8brrpJknSG97wBj3zzDO6/fbbdemll+a5OgBwBzrHyEpVVZWOOOIIvfzyy/u93tjYqKGhIcdjQ0NDds1a5vflxiC/DnaPM2699Vbdcssteuihh3TcccctO7azs1O1tbUHfU6sj5Xe44xAIKA3vOENdjzv441vpfd4enpa995774p+2Mn7OL+ampp09NFHOx476qijlp0+f6CvyRUVFSouLlZtba18Ph/vZQBYQjhGVqampvTKK6+oqalpv9dPPvlkPfzww47HfvGLX9guVCQSUWNjo2PMxMSEHn/8cUenCvlzsHssLe5UfOONN+qBBx7Q8ccff9Dn7Ovr08jIyLLPifWzknu8t1QqpaefftqO53288a30Ht93332an5/Xe9/73oM+J+/j/Dr11FP1wgsvOB578cUX1d7efsCPOdjX5GAwqDe96U2OMel0Wg8//DDvZQCFyQDL+MhHPmJ27NhhYrGY+c1vfmO2b99uamtrzfDwsDHGmEsuucR87GMfs+N/85vfGL/fb2699Vbz3HPPmeuuu84EAgHz9NNP2zG33HKLqaqqMj/5yU/MH//4R/OOd7zDRCIRMzs7u+6fH7K/x7fccosJBoPmBz/4gRkYGLC/JicnjTHGTE5Ommuuucbs3LnTxGIx88tf/tK88Y1vNIcffriZm5vLy+dY6LK9xzfccIN58MEHzSuvvGJ+97vfmYsuusgUFRWZP/3pT3YM7+ONJdt7nHHaaaeZCy+8cJ/HeR9vPE888YTx+/3mM5/5jHnppZfMPffcY0pKSszdd99tx3zsYx8zl1xyif17NBo1JSUl5tprrzXPPfec+epXv2p8Pp954IEH7Jh7773XhEIhc9ddd5lnn33WvP/97zdVVVVmcHBwXT8/ANgICMdY1oUXXmiamppMMBg0zc3N5sILLzQvv/yyvX7GGWeYSy+91PEx3//+980RRxxhgsGgOeaYY8zPfvYzx/V0Om0++clPmoaGBhMKhcxb3vIW88ILL6zHp4P9yPYet7e3G0n7/LruuuuMMcbMzMyYs846y9TV1ZlAIGDa29vNlVdeyTdaeZTtPf7whz9s2traTDAYNA0NDeYv/uIvzFNPPeV4Tt7HG8uh/Fv9/PPPG0nmoYce2uf5eB9vTP/rf/0vc+yxx5pQKGS2bt1qvvGNbziuX3rppeaMM85wPPbII4+Y17/+9SYYDJrOzk5z55137vO8X/7yl+17/sQTTzSPPfZYDj8LANi4PMYYk8/ONQAAAAAA+caaYwAAAABAwSMcAwAAAAAKHuEYAAAAAFDwCMcAAAAAgIJHOAYAAAAAFDzCMQAAAACg4BGOAQAAAAAFj3AMAAAAACh4hGMAAAAAQMEjHAMAAAAACh7hGAAAAABQ8AjHAAAAAICCRzgGAAAAABQ8wjEAAAAAoOARjgFgE3r66ad1/vnnq729XUVFRWpubtZb3/pWffnLX7ZjOjo65PF47K/S0lKdeOKJ+s53vrPP8+3YscMxdu9fF1100ZrW/uijj+r666/X2NjYmj4vAADAavjzXQAAIDuPPvqozjzzTLW1tenKK69UY2Ojent79dhjj+lLX/qSPvShD9mxr3/96/WRj3xEkjQwMKBvfvObuvTSSzU/P68rr7xyn+e+6qqrdMIJJzge6+joWPP6b7jhBl122WWqqqpa0+cGAAA4VIRjANhkPvOZz6iyslJPPvnkPuFyeHjY8ffm5ma9973vtX+/7LLL1NnZqS984Qv7Dcenn366zj///JzUDQAAsJExrRoANplXXnlFxxxzzH67rvX19ct+bF1dnbZu3apXXnklq9fcs2ePrrnmGm3btk1lZWWqqKjQueeeqz/84Q/7jP3yl7+sY445RiUlJaqurtbxxx+vf//3f5ckXX/99br22mslSZFIxE7d7urqyqoeAACAtUbnGAA2mfb2du3cuVPPPPOMjj322Kw+NplMqq+vT9XV1fu9Pjk5qd27dzseq6mpUTQa1Y9//GNdcMEFikQiGhoa0te//nWdccYZevbZZxUOhyVJd9xxh6666iqdf/75+od/+AfNzc3pj3/8ox5//HH99V//td71rnfpxRdf1He/+1194QtfUG1traTF0A4AAJBPhGMA2GSuueYanXvuuXr961+vE088Uaeffrre8pa36Mwzz1QgEHCMTSQSNuwODg7qc5/7nAYHB/XBD35wv8/9t3/7t/s8FovFtG3bNr344ovyel+dcHTJJZdo69at+ta3vqVPfvKTkqSf/exnOuaYY3Tfffft9/mPO+44vfGNb9R3v/tdvfOd71zz9cwAAACHinAMAJvMW9/6Vu3cuVM333yzHnzwQe3cuVOf+9znVFdXp29+85v6y7/8Szv2oYce2qcre/nll+uf//mf9/vcn/rUp3T66ac7HmtsbFQoFLJ/T6VSGhsbU1lZmY488kg99dRT9lpVVZX6+vr05JNP7rOxFwAAwEbGmmMA2IROOOEE/ehHP9Lo6KieeOIJffzjH9fk5KTOP/98Pfvss3bcSSedpF/84hd64IEHdOutt6qqqkqjo6MKBoP7fd5t27Zp+/btjl9FRUVKp9P6whe+oMMPP1yhUEi1tbWqq6vTH//4R42Pj9uP/+hHP6qysjKdeOKJOvzww/XBD35Qv/nNb3L+3wMAAGC1CMcAsIkFg0GdcMIJuummm/S1r31NiUTCMaW5trZW27dv19lnn62PfOQjuvvuu/XjH/9YX/rSl7J6nZtuuklXX3213vzmN+vuu+/Wgw8+qF/84hc65phjlE6n7bijjjpKL7zwgu69916ddtpp+uEPf6jTTjtN11133Zp9zgAAALnAtGoAcInjjz9e0uJ5xgdy3nnn6YwzztBNN92kv/u7v1NpaemKnvsHP/iBzjzzTH3rW99yPD42NmY31cooLS3VhRdeqAsvvFALCwt617vepc985jP6+Mc/rqKiInk8niw/MwAAgNyjcwwAm8wjjzwiY8w+j//85z+XJB155JHLfvxHP/pRjYyM6I477ljxa/p8vn1e87777lN/f7/jsZGREcffg8Ggjj76aBljlEgkJMkG8rGxsRW/PgAAQK7ROQaATeZDH/qQZmZm9N/+23/T1q1btbCwoEcffVTf+9731NHRocsvv3zZjz/33HN17LHH6vOf/7w++MEP7rPD9f687W1v06c//WldfvnlOuWUU/T000/rnnvuUWdnp2PcWWedpcbGRp166qlqaGjQc889p6985Ss677zzVF5eLkl605veJEn6H//jf+iiiy5SIBDQ29/+9hV3sQEAAHKBzjEAbDK33nqrzjzzTP385z/X1VdfrauvvlpPPPGE/v7v/16PP/64qqqqDvoc11xzjXp7e3XPPfes6DU/8YlP6CMf+YgefPBB/cM//IOeeuop/exnP1Nra6tj3N/93d9pamrKBu8f//jHuuqqq3T33XfbMSeccIJuvPFG/eEPf9Bll12miy++WLt27crqvwEAAMBa85j9zc0DAAAAAKCA0DkGAAAAABQ8wjEAAAAAoOARjgEAAAAABY9wDAAAAAAoeIRjAAAAAEDBW/dzjtPptOLxuMrLy+XxeNb75QEAAADXMMZocnJS4XBYXi99L2A11j0cx+Pxfc7FBAAAAHDoent71dLSku8ygE1t3cNxeXm5pMU3cEVFxXq/PHIsnU7r+eeflyRt3bqVn2ACAJAnfE0uDBMTE2ptbbXfYwM4dOsejjNTqSsqKgjHLpROp1VWViZp8R7zhRgAgPzga3JhYbkisHr8KwkAAAAAKHiEYwAAAABAwSMcAwAAAAAKHuEYAAAAAFDwCMcAAAAAgIJHOAYAAAAAFDzCMQAAAACg4BGOAQAAAAAFj3AMAAAAACh4hGMAAAAAQMEjHAMAAAAACh7hGAAAAABQ8AjHAAAAAICCRzgGAAAAABQ8wjEAAAAAoOARjgEAAAAABc+f7wIAAACAdDqteDyuaDSqvr4+XXTRRfJ66eMAWD+EYwAAAKw7Y4x2796taDSqWCymrq4uzc/P2+sDAwNqbm7OY4UACg3hGAAAAOtiYmJCsVhMsVhM0WhUk5OTjutFRUWKRCKKRCKqqqrKT5EAChbhGAAAADkxNzen7u5uRaNRRaNR7d6923Hd5/Opra1NnZ2d6uzsVGNjI1OpAeQN4RgAAABrIplMqq+vz06V7u/vlzHGMSYcDisSiaizs1Otra0KBAJ5qhYAnAjHAAAAOCTGGA0ODtpp0t3d3Uomk44xNTU1tjPc0dGh4uLiPFULAMsjHAMAAGDFRkdHbWc4Go1qdnbWcb20tFSdnZ22O1xZWZmnSgEgO4RjAAAAHND09LRjE62xsTHH9UAgoI6ODtsdrqurk8fjyU+xALAKhGMAAABYCwsL6unpsd3hwcFBx3Wv16uWlhbbGW5ubpbP58tTtQCwdgjHAAAABSydTqu/v9+G4d7eXqXTaceY+vp62xlua2tTKBTKU7UAkDtZh+P+/n599KMf1f3336+ZmRm97nWv05133qnjjz8+F/UBAABgDRljtHv3bhuGu7q6ND8/7xhTWVlpO8ORSERlZWV5qhYA1k9W4Xh0dFSnnnqqzjzzTN1///2qq6vTSy+9pOrq6lzVBwAAgFWamJhwnDc8NTXluF5UVGTDcGdnp6qrq1k3DKDgZBWOP/vZz6q1tVV33nmnfSwSiSz7MfPz846fRk5MTGRZIrCxLfT1afSef5d5zU/d4R6JdELP7XleCynusavN7JG4x66WSBolXjNd2LWMpEBAR3/sm5Kk+z9wlkxi8f/vJkkeeSSP5PV4JI9XHo+k30tRLf7aCP7so7fpyDf8eb7LAFBAsgrHP/3pT3X22Wfrggsu0K9+9Ss1Nzfr7//+73XllVce8GNuvvlm3XDDDasuFNiodn/taxr/4Y/yXQZyrDXfBQBAlkwopMyPAv7s2QV55hfyWk+29vS/Ir3hz/NdBoACklU4jkaj+trXvqarr75an/jEJ/Tkk0/qqquuUjAY1KWXXrrfj/n4xz+uq6++2v59YmJCra18mwn3WOjuliSVn3uOQpHOPFeDXHg0vlN/2PVfaiptUnN5c77LQS5M75Z2vSD5Q1Jpfb6rQQ4k00ZDE3OSpPIid+xHmk4bpdNpmXRaaZOWMc7r/mBIr1/68x9PrJZSmyscn9B+VL5LAFBgsvrqkE6ndfzxx+umm26SJL3hDW/QM888o9tvv/2A4TgUCrGjIVwtGR+QJNVc8jcqeeMb8lwNcuH/7OjSQ91P6x9PuEx/cfQl+S4HufDol6WHfiMd+1fS+d/OdzXIgSdie3TV13eqraZE/+cfz8x3OVkzxmh0dNSeNRyLxTQ7O+sYU1paatcMRyIRlZeX69lnn5UkvfvrD8vr9eajdADYNLIKx01NTTr66KMdjx111FH64Q9/uKZFAZuFSaWUGBqSJAWaw3muBrkyOL14xme4lHvsWuN9i79XMrPJreJji0Gyuao4z5Ws3PT0tCMMj42NOa4Hg0F1dHTYjbTq6uocm2i99jgmAMDysgrHp556ql544QXHYy+++KLa29vXtChgs0ju2iWlUpLfL39tbb7LQY4MTC/ODmgsa8xzJcgZG45b8lsHcqZ/KRyHN3A4XlhYUHd3tw3EQ0s/fM3wer1qaWmx3eFwOCyfz5enagHAfbIKx//9v/93nXLKKbrpppv07ne/W0888YS+8Y1v6Bvf+Eau6gM2tEQ8LkkKNDTIwzcorrSQWtCu2V2SpKbSpjxXg5wZ61n8nc6xa/XbznFRnit5VSqVUjwet53h3t7efbq9DQ0NtjPc3t6uYDCYp2oBwP2yCscnnHCC/uM//kMf//jH9elPf1qRSERf/OIX9Z73vCdX9QEbWmJpvXGgidDkVkPTi52bIl+RqkOc6e5adI5dL74BOsfGGO3atct2hru6urSw4Nwkq7Ky0q4ZjkQiKisry1O1AFB4st6u8W1ve5ve9ra35aIWYNNJDCx1jllv7Fp2SnVpo2MtH1xkYVqa3bP45yo6x25l1xxXr284npiYsJ3haDSqqakpx/Xi4mIbhDs7O1VdXc2/NQCQJ+44ywDIk+TAYnDy0zl2rUw4Zkq1i433L/4eqpCKKvNbC3LCGKP+0fXpHM/Nzamrq0vRaFTRaFQjIyOO636/X21tbXbdcGMjP3gDgI2CcAysQqJ/qXPcROfYreLTi/e4qYxw7FrjmfXGTKl2q4nZpKYXUpKkcOXahuNkMqne3l7bHY7H4zJ7HTjs8XgUDodtZ7i1tVV+P99+AcBGxL/OwCokljrHgTDBya0yxzg1lrJTtWux3tj1Mptx1ZQGVRxc3eaJxhgNDg7aznBPT4+SyaRjTG1trQ3DHR0dKiraOJuAAQAOjHAMrMKr4ZjOsVsNTC3eY844djHOOHa91ZxxbIzR6Oio7QzHYjHNzs46xpSVldlNtDo7O1VRUbEmdQMA1hfhGDhEqclJpScnJUmBRrqKbsWa4wJA59j14uOZ9cYr6+BOT0/bDbSi0ajGx8cd14PBoDo6Ouy64draWtYNA4ALEI6BQ5TpGvsqK+UtLc1zNcgFY4ydVk04djE6x67Xf5BjnBYWFtTd3W27w0NDQ47rXq9Xra2ttjPc3Nwsr9eb87oBAOuLcAwcokR8caMmP1OqXWt0flRzqTlJUkNpQ56rQc6MsSGX22V2qs5Mq06lUorH47Yz3NfXp3Q67fiYxsZGG4bb2toUDAbXvW4AwPoiHAOHKMl6Y9fLTKmuK65T0Mc3xq6UTkkTiz/o4oxj98qsOZ4e7tV3v/u4urq6tLCw4BhTVVVlw3AkElEpM4IAoOAQjoFDlIgvhWPOOHatwSmmVLve1LCUTkgen1TG3gFuMj4+btcNv9DnlRTQS398QmPeGUlScXGxDcOdnZ2qrq7Ob8EAgLwjHAOHyO5UTTh2rUznmGOcXCyz3rgiLPn4kriZzc7Oqqury64bHhkZkSSljUfT6TdKko6NhLXt8MWNtBobG9lECwDgwHcCwCHKrDnmjGP3ik8v3mM6xy42znrjzSqZTKq3t9eG4Xg8LmOMve7xeBQOh1Xe2CH9el5Bv1fv/5u/ltdLIAYA7B/hGDhEdI7dz+5UXcY9di2Ocdo00um0BgcH7VTpnp4eJZNJx5ja2lo7Vbqjo0NFRUV6LDoi/foxhSuLCMYAgGURjoFDYJJJJZeO+mC3avcamOKMY9fjGKcNyxij0dFR2xmOxWKanZ11jCkrK7NrhiORiCoqKvZ5nsxmXM3V+z/GCQCADMIxcAiSw8NSOi0FAvLX1ua7HORIZs0x4djF6BxvKFNTU7YzHIvFND4+7rgeDAYViURsd7i2tvag64Yz4ThcSTgGACyPcAwcArveuLFRHq83z9UgF+ZT8xqZW9zQh3DsYmO9i7/TOc6LhYUFdXd32zA8tDQjJ8Pr9aq1tdV2hpubm+XN8t/c/kw4riIcAwCWRzgGDgHrjd0vs9642F+sylBlnqtBzoxnwjGd4/WQSqXU399vw3BfX5/S6bRjTGNjo+0Mt7W1KRhc3Rnj/WNzkqRmwjEA4CAIx8AhsGccs97YtfaeUs1xLy41PynNjS3+mXCcE8YY7dq1S9FoVNFoVN3d3VpYWHCMqaqqsp3hSCSi0tLSNa2BNccAgJUiHAOHIDHAMU5ux2ZcBWC8f/H3okqpaN+NnHBoxsfHbWc4Go1qenracb24uNgG4cMOO0zV1dU5q8UY8+qaYzrHAICDIBwDhyCz5tjPtGrXynSOG0sb81wJcmac9cZrYXZ2Vl1dXbY7vGfPHsd1v9+v9vZ2O1W6sbFx3WZjjM0kNLOQkiQ1VRaty2sCADYvwjFwCJJ2zTHTqt2KnaoLAOuND0kymVRPT4/tDseXfliY4fF41NzcbMNwS0uL/P78fLuR2YyrtiyoooAvLzUAADYPwjGQJWOMEv2ZadWEY7fKhONwGffYtTjjeEXS6bQGBwdtZ7i3t1fJZNIxpra21q4b7ujoUFHRxujS2vXGTKkGAKwA4RjIUnpyUumZGUlSoIkpt26V2a2aadUuxhnH+2WM0Z49e2xnOBaLaW5uzjGmvLzcdoYjkYgqKjbmmm3WGwMAskE4BrKUOcbJV10tbzHfcLmRMYYNuQoB4diampqyG2jFYjGNj487rodCIXV0dNhAXFtbuyl2cY+PL4Z6wjEAYCUIx0CW7JRqNuNyrZG5ES2kF+SRRw0lDfkuB7kyVrgbci0sLKi7u9tOlR4eHnZc9/l8am1ttWE4HA7L6/XmqdpD1z9K5xgAsHKEYyBLmWOc/Bzj5FqZKdV1xXUK+AJ5rgY5kU5JE0tHORVA5ziVSqm/v992hvv6+pROpx1jGhsb7TTptrY2BYPBPFW7dvrtmuONsQYaALCxEY6BLNmdqtmMy7XsTtVl/ADEtSYHJZOSvH6p3H3ryo0xGh4etmG4u7tbCwsLjjHV1dWOdcMlJSV5qjZ3Xt2Qy32fGwBg7RGOgSwl4hzj5HasNy4AmfXGFWHJ644jfsbHx20Yjkajmp6edlwvKSlxhOHq6uo8Vbo+5pMpDU/OS5LCdI4BACtAOAaylIiz5tjtOOO4AIxv/vXGs7OzdjfpaDSqPXv2OK4HAgG1t7fbQNzQ0LApNtFaK4NLm3GF/F7VlG7+KeIAgNwjHANZSthp1QQnt8qEY45xcjEbjjfPeuNEIqHe3l7bHY4v/aAuw+PxqLm52YbhlpYW+f2F+2W+f68zjgvphwIAgENXuF81gUNgEgkll3Z1Zc2xe2XCcbiMe+xa9hinjds5TqfTGhgYsGG4p6dHqVTKMaa2tlaRSESHHXaY2tvbVVTE9OGM+Nhi57i5mp2qAQArQzgGspAYGpaMkScYlK+mJt/lIEcyu1UzrdrFNuAZx8YY7dmzxx6v1NXVpbm5OceY8vJyu2a4s7NT5eXleap248tsxhWuJBwDAFaGcAxkIRFfPPrF39QozyY88xMHN5uc1Z65xbWbTKt2sQ1yxvHU1JRjE62JiQnH9VAopI6ODnV2dqqzs1NbtmxhivAKccYxACBbhGMgC/YYJ3aqdq1M17jEX6KKYEWeq0HO5KlzPD8/r+7ubtsd3rVrl+O6z+dTa2ur7QyHw2F5+UHcIYmPZ8IxU80BACtDOAaykOCMY9fbe70xHTqXmhuX5scX/5zjcJxKpdTX12e7w/39/Uqn044xjY2Ndt1wW1ubAoFATmsqFHZDLtYcAwBWiHAMZOHVM45Zi+pWmc4xU6pdbHxxeYSKq6VQ2Zo+tTFGw8PDNgx3dXUpkUg4xlRXVzvOGy4pKVnTGrB4H+J77VYNAMBKEI6BLHCMk/txxnEBWOMp1WNjY3bNcCwW0/T0tON6SUmJDcKRSETV1dVr8ro4sNGZhOYSix36xkqmVQMAVoZwDGQhsXSuKJ1j94pPLd5jwrGLjfcs/n6Im3HNzMyoq6vLhuE9e/Y4rgcCAbW3t9tA3NDQwBT9dZbZjKuuPKSQ35fnagAAmwXhGFghYwxrjguAPcapjHDsWlmecZxIJNTT02O7wwNL/w5keDwetbS02KnSLS0t8vkIZPnUz5RqAMAhIBwDK5QeH5eZmZEk+RtZj+pWTKsuAAeZVp1OpzUwMGA7wz09PUqlUo4xdXV1tjPc0dGhUCiU66qRBdYbAwAOBeEYWKFM19i3ZYu8Raxhc6O0Sb/aOSYcu9drwrExRiMjI45NtObm5hwfUl5ebs8ajkQiKi8vX++qkYVMOOYYJwBANgjHwAqx3tj9RmZHlEgn5PV4VVdSl+9ykCtjvZKkl3fP608/+Ymi0agmJiYcQ0KhkN1Aq7OzU1u2bGHd8CbSb8MxnWMAwMoRjoEV4hgn98tMqa4rrlPAy1mzbjI/P6/u7m7FXnlJb53ol1fST3Y8pSnP4lFOPp9Pra2t9rzhpqYmeb3e/BaNQxYnHAMADgHhGFghNuNyv0w4Dpdxjze7VCqlvr4+O1W6r69PxhhVmAmdLaOUvCpvOkzHdR6mzs5OtbW1KRDgByJu0T+2OC2eNccAgGwQjoEVSgwsTavmjGPXyqw3bixlw7XNxhij4eFhx7rhRCLhGFNTU6M31pZJL0ieqla9/+/+rzxVi1yaS6S0e2peEuEYAJAdwjGwQpk1x36mVbsWZxxvLmNjYzYMx2IxTU9PO66XlJTYDbQ6OztVVVUl/fH70guSt6otP0Uj5wbGF7vGxQGfqkqYDQAAWDnCMbBCSbvmmCm3bsUxThvbzMyMurq6FI1GFY1GNTo66rgeCATU3t5ud5Wur6/fdxOt8cXNuA50jBM2v713qmYTNQBANgjHwAqkFxaU3LVLkhRoJhy7VWZaNWuON4ZEIqGenh7bHR5YWvef4fF41NLSYjvDLS0t8vl8yz+pPcapNUdVI98yO1U3V5fkuRIAwGZDOAZWIDk0JEnyhELyVVfnuRrkSqZzzJrj/Ein0xoYGLCd4d7eXqVSKceY+vp6G4bb29sVCoWye5HXnHEM98l0jps54xgAkCXCMbACex/jxDQ9d5pJzGhsfkwS06rXizFGIyMjjnXD8/PzjjEVFRV23XAkElF5efnqXpRw7Hp2WnUlm3EBALJDOAZWILMZFztVu1dmSnVZoEzlwVUGMBzQ5OSkYrGY7Q5PTk46rhcVFamjo8OuG66pqVm7H0gZI41l1hwzrdqt+jnjGABwiAjHwApkjnHyc8axa9nNuMr4AchampubU3d3t+0O71pau5/h8/nU1tZmu8NNTU3yer05KmZcWlgK43SOXSueOeO4mnAMAMgO4RhYgeTAq9Oq4U7sVL02ksmk+vr6bHe4v79fxhjHmHA4bNcNt7a2KhBYp+N2MlOqS7ZIQTZrciNjzKsbctE5BgBkiXAMrECCY5xcj3B8aIwxGhoasp3h7u5uJRIJx5iamhobhiORiIqL8xRaWG/seiPTC1pIpuXxSA0VbMgFAMgO4RhYAdYcu9/AFDtVr9TY2JhdMxyLxTQzM+O4Xlpa6gjDVVVV+Sn0tcZZb+x2/aOLXeP68pCC/hxNzwcAuBbhGDgIY4wSTKt2PTrHBzYzM2OnScdiMY2OjjquBwIBdXR02EBcX1+/MXd1t+GYzrFbxdmMCwCwCoRj4CBSY2Myc4sbvPgJx66VCcfhMqbOJxIJ9fT02DA8sPTDoQyv16vm5ma7o3Rzc7N8Pl+eqs2CnVZN59itWG8MAFgNwjFwEJkp1b66WnmDwTxXg1xIpVMamhmSVJid43Q6rXg8bsNwb2+vUqmUY0x9fb3tDLe3tysUCuWp2lVgzbHr2Z2qCccAgENAOAYOwq43ZjMu19o9u1vJdFI+j0+1xbX5LifnjDEaGRmx64a7uro0Pz/vGFNRUWE7w5FIRGVlZXmqdg1xxrHr9Y8trn9nWjUA4FAQjoGD4Bgn98tMqa4vqZff685/FicnJ21nOBqNanJy0nG9qKhIkUjEdodramo25rrhQ5VKSJNL08PpHLtWpnNMOAYAHAp3fhcIrCF7jFOYzrFbDU4PSnLXlOq5uTl1d3fb7vDu3bsd130+n9ra2mx3uLGxUV6vi3f3nYhLMpIvJJXW5bsa5EicNccAgFUgHAMHwU7V7md3qi7bvPc4mUyqr6/Pdof7+/tljHGMCYfDtjPc2tqqQCCQp2rzwK43bpbc/EOAAjaXSGlkekES4RgAcGgIx8BBcMax+8WnFu/xZuocG2M0ODhop0l3d3crmUw6xtTU1DjOGy4uLuDAwDFOrpfZqbo06FNFMd/eAACyx1cP4CAynWOOcXKvzTKtenR01HaGY7GYZmZmHNdLS0ttEI5EIqqqqspPoRvROJtxud3eZxy7ar08AGDdEI6BZaTn55VaWqvJmmP3stOqN1g4npmZsZ3haDSqsbExx/VAIKCOjg4biOvr6wkFB8IZx65n1xtXF/AMCQDAqhCOgWUkBxc7ip7iYvnowrnWRgnHCwsL6unpsd3hwaX//zK8Xq9aWlrsVOnm5mb5fL48VbvJcMax6/WzUzUAYJUIx8Ay9t6Mi46cO00npjWxMCFJaixtXNfXTqfTisfjtjPc29urdDrtGFNfX2/DcHt7u0Kh0LrW6BqEY9djp2oAwGoRjoFlJPqXNuNivbFrDUwt/gCkPFiusmBZTl/LGKPdu3fbznBXV5fm5+cdYyorKx2baJWV5bamgmCMNMaaY7frH82sOS7KcyUAgM2KcAwsw3aO2anatXI9pXpiYsJuoBWNRjU5Oem4XlRUZMNwZ2enqqurmaWw1mZHpcT04p8rm/NbC3ImPr4UjivpHAMADg3hGFhGYiBzjBObcblVJhyHS9fmHs/Nzamrq8t2h3cvbeiW4ff71dbWZgNxY2OjvJy7m1uZKdWldVKA4ORG6bTRwNKaYzbkAgAcKsIxsIwkxzi5XuYYp0Ndb5xMJtXX12fXDcfjcRlj7HWPx6OmpiZFIhEddthham1tld/PP73rivXGrrd7el4LqbS8HqmhgmnVAIBDw3dowDJeXXNM59it4tOL97ipbGU/ADHGaHBw0HaGu7u7lUwmHWO2bNliO8MdHR0qLqaTlVf2jGPCsVtl1hs3VBQp4GMmBgDg0BCOgQMwxrDmuABkNuRabs3x6Oio7QzHYjHNzs46rpeWlto1w5FIRJWVlTmtGVkaZzMut4tzjBMAYA0QjoEDSO3ZI7OwIHk8CjQ05Lsc5EhmWvXe4Xh6etpuoBWLxTQ2Nub4mGAwqI6ODtsdrqurYxOtjcxOqyYcuxXHOAEA1gLhGDiARHxpvXFdnTzBYJ6rQS6k0ikNzQxJkuZ3zeuh/3pIsVhMg4ODjnFer1ctLS02DDc3N8vn8+WjZBwK1hy7Xv9Y5hgnwjEA4NARjoEDSMQ549it0um0+vv79bsXf6eUScljPLr/B/fLo1e7vw0NDTYMt7e3K8gPSDavMdYcu12/7RyzGRcA4NARjoEDyBzj5Ge98aZnjNHu3bvtNOmuri7Nz89rd2i31CQVJ4tVVVll1wxHIhGVlZXlu2ysheS8NLU0E4Bp1a4Vp3MMAFgDhGPgAJJ2My52qt6MJiYmbBiORqOamppyXC8uLlZNa420IB3ReIT+4bx/YN2wG00s/pBL/iKptDa/tSBn7JpjzjgGAKwC4Rg4gMyaY45x2hzm5ubU1dVlA/Hu3bsd1/1+v9ra2uxU6cbGRt35pzulp6TWylaCsVvtvd6Ye+xKMwtJjc4kJNE5BgCsDuEYOACOcdrYksmkent7bRiOx+MyxtjrHo9H4XDYhuHW1lb5/c5/8gamF+9xY2njutaOdcRmXK6XOcapPORXRVEgz9UAADYzwjFwAGzItbEYYzQ4OGjDcHd3t5LJpGPMli1b7Lrhjo4OFRcv30XKhOOmMu6xa42zGZfbsVM1AGCtEI6B/UjPzSm1Z48k1hznizFGo6OjNgzHYjHNzs46xpSVldkw3NnZqYqKiqxeIxOOw6XcY9ey4bgtv3UgZ1hvDABYK4RjYD8yU6q9JSXyZhm4cOimp6ftBlqxWExjY2OO68FgUB0dHers7FRnZ6dqa2tXtVZ4cGkX46ZSOseuxbRq13t1p2qOcQIArA7hGNiPzE7V/nATGzXl0MLCgrq7u20YHhoaclz3er1qbW21neFwOCyfz7cmrz25MKnJxKQk1hy7GuHY9ZhWDQBYK4RjYD9eXW/MdNu1lEqlFI/HbRju7e1VOp12jGloaLCd4ba2NgWDwZzUkplSXRmqVEmgJCevgTwzRhpjzbHb9Y8uTasmHAMAVolwDOzHq8c4Md12NYwx2rVrlw3DXV1dWlhYcIyprKy0YTgSiai0tHRdahucZkq1683skZJL69QrmvNbC3ImPk7nGACwNgjHwH68eowTneNsTUxM2DAcjUY1NTXluF5cXKxIJGKnSldXV+dl6vrA1NJO1YRj98psxlXWIAVYj+pGqbTR4PjiUU50jgEAq0U4BvaDM45Xbm5uTl1dXYpGo4pGoxoZGXFc9/v9am9vt2G4sbFxQ6zjtsc4EY7di/XGrrd7al6JlJHP61F9eSjf5QAANjnCMbAfnHF8YMlkUr29vbY7HI/HZYyx1z0ej8LhsA3Dra2t8vs33j818enFe0w4djHOOHa9vqX1xo0VRfL7vHmuBgCw2W2871iBPDPp9Ku7VbMhl4wxGhwctJ3hnp4eJZNJx5ja2lobhjs6OlRUtPGnsGbWHDeWsVO1a9nOcWt+60DOcIwTAGAtEY6B10iNjMgkEpLXq0BDfb7LWXfGGI2OjtrOcCwW0+zsrGNMWVmZ3UCrs7NTFZvwLOjMtOpwKT8AcS3bOSYcu1UmHLPeGACwFgjHwGtk1hv76+vlCQTyXM36mJ6ethtoRaNRjY+PO64Hg0HHJlq1tbUbYt3woUqmkxqeGZbEtGpXY82x68U54xgAsIYIx8BrFMIxTgsLC+ru7rbd4aGhIcd1r9er1tZWG4abm5vl9bpnPd+umV1Km7T8Xr+2FG/JdznIFcKx6/WPLe5UTTgGAKwFwjHwGm7cjCuVSqm/v9+G4b6+PqXTaceYxsZGG4bb2toUDAbzVG3uZTbjaixplNfjntCPvSTmpKmlH/owrdq1+plWDQBYQ4Rj4DXsMU7Nm3ctqjFGu3btsmG4q6tLCwsLjjFVVVU2DEciEZWWluap2vVn1xuXbd57jIOY6F/8PVAildTktxbkjF1zXE04BgCsHuEYeI3EwGJX0b/JOsfj4+M2DEejUU1PTzuuFxcX2zDc2dmp6urqPFWaf3an6lJ2qnatvadUb+L18TiwqfmkxmcTkqSmSnarBgCsHuEYeI3kJllzPDs7q66uLhuIR0ZGHNf9fr/a29ttIG5sbNzUm2itpYGpxXvMZlwuxnpj1xtY6hpXFPlVXlQYmycCAHKLcAy8hl1zHN5YU26TyaR6enpsGB4YGJAxxl73eDwKh8O2M9zS0iK/n7f4/mTWHBOOXcwe40Q4dqs+dqoGAKwxvnMG9pKemVFqbExS/jvH6XRag4ODNgz39PQomUw6xtTW1trOcEdHh4qKmFq4Eplp1YRjF+OMY9fjjGMAwFojHAN7SQwuhiZvWZl8FRXr+trGGO3Zs8euGY7FYpqbm3OMKS8vd2yiVbHONbqBMUbxqaXOcRnh2LXstGrCsVuxGRcAYK0RjoG9rPcZx1NTU44wPD4+7rgeCoXU0dFhA3FtbS3rhldpMjGpmeSMJDbkcjXWHLtenDOOAQBrjHAM7CURXzz+xR/OTTheWFhQd3e3otGootGohoeHHde9Xq/a2tpsGA6Hw/J6OYd3LWU246oOVavYzzfVrmQM4bgA9I+y5hgAsLYIx8Be7BnHa9Q5TqVS6u/vt53hvr4+pdNpx5jGxkYbhtva2hQMBtfktbF/mTOO6Rq72PRuKTknySNVNOe7GuRIv11zzF4LAIC1QTgG9mKPcQof2jfUxhgNDw/bMNzd3a2FhQXHmOrqascmWqWlpauuGyuXCcfhso21GznWUGYzrvJGyc8Pm9wolTYanFicVt1cVZLnagAAbkE4BvZyKJ3j8fFxG4aj0aimp6cd14uLi+0GWp2dnaqurl7TmpGdTDhmp2oXY0q16w1PzimVNvJ7PaorD+W7HACASxCOgb28esbxgYPT7OysYrGYDcN79uxxXPf7/Wpvb7fnDTc0NLCJ1gaSWXPMtGoX44xj18usN26sLJLPy7+vAIC1QTgGlphUSomhIUnOznEikVBvb6/tDseXAnSGx+NROBy2YbilpUV+P2+tjYrOcQGgc+x6mfXGbMYFAFhLfAcPLEnuHpESCcnn01Ayqdj/+/8qFoupp6dHqVTKMba2ttaG4fb2dhUVsSHMZsGa4wJgO8dt+a0DOZM5xqmFcAwAWEOEYxQ8Y4z27Nmjrv/9sEokzRQV6ft33ukYU15ebtcNRyIRVVRU5KdYrEoindCumV2SmFbtanSOXS9O5xgAkAOEYxSkqakpxyZaExMTaunp0SmSpkuKFQqF1NHRYbvDW7ZsYd2wCwzPDMvIKOgNqqaoJt/lIFcIx65HOAYA5ALhGAVhfn5e3d3dNhAPDw87rvt8PrUEF3c8bdp2nP7xH/9RXq83H6Uih+JTi+vFG0sb5fVwf10pMStNL84OIBy716trjlnSAgBYO4RjuFIqlVJ/f7+i0aii0aj6+/uVTqcdY5qamuzxSm1tbRq55bMalVR52GEEY5canB6UxGZcrjbev/h7oFQq5tg0t8qE42Y6xwCANUQ4hisYYzQ8PGw7w93d3VpYWHCMqa6utmE4EomopKTEcd2ecdzMRk1uZXeqLiMcu1ZmM66qVomlEK40MZfQ5FxSEtOqAQBri3CMTWt8fNx2hmOxmKanpx3XS0pKHJtoVVcv30Wy4biJ4ORWHONUAFhv7HoDSztVV5UEVBri2xgAwNrhqwo2jdnZWbuBViwW0549exzXA4GA2tvbbXe4oaEhq020EkvnF/sJx641MEU4dj17jBPh2K36x2YkSeFKusYAgLVFOMaGlUgk1Nvba7vDA0ud3QyPx6OWlhYbhltaWuTz+Q7ptVJT00qPj0uSAmGmVbtVpnPMMU4uRufY9fqXOsdMqQYArDXCMTaMdDqtgYEB2xnu6elRKpVyjKmrq7NhuKOjQ6FQaE1eOzm4GJq8FRXylZWtyXNiYzHG2HAcLuMHIK5lO8dt+a0DOZM5xqmlmnAMAFhbhGPkjTFGe/bssZ3hrq4uzc3NOcaUl5fbs4YjkYjKy8tzUgvrjd1vYmFCs8nFb6obShryXA1yhs6x68U5xgkAkCNZhePrr79eN9xwg+OxI488Us8///yaFgX3mpqasp3haDSqiYkJx/VQKKSOjg4biLds2ZLVuuFDlehfXG9MOHavzBnHNUU1KvLzTbUrpdOE4wLQP5oJx3SOAQBrK+vO8THHHKNf/vKXrz6Bn+YzDmx+fl7d3d22O7xr1y7HdZ/Pp9bWVhuGm5qa8nLGsO0chwnHbsVO1QVgepeUWpA8XqmCqfNu9WrnmHAMAFhbWSdbv9+vxkY2s1kP//u7t2ky3pXvMrLj8+qw7VdKku74xMWanZqWUdpertBid7iouEQlRUUqKi6SZ/eQ9uz+rfY8kaeaJTX86k+qlPT0xIv6xc9vyV8hyJnfz74oSSqZSeuPj/wgz9UgF4qnunW4pLniej328mi+y0EOGEmDE4vLb1oIxwCANZZ1OH7ppZcUDodVVFSkk08+WTfffLPa2g688cn8/Lzm5+ft3187jRYHNnn3nTrildTBB24gJhRSeikcn37/C/Lsde83gx/4fq9Hd/0h32Ugh7YOPq7jnn0w32Ugh56ZqtBldz6Z7zKQQ0GfV7Vla7MhIwAAGVmF45NOOkl33XWXjjzySA0MDOiGG27Q6aefrmeeeeaAGyXdfPPN+6xTxsrMVZWor34y32VkxROUMvMK4nWSWchrOVmZLPNotNWjzk1UM7JTnPboTTM1etm3Jd+lIEdSHp8eKL5AxwYr8l0Kcui8bWF5vbnfjwIAUFg8xhhzqB88Njam9vZ2ff7zn9cVV1yx3zH76xy3trZqfHxcFRV887IZzMzMqKury26ktWfPHsf1QCCg9vZ2u6P07t27JUlHH310XtYPAwCAxSMSn332WUl8TXaziYkJVVZW8r01sAZWtZtWVVWVjjjiCL388ssHHBMKhdbsLFqsj0QioZ6eHhuGB5Y2q8rweDxqaWmx5w23tLTI5/NJWvxCnAnHAAAAALBZrCocT01N6ZVXXtEll1yyVvUgD9LptAYGBuyO0r29vUqlnGud6+rqbGe4o6ODH3gAAAAAcJWswvE111yjt7/97Wpvb1c8Htd1110nn8+niy++OFf1IQeMMRoZGbGd4Vgs5pj6Lknl5eX2eKVIJHLANeUAAAAA4AZZheO+vj5dfPHFGhkZUV1dnU477TQ99thjqqury1V9WCOTk5OKxWK2Ozw56dzoKxQKKRKJ2KnSW7ZskcfDZicAAAAACkNW4fjee+/NVR1YY/Pz845NtHbt2uW47vP51NbWZsNwU1MTG3UAAAAAKFirWnOMjSOVSqmvr892hvv7+/XajcibmprsNOm2tjYFAoE8VQsAAAAAGwvheJMyxmhoaMh2hru7u5VIJBxjqqur7brhjo4OlZSU5KlaAAAAANjYCMebyNjYmO0Mx2IxzczMOK6XlpbaadKRSERVVVX5KRQAAAAANhnC8QY2MzNjN9GKxWIaHR11XA8EAuro6LCBuL6+nk20AAAAAOAQEI43sLvvvlsDAwP2716vV83NzXaqdHNzs3w+Xx4rBAAAAAB3IBxvYJ2dnUqlUrYz3N7erlAolO+yAAAAAMB1CMcb2Fve8hZt374932UAAAAAgOtxsO0GxvphAAAAAFgfhGMAAAAAQMEjHAMAAAAACh7hGAAAAABQ8AjHAAAAAICCRzgGAAAAABQ8wjEAAAAAoOARjgEAAAAABY9wDAAAAAAoeIRjAAAAAEDBIxwDAAAAAAoe4RgAAAAAUPAIxwAAAACAgkc4BgAAAAAUPMIxAAAAAKDgEY4BAAAAAAWPcAwAAAAAKHj+9X5BY4wkaWJiYr1fGusgnU5rampK0uI99nr5+QsAAPnA1+TCkPmeOvM9NoBDt+7heHJyUpLU2tq63i8NAAAAuNLk5KQqKyvzXQawqXnMOv+YKZ1OKx6Pq7y8XB6PZz1fGutkYmJCra2t6u3tVUVFRb7LQQ5wj92Pe+x+3OPCwH12P2OMJicnFQ6HmR0ArNK6d469Xq9aWlrW+2WRBxUVFXwhdjnusftxj92Pe1wYuM/uRscYWBv8eAkAAAAAUPAIxwAAAACAgkc4xpoLhUK67rrrFAqF8l0KcoR77H7cY/fjHhcG7jMArNy6b8gFAAAAAMBGQ+cYAAAAAFDwCMcAAAAAgIJHOAYAAAAAFDzCMQAAAACg4BGOsazrr79eHo/H8Wvr1q3Lfsx9992nrVu3qqioSNu2bdPPf/5zx3VjjD71qU+pqalJxcXF2r59u1566aVcfhpYRrb3+I477tDpp5+u6upqVVdXa/v27XriiSccYy677LJ9nvOcc87J9aeCA8j2Ht911137jC8qKnKM4X28sWR7j//8z/98n/Eej0fnnXeeHcP7eOPp7+/Xe9/7Xm3ZskXFxcXatm2bfvvb3y77MTt27NAb3/hGhUIhve51r9Ndd921z5ivfvWr6ujoUFFRkU466aR9/k0HgEJBOMZBHXPMMRoYGLC/fv3rXx9w7KOPPqqLL75YV1xxhX7/+9/rne98p975znfqmWeesWM+97nP6V/+5V90++236/HHH1dpaanOPvtszc3Nrceng/3I5h7v2LFDF198sR555BHt3LlTra2tOuuss9Tf3+8Yd8455zie87vf/W6uPw0sI5t7LEkVFRWO8d3d3Y7rvI83nmzu8Y9+9CPH2GeeeUY+n08XXHCBYxzv441jdHRUp556qgKBgO6//349++yzuu2221RdXX3Aj4nFYjrvvPN05pln6r/+67/04Q9/WO973/v04IMP2jHf+973dPXVV+u6667TU089pT/7sz/T2WefreHh4fX4tABgQ/HnuwBsfH6/X42NjSsa+6UvfUnnnHOOrr32WknSjTfeqF/84hf6yle+ottvv13GGH3xi1/UP/3TP+kd73iHJOk73/mOGhoa9OMf/1gXXXRRzj4PHFg29/iee+5x/P2b3/ymfvjDH+rhhx/W3/zN39jHQ6HQip8TuZfNPZYkj8dzwPG8jzembO5xTU2N4+/33nuvSkpK9gnHvI83js9+9rNqbW3VnXfeaR+LRCLLfsztt9+uSCSi2267TZJ01FFH6de//rW+8IUv6Oyzz5Ykff7zn9eVV16pyy+/3H7Mz372M33729/Wxz72sRx9NgCwMdE5xkG99NJLCofD6uzs1Hve8x719PQccOzOnTu1fft2x2Nnn322du7cKWnxp9iDg4OOMZWVlTrppJPsGKy/bO7xa83MzCiRSOzzzfaOHTtUX1+vI488Uh/4wAc0MjKy1mUjC9ne46mpKbW3t6u1tVXveMc79Kc//cle4328Ma3mffytb31LF110kUpLSx2P8z7eOH7605/q+OOP1wUXXKD6+nq94Q1v0B133LHsxxzsa/LCwoJ+97vfOcZ4vV5t376d9zKAgkQ4xrJOOukk3XXXXXrggQf0ta99TbFYTKeffromJyf3O35wcFANDQ2OxxoaGjQ4OGivZx470Bisr2zv8Wt99KMfVTgcdnxzdc455+g73/mOHn74YX32s5/Vr371K5177rlKpVK5+jSwjGzv8ZFHHqlvf/vb+slPfqK7775b6XRap5xyivr6+iTxPt6IVvM+fuKJJ/TMM8/ofe97n+Nx3scbSzQa1de+9jUdfvjhevDBB/WBD3xAV111lf71X//1gB9zoK/JExMTmp2d1e7du5VKpXgvA8ASplVjWeeee67983HHHaeTTjpJ7e3t+v73v68rrrgij5VhrazmHt9yyy269957tWPHDseGTXtPq922bZuOO+44HXbYYdqxY4fe8pa3rP0ngWVle49PPvlknXzyyfbvp5xyio466ih9/etf14033rguNSM7q3kff+tb39K2bdt04oknOh7nfbyxpNNpHX/88brpppskSW94wxv0zDPP6Pbbb9ell16a5+oAwB3oHCMrVVVVOuKII/Tyyy/v93pjY6OGhoYcjw0NDdk1a5nflxuD/DrYPc649dZbdcstt+ihhx7Scccdt+zYzs5O1dbWHvQ5sT5Weo8zAoGA3vCGN9jxvI83vpXe4+npad17770r+mEn7+P8ampq0tFHH+147Kijjlp2+vyBviZXVFSouLhYtbW18vl8vJcBYAnhGFmZmprSK6+8oqampv1eP/nkk/Xwww87HvvFL35hu1CRSESNjY2OMRMTE3r88ccdnSrkz8HusbS4U/GNN96oBx54QMcff/xBn7Ovr08jIyPLPifWz0ru8d5SqZSefvppO5738ca30nt83333aX5+Xu9973sP+py8j/Pr1FNP1QsvvOB47MUXX1R7e/sBP+ZgX5ODwaDe9KY3Ocak02k9/PDDvJcBFCYDLOMjH/mI2bFjh4nFYuY3v/mN2b59u6mtrTXDw8PGGGMuueQS87GPfcyO/81vfmP8fr+59dZbzXPPPWeuu+46EwgEzNNPP23H3HLLLaaqqsr85Cc/MX/84x/NO97xDhOJRMzs7Oy6f37I/h7fcsstJhgMmh/84AdmYGDA/pqcnDTGGDM5OWmuueYas3PnThOLxcwvf/lL88Y3vtEcfvjhZm5uLi+fY6HL9h7fcMMN5sEHHzSvvPKK+d3vfmcuuugiU1RUZP70pz/ZMbyPN5Zs73HGaaedZi688MJ9Hud9vPE88cQTxu/3m8985jPmpZdeMvfcc48pKSkxd999tx3zsY99zFxyySX279Fo1JSUlJhrr73WPPfcc+arX/2q8fl85oEHHrBj7r33XhMKhcxdd91lnn32WfP+97/fVFVVmcHBwXX9/ABgIyAcY1kXXnihaWpqMsFg0DQ3N5sLL7zQvPzyy/b6GWecYS699FLHx3z/+983RxxxhAkGg+aYY44xP/vZzxzX0+m0+eQnP2kaGhpMKBQyb3nLW8wLL7ywHp8O9iPbe9ze3m4k7fPruuuuM8YYMzMzY8466yxTV1dnAoGAaW9vN1deeSXfaOVRtvf4wx/+sGlrazPBYNA0NDSYv/iLvzBPPfWU4zl5H28sh/Jv9fPPP28kmYceemif5+N9vDH9r//1v8yxxx5rQqGQ2bp1q/nGN77huH7ppZeaM844w/HYI488Yl7/+tebYDBoOjs7zZ133rnP8375y1+27/kTTzzRPPbYYzn8LABg4/IYY0w+O9cAAAAAAOQba44BAAAAAAWPcAwAAAAAKHiEYwAAAABAwSMcAwAAAAAKHuEYAAAAAFDwCMcAAAAAgIJHOAYAAAAAFDzCMQAAAACg4BGOAQAAAAAFj3AMAAAAACh4hGMAAAAAQMEjHAMAAAAACh7hGAAAAABQ8AjHAAAAAICCRzgGgDx7+umndf7556u9vV1FRUVqbm7WW9/6Vn35y1+2Yzo6OuTxeOyv0tJSnXjiifrOd76zz/Pt2LHDMXbvXxdddNGa1v7oo4/q+uuv19jY2Jo+72vddNNN+vGPf5zT1wAAAIXNY4wx+S4CAArVo48+qjPPPFNtbW269NJL1djYqN7eXj322GN65ZVX9PLLL0taDMfV1dX6yEc+IkkaGBjQN7/5Tb344ov6xje+oSuvvNI+544dO3TmmWfqqquu0gknnOB4vY6ODp122mlrVv+tt96qa6+9VrFYTB0dHWv2vK9VVlam888/X3fddVfOXgMAABQ2f74LAIBC9pnPfEaVlZV68sknVVVV5bg2PDzs+Htzc7Pe+9732r9fdtll6uzs1Be+8AVHOM44/fTTdf755+ekbgAAALdhWjUA5NErr7yiY445Zp9gLEn19fXLfmxdXZ22bt2qV155JavX3LNnj6655hpt27ZNZWVlqqio0Lnnnqs//OEP+4z98pe/rGOOOUYlJSWqrq7W8ccfr3//93+XJF1//fW69tprJUmRSMRO3e7q6rIff/fdd+tNb3qTiouLVVNTo4suuki9vb2O13jppZf0V3/1V2psbFRRUZFaWlp00UUXaXx8XJLk8Xg0PT2tf/3Xf7Wvcdlll2X1OQMAABwMnWMAyKP29nbt3LlTzzzzjI499tisPjaZTKqvr0/V1dX7vT45Oandu3c7HqupqVE0GtWPf/xjXXDBBYpEIhoaGtLXv/51nXHGGXr22WcVDoclSXfccYeuuuoqnX/++fqHf/gHzc3N6Y9//KMef/xx/fVf/7Xe9a536cUXX9R3v/tdfeELX1Btba2kxdAuLXbFP/nJT+rd73633ve+92nXrl368pe/rDe/+c36/e9/r6qqKi0sLOjss8/W/Py8PvShD6mxsVH9/f36z//8T42NjamyslL/9m//pve973068cQT9f73v1+SdNhhh2X13woAAOCgDAAgbx566CHj8/mMz+czJ598svnHf/xH8+CDD5qFhQXHuPb2dnPWWWeZXbt2mV27dpmnn37aXHLJJUaS+eAHP+gY+8gjjxhJ+/0Vi8XM3NycSaVSjo+JxWImFAqZT3/60/axd7zjHeaYY45Ztv5//ud/ts+7t66uLuPz+cxnPvMZx+NPP/208fv99vHf//73RpK57777ln2d0tJSc+mlly47BgAAYDXoHANAHr31rW/Vzp07dfPNN+vBBx/Uzp079bnPfU51dXX65je/qb/8y7+0Yx966CHblc24/PLL9c///M/7fe5PfepTOv300x2PNTY2KhQK2b+nUimNjY2prKxMRx55pJ566il7raqqSn19fXryySf32djrYH70ox8pnU7r3e9+t6N73djYqMMPP1yPPPKIPvGJT6iyslKS9OCDD+ov/uIvVFJSktXrAAAArBXWHANAnp1wwgn60Y9+pNHRUT3xxBP6+Mc/rsnJSZ1//vl69tln7biTTjpJv/jFL/TAAw/o1ltvVVVVlUZHRxUMBvf7vNu2bdP27dsdv4qKipROp/WFL3xBhx9+uEKhkGpra1VXV6c//vGPdp2vJH30ox9VWVmZTjzxRB1++OH64Ac/qN/85jcr+pxeeuklGWN0+OGHq66uzvHrueees5uNRSIRXX311frmN7+p2tpanX322frqV7/qqAMAAGA90DkGgA0iGAzqhBNO0AknnKAjjjhCl19+ue677z5dd911kqTa2lpt375dknT22Wdr69atetvb3qYvfelLuvrqq1f8OjfddJM++clP6m//9m914403qqamRl6vVx/+8IeVTqftuKOOOkovvPCC/vM//1MPPPCAfvjDH+r/+X/+H33qU5/SDTfcsOxrpNNpeTwe3X///fL5fPtcLysrs3++7bbbdNlll+knP/mJHnroIV111VW6+eab9dhjj6mlpWXFnxcAAMBqEI4BYAM6/vjjJS2eZ3wg5513ns444wzddNNN+ru/+zuVlpau6Ll/8IMf6Mwzz9S3vvUtx+NjY2N2U62M0tJSXXjhhbrwwgu1sLCgd73rXfrMZz6jj3/84yoqKpLH49nvaxx22GEyxigSieiII444aE3btm3Ttm3b9E//9E969NFHdeqpp+r222/X//yf/1OSDvg6AAAAa4Vp1QCQR4888oiMMfs8/vOf/1ySdOSRRy778R/96Ec1MjKiO+64Y8Wv6fP59nnN++67T/39/Y7HRkZGHH8PBoM6+uijZYxRIpGQJBvIx8bGHGPf9a53yefz6YYbbtjntYwx9rknJiaUTCYd17dt2yav16v5+Xn7WGlp6T6vAQAAsJboHANAHn3oQx/SzMyM/tt/+2/aunWrFhYW9Oijj+p73/ueOjo6dPnlly/78eeee66OPfZYff7zn9cHP/hBBQKBg77m2972Nn3605/W5ZdfrlNOOUVPP/207rnnHnV2djrGnXXWWWpsbNSpp56qhoYGPffcc/rKV76i8847T+Xl5ZKkN73pTZKk//E//ocuuugiBQIBvf3tb9dhhx2m//k//6c+/vGPq6urS+985ztVXl6uWCym//iP/9D73/9+XXPNNfrf//t/6//+v/9vXXDBBTriiCOUTCb1b//2b/L5fPqrv/orW8ub3vQm/fKXv9TnP/95hcNhRSIRnXTSSdn+5wYAADiwPO6UDQAF7/777zd/+7d/a7Zu3WrKyspMMBg0r3vd68yHPvQhMzQ0ZMe1t7eb8847b7/PcddddxlJ5s477zTGvHqU04GOR5qbmzMf+chHTFNTkykuLjannnqq2blzpznjjDPMGWecYcd9/etfN29+85vNli1bTCgUMocddpi59tprzfj4uOP5brzxRtPc3Gy8Xu8+xzr98Ic/NKeddpopLS01paWlZuvWreaDH/ygeeGFF4wxxkSjUfO3f/u35rDDDjNFRUWmpqbGnHnmmeaXv/yl4zWef/558+Y3v9kUFxcbSRzrBAAA1pzHmP3M5wMAAAAAoICw5hgAAAAAUPAIxwAAAACAgkc4BgAAAAAUPMIxAAAAAKDgEY4BAAAAAAWPcAwAAAAAKHj+9X7BdDqteDyu8vJyeTye9X55AAAAwDWMMZqcnFQ4HJbXS98LWI11D8fxeFytra3r/bIAAACAa/X29qqlpSXfZQCb2rqH4/LyckmLb+CKior1fnnkWDqd1vPPPy9J2rp1Kz/BBAAgT/iaXBgmJibU2tpqv8cGcOjWPRxnplJXVFQQjl0onU6rrKxM0uI95gsxAAD5wdfkwsJyRWD1+FcSAAAAAFDwCMcAAAAAgIJHOAYAAAAAFDzCMQAAAACg4BGOAQAAAAAFj3AMAAAAACh4hGMAAAAAQMEjHAMAAAAACh7hGAAAAABQ8AjHAAAAAICCRzgGAAAAABQ8wjEAAAAAoOARjgEAAAAABY9wDAAAAAAoeIRjAAAAAEDBIxwDAABgw5ifn1c0Gs13GQAKkD/fBQAAAKBwpVIp9fX1KRqNKhqNqr+/X8YYXX311SovL893eQAKCOEYAAAA68YYo6GhIUWjUcViMXV3dyuRSDjG1NTUaHx8nHAMYF0RjgEAAJBTY2NjtjMci8U0MzPjuF5aWqpIJKLOzk5FIhFVVVXlp1AABY1wDAAAgDU1MzOjWCxmw/Do6KjjeiAQUEdHhw3E9fX18ng8eaoWABYRjgEAALAqiURCPT09tjs8ODjouO71etXS0mLDcHNzs3w+X56qBYD9IxwDAAAgK+l0WvF43HaGe3t7lUqlHGPq6+ttGG5vb1coFMpTtQCwMoRjAAAALMsYo5GREdsZ7urq0vz8vGNMRUWFOjs77brhsrKyPFULAIeGcAwAAIB9TE5O2s5wNBrV5OSk43pRUZEikYjtDtfU1LBuGMCmRjgGAACA5ubm1N3dbbvDu3fvdlz3+Xxqa2uz3eHGxkZ5vd48VQsAay/rcNzf36+PfvSjuv/++zUzM6PXve51uvPOO3X88cfnoj4AAADkQDKZVF9fn+0O9/f3yxjjGNPU1GTDcGtrqwKBQJ6qBYDcyyocj46O6tRTT9WZZ56p+++/X3V1dXrppZdUXV2dq/oAAACwBowxGhoasp3hnp4eJRIJx5iamhq7ZjgSiai4uDhP1QLA+ssqHH/2s59Va2ur7rzzTvtYJBJZ86IAbGxmYUGJoaF8l4EcMsZoeGZI6dd0keAys3uk5PzBx2FTMvJIJZ2SpH/9yvXaPbxLiYUFx5jSYEhbamtUs2WLtmzZouJQsaQZzQ78Sc8O/CkPVb/qyOPforLKmrzWAKCwZBWOf/rTn+rss8/WBRdcoF/96ldqbm7W3//93+vKK6884MfMz887djOcmJg49GoB5J1JpxV917u08PIr+S4FALAMEwpJ99wtSTrpWz+VZ35z/SDk6VsndPLbrsh3GQAKSFbhOBqN6mtf+5quvvpqfeITn9CTTz6pq666SsFgUJdeeul+P+bmm2/WDTfcsCbFAsi/5O7dNhh7S0ryXA1yZSY5KyO6xsCmFpSCS3+cC0qb7S3t8bFvLID15TGv3XlhGcFgUMcff7weffRR+9hVV12lJ598Ujt37tzvx+yvc9za2qrx8XFVVFSsonRsROl0Ws8++6wk6eijj2YXSxea/cMf1HXhRfI3NenwR/53vstBDiTTSb3p7jcpbdJ65N2PqLa4Nt8lIRe+caYUf0q66N+lrefluxqsUDqdVjwet+uG+/r6lEqlHGPq6+vV2dmph3aV6fLXV0ria7KbTUxMqLKyku+tgTWQ1Y/kmpqadPTRRzseO+qoo/TDH/7wgB8TCoUUCoUOrToAG04iHpckBZqa8lwJcmV4Zlhpk1bAG1BNEev9XGu8d/H3ypb81oFlGWO0e/duu6N0V1eXo+kgSZWVlfas4UgkorKyMknSf/zbk/koGQA2razC8amnnqoXXnjB8diLL76o9vb2NS0KwMaViA9IkgLhcJ4rQa4MTC/e46bSJnk9dJpcKTErTe9a/HNla35rwT4mJiYUi8VsIJ6cnHRcLyoqsmG4s7NT1dXV8ng8+zxPfGxOErtNA8BKZRWO//t//+865ZRTdNNNN+nd7363nnjiCX3jG9/QN77xjVzVB2CDSQwshWM6x661dziGS00szgBRoFQq5jjGfJubm1NXV5cNw7t373Zc9/v9amtrs4G4sbFxRVOkB8fnclUyALhSVuH4hBNO0H/8x3/o4x//uD796U8rEonoi1/8ot7znvfkqj4AG4wNx2GCk1sNTg9KkhpLG/NcCXJm7ynV++k4IreSyaT6+vrsuuF4PK69t4DxeDxqamqyneHW1lb5/dltTjU1n9T4bOLgAwEAVtbbAL7tbW/T2972tlzUAmATyKw59tM5dq341OI9birjHrvWGOuN15MxRoODg7Yz3N3drWQy6RizZcsW2xnu6OhQcfHqpkPHx2ZX9fEAUIjYIx9AVpJ2Qy7WHLsV06oLwHjf4u+E45wZHR21neFYLKbZWWdYLS0ttZ3hSCSiysrKNX39fsIxAGSNcAxgxdLT00qNj0uSAs2EY7fKTKsmHLtYJhxXsRnXWpmennZsojU2Nua4HgwG1dHRYbvDdXV1+91Ea63QOQaA7BGOAaxYYnAxNHnLy+VbOioE7mKMeXVaNeHYveyaY8LxoVpYWFBPT48Nw4NL/z5meL1etbS02M5wc3OzfD7futVHOAaA7BGOAawYZxy738TChGaSM5LYkMvVOOM4a+l0WvF43E6V7u3tVTqddoxpaGiwneH29nYFg8E8VSv1jxKOASBbhGMAK2bPOCYcu1ZmSnVNUY2K/EV5rgY5kU5L4/2LfyYcH5AxRrt377ad4a6uLs3PzzvGVFZW2s5wJBJR2QaaUbN4xjEAIBuEYwArlhhY6hyz3ti12IyrAMzsllLzkjxSRXO+q9lQJiYmbBiORqOamppyXC8uLrZBuLOzU9XV1TldN7wabMgFANkjHANYseTSGccc4+RehOMCkJlSXd4k+QL5rSXP5ubm1NXVZQPx7t27Hdf9fr/a2trsrtKNjY0bNgzvLZU2GpyYk3/jlwoAGwrhGMCKvTqtms6xW2XCMeuNXayAj3FKJpPq7e21YTgej8sYY697PB6Fw2HbGW5tbZXfv/m+VRqenFMqbVQU8Oa7FADYVDbfv/gA8sZuyBWmq+hWA1N0jl1vrHA24zLGaHBw0G6i1dPTo2Qy6RizZcsWu264o6NDxcXFeap27WQ242qoDOW5EgDYXAjHAFbEpFJKDA1JkgJhOsdulekch8u4x67l4jOOjTEaHR21neFYLKbZWefa27KyMtsZjkQiqqyszFO1uZNZbxyu3PxBHwDWE+EYwIokd++WkknJ55O/ri7f5SBHWHNcAFx2xvH09LTdQCsajWp8fNxxPRgMqqOjwwbiurq6TbFueDUyO1UTjgEgO4RjACtip1Q3NMjj8+W5GuRCIp3Qrpldklhz7GqbfM3xwsKCuru7bXd4aGlGS4bX61VLS4vdRCscDstXYP9mxZc6x01VRZKSyw8GAFiEYwArkgnHftYbu9bQ9JCMjILeoGqKavJdDnJlfHOtOU6lUorH47Yz3NfXp3Q67RjT0NBgO8Pt7e0KBoN5qnZjyEyrbqwsljSZ32IAYBMhHANYkcwxTuxU7V52SnVZk+unnRashRlpZmTxzxs0HBtjtGvXLtsZ7urq0sLCgmNMZWWl7QxHIhGVlpbmqdqNKdM5DlcVSwnCMQCsFOEYwIrYY5zYjMu1BqcHJbHe2NUm+hd/D5ZLRVV5LWVvExMTNgxHo1FNTU05rhcXFysSidjucHV1NT/AWYbdkKsqpPldeS4GADYRwjGAFUnYzjHBya3YjKsA7D2lOo/hcm5uTl1dXXaq9MjIiOO63+9Xe3u7DcONjY2E4RWamEtocm5xnXFjRbG6CccAsGKEYwArwhnH7hefWrzHhGMXy9MZx8lkUr29vbY7HI/HZYyx1z0ej8LhsJ0m3draKr+fb1EORWZKdVVJQKUh/hsCQDb4VxPAitA5dr/MtGp2qnaxddqpOp1Oa3Bw0E6T7unpUTLp3DV5y5Ytdt1wR0eHioqKclpTociE4+YqjnECgGwRjgEcVGpqSumJCUmSnw25XCszrTpcxj12rUw4rlrbM46NMRodHbWd4VgsptnZWceYsrIyxyZaFRUVa1oDFvVnzjgmHANA1gjHAA4qs1O1t7JSvjJ2hXUjYwxrjguBXXO8+nA8PT3t2ERrfHzccT0YDDo20aqtrWXd8DqgcwwAh45wDOCg7HpjplS71vj8uGaTi99UN5Q25Lka5MwqzjheWFhQd3e3DcRDQ0OO616vV62trTYMNzc3y+v1rkXVyEL/aGanaqapA0C2CMcADor1xu6X6RpvKdqikC+U52qQE+m0NL50lNMKwnEqlVJ/f78Nw319fUqn044xDQ0Ndqp0W1ubgsFgLipHFl7tHJfkuRIA2HwIxwAOijOO3Y/1xgVgelhKJySPVyrf9z4bY7Rr1y4bhru6urSwsOAYU1VVZTvDkUhEpaUss9ho4mN0jgHgUBGOARyU7RxzjJNrZcIxO1W7WGYzrvKw5Fv88j8+Pu5YNzw9Pe34kOLiYhuGOzs7VV1dvd5VIwvJVFqDE4sbcrHmGACyRzgGcFCJAdYcu13mGCc243KxpfXGM8EaPfKznykWi2lkZMQxxO/3q7293QbixsZGNtHaRIYm55U2UtDnVW1ZSJI56McAAF5FOAZwUJkNufyEY9eKTy3eY8KxuySTSfX09Cgajarsjz/Q/0/SK7vn9duR30qSPB6PmpubbRhuaWmR38+3BptVZjOupqoieb0epdOEYwDIBl8BASzLJJNKDg1LkgLh5jxXg1yxneMywvFmlk6nNTg4aKdK9/T0KJlMSpLOMYvTqheKG3XicScqEomoo6NDRUWsTXULu964kinVAHAoCMcAlpXctUtKpaRAQP662nyXgxzhjOPNyRij0dFRRaNRG4jn5uYcY8rLy9XZ2amtQ09IA9Kb/v9/KZ1wbp4qRi712824CMcAcCgIxwCWZTfjamiQhzNLXWkhtaBds7skEY43g6mpKbuBViwW0/j4uON6KBRSR0eH3VG6trZ2cd3w7bctDqhszUPVWA+vHuPEbAAAOBSEYwDLSvSzGZfbDU0PSZKKfEWqClXltxjsY2FhQd3d3bY7PDw87Lju8/nU2tpq1w2Hw2F59/eDrKUNuVZyxjE2JzrHALA6hGMAy+IYJ/fb+xgndibOv1Qqpf7+ftsZ7uvrUzqddoxpbGy0neG2tjYFg8Hln3R+SpodXfwz4di1bOe4mnAMAIeCcAxgWZljnPzhcJ4rQa5kwnG4jHucD8YYDQ8P26nS3d3dWlhYcIyprq62neGOjg6VlpZm9yIT/Yu/hyqloso1qhwbiTHG7lZN5xgADg3hGMCykvGlzjHTql2LzbjW3/j4uO0MR6NRTU9PO66XlJQoEonYQFxdXb3KF2RKtdtNzCU1vZCSxG7VAHCoCMcAlpU54zjQRFfRrfaeVo3cmJ2dVVdXl103vGfPHsd1v9+v9vZ2dXZ2qrOzUw0NDWs7xX2McOx2ma5xTWlQxUFfnqsBgM2JcAxgWaw5dr+BKTrHay2ZTKqnp8d2h+NLP2TK8Hg8am5utp3hlpYW+f05/JI8vnjGMeHYvV7dqZquMQAcKsIxgANKTU4qPTUliWnVbsaa49VLp9MaHBy0neGenh6lUinHmNraWtsZbm9vV1HROh63kwnHVRzj5Fbx8cx6Y45xAoBDRTgGcECJpfXGvqoqeUtK8lwNcsEYo8HpQUlMq86GMUZ79uyxneFYLKa5uTnHmPLycrujdGdnp8rLy/NUrfbqHBOO3YpjnABg9QjHAA4oEV/c4dbPlGrXGp0f1VxqTh551FDSkO9yNrSpqSm7gVY0GtXExITjeigUUkdHh+0Ob9myZeMcjTXes/g706pdK7PmmGnVAHDoCMcADsiuN2YzLtfKTKmuLa5V0HeQs3ILzPz8vLq7u213eHh42HHd5/OptbXVdobD4bC8Xm+eql1GOiVNLK15Jhy7FmuOAWD1CMcADihpN+MiHLvV4NTilOqmMmYHpFIp9ff3285wf3+/0um0Y0xjY6PtDLe1tSkQCOSp2ixMDUnppOTxSeXcZ7eKjy1O62daNQAcOsIxgANKcMax6xXyGcfGGA0PD9vOcFdXlxKJhGNMdXW17QxHIhGVbMa195n1xhXNkpcjftwokUpraJJwDACrRTgGcEAc4+R+hRaOx8bG7LrhWCym6elpx/WSkhJHGK6urs5TpWtonDOO3W5wfE7GSEG/V1tKWR4BAIeKcAzggBJLZ7PSOXavTDh2607Vs7OzjjC8Z88ex/VAIKD29nYbiBsaGjbOJlprZYxw7Hb9e6039npd9v8vAKwjwjGA/TKJhJJLGxD5CceuNTDlrs5xIpFQT0+PDcQDS7MfMjwej5qbm21nuKWlRX6/y78U2mOcCMduFR/jjGMAWAsu/44AwKFKDg9L6bQ8gYD8tbX5Lgc5kukch8s256Zr6XRaAwMDtjPc09OjVCrlGFNXV2c7wx0dHQqFQnmqNk8y4biKM47dyobjStYbA8BqEI4B7FdmvbG/qUmejXg8DVZtPjWvkbkRSZunc2yM0Z49e+yO0l1dXZqbm3OMKS8vtztKRyIRlZeX56naDcJ2jgnHbtXPTtUAsCYIxwD2i/XG7jc4vXiMU7G/WBXBijxXc2BTU1O2MxyNRjUxMeG4HgqFFIlEbHd4y5Yt7ls3vBrjPYu/M63ateya42rCMQCsBuEYwH5xjJP77b1T9UYKk/Pz8+ru7raBeHhp7XuGz+dTa2ur7Q43NTXJy+yG/ZubkObGF/9MOHat+F4bcgEADh3hGMB+vXqM0+Zci4qDs5txleX3ByCpVEp9fX02DPf39yudTjvGNDU12c5wW1ubAoFAnqrdZCb6F38vqpJCBT693KWMMXttyEU4BoDVIBwD2K/EwNK0as44dq3MtOr1Xm9sjNHw8LBdN9zd3a1EIuEYU1NT49hEq6SkZF1rdA3WG7ve+GxCMwuLm9A1VbJbNQCsBuEYwH5l1hxzjJN7xacX7/F6hOOxsTHbGY7FYpqennZcLykpsRtodXZ2qqqqKuc1FYQx1hu7Xd/oYte4tiykooAvz9UAwOZGOAawD2OMknbNMdOq3WrvNcdrbWZmRl1dXbY7PDo66rgeCATU3t5u1w3X19dvqHXPrsEZx6736npjusYAsFqEYwD7SE9MKD0zI4lp1W62ltOqE4mEenp6bHd4YGnNeobH41FLS4vtDLe0tMjno8uVc5xx7HqsNwaAtUM4BrCPzGZcvpoaeYvoRriRMWZVG3Kl02kNDAzYznBvb69SqZRjTF1dne0Mt7e3KxQKrUntyAKdY9eLj3PGMQCsFcIxgH1wjJP77Znbo4X0gjzyqL6k/qDjjTEaGRlxrBuen593jKmoqLDrhiORiMrL2R0579iQy/X6OcYJANYM4RjAPjKbcTGl2r0y643rSuoU8O7/WKTJyUnFYjHbHZ6cnHRcD4VCdpp0JBLRli1bWDe8kaSSrx7lROfYtfpHmVYNAGuFcAxgH68e48RmXG6VCcfh0lfv8fz8vN1EKxaLadeuXY6P8fl8amtrs4G4qalJXq93XetGFqYGJZOSvAGprDHf1SBH4nSOAWDNEI4B7CO5tOaYY5zcK7PeuMJToUceeUTRaFT9/f0yxjjGNTU12c5wW1ubAoH9d5mxAWWmVFeEJX6I4UrzyZSGJxeXN4TZrRoAVo1wDGAfCY5xciVjjIaGhhSNRvXIy49IkgZfGtT/Gf0/dkxNTY3tDHd0dKikpCRf5WK1WG/sekPji8G4KOBVTWkwz9UAwOZHOAawD9Ycu8fY2JhdMxyLxTSzdERXvC4ulUrV3mode+yxtjtcVVWV34KxdsZ6Fn9nvbFr9Y0tvp/DVcWs9weANUA4BuBgFhaUXFprym7Vm8/MzIzdTToajWp0dNRxPRAIqKOjQ096n5Tmpff85Xt0ZtuZeaoWOcUxTq4XH1s8xon1xgCwNgjHABwSw8OSMfIEg/Jt2ZLvcnAQiURCPT09tjM8sLRePMPj8ailpcWeN9zc3Cyfz6evf+/rkqRwGVPnXSsTjquYVu1Wmc24wpWEYwBYC4RjAA52SnVTE9P0NqB0Oq14PG7DcG9vr1KplGNMfX29XTfc3t6uUCjkuD6XnNOeuT2SpKYyZge4Fp1j17PhmM4xAKwJwjEAh0w49rPeeEMwxmhkZMSuG+7q6tL8/LxjTEVFhe0MRyIRlZWVLfucmWOcSgOlKg+U56x25Nl47+LvbMjlWv2ZY5yqCccAsBYIxwAcMsc4sVN1/kxOTtrOcDQa1eTkpON6UVGRIpGI7Q7X1NRk1eXPhOOmUmYHuNbcuDQ/sfhnOseu1W87xxzjBABrgXAMwMEe4xQmHK+Xubk5dXd320C8a2lDtAyfz6e2tjYbhpuamuRdxbm1g9ODkhbDMVwqM6W6uEYKlua3FuSEMcZOq2ZDLgBYG4RjAA4J2zkmOOVKMplUX1+f7Qz39/fLGOMYEw6HbRhubW1VIBBYs9ffu3MMl2K9seuNziQ0l0hLkhor6RwDwFogHANw4IzjtWeM0dDQkO0Md3d3K5FIOMbU1NTYNcORSETFxbnrBMWnFu8xm3G5mD3jmPXGbtU/utg1ri8PKeT35bkaAHAHwjEAyxhD53iNjI6O2s5wLBbTzMyM43ppaakjDFdVVa1bbZlp1Y2ljev2mlhndI5dr5+dqgFgzRGOAVipsTGZ2cVvuPyE46zMzMw4wvDo6KjjeiAQUEdHhw3E9fX1edsMKzOtOlzKunLX4oxj12O9MQCsPcIxACuzU7Wvtlbe15yNC6dEIqHu7m4biAcHBx3XvV6vWlpa7Lrh5uZm+Xz5n/qYNmk25CoEdI5dL85O1QCw5gjHACymGc48GgAAHKRJREFUVB9YOp1WPB63neHe3l6lUinHmPr6envecFtbm0Ib8AcMe+b2KJFOyOvxqq6kLt/lIFdsOKZz7FbxcTrHALDWCMcArET/0mZchGMZY7R7924bhru6ujQ/P+8YU1lZaTvDkUhEZWVleap25TKbcdWX1Mvv5UuAK6US0uTifaZz7F6ZDblYcwwAa4fvjABYhd45npiYUCwWs1OlJycnHdeLiopsGO7s7FR1dXXe1g0fKo5xKgCTA5JJS76gVFqf72qQI/1jc5IIxwCwlgjHACwbjpsLY6Omubk5dXV12e7w7t27Hdf9fr/a2tpsIG5sbJTX681TtWuD9cYFIDOluqJZ2uT/v2L/5hIp7Z5anMnCtGoAWDuEYwBWYmBxKqZbd6pOJpPq6+tTNBpVNBpVPB6XMcYxJhwO285wa2ur/H53/TNJ57gAsBmX6w2OL3aNS4I+VZUE8lwNALiHu77rA7AqiXhmzbE7OsfGGA0ODtrOcHd3t5LJpGPMli1bbGe4o6NDxcXu7sJk1hwTjl1srGfxdzbjcq29zzjebEs7AGAjIxwDkCSlFxaU2rU4rTgQ3rzBaXR01HaGY7GYZpfObc4oLS21G2h1dnaqsrIyT5Xmh51WXbZ57zEOgs6x6+0djgEAa4dwDECSlFw6p9dTVCRfdXWeq1m56elpxyZaY2NjjuvBYFDt7e02ENfX1xd0p4Vp1QUgE46r6By7VeaM42bOOAaANUU4BiBJSsRf3al6I4fHhYUF9fT02M7w4FKoz/B6vWppabGd4ebmZvl8vjxVu7HMJGY0Nj8miXDsanSOXe/VcEznGADWEuEYgKS91xtvrNCUTqcVj8ftVOne3l6l02nHmIaGBhuG29vbFQwG81TtxpaZUl0eKFdZcOOfyYxDYIw03rv4Z9YcuxbTqgEgNwjHACTttVN1ntcbG2O0e/du2xnu6urS/Py8Y0xlZaWdJh2JRFRWRtBbicyU6sayxjxXgpyZG5MWphb/XNGc11KQO3HOOAaAnCAcA5C01xnH4fXfqXpiYsKuGY5Go5qamnJcLyoqcoThmpqaDT31e6PKhONwqTt2I8d+ZKZUl9RKwZL81oKcMMbYzjHTqgFgbRGOAUiSknbNce6D09zcnLq6umx3ePfu3Y7rfr9fbW1tdqp0Y2OjvF5vzutyO9s5LqVz7FqsN3a9kekFLSTT8nikxko25AKAtUQ4BiBpr85xDtYcJ5NJ9fb22u5wPB6XMcZe93g8ampqUmdnpzo7O9Xa2iq/n3+e1po9xonNuNyLcOx6mc24GsqLFPDxQ0MAWEt89wlAxpi9plWvPjgZYzQ4OGg7w93d3Uomk44xW7ZssZ3hjo4OFRczPTDX4lOL68oJxy421rP4O5txuVb/aGYzLrrGALDWCMcAlBodlZmbkzwe+Ruzn3JrjNHo6KgNw7FYTLOzs44xpaWltjMciURUWVm5VuVjheya4zLWHLsWZxy7HjtVA0DuEI4B2DOO/bW18q7wGKTp6Wk7TToWi2lsbMxxPRgMqqOjw3aH6+rq2EQrj1LplIZmhiSx5tjVmFbtepmdqtmMCwDWHuEYwIqOcVpYWFB3d7cNxENDQ47rXq9XLS0ttjscDofl8/lyWjdWbmRuRMl0Uj6PT3XFdfkuB7lCOHa9zJrj5mrCMQCsNcIxACXji+F4752qU6mU4vG47Qz39vYqnU47Pq6hocF2htvb2xVcYdcZ6y+z3rihpEE+Lz+0cKXkgjS5OAuENcfuZadVVxKOAWCtEY4B2GnVyapKPf7444pGo+rq6tLCwoJjXGVlpWPdcGlpaT7KxSHI7FTNlGoXm4xLMpIvtHjOMVwpzppjAMgZwjFQwCYmJhSNRjX/u9+qQtJvXnpJL++1Lri4uFiRSMR2h6urq1k3vEmxGVcB2HtKNeeCu9JcIqWR6cUfWrLmGADWHuEYKCBzc3Pq6upSNBpVNBrVyMiIJOktS53j+fJyHXbYYTYMNzY2EoZdIhOOOcbJxVhv7HqZrnFZyK+KYr6FA4C1xr+sgIslk0n19vbadcPxeFzGGHvd4/EoHA6rKpGQJL37gx9U2bZt+SoXOTQwtRiOmVbtYmO9i7+z3ti1Xj3GqYgfXAJADhCOARdJp9MaHBy0O0r39PQomUw6xtTW1trOcEdHh4KSXrj1NklSUQsdJ7eic1wAxjPhmPexW7HeGAByi3AMbGLGGI2OjtrOcCwW0+zsrGNMWVmZ3UCrs7NTFRUVjusLXV2SJE9JiXxVVetUOdYba44LQGZadRWdY7fqXzrjmHAMALlBOAY2menpadsZjkajGh8fd1wPBoPq6Oiwu0rX1tYuO/0uMbAYmgJNTUzTc6npxLQmFiYkMa3a1Vhz7Hr2jGPCMQDkBOEY2OAWFhbU3d1tu8NDQ0OO616vV62trbYzHA6H5fOt/BzbhD3jmOm2bpVZb1wRrFBpgOO3XMmYvaZV0zl2q/5RwjEA5BLhGNhgUqmU4vG47Qz39fUpnU47xjQ0NNip0u3t7QoGg4f8epkzjgnH7sV64wIwOyolZhb/XNGc31qQM/Fx1hwDQC4RjoE8M8Zo165dtjPc1dWlhYUFx5jKyko7TToSiai0dO26f3ZadTNrUd3KhuMywrFrZbrGpfVSoCi/tSAn0mmjAbvmmHsMALlAOAbyYHx83G6gFY1GNTU15bheXFxsp0lHIhFVV1fnbD1wYoBp1W43OD0oic6xq7He2PV2T89rIZWW1yM1VhCOASAXCMfAOpidnVVXV5ftDo+MjDiu+/1+tbe320Dc2Ni4bptjJZemVfsJx67FtOoCQDh2vfhS17ixokh+nzfP1QCAOxGOgRxIJpPq7e2164YHBgZkjLHXPR6PwuGw7Qy3trbK71//t6NJp1+dVh1mWrVbxacWZwcQjl1srGfxdzbjcq3MZlysNwaA3CEcA2sgnU5rcHDQdoZ7enqUTCYdY2pra21nuKOjQ0VF+Z8Wl9qzR2ZhQfJ4FKivz3c5yJHMtGqOcXIxOseulznGiXAMALlDOAYOgTFGo6OjtjPc1dWl2dlZx5jy8nLHuuGKioo8VXtgma6xv75enlXseI2NK5VOaWhm8fivcBmzA1wrE46r6By7VX/mjONqwjEA5ArhGFihqakpu4FWLBbT+Pi443ooFFJHR4cNxLW1teu2bvhQcYyT++2a3aWUScnv9au2uDbf5SBX6By7Hp1jAMg9wjFwAAsLC+ru7rbd4eHhYcd1r9er1tZW2xlubm6W17u5NklJxJd2qg4Tjt0qsxlXQ0mDvJ7N9f8nVig5L00tTp1nzbF72c4xxzgBQM4QjoElqVRK/f39tjPc19endDrtGNPY2Gg7w21tbQpu8qnImWOc2KnavQam2Kna9Sb6F3/3F0slW/JbC3KGzjEA5B7hGAXLGKNdu3bZznB3d7cWFhYcY6qqqtTZ2Wk30SotLc1TtbmRZKdq18t0jllv7GJ7T6ne4Es5cGhmFpIanUlIkpoJxwCQM4RjFJTx8XHbGY5Go5qennZcLy4uttOkOzs7VV1dnadK18era44JTm6VCcfsVO1irDd2vcwZx+VFfpUXBfJcDQC4F+EYrjY7O6uuri4biEdGRhzX/X6/2tvbbSBubGzc8JtorSXWHLtfJhwzrdrFxnoXfyccu9ar643pGgNALhGO4SrJZFI9PT02DA8MDMgYY697PB41NzfbznBLS4v8/sJ8G6RnZ5UaHZXEbtVuRjguAOOZcMxmXG7FemMAWB+FmQrgGul0WoODgzYM9/T0KJlMOsbU1tbadcPt7e0qKmKnT0lKDCzubustLZV3A57BjLUxuLSLcVMZ4di1OOPY9eJ0jgFgXRCOsakYY7Rnzx4bhmOxmObm5hxjysvL7TTpSCSiCoLffmV2qg6EmwpqKnkhmVyY1GRiUpLUWMKaY9dizbHr9dM5BoB1QTjGhjc1NWU30IrFYhofH3dcD4VC6ujosIG4traWsLcCmZ2qOcbJvQanF7vGVaEqlQRK8lwNcsIYwnEBeHVaNTOfACCXCMfYcObn59Xd3W3D8PDwsOO6z+dTa2urXTccDofl9XrzVO3mZTfjYqdq12K9cQGYGZGSi8FJFc35rQU5w4ZcALA+CMfIu1Qqpf7+fhuG+/r6lE6nHWMaGxttZ7itrU3BYDBP1bqHPcaJM45da2CKcOx6mc24yholfyi/tSAnUmmjwfHF5UNMqwaA3CIcY90ZYzQ8PGzDcHd3txYWFhxjqqurbWe4o6NDpaWlearWvRIDmXBMcHIr2zlmMy73Ykq16+2emlciZeTzetRQwbRqAMilrMLx9ddfrxtuuMHx2JFHHqnnn39+TYuC+4yNjTnWDU9PTzuul5SU2A20Ojs7VV1dnadKC4cNx6w5di2mVRcAwrHrZaZUN1YUyedlPw0AyKWsO8fHHHOMfvnLX776BAV6RiwO7rnnnrM7Su/Zs8dxLRAIqL293YbhhoYGNtFaRyadthtyEY7dKxOOG0vZqdq1xjJnHBOO3ap/lPXGALBesk62fr9fjY0r/0Zrfn5e8/Pz9u8TExPZvmTB+s+/OVHlL0/mu4wVM5IUDKn2K3dLknZ98D0qW5jXtmU+ZkHS80u/sH48RqpPSGmP9M7/PEtpHz+YcKNBvySPR557r1b3wkGHYxPakt6jMklfeWpO//HMjnyXgxwYn01KYqdqAFgPWYfjl156SeFwWEVFRTr55JN18803q62t7YDjb7755n2mYmNlvGNzqt9z8HEbiQlJma206kclz/yyw5Fn0Qapp4idvt2sJJ3WyfP9Kjcm36Ughx6eaNUrZvrgA7FpHddSle8SAMD1PMas/Dum+++/X1NTUzryyCM1MDCgG264Qf39/XrmmWdUXl6+34/ZX+e4tbVV4+PjqqioWP1n4GIv/vJOTQ735LuMRcZobn5eE+PjmpiY0MTEuJKplGNIMBDUXFGtzrjww5Kknt/cK5NO7efJsFHMtdYpXcTO327WGKxVjZ9/a90sUVynucrOfJeBHCoJ+nRsuFLeLNccp9NpPfvss5Kko48+mmMPXWpiYkKVlZV8bw2sgazC8WuNjY2pvb1dn//853XFFVes6GN4A28eU1NTdgOtaDS6z5T4UCjk2ERry5Yt+tIvX9D2psUpYHwhBgAgfwjHhYHvrYG1s6rdtKqqqnTEEUfo5ZdfXqt6kEfz8/Pq7u62gXh4eNhx3efzqbW11Z43HA6H9/lCGx+bk5rYpA0AAADA5rKqFDM1NaVXXnlFl1xyyVrVg3WUSqXU19dnO8P9/f1Kp9OOMU1NTbYz3NbWpkAgsOxzDozPStr/FHsAAAAA2KiyCsfXXHON3v72t6u9vV3xeFzXXXedfD6fLr744lzVhzVkjNHw8LDtDHd1dSmRSDjGVFdX285wJBJRSUlJVq8xMD4nwjEAAACAzSarcNzX16eLL75YIyMjqqur02mnnabHHntMdXV1uaoPqzQ2NmbDcCwW0/S0czfTkpISG4Y7OztVVVV1yK+VThsNjs+tsmIAAAAAWH9ZheN77703V3VgjczMzKirq8sG4j17nGdBBQIBtbe32zDc0NAgj2dtzrjdNTWvRIrjYgAAAABsPuyctMklEgn19PTYdcMDAwOO6x6PRy0tLTYMt7S0yOfz5aSW/rHZnDwvAAAAAOQa4XiTSafTGhgYsJ3hnp4epV5z3nBdXZ0Nwx0dHQqFQutSW5xwDAAAAGCTIhxvcMYY7dmzR9FoVNFoVF1dXZqbc67rraiosGE4EomovDw/G2L1jxKOAQAAAGxOhOMN7KGHHtKf/vQnTUxMOB4PhUKOMLxly5Y1Wze8GnSOAQAAAGxWhOMNbGJiQhMTE/L5fGpra7OBuKmpSV6vN9/l7aN/jJ2qAQAAAGxOhOMN7OSTT9Yb3/hGtba2KhAI5Lucg6JzDAAAAGCzIhxvYM3NzfkuISvsVg0AAABgs9p4c3OxKU3NJzU+m8h3GQAAAABwSAjHWBMDS13jiiImIwAAAADYfAjHWBOZKdVNlUV5rgQAAAAAskc4xpqIL+1UHa4uznMlAAAAAJA9wjHWRP/YjCSpqZJwDAAAAGDzIRxjTWQ6x0yrBgAAALAZEY6xJuya4yo6xwAAAAA2H8Ix1kR8KRyHK0N5rgQAAAAAskc4xqql0kaD40sbclWW5LkaAAAAAMge4RirNjw5p2TayO/1qLaczjEAAACAzYdwjFXLTKlurCySz+vJczUAAAAAkD3CMVatP3PGMZtxAQAAANikCMdYtf7Rxc5xM+EYAAAAwCZFOMaqZaZVE44BAAAAbFaEY6yaPcaJcAwAAABgkyIcY9X6bTguynMlAAAAAHBo/Ov9gsYYSdLExMR6vzRypHdot9LzKVX6EpqYmNDU1JSkxXvs9fLzFwAA8iGdTvM1uQBkvqfOfI8N4NB5zDq/k/r6+tTa2rqeLwkAAAC4Wm9vr1paWvJdBrCprXs4TqfTisfjKi8vl8fDmbhuNDExodbWVvX29qqioiLf5SAHuMfuxz12P+5xYeA+u58xRpOTkwqHw8wOAFZp3adVe71efqpVICoqKvhC7HLcY/fjHrsf97gwcJ/drbKyMt8lAK7Aj5cAAAAAAAWPcAwAAAAAKHiEY6y5UCik6667TqFQKN+lIEe4x+7HPXY/7nFh4D4DwMqt+4ZcAAAAAABsNHSOAQAAAAAFj3AMAAAAACh4hGMAAAAAQMEjHAMAAAAACh7hGAAAAABQ8AjHWNb1118vj8fj+LV169ZlP+a+++7T1q1bVVRUpG3btunnP/+547oxRp/61KfU1NSk4uJibd++XS+99FIuPw0sI9t7fMcdd+j0009XdXW1qqurtX37dj3xxBOOMZdddtk+z3nOOefk+lPBAWR7j++66659xhcVFTnG8D7eWLK9x3/+53++z3iPx6PzzjvPjuF9vPH09/frve99r7Zs2aLi4mJt27ZNv/3tb5f9mB07duiNb3yjQqGQXve61+muu+7aZ8xXv/pVdXR0qKioSCeddNI+/6YDQKEgHOOgjjnmGA0MDNhfv/71rw849tFHH9XFF1+sK664Qr///e/1zne+U+985zv1zDPP2DGf+9zn9C//8i+6/fbb9fjjj6u0tFRnn3225ubm1uPTwX5kc4937Nihiy++WI888oh27typ1tZWnXXWWerv73eMO+eccxzP+d3vfjfXnwaWkc09lqSKigrH+O7ubsd13scbTzb3+Ec/+pFj7DPPPCOfz6cLLrjAMY738cYxOjqqU089VYFAQPfff7+effZZ3Xbbbaqurj7gx8RiMZ133nk688wz9V//9V/68Ic/rPe973168MEH7Zjvfe97uvrqq3Xdddfpqaee0p/92Z/p7LPP1vDw8Hp8WgCwofjzXQA2Pr/fr8bGxhWN/dKXvqRzzjlH1157rSTpxhtv1C9+8Qt95Stf0e233y5jjL74xS/qn/7pn/SOd7xDkvSd73xHDQ0N+vGPf6yLLrooZ58HDiybe3zPPfc4/v7Nb35TP/zhD/Xwww/rb/7mb+zjoVBoxc+J3MvmHkuSx+M54HjexxtTNve4pqbG8fd7771XJSUl+4Rj3scbx2c/+1m1trbqzjvvtI9FIpFlP+b2229XJBLRbbfdJv1/7dxfSJN9Gwfw75tuK4PawXLOqKGhtsrRaiizwgNHZicexYSSEWXgSQQV7SQkpFggdRBhf9AsDIZ1YiFMa7QgsQQ7SM3MfxBCM/JETfvDdr0Hz+PNcz/mdG/lxrvvB4b6+133j/vHxeW9a/c2ABaLBS9evMDVq1dRWloKALhy5Qqqqqpw9OhR5Zi2tjY0NjbC4/H8od0QESUm3jmmJQ0NDSEzMxPZ2dk4fPgwPnz4sGhsV1cXnE6naqy0tBRdXV0A/noVOxQKqWLWr1+PwsJCJYZWXiw5/rfZ2Vn8+PFjwZPtYDCI9PR05OXlobq6GpOTk7/7tCkGseZ4ZmYGZrMZmzZtQnl5Ofr7+5U51nFi+pU6bmhoQEVFBdauXasaZx0njkePHsFut+PQoUNIT0+HzWbD7du3ox6z1DX5+/fv6OnpUcWsWrUKTqeTtUxESYnNMUVVWFiIpqYm+P1+1NfXY2xsDPv27cP09PRP40OhEIxGo2rMaDQiFAop8/Nji8XQyoo1x/927tw5ZGZmqp5cHThwAPfu3UMgEMDly5fx/PlzlJWVIRwO/6ltUBSx5jgvLw+NjY1obW1Fc3MzIpEIioqKMD4+DoB1nIh+pY67u7vR19eH48ePq8ZZx4lldHQU9fX1yMnJQXt7O6qrq3Hy5EncvXt30WMWuyZPTU1hbm4Onz9/RjgcZi0TEf2Nb6umqMrKypTfrVYrCgsLYTab0dLSgmPHjsXxzOh3+ZUce71e+Hw+BINB1Rc2/fNttfn5+bBardiyZQuCwSBKSkp+/yYoqlhz7HA44HA4lL+LiopgsVhw8+ZN1NbWrsg5U2x+pY4bGhqQn5+PgoIC1TjrOLFEIhHY7XZcunQJAGCz2dDX14cbN27A7XbH+eyIiP4/8M4xxUSv1yM3NxfDw8M/nc/IyMDExIRqbGJiQvnM2vzPaDEUX0vleF5dXR28Xi86OjpgtVqjxmZnZ8NgMCy5Jq2M5eZ4nkajgc1mU+JZx4lvuTn+8uULfD7fsl7sZB3Hl8lkwrZt21RjFosl6tvnF7smr1u3DmvWrIHBYEBKSgprmYjob2yOKSYzMzMYGRmByWT66bzD4UAgEFCNPXnyRLkLlZWVhYyMDFXM1NQUXr16pbpTRfGzVI6Bv76puLa2Fn6/H3a7fck1x8fHMTk5GXVNWjnLyfE/hcNh9Pb2KvGs48S33Bw/ePAA3759w5EjR5Zck3UcX3v27MHg4KBq7P379zCbzYses9Q1WavVYvfu3aqYSCSCQCDAWiai5CREUZw+fVqCwaCMjY1JZ2enOJ1OMRgM8unTJxERqaysFI/Ho8R3dnZKamqq1NXVycDAgNTU1IhGo5He3l4lxuv1il6vl9bWVnnz5o2Ul5dLVlaWzM3Nrfj+KPYce71e0Wq18vDhQ/n48aPymJ6eFhGR6elpOXPmjHR1dcnY2Jg8ffpUdu3aJTk5OfL169e47DHZxZrjCxcuSHt7u4yMjEhPT49UVFTI6tWrpb+/X4lhHSeWWHM8b+/eveJyuRaMs44TT3d3t6SmpsrFixdlaGhI7t+/L2lpadLc3KzEeDweqaysVP4eHR2VtLQ0OXv2rAwMDMj169clJSVF/H6/EuPz+USn00lTU5O8fftWTpw4IXq9XkKh0Iruj4goEbA5pqhcLpeYTCbRarWyceNGcblcMjw8rMwXFxeL2+1WHdPS0iK5ubmi1Wpl+/bt0tbWppqPRCJy/vx5MRqNotPppKSkRAYHB1diO/QTsebYbDYLgAWPmpoaERGZnZ2V/fv3y4YNG0Sj0YjZbJaqqio+0YqjWHN86tQp2bx5s2i1WjEajXLw4EF5/fq1ak3WcWL5X/5Xv3v3TgBIR0fHgvVYx4np8ePHsmPHDtHpdLJ161a5deuWat7tdktxcbFq7NmzZ7Jz507RarWSnZ0td+7cWbDutWvXlJovKCiQly9f/sFdEBElrv+IiMTzzjURERERERFRvPEzx0RERERERJT02BwTERERERFR0mNzTEREREREREmPzTERERERERElPTbHRERERERElPTYHBMREREREVHSY3NMRERERERESY/NMRERERERESU9NsdERERERESU9NgcExERERERUdJjc0xERERERERJ77+N2hNJ5lh4AgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8cAAAPuCAYAAAAlrG+kAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xl8U2XePv4re/d9SdOmWQCRIogOgriBI1qV8dF50JF5ZhxRKQIigzMig+OKC4gLiONPR1HR0efrDKPihojyiKKyuDEuKCJJ0zVtKd23LOf8/khzw7ELLbRN0lzv18uXJefuOXeapsmVz72oZFmWQURERERERBTF1KHuABEREREREVGoMRwTERERERFR1GM4JiIiIiIioqjHcExERERERERRj+GYiIiIiIiIoh7DMREREREREUU9hmMiIiIiIiKKegzHREREREREFPUYjomIiIiIiCjqMRwTERERERFR1GM4JiKKQt988w0uv/xyWCwWxMTEIDc3F+effz4ee+wx0cZqtUKlUon/4uPjMWnSJLzwwgsh7DkRERHR4FDJsiyHuhNERDR0Pv30U5x77rnIz8/H1VdfDaPRiNLSUuzcuRMHDhzATz/9BCAQjlNTU/HnP/8ZAFBZWYl169bhxx9/xFNPPYWioqJQ3g0iIiKiAcVwTEQUZWbMmIHPPvsMP/74I1JSUhTHqqurkZWVBSAQjk866SS89dZb4nhNTQ3sdjvMZjP27t07lN0mIiIiGlQcVk1EFGUOHDiAsWPHdgnGAEQw7klmZiZOPPFEHDhwYJB6R0RERBQaDMdERFHGYrHgiy++wLffftvv7/X5fCgrK0Nqauog9IyIiIgodBiOiYiizM0334zW1lZMmDABZ5xxBpYuXYotW7bA6/V2aev1enHw4EEcPHgQ3377La699lq43W5cfvnlIeg5ERER0eDhnGMioij02WefYcWKFXj33XfR2toKIDBket26dfiv//ovAIE5xy6Xq8v3XnPNNXj88ccRGxs7pH0mIiIiGkysHBMRRaHTTjsNr776Kurq6rB7924sW7YMTU1NuPzyyxULbU2ePBnvvfceNm/ejIceeggpKSmoq6uDXq8PYe+JiIiIBh7DMRFRFNPr9TjttNNw//3344knnoDX68WGDRvE8YyMDEyfPh2FhYX485//jBdffBEbN27Eo48+GsJeExEREQ08hmMiIgIATJw4EUBgP+OezJgxA1OnTsX999+PlpaWoeoaERER0aBjOCYiijIffPABultuYtOmTQCA0aNH9/r9S5cuRW1tLZ5++ulB6R8RERFRKHBBLiKiKHPSSSehtbUVv/71r3HiiSfC4/Hg008/xT//+U+YzWZ89dVXSElJgdVqxUknnYS33nqryznGjRuHhoYGHDhwADqdLgT3goiIiGhgsXJMRBRlHnroIZx77rnYtGkT/vSnP+FPf/oTdu/ejQULFmDXrl1ISUk56jluvvlmlJaW4qWXXhr8DhMRERENAVaOiYiIiIiIKOqxckxERERERERRj+GYiIiIiIiIoh7DMREREREREUU9hmMiIiIiIiKKegzHREREREREFPUYjomIiIiIiCjqaYf6gpIkoaKiAomJiVCpVEN9eSIiIiKiYUOWZTQ1NcFkMkGtZt2L6HgMeTiuqKiA2Wwe6ssSEREREQ1bpaWlyMvLC3U3iCLakIfjxMREAIEncFJS0lBfngaZJEn44YcfAAAnnngiP8EkIiIKEb4mR4fGxkaYzWbxHpuIjt2Qh+PgUOqkpCSG42FIkiQkJCQACDzGfCEmIiIKDb4mRxdOVyQ6fvwrSURERERERFGP4ZiIiIiIiIiiHsMxERERERERRT2GYyIiIiIiIop6DMdEREREREQU9RiOiYiIiIiIKOoxHBMREREREVHUYzgmIiIiIiKiqMdwTERERERERFGP4ZiIiIiIiIiiHsMxERERERERRT2GYyIiIiIiIop6DMdEREREREQU9RiOiYiIiIiIKOoxHBMREREREVHUYzgmIiIiorDQ2NiIPXv24K233oIsy6HuDhFFGW2oO0BERERE0am9vR3FxcVwOBxwOp04ePCgODZx4kQYjcYQ9o6Iog3DMRERERENCZ/Ph9LSUhGGKyoqFBVilUoFk8kEm82GmJiYEPaUiKIRwzERERERDQpZluF2u+FwOOBwOFBSUgKfz6dok56eDrvdDrvdDqvVylBMRCHDcExEREREA0KWZdTV1YnKsNPpRFtbm6JNQkIC7HY7bDYb7HY7kpKSQtRbIiIlhmMiIiIiOmYtLS1wOp2iOtzQ0KA4rtfrYbVaRSDOzMyESqUKUW+JiHrGcExEREREfebxeOByuUR1uKqqSnFcrVbDbDaLyrDJZIJGowlRb4mI+o7hmIiIiIh65Pf7UVFRIcJwaWkpJElStMnOzhbzhvPz86HX60PUWyKiY8dwTERERESCLMuoqakRYbi4uBgej0fRJjk5WYRhm82G+Pj4EPWWiGjgMBwTERERRbmGhgYxb9jpdKK5uVlxPDY2VgyTttlsSE1N5bxhIhp2+h2Oy8vLsXTpUrzzzjtobW3FyJEj8dxzz2HixImD0T8iIiIiGmBtbW0oLi4WYbi2tlZxXKvVwmKxiEBsNBoZholo2OtXOK6rq8OZZ56Jc889F++88w4yMzOxf/9+pKamDlb/iIiIiOg4+Xw+lJeXizBcUVEBWZbFcZVKBZPJJIZK5+XlQavlAEMiii79+qv3wAMPwGw247nnnhO32Wy2Ae8UUbSQWlvR8Prr8Dc1H70xhYxf8uH7Q9+jzdd29MYUndrqgfaGozaj0Orw+tHm84e6G0NHrcW4BWsAAP87/zxIno7AzQDyAKjUamjUGqg16sBq0hVA1edAVY8nHFqTF62CvWBSqLtBRFGkX+H4jTfeQGFhIa644gp8+OGHyM3NxYIFC1BUVNTj93R0dKCjo0P8u7Gx8dh7SzTM1P/736i6f0Wou0F9kB3qDhAR9ZNsMEBaEPh60udNUB3xfiwSVP3qG4ZjIhpS/QrHDocDTzzxBP70pz/h1ltvxWeffYZFixZBr9fj6quv7vZ7VqxYgbvvvntAOks03HQ4HACAmIICGE48McS9oZ58V/st9tftR6I+CakGTiOhn/F7gIYSAGrAkBDq3lAPZFlGS0egaqzVDJ+5s7IsAzIgQwaOGCYNACqdFmM6v/5+jAGyd+j7dzzGZltC3QUiijIqWf7ZX9Je6PV6TJw4EZ9++qm4bdGiRfjss8+wY8eObr+nu8qx2WxGQ0MDkpKSjqPrFI4kScLevXsBAAUFBVCr1SHuUXgrmTsXLR9th/Ge5Ui94opQd4d6cMuHt+Cd4ndw88SbcfXY7j8IpCi2/z3gpcuB7JOA+Z+EujfUgy9chzDziR3ITYnFJ3/5Zai7c0w8Hg9cLpeYN1xVpRwArVarYTabxSJaOTk5+OGHHwDwNXk4a2xsRHJyMt9bEw2AflWOc3JyUFBQoLhtzJgxeOWVV3r8HoPBAIPBcGy9IxrmfJWVAABdjinEPaHeVLYEHidjvDHEPaGw1FAa+H9yXmj7Qb0qr28HAOSmxIa4J33n9/tRXl4utlgqKyuDJEmKNkajUYTh/Px86PV6ceznbYmIqHf9Csdnnnkm9u3bp7jtxx9/hMXCYS9E/SXLMrzlFQAAnYnhOJwFw7Epno8TdaOhLPD/ZHNo+0G9qqgPLKiXmxq+4ViWZdTU1IjKcHFxMTwej6JNSkqK2GvYZrMhPj4+RL0lIhp++hWOb7rpJpxxxhm4//778Zvf/Aa7d+/GU089haeeemqw+kc0bElNTZBaWwEAuhxWJMOVV/Kipq0GAJCTkBPi3lBYEuGYleNwFgzHppSYEPdEqaGhQVSGnU4nmpuVuxfExsaKyrDdbuf2mUREg6hf4fi0007Da6+9hmXLlmH58uWw2WxYs2YNfve73w1W/4iGLW/nkGpNairUseFbyYh2Na01kGQJOrUOaTFpoe4OhSOG44hwOByH9u9tW1sbiouLRRiura1VHNdqtbBYLCIQG41GqFTDZwExIqJw1u/d3X/1q1/hV7/61WD0hSiqiCHVOaxGhrOK5sDjZIw3Qq3iYjbUjfrgnGMOqw5nZXWhCcc+nw+lpaVwOBxwOByorKzEkWuhqlQq5ObmijCcl5cHrbbfb8+IiGgA8K8vUYh4KzvDcS7nsYaz4HzjnHh+iEHdkPxAY3nga1aOw5qYczzI4ViSJLjdblEZLikpgc/nU7TJyMgQw6QtFgtiYsJrqDcRUbRiOCYKkeBK1VpWjsOau8UNgOGYetDkBmQ/oNYCiVw7IFw1tXvR2B4IqANdOZZlGYcOHVLMG25vb1e0SUxMFJVhm83G7XYoJPx+P7zeCNvsmmgA6HQ6aDSaPrVlOCYKEW8Ft3GKBKJyzMW4qDvB+cZJJkDdtxdeGnqVDYGwmhyrQ4Lh+N/6NDc3K8JwQ0OD4rjBYIDVahXV4fT0dM4bppCRZRlutxv19fWh7gpRyKSkpPRpDQeGY6IQ8VZwznEkqGgJPE6sHFO3GjjfOBKUH+d8Y4/HA5fLJeYNV1dXK45rNBqYzWZRHTaZTFCruUYBhYdgMM7KykJcXBw/qKGoIssyWltbxd/tnKO872Y4JgqR4GrVOhNDVzhzNweGVRvjOWSWuiHCMecbh7NyMd+4b3N7/X4/ysvLRWW4rKwMkiQp2hiNRlEZzs/Ph06nG/B+Ex0vv98vgnF6enqou0MUErGdu8JUV1cjKyur1yHWDMdEISB7vfB1foKlM3FYdbiSZVkMqzbF83GibohtnFg5DmdHW4xLlmVUV1eLodIulwsej0fRJjU1VTFvOC4ubtD7TXS8gnOM+ftK0S74HPB6vQzHROHGW1UNyDJUej00adw7N1w1ehrR6msFwMox9YB7HEeE7vY4bmhoEJVhh8OBlpYWxffExcUpwnBqauqQ9ploIHEoNUW7vj4HGI6JQsBbEdj6RZtjhIrz0sJWsGqcFpOGGC23WqFucI/jiBAcVi23HMLbb/8Ah8OBQ4cOKdrodDpYLBYRiLOzsxkoiIiiDMMxUQgEt3HiStXhrbI58Dixakw9YuU4bPl8PpSUlMDhcGBfWQsALb7Z+SGqNIEKsUqlQm5urqgM5+XlQavl2yIiomjGVwGiEDi8GBfDcTjjfGPqVXsD0NG5hQ/DcchJkoTKykoxTLqkpAR+vx+SDDT5fgEAyM9IxPhRY2G322GxWBATwxEhRJFm2rRpmDBhAtasWdOn9sXFxbDZbPjqq68wYcKEQe3bULJarVi8eDEWL148oG2P1fr167F48eKI3zKM4ZgoBA7vccyVqsOZu4UrVVMvGgLTIxCbChgSQtuXKCTLMg4dOiTmDTudTrS3tyvaJCYmIjXXDvkrFbRqFZYsnAu1mkOlicLd7Nmz8fzzz3e5ff/+/Xj11Vf7tTq82WxGZWUlMjIyAADbtm3Dueeei7q6OqSkpAxUl4fcZ599hvj4+AFve6yuvPJKXHzxxYN6je4M9IcfDMdEIcBtnCJDsHLMPY6pWxxSPeSam5sVi2g1NjYqjhsMBthsNjFvOD09HV+46oCvdiAnJYbBmCiCXHjhhXjuuecUt2VmZva60nB3NBoNjMbw+ZDb4/FAr9cf93kyMzMHpe2xio2NFVsmRTKuBEQUAt6KCgCsHIe7ipbA45STwMeJutFQEvg/F+MaNB0dHfjxxx+xefNmPPHEE3j44Yfx2muvYc+ePWhsbIRGo4HVasUvf/lLXHfddbjllltw5ZVXYtKkScjIyIBKpRKLcZmSI/9NG9HxkmUZHo8nJP/JstyvvhoMBhiNRsV/Go0G06ZNUwwPtlqtuP/++3HttdciMTER+fn5eOqpp8Tx4uJiqFQq7NmzB8XFxTj33HMBBLZnU6lUmD17NoDA1IwVK1bAZrMhNjYWJ598Mv7973/32sf169cjJSUFGzduxKhRoxATE4PCwkKUlpaKNnfddRcmTJiAdevWwWaziekc9fX1mDNnDjIzM5GUlIRf/vKX+M9//qM4/5tvvonTTjsNMTExyMjIwK9//WvF/Q4OLZdlGXfddRfy8/NhMBhgMpmwaNGibtsCQElJCS699FIkJCQgKSkJv/nNb1BVVdWlz//4xz9gtVqRnJyMWbNmoamp6ag/i/6cY9q0aVi4cCEWLlyI5ORkZGRk4Pbbb1f8rqhUKmzcuFFxrZSUFKxfvx4AYLPZAACnnHIKVCoVpk2b1mMf+4KVY6IhJssy5xxHCHdzYFg15xxTt7jH8YDz+/0oKysT1eHy8nJIkqRok5OTIyrD+fn5Rx1eGQzHuakMx0RerxcrVqwIybWXLVs2IBXT7jz88MO45557cOutt+Lf//435s+fj6lTp2L06NGKdmazGa+88gpmzpyJffv2ISkpSVQ7V6xYgRdffBFPPvkkRo0ahY8++gi///3vkZmZialTp/Z47dbWVtx333144YUXoNfrsWDBAsyaNQuffPKJaPPTTz/hlVdewauvvioq31dccQViY2PxzjvvIDk5GX//+99x3nnn4ccff0RaWhrefvtt/PrXv8Zf//pXvPDCC/B4PNi0aVO3fXjllVewevVqvPzyyxg7dizcbneXoB0kSZIIxh9++CF8Ph9uuOEGXHnlldi2bZtod+DAAWzcuBFvvfUW6urq8Jvf/AYrV67Efffd16fHpK/neP7553Hddddh9+7d+PzzzzF37lzk5+ejqKioT9fYvXs3Jk2ahPfffx9jx4497t8xhmOiISY1NEBuDeydqw2jYT6k5PV7UdNWA4BzjqkHHFZ93GRZRnV1tQjDxcXF8Hq9ijapqaliRWmbzYa4uLh+XSO4x3FuCsMxUSR56623kJBweD2Hiy66CBs2bOi27cUXX4wFCxYAAJYuXYrVq1fjgw8+6BKONRoN0tLSAABZWVmi0tnR0YH7778f77//PqZMmQIAsNvt+Pjjj/H3v/+913Ds9Xrxt7/9DZMnTwYQCHtjxowRoQ0IDKV+4YUXxPDmjz/+GLt370Z1dTUMBgMA4KGHHsLGjRvx73//G3PnzsV9992HWbNm4e677xbXOvnkk7vtQ0lJCYxGI6ZPnw6dTof8/Hxx7Z/bunUrvvnmGzidTpjNgQ93X3jhBYwdOxafffYZTjvtNACBEL1+/XokJiYCAK666ips3bq1X+G4L+cwm81YvXo1VCoVRo8ejW+++QarV6/uczgO/kzT09MHZPg8wzHREAtWjTXp6VBzpdSwVdVaBRky9Go90mLSQt0dCkcMx8ekvr5esYhWS0uL4nhcXJwiDKemph7X9SrqA4t0mRiOiaDT6bBs2bKQXbs/zj33XDzxxBPi370tKDV+/HjxtUqlgtFoRHV1dZ+v9dNPP6G1tRXnn3++4naPx4NTTjkFADB27Fi4XC4AwNlnn4133nkHAKDVakWgBIATTzwRKSkp+P7770VAtVgsinm///nPf9Dc3Iz09HTF9dra2nDgwAEAwJ49e/ocEK+44gqsWbMGdrsdF154IS6++GJccskl3W5P9/3338NsNotgDAAFBQWiz8H7YrVaRagFAqN2+vMz7es5Tj/9dMWe8lOmTMHDDz8Mv9/f7/nlA4HhmGiIcb5xZBCLcSXkKP5oEwn1nXPKOKy6V62trSguLhaB+NChQ4rjOp0OFotFDJXOzs4e0OdceV3nnGOGYyKoVKpBG9o80OLj4zFy5Mg+tf158FapVF2mZPSmubkZAPD2228jNzdXcSxY2d20aZMY2dLfhad+Huybm5uRk5OjGMYcFKxm9+caZrMZ+/btw/vvv4/33nsPCxYswIMPPogPP/yw3x9KBB3vz3SgzqFSqbrMV//5CKOBxHBMNMTENk6cbxzWguGYQ6qpW34f0BT4oIuVYyWv14vS0lI4HA44HA5Udo6WCVKpVMjNzYXNZsOIESOQl5c3qNWBw8OqOVKHiCA+HPD7/eK2goICGAwGlJSU9DiE2mKxdHu7z+fD559/LqrE+/btQ319PcaMGdNjH0499VS43W5otVpYrdZu24wfPx5bt27FNddc05e7hdjYWFxyySW45JJLcMMNN+DEE0/EN998g1NPPVXRbsyYMSgtLUVpaamoHu/duxf19fUoKCjo07UG0q5duxT/3rlzJ0aNGiVeFzIzMxWvI/v370dr5/REoPvH83gwHBMNMbEYFyvHYa2yOfA4cTEu6lZTJSBLgFoHJGSHujchJUkSKisrRWW4pKSky5uUzMxMURm2Wq2iEjPYGtu9aOrwAWDlmIgCLBYLVCoV3nrrLVx88cWIjY1FYmIibr75Ztx0002QJAlnnXUWGhoa8MknnyApKQlXX311j+fT6XS48cYbsXbtWmi1WixcuBCnn356j3N+AWD69OmYMmUKLrvsMqxatQonnHACKioqxCJcEydOxJ133onzzjsPI0aMwKxZs+Dz+bBp0yYsXbq0y/nWr18Pv9+PyZMnIy4uDi+++CJiY2O7DfTTp0/HuHHj8Lvf/Q5r1qyBz+fDggULMHXqVEycOPHYfqjHoaSkBH/6059w/fXX48svv8Rjjz2Ghx9+WBz/5S9/ib/97W+YMmUK/H4/li5dqqhIZ2VlITY2Fps3b0ZeXh5iYmKQnJx8zP1hOCYaYt7KzmHV3OM4rHGPY+qVmG+cC6ija1dEWZZx6NAhURkuLi5Ge3u7ok1iYiLsdruYO3zknLOhFKwap8bpEKfnWx4iAnJzc3H33XfjL3/5C6655hr84Q9/wPr163HPPfcgMzMTK1asgMPhQEpKCk499VTceuutvZ4vLi4OS5cuxf/8z/+gvLwcZ599Np555plev0elUmHTpk3461//imuuuQY1NTUwGo0455xzkJ0d+MB12rRp2LBhA+655x6sXLkSSUlJOOecc7o9X0pKClauXIk//elP8Pv9GDduHN58880uc5qD13799ddx44034pxzzoFarcaFF16Ixx57rI8/wYH1hz/8AW1tbZg0aRI0Gg3++Mc/Yu7cueL4ww8/jGuuuQZnn302TCYTHn30UXzxxRfiuFarxdq1a7F8+XLccccdOPvss7sdrt5XKrm/m44dp8bGRiQnJ6OhoQFJSUlDeWkaApIkYe/evQACQ1TUUfamsS+cV16J9v98jdy1jyLpggtC3R3qwfXvXY9PKz7F8jOW49ejfn30b6Do8vW/gFeLAOvZwOy3Qt2bQdfc3Cwqww6HA42NjYrjBoNBLKBlt9uRnp4eFnP1t35fheue/xxjTUl4e9HZoe7OkONrcnTo7b11e3s7nE6nYn9dGjjr16/H4sWLUV9fH+quRKRp06ZhwoQJij2YB0tfnwv8GJVoiPnEnOPco7SkUDpyQS6iLhqCi3ENz/nGHR0dcLlcojpcU1OjOK7RaGA2m0V1OCcnJyyDV7ByzCHVRETUFwzHRENI8njg63yTyWHV4UuWZbhb3AA455h6IIZVD4+Vqv1+P8rKykR1uKysrMvqoDk5OaIynJ+ff8wroA6l8s5tnLjHMRER9QXDMdEQ8lVVAQBUBgM0x7l3Jw2eho4GtPkCFafs+OhebIl6EOF7HMuyjOrqalEZdrlcXbbGSE1NFZVhq9WKuLi4EPX22B1eqZrhmIgG3uzZszF79uxQdyNiHc/c4MHCcEw0hLzlh/c4Dof5eNS9ipbA45Qekw6DZmhW1aUIUx95w6rr6+sV84aP3AoDCCwqE1xAy263i702I1k5h1UTEVE/MBwTDSGxjRP3OA5rXKmaeiXLR8w5Dt9h1a2trSguLhbV4bq6OsVxnU4Hi8UiqsNZWVnD7kO7w3OOuRAREREdHcMx0RAKbuOk5XzjsBacb8zFuKhb7Q2ApznwdRhVjr1eL0pKSkR1uLLzw7gglUqFvLw8URnOy8uDRqMJUW8Hn9cvoaqxc85xKivHRER0dAzHREPIF6wc5zB0hbPKZlaOqRfB+cZx6YA+dPNwJUlCZWWlCMMlJSXw+/2KNpmZmaIybLFYYDBEzzSBqsZ2SDKg16iRER8995uIiI4dwzHREPIGt3HK4bDqcMZh1dSrEC3GJcsyamtrRRguLi5Ge3u7ok1SUpKYN2yz2ZCYmDikfQwnFZ0rVeekxECtHl7DxYmIaHAwHBMNIW9F54JcnHMc1hiOqVdDON+4qakJTqdTLKLV2NioOG4wGMQwabvdjrS0tGE3b/hYldcHFhwzJXNINRER9Q3DMdEQkWX5iAW5GLrCWTAcGxOMIe4JhaWGwVupuqOjQyyi5XQ6UdO5L3qQRqNBfn6+CMQ5OTlQq9UD3o/hIFg55krVRHQ006ZNw4QJE7BmzZpQd6XPiouLYbPZ8NVXX2HChAmh7s6wwVdUoiHir6+H3DkEUmtk6ApXHr8HB9sOAgBM8azwUzfEsOrjrxz7/X64XC588MEHePbZZ/HAAw/g5Zdfxu7du0UwzsnJwZlnnomrrroKS5cuxR/+8AecffbZyM3NZTDuRXAbJy7GRRR5ampqMH/+fOTn58NgMMBoNKKwsBCffPKJaGO1WqFSqaBSqRAXF4dx48Zh3bp1ivNs27ZNtFGpVIiNjcXYsWPx1FNPKdq9+uqruOeeexTnDnVQlmUZd9xxB3JychAbG4vp06dj//79/T5PSUkJZsyYgbi4OGRlZWHJkiXw+XyKNtu2bcOpp54Kg8GAkSNHYv369QN0LyIPK8dEQyQ4pFqTmQG1Xh/i3lBPqlqqAAAxmhikGFJC2xkKT8cx51iWZVRVVYnKsMvlgtfrVbRJS0sTlWGbzYbYWIa7YxHcximX2zgRRZyZM2fC4/Hg+eefh91uR1VVFbZu3Yra2lpFu+XLl6OoqAitra3YsGEDioqKkJubi4suukjRbt++fUhKSkJbWxvefPNNzJ8/HyNGjMB5550HIPB3N9ysWrUKa9euxfPPPw+bzYbbb78dhYWF2Lt3L2Ji+vZ3ze/3Y8aMGTAajfj0009RWVmJP/zhD9DpdLj//vsBAE6nEzNmzMC8efPw0ksvYevWrZgzZw5ycnJQWFg4mHcxLDEcEw0RMd+Yi3GFtYqWwONkjDdy7iZ1r75/c47r6+vFXsNOpxOtra2K43FxcWLOsM1mQ0pKygB3ODqV1wX3OOaHC0RBsiyjzes/esNBEKvT9Ol1tb6+Htu3b8e2bdswdepUAIDFYsGkSZO6tE1MTISxczTe0qVLsWrVKrz33ntdwnFWVpb427po0SKsXbsWX375pQjHRw6rnjZtGlwuF2666SbcdNNNAAI/N5fLhYULF+Ljjz+Gx+OB1WrFgw8+iIsvvviYfyY9kWUZa9aswW233YZLL70UAPDCCy8gOzsbGzduxKxZs0TbH374AQsWLMCXX36JkSNH4vHHHxc/ty1btmDv3r14//33kZ2djQkTJuCee+7B0qVLcdddd0Gv1+PJJ5+EzWbDww8/DAAYM2YMPv74Y6xevZrhmIgGj9jGiYtxhTUuxkW98nuBps79g3uoHLe2tooFtJxOJ+rq6hTHdTodrFarWFE6OzubH8QMMFmWReWY4ZjosDavHwV3vBuSa+9dXog4/dGjR0JCAhISErBx40acfvrpfdqCTpIkvPbaa6irq4O+l9F5sizj3XffRUlJCSZPntxtm1dffRUnn3wy5s6di6KiInH7DTfcAI/Hg48++gjx8fHYu3cvEhISerzWvHnz8OKLL/ba7+bm5m5vdzqdcLvdmD59urgtOTkZkydPxo4dOxTheMmSJVizZg0KCgrwyCOP4JJLLoHT6UR6ejp27NiBcePGITs7W7QvLCzE/Pnz8d133+GUU07Bjh07FNcJtlm8eHGvfR+uGI6JhsjhbZwYusJZMBybEvghBnWjsQKADGgMQHwmAMDr9aKkpERUh91ut+JbVCoV8vLyRGU4Ly8PGo0mBJ2PHo1tPrR4AtWxXIZjooii1Wqxfv16FBUV4cknn8Spp56KqVOnYtasWRg/fryi7dKlS3Hbbbeho6MDPp8PaWlpmDNnTpdz5uUFPszs6OiAJElYvnw5zjnnnG6vn5aWBo1Go6hKA4G5uzNnzsS4ceMAAHa7vdf7sXz5ctx88839uu9BwdeRI0Nt8N8/f41ZuHAhZs6cCQB44oknsHnzZjzzzDO45ZZb4Ha7uz3HkdfoqU1jYyPa2tqibmoPwzHREBErVTMchzV3S+DFwhjPRdOoG53zjb3x2djx8cdwOp0oLS2F368cppiVlSXmDVsslj5VPmjgBBfjSo/XI0bHDyKIgmJ1GuxdHpqhsrH9eC7OnDkTM2bMwPbt27Fz50688847WLVqFdatW4fZs2eLdkuWLMHs2bNRWVmJJUuWYMGCBRg5cmSX823fvh2JiYno6OjA7t27sXDhQqSlpWH+/Pl97tOiRYswf/58bNmyBdOnT8fMmTO7hPUjZWVlISsrq8/nP1ZTpkwRX2u1WkycOBHff//9oF93uGI4Jhoih/c4ZjgOZxXNgceJw6opSJZl1NbWwuFwQPpqA04HUNoo44MPPhBtkpKSRGXYZrMhMTExdB0mEY45pJpISaVS9WlocziIiYnB+eefj/PPPx+333475syZgzvvvFMRjjMyMjBy5EiMHDkSGzZswLhx4zBx4kQUFBQoznXkeg5jx47Frl27cN999/UrHM+ZMweFhYV4++23sWXLFqxYsQIPP/wwbrzxxm7bH8+w6mDFuqqqCjlHFFWqqqr6tW2T0WjE7t27FbdVVVUprmE0GsVtR7ZJSkqKuqoxwHBMNGS8nHMcEYKVY4bj6NbU1CTmDDscDjQ1NQEAzpZ/BAC0aFIxZvQYUR1OS0vjvOEwcni+MVeqJhouCgoKsHHjxh6Pm81mXHnllVi2bBlef/31Xs+l0WjQ1tbW43G9Xt9lRFDwGvPmzcO8efOwbNkyPP300z2G4+MZVm2z2WA0GrF161YRhhsbG7Fr164ugX7nzp1iiLjP58MXX3yBhQsXAghUle+77z5UV1eLKvZ7772HpKQk8QHClClTsGnTJsU533vvPUVFOpowHBMNAamjA/6Dgb1ztRxWHbZkWT68IFcCH6do0t7eDpfLJQJxcI/hII1Gg/z8fIxp3wtUACedeRHG/fI3IeotHc3hbZziQtwTIuqv2tpaXHHFFbj22msxfvx4JCYm4vPPP8eqVavEys09+eMf/4iTTjoJn3/+OSZOnChur66uRnt7uxhW/Y9//AOXX355j+exWq346KOPMGvWLBgMBmRkZGDx4sW46KKLcMIJJ6Curg4ffPABxowZ0+M5jmdYtUqlwuLFi3Hvvfdi1KhRYisnk8mEyy67TNH28ccfx6hRozBmzBisXr0adXV1uPbaawEAF1xwAQoKCnDVVVdh1apVcLvduO2223DDDTeI6T7z5s3D3/72N9xyyy249tpr8X//93/417/+hbfffvuY+h7pGI6JhoCvc9EDVWwsNNymJWzVddShw98BFVTIjss++jdQxPL5fCgrKxNhuLy8HLIsK9qYTCZRGTabzdDpdMCLgWqEKqVv2zhRaJSzckwUsRISEjB58mSsXr0aBw4cgNfrhdlsRlFREW699dZev7egoAAXXHAB7rjjDkU1dPTo0QACc3LNZjOuv/563HXXXT2eZ/ny5bj++usxYsQIdHR0QJZl+P1+3HDDDSgrK0NSUhIuvPBCrF69ekDuc3duueUWtLS0YO7cuaivr8dZZ52FzZs3d9njeOXKlVi5ciX27NmDkSNH4o033kBGRgaAwAe7b731FubPn48pU6YgPj4eV199NZYvXy6+32az4e2338ZNN92ERx99FHl5eVi3bl1UbuMEACr55+8GBlljYyOSk5PR0NCApKSkobw0DQFJkrB3714AgT9QarU6xD0KDy07d6Jk9jXQ2+0YsSk6P4mLBN/VfodZb81CZmwm/u83/xfq7tAAkmUZVVVVIgy7XC54vV5Fm7S0NLHfsNVq7X6u1eOTgZofgKs2AiPOHZrOU7/99//3Cb4sqccTvzsVF42L3lEgfE2ODr29t25vb4fT6YTNZusSqoiiSV+fC6wcEw0Bb3lwMS7ONw5nlc3c43g4qaurE2HY6XSitbVVcTw+Pl6xiFbK0UZ1yDJQXxr4OpmV43DGBbmIiOhYMBwTDQFu4xQZON84srW2tooFtJxOJ+rq6hTHdTodrFarCMRZWVn9W0SrrQ7wtgS+Ts4dwJ7TQPL4JFQ3dQAAclMZjomIqO8YjomGgLeS2zhFAhGOWTmOCF6vV7GIlrtzbn+QWq1GXl6emDecm5sLjeY49rzt3OMY8ZmAjqErXFU1tkOWAb1WjfR4fai7Q0REEYThmGgI+Dorx1ypOrwFt3EyxhtD3BPqjiRJqKiogMPhgMPhQFlZWZetNrKyskQYtlgsYjXOAREMx8l5A3dOGnDlYqXqWG6vRURE/cJwTDQEOOc4MlQ0Bx4nVo7DgyzLOHjwoKgMFxcXo6OjQ9EmKSlJLKJls9mQkJAweB1qCM43ZjgOZ+V1XKmaiIiODcMx0SCTZfnwnGOG47DGYdWh19jYKOYNOxwONDc3K47HxMSIBbTsdjvS0tKGrjrYwMW4IkFwj2NTMoe+ExFR/zAcEw0y/6FDkD0eQKWC7hg3g6fB1+5rx6H2QwAAUwI/xBgq7e3tKC4uFtXhgwcPKo5rNBpYLBYRho1GY+i2oxHDqhmOw1lFQ+ewai7GRURE/cRwTDTIvBWd840zM6HSc3GYcFXVWgUAiNXGIknPPdgHi8/nQ1lZmQjD5eXlkGVZ0cZkMokwbDabodPpQtTbn+Gc44hQXt8OgNs4ERFR/zEcEw0ybwXnG0eCI+cbcxGfgSPLMtxutwjDLpcLPp9P0SY9PV2EYavVitjYMA019ZxzHAnK6wL7WecyHBMRUT8xHBMNMm7jFBmCK1VzvvHxq6urE2HY4XCgra1NcTw+Pl6xiFZycnKIetoPvg6guXOrKA6rDluyLKOClWMi6qdp06ZhwoQJWLNmTai70mfFxcWw2Wz46quvMGHChFB3Z9gI0cQtoujBbZwig1iMK4GPU3+1tLTg22+/xZtvvolHH30Ua9euxVtvvYXvvvsObW1t0Ov1OOGEE1BYWIj58+fjz3/+M/77v/8bEyZMiIxgDACNgQ+5oI0B4jNC2xfqUX2rF23ewPZeOclcrZooUtXU1GD+/PnIz8+HwWCA0WhEYWEhPvnkE9HGarVCpVJBpVIhLi4O48aNw7p16xTn2bZtm2ijUqkQGxuLsWPH4qmnnlK0e/XVV3HPPfcozh3qoCzLMu644w7k5OQgNjYW06dPx/79+/t9npKSEsyYMQNxcXHIysrCkiVLFCO4Kisr8T//8z844YQToFarsXjx4gG8F5GHlWOiQRacc6zL4bDqcMaVqvvO4/GgpKREVIfdbrfiuFqtRl5enqgOm0wmaDSaEPV2gBw535jD7sNWcI/jjAQDYnQR/jtHFMVmzpwJj8eD559/Hna7HVVVVdi6dStqa2sV7ZYvX46ioiK0trZiw4YNKCoqQm5uLi666CJFu3379iEpKQltbW148803MX/+fIwYMQLnnXceACAtLW3I7ltfrVq1CmvXrsXzzz8Pm82G22+/HYWFhdi7dy9iYvr24Z/f78eMGTNgNBrx6aeforKyEn/4wx+g0+lw//33AwA6OjqQmZmJ2267DatXrx7MuxQRGI6JBhnnHEeGymaG455IkoTy8nIRhktLSyFJkqJNdna2mDdssVigH26Lz3GP44gQDMe53OOYqHuyDHhbQ3NtXVyfPlysr6/H9u3bsW3bNkydOhUAYLFYMGnSpC5tExMTYTQaAQBLly7FqlWr8N5773UJx1lZWUhJSQEALFq0CGvXrsWXX34pwvGRw6qnTZsGl8uFm266CTfddBOAQBXX5XJh4cKF+Pjjj+HxeGC1WvHggw/i4osvPuYfSU9kWcaaNWtw22234dJLLwUAvPDCC8jOzsbGjRsxa9Ys0faHH37AggUL8OWXX2LkyJF4/PHHxc9ty5Yt2Lt3L95//31kZ2djwoQJuOeee7B06VLcdddd0Ov1sFqtePTRRwEAzz777IDfl0jDcEw0yA7vcczQFc6ClWNjvDHEPQk9WZZx8OBBEYaLi4vR0dGhaJOcnCzmDNtsNiQkJISot0OEK1VHBLHHMecbE3XP2wrcH6IP62+tAPTxR22WkJCAhIQEbNy4EaeffjoMBsNRv0eSJLz22muoq6vr9cNZWZbx7rvvoqSkBJMnT+62zauvvoqTTz4Zc+fORVFRkbj9hhtugMfjwUcffYT4+Hjs3bu319e+efPm4cUXX+y1383Nzd3eHhyVNX36dHFbcnIyJk+ejB07dijC8ZIlS7BmzRoUFBTgkUcewSWXXAKn04n09HTs2LED48aNQ3Z2tmgfnOL03Xff4ZRTTum1f9GI4ZhoEEnt7fAfCuydq+Oc47AlyZJYkCta9zhubGxULKL18xfsmJgYURm22+1ITU2NrlW9ReU4P7T9oF5ViMoxwzFRpNJqtVi/fj2Kiorw5JNP4tRTT8XUqVMxa9YsjB8/XtF26dKluO2229DR0QGfz4e0tDTMmTOnyznz8gIfbHZ0dECSJCxfvhznnHNOt9dPS0uDRqNRVKWBwNzdmTNnYty4cQAAu93e6/1Yvnw5br755n7d96DgdKUjQ23w3z+fyrRw4ULMnDkTAPDEE09g8+bNeOaZZ3DLLbfA7XZ3e44jr0FKDMdEgyhYNVbHxUGdxL1zw9Wh9kPwSB6ooEJWXFaouzMk2tvbUVxcLALxwYMHFce1Wi3MZrMIw0ajEWp1FK/hyMpxROBK1URHoYsLVHBDde0+mjlzJmbMmIHt27dj586deOedd7Bq1SqsW7cOs2fPFu2WLFmC2bNno7KyEkuWLMGCBQswcuTILufbvn07EhMT0dHRgd27d2PhwoVIS0vD/Pnz+9ynRYsWYf78+diyZQumT5+OmTNndgnrR8rKykJW1uC/p5gyZYr4WqvVYuLEifj+++8H/brDFcMx0SAKrlStyzVFV5UtwgSrxplxmdCpdSHuzeDw+XwoLS0VYbiiogKyLIvjKpUKOTk5IgybzWZotXyJEBiOI0I5h1UT9U6l6tPQ5nAQExOD888/H+effz5uv/12zJkzB3feeaciHGdkZGDkyJEYOXIkNmzYgHHjxmHixIkoKChQnMtms4k5x2PHjsWuXbtw33339Sscz5kzB4WFhXj77bexZcsWrFixAg8//DBuvPHGbtsfz7DqYMW6qqoKOUeMPKyqqurXtk1GoxG7d+9W3FZVVaW4BinxnQ/RIAouxsVtnMJbRXPgcRpOi3HJsgy32w2HwwGHw4GSkhLF1g0AkJ6eLoZKW61WxMYyUHRLloF6LsgVCco5rJpo2CooKMDGjRt7PG42m3HllVdi2bJleP3113s9l0ajQVtbW4/H9Xo9/H5/t9eYN28e5s2bh2XLluHpp5/uMRwfz7Bqm80Go9GIrVu3ijDc2NiIXbt2dQn0O3fuFEPEfT4fvvjiCyxcuBBAoKp83333obq6WlSx33vvPSQlJXX5AIECGI6JBhG3cYoMw2EbJ1mWUVdXJyrDTqezywt/QkKCCMM2my1y9hgOtdZDgK/zZ5mUG9q+UI86fH7UNAUWjjNxtWqiiFVbW4srrrgC1157LcaPH4/ExER8/vnnWLVqlVi5uSd//OMfcdJJJ+Hzzz/HxIkTxe3V1dVob28Xw6r/8Y9/4PLLL+/xPFarFR999BFmzZoFg8GAjIwMLF68GBdddBFOOOEE1NXV4YMPPsCYMWN6PMfxDKtWqVRYvHgx7r33XowaNUps5WQymXDZZZcp2j7++OMYNWoUxowZg9WrV6Ourg7XXnstAOCCCy5AQUEBrrrqKqxatQputxu33XYbbrjhBsVCZ3v27AEQqGTX1NRgz5490Ov1URmgGY6JBpFYqZqV47AWHFadkxBZj1NLS4tYQMvpdKK+vl5xPLhFQzAQZ2Zmcnj/sQguxpWQDegYusKVuyEw3zhGp0Za/DDbSowoiiQkJGDy5MlYvXo1Dhw4AK/XC7PZjKKiItx66629fm9BQQEuuOAC3HHHHdi0aZO4ffTo0QAOr6dx/fXX46677urxPMuXL8f111+PESNGoKOjA7Isw+/344YbbkBZWRmSkpJw4YUXDuq+wLfccgtaWlowd+5c1NfX46yzzsLmzZu77HG8cuVKrFy5Env27MHIkSPxxhtvICMjA0CgQv7WW29h/vz5mDJlCuLj43H11Vdj+fLlinMcuWr1F198gf/93/+FxWJBcXHxoN2/cMVwTDSIuI1TZIiUyrHH44HL5RKBODhvKEitVsNsNoswbDKZoNFoQtTbYYTzjSPCkfON+SEQUeQyGAxYsWIFVqxY0Wu7noLb5s2bxdfTpk1TrK/Rk23btin+ffrpp+M///mP4rbHHnvsqOcZSCqVCsuXL+8SZIOsVqu4b7/97W97PI/FYlF8UNCdvvyMogXDMdEgCs451pk4rDqcheucY0mSUF5eLirDpaWlkCRJ0SY7O1sMk7ZYLL3u70jHqIHzjSNBeR3nGxMR0fFhOCYaJLIkHV6tmsOqw5oYVh3icCzLMg4ePCgW0SouLobH41G0SU5OFitK22w2xMdHxqqjEU1Ujs2h7Qf1SmzjlMxwTEREx4bhmGiQ+GtrIXu9gFoN7RDsc0fHps3XhrqOOgChmXPc2NgoKsMOh6PLtg6xsbGw2WxiqHRqaiqHjA41UTlmOA5nFcGVqlMZjomI6NgwHBMNkuB8Y21WFlS64bl37nAQrBrH6+KRqEsc9Ou1t7eL1aQdDgdqa2sVx7VaLSwWiwjDRqORYTjUOOc4IlQ0cI9jIiI6PgzHRIOE840jQ2Xz4cW4BiOE+nw+lJaWiupwRUWFYuELlUoFk8kkwrDZbIZWyz/NYYV7HEeE4JxjbuNERETHiu/AiAbJ4T2OOd84nAVXqjbGGwfkfJIkwe12i8pwSUkJfD6fok1GRoYIw1artcu2DBRGvO1AS3Xgaw6rDluyLIvVqrkgFxERHSuGY6JBwm2cIkMwHJvij63CL8sy6urqRGXY6XSira1N0SYhIUGEYbvdjqSkpOPuNw2RxvLA/3VxQFxaaPtCPTrU4kGHT4JKBRiT+WETEREdG4ZjokHirQwMq9aychzWxB7H/ViMq6WlRVSGHQ4HGhoaFMf1ej2sVqsIwxkZGZw3HKmOnG/MxzBsBVeqzkwwwKDl3t5ERHRsGI6JBokvOKyac47DWnBBrt6GVXs8HrhcLlEdrqqqUhxXq9Uwm82iOpybmwu1Wj2o/aYhwsW4IkJwSDUX4yKiYzFt2jRMmDABa9asCXVX+qy4uBg2mw1fffUVJkyYEOruDBt890Y0SMSCXDkMx+GsojnwOB25x7Hf70dpaSk+/PBDPPfcc3jggQfwv//7v9i5c6cIxkajEVOmTMHvfvc7LF26FLNnz8bUqVNhNpsZjIeTBi7GFQk435hoeKmpqcH8+fORn58Pg8EAo9GIwsJCfPLJJ6KN1WqFSqWCSqVCXFwcxo0bh3Xr1inOs23bNtFGpVIhNjYWY8eOxVNPPaVo9+qrr+Kee+5RnDvUQVmWZdxxxx3IyclBbGwspk+fjv379/f7PIsWLcIvfvELGAyGHkP0119/jbPPPhsxMTEwm81YtWrVcfY+crFyTDQIpNZW+OvrAXDOcTiTZAnu1kDlWN+ux86dO+F0OlFcXAyPx6Nom5KSIirDNpsN8fHxoegyDTURjvND2w/qFfc4JhpeZs6cCY/Hg+effx52ux1VVVXYunVrl+0Ply9fjqKiIrS2tmLDhg0oKipCbm4uLrroIkW7ffv2ISkpCW1tbXjzzTcxf/58jBgxAueddx4AIC0t/NaUWLVqFdauXYvnn38eNpsNt99+OwoLC7F3795+L+R57bXXYteuXfj666+7HGtsbMQFF1yA6dOn48knn8Q333yDa6+9FikpKZg7d+5A3Z2IwXBMNAi87kDgUickQJM4+HvnUv81NDTgqx+/gk/yQSWr8O/1/4b6iME0sbGxikW0UlNTQ9hbChkOq44IwXBs4mJcRBGvvr4e27dvx7Zt2zB16lQAgMViwaRJk7q0TUxMhNEYmBa1dOlSrFq1Cu+9916XcJyVlYWUlBQAgUrq2rVr8eWXX4pwfOSw6mnTpsHlcuGmm27CTTfdBCBQxXW5XFi4cCE+/vhjeDweWK1WPPjgg7j44osH/GcgyzLWrFmD2267DZdeeikA4IUXXkB2djY2btyIWbNmibY//PADFixYgC+//BIjR47E448/Ln5uALB27VoAgWp8d+H4pZdegsfjwbPPPgu9Xo+xY8diz549eOSRRxiOiWhgeDnfOOy0tbWhuLhYzBuura1Frb4WMAEx/hjotXpYLBYRiI1GIxfRIobjCFHBOcdEfSLLMtp8bUdvOAhitbF9el1NSEhAQkICNm7ciNNPPx0Gg+Go3yNJEl577TXU1dVBr9f32E6WZbz77rsoKSnB5MmTu23z6quv4uSTT8bcuXNRVFQkbr/hhhvg8Xjw0UcfIT4+Hnv37kVCQkKP15o3bx5efPHFXvvd3Nzc7e1OpxNutxvTp08XtyUnJ2Py5MnYsWOHIhwvWbIEa9asQUFBAR555BFccsklcDqdSE9P7/XaQTt27MA555yj+LkVFhbigQceQF1dXdQVBxiOiQaBtyKw/Qv3OA4dn8+H0tJSsaJ0ZWUlZFkWx1UqFWKyAlUma5oVS69eCq2WfxLpCLLMcBwhuCAXUd+0+dow+X+7D4WDbdf/7EKcLu6o7bRaLdavX4+ioiI8+eSTOPXUUzF16lTMmjUL48ePV7RdunQpbrvtNnR0dMDn8yEtLQ1z5szpcs68vMDf8I6ODkiShOXLl+Occ87p9vppaWnQaDSKqjQAlJSUYObMmRg3bhwAwG6393o/li9fjptvvvmo97c77s4RiNnZ2Yrbs7OzxbGghQsXYubMmQCAJ554Aps3b8YzzzyDW265pc/XstlsXa4TPMZwTETHLbjHsZbzjYeMJElwu92iMlxSUgKfz6dok56eLoZJW61WvPzTy3jni3dgTbcyGFNXLQcBXzsAFZCUG+reUA/avX4cbA6sEcAFuYiGh5kzZ2LGjBnYvn07du7ciXfeeQerVq3CunXrMHv2bNFuyZIlmD17NiorK7FkyRIsWLAAI0eO7HK+7du3IzExER0dHdi9ezcWLlyItLQ0zJ8/v899WrRoEebPn48tW7Zg+vTpmDlzZpewfqSsrCxkZWX1634fiylTpoivtVotJk6ciO+//37Qrztc8d0g0SAQ2zhxpepBI8syDh06JMKw0+lEe3u7ok1CQoJYQMtutyMpKUlxPLjHsSmejxN1I7gYV6IR0PY8TI9Cq7Ih8LyP02uQEqcLcW+IwlusNha7/mdXyK7dHzExMTj//PNx/vnn4/bbb8ecOXNw5513KsJxRkYGRo4ciZEjR2LDhg0YN24cJk6ciIKCAsW5bDabmHM8duxY7Nq1C/fdd1+/wvGcOXNQWFiIt99+G1u2bMGKFSvw8MMP48Ybb+y2/fEMqw5WrKuqqpBzxCjEqqqqAd+2yWg0dtmi8sidOaINwzHRIAhWjjnneGA1NzfD6XSKQNzQ0KA4rtfrYbPZRBjOyMjodX5TMBwfuY0TkcAh1RHhyPnGXCeAqHcqlapPQ5vDUUFBATZu3NjjcbPZjCuvvBLLli3D66+/3uu5NBoN2tp6nnut1+vh9/u7vca8efMwb948LFu2DE8//XSP4fh4hlXbbDYYjUZs3bpVhOHGxkbs2rWrS6DfuXOnGCLu8/nwxRdfYOHChX2+1pQpU/DXv/4VXq8XOl3gA8b33nsPo0ePjroh1QDDMdGgEHscc1j1cfF4PHC5XGLecHV1teK4Wq2G2WwW1eHc3Nx+7TEswnECHyfqBvc4jgjldZxvTDSc1NbW4oorrsC1116L8ePHIzExEZ9//jlWrVolVm7uyR//+EecdNJJ+PzzzzFx4kRxe3V1Ndrb28Ww6n/84x+4/PLLezyP1WrFRx99hFmzZsFgMCAjIwOLFy/GRRddhBNOOAF1dXX44IMPMGbMmB7PcTzDqlUqFRYvXox7770Xo0aNEls5mUwmXHbZZYq2jz/+OEaNGoUxY8Zg9erVqKurw7XXXiuO//TTT2hubobb7UZbWxv27NkDIPBhg16vx//8z//g7rvvxnXXXYelS5fi22+/xaOPPorVq1cfU98jHcMx0QCT/X54O4ejcEGu/vH7/SgvLxeV4bKyMkiSpGiTnZ0t5g3n5+f3uirl0QTDsTE++oYNUR+wchwRgotx5aZwGyei4SAhIQGTJ0/G6tWrceDAAXi9XpjNZhQVFeHWW2/t9XsLCgpwwQUX4I477sCmTZvE7aNHjwYQmJNrNptx/fXX46677urxPMuXL8f111+PESNGoKOjA7Isw+/344YbbkBZWRmSkpJw4YUXDmqAvOWWW9DS0oK5c+eivr4eZ511FjZv3txlj+OVK1di5cqV2LNnD0aOHIk33ngDGRkZ4vicOXPw4Ycfin+fcsopAAIrYlutViQnJ2PLli244YYb8Itf/AIZGRm44447onIbJwBQyUcu3zoEGhsbkZycjIaGhi7z/yjySZKEvXv3Agj8gepPFW+48FZV46epUwGNBif+Zw9UXOipR7Iso6amRlSGXS4XPB6Pok1KSopiEa34+PgBuXart1Ws2LnjtzuQoO95OwaKUv/8PfD9m8BFDwKTo/NNQiRYsuE/2PBFGW6+4AQs/OWoUHcnrPA1OTr09t66vb0dTqcTNputS6giiiZ9fS7wXTvRAPNVdg6pzs5mMO5GQ0ODqAw7HA60tLQojsfGxioW0Rqs+S7ulsBWCIm6RAZj6h4rxxGhooHDqomIaGDwnTvRAAvON+Y2TgFtbW0oLi4Wgbi2tlZxXKvVwmKxiOpwdnb2kCyqU9ESeJyMCRxSTT2o55zjSMA5x0RENFAYjokGmFipOkq3cfL5fCgpKRFhuLKyEkfO3lCpVMjNzRWV4by8vJDsMcyVqqlX3jag9WDga4bjsCVJMio6t3LiHsdERHS8GI6JBphX7HEcHaFLkiS43W4RhktKSuDz+RRtMjIyRGXYYrGExbynymaGY+pFQ3ng//oEIDb6trKIFLUtHnh8ElQqwJgc+r8rREQU2RiOiQbYcN/jWJZlHDp0SIRhp9OJ9vZ2RZvExETFvOHExMQQ9bZnwTnHDMfUrSO3ceLeuWEruMdxdmIMdBouNkVERMeH4ZhogB0Ox8MndDU3N4sFtJxOJxoaGhTHDQYDrFarqA6np6cPybzh48Fh1dQrLsYVEYLh2MRtnIiIaAAwHBMNsOCCXJE8rLqjowMul0uE4erqasVxjUYDs9ksKsMmkynitggR4Tghch8nGkQNXIwrEpTXczEuIiIaOAzHRAPI39wCqbOqqo2gcOz3+1FeXi72Gy4vL4ckSYo2RqNRDJXOz8+HXq8PUW+Pn1/yo6qlCgArx9QDVo4jQjAcczEuIiIaCAzHRAPI5w5UI9VJSdAkhO/eubIso7q6WlSGi4uL4fV6FW1SU1NFZdhmsyEuLi5EvR14B9sOwif7oFFpkBmbGeruUDgSleP80PaDehUcVp2bynBMRETHj+GYaACF82Jc9fX1innDLS0tiuNxcXGKMJyaOnxX6A0Oqc6Oy4ZGrQlxbygssXIcESrqA4sBmpIZjono2E2bNg0TJkzAmjVrQt2VPisuLobNZsNXX32FCRMmhLo7w0ZkTRIkCnPe8vCZb9zW1oa9e/firbfewmOPPYZHH30Ub7zxBr799lu0tLRAp9Nh5MiROP/883H99dfj5ptvxuWXX45TTz11WAdj4HA4NsYbQ9wTCkuSxHAcITjnmGh4qqmpwfz585Gfnw+DwQCj0YjCwkJ88sknoo3VaoVKpYJKpUJcXBzGjRuHdevWKc6zbds20UalUiE2NhZjx47FU089pWj36quv4p577lGcO9RBWZZl3HHHHcjJyUFsbCymT5+O/fv39/s8ixYtwi9+8QsYDIZuQ3R7eztmz56NcePGQavV4rLLLjv+zkcwVo6JBpCoHIcgHHu9XpSWlop5w5WdfQlSqVTIzc0VK0rn5eVBo4nOqikX46JetdQAfg+gUgNJ4TcKhALaPH4cavEA4JxjouFm5syZ8Hg8eP7552G321FVVYWtW7eitrZW0W758uUoKipCa2srNmzYgKKiIuTm5uKiiy5StNu3bx+SkpLQ1taGN998E/Pnz8eIESNw3nnnAQDS0tKG7L711apVq7B27Vo8//zzsNlsuP3221FYWIi9e/ciJqZ/K/Rfe+212LVrF77++usux/x+P2JjY7Fo0SK88sorA9X9iMVwTDSAvJWdleMh2MZJkiRUVlaKYdIlJSXw+/2KNpmZmWKotNVqhcFgGPR+RYLK5kA4NsUz+FA3glXjxBxAowttX6hHFQ2BqnGCQYukWL6dIRou6uvrsX37dmzbtg1Tp04FAFgsFkyaNKlL28TERBiNgVFgS5cuxapVq/Dee+91CcdZWVlISUkBEKikrl27Fl9++aUIx0cOq542bRpcLhduuukm3HTTTQACVVyXy4WFCxfi448/hsfjgdVqxYMPPoiLL754wH8GsixjzZo1uO2223DppZcCAF544QVkZ2dj48aNmDVrlmj7ww8/YMGCBfjyyy8xcuRIPP744+LnBgBr164FEKjGdxeO4+Pj8cQTTwAAPvnkE9TX1w/4/YkkfDUhGkC+isGbcyzLMg4dOiQqw8XFxWhvb1e0SUxMFJVhm82GxMTEAe/HcOBucQPgsGrqAbdxighH7nEc7vuqE4ULWZYht7WF5Nqq2Ng+PVcTEhKQkJCAjRs34vTTT+/TB/uSJOG1115DXV1dr7tpyLKMd999FyUlJZg8eXK3bV599VWcfPLJmDt3LoqKisTtN9xwAzweDz766CPEx8dj7969SOhl8dV58+bhxRdf7LXfzc3N3d7udDrhdrsxffp0cVtycjImT56MHTt2KMLxkiVLsGbNGhQUFOCRRx7BJZdcAqfTifT09F6vTd1jOCYaQME9jgdqG6fm5mZRGXY4HGhsbFQcNxgMsNlsojqcnp7ON4l9UNESeJy4jRN1i+E4IpTXcb4xUX/JbW3Yd+ovQnLt0V9+AVUfdr7QarVYv349ioqK8OSTT+LUU0/F1KlTMWvWLIwfP17RdunSpbjtttvQ0dEBn8+HtLQ0zJkzp8s58/ICf887OjogSRKWL1+Oc845p9vrp6WlQaPRKKrSAFBSUoKZM2di3LhxAAC73d7r/Vi+fDluvvnmo97f7rjdgQ/xs7OzFbdnZ2eLY0ELFy7EzJkzAQBPPPEENm/ejGeeeQa33HLLMV072jEcEw0Q2e+Htyqwd+6xVo47OjrgcrlEIK6urlYc12g0MJvNojqck5MDtZrr6vWXmHPMcEzd4WJcEaGCi3ERDVszZ87EjBkzsH37duzcuRPvvPMOVq1ahXXr1mH27Nmi3ZIlSzB79mxUVlZiyZIlWLBgAUaOHNnlfNu3b0diYiI6Ojqwe/duLFy4EGlpaZg/f36f+7Ro0SLMnz8fW7ZswfTp0zFz5swuYf1IWVlZyMrK6tf9PhZTpkwRX2u1WkycOBHff//9oF93uGI4JhogvpoawO8HtFpoMzL69D1+vx9lZWUiDJeXl0OSJEWbnJwcURnOz8+HTsc5kMej2dOMJk8TAC7IRT0Q4dgc2n5Qr8o7t3HiYlxEfaeKjcXoL78I2bX7IyYmBueffz7OP/983H777ZgzZw7uvPNORTjOyMjAyJEjMXLkSGzYsAHjxo3DxIkTUVBQoDiXzWYTc47Hjh2LXbt24b777utXOJ4zZw4KCwvx9ttvY8uWLVixYgUefvhh3Hjjjd22P55h1cGKdVVVFXKOGI1YVVXFbZsGGcMx0QDxBucbG41Q9bAKtCzLqK6uFvOGXS4XvF6vok1qaqqYM2yz2RDXhyFI1HfB+cZJ+iTE6+JD3BsKS2JYNcNxOAtWjhmOifpOpVL1aWhzOCooKMDGjRt7PG42m3HllVdi2bJleP3113s9l0ajQVsvc6/1en2XRU6D15g3bx7mzZuHZcuW4emnn+4xHB/PsGqbzQaj0YitW7eKMNzY2Ihdu3Z1CfQ7d+4UQ8R9Ph+++OILLFy48JiuSwzHRANGrFT9s/nG9fX1ojLsdDrR0tKiOB4XFycqwzabbdjvMRxqHFJNR8Vh1REhuFo1h1UTDS+1tbW44oorcO2112L8+PFITEzE559/jlWrVomVm3vyxz/+ESeddBI+//xzTJw4UdxeXV2N9vZ2Maz6H//4By6//PIez2O1WvHRRx9h1qxZMBgMyMjIwOLFi3HRRRfhhBNOQF1dHT744AOMGTOmx3Mcz7BqlUqFxYsX495778WoUaPEVk4mk6nLPsSPP/44Ro0ahTFjxmD16tWoq6vDtddeK47/9NNPaG5uhtvtRltbG/bs2QMg8GFDcPGyvXv3wuPx4NChQ2hqahJtorFKzXBMNECCi3GpsrKwd+9eEYgPHTqkaKfT6WCxWEQgzs7O5iJaQ4jhmHrlaQFaO/fRZDgOW5Iko7JzWLUppX/7fRJReEtISMDkyZOxevVqHDhwAF6vF2azGUVFRbj11lt7/d6CggJccMEFuOOOO7Bp0yZx++jRowEE5uSazWZcf/31uOuuu3o8z/Lly3H99ddjxIgR6OjogCzL8Pv9uOGGG1BWVoakpCRceOGFWL169YDc5+7ccsstaGlpwdy5c1FfX4+zzjoLmzdv7rLH8cqVK7Fy5Urs2bMHI0eOxBtvvIGMI6b3zZkzBx9++KH49ymnnAIgsCK21WoFAFx88cVwuVxd2siyPFh3L2yp5CG+142NjUhOTkZDQwOSkpKG8tI0BCRJwt69ewEE/kBFw2JRXq8XpaWlqF2xEgnbt2Pv2AJ8e8QCDSqVCnl5eSIM5+XlQdPDsGsafI9++SjWfbMOvz3xt7h1cu8vshSFan4EHj8NMCQBy0pD3RvqQXVjOybdvxVqFfDjvRdBqxn+rzXHIhpfk6NRb++t29vb4XQ6YbPZuoQqomjS1+cCK8dE/SRJEiorK0VluKSkBH6/H2cdOIAEAK1x8cjMzBTDpK1Wa5/26KOhwcox9YrbOEWE8s75xsakGAZjIiIaMAzHREchyzJqa2vFXsPFxcVob29XtElMTES6HFhl+sKrfo/MCy4IRVepDyqbGY6pF5xvHBEqxJBqzjcmIqKBw3BM1I2mpiaxgJbD4UBjY6PiuMFgUCyilZ6ejh//38uQACSNGBGaTlOfBCvHxnhjiHtCYYmV44hQXt8KgOGYiIgGFsMxEYCOjg64XC6xxVJNTY3iuEajQX5+vgjEOTk5irlb/qYmSE2BvXN/vlo1hQ+f5EN1azUAVo6pB6wcRwRWjomIaDAwHFNU8vv9KCsrE/OGy8rKuqzIl5OTA7vdDrvdDrPZDJ1O1+P5vJWBaqQmJQXqCN0/MBocbDsIv+yHVq1FZlxmqLtD4UiE4/zQ9oN6FZxznJvKcEzUF9G46jDRkfr6HGA4pqggyzKqqqpEGHa5XPB6vYo2aWlpiqHSsbF9f9Pl6wzHWhOrkeEsOKQ6Oy4bahUX8aFucFh1RKgIhmNu40TUq+AH+62trf16X0M03LS2Bqbj9FbsAhiOaRirr68Xw6SdTqd4UgTFx8crwnBKSsoxXyu4x7Eux3Q8XaZBVtEceJw4pJq6JUlAQ3nga4bjsBasHHNYNVHvNBoNUlJSUF0dmFIUFxcHlUoV4l4RDR1ZltHa2orq6mqkpKQcdTtVhmMaNlpbW8UCWk6nE3V1dYrjOp0OVqtVBOKsrKwBe4HwVgQqkpxvHN64jRP1qrkKkLyASgMk8nckXLV0+FDfGhj5w3BMdHRGY2ABymBAJopGKSkp4rnQG4ZjilherxclJSUiDFd2Dm0OUqlUyMvLE5XhvLy8o35adMx96by2zsTKcThzt7gBADkJDD7UjeB84yQToOHLY7iqbAhUjRNjtEiK6X14HBEF3g/l5OQgKyury5Qyomig0+n6nAH46k8RQ5IkVFRUiOpwaWkp/H6/ok1mZqZYRMtiscBgMAxJ3w6HY4aucMbKMfWK840jQnnnStW5rBoT9YtGoxm0IgHRcMFwTGFLlmXU1taKyrDT6URHR4eiTVJSkqgM22w2JCYmhqSvh+ccM3SFM845pl4xHEeE8jrONyYiosHBcExhpampSVSGHQ4Hmjr3Dg6KiYkRQdhutyMtLS3kC0vIPh98VVUAAC3DcVgTw6oZjqk73OM4IlSIxbi4UjUREQ0shmMKqY6ODhQXF4vqcE1NjeK4RqNBfn6+CMM5OTlQq8NrCx5fdTUgSVDpdNBmZIS6O9SDJk8Tmr3NAABj/NEXZKAoJMKxObT9oF4d3saJe8oTEdHA6lc4vuuuu3D33Xcrbhs9ejR++OGHAe0UDV8+nw9lZWWiOlxeXt5lU+6cnBwxb9hsNh91P7JQC8431ubkQBVmwZ0OC843TjGkIE7HN9XUDTGsmuE4nJWzckxERIOk35XjsWPH4v333z98Ai2Lz9QzWZZRVVUlKsMul6vLSolpaWkiDFut1ojbpJ7bOEUGDqmmo+Kw6ohQ0RCsHEfWawUREYW/fidbrVbbpz2i6Pjt2f46mg5WhLob/aNSI3XkmQCA9Q/dgrpDtfD6POKwGkCCzoCU5GQkpyQjJSUFBoMW8JTg4A8lOBiBgxBiP/wC8QBq9V44P38t1N2hHnxS9zkAIEmKgXPvZyHuDYUbla8D1rbA3uj7O1IguZuO8h0UCjJkVHauVs0FuYiIaKD1Oxzv378fJpMJMTExmDJlClasWIH8/Pwe23d0dChWGG5sbDy2nkYh18q/4oQD/qM3DCOywQDppUA4Pv2l96H62erSw9nb0lf413dfh7obdBQjXB/B9tXroe4GhalGOQ7n/39fhbobdBQatQrZSRxWTUREA6tf4Xjy5MlYv349Ro8ejcrKStx99904++yz8e233/a4hc6KFSu6zFOmvvEZtGiMi6xwDD0Q3/llUyyAKNlOr9UAfD8KSPVLoe4K9SJWknFGiwq1SA51VygMyVBho/o8ZCToQ90VOopLTjZBow7tTgVERDT8qOSfr4bUD/X19bBYLHjkkUdw3XXXddumu8qx2WxGQ0MDkpKSjvXSNIQkSUJFRYWYN1xaWgq/Xxnas7KyxBZLwTnFBQUFYbeyNBERUbSQJAl79+4FwNfk4ayxsRHJycl8b000AI5rNa2UlBSccMIJ+Omnn3psYzAYYDAYjucyNMRkWcbBgwdFGC4uLlZ8wAEASUlJYhEtm82GhIQEAMoXYiIiIiIiokhxXOG4ubkZBw4cwFVXXTVQ/aEQaWxsFNsrOZ1ONDUpF6OJiYkRlWG73Y60tDSoVBzSRkREREREw0O/wvHNN9+MSy65BBaLBRUVFbjzzjuh0Wjw29/+drD6R4Okvb0dLpcLDocDDocDBw8eVBzXaDTIz88X1WGj0cjhWERERERENGz1KxyXlZXht7/9LWpra5GZmYmzzjoLO3fuRGZm5mD1jwaIz+dDWVmZqAyXl5fj59PNTSaTqAybzWbodLoQ9ZaIiIiIiGho9Sscv/zyy4PVDxpgsiyjqqpKVIZdLhd8Pp+iTXp6ugjDVqsVsbHcM5KIiIiIiKLTcc05pvBSV1cnKsNOpxOtra2K4/Hx8WIBLbvdjuRkbmdDREREREQEMBxHtNbWVrGIlsPhQH19veK4Xq+H1WoVYTgzM5OLaBEREREREXWD4TiCeDwelJSUiOqw2+1WHFer1cjLyxPV4dzcXGg0mhD1loiIiIiIKHIwHIcxSZJQXl4uqsOlpaWQJEnRJjs7W1SGLRYL9Hp9iHpLREREREQUuRiOw9izzz6L8vJyxW3JyckiDNtsNiQkJISod0RERERERMMHw3EYy83NRW1trQjDdrsdqampnDdMREREREQ0wBiOw9gvf/lLFBYWQq1Wh7orREREREREwxrDcRgzGAyh7gIREREREVFUYEmSiIiIiIiIoh7DMREREREREUU9hmMiIiIiIiKKegzHREREREREFPUYjomIiIiIiCjqMRwTERERERFR1GM4JiIiIiIioqjHcExERERERERRj+GYiIiIiIiIoh7DMREREREREUU9hmMiIiIiIiKKegzHREREREREFPUYjomIiIiIiCjqMRwTERERERFR1GM4JiIiIiIioqjHcExERERERERRTzvUF5RlGQDQ2Ng41JemISBJEpqbmwEEHmO1mp+/EBERhQJfk6ND8D118D02ER27IQ/HTU1NAACz2TzUlyYiIiIiGpaampqQnJwc6m4QRTSVPMQfM0mShIqKCiQmJkKlUg3lpWmINDY2wmw2o7S0FElJSaHuDg0CPsbDHx/j4Y+PcXTg4zz8ybKMpqYmmEwmjg4gOk5DXjlWq9XIy8sb6stSCCQlJfGFeJjjYzz88TEe/vgYRwc+zsMbK8ZEA4MfLxEREREREVHUYzgmIiIiIiKiqMdwTAPOYDDgzjvvhMFgCHVXaJDwMR7++BgPf3yMowMfZyKivhvyBbmIiIiIiIiIwg0rx0RERERERBT1GI6JiIiIiIgo6jEcExERERERUdRjOCYiIiIiIqKox3BMvbrrrrugUqkU/5144om9fs+GDRtw4oknIiYmBuPGjcOmTZsUx2VZxh133IGcnBzExsZi+vTp2L9//2DeDepFfx/jp59+GmeffTZSU1ORmpqK6dOnY/fu3Yo2s2fP7nLOCy+8cLDvCvWgv4/x+vXru7SPiYlRtOHzOLz09zGeNm1al/YqlQozZswQbfg8Dj/l5eX4/e9/j/T0dMTGxmLcuHH4/PPPe/2ebdu24dRTT4XBYMDIkSOxfv36Lm0ef/xxWK1WxMTEYPLkyV3+phMRRQuGYzqqsWPHorKyUvz38ccf99j2008/xW9/+1tcd911+Oqrr3DZZZfhsssuw7fffivarFq1CmvXrsWTTz6JXbt2IT4+HoWFhWhvbx+Ku0Pd6M9jvG3bNvz2t7/FBx98gB07dsBsNuOCCy5AeXm5ot2FF16oOOf/+3//b7DvBvWiP48xACQlJSnau1wuxXE+j8NPfx7jV199VdH222+/hUajwRVXXKFox+dx+Kirq8OZZ54JnU6Hd955B3v37sXDDz+M1NTUHr/H6XRixowZOPfcc7Fnzx4sXrwYc+bMwbvvviva/POf/8Sf/vQn3Hnnnfjyyy9x8skno7CwENXV1UNxt4iIwoo21B2g8KfVamE0GvvU9tFHH8WFF16IJUuWAADuuecevPfee/jb3/6GJ598ErIsY82aNbjttttw6aWXAgBeeOEFZGdnY+PGjZg1a9ag3Q/qWX8e45deeknx73Xr1uGVV17B1q1b8Yc//EHcbjAY+nxOGnz9eYwBQKVS9diez+Pw1J/HOC0tTfHvl19+GXFxcV3CMZ/H4eOBBx6A2WzGc889J26z2Wy9fs+TTz4Jm82Ghx9+GAAwZswYfPzxx1i9ejUKCwsBAI888giKiopwzTXXiO95++238eyzz+Ivf/nLIN0bIqLwxMoxHdX+/fthMplgt9vxu9/9DiUlJT223bFjB6ZPn664rbCwEDt27AAQ+BTb7XYr2iQnJ2Py5MmiDQ29/jzGP9fa2gqv19vlzfa2bduQlZWF0aNHY/78+aitrR3oblM/9Pcxbm5uhsVigdlsxqWXXorvvvtOHOPzODwdz/P4mWeewaxZsxAfH6+4nc/j8PHGG29g4sSJuOKKK5CVlYVTTjkFTz/9dK/fc7TXZI/Hgy+++ELRRq1WY/r06XwuE1FUYjimXk2ePBnr16/H5s2b8cQTT8DpdOLss89GU1NTt+3dbjeys7MVt2VnZ8Ptdovjwdt6akNDq7+P8c8tXboUJpNJ8ebqwgsvxAsvvICtW7figQcewIcffoiLLroIfr9/sO4G9aK/j/Ho0aPx7LPP4vXXX8eLL74ISZJwxhlnoKysDACfx+HoeJ7Hu3fvxrfffos5c+YobufzOLw4HA488cQTGDVqFN59913Mnz8fixYtwvPPP9/j9/T0mtzY2Ii2tjYcPHgQfr+fz2Uiok4cVk29uuiii8TX48ePx+TJk2GxWPCvf/0L1113XQh7RgPleB7jlStX4uWXX8a2bdsUCzYdOax23LhxGD9+PEaMGIFt27bhvPPOG/g7Qb3q72M8ZcoUTJkyRfz7jDPOwJgxY/D3v/8d99xzz5D0mfrneJ7HzzzzDMaNG4dJkyYpbufzOLxIkoSJEyfi/vvvBwCccsop+Pbbb/Hkk0/i6quvDnHviIiGB1aOqV9SUlJwwgkn4Keffur2uNFoRFVVleK2qqoqMWct+P/e2lBoHe0xDnrooYewcuVKbNmyBePHj++1rd1uR0ZGxlHPSUOjr49xkE6nwymnnCLa83kc/vr6GLe0tODll1/u04edfB6HVk5ODgoKChS3jRkzptfh8z29JiclJSE2NhYZGRnQaDR8LhMRdWI4pn5pbm7GgQMHkJOT0+3xKVOmYOvWrYrb3nvvPVGFstlsMBqNijaNjY3YtWuXolJFoXO0xxgIrFR8zz33YPPmzZg4ceJRz1lWVoba2tpez0lDpy+P8ZH8fj+++eYb0Z7P4/DX18d4w4YN6OjowO9///ujnpPP49A688wzsW/fPsVtP/74IywWS4/fc7TXZL1ej1/84heKNpIkYevWrXwuE1F0kol68ec//1netm2b7HQ65U8++USePn26nJGRIVdXV8uyLMtXXXWV/Je//EW0/+STT2StVis/9NBD8vfffy/feeedsk6nk7/55hvRZuXKlXJKSor8+uuvy19//bV86aWXyjabTW5raxvy+0f9f4xXrlwp6/V6+d///rdcWVkp/mtqapJlWZabmprkm2++Wd6xY4fsdDrl999/Xz711FPlUaNGye3t7SG5j9Guv4/x3XffLb/77rvygQMH5C+++EKeNWuWHBMTI3/33XeiDZ/H4aW/j3HQWWedJV955ZVdbufzOPzs3r1b1mq18n333Sfv379ffumll+S4uDj5xRdfFG3+8pe/yFdddZX4t8PhkOPi4uQlS5bI33//vfz444/LGo1G3rx5s2jz8ssvywaDQV6/fr28d+9eee7cuXJKSorsdruH9P4REYUDhmPq1ZVXXinn5OTIer1ezs3Nla+88kr5p59+EsenTp0qX3311Yrv+de//iWfcMIJsl6vl8eOHSu//fbbiuOSJMm33367nJ2dLRsMBvm8886T9+3bNxR3h7rR38fYYrHIALr8d+edd8qyLMutra3yBRdcIGdmZso6nU62WCxyUVER32iFUH8f48WLF8v5+fmyXq+Xs7Oz5Ysvvlj+8ssvFefk8zi8HMvf6h9++EEGIG/ZsqXL+fg8Dk9vvvmmfNJJJ8kGg0E+8cQT5aeeekpx/Oqrr5anTp2quO2DDz6QJ0yYIOv1etlut8vPPfdcl/M+9thj4jk/adIkeefOnYN4L4iIwpdKlmU5lJVrIiIiIiIiolDjnGMiIiIiIiKKegzHREREREREFPUYjomIiIiIiCjqMRwTERERERFR1GM4JiIiIiIioqjHcExERERERERRj+GYiIiIiIiIoh7DMREREREREUU9hmMiIiIiIiKKegzHREREREREFPUYjomIiIiIiCjqMRwTERERERFR1GM4JiIiIiIioqjHcExERANm/fr1UKlUKC4uPmpbq9WK2bNnD3qfiIiIiPqC4ZiIKMJ88803uPzyy2GxWBATE4Pc3Fycf/75eOyxx0Qbq9UKlUol/ouPj8ekSZPwwgsv9HjekpISzJs3D1arFQaDAVlZWbjsssvwySefDMXdIiIiIgopbag7QEREfffpp5/i3HPPRX5+PoqKimA0GlFaWoqdO3fi0UcfxY033ijaTpgwAX/+858BAJWVlVi3bh2uvvpqdHR0oKioSHHeTz75BBdffDEAYM6cOSgoKIDb7cb69etx9tlndzk3ERER0XDDcExEFEHuu+8+JCcn47PPPkNKSoriWHV1teLfubm5+P3vfy/+PXv2bNjtdqxevVoRjuvq6nD55ZcjNjYWn3zyCUaMGCGO/elPf0JhYSEWL16MX/ziFzjjjDMG544RERERhRiHVRMRRZADBw5g7NixXYIxAGRlZfX6vZmZmTjxxBNx4MABxe1///vf4Xa78eCDDyqCMQDExsbi+eefh0qlwvLlyxXHvvvuO/zyl79EbGws8vLycO+990KSpC7XlWUZ9957L/Ly8hAXF4dzzz0X3333XR/vMREREdHQYOWYiCiCWCwW7NixA99++y1OOumkfn2vz+dDWVkZUlNTFbe/+eabiImJwW9+85tuv89ms+Gss87C//3f/6GtrQ2xsbFwu90499xz4fP58Je//AXx8fF46qmnEBsb2+X777jjDtx77724+OKLcfHFF+PLL7/EBRdcAI/H06/+ExEREQ0mhmMioghy880346KLLsKECRMwadIknH322TjvvPNw7rnnQqfTKdp6vV4cPHgQAOB2u7Fq1Sq43W7ccMMNinZ79+7F6NGjYTAYerzuySefjA8//BA//fQTxo0bhwceeAA1NTXYtWsXJk2aBAC4+uqrMWrUKMX31dTUYNWqVZgxYwbefPNNqFQqAMBf//pX3H///cf98yAiIiIaKBxWTUQUQc4//3zs2LED//Vf/4X//Oc/WLVqFQoLC5Gbm4s33nhD0XbLli3IzMxEZmYmxo0bh3/84x+45ppr8OCDDyraNTU1ITExsdfrBo83NjYCADZt2oTTTz9dBGMgMGz7d7/7neL73n//fXg8Htx4440iGAPA4sWL+33fiYiIiAYTwzERUYQ57bTT8Oqrr6Kurg67d+/GsmXL0NTUhMsvvxx79+4V7SZPnoz33nsPmzdvxkMPPYSUlBTU1dVBr9crzpeYmIimpqZerxk8HgzJLperS5UYAEaPHq34t8vlAoAubTMzM7sM7yYiIiIKJYZjIqIIpdfrcdppp+H+++/HE088Aa/Xiw0bNojjGRkZmD59OgoLC/HnP/8ZL774IjZu3IhHH31UcZ4xY8Zg37596Ojo6PFaX3/9NXQ6XbeBmIiIiGg4YDgmIhoGJk6cCCCwn3FPZsyYgalTp+L+++9HS0uLuP1Xv/oV2tvbFcH6SMXFxdi+fbtYmRoILAy2f//+Lm337dun+LfFYgGALm1rampQV1fXh3tGRERENDQYjomIIsgHH3wAWZa73L5p0yYAXYc1/9zSpUtRW1uLp59+Wtx2/fXXIysrC0uWLIHD4VC0b29vxzXXXANZlnHHHXeI2y+++GLs3LkTu3fvFrfV1NTgpZdeUnz/9OnTodPp8Nhjjyn6vWbNmqPfWSIiIqIhpJK7e5dFRERh6aSTTkJrayt+/etf48QTT4TH48Gnn36Kf/7znzCbzfjqq6+QkpICq9WKk046CW+99VaXc4wbNw4NDQ04cOCAWOF6+/btmDFjBtRqNebMmYOCggK43W6sX78eP/30Ex599FHceOON4hyVlZUYN24cJEnCH//4R8VWTl9//TWcTiesVisA4NZbb8WKFSvEVk5fffUV3nnnHXg8HsyYMQPr168fih8dERERUa+4lRMRUQR56KGHsGHDBmzatAlPPfUUPB4P8vPzsWDBAtx2221ISUk56jluvvlmzJ49Gy+99BJmz54NADj77LPx9ddf4/7778eGDRtQWVmJ5ORknHHGGXj22Wdx1llnKc6Rk5ODDz74ADfeeCNWrlyJ9PR0zJs3DyaTCdddd52i7b333ouYmBg8+eST+OCDDzB58mRs2bIFM2bMGKgfCxEREdFxY+WYiIiIiIiIoh7nHBMREREREVHUYzgmIiIiIiKiqMdwTERERERERFGP4ZiIiIiIiIiiHsMxERERERERRT2GYyIiIiIiIop6Q77PsSRJqKioQGJiIlQq1VBfnoiIiIho2JBlGU1NTTCZTFCrWfciOh5DHo4rKipgNpuH+rJERERERMNWaWkp8vLyQt0Noog25OE4MTERQOAJnJSUNNSXp0EmSRJ++OEHAMCJJ57ITzCJiIhChK/J0aGxsRFms1m8xyaiYzfk4Tg4lDopKYnheBiSJAkJCQkAAo8xX4iJiIhCg6/J0YXTFYmOH/9KEhERERERUdRjOCYiIiIiIqKox3BMREREREREUY/hmIiIiIiIiKIewzERERERERFFPYZjIiIiIiIiinoMx0RERERERBT1GI6JiIiIiIgo6jEcExERERERUdRjOCYiIiIiIqKox3BMREREREREUY/hmIiIiIiIiKIewzERERERERFFPYZjIiIiIiIiinoMx0RERERERBT1GI6JiIiIKGzIsoyDBw+GuhtEFIW0oe4AEREREUW3uro6OBwOOJ1OOJ1OtLa2YsmSJYiLiwt114goijAcExEREdGQamlpEUHY4XCgvr5ecVyv1+PgwYPIz88PTQeJKCoxHBMRERHRoPJ4PCgpKRHVYbfbrTiuVquRl5cHu90Om82G3NxcaDSaEPWWiKIVwzERERERDShJklBeXi7CcGlpKSRJUrTJzs6GzWaD3W6HxWKBXq8PUW+JiAIYjomIiIjouAQX0QqG4eLiYnR0dCjaJCcni8qwzWZDQkJCiHpLRNQ9hmMiIiIi6rfGxkYRhh0OB5qbmxXHY2JiRBi22+1ITU2FSqUKUW+JiI6O4ZiIiIiIjqq9vR3FxcUiEP98uyWtVov8/HwRho1GI9Rq7hpKRJGD4ZiIiIiIuvD5fCgrK4PD4YDD4UBFRQVkWRbHVSoVTCaTCMNmsxlaLd9aElHk4l8wIiIiIoIsy3C73aIy7HK54PP5FG3S09NFGLZarYiNjQ1Rb4mIBl6/w3F5eTmWLl2Kd955B62trRg5ciSee+45TJw4cTD6R0RERESDpK6uTlSGnU4n2traFMcTEhIUi2glJyeHqKdERIOvX+G4rq4OZ555Js4991y88847yMzMxP79+5GamjpY/SMiIiKiAdLS0iIW0HI6naivr1cc1+v1sFqtojqcmZnJRbSIKGr0Kxw/8MADMJvNeO6558RtNpttwDtFFGlknw/42f6NREGSLMHP34/wJ0uA5Dt6O4paXknCEVNuw96R+wpvemsjXK5iHKyuVbRRqVQw5eUgPz8f+fkW5OTkQKPWiOMtjXVD1t+fi41PgoZzmIloCPXrL84bb7yBwsJCXHHFFfjwww+Rm5uLBQsWoKioqMfv6ejoUOxz19jYeOy9JQpD9a++hso77wS83lB3hYiISJANBuClFwEA9tuXY8TP9h3u0h5AxRD0q6/qH7oZU351Xai7QURRpF/r6zscDjzxxBMYNWoU3n33XcyfPx+LFi3C888/3+P3rFixAsnJyeI/s9l83J0mCidN77/PYExEREREFOFUstz3AUJ6vR4TJ07Ep59+Km5btGgRPvvsM+zYsaPb7+mucmw2m9HQ0ICkpKTj6DqFI0mSsHfvXgBAQUFBVOxv6Pj1f6Pj+++Ru2Y14s88M9TdoTDz/77/X6z96jGcm38ubp10a6i7Qz359lVgy21A/hTgktWh7g2FGY9fxoy12wEAz18zGUmxoR3q29zchIrySlRUVKCishxtre2K43qDHiaTCbl5ucjOOwEAkBKniri5wxlGKwyxcaHuRthrbGxEcnIy31sTDYB+/XXPyclBQUGB4rYxY8bglVde6fF7DAYDDAbDsfWOKAL4KgKD0PR2OzSJiSHuDYWbctSjLUaF7CwbktNzQt0d6onUCOgkwDQKMI0OdW8ozLhqW1CtMSFGp8aJY8YNechsa2tDcXGxWESrtvbIecN6aOPikJ+fD7vdDrvdDqPRCJVKpfjA2mQdExUfWBMRHY9+heMzzzwT+/btU9z2448/wmKxDGiniCKF1NICf0MDAEBnMoW4NxSOKpoDH57kxDMYh7WG0sD/k/NC2w8KS+V1ge2NTCmxQxKMfT4fSktLRRiuqKjAkQP9VCoVTCaTWFHabDZDy4WriIiOW7/+kt50000444wzcP/99+M3v/kNdu/ejaeeegpPPfXUYPWPKKx5KysBAOrERGgSEkLcGwpHlS2B3xGG4zAnwjHXxaCuyusD4Tg3JXZQzi9JEtxut9hiqaSkBD6fcuX09PR0URm2Wq2IiYkZlL4QEUWzfoXj0047Da+99hqWLVuG5cuXw2azYc2aNfjd7343WP0jCmvBcMyqMfXE3eIGwHAc9hrKAv9nOKZuVNQH5vQOVDiWZRl1dXWiMux0OtHW1qZok5CQALvdLqrDnEtKRDT4+j0G51e/+hV+9atfDUZfiCKOt6IzHOcw+FBXbb421HUE9gjNSeDvSNiSJKChPPA1h1VTNyrqDw+rPlYtLS2iMuxwONDQOSUnSK/Xw2q1iupwRkZGxC2gRUQU6ThBheg4eDsX49KZGHyoq+CQ6nhdPBJ1XKwtbLXUAP4OACogiaNAqKvyYwjHHo8HLpdLVIerqqoUx9VqNcxms6gM5+bmcsEsIqIQYzgmOg7eykA41rJyTN1wNx8eUs0KUBgLDqlOzAE0utD2hcLS4cpxz/N8/X4/KioqRGW4rKwMkiQp2hiNRhGG8/PzodfrB7XfRETUPwzHRMfBV8E5x9QzLsYVIYKLcaVwvjF1JcuyqBznpcQpbq+pqRGV4eLiYng8HsX3pqSkiDBss9kQHx8/pH0nIqL+YTgmOg5iQa4chmPqiuE4QojFuDjfmLo61OJBh0+CSgXEogN79vwoAnFzc7OibWxsrAjDdrsdqampIeo1EREdC4ZjomMk+/3wds4h45xj6o4Ix1yMK7wxHFMP2tra8MmefQCAOJUP/9/f1iqOa7VaWCwWEYiNRiOnUBARRTCGY6Jj5KupAXw+QKuFNjMz1N2hMBQMx8Z4Y4h7Qr3iHsfUyefzoaSkRKwqXVlZCacvGcBIxMntUKlUMJlMojKcl5cHrZZvpYiIhgv+RSc6RmIbp+xsqDSaEPeGwlFlc+B3xBTPYfdhjeE4akmSBLfbLYZJl5SUwOfzKRvFpQEeYIwlG7fMvhQxMT0vykVERJGN4ZjoGAVXquYex9QdSZbgbj28WjWFMQ6rjhqyLOPQoUMiDDudTrS3tyvaJCQkiMqwzWbDox+V4YOPnTgxP5vBmIhomGM4JjpGvs7FuLScb0zdqG2rhU/yQa1SIzOOw+7DlqcVaK0NfM1wPCw1NzeLYdJOpxMNDQ2K43q9HjabTcwbzsjIUMwbFts4JTMYExENdwzHRMfIWxGsHHPILHVV0RL4/ciKy4JWzT+1YStYNdYnAjHJoe0LDQiPxwOXyyX2G66urlYcV6vVMJvNojpsMpmgVqt7PF+52OM4dlD7TUREocd3bETHSMw55rBq6ga3cYoQYr5xHsBVhiOS3+9HeXm5qAyXlZVBkiRFG6PRKCrD+fn50Ov1fT5/BcMxEVHUYDgmOkZij+NcVo6pK3cz5xtHhGDlOIWLcUUKWZZRU1MjKsMulwsej0fRJjU1VYRhq9WK+Pj4Y7pWu9ePg82Bc+elMhwTEQ13DMdEx0iEY1aOqRusHEcILsYVERoaGkRl2OFwoKWlRXE8Li5OMW84NTV1QK5b2RBYrCtOr0FyrG5AzklEROGL4ZjoGPibmyE1NgIAtEaGH+oqOOeY4TjMHTmsmsJGW1sbiouLRXX40KFDiuNarRYWi0XMG87OzlYsojVQyusOD6kejPMTEVF4YTgmOgbBxbjUycnQJBzbcD0a3twtncOqExiOw5qoHHNYdSj5fD6UlJSI6nBF59/YIJVKhdzcXFEZzsvLg1Y7+G9hON+YiCi6MBwTHYPgNk46E+cbU/c4rDpCiMoxw/FQkiQJbrdbVIZLSkrg9/sVbTIyMkRl2GKxhGSP4eBK1bkMx0REUYHhmOgYcL4x9abV24qGjsBeqgzHYUySgIbywNccVj2oZFnGoUOHRGXY6XSivb1d0SYxMRF2u13MHU5KSgpRbw+rEOGYexwTEUUDhmOiY+AtD+5xzOBDXQWrxom6RCToE0LcG+pRcxUgeQGVGkjkc3mgNTc3iwW0HA4HGjvXaQgyGAywWq0iEGdkZITdvF7ucUxEFF0YjomOgagcm/iGmroKhmNjgjHEPaFeBecbJ5oADV8Oj1dHRwdcLpeoDldXVyuOazQamM1mMW/YZDJBrVaHqLd9wznHRETRhe8GiI6Bl3OOqRfBcGyK5+9HWAvON+Yex8fE7/ejvLxchOGysjJIkqRoYzQaRWU4Pz8fer0+RL3tP0mSUdG5lRPnHBMRRQeGY6Jj4K3ksGrqWWVzZ+U4npXjsMY9jvtFlmVUV1eLodIulwsej0fRJjU1VVSGbTYb4uLiQtTb41fb4oHHJ0GlAozJnHNMRBQNGI6J+kn2+eCrCgwX1OawMkhdiW2cuBhXeGM4PqqGhgZRGXY4HGhpaVEcj4uLU4Th1NTUEPV04AWHVGcnxkCnCe/h30RENDAYjon6yVddDfj9gE4HbWZGqLtDYaiiJTCygOE4zIltnBiOg9ra2sRq0g6HA4cOHVIc1+l0sFgsIhBnZ2eH3SJaA+XwYlysGhMRRQuGY6J+EvONs7OhCvPFZCg0ROU4geE4rHGPY3i9XpSWlorqcEVFheK4SqVCbm6u2G84Ly8PGo0mRL0dWlyMi4go+jAcE/WTt4KLcVHP/JIfVS1VAFg5DntiWHX0hGNJklBZWSnCcElJCfx+v6JNZmamqAxbrVYYDIYQ9Ta0gpXj3FSGYyKiaMFwTNRPonLMxbioGwfbDsIn+6BRaZAZmxnq7lBPOpqBtrrA18N4WLUsyzh06JDYa7i4uBjt7e2KNomJiaIybLPZkJiYGKLehpdg5ZgrVRMRRQ+GY6J+8laUAwC03OOYuhHcxik7LhsadXQMP41IwaqxIRmISQptXwZYc3OzYhGtxsZGxXGDwQCbzSaqw+np6cN23vDxEHOOkxmOiYiiBcMxUT+xcky9CYZjbuMU5obRStUdHR1wuVyiOlxTU6M4rtFoYDabRXU4JycHaq6XcFQV9YEKO+ccExFFD4Zjon7yiTnHuSHuCYWjYDg2JXBOelgLLsaVEnnzjf1+P8rKykR1uLy8HJIkKdrk5OSIynB+fj50Ol2IehuZ2jx+HGoJ7OHMOcdERNGD4Zion0TlmMOqqRuVzYHfDy7GFeYiqHIsyzKqq6tFZdjlcsHr9SrapKamisqw1WpFXFxciHo7PFQ0BIZUJxi0SIrhWyUiomjBv/hE/eBvbITU3AwA0Bk5bJa64rDqCBHmexzX19eLyrDT6URLS4vieFxcnFhAy2azITU1NUQ9HZ7K6w7vccz52ERE0YPhmKgfglVjTUoK1KzMUDeC4ZiV4zAXZts4tba2ori4WATiQ4cOKY7rdDpYLBYRiLOzsxnaBhH3OCYiik4Mx0T94K2oAMA9jqlnnHMcIUTlODTh2Ov1oqSkRKwoXdn5wVuQSqVCXl6emDecl5cHjYarnw8VbuNERBSdGI6J+iFYOeY2TtSdZk8zmjxNADisOqxJfqAx8EHXUA2rliQJlZWVojJcUlICv9+vaJOZmSkqw1arFQaDYUj6Rl2Vc6VqIqKoxHBM1A8+sY0Tq4LUlbvFDQBI0ichXhcf4t5Qj5qrAMkHqDRA4uB8iCHLMmpra0UYLi4uRnt7u6JNUlKSYt5wYmLioPSF+o+VYyKi6MRwTNQP3vLOYdXc45i6UdES+P3gfOMwV985pDopF1AP3FDlpqYmMUza6XSisbFRcdxgMIggbLfbkZ6eznnDYaqcc46JiKISwzFRP3AbJ+pNsHLMcBzmBmil6o6ODsUiWjU1NYrjGo0G+fn5Igzn5ORArVYf1zVp8EmSjMqGw6tVExFR9GA4JuqHw+GYw6qpK7FSdQLDcVgLrlSd0r/FuPx+P8rKysR+w+Xl5ZBlWdEmJydHhOH8/HzodLqB6jUNkYPNHfD6ZahVgDGJ4ZiIKJowHBP1kez1wlddDYDDqql73MYpQohtnHqvHMuyjKqqKlEZdrlc8Hq9ijZpaWkiDFutVsRxi7eIFxxSbUyKgVbDSj8RUTRhOCbqI29VNSBJUOl00KSnh7o7FIYqmxmOI0Ivw6rr6+tFZdjpdKK1tVVxPC4uTiyiZbfbkZKSMgQdpqHE+cZERNGL4Zioj3yVgcWWtDk5UHHeIHUjWDnmNk5hTlSOzWhtbVUsolVXV6doqtPpYLFYYLfbYbfbkZWVxUW0hrkKhmMioqjFcEzUR5xvTL3xST5UtwaG3ZsS+DsSrrxeL9R1LmgA/PPdHfih9lPFcZVKhby8PFEZzsvLg0YzcCtaU/ir6NzjODeV4ZiIKNowHBP1kbciuMcxh8xSVwfbDsIv+6FVa5ERmxHq7lAnSZJQUVEhqsNVJT/hFn8TAMBxsANQ6ZGVlSXCsMVigcFgCHGvKZQ4rJqIKHoxHBP1kbeCexxTzyqaA78f2XHZUKs47D5UZFlGbW2tGCbtdDrR0dEhjmfK9QAAjyYeMy69EjabDYmJiSHqLYWj8rpAOM7lNk5ERFGH4Zioj7jHMfWGK1WHTlNTk6gMOxwONDU1KY7HxMTAZrPBZrNhtNoFvPkC9Bl2jB8/PkQ9pnBW0cDKMRFRtGI4Juojb+eCXJxzTN0JhmPONx587e3tcLlcojpcU1OjOK7RaJCfny9Wlc7JyYE6uIjeZ18H/t/PPY4pOrR0+FDfGtiuK5fhmIgo6jAcE/WBLMvwdc451nJYNXXD3eIGwJWqB4PP50NZWZmoDpeXl0OWZUUbk8kk5g2bzWbodLruT9bHPY4pOlV2Vo0TY7RIjOnhd4iIiIYthmOiPpAaGyF17nfKOcfUHQ6rHjiyLKOqqkpUhl0uF7xer6JNWlqa2F7JarUiNraPVT6GY+pFeXClalaNiYiiEsMxUR8EF+PSpKVBHcNFWqir4IJcDMfHpq6uTrHfcGvnh1FB8fHxYpi0zWZDSkrKsV2ooTTwf4Zj6kZwMS7ONyYiik4Mx0R9wD2O6WiCw6pzEhiO+6K1tVURhuvq6hTHdTodrFarGCqdlZUFlUp1/BcWleP84z8XDTsV9cGVqhmOiYiiEcMxUR9wj2PqTZOnCc3eZgCAMY5zjrvj9XpRUlIiVpR2u92K42q1Grm5uaI6nJeXB41GM7Cd8PuAxkCFn5Vj6k4F9zgmIopqDMdEfXB4pWqGY+oqON84xZCCOF1ciHsTHiRJQkVFhagMl5aWwu/3K9pkZWWJyrDFYoHBYBjcTjW7AdkPqHVAQvbgXosiUrkIx5w+Q0QUjRiOifogOOeYK1VTdyqbuRiXLMuora0VleHi4mJ0dHQo2iQlJYlFtGw2GxISEoa2k/Wd842TTEBwayeiI5RzWDURUVRjOCbqA58YVs05x9RVsHIcbds4NTU1icqww+FAU1OT4nhMTIxYQMtutyMtLW1g5g0fKzHfmHscU1d+SYa7IbBaNYdVExFFJ4Zjoj7gglzUm2A4NiUM79+P9vZ2uFwuUR0+ePCg4rhGo4HFYhGBOCcnB+pwqtAGV6pOYTimrmqaOuCTZGjUKmQncVg1EVE0YjgmOgrZ44GvpgYA5xxT94brHsc+nw9lZWWiOlxeXg5ZlhVtTCaTqAybzWbodLoQ9bYPuMcx9SI4pNqYFAONOoQjHIiIKGQYjomOwltVBcgyVHo9NGlpoe4OhaHgnONIH1YtyzLcbrcYJu1yueDz+RRt0tPTRRi2Wq2IjY2g4afc45h6wfnGRETEcEx0FEdu4xTS+ZIUtiK5clxXVycqw06nE62trYrj8fHxYgEtu92O5OTkEPV0ALByTL2o4ErVRERRj+GY6CjENk65w3s+KR0br+RFTVtg2H0kzDluaWkRQdjhcKC+vl5xXK/Xw2q1innDWVlZw+dDIRGO80PbDwpLwXCcm8rKMRFRtGI4JjoKX+diXNzGibpT01oDSZagU+uQFhN+w+49Hg9KSkpEddjtdiuOq9Vq5OXlicpwbm4uNBpNiHo7iNobgI7GwNfJuaHtC4Wlw5VjhmMiomjFcEx0FME9jrmNE3Wnojnw+2GMN0KtCv3KzJIkoby8XFSGS0tLIUmSok1WVpbYb9hisUCv14eot0MouMdxbBqgjw9tXygsldUxHBMRRTuGY6KjOHLOMdHPhXq+sSzLOHjwoKgMFxcXo6OjQ9EmOTlZVIZtNhsSEhJC0teQ4nxjOooKLshFRBT1GI6JjkLsccw5x9QNd0tgmPJQhuPGxkYRhh0OB5qbmxXHY2JiFGE4LS1t+MwbPlZij2PON6aumtq9aGwPrMzOyjERUfRiOCbqhSzLh8MxK8fUDVE5Thi834/29nYUFxeLQHzw4EHFca1Wi/z8fBGIjUYj1OrQD/EOK6wcUy8qG9oBAMmxOiQY+NaIiCha8RWAqBf++nrIbYGhdlpjZO9hS4NjMIZV+3w+lJaWispwRUUFZFkWx1UqFUwmkwjDZrMZWi3/nPeK4Zh6Uc7FuIiICAzHRL0KLsalyciA2mAIcW8oHFU2B8KxMf7YPzyRZRlut1tUhl0uF3w+n6JNenq6CMNWqxWxsXwT3y/BYdUMx9SN8rrgfGPucUxEFM0Yjol64eOQauqFLMvHXDmuq6uDw+EQgbitc4RCUEJCgpgzbLPZkJycPGD9jkqicmwObT8oLHEbJyIiAhiOiXolVqo2cTEu6qrR04hWXyuAo4fjlpYWMUza6XSivr5ecVyv18NqtYrqcGZmJhfRGih+L9AUeC4zHFN3uFI1EREBDMdEveJiXNSb4ErVaTFpiNEqh2N6PB6UlJSI6nBVVZXiuFqtRl5enthv2GQyQaPRDFnfo0pTJSBLgEYPxGeGujcUhirqAwtysXJMRBTdGI6JehGcc6wzMRxTVxXNgd8PY7wRkiShvLxcVIZLS0shSZKifVZWlgjDFosFer0+FN2OPvWd842TcgGu4k3d4IJcREQEMBwT9SpYOdayckw/I8sy9lftBwD4DvnwwAMPwOPxKNokJycr5g0nJCSEoqvElaqpFz6/BHdjoHLMYdVERNGN4ZioF97KYOWYc44JaGxsFJVhh8OBT3WfAsmAVC/B4/EgNjZWBGG73Y7U1FTOGw4HwZWqU/JD2w8KS9VNHfBLMnQaFbISuSsBEVE0Yzgm6oHk8cBfcxAAw3G0am9vh9PpFGG4trZWeTwrUG2aMGIC5p46F0ajkWE4HLFyTL0ILsZlTI6BWs3nLxFRNGM4JupBcBsnVUwMNCkpoe0MDQmfz4fS0lJRHa6oqIAsy+K4SqWCyWQSleF9e/cBB4EzTjoDORx6H764xzH1Qsw3TuaQaiKiaMdwTNSDI1eqZjVweJJlGW63W6woXVJSAp/Pp2iTnp6umDccE3N4VeqqzwIrUPd3j2MaYqwcUy/KuY0TERF1Yjgm6gH3OB5+ZFlGXV2dqAw7nU60tbUp2iQkJIgwbLfbkZSU1O25vH4vatpqADAchzVZPiIcc84xdSX2OE5lOCYiinYMx0Q9OLwYF4NPJGtpaRFzhp1OJ+rr6xXH9Xo9rFar2GIpIyOjTyMFqlqrIEOGXq1HWkzaIPWejlt7PeBpDnydnBvSrlB44h7HREQUxHBM1ANu4xSZPB4PXC6XCMNVVVWK42q1GmazWVSGTSYTNBpNv69T2RL4/chJ4LD7sBasGsdlADqGH+qqgnscExFRJ4Zjoh74KjorxzkcVh3O/H4/KioqxLzhsrIySJKkaJOdnS2GSlssFuj1+uO+bjAcG+ONx30uGkT1XIyLeldeF5xzHHOUlkRENNwxHBP1gHOOw5Msy6ipqRGV4eLiYng8HkWb5ORkMUzaZrMhPj5+wPtR2Rz4/TDF8/cjrAUrxynm0PaDwlJjuxdNHYFF+Fg5JiIihmOibsiyfHi1as45DrmGhgbFvOHm5mbF8djYWDFM2mazITU1ddCHOoth1VyMK7yJbZwYjqmr4JDq1Dgd4vR8S0REFO34SkDUDX9dHeSODkClgjY7O9TdiTptbW0oLi4WYbi2tlZxXKvVwmKxiEBsNBqHfN6vu8UNgMOqwx63caJecL4xEREdieGYqBve8sB8Y21GBtQDMD+Veufz+VBaWirmDVdWVkKWZXFcpVLBZDKJMGw2m6HVhvbPV0VL4HckJ4GV47DWwDnH1LPgfGOGYyIiAhiOiboV3MZJyyHVg0KSJLjdblEZLikpgc/nU7TJyMgQYdhqtSImJnwWy5FlWVSOOaw6zLFyTL0o79zGKZfhmIiIwHBM1C1fJRfjGkiyLKOurk5Uhp1OJ9rb2xVtEhISxJxhu92OpKSkEPX26Bo6GtDmC1ScOKw6jPk8QFPgQwwk54e2LxSWgsOqGY6JiAhgOCbqllipmts4HbPm5mbFIloNDQ2K43q9HjabTYThjIyMiNkvOLgYV3pMOgwaQ4h7Qz1qqgAgAxoDEJ8R6t5QGOKcYyIiOhLDMVE3vGKPYw6Z7SuPxwOXyyXCcFVVleK4Wq2G2WwW1eHc3Fyo1eoQ9fb4iPnGHFId3o7c4zhCPnihoVUuwnH4TNsgIqLQYTgm6ga3cTo6v9+P8vJyUR0uKyuDJEmKNkajUVSG8/PzoR8mi5uJ+cZcjCu8cb4x9cLrl1DVyDnHRER0GMMxUTe8nHPchSzLqKmpEZXh4uJieDweRZuUlBRRGbbZbIiPjw9RbwdXZTP3OI4IwXCcwj2OqauqxnZIMqDXqJGRwOkRRETEcEzUhdTeDn/nvrrRPqy6oaFBhGGn04nm5mbF8djYWFEZttvtSE1NDVFPh1ZwzjHDcZgT2zgxHFNXFZ0rVeekxECt5rB7IiJiOCbqwucODJlVxcVBnZwc4t4Mrba2NhQXF4tAXNv5IUGQVquFxWIRgdhoNEbMIloDids4RQgOq6ZeiMW4kjmkmoiIAhiOiX7myMW4hnvw8/l8KCkpEWG4srISsiyL4yqVCrm5uSIM5+XlQavln43gglzGBG7jFNYajliQi+hnyrlSNRER/Qzf5RL9zHCebyxJEtxutwjDJSUl8Pl8ijYZGRkiDFutVsTEcBXXI3n8HhxsOwgAMMUPv9+RYUOWj6gcc1g1dRUMx7mpDMdERBTAcEz0M4f3OI78IbOyLOPQoUOKecPt7e2KNomJiSIM22w2JCUlhai3kaGqJbBFVYwmBimGlNB2hnrWVgd4WwNfJ+WGti8UloLDqnO5jRMREXViOCb6mUjfxqm5uVlsr+R0OtHQ0KA4bjAYYLVaRSDOyMgY9sPHB1JwMS5jfHTOt44YwSHV8VmAjuGHuqrgsGoiIvoZhmOinzlyznEk8Hg8cLlccDgccDgcqK6uVhxXq9XIz88XYdhkMkGtVoeot5EvON+Yi3GFuXrON6aeybKM8jqGYyIiUmI4JvoZb2Ug/GjDNBz7/X6Ul5eLynBZWRkkSVK0MRqNYph0fn4+9Hp9iHo7/IhtnBLC8/eDOnGlaupFY5sPLR4/AK5WTUREhzEcEx1BliT4KgPb9OhM4TFPUZZlVFdXi6HSLpcLHo9H0SY1NVWxiFZ8fHyIejv8cRunCBEcVp2SH9p+UFgKLsaVHq9HrF4T4t4QEVG4YDgmOoL/0CHIHg+gUkGXnRWyfjQ0NIjKsMPhQEtLi+J4XFwcbDabCMSpqakh6mn0qWzurBwzHIc3Vo6pF5xvTERE3WE4JjpCcL6xNisLKp1uyK7b1tYmVpN2OBw4dOiQ4rhWq1UsopWdnc3FoEJEDKtmOA5v3OOYenF4j2Mu1kZERIcxHBMdYai2cfJ6vSgtLRXV4YrOUB6kUqmQm5srwnBeXh60Wj5dQ02WZYbjSMHKMfWClWMiIuoO320THeHwNk6mAT2vJEmorKwUYbikpAR+v1/RJiMjA3a7HXa7HRaLBTExrGiEm7qOOnT4O6CCCtnx2aHuDvXE1wE0B/ajRvL/z96fx0de1vne/7v27FtnrawVBJqlGReWH5sMP1uWQUePAwKjDDCIczveMh6EcTmjgBwBHXAZ9RZFhXFgRFFHPaMsyqE9t9IsiqMgO1VZK0t3Ovtay3X/kdRFf+nudKqTSiXfej0fj350d32vVH3Cl+rknc+1sOYY++q3ZxwTjgEAryIcA3vJ7FS92jOOjTHas2ePPV6pq6tLc3NzjjHl5eV2R+lIJKKKiopVvSZyL9M1ri2uVdDHDuAb1kT/4u/+YqmkJr+1YEOKE44BAPtBOAb2YtccH8K06qmpKccmWhMTE47roVBIHR0dtju8ZcsW1g1vMmzGtUnsfcYx7zHsRz/TqgEA+0E4BvaStGuODz6ten5+Xt3d3TYQDw8PO677fD61trbadcPhcFherzcndWN9ZDrHjaWNea4Ey2K9MZaxkExreHJeEuEYAOBEOAb2YtccN+8bjlOplPr6+mwY7u/vVzqddoxpamqyYbitrU2BddzxGrmXCcfhsrVdk441lgnHVa35rQMb0tDEnIyRgn6vastYHgEAeBXhGFiSnp1VanRU0uJu1cYYDQ8P2zDc1dWlRCLh+Jjq6mobhiORiEpKSvJROtbJ4PSgJDrHG549xolwjH3tvRkXS1sAAHsjHANLEgOLwccUF+vHDz2kWFeXpqenHWNKSkocYbi6ujofpSJPWHO8STCtGsuIc8YxAOAACMcoaLOzs3YDrfFf/UpvlDQRDOqZP/1JkhQIBNTe3m4DcUNDA52GAhafXtywjXC8wY3vtSEX8Br9o0vhuJL1xgAAJ8IxCkoikVBvb689YmlgaY2xJEWGFs9FTW+p0Zvf/GZ1dnaqpaVFPp8vX+ViA5lLzmnP3B5JhOMNzRg6x1hWfJydqgEA+0c4hqul02kNDAzYdcM9PT1KpVKOMXV1ders7FR7Ki098aQiJ56opjPPzFPF2KiGZhZ/eFLsL1ZlqDLP1eCAZkak5Jwkj1TRnO9qsAH1jy2eOd9cTTgGADgRjuEqxhiNjIzYqdJdXV2am5tzjCkvL7dnDUciEZWXl0uS4jt+pXGt7BgnFJ7MTtVNpU1Mrd/IMlOqyxokfyi/tWBDiu+1IRcAAHsjHGPTm5ycVCwWs4F4YmLCcT0UCikSidh1w1u2bNlvuEnEF9eTBsJMmcW+2IxrkxhjvTEOzBjz6ppjwjEA4DUIx9h05ufn1dXVZcPwrl27HNd9Pp9aW1ttd7ipqUler/egz2vPOG4i/GBfmc4xxzhtcKw3xjLGZhKaTSwurWmqZLdqAIAT4RgbXiqVUl9fn1033NfXJ2OMY0xTU5PtDLe1tSkQCGT1GiadVmJw8SinQJhp1dhXJhyHy/j/Y0PLhOMqzjjGvjJnHNeWhVQUYLNFAIAT4RgbjjFGQ0NDNgx3d3crkUg4xlRXV9vOcEdHh0pKSlb1msndu6VEQvJ65a+vX9VzwZ32XnOMDcwe40Q4xr5eXW9M1xgAsC/CMTaEsbExG4aj0ahmZmYc10tKSuwGWp2dnaqqqlrT108urTf2NzTI4+dtgX1l1hwzrXqD44xjLCPTOWa9MQBgf0gByIuZmRnHJlqjo6OO64FAQO3t7bY7XF9fn9MdgllvjOWkTVqD04vT7ukcb3CsOcYy4oRjAMAysgrH119/vW644QbHY0ceeaSef/75NS0K7pNIJNTT02O7wwNLYTTD4/GopaXFdoZbWlrk863ferBEfCkcs94Y+7Fnbo8W0gvyyKOG0oZ8l4MDScxK00sb9DGtGvsRz5xxTDgGAOxH1p3jY445Rr/85S9ffQKmoOIA4vG47Qz39vYqlUo5rtfX19sw3N7erlAof2eS0jnGcjJd47qSOgW82W32hnU0sbg8QoFSqbg6v7VgQ2JaNQBgOVknW7/fr8bGla+5m5+f1/z8vP37a8+gxYHde8VpKusdPfjADcQTDKn9lu9Ikv7wf71dZmFeWyRtcY6yf0pKenHpVz417E6rTNK/vXKXfvf1u/NcDTaaSW9aCkqVY3v09M1n5rscHECJmdZhkvrNFn3s20/kuxxsQM8PLn4PQucYALA/WYfjl156SeFwWEVFRTr55JN18803q62t7YDjb7755n2mYmNligfHdFhPOt9lZMWE0spUHOk18syb/Y1az5KysrM5rReKEgcfiIL0+rlRbZuP5rsMHMRT82H9vy/tzncZ2KCKAl61167uhAMAgDt5zGsPjF3G/fffr6mpKR155JEaGBjQDTfcoP7+fj3zzDMqLy/f78fsr3Pc2tqq8fFxVVRUrP4zcLGffe3jmunfON+Ip41RYmFBiURCCwsLSqaSrxnhUVFxqU56382SpOfuu0VKbZ6gOV8e0mikRsrhxl/YvPwen44NtKnYE8x3KViG8fo1XHeKEsHKfJeCDerIxnId1VQY33+k02k9++yzkqSjjz5aXq83zxUhFyYmJlRZWcn31sAayCocv9bY2Jja29v1+c9/XldcccWKPoY38OaRTCbV19dn1w339/frtf+7hMNhu264tbVVPp+PL8QAAGwAhOPCwPfWwNpZ1W5aVVVVOuKII/Tyyy+vVT3II2OMhoaG7I7S3d3dSiScnd+amhobhiORiIqLneu20unNNQ0cAAAAAKRVhuOpqSm98soruuSSS9aqHqyzsbExRaNRG4hnZmYc10tKSuxZw5FIRFVVVfkpFAAAAAByKKtwfM011+jtb3+72tvbFY/Hdd1118nn8+niiy/OVX1YYzMzM3aadCwW0+ioczfsQCCgjo4O2x2ur6+XhzW4AAAAAFwuq3Dc19eniy++WCMjI6qrq9Npp52mxx57THV1dbmqD6uUSCTU09Njw/DA0nm+GR6PRy0tLbY73NzcLJ/Pl6dqAQAAACA/sgrH9957b67qwBpJp9OKx+O2O9zb26tUKuUYU19fbzvD7e3tCoVCeaoWAAAAADaGVa05Rv4ZYzQyMmI7w7FYzHF0liRVVFQ41g2XlZXlqVoAAAAA2JgIx5vQ5OSkDcPRaFSTk5OO60VFRYpEIrY7XFNTw7phAAAAAFgG4XgTmJubU3d3t91Vevfu3Y7rPp9PbW1ttjvc2NjIWYYAAAAAkAXC8Qb2m9/8Rs8//7z6+/tljHFcC4fDtjPc2tqqQCCQpyoBAAAAYPMjHG9gfX196uvrkyTV1NTYznBHR4eKi4vzXB0AAAAAuAfheAM7/vjjdcQRR6izs1OVlZX5LgcAAAAAXItwvIEddthh+S4BAAAAAAoCuzYBAAAAAAoe4RgAAAAAUPAIxwAAAACAgkc4BgAAAAAUPMIxAAAAAKDgEY4BAAAAAAWPcAwAAAAAKHiEYwAAAABAwSMcAwAAAAAKHuEYAAAAAFDwCMcAAAAAgIJHOAYAAAAAFDzCMQAAAACg4BGOAQAAAAAFj3AMAAAAACh4hGMAAAAAQMHzr/cLGmMkSRMTE+v90lgH6XRaU1NTkhbvsdfLz18AAMgHviYXhsz31JnvsQEcunUPx5OTk5Kk1tbW9X5pAAAAwJUmJydVWVmZ7zKATc1j1vnHTOl0WvF4XOXl5fJ4POv50lgnExMTam1tVW9vryoqKvJdDnKAe+x+3GP34x4XBu6z+xljNDk5qXA4zOwAYJXWvXPs9XrV0tKy3i+LPKioqOALsctxj92Pe+x+3OPCwH12NzrGwNrgx0sAAAAAgIJHOAYAAAAAFDzCMdZcKBTSddddp1AolO9SkCPcY/fjHrsf97gwcJ8BYOXWfUMuAAAAAAA2GjrHAAAAAICCRzgGAAAAABQ8wjEAAAAAoOARjgEAAAAABY9wDAAAAAAoeIRjLOv666+Xx+Nx/Nq6deuyH3Pfffdp69atKioq0rZt2/Tzn//ccd0Yo0996lNqampScXGxtm/frpdeeimXnwaWke09vuOOO3T66aerurpa1dXV2r59u5544gnHmMsuu2yf5zznnHNy/angALK9x3fdddc+44uKihxjeB9vLNne4z//8z/fZ7zH49F5551nx/A+3nj6+/v13ve+V1u2bFFxcbG2bdum3/72t8t+zI4dO/TGN75RoVBIr3vd63TXXXftM+arX/2qOjo6VFRUpJNOOmmff9MBoFAQjnFQxxxzjAYGBuyvX//61wcc++ijj+riiy/WFVdcod///vd65zvfqXe+85165pln7JjPfe5z+pd/+Rfdfvvtevzxx1VaWqqzzz5bc3Nz6/HpYD+yucc7duzQxRdfrEceeUQ7d+5Ua2urzjrrLPX39zvGnXPOOY7n/O53v5vrTwPLyOYeS1JFRYVjfHd3t+M67+ONJ5t7/KMf/cgx9plnnpHP59MFF1zgGMf7eOMYHR3VqaeeqkAgoPvvv1/PPvusbrvtNlVXVx/wY2KxmM477zydeeaZ+q//+i99+MMf1vve9z49+OCDdsz3vvc9XX311bruuuv01FNP6c/+7M909tlna3h4eD0+LQDYUPz5LgAbn9/vV2Nj44rGfulLX9I555yja6+9VpJ044036he/+IW+8pWv6Pbbb5cxRl/84hf1T//0T3rHO94hSfrOd76jhoYG/fjHP9ZFF12Us88DB5bNPb7nnnscf//mN7+pH/7wh3r44Yf1N3/zN/bxUCi04udE7mVzjyXJ4/EccDzv440pm3tcU1Pj+Pu9996rkpKSfcIx7+ON47Of/axaW1t155132scikciyH3P77bcrEonotttukyQdddRR+vWvf60vfOELOvvssyVJn//853XllVfq8ssvtx/zs5/9TN/+9rf1sY99LEefDQBsTHSOcVAvvfSSwuGwOjs79Z73vEc9PT0HHLtz505t377d8djZZ5+tnTt3Slr8Kfbg4KBjTGVlpU466SQ7Busvm3v8WjMzM0okEvt8s71jxw7V19fryCOP1Ac+8AGNjIysddnIQrb3eGpqSu3t7WptbdU73vEO/elPf7LXeB9vTKt5H3/rW9/SRRddpNLSUsfjvI83jp/+9Kc6/vjjdcEFF6i+vl5veMMbdMcddyz7MQf7mrywsKDf/e53jjFer1fbt2/nvQygIBGOsayTTjpJd911lx544AF97WtfUywW0+mnn67Jycn9jh8cHFRDQ4PjsYaGBg0ODtrrmccONAbrK9t7/Fof/ehHFQ6HHd9cnXPOOfrOd76jhx9+WJ/97Gf1q1/9Sueee65SqVSuPg0sI9t7fOSRR+rb3/62fvKTn+juu+9WOp3WKaecor6+Pkm8jzei1byPn3jiCT3zzDN63/ve53ic9/HGEo1G9bWvfU2HH364HnzwQX3gAx/QVVddpX/913894Mcc6GvyxMSEZmdntXv3bqVSKd7LALCEadVY1rnnnmv/fNxxx+mkk05Se3u7vv/97+uKK67IY2VYK6u5x7fccovuvfde7dixw7Fh097Tardt26bjjjtOhx12mHbs2KG3vOUta/9JYFnZ3uOTTz5ZJ598sv37KaecoqOOOkpf//rXdeONN65LzcjOat7H3/rWt7Rt2zadeOKJjsd5H28s6XRaxx9/vG666SZJ0hve8AY988wzuv3223XppZfmuToAcAc6x8hKVVWVjjjiCL388sv7vd7Y2KihoSHHY0NDQ3bNWub35cYgvw52jzNuvfVW3XLLLXrooYd03HHHLTu2s7NTtbW1B31OrI+V3uOMQCCgN7zhDXY87+ONb6X3eHp6Wvfee++KftjJ+zi/mpqadPTRRzseO+qoo5adPn+gr8kVFRUqLi5WbW2tfD4f72UAWEI4Rlampqb0yiuvqKmpab/XTz75ZD388MOOx37xi1/YLlQkElFjY6NjzMTEhB5//HFHpwr5c7B7LC3uVHzjjTfqgQce0PHHH3/Q5+zr69PIyMiyz4n1s5J7vLdUKqWnn37ajud9vPGt9B7fd999mp+f13vf+96DPifv4/w69dRT9cILLzgee/HFF9Xe3n7AjznY1+RgMKg3velNjjHpdFoPP/ww72UAhckAy/jIRz5iduzYYWKxmPnNb35jtm/fbmpra83w8LAxxphLLrnEfOxjH7Pjf/Ob3xi/329uvfVW89xzz5nrrrvOBAIB8/TTT9sxt9xyi6mqqjI/+clPzB//+Efzjne8w0QiETM7O7vunx+yv8e33HKLCQaD5gc/+IEZGBiwvyYnJ40xxkxOTpprrrnG7Ny508RiMfPLX/7SvPGNbzSHH364mZuby8vnWOiyvcc33HCDefDBB80rr7xifve735mLLrrIFBUVmT/96U92DO/jjSXbe5xx2mmnmQsvvHCfx3kfbzxPPPGE8fv95jOf+Yx56aWXzD333GNKSkrM3Xffbcd87GMfM5dccon9ezQaNSUlJebaa681zz33nPnqV79qfD6feeCBB+yYe++914RCIXPXXXeZZ5991rz//e83VVVVZnBwcF0/PwDYCAjHWNaFF15ompqaTDAYNM3NzebCCy80L7/8sr1+xhlnmEsvvdTxMd///vfNEUccYYLBoDnmmGPMz372M8f1dDptPvnJT5qGhgYTCoXMW97yFvPCCy+sx6eD/cj2Hre3txtJ+/y67rrrjDHGzMzMmLPOOsvU1dWZQCBg2tvbzZVXXsk3WnmU7T3+8Ic/bNra2kwwGDQNDQ3mL/7iL8xTTz3leE7exxvLofxb/fzzzxtJ5qGHHtrn+Xgfb0z/63/9L3PssceaUChktm7dar7xjW84rl966aXmjDPOcDz2yCOPmNe//vUmGAyazs5Oc+edd+7zvF/+8pfte/7EE080jz32WA4/CwDYuDzGGJPPzjUAAAAAAPnGmmMAAAAAQMEjHAMAAAAACh7hGAAAAABQ8AjHAAAAAICCRzgGAAAAABQ8wjEAAAAAoOARjgEAAAAABY9wDAAAAAAoeIRjAAAAAEDBIxwDAAAAAAoe4RgAAAAAUPAIxwAAAACAgkc4BgAAAAAUPMIxAAAAAKDgEY4BYBN6+umndf7556u9vV1FRUVqbm7WW9/6Vn35y1+2Yzo6OuTxeOyv0tJSnXjiifrOd76zz/Pt2LHDMXbvXxdddNGa1v7oo4/q+uuv19jY2Jo+LwAAwGr4810AACA7jz76qM4880y1tbXpyiuvVGNjo3p7e/XYY4/pS1/6kj70oQ/Zsa9//ev1kY98RJI0MDCgb37zm7r00ks1Pz+vK6+8cp/nvuqqq3TCCSc4Huvo6Fjz+m+44QZddtllqqqqWtPnBgAAOFSEYwDYZD7zmc+osrJSTz755D7hcnh42PH35uZmvfe977V/v+yyy9TZ2akvfOEL+w3Hp59+us4///yc1A0AALCRMa0aADaZV155Rcccc8x+u6719fXLfmxdXZ22bt2qV155JavX3LNnj6655hpt27ZNZWVlqqio0Lnnnqs//OEP+4z98pe/rGOOOUYlJSWqrq7W8ccfr3//93+XJF1//fW69tprJUmRSMRO3e7q6sqqHgAAgLVG5xgANpn29nbt3LlTzzzzjI499tisPjaZTKqvr0/V1dX7vT45Oandu3c7HqupqVE0GtWPf/xjXXDBBYpEIhoaGtLXv/51nXHGGXr22WcVDoclSXfccYeuuuoqnX/++fqHf/gHzc3N6Y9//KMef/xx/fVf/7Xe9a536cUXX9R3v/tdfeELX1Btba2kxdAOAACQT4RjANhkrrnmGp177rl6/etfrxNPPFGnn3663vKWt+jMM89UIBBwjE0kEjbsDg4O6nOf+5wGBwf1wQ9+cL/P/bd/+7f7PBaLxbRt2za9+OKL8npfnXB0ySWXaOvWrfrWt76lT37yk5Kkn/3sZzrmmGN033337ff5jzvuOL3xjW/Ud7/7Xb3zne9c8/XMAAAAh4pwDACbzFvf+lbt3LlTN998sx588EHt3LlTn/vc51RXV6dvfvOb+su//Es79qGHHtqnK3v55Zfrn//5n/f73J/61Kd0+umnOx5rbGxUKBSyf0+lUhobG1NZWZmOPPJIPfXUU/ZaVVWV+vr69OSTT+6zsRcAAMBGxppjANiETjjhBP3oRz/S6OionnjiCX384x/X5OSkzj//fD377LN23EknnaRf/OIXeuCBB3TrrbeqqqpKo6OjCgaD+33ebdu2afv27Y5fRUVFSqfT+sIXvqDDDz9coVBItbW1qqur0x//+EeNj4/bj//oRz+qsrIynXjiiTr88MP1wQ9+UL/5zW9y/t8DAABgtQjHALCJBYNBnXDCCbrpppv0ta99TYlEwjGluba2Vtu3b9fZZ5+tj3zkI7r77rv14x//WF/60peyep2bbrpJV199td785jfr7rvv1oMPPqhf/OIXOuaYY5ROp+24o446Si+88ILuvfdenXbaafrhD3+o0047Tdddd92afc4AAAC5wLRqAHCJ448/XtLiecYHct555+mMM87QTTfdpL/7u79TaWnpip77Bz/4gc4880x961vfcjw+NjZmN9XKKC0t1YUXXqgLL7xQCwsLete73qXPfOYz+vjHP66ioiJ5PJ4sPzMAAIDco3MMAJvMI488ImPMPo///Oc/lyQdeeSRy378Rz/6UY2MjOiOO+5Y8Wv6fL59XvO+++5Tf3+/47GRkRHH34PBoI4++mgZY5RIJCTJBvKxsbEVvz4AAECu0TkGgE3mQx/6kGZmZvTf/tt/09atW7WwsKBHH31U3/ve99TR0aHLL7982Y8/99xzdeyxx+rzn/+8PvjBD+6zw/X+vO1tb9OnP/1pXX755TrllFP09NNP65577lFnZ6dj3FlnnaXGxkadeuqpamho0HPPPaevfOUrOu+881ReXi5JetOb3iRJ+h//43/ooosuUiAQ0Nvf/vYVd7EBAABygc4xAGwyt956q84880z9/Oc/19VXX62rr75aTzzxhP7+7/9ejz/+uKqqqg76HNdcc416e3t1zz33rOg1P/GJT+gjH/mIHnzwQf3DP/yDnnrqKf3sZz9Ta2urY9zf/d3faWpqygbvH//4x7rqqqt099132zEnnHCCbrzxRv3hD3/QZZddposvvli7du3K6r8BAADAWvOY/c3NAwAAAACggNA5BgAAAAAUPMIxAAAAAKDgEY4BAAAAAAWPcAwAAAAAKHiEYwAAAABAwVv3c47T6bTi8bjKy8vl8XjW++UBAAAA1zDGaHJyUuFwWF4vfS9gNdY9HMfj8X3OxQQAAABw6Hp7e9XS0pLvMoBNbd3DcXl5uaTFN3BFRcV6vzxyLJ1O6/nnn5ckbd26lZ9gAgCQJ3xNLgwTExNqbW2132MDOHTrHo4zU6krKioIxy6UTqdVVlYmafEe84UYAID84GtyYWG5IrB6/CsJAAAAACh4hGMAAAAAQMEjHAMAAAAACh7hGAAAAABQ8AjHAAAAAICCRzgGAAAAABQ8wjEAAAAAoOARjgEAAAAABY9wDAAAAAAoeIRjAAAAAEDBIxwDAAAAAAoe4RgAAAAAUPAIxwAAAACAgkc4BgAAAAAUPMIxAAAAAKDgEY4BAAAAAAXPn+8CAAAAgHQ6rXg8rmg0qr6+Pl100UXyeunjAFg/hGMAAACsO2OMdu/erWg0qlgspq6uLs3Pz9vrAwMDam5uzmOFAAoN4RgAAADrYmJiQrFYTLFYTNFoVJOTk47rRUVFikQiikQiqqqqyk+RAAoW4RgAAAA5MTc3p+7ubkWjUUWjUe3evdtx3efzqa2tTZ2dners7FRjYyNTqQHkDeEYAAAAayKZTKqvr89Ole7v75cxxjEmHA4rEomos7NTra2tCgQCeaoWAJwIxwAAADgkxhgNDg7aadLd3d1KJpOOMTU1NbYz3NHRoeLi4jxVCwDLIxwDAABgxUZHR21nOBqNanZ21nG9tLRUnZ2dtjtcWVmZp0oBIDuEYwAAABzQ9PS0YxOtsbExx/VAIKCOjg7bHa6rq5PH48lPsQCwCoRjAAAAWAsLC+rp6bHd4cHBQcd1r9erlpYW2xlubm6Wz+fLU7UAsHYIxwAAAAUsnU6rv7/fhuHe3l6l02nHmPr6etsZbmtrUygUylO1AJA7WYfj/v5+ffSjH9X999+vmZkZve51r9Odd96p448/Phf1AQAAYA0ZY7R7924bhru6ujQ/P+8YU1lZaTvDkUhEZWVleaoWANZPVuF4dHRUp556qs4880zdf//9qqur00svvaTq6upc1QcAAIBVmpiYcJw3PDU15bheVFRkw3BnZ6eqq6tZNwyg4GQVjj/72c+qtbVVd955p30sEoks+zHz8/OOn0ZOTExkWSKwsS309Wn0nn+Xec1P3eEeiXRCz+15Xgsp7rGrzeyRuMeulkgaJV4zXdi1jKRAQEd/7JuSpPs/cJZMYvH/7yZJHnkkj+T1eCSPVx6PpN9LUS3+2gj+7KO36cg3/Hm+ywBQQLIKxz/96U919tln64ILLtCvfvUrNTc36+///u915ZVXHvBjbr75Zt1www2rLhTYqHZ/7Wsa/+GP8l0Gcqw13wUAQJZMKKTMjwL+7NkFeeYX8lpPtvb0vyK94c/zXQaAApJVOI5Go/ra176mq6++Wp/4xCf05JNP6qqrrlIwGNSll16634/5+Mc/rquvvtr+fWJiQq2tfJsJ91jo7pYklZ97jkKRzjxXg1x4NL5Tf9j1X2oqbVJzeXO+y0EuTO+Wdr0g+UNSaX2+q0EOJNNGQxNzkqTyInfsR5pOG6XTaZl0WmmTljHO6/5gSK9f+vMfT6yWUpsrHJ/QflS+SwBQYLL66pBOp3X88cfrpptukiS94Q1v0DPPPKPbb7/9gOE4FAqxoyFcLRkfkCTVXPI3KnnjG/JcDXLh/+zo0kPdT+sfT7hMf3H0JfkuB7nw6Jelh34jHftX0vnfznc1yIEnYnt01dd3qq2mRP/nH8/MdzlZM8ZodHTUnjUci8U0OzvrGFNaWmrXDEciEZWXl+vZZ5+VJL376w/L6/Xmo3QA2DSyCsdNTU06+uijHY8dddRR+uEPf7imRQGbhUmllBgakiQFmsN5rga5Mji9eMZnuJR77FrjfYu/VzKzya3iY4tBsrmqOM+VrNz09LQjDI+NjTmuB4NBdXR02I206urqHJtovfY4JgDA8rIKx6eeeqpeeOEFx2Mvvvii2tvb17QoYLNI7tolpVKS3y9/bW2+y0GODEwvzg5oLGvMcyXIGRuOW/JbB3KmfykchzdwOF5YWFB3d7cNxENLP3zN8Hq9amlpsd3hcDgsn8+Xp2oBwH2yCsf//b//d51yyim66aab9O53v1tPPPGEvvGNb+gb3/hGruoDNrREPC5JCjQ0yMM3KK60kFrQrtldkqSm0qY8V4OcGetZ/J3OsWv1285xUZ4reVUqlVI8Hred4d7e3n26vQ0NDbYz3N7ermAwmKdqAcD9sgrHJ5xwgv7jP/5DH//4x/XpT39akUhEX/ziF/We97wnV/UBG1piab1xoInQ5FZD04udmyJfkapDnOnuWnSOXS++ATrHxhjt2rXLdoa7urq0sODcJKuystKuGY5EIiorK8tTtQBQeLLervFtb3ub3va2t+WiFmDTSQwsdY5Zb+xadkp1aaNjLR9cZGFamt2z+OcqOsduZdccV69vOJ6YmLCd4Wg0qqmpKcf14uJiG4Q7OztVXV3NvzUAkCfuOMsAyJPkwGJw8tM5dq1MOGZKtYuN9y/+HqqQiirzWwtywhij/tH16RzPzc2pq6tL0WhU0WhUIyMjjut+v19tbW123XBjIz94A4CNgnAMrEKif6lz3ETn2K3i04v3uKmMcOxa45n1xkypdquJ2aSmF1KSpHDl2objZDKp3t5e2x2Ox+Myex047PF4FA6HbWe4tbVVfj/ffgHARsS/zsAqJJY6x4EwwcmtMsc4NZayU7Vrsd7Y9TKbcdWUBlUcXN3micYYDQ4O2s5wT0+PksmkY0xtba0Nwx0dHSoq2jibgAEADoxwDKzCq+GYzrFbDUwt3mPOOHYxzjh2vdWccWyM0ejoqO0Mx2Ixzc7OOsaUlZXZTbQ6OztVUVGxJnUDANYX4Rg4RKnJSaUnJyVJgUa6im7FmuMCQOfY9eLjmfXGK+vgTk9P2w20otGoxsfHHdeDwaA6OjrsuuHa2lrWDQOACxCOgUOU6Rr7KivlLS3NczXIBWOMnVZNOHYxOseu13+QY5wWFhbU3d1tu8NDQ0OO616vV62trbYz3NzcLK/Xm/O6AQDri3AMHKJEfHGjJj9Tql1rdH5Uc6k5SVJDaUOeq0HOjLEhl9tldqrOTKtOpVKKx+O2M9zX16d0Ou34mMbGRhuG29raFAwG171uAMD6IhwDhyjJemPXy0ypriuuU9DHN8aulE5JE4s/6OKMY/fKrDmeHu7Vd7/7uLq6urSwsOAYU1VVZcNwJBJRKTOCAKDgEI6BQ5SIL4Vjzjh2rcEpplS73tSwlE5IHp9Uxt4BbjI+Pm7XDb/Q55UU0Et/fEJj3hlJUnFxsQ3DnZ2dqq6uzm/BAIC8IxwDh8juVE04dq1M55hjnFwss964Iiz5+JK4mc3Ozqqrq8uuGx4ZGZEkpY1H0+k3SpKOjYS17fDFjbQaGxvZRAsA4MB3AsAhyqw55oxj94pPL95jOscuNs56480qmUyqt7fXhuF4PC5jjL3u8XgUDodV3tgh/XpeQb9X7/+bv5bXSyAGAOwf4Rg4RHSO3c/uVF3GPXYtjnHaNNLptAYHB+1U6Z6eHiWTSceY2tpaO1W6o6NDRUVFeiw6Iv36MYUriwjGAIBlEY6BQ2CSSSWXjvpgt2r3GpjijGPX4xinDcsYo9HRUdsZjsVimp2ddYwpKyuza4YjkYgqKir2eZ7MZlzN1fs/xgkAgAzCMXAIksPDUjotBQLy19bmuxzkSGbNMeHYxegcbyhTU1O2MxyLxTQ+Pu64HgwGFYlEbHe4trb2oOuGM+E4XEk4BgAsj3AMHAK73rixUR6vN8/VIBfmU/MamVvc0Idw7GJjvYu/0znOi4WFBXV3d9swPLQ0IyfD6/WqtbXVdoabm5vlzfLf3P5MOK4iHAMAlkc4Bg4B643dL7PeuNhfrMpQZZ6rQc6MZ8IxneP1kEql1N/fb8NwX1+f0um0Y0xjY6PtDLe1tSkYXN0Z4/1jc5KkZsIxAOAgCMfAIbBnHLPe2LX2nlLNcS8uNT8pzY0t/plwnBPGGO3atUvRaFTRaFTd3d1aWFhwjKmqqrKd4UgkotLS0jWtgTXHAICVIhwDhyAxwDFObsdmXAVgvH/x96JKqWjfjZxwaMbHx21nOBqNanp62nG9uLjYBuHDDjtM1dXVOavFGPPqmmM6xwCAgyAcA4cgs+bYz7Rq18p0jhtLG/NcCXJmnPXGa2F2dlZdXV22O7xnzx7Hdb/fr/b2djtVurGxcd1mY4zNJDSzkJIkNVUWrctrAgA2L8IxcAiSds0x06rdip2qCwDrjQ9JMplUT0+P7Q7Hl35YmOHxeNTc3GzDcEtLi/z+/Hy7kdmMq7YsqKKALy81AAA2D8IxkCVjjBL9mWnVhGO3yoTjcBn32LU443hF0um0BgcHbWe4t7dXyWTSMaa2ttauG+7o6FBR0cbo0tr1xkypBgCsAOEYyFJ6clLpmRlJUqCJKbduldmtmmnVLsYZx/tljNGePXtsZzgWi2lubs4xpry83HaGI5GIKio25ppt1hsDALJBOAaylDnGyVddLW8x33C5kTGGDbkKAeHYmpqashtoxWIxjY+PO66HQiF1dHTYQFxbW7spdnGPjy+GesIxAGAlCMdAluyUajbjcq2RuREtpBfkkUcNJQ35Lge5Mla4G3ItLCyou7vbTpUeHh52XPf5fGptbbVhOBwOy+v15qnaQ9c/SucYALByhGMgS5ljnPwc4+RamSnVdcV1CvgCea4GOZFOSRNLRzkVQOc4lUqpv7/fdob7+vqUTqcdYxobG+006ba2NgWDwTxVu3b67ZrjjbEGGgCwsRGOgSzZnarZjMu17E7VZfwAxLUmByWTkrx+qdx968qNMRoeHrZhuLu7WwsLC44x1dXVjnXDJSUleao2d17dkMt9nxsAYO0RjoEsJeIc4+R2rDcuAJn1xhVhyeuOI37Gx8dtGI5Go5qennZcLykpcYTh6urqPFW6PuaTKQ1PzkuSwnSOAQArQDgGspSIs+bY7TjjuACMb/71xrOzs3Y36Wg0qj179jiuBwIBtbe320Dc0NCwKTbRWiuDS5txhfxe1ZRu/iniAIDcIxwDWUrYadUEJ7fKhGOOcXIxG443z3rjRCKh3t5e2x2OL/2gLsPj8ai5udmG4ZaWFvn9hftlvn+vM44L6YcCAIBDV7hfNYFDYBIJJZd2dWXNsXtlwnG4jHvsWvYYp43bOU6n0xoYGLBhuKenR6lUyjGmtrZWkUhEhx12mNrb21VUxPThjPjYYue4uZqdqgEAK0M4BrKQGBqWjJEnGJSvpibf5SBHMrtVM63axTbgGcfGGO3Zs8cer9TV1aW5uTnHmPLycrtmuLOzU+Xl5XmqduPLbMYVriQcAwBWhnAMZCERXzz6xd/UKM8mPPMTBzebnNWeucW1m0yrdrENcsbx1NSUYxOtiYkJx/VQKKSOjg51dnaqs7NTW7ZsYYrwCnHGMQAgW4RjIAv2GCd2qnatTNe4xF+iimBFnqtBzuSpczw/P6/u7m7bHd61a5fjus/nU2trq+0Mh8NheflB3CGJj2fCMVPNAQArQzgGspDgjGPX23u9MR06l5obl+bHF/+c43CcSqXU19dnu8P9/f1Kp9OOMY2NjXbdcFtbmwKBQE5rKhR2Qy7WHAMAVohwDGTh1TOOWYvqVpnOMVOqXWx8cXmEiqulUNmaPrUxRsPDwzYMd3V1KZFIOMZUV1c7zhsuKSlZ0xqweB/ie+1WDQDAShCOgSxwjJP7ccZxAVjjKdVjY2N2zXAsFtP09LTjeklJiQ3CkUhE1dXVa/K6OLDRmYTmEosd+sZKplUDAFaGcAxkIbF0riidY/eKTy3eY8Kxi433LP5+iJtxzczMqKury4bhPXv2OK4HAgG1t7fbQNzQ0MAU/XWW2YyrrjykkN+X52oAAJsF4RhYIWMMa44LgD3GqYxw7FpZnnGcSCTU09Nju8MDS/8OZHg8HrW0tNip0i0tLfL5CGT51M+UagDAISAcAyuUHh+XmZmRJPkbWY/qVkyrLgAHmVadTqc1MDBgO8M9PT1KpVKOMXV1dbYz3NHRoVAolOuqkQXWGwMADgXhGFihTNfYt2WLvEWsYXOjtEm/2jkmHLvXa8KxMUYjIyOOTbTm5uYcH1JeXm7PGo5EIiovL1/vqpGFTDjmGCcAQDYIx8AKsd7Y/UZmR5RIJ+T1eFVXUpfvcpArY72SpJd3z+tPP/mJotGoJiYmHENCoZDdQKuzs1Nbtmxh3fAm0m/DMZ1jAMDKEY6BFeIYJ/fLTKmuK65TwMtZs24yPz+v7u5uxV55SW+d6JdX0k92PKUpz+JRTj6fT62trfa84aamJnm93vwWjUMWJxwDAA4B4RhYITbjcr9MOA6XcY83u1Qqpb6+PjtVuq+vT8YYVZgJnS2jlLwqbzpMx3Ueps7OTrW1tSkQ4AcibtE/tjgtnjXHAIBsEI6BFUoMLE2r5oxj18qsN24sZcO1zcYYo+HhYce64UQi4RhTU1OjN9aWSS9InqpWvf/v/q88VYtcmkuktHtqXhLhGACQHcIxsEKZNcd+plW7Fmccby5jY2M2DMdiMU1PTzuul5SU2A20Ojs7VVVVJf3x+9ILkreqLT9FI+cGxhe7xsUBn6pKmA0AAFg5wjGwQkm75pgpt27FMU4b28zMjLq6uhSNRhWNRjU6Ouq4HggE1N7ebneVrq+v33cTrfHFzbgOdIwTNr+9d6pmEzUAQDYIx8AKpBcWlNy1S5IUaCYcu1VmWjVrjjeGRCKhnp4e2x0eWFr3n+HxeNTS0mI7wy0tLfL5fMs/qT3GqTVHVSPfMjtVN1eX5LkSAMBmQzgGViA5NCRJ8oRC8lVX57ka5Eqmc8ya4/xIp9MaGBiwneHe3l6lUinHmPr6ehuG29vbFQqFsnuR15xxDPfJdI6bOeMYAJAlwjGwAnsf48Q0PXeaScxobH5MEtOq14sxRiMjI451w/Pz844xFRUVdt1wJBJReXn56l6UcOx6dlp1JZtxAQCyQzgGViCzGRc7VbtXZkp1WaBM5cFVBjAc0OTkpGKxmO0OT05OOq4XFRWpo6PDrhuuqalZux9IGSONZdYcM63arfo54xgAcIgIx8AKZI5x8nPGsWvZzbjK+AHIWpqbm1N3d7ftDu9aWruf4fP51NbWZrvDTU1N8nq9OSpmXFpYCuN0jl0rnjnjuJpwDADIDuEYWIHkwKvTquFO7FS9NpLJpPr6+mx3uL+/X8YYx5hwOGzXDbe2tioQWKfjdjJTqku2SEE2a3IjY8yrG3LROQYAZIlwDKxAgmOcXI9wfGiMMRoaGrKd4e7ubiUSCceYmpoaG4YjkYiKi/MUWlhv7Hoj0wtaSKbl8UgNFWzIBQDIDuEYWAHWHLvfwBQ7Va/U2NiYXTMci8U0MzPjuF5aWuoIw1VVVfkp9LXGWW/sdv2ji13j+vKQgv4cTc8HALgW4Rg4CGOMEkyrdj06xwc2MzNjp0nHYjGNjo46rgcCAXV0dNhAXF9fvzF3dbfhmM6xW8XZjAsAsAqEY+AgUmNjMnOLG7z4CceulQnH4TKmzicSCfX09NgwPLD0w6EMr9er5uZmu6N0c3OzfD5fnqrNgp1WTefYrVhvDABYDcIxcBCZKdW+ulp5g8E8V4NcSKVTGpoZklSYneN0Oq14PG7DcG9vr1KplGNMfX297Qy3t7crFArlqdpVYM2x69mdqgnHAIBDQDgGDsKuN2YzLtfaPbtbyXRSPo9PtcW1+S4n54wxGhkZseuGu7q6ND8/7xhTUVFhO8ORSERlZWV5qnYNccax6/WPLa5/Z1o1AOBQEI6Bg+AYJ/fLTKmuL6mX3+vOfxYnJydtZzgajWpyctJxvaioSJFIxHaHa2pqNua64UOVSkiTS9PD6Ry7VqZzTDgGABwKd34XCKwhe4xTmM6xWw1OD0py15Tqubk5dXd32+7w7t27Hdd9Pp/a2tpsd7ixsVFer4t3952ISzKSLySV1uW7GuRInDXHAIBVIBwDB8FO1e5nd6ou27z3OJlMqq+vz3aH+/v7ZYxxjAmHw7Yz3NraqkAgkKdq88CuN26W3PxDgAI2l0hpZHpBEuEYAHBoCMfAQXDGsfvFpxbv8WbqHBtjNDg4aKdJd3d3K5lMOsbU1NQ4zhsuLi7gwMAxTq6X2am6NOhTRTHf3gAAssdXD+AgMp1jjnFyr80yrXp0dNR2hmOxmGZmZhzXS0tLbRCORCKqqqrKT6Eb0Tibcbnd3mccu2q9PABg3RCOgWWk5+eVWlqryZpj97LTqjdYOJ6ZmbGd4Wg0qrGxMcf1QCCgjo4OG4jr6+sJBQfCGceuZ9cbVxfwDAkAwKoQjoFlJAcXO4qe4mL56MK51kYJxwsLC+rp6bHd4cGl//8yvF6vWlpa7FTp5uZm+Xy+PFW7yXDGsev1s1M1AGCVCMfAMvbejIuOnDtNJ6Y1sTAhSWosbVzX106n04rH47Yz3Nvbq3Q67RhTX19vw3B7e7tCodC61ugahGPXY6dqAMBqEY6BZST6lzbjYr2xaw1MLf4ApDxYrrJgWU5fyxij3bt3285wV1eX5ufnHWMqKysdm2iVleW2poJgjDTGmmO36x/NrDkuynMlAIDNinAMLMN2jtmp2rVyPaV6YmLCbqAVjUY1OTnpuF5UVGTDcGdnp6qrq5mlsNZmR6XE9OKfK5vzWwtyJj6+FI4r6RwDAA4N4RhYRmIgc4wTm3G5VSYch0vX5h7Pzc2pq6vLdod3L23oluH3+9XW1mYDcWNjo7ycu5tbmSnVpXVSgODkRum00cDSmmM25AIAHCrCMbCMJMc4uV7mGKdDXW+cTCbV19dn1w3H43EZY+x1j8ejpqYmRSIRHXbYYWptbZXfzz+964r1xq63e3peC6m0vB6poYJp1QCAQ8N3aMAyXl1zTOfYreLTi/e4qWxlPwAxxmhwcNB2hru7u5VMJh1jtmzZYjvDHR0dKi6mk5VX9oxjwrFbZdYbN1QUKeBjJgYA4NAQjoEDMMaw5rgAZDbkWm7N8ejoqO0Mx2Ixzc7OOq6XlpbaNcORSESVlZU5rRlZGmczLreLc4wTAGANEI6BA0jt2SOzsCB5PAo0NOS7HORIZlr13uF4enrabqAVi8U0Njbm+JhgMKiOjg7bHa6rq2MTrY3MTqsmHLsVxzgBANYC4Rg4gER8ab1xXZ08wWCeq0EupNIpDc0MSZLmd83rof96SLFYTIODg45xXq9XLS0tNgw3NzfL5/Plo2QcCtYcu17/WOYYJ8IxAODQEY6BA0jEOePYrdLptPr7+/W7F3+nlEnJYzy6/wf3y6NXu78NDQ02DLe3tyvID0g2rzHWHLtdv+0csxkXAODQEY6BA8gc4+RnvfGmZ4zR7t277TTprq4uzc/Pa3dot9QkFSeLVVVZZdcMRyIRlZWV5btsrIXkvDS1NBOAadWuFadzDABYA4Rj4ACSdjMudqrejCYmJmwYjkajmpqaclwvLi5WTWuNtCAd0XiE/uG8f2DdsBtNLP6QS/4iqbQ2v7UgZ+yaY844BgCsAuEYOIDMmmOOcdoc5ubm1NXVZQPx7t27Hdf9fr/a2trsVOnGxkbd+ac7paek1spWgrFb7b3emHvsSjMLSY3OJCTROQYArA7hGDgAjnHa2JLJpHp7e20YjsfjMsbY6x6PR+Fw2Ibh1tZW+f3Of/IGphfvcWNp47rWjnXEZlyulznGqTzkV0VRIM/VAAA2M8IxcABsyLWxGGM0ODhow3B3d7eSyaRjzJYtW+y64Y6ODhUXL99FyoTjpjLusWuNsxmX27FTNQBgrRCOgf1Iz80ptWePJNYc54sxRqOjozYMx2Ixzc7OOsaUlZXZMNzZ2amKioqsXiMTjsOl3GPXsuG4Lb91IGdYbwwAWCuEY2A/MlOqvSUl8mYZuHDopqen7QZasVhMY2NjjuvBYFAdHR3q7OxUZ2enamtrV7VWeHBpF+OmUjrHrsW0atd7dadqjnECAKwO4RjYj8xO1f5wExs15dDCwoK6u7ttGB4aGnJc93q9am1ttZ3hcDgsn8+3Jq89uTCpycSkJNYcuxrh2PWYVg0AWCuEY2A/Xl1vzHTbtZRKpRSPx20Y7u3tVTqddoxpaGiwneG2tjYFg8Gc1JKZUl0ZqlRJoCQnr4E8M0YaY82x2/WPLk2rJhwDAFaJcAzsx6vHODHddjWMMdq1a5cNw11dXVpYWHCMqaystGE4EomotLR0XWobnGZKtevN7JGSS+vUK5rzWwtyJj5O5xgAsDYIx8B+vHqME53jbE1MTNgwHI1GNTU15bheXFysSCRip0pXV1fnZer6wNTSTtWEY/fKbMZV1iAFWI/qRqm00eD44lFOdI4BAKtFOAb2gzOOV25ubk5dXV2KRqOKRqMaGRlxXPf7/Wpvb7dhuLGxcUOs47bHOBGO3Yv1xq63e2peiZSRz+tRfXko3+UAADY5wjGwH5xxfGDJZFK9vb22OxyPx2WMsdc9Ho/C4bANw62trfL7N94/NfHpxXtMOHYxzjh2vb6l9caNFUXy+7x5rgYAsNltvO9YgTwz6fSru1WzIZeMMRocHLSd4Z6eHiWTSceY2tpaG4Y7OjpUVLTxp7Bm1hw3lrFTtWvZznFrfutAznCMEwBgLRGOgddIjYzIJBKS16tAQ32+y1l3xhiNjo7aznAsFtPs7KxjTFlZmd1Aq7OzUxWb8CzozLTqcCk/AHEt2zkmHLtVJhyz3hgAsBYIx8BrZNYb++vr5QkE8lzN+pienrYbaEWjUY2PjzuuB4NBxyZatbW1G2Ld8KFKppManhmWxLRqV2PNsevFOeMYALCGCMfAaxTCMU4LCwvq7u623eGhoSHHda/Xq9bWVhuGm5ub5fW6Zz3frpldSpu0/F6/thRvyXc5yBXCsev1jy3uVE04BgCsBcIx8Bpu3IwrlUqpv7/fhuG+vj6l02nHmMbGRhuG29raFAwG81Rt7mU242osaZTX457Qj70k5qSppR/6MK3atfqZVg0AWEOEY+A17DFOzZt3LaoxRrt27bJhuKurSwsLC44xVVVVNgxHIhGVlpbmqdr1Z9cbl23ee4yDmOhf/D1QIpXU5LcW5Ixdc1xNOAYArB7hGHiNxMBiV9G/yTrH4+PjNgxHo1FNT087rhcXF9sw3NnZqerq6jxVmn92p+pSdqp2rb2nVG/i9fE4sKn5pMZnE5Kkpkp2qwYArB7hGHiN5CZZczw7O6uuri4biEdGRhzX/X6/2tvbbSBubGzc1JtoraWBqcV7zGZcLsZ6Y9cbWOoaVxT5VV5UGJsnAgByi3AMvIZdcxzeWFNuk8mkenp6bBgeGBiQMcZe93g8CofDtjPc0tIiv5+3+P5k1hwTjl3MHuNEOHarPnaqBgCsMb5zBvaSnplRamxMUv47x+l0WoODgzYM9/T0KJlMOsbU1tbaznBHR4eKiphauBKZadWEYxfjjGPX44xjAMBaIxwDe0kMLoYmb1mZfBUV6/raxhjt2bPHrhmOxWKam5tzjCkvL3dsolWxzjW6gTFG8amlznEZ4di17LRqwrFbsRkXAGCtEY6Bvaz3GcdTU1OOMDw+Pu64HgqF1NHRYQNxbW0t64ZXaTIxqZnkjCQ25HI11hy7XpwzjgEAa4xwDOwlEV88/sUfzk04XlhYUHd3t6LRqKLRqIaHhx3XvV6v2trabBgOh8PyejmHdy1lNuOqDlWr2M831a5kDOG4APSPsuYYALC2CMfAXuwZx2vUOU6lUurv77ed4b6+PqXTaceYxsZGG4bb2toUDAbX5LWxf5kzjukau9j0bik5J8kjVTTnuxrkSL9dc8xeCwCAtUE4BvZij3EKH9o31MYYDQ8P2zDc3d2thYUFx5jq6mrHJlqlpaWrrhsrlwnH4bKNtRs51lBmM67yRsnPD5vcKJU2GpxYnFbdXFWS52oAAG5BOAb2ciid4/HxcRuGo9GopqenHdeLi4vtBlqdnZ2qrq5e05qRnUw4ZqdqF2NKtesNT84plTbyez2qKw/luxwAgEsQjoG9vHrG8YGD0+zsrGKxmA3De/bscVz3+/1qb2+35w03NDSwidYGkllzzLRqF+OMY9fLrDdurCySz8u/rwCAtUE4BpaYVEqJoSFJzs5xIpFQb2+v7Q7HlwJ0hsfjUTgctmG4paVFfj9vrY2KznEBoHPsepn1xmzGBQBYS3wHDyxJ7h6REgnJ59NQMqnY//v/KhaLqaenR6lUyjG2trbWhuH29nYVFbEhzGbBmuMCYDvHbfmtAzmTOcaphXAMAFhDhGMUPGOM9uzZo67//bBKJM0UFen7d97pGFNeXm7XDUciEVVUVOSnWKxKIp3QrpldkphW7Wp0jl0vTucYAJADhGMUpKmpKccmWhMTE2rp6dEpkqZLihUKhdTR0WG7w1u2bGHdsAsMzwzLyCjoDaqmqCbf5SBXCMeuRzgGAOQC4RgFYX5+Xt3d3TYQDw8PO677fD61BBd3PG3adpz+8R//UV6vNx+lIofiU4vrxRtLG+X1cH9dKTErTS/ODiAcu9era45Z0gIAWDuEY7hSKpVSf3+/otGootGo+vv7lU6nHWOamprs8UptbW0aueWzGpVUedhhBGOXGpwelMRmXK423r/4e6BUKubYNLfKhONmOscAgDVEOIYrGGM0PDxsO8Pd3d1aWFhwjKmurrZhOBKJqKSkxHHdnnHczEZNbmV3qi4jHLtWZjOuqlaJpRCuNDGX0ORcUhLTqgEAa4twjE1rfHzcdoZjsZimp6cd10tKShybaFVXL99FsuG4ieDkVhzjVABYb+x6A0s7VVeVBFQa4tsYAMDa4asKNo3Z2Vm7gVYsFtOePXsc1wOBgNrb2213uKGhIatNtBJL5xf7CceuNTBFOHY9e4wT4dit+sdmJEnhSrrGAIC1RTjGhpVIJNTb22u7wwNLnd0Mj8ejlpYWG4ZbWlrk8/kO6bVSU9NKj49LkgJhplW7VaZzzDFOLkbn2PX6lzrHTKkGAKw1wjE2jHQ6rYGBAdsZ7unpUSqVcoypq6uzYbijo0OhUGhNXjs5uBiavBUV8pWVrclzYmMxxthwHC7jByCuZTvHbfmtAzmTOcappZpwDABYW4Rj5I0xRnv27LGd4a6uLs3NzTnGlJeX27OGI5GIysvLc1IL643db2JhQrPJxW+qG0oa8lwNcobOsevFOcYJAJAjWYXj66+/XjfccIPjsSOPPFLPP//8mhYF95qamrKd4Wg0qomJCcf1UCikjo4OG4i3bNmS1brhQ5XoX1xvTDh2r8wZxzVFNSry8021K6XThOMC0D+aCcd0jgEAayvrzvExxxyjX/7yl68+gZ/mMw5sfn5e3d3dtju8a9cux3Wfz6fW1lYbhpuamvJyxrDtHIcJx27FTtUFYHqXlFqQPF6pgqnzbvVq55hwDABYW1knW7/fr8ZGNrNZD//7u7dpMt6V7zKy4/PqsO1XSpLu+MTFmp2allHaXq7QYne4qLhEJUVFKioukmf3kPbs/q32PJGnmiU1/OpPqpT09MSL+sXPb8lfIciZ38++KEkqmUnrj4/8IM/VIBeKp7p1uKS54no99vJovstBDhhJgxOLy29aCMcAgDWWdTh+6aWXFA6HVVRUpJNPPlk333yz2toOvPHJ/Py85ufn7d9fO40WBzZ595064pXUwQduICYUUnopHJ9+/wvy7HXvN4Mf+H6vR3f9Id9lIIe2Dj6u4559MN9lIIeemarQZXc+me8ykENBn1e1ZWuzISMAABlZheOTTjpJd911l4488kgNDAzohhtu0Omnn65nnnnmgBsl3XzzzfusU8bKzFWVqK9+Mt9lZMUTlDLzCuJ1klnIazlZmSzzaLTVo85NVDOyU5z26E0zNXrZtyXfpSBHUh6fHii+QMcGK/JdCnLovG1heb25348CAFBYPMYYc6gfPDY2pvb2dn3+85/XFVdcsd8x++sct7a2anx8XBUVfPOyGczMzKirq8tupLVnzx7H9UAgoPb2druj9O7duyVJRx99dF7WDwMAgMUjEp999llJfE12s4mJCVVWVvK9NbAGVrWbVlVVlY444gi9/PLLBxwTCoXW7CxarI9EIqGenh4bhgeWNqvK8Hg8amlpsecNt7S0yOfzSVr8QpwJxwAAAACwWawqHE9NTemVV17RJZdcslb1IA/S6bQGBgbsjtK9vb1KpZxrnevq6mxnuKOjgx94AAAAAHCVrMLxNddco7e//e1qb29XPB7XddddJ5/Pp4svvjhX9SEHjDEaGRmxneFYLOaY+i5J5eXl9nilSCRywDXlAAAAAOAGWYXjvr4+XXzxxRoZGVFdXZ1OO+00PfbYY6qrq8tVfVgjk5OTisVitjs8Oenc6CsUCikSidip0lu2bJHHw2YnAAAAAApDVuH43nvvzVUdWGPz8/OOTbR27drluO7z+dTW1mbDcFNTExt1AAAAAChYq1pzjI0jlUqpr6/Pdob7+/v12o3Im5qa7DTptrY2BQKBPFULAAAAABsL4XiTMsZoaGjIdoa7u7uVSCQcY6qrq+264Y6ODpWUlOSpWgAAAADY2AjHm8jY2JjtDMdiMc3MzDiul5aW2mnSkUhEVVVV+SkUAAAAADYZwvEGNjMzYzfRisViGh0ddVwPBALq6Oiwgbi+vp5NtAAAAADgEBCON7C7775bAwMD9u9er1fNzc12qnRzc7N8Pl8eKwQAAAAAdyAcb2CdnZ1KpVK2M9ze3q5QKJTvsgAAAADAdQjHG9hb3vIWbd++Pd9lAAAAAIDrcbDtBsb6YQAAAABYH4RjAAAAAEDBIxwDAAAAAAoe4RgAAAAAUPAIxwAAAACAgkc4BgAAAAAUPMIxAAAAAKDgEY4BAAAAAAWPcAwAAAAAKHiEYwAAAABAwSMcAwAAAAAKHuEYAAAAAFDwCMcAAAAAgIJHOAYAAAAAFDzCMQAAAACg4BGOAQAAAAAFj3AMAAAAACh4/vV+QWOMJGliYmK9XxrrIJ1Oa2pqStLiPfZ6+fkLAAD5wNfkwpD5njrzPTaAQ7fu4XhyclKS1Nraut4vDQAAALjS5OSkKisr810GsKl5zDr/mCmdTisej6u8vFwej2c9XxrrZGJiQq2trert7VVFRUW+y0EOcI/dj3vsftzjwsB9dj9jjCYnJxUOh5kdAKzSuneOvV6vWlpa1vtlkQcVFRV8IXY57rH7cY/dj3tcGLjP7kbHGFgb/HgJAAAAAFDwCMcAAAAAgIJHOMaaC4VCuu666xQKhfJdCnKEe+x+3GP34x4XBu4zAKzcum/IBQAAAADARkPnGAAAAABQ8AjHAAAAAICCRzgGAAAAABQ8wjEAAAAAoOARjrGs66+/Xh6Px/Fr69aty37Mfffdp61bt6qoqEjbtm3Tz3/+c8d1Y4w+9alPqampScXFxdq+fbteeumlXH4aWEa29/iOO+7Q6aefrurqalVXV2v79u164oknHGMuu+yyfZ7znHPOyfWnggPI9h7fdddd+4wvKipyjOF9vLFke4///M//fJ/xHo9H5513nh3D+3jj6e/v13vf+15t2bJFxcXF2rZtm377298u+zE7duzQG9/4RoVCIb3uda/TXXfdtc+Yr371q+ro6FBRUZFOOumkff5NB4BCQTjGQR1zzDEaGBiwv379618fcOyjjz6qiy++WFdccYV+//vf653vfKfe+c536plnnrFjPve5z+lf/uVfdPvtt+vxxx9XaWmpzj77bM3Nza3Hp4P9yOYe79ixQxdffLEeeeQR7dy5U62trTrrrLPU39/vGHfOOec4nvO73/1urj8NLCObeyxJFRUVjvHd3d2O67yPN55s7vGPfvQjx9hnnnlGPp9PF1xwgWMc7+ONY3R0VKeeeqoCgYDuv/9+Pfvss7rttttUXV19wI+JxWI677zzdOaZZ+q//uu/9OEPf1jve9/79OCDD9ox3/ve93T11Vfruuuu01NPPaU/+7M/09lnn63h4eH1+LQAYEPx57sAbHx+v1+NjY0rGvulL31J55xzjq699lpJ0o033qhf/OIX+spXvqLbb79dxhh98Ytf1D/90z/pHe94hyTpO9/5jhoaGvTjH/9YF110Uc4+DxxYNvf4nnvucfz9m9/8pn74wx/q4Ycf1t/8zd/Yx0Oh0IqfE7mXzT2WJI/Hc8DxvI83pmzucU1NjePv9957r0pKSvYJx7yPN47Pfvazam1t1Z133mkfi0Qiy37M7bffrkgkottuu02SdNRRR+nXv/61vvCFL+jss8+WJH3+85/XlVdeqcsvv9x+zM9+9jN9+9vf1sc+9rEcfTYAsDHROcZBvfTSSwqHw+rs7NR73vMe9fT0HHDszp07tX37dsdjZ599tnbu3Clp8afYg4ODjjGVlZU66aST7Bisv2zu8WvNzMwokUjs8832jh07VF9fryOPPFIf+MAHNDIystZlIwvZ3uOpqSm1t7ertbVV73jHO/SnP/3JXuN9vDGt5n38rW99SxdddJFKS0sdj/M+3jh++tOf6vjjj9cFF1yg+vp6veENb9Add9yx7Mcc7GvywsKCfve73znGeL1ebd++nfcygIJEOMayTjrpJN1111164IEH9LWvfU2xWEynn366Jicn9zt+cHBQDQ0NjscaGho0ODhor2ceO9AYrK9s7/FrffSjH1U4HHZ8c3XOOefoO9/5jh5++GF99rOf1a9+9Sude+65SqVSufo0sIxs7/GRRx6pb3/72/rJT36iu+++W+l0Wqeccor6+vok8T7eiFbzPn7iiSf0zDPP6H3ve5/jcd7HG0s0GtXXvvY1HX744XrwwQf1gQ98QFdddZX+9V//9YAfc6CvyRMTE5qdndXu3buVSqV4LwPAEqZVY1nnnnuu/fNxxx2nk046Se3t7fr+97+vK664Io+VYa2s5h7fcsstuvfee7Vjxw7Hhk17T6vdtm2bjjvuOB122GHasWOH3vKWt6z9J4FlZXuPTz75ZJ188sn276eccoqOOuooff3rX9eNN964LjUjO6t5H3/rW9/Stm3bdOKJJzoe5328saTTaR1//PG66aabJElveMMb9Mwzz+j222/XpZdemufqAMAd6BwjK1VVVTriiCP08ssv7/d6Y2OjhoaGHI8NDQ3ZNWuZ35cbg/w62D3OuPXWW3XLLbfooYce0nHHHbfs2M7OTtXW1h70ObE+VnqPMwKBgN7whjfY8byPN76V3uPp6Wnde++9K/phJ+/j/GpqatLRRx/teOyoo45advr8gb4mV1RUqLi4WLW1tfL5fLyXAWAJ4RhZmZqa0iuvvKKmpqb9Xj/55JP18MMPOx77xS9+YbtQkUhEjY2NjjETExN6/PHHHZ0q5M/B7rG0uFPxjTfeqAceeEDHH3/8QZ+zr69PIyMjyz4n1s9K7vHeUqmUnn76aTue9/HGt9J7fN9992l+fl7vfe97D/qcvI/z69RTT9ULL7zgeOzFF19Ue3v7AT/mYF+Tg8Gg3vSmNznGpNNpPfzww7yXARQmAyzjIx/5iNmxY4eJxWLmN7/5jdm+fbupra01w8PDxhhjLrnkEvOxj33Mjv/Nb35j/H6/ufXWW81zzz1nrrvuOhMIBMzTTz9tx9xyyy2mqqrK/OQnPzF//OMfzTve8Q4TiUTM7Ozsun9+yP4e33LLLSYYDJof/OAHZmBgwP6anJw0xhgzOTlprrnmGrNz504Ti8XML3/5S/PGN77RHH744WZubi4vn2Ohy/Ye33DDDebBBx80r7zyivnd735nLrroIlNUVGT+9Kc/2TG8jzeWbO9xxmmnnWYuvPDCfR7nfbzxPPHEE8bv95vPfOYz5qWXXjL33HOPKSkpMXfffbcd87GPfcxccskl9u/RaNSUlJSYa6+91jz33HPmq1/9qvH5fOaBBx6wY+69914TCoXMXXfdZZ599lnz/ve/31RVVZnBwcF1/fwAYCMgHGNZF154oWlqajLBYNA0NzebCy+80Lz88sv2+hlnnGEuvfRSx8d8//vfN0cccYQJBoPmmGOOMT/72c8c19PptPnkJz9pGhoaTCgUMm95y1vMCy+8sB6fDvYj23vc3t5uJO3z67rrrjPGGDMzM2POOussU1dXZwKBgGlvbzdXXnkl32jlUbb3+MMf/rBpa2szwWDQNDQ0mL/4i78wTz31lOM5eR9vLIfyb/Xzzz9vJJmHHnpon+fjfbwx/a//9b/Msccea0KhkNm6dav5xje+4bh+6aWXmjPOOMPx2COPPGJe//rXm2AwaDo7O82dd965z/N++ctftu/5E0880Tz22GM5/CwAYOPyGGNMPjvXAAAAAADkG2uOAQAAAAAFj3AMAAAAACh4hGMAAAAAQMEjHAMAAAAACh7hGAAAAABQ8AjHAAAAAICCRzgGAAAAABQ8wjEAAAAAoOARjgEAAAAABY9wDAAAAAAoeIRjAAAAAEDBIxwDAAAAAAoe4RgAAAAAUPAIxwAAAACAgkc4BoA8e/rpp3X++eervb1dRUVFam5u1lvf+lZ9+ctftmM6Ojrk8Xjsr9LSUp144on6zne+s8/z7dixwzF2718XXXTRmtb+6KOP6vrrr9fY2NiaPu9r3XTTTfrxj3+c09cAAACFzWOMMfkuAgAK1aOPPqozzzxTbW1tuvTSS9XY2Kje3l499thjeuWVV/Tyyy9LWgzH1dXV+shHPiJJGhgY0De/+U29+OKL+sY3vqErr7zSPueOHTt05pln6qqrrtIJJ5zgeL2Ojg6ddtppa1b/rbfeqmuvvVaxWEwdHR1r9ryvVVZWpvPPP1933XVXzl4DAAAUNn++CwCAQvaZz3xGlZWVevLJJ1VVVeW4Njw87Ph7c3Oz3vve99q/X3bZZers7NQXvvAFRzjOOP3003X++efnpG4AAAC3YVo1AOTRK6+8omOOOWafYCxJ9fX1y35sXV2dtm7dqldeeSWr19yzZ4+uueYabdu2TWVlZaqoqNC5556rP/zhD/uM/fKXv6xjjjlGJSUlqq6u1vHHH69///d/lyRdf/31uvbaayVJkUjETt3u6uqyH3/33XfrTW96k4qLi1VTU6OLLrpIvb29jtd46aWX9Fd/9VdqbGxUUVGRWlpadNFFF2l8fFyS5PF4ND09rX/913+1r3HZZZdl9TkDAAAcDJ1jAMij9vZ27dy5U88884yOPfbYrD42mUyqr69P1dXV+70+OTmp3bt3Ox6rqalRNBrVj3/8Y11wwQWKRCIaGhrS17/+dZ1xxhl69tlnFQ6HJUl33HGHrrrqKp1//vn6h3/4B83NzemPf/yjHn/8cf31X/+13vWud+nFF1/Ud7/7XX3hC19QbW2tpMXQLi12xT/5yU/q3e9+t973vvdp165d+vKXv6w3v/nN+v3vf6+qqiotLCzo7LPP1vz8vD70oQ+psbFR/f39+s///E+NjY2psrJS//Zv/6b3ve99OvHEE/X+979fknTYYYdl9d8KAADgoAwAIG8eeugh4/P5jM/nMyeffLL5x3/8R/Pggw+ahYUFx7j29nZz1llnmV27dpldu3aZp59+2lxyySVGkvngBz/oGPvII48YSfv9FYvFzNzcnEmlUo6PicViJhQKmU9/+tP2sXe84x3mmGOOWbb+f/7nf7bPu7euri7j8/nMZz7zGcfjTz/9tPH7/fbx3//+90aSue+++5Z9ndLSUnPppZcuOwYAAGA16BwDQB699a1v1c6dO3XzzTfrwQcf1M6dO/W5z31OdXV1+uY3v6m//Mu/tGMfeugh25XNuPzyy/XP//zP+33uT33qUzr99NMdjzU2NioUCtm/p1IpjY2NqaysTEceeaSeeuope62qqkp9fX168skn99nY62B+9KMfKZ1O693vfreje93Y2KjDDz9cjzzyiD7xiU+osrJSkvTggw/qL/7iL1RSUpLV6wAAAKwV1hwDQJ6dcMIJ+tGPfqTR0VE98cQT+vjHP67JyUmdf/75evbZZ+24k046Sb/4xS/0wAMP6NZbb1VVVZVGR0cVDAb3+7zbtm3T9u3bHb+KioqUTqf1hS98QYcffrhCoZBqa2tVV1enP/7xj3adryR99KMfVVlZmU488UQdfvjh+uAHP6jf/OY3K/qcXnrpJRljdPjhh6uurs7x67nnnrObjUUiEV199dX65je/qdraWp199tn66le/6qgDAABgPdA5BoANIhgM6oQTTtAJJ5ygI444Qpdffrnuu+8+XXfddZKk2tpabd++XZJ09tlna+vWrXrb296mL33pS7r66qtX/Do33XSTPvnJT+pv//ZvdeONN6qmpkZer1cf/vCHlU6n7bijjjpKL7zwgv7zP/9TDzzwgH74wx/q//l//h996lOf0g033LDsa6TTaXk8Ht1///3y+Xz7XC8rK7N/vu2223TZZZfpJz/5iR566CFdddVVuvnmm/XYY4+ppaVlxZ8XAADAahCOAWADOv744yUtnmd8IOedd57OOOMM3XTTTfq7v/s7lZaWrui5f/CDH+jMM8/Ut771LcfjY2NjdlOtjNLSUl144YW68MILtbCwoHe96136zGc+o49//OMqKiqSx+PZ72scdthhMsYoEonoiCOOOGhN27Zt07Zt2/RP//RPevTRR3Xqqafq9ttv1//8n/9Tkg74OgAAAGuFadUAkEePPPKIjDH7PP7zn/9cknTkkUcu+/Ef/ehHNTIyojvuuGPFr+nz+fZ5zfvuu0/9/f2Ox0ZGRhx/DwaDOvroo2WMUSKRkCQbyMfGxhxj3/Wud8nn8+mGG27Y57WMMfa5JyYmlEwmHde3bdsmr9er+fl5+1hpaek+rwEAALCW6BwDQB596EMf0szMjP7bf/tv2rp1qxYWFvToo4/qe9/7njo6OnT55Zcv+/Hnnnuujj32WH3+85/XBz/4QQUCgYO+5tve9jZ9+tOf1uWXX65TTjlFTz/9tO655x51dnY6xp111llqbGzUqaeeqoaGBj333HP6yle+ovPOO0/l5eWSpDe96U2SpP/xP/6HLrroIgUCAb397W/XYYcdpv/5P/+nPv7xj6urq0vvfOc7VV5erlgspv/4j//Q+9//fl1zzTX63//7f+v//r//b11wwQU64ogjlEwm9W//9m/y+Xz6q7/6K1vLm970Jv3yl7/U5z//eYXDYUUiEZ100knZ/ucGAAA4sDzulA0ABe/+++83f/u3f2u2bt1qysrKTDAYNK973evMhz70ITM0NGTHtbe3m/POO2+/z3HXXXcZSebOO+80xrx6lNOBjkeam5szH/nIR0xTU5MpLi42p556qtm5c6c544wzzBlnnGHHff3rXzdvfvObzZYtW0woFDKHHXaYufbaa834+Ljj+W688UbT3NxsvF7vPsc6/fCHPzSnnXaaKS0tNaWlpWbr1q3mgx/8oHnhhReMMcZEo1Hzt3/7t+awww4zRUVFpqamxpx55pnml7/8peM1nn/+efPmN7/ZFBcXG0kc6wQAANacx5j9zOcDAAAAAKCAsOYYAAAAAFDwCMcAAAAAgIJHOAYAAAAAFDzCMQAAAACg4BGOAQAAAAAFj3AMAAAAACh4/vV+wXQ6rXg8rvLycnk8nvV+eQAAAMA1jDGanJxUOByW10vfC1iNdQ/H8Xhcra2t6/2yAAAAgGv19vaqpaUl32UAm9q6h+Py8nJJi2/gioqK9X555Fg6ndbzzz8vSdq6dSs/wQQAIE/4mlwYJiYm1Nraar/HBnDo1j0cZ6ZSV1RUEI5dKJ1Oq6ysTNLiPeYLMQAA+cHX5MLCckVg9fhXEgAAAABQ8AjHAAAAAICCRzgGAAAAABQ8wjEAAAAAoOARjgEAAAAABY9wDAAAAAAoeIRjAAAAAEDBIxwDAAAAAAoe4RgAAAAAUPAIxwAAAACAgkc4BgAAAAAUPMIxAAAAAKDgEY4BAAAAAAWPcAwAAAAAKHiEYwAAAABAwSMcAwAAYMOYn59XNBrNdxkACpA/3wUAAACgcKVSKfX19SkajSoajaq/v1/GGF199dUqLy/Pd3kACgjhGAAAAOvGGKOhoSFFo1HFYjF1d3crkUg4xtTU1Gh8fJxwDGBdEY4BAACQU2NjY7YzHIvFNDMz47heWlqqSCSizs5ORSIRVVVV5adQAAWNcAwAAIA1NTMzo1gsZsPw6Oio43ogEFBHR4cNxPX19fJ4PHmqFgAWEY4BAACwKolEQj09PbY7PDg46Lju9XrV0tJiw3Bzc7N8Pl+eqgWA/SMcAwAAICvpdFrxeNx2hnt7e5VKpRxj6uvrbRhub29XKBTKU7UAsDKEYwAAACzLGKORkRHbGe7q6tL8/LxjTEVFhTo7O+264bKysjxVCwCHhnAMAACAfUxOTtrOcDQa1eTkpON6UVGRIpGI7Q7X1NSwbhjApkY4BgAAgObm5tTd3W27w7t373Zc9/l8amtrs93hxsZGeb3ePFULAGsv63Dc39+vj370o7r//vs1MzOj173udbrzzjt1/PHH56I+AAAA5EAymVRfX5/tDvf398sY4xjT1NRkw3Bra6sCgUCeqgWA3MsqHI+OjurUU0/VmWeeqfvvv191dXV66aWXVF1dnav6AAAAsAaMMRoaGrKd4Z6eHiUSCceYmpoau2Y4EomouLg4T9UCwPrLKhx/9rOfVWtrq+688077WCQSWfOiAGxsZmFBiaGhfJeBHDLGaHhmSOnXdJHgMrN7pOT8wcdhUzLySCWdkqR//cr12j28S4mFBceY0mBIW2prVLNli7Zs2aLiULGkGc0O/EnPDvwpD1W/6sjj36Kyypq81gCgsGQVjn/605/q7LPP1gUXXKBf/epXam5u1t///d/ryiuvPODHzM/PO3YznJiYOPRqAeSdSacVfde7tPDyK/kuBQCwDBMKSffcLUk66Vs/lWd+c/0g5OlbJ3Ty267IdxkACkhW4TgajeprX/uarr76an3iE5/Qk08+qauuukrBYFCXXnrpfj/m5ptv1g033LAmxQLIv+Tu3TYYe0tK8lwNcmUmOSsjusbAphaUgkt/nAtKm+0t7fGxbyyA9eUxr915YRnBYFDHH3+8Hn30UfvYVVddpSeffFI7d+7c78fsr3Pc2tqq8fFxVVRUrKJ0bETpdFrPPvusJOnoo49mF0sXmv3DH9R14UXyNzXp8Ef+d77LQQ4k00m96e43KW3SeuTdj6i2uDbfJSEXvnGmFH9Kuujfpa3n5bsarFA6nVY8Hrfrhvv6+pRKpRxj6uvr1dnZqYd2leny11dK4muym01MTKiyspLvrYE1kNWP5JqamnT00Uc7HjvqqKP0wx/+8IAfEwqFFAqFDq06ABtOIh6XJAWamvJcCXJleGZYaZNWwBtQTRHr/VxrvHfx98qW/NaBZRljtHv3brujdFdXl6PpIEmVlZX2rOFIJKKysjJJ0n/825P5KBkANq2swvGpp56qF154wfHYiy++qPb29jUtCsDGlYgPSJIC4XCeK0GuDEwv3uOm0iZ5PXSaXCkxK03vWvxzZWt+a8E+JiYmFIvFbCCenJx0XC8qKrJhuLOzU9XV1fJ4PPs8T3xsThK7TQPASmUVjv/7f//vOuWUU3TTTTfp3e9+t5544gl94xvf0De+8Y1c1Qdgg0kMLIVjOseutXc4hktNLM4AUaBUKuY4xnybm5tTV1eXDcO7d+92XPf7/Wpra7OBuLGxcUVTpAfH53JVMgC4Ulbh+IQTTtB//Md/6OMf/7g+/elPKxKJ6Itf/KLe85735Ko+ABuMDcdhgpNbDU4PSpIaSxvzXAlyZu8p1fvpOCK3ksmk+vr67LrheDyuvbeA8Xg8ampqsp3h1tZW+f3ZbU41NZ/U+Gzi4AMBAFbW2wC+7W1v09ve9rZc1AJgE8isOfbTOXat+NTiPW4q4x671hjrjdeTMUaDg4O2M9zd3a1kMukYs2XLFtsZ7ujoUHHx6qZDx8dmV/XxAFCI2CMfQFaSdkMu1hy7FdOqC8B43+LvhOOcGR0dtZ3hWCym2VlnWC0tLbWd4UgkosrKyjV9/X7CMQBkjXAMYMXS09NKjY9LkgLNhGO3ykyrJhy7WCYcV7EZ11qZnp52bKI1NjbmuB4MBtXR0WG7w3V1dfvdRGut0DkGgOwRjgGsWGJwMTR5y8vlWzoqBO5ijHl1WjXh2L3smmPC8aFaWFhQT0+PDcODS/8+Zni9XrW0tNjOcHNzs3w+37rVRzgGgOwRjgGsGGccu9/EwoRmkjOS2JDL1TjjOGvpdFrxeNxOle7t7VU6nXaMaWhosJ3h9vZ2BYPBPFUr9Y8SjgEgW4RjACtmzzgmHLtWZkp1TVGNivxFea4GOZFOS+P9i38mHB+QMUa7d++2neGuri7Nz887xlRWVtrOcCQSUdkGmlGzeMYxACAbhGMAK5YYWOocs97YtdiMqwDM7JZS85I8UkVzvqvZUCYmJmwYjkajmpqaclwvLi62Qbizs1PV1dU5XTe8GmzIBQDZIxwDWLHk0hnHHOPkXoTjApCZUl3eJPkC+a0lz+bm5tTV1WUD8e7dux3X/X6/2tra7K7SjY2NGzYM7y2VNhqcmJN/45cKABsK4RjAir06rZrOsVtlwjHrjV2sgI9xSiaT6u3ttWE4Ho/LGGOvezwehcNh2xlubW2V37/5vlUanpxTKm1UFPDmuxQA2FQ237/4APLGbsgVpqvoVgNTdI5db6xwNuMyxmhwcNBuotXT06NkMukYs2XLFrtuuKOjQ8XFxXmqdu1kNuNqqAzluRIA2FwIxwBWxKRSSgwNSZICYTrHbpXpHIfLuMeu5eIzjo0xGh0dtZ3hWCym2Vnn2tuysjLbGY5EIqqsrMxTtbmTWW8crtz8QR8A1hPhGMCKJHfvlpJJyeeTv64u3+UgR1hzXABcdsbx9PS03UArGo1qfHzccT0YDKqjo8MG4rq6uk2xbng1MjtVE44BIDuEYwArYqdUNzTI4/PluRrkQiKd0K6ZXZJYc+xqm3zN8cLCgrq7u213eGhpRkuG1+tVS0uL3UQrHA7LV2D/ZsWXOsdNVUWSkssPBgBYhGMAK5IJx37WG7vW0PSQjIyC3qBqimryXQ5yZXxzrTlOpVKKx+O2M9zX16d0Ou0Y09DQYDvD7e3tCgaDeap2Y8hMq26sLJY0md9iAGATIRwDWJHMMU7sVO1edkp1WZPrp50WrIUZaWZk8c8bNBwbY7Rr1y7bGe7q6tLCwoJjTGVlpe0MRyIRlZaW5qnajSnTOQ5XFUsJwjEArBThGMCK2GOc2IzLtQanByWx3tjVJvoXfw+WS0VVeS1lbxMTEzYMR6NRTU1NOa4XFxcrEonY7nB1dTU/wFmG3ZCrKqT5XXkuBgA2EcIxgBVJ2M4xwcmt2IyrAOw9pTqP4XJubk5dXV12qvTIyIjjut/vV3t7uw3DjY2NhOEVmphLaHJucZ1xY0WxugnHALBihGMAK8IZx+4Xn1q8x4RjF8vTGcfJZFK9vb22OxyPx2WMsdc9Ho/C4bCdJt3a2iq/n29RDkVmSnVVSUClIf4bAkA2+FcTwIrQOXa/zLRqdqp2sXXaqTqdTmtwcNBOk+7p6VEy6dw1ecuWLXbdcEdHh4qKinJaU6HIhOPmKo5xAoBsEY4BHFRqakrpiQlJkp8NuVwrM606XMY9dq1MOK5a2zOOjTEaHR21neFYLKbZ2VnHmLKyMscmWhUVFWtaAxb1Z844JhwDQNYIxwAOKrNTtbeyUr4ydoV1I2MMa44LgV1zvPpwPD097dhEa3x83HE9GAw6NtGqra1l3fA6oHMMAIeOcAzgoOx6Y6ZUu9b4/Lhmk4vfVDeUNuS5GuTMKs44XlhYUHd3tw3EQ0NDjuter1etra02DDc3N8vr9a5F1chC/2hmp2qmqQNAtgjHAA6K9cbul+kabynaopAvlOdqkBPptDS+dJTTCsJxKpVSf3+/DcN9fX1Kp9OOMQ0NDXaqdFtbm4LBYC4qRxZe7RyX5LkSANh8CMcADoozjt2P9cYFYHpYSickj1cq3/c+G2O0a9cuG4a7urq0sLDgGFNVVWU7w5FIRKWlLLPYaOJjdI4B4FARjgEclO0cc4yTa2XCMTtVu1hmM67ysORb/PI/Pj7uWDc8PT3t+JDi4mIbhjs7O1VdXb3eVSMLyVRagxOLG3Kx5hgAskc4BnBQiQHWHLtd5hgnNuNysaX1xjPBGj3ys58pFotpZGTEMcTv96u9vd0G4sbGRjbR2kSGJueVNlLQ51VtWUiSOejHAABeRTgGcFCZDbn8hGPXik8t3mPCsbskk0n19PQoGo2q7I8/0P9P0iu75/Xbkd9Kkjwej5qbm20Ybmlpkd/PtwabVWYzrqaqInm9HqXThGMAyAZfAQEsyySTSg4NS5IC4eY8V4NcsZ3jMsLxZpZOpzU4OGinSvf09CiZTEqSzjGL06oXiht14nEnKhKJqKOjQ0VFrE11C7veuJIp1QBwKAjHAJaV3LVLSqWkQED+utp8l4Mc4YzjzckYo9HRUUWjURuI5+bmHGPKy8vV2dmprUNPSAPSm/7/fymdcG6eKkYu9dvNuAjHAHAoCMcAlmU342pokIczS11pIbWgXbO7JBGON4OpqSm7gVYsFtP4+LjjeigUUkdHh91Rura2dnHd8O23LQ6obM1D1VgPrx7jxGwAADgUhGMAy0r0sxmX2w1ND0mSinxFqgpV5bcY7GNhYUHd3d22Ozw8POy47vP51NraatcNh8Nheff3g6ylDblWcsYxNic6xwCwOoRjAMviGCf32/sYJ3Ymzr9UKqX+/n7bGe7r61M6nXaMaWxstJ3htrY2BYPB5Z90fkqaHV38M+HYtWznuJpwDACHgnAMYFmZY5z84XCeK0GuZMJxuIx7nA/GGA0PD9up0t3d3VpYWHCMqa6utp3hjo4OlZaWZvciE/2Lv4cqpaLKNaocG4kxxu5WTecYAA4N4RjAspLxpc4x06pdi8241t/4+LjtDEejUU1PTzuul5SUKBKJ2EBcXV29yhdkSrXbTcwlNb2QksRu1QBwqAjHAJaVOeM40ERX0a32nlaN3JidnVVXV5ddN7xnzx7Hdb/fr/b2dnV2dqqzs1MNDQ1rO8V9jHDsdpmucU1pUMVBX56rAYDNiXAMYFmsOXa/gSk6x2stmUyqp6fHdofjSz9kyvB4PGpubrad4ZaWFvn9OfySPL54xjHh2L1e3amarjEAHCrCMYADSk1OKj01JYlp1W7GmuPVS6fTGhwctJ3hnp4epVIpx5ja2lrbGW5vb1dR0Toet5MJx1Uc4+RW8fHMemOOcQKAQ0U4BnBAiaX1xr6qKnlLSvJcDXLBGKPB6UFJTKvOhjFGe/bssZ3hWCymubk5x5jy8nK7o3RnZ6fKy8vzVK326hwTjt2KY5wAYPUIxwAOKBFf3OHWz5Rq1xqdH9Vcak4eedRQ0pDvcja0qakpu4FWNBrVxMSE43ooFFJHR4ftDm/ZsmXjHI013rP4O9OqXSuz5php1QBw6AjHAA7IrjdmMy7Xykypri2uVdB3kLNyC8z8/Ly6u7ttd3h4eNhx3efzqbW11XaGw+GwvF5vnqpdRjolTSyteSYcuxZrjgFg9QjHAA4oaTfjIhy71eDU4pTqpjJmB6RSKfX399vOcH9/v9LptGNMY2Oj7Qy3tbUpEAjkqdosTA1J6aTk8Unl3Ge3io8tTutnWjUAHDrCMYADSnDGsesV8hnHxhgNDw/bznBXV5cSiYRjTHV1te0MRyIRlWzGtfeZ9cYVzZKXI37cKJFKa2iScAwAq0U4BnBAHOPkfoUWjsfGxuy64Vgspunpacf1kpISRxiurq7OU6VraJwzjt1ucHxOxkhBv1dbSlkeAQCHinAM4IASS2ez0jl2r0w4dutO1bOzs44wvGfPHsf1QCCg9vZ2G4gbGho2ziZaa2WMcOx2/XutN/Z6Xfb/LwCsI8IxgP0yiYSSSxsQ+QnHrjUw5a7OcSKRUE9Pjw3EA0uzHzI8Ho+am5ttZ7ilpUV+v8u/FNpjnAjHbhUf44xjAFgLLv+OAMChSg4PS+m0PIGA/LW1+S4HOZLpHIfLNuema+l0WgMDA7Yz3NPTo1Qq5RhTV1dnO8MdHR0KhUJ5qjZPMuG4ijOO3cqG40rWGwPAahCOAexXZr2xv6lJno14PA1WbT41r5G5EUmbp3NsjNGePXvsjtJdXV2am5tzjCkvL7c7SkciEZWXl+ep2g3Cdo4Jx27Vz07VALAmCMcA9ov1xu43OL14jFOxv1gVwYo8V3NgU1NTtjMcjUY1MTHhuB4KhRSJRGx3eMuWLe5bN7wa4z2LvzOt2rXsmuNqwjEArAbhGMB+cYyT++29U/VGCpPz8/Pq7u62gXh4ae17hs/nU2trq+0ONzU1ycvshv2bm5Dmxhf/TDh2rfheG3IBAA4d4RjAfr16jNPmXIuKg7ObcZXl9wcgqVRKfX19Ngz39/crnU47xjQ1NdnOcFtbmwKBQJ6q3WQm+hd/L6qSQgU+vdyljDF7bchFOAaA1SAcA9ivxMDStGrOOHatzLTq9V5vbIzR8PCwXTfc3d2tRCLhGFNTU+PYRKukpGRda3QN1hu73vhsQjMLi5vQNVWyWzUArAbhGMB+ZdYcc4yTe8WnF+/xeoTjsbEx2xmOxWKanp52XC8pKbEbaHV2dqqqqirnNRWEMdYbu13f6GLXuLYspKKAL8/VAMDmRjgGsA9jjJJ2zTHTqt1q7zXHa21mZkZdXV22Ozw6Ouq4HggE1N7ebtcN19fXb6h1z67BGceu9+p6Y7rGALBahGMA+0hPTCg9MyOJadVutpbTqhOJhHp6emx3eGBpzXqGx+NRS0uL7Qy3tLTI56PLlXOccex6rDcGgLVDOAawj8xmXL6aGnmL6Ea4kTFmVRtypdNpDQwM2M5wb2+vUqmUY0xdXZ3tDLe3tysUCq1J7cgCnWPXi49zxjEArBXCMYB9cIyT++2Z26OF9II88qi+pP6g440xGhkZcawbnp+fd4ypqKiw64YjkYjKy9kdOe/YkMv1+jnGCQDWDOEYwD4ym3Expdq9MuuN60rqFPDu/1ikyclJxWIx2x2enJx0XA+FQnaadCQS0ZYtW1g3vJGkkq8e5UTn2LX6R5lWDQBrhXAMYB+vHuPEZlxulQnH4dJX7/H8/LzdRCsWi2nXrl2Oj/H5fGpra7OBuKmpSV6vd13rRhamBiWTkrwBqawx39UgR+J0jgFgzRCOAewjubTmmGOc3Cuz3rjCU6FHHnlE0WhU/f39MsY4xjU1NdnOcFtbmwKB/XeZsQFlplRXhCV+iOFK88mUhicXlzeE2a0aAFaNcAxgHwmOcXIlY4yGhoYUjUb1yMuPSJIGXxrU/xn9P3ZMTU2N7Qx3dHSopKQkX+VitVhv7HpD44vBuCjgVU1pMM/VAMDmRzgGsA/WHLvH2NiYXTMci8U0s3REV7wuLpVK1d5qHXvssbY7XFVVld+CsXbGehZ/Z72xa/WNLb6fw1XFrPcHgDVAOAbgYBYWlFxaa8pu1ZvPzMyM3U06Go1qdHTUcT0QCKijo0NPep+U5qX3/OV7dGbbmXmqFjnFMU6uFx9bPMaJ9cYAsDYIxwAcEsPDkjHyBIPybdmS73JwEIlEQj09PbYzPLC0XjzD4/GopaXFnjfc3Nwsn8+nr3/v65KkcBlT510rE46rmFbtVpnNuMKVhGMAWAuEYwAOdkp1UxPT9DagdDqteDxuw3Bvb69SqZRjTH19vV033N7erlAo5Lg+l5zTnrk9kqSmMmYHuBadY9ez4ZjOMQCsCcIxAIdMOPaz3nhDMMZoZGTErhvu6urS/Py8Y0xFRYXtDEciEZWVlS37nJljnEoDpSoPlOesduTZeO/i72zI5Vr9mWOcqgnHALAWCMcAHDLHOLFTdf5MTk7aznA0GtXk5KTjelFRkSKRiO0O19TUZNXlz4TjplJmB7jW3Lg0P7H4ZzrHrtVvO8cc4wQAa4FwDMDBHuMUJhyvl7m5OXV3d9tAvGtpQ7QMn8+ntrY2G4abmprkXcW5tYPTg5IWwzFcKjOlurhGCpbmtxbkhDHGTqtmQy4AWBuEYwAOCds5JjjlSjKZVF9fn+0M9/f3yxjjGBMOh20Ybm1tVSAQWLPX37tzDJdivbHrjc4kNJdIS5IaK+kcA8BaIBwDcOCM47VnjNHQ0JDtDHd3dyuRSDjG1NTU2DXDkUhExcW56wTFpxbvMZtxuZg945j1xm7VP7rYNa4vDynk9+W5GgBwB8IxAMsYQ+d4jYyOjtrOcCwW08zMjON6aWmpIwxXVVWtW22ZadWNpY3r9ppYZ3SOXa+fnaoBYM0RjgFYqbExmdnFb7j8hOOszMzMOMLw6Oio43ogEFBHR4cNxPX19XnbDCszrTpcyrpy1+KMY9djvTEArD3CMQArs1O1r7ZW3tecjQunRCKh7u5uG4gHBwcd171er1paWuy64ebmZvl8+Z/6mDZpNuQqBHSOXS/OTtUAsOYIxwAsphnOPBoAABykSURBVFQfWDqdVjwet53h3t5epVIpx5j6+np73nBbW5tCG/AHDHvm9iiRTsjr8aqupC7f5SBXbDimc+xW8XE6xwCw1gjHAKxE/9JmXIRjGWO0e/duG4a7uro0Pz/vGFNZWWk7w5FIRGVlZXmqduUym3HVl9TL7+VLgCulEtLk4n2mc+xemQ25WHMMAGuH74wAWIXeOZ6YmFAsFrNTpScnJx3Xi4qKbBju7OxUdXV13tYNHyqOcSoAkwOSSUu+oFRan+9qkCP9Y3OSCMcAsJYIxwAsG46bC2Ojprm5OXV1ddnu8O7dux3X/X6/2trabCBubGyU1+vNU7Vrg/XGBSAzpbqiWdrk/79i/+YSKe2eWpzJwrRqAFg7hGMAVmJgcSqmW3eqTiaT6uvrUzQaVTQaVTwelzHGMSYcDtvOcGtrq/x+d/0zSee4ALAZl+sNji92jUuCPlWVBPJcDQC4h7u+6wOwKol4Zs2xOzrHxhgNDg7aznB3d7eSyaRjzJYtW2xnuKOjQ8XF7u7CZNYcE45dbKxn8Xc243Ktvc843mxLOwBgIyMcA5AkpRcWlNq1OK04EN68wWl0dNR2hmOxmGaXzm3OKC0ttRtodXZ2qrKyMk+V5oedVl22ee8xDoLOsevtHY4BAGuHcAxAkpRcOqfXU1QkX3V1nqtZuenpaccmWmNjY47rwWBQ7e3tNhDX19cXdKeFadUFIBOOq+gcu1XmjONmzjgGgDVFOAYgSUrEX92peiOHx4WFBfX09NjO8OBSqM/wer1qaWmxneHm5mb5fL48VbuxzCRmNDY/Jolw7Gp0jl3v1XBM5xgA1hLhGICkvdcbb6zQlE6nFY/H7VTp3t5epdNpx5iGhgYbhtvb2xUMBvNU7caWmVJdHihXWXDjn8mMQ2CMNN67+GfWHLsW06oBIDcIxwAk7bVTdZ7XGxtjtHv3btsZ7urq0vz8vGNMZWWlnSYdiURUVkbQW4nMlOrGssY8V4KcmRuTFqYW/1zRnNdSkDtxzjgGgJwgHAOQtNcZx+H136l6YmLCrhmORqOamppyXC8qKnKE4Zqamg099XujyoTjcKk7diPHfmSmVJfUSsGS/NaCnDDG2M4x06oBYG0RjgFIkpJ2zXHug9Pc3Jy6urpsd3j37t2O636/X21tbXaqdGNjo7xeb87rcjvbOS6lc+xarDd2vZHpBS0k0/J4pMZKNuQCgLVEOAYgaa/OcQ7WHCeTSfX29trucDwelzHGXvd4PGpqalJnZ6c6OzvV2toqv59/ntaaPcaJzbjci3DsepnNuBrKixTw8UNDAFhLfPcJQMaYvaZVrz44GWM0ODhoO8Pd3d1KJpOOMVu2bLGd4Y6ODhUXMz0w1+JTi+vKCccuNtaz+DubcblW/2hmMy66xgCw1gjHAJQaHZWZm5M8Hvkbs59ya4zR6OioDcOxWEyzs7OOMaWlpbYzHIlEVFlZuVblY4XsmuMy1hy7Fmccux47VQNA7hCOAdgzjv21tfKu8Bik6elpO006FotpbGzMcT0YDKqjo8N2h+vq6thEK49S6ZSGZoYksebY1ZhW7XqZnarZjAsA1h7hGMCKjnFaWFhQd3e3DcRDQ0OO616vVy0tLbY7HA6H5fP5clo3Vm5kbkTJdFI+j091xXX5Lge5Qjh2vcya4+ZqwjEArDXCMQAl44vheO+dqlOplOLxuO0M9/b2Kp1OOz6uoaHBdobb29sVXGHXGesvs964oaRBPi8/tHCl5II0uTgLhDXH7mWnVVcSjgFgrRGOAdhp1cmqSj3++OOKRqPq6urSwsKCY1xlZaVj3XBpaWk+ysUhyOxUzZRqF5uMSzKSL7R4zjFcKc6aYwDIGcIxUMAmJiYUjUY1/7vfqkLSb156SS/vtS64uLhYkUjEdoerq6tZN7xJsRlXAdh7SjXngrvSXCKlkenFH1qy5hgA1h7hGCggc3Nz6urqUjQaVTQa1cjIiCTpLUud4/nych122GE2DDc2NhKGXSITjjnGycVYb+x6ma5xWcivimK+hQOAtca/rICLJZNJ9fb22nXD8Xhcxhh73ePxKBwOqyqRkCS9+4MfVNm2bfkqFzk0MLUYjplW7WJjvYu/s97YtV49xqmIH1wCQA4QjgEXSafTGhwctDtK9/T0KJlMOsbU1tbaznBHR4eCkl649TZJUlELHSe3onNcAMYz4Zj3sVux3hgAcotwDGxixhiNjo7aznAsFtPs7KxjTFlZmd1Aq7OzUxUVFY7rC11dkiRPSYl8VVXrVDnWG2uOC0BmWnUVnWO36l8645hwDAC5QTgGNpnp6WnbGY5GoxofH3dcDwaD6ujosLtK19bWLjv9LjGwGJoCTU1M03Op6cS0JhYmJDGt2tVYc+x69oxjwjEA5AThGNjgFhYW1N3dbbvDQ0NDjuter1etra22MxwOh+Xzrfwc24Q945jptm6VWW9cEaxQaYDjt1zJmL2mVdM5dqv+UcIxAOQS4RjYYFKplOLxuO0M9/X1KZ1OO8Y0NDTYqdLt7e0KBoOH/HqZM44Jx+7FeuMCMDsqJWYW/1zRnN9akDPxcdYcA0AuEY6BPDPGaNeuXbYz3NXVpYWFBceYyspKO006EomotHTtun92WnUza1HdyobjMsKxa2W6xqX1UqAov7UgJ9JpowG75ph7DAC5QDgG8mB8fNxuoBWNRjU1NeW4XlxcbKdJRyIRVVdX52w9cGKAadVuNzg9KInOsaux3tj1dk/PayGVltcjNVYQjgEgFwjHwDqYnZ1VV1eX7Q6PjIw4rvv9frW3t9tA3NjYuG6bYyWXplX7CceuxbTqAkA4dr34Ute4saJIfp83z9UAgDsRjoEcSCaT6u3tteuGBwYGZIyx1z0ej8LhsO0Mt7a2yu9f/7ejSadfnVYdZlq1W8WnFmcHEI5dbKxn8Xc243KtzGZcrDcGgNwhHANrIJ1Oa3Bw0HaGe3p6lEwmHWNqa2ttZ7ijo0NFRfmfFpfas0dmYUHyeBSor893OciRzLRqjnFyMTrHrpc5xolwDAC5QzgGDoExRqOjo7Yz3NXVpdnZWceY8vJyx7rhioqKPFV7YJmusb++Xp5V7HiNjSuVTmloZvH4r3AZswNcKxOOq+gcu1V/5ozjasIxAOQK4RhYoampKbuBViwW0/j4uON6KBRSR0eHDcS1tbXrtm74UHGMk/vtmt2llEnJ7/Wrtrg23+UgV+gcux6dYwDIPcIxcAALCwvq7u623eHh4WHHda/Xq9bWVtsZbm5ulte7uTZJScSXdqoOE47dKrMZV0NJg7yezfX/J1YoOS9NLU6dZ82xe9nOMcc4AUDOEI6BJalUSv39/bYz3NfXp3Q67RjT2NhoO8NtbW0KbvKpyJljnNip2r0Gptip2vUm+hd/9xdLJVvyWwtyhs4xAOQe4RgFyxijXbt22c5wd3e3FhYWHGOqqqrU2dlpN9EqLS3NU7W5kWSnatfLdI5Zb+xie0+p3uBLOXBoZhaSGp1JSJKaCccAkDOEYxSU8fFx2xmORqOanp52XC8uLrbTpDs7O1VdXZ2nStfHq2uOCU5ulQnH7FTtYqw3dr3MGcflRX6VFwXyXA0AuBfhGK42Ozurrq4uG4hHRkYc1/1+v9rb220gbmxs3PCbaK0l1hy7XyYcM63axcZ6F38nHLvWq+uN6RoDQC4RjuEqyWRSPT09NgwPDAzIGGOvezweNTc3285wS0uL/P7CfBukZ2eVGh2VxG7VbkY4LgDjmXDMZlxuxXpjAFgfhZkK4BrpdFqDg4M2DPf09CiZTDrG1NbW2nXD7e3tKipip09JSgws7m7rLS2VdwOewYy1Mbi0i3FTGeHYtTjj2PXidI4BYF0QjrGpGGO0Z88eG4ZjsZjm5uYcY8rLy+006UgkogqC335ldqoOhJsKaip5IZlcmNRkYlKS1FjCmmPXYs2x6/XTOQaAdUE4xoY3NTVlN9CKxWIaHx93XA+FQuro6LCBuLa2lrC3ApmdqjnGyb0Gpxe7xlWhKpUESvJcDXLCGMJxAXh1WjUznwAglwjH2HDm5+fV3d1tw/Dw8LDjus/nU2trq103HA6H5fV681Tt5mU342KnatdivXEBmBmRkovBSRXN+a0FOcOGXACwPgjHyLtUKqX+/n4bhvv6+pROpx1jGhsbbWe4ra1NwWAwT9W6hz3GiTOOXWtginDsepnNuMoaJX8ov7UgJ1Jpo8HxxeVDTKsGgNwiHGPdGWM0PDxsw3B3d7cWFhYcY6qrq21nuKOjQ6WlpXmq1r0SA5lwTHByK9s5ZjMu92JKtevtnppXImXk83rUUMG0agDIpazC8fXXX68bbrjB8diRRx6p559/fk2LgvuMjY051g1PT087rpeUlNgNtDo7O1VdXZ2nSguHDcesOXYtplUXAMKx62WmVDdWFMnnZT8NAMilrDvHxxxzjH75y1+++gQFekYsDu65556zO0rv2bPHcS0QCKi9vd2G4YaGBjbRWkcmnbYbchGO3SsTjhtL2anatcYyZxwTjt2qf5T1xgCwXrJOtn6/X42NK/9Ga35+XvPz8/bvExMT2b5kwfrPvzlR5S9P5ruMFTOSFAyp9it3S5J2ffA9KluY17ZlPmZB0vNLv7B+PEaqT0hpj/TO/zxLaR8/mHCjQb8kj0eee69W98JBh2MT2pLeozJJX3lqTv/xzI58l4McGJ9NSmKnagBYD1mH45deeknhcFhFRUU6+eSTdfPNN6utre2A42+++eZ9pmJjZbxjc6rfc/BxG4kJSZmttOpHJc/8ssORZ9EGqaeInb7drCSd1snz/So3Jt+lIIcenmjVK2b64AOxaR3XUpXvEgDA9TzGrPw7pvvvv19TU1M68sgjNTAwoBtuuEH9/f165plnVF5evt+P2V/nuLW1VePj46qoqFj9Z+BiL/7yTk0O9+S7jEXGaG5+XhPj45qYmNDExLiSqZRjSDAQ1FxRrc648MOSpJ7f3CuTTu3nybBRzLXWKV3Ezt9u1hisVY2ff2vdLFFcp7nKznyXgRwqCfp0bLhS3izXHKfTaT377LOSpKOPPppjD11qYmJClZWVfG8NrIGswvFrjY2Nqb29XZ///Od1xRVXrOhjeANvHlNTU3YDrWg0us+U+FAo5NhEa8uWLfrSL1/Q9qbFKWB8IQYAIH8Ix4WB762BtbOq3bSqqqp0xBFH6OWXX16repBH8/Pz6u7utoF4eHjYcd3n86m1tdWeNxwOh/f5Qhsfm5Oa2KQNAAAAwOayqhQzNTWlV155RZdccsla1YN1lEql1NfXZzvD/f39SqfTjjFNTU22M9zW1qZAILDscw6Mz0ra/xR7AAAAANiosgrH11xzjd7+9rervb1d8Xhc1113nXw+ny6++OJc1Yc1ZIzR8PCw7Qx3dXUpkUg4xlRXV9vOcCQSUUlJSVavMTA+J8IxAAAAgM0mq3Dc19eniy++WCMjI6qrq9Npp52mxx57THV1dbmqD6s0NjZmw3AsFtP0tHM305KSEhuGOzs7VVVVdcivlU4bDY7PrbJiAAAAAFh/WYXje++9N1d1YI3MzMyoq6vLBuI9e5xnQQUCAbW3t9sw3NDQII9nbc643TU1r0SK42IAAAAAbD7snLTJJRIJ9fT02HXDAwMDjusej0ctLS02DLe0tMjn8+Wklv6x2Zw8LwAAAADkGuF4k0mn0xoYGLCd4Z6eHqVec95wXV2dDcMdHR0KhULrUluccAwAAABgkyIcb3DGGO3Zs0fRaFTRaFRdXV2am3Ou662oqLBhOBKJqLw8Pxti9Y8SjgEAAABsToTjDeyhhx7Sn/70J01MTDgeD4VCjjC8ZcuWNVs3vBp0jgEAAABsVoTjDWxiYkITExPy+Xxqa2uzgbipqUlerzff5e2jf4ydqgEAAABsToTjDezkk0/WG9/4RrW2tioQCOS7nIOicwwAAABgsyIcb2DNzc35LiEr7FYNAAAAYLPaeHNzsSlNzSc1PpvIdxkAAAAAcEgIx1gTA0td44oiJiMAAAAA2HwIx1gTmSnVTZVFea4EAAAAALJHOMaaiC/tVB2uLs5zJQAAAACQPcIx1kT/2IwkqamScAwAAABg8yEcY01kOsdMqwYAAACwGRGOsSbsmuMqOscAAAAANh/CMdZEfCkchytDea4EAAAAALJHOMaqpdJGg+NLG3JVluS5GgAAAADIHuEYqzY8Oadk2sjv9ai2nM4xAAAAgM2HcIxVy0ypbqwsks/ryXM1AAAAAJA9wjFWrT9zxjGbcQEAAADYpAjHWLX+0cXOcTPhGAAAAMAmRTjGqmWmVROOAQAAAGxWhGOsmj3GiXAMAAAAYJMiHGPV+m04LspzJQAAAABwaPzr/YLGGEnSxMTEer80cqR3aLfS8ylV+hKamJjQ1NSUpMV77PXy8xcAAPIhnU7zNbkAZL6nznyPDeDQecw6v5P6+vrU2tq6ni8JAAAAuFpvb69aWlryXQawqa17OE6n04rH4yovL5fHw5m4bjQxMaHW1lb19vaqoqIi3+UgB7jH7sc9dj/ucWHgPrufMUaTk5MKh8PMDgBWad2nVXu9Xn6qVSAqKir4Quxy3GP34x67H/e4MHCf3a2ysjLfJQCuwI+XAAAAAAAFj3AMAAAAACh4hGOsuVAopOuuu06hUCjfpSBHuMfuxz12P+5xYeA+A8DKrfuGXAAAAAAAbDR0jgEAAAAABY9wDAAAAAAoeIRjAAAAAEDBIxwDAAAAAAoe4RgAAAAAUPAIx1jW9ddfL4/H4/i1devWZT/mvvvu09atW1VUVKRt27bp5z//ueO6MUaf+tSn1NTUpOLiYm3fvl0vvfRSLj8NLCPbe3zHHXfo9NNPV3V1taqrq7V9+3Y98cQTjjGXXXbZPs95zjnn5PpTwQFke4/vuuuufcYXFRU5xvA+3liyvcd//ud/vs94j8ej8847z47hfbzx9Pf3673vfa+2bNmi4uJibdu2Tb/97W+X/ZgdO3bojW98o0KhkF73utfprrvu2mfMV7/6VXV0dKioqEgnnXTSPv+mA0ChIBzjoI455hgNDAzYX7/+9a8POPbRRx/VxRdfrCuuuEK///3v9c53vlPvfOc79cwzz9gxn/vc5/Qv//Ivuv322/X444+rtLRUZ599tubm5tbj08F+ZHOPd+zYoYsvvliPPPKIdu7cqdbWVp111lnq7+93jDvnnHMcz/nd7343158GlpHNPZakiooKx/ju7m7Hdd7HG0829/hHP/qRY+wzzzwjn8+nCy64wDGO9/HGMTo6qlNPPVWBQED333+/nn32Wd12222qrq4+4MfEYjGdd955OvPMM/Vf//Vf+vCHP6z3ve99evDBB+2Y733ve7r66qt13XXX6amnntKf/dmf6eyzz9bw8PB6fFoAsKH4810ANj6/36/GxsYVjf3Sl76kc845R9dee60k6cYbb9QvfvELfeUrX9Htt98uY4y++MUv6p/+6Z/0jne8Q5L0ne98Rw0NDfrxj3+siy66KGefBw4sm3t8zz33OP7+zW9+Uz/84Q/18MMP62/+5m/s46FQaMXPidzL5h5LksfjOeB43scbUzb3uKamxvH3e++9VyUlJfuEY97HG8dnP/tZtba26s4777SPRSKRZT/m9ttvVyQS0W233Sb9f+3cX0iTfRsH8O+bbiuD2sFyzqihobbK0Woos8IDR2YnHsWEkhFl4EkEFe0kJKRYIHUQYX/QLAyGdWIhTGu0ILEEO0jNzH8QQjPyRE37w3a9B8/jzXM/5nRv5ca77weG+vtd94/7x8XlvWv3NgAWiwUvXrzA1atXUVpaCgC4cuUKqqqqcPToUeWYtrY2NDY2wuPx/KHdEBElJt45piUNDQ0hMzMT2dnZOHz4MD58+LBobFdXF5xOp2qstLQUXV1dAP56FTsUCqli1q9fj8LCQiWGVl4sOf632dlZ/PjxY8GT7WAwiPT0dOTl5aG6uhqTk5O/+7QpBrHmeGZmBmazGZs2bUJ5eTn6+/uVOdZxYvqVOm5oaEBFRQXWrl2rGmcdJ45Hjx7Bbrfj0KFDSE9Ph81mw+3bt6Mes9Q1+fv37+jp6VHFrFq1Ck6nk7VMREmJzTFFVVhYiKamJvj9ftTX12NsbAz79u3D9PT0T+NDoRCMRqNqzGg0IhQKKfPzY4vF0MqKNcf/du7cOWRmZqqeXB04cAD37t1DIBDA5cuX8fz5c5SVlSEcDv+pbVAUseY4Ly8PjY2NaG1tRXNzMyKRCIqKijA+Pg6AdZyIfqWOu7u70dfXh+PHj6vGWceJZXR0FPX19cjJyUF7ezuqq6tx8uRJ3L17d9FjFrsmT01NYW5uDp8/f0Y4HGYtExH9jW+rpqjKysqU361WKwoLC2E2m9HS0oJjx47F8czod/mVHHu9Xvh8PgSDQdUXNv3zbbX5+fmwWq3YsmULgsEgSkpKfv8mKKpYc+xwOOBwOJS/i4qKYLFYcPPmTdTW1q7IOVNsfqWOGxoakJ+fj4KCAtU46zixRCIR2O12XLp0CQBgs9nQ19eHGzduwO12x/nsiIj+P/DOMcVEr9cjNzcXw8PDP53PyMjAxMSEamxiYkL5zNr8z2gxFF9L5XheXV0dvF4vOjo6YLVao8ZmZ2fDYDAsuSatjOXmeJ5Go4HNZlPiWceJb7k5/vLlC3w+37Je7GQdx5fJZMK2bdtUYxaLJerb5xe7Jq9btw5r1qyBwWBASkoKa5mI6G9sjikmMzMzGBkZgclk+um8w+FAIBBQjT158kS5C5WVlYWMjAxVzNTUFF69eqW6U0Xxs1SOgb++qbi2thZ+vx92u33JNcfHxzE5ORl1TVo5y8nxP4XDYfT29irxrOPEt9wcP3jwAN++fcORI0eWXJN1HF979uzB4OCgauz9+/cwm82LHrPUNVmr1WL37t2qmEgkgkAgwFomouQkRFGcPn1agsGgjI2NSWdnpzidTjEYDPLp0ycREamsrBSPx6PEd3Z2SmpqqtTV1cnAwIDU1NSIRqOR3t5eJcbr9Yper5fW1lZ58+aNlJeXS1ZWlszNza34/ij2HHu9XtFqtfLw4UP5+PGj8pienhYRkenpaTlz5ox0dXXJ2NiYPH36VHbt2iU5OTny9evXuOwx2cWa4wsXLkh7e7uMjIxIT0+PVFRUyOrVq6W/v1+JYR0nllhzPG/v3r3icrkWjLOOE093d7ekpqbKxYsXZWhoSO7fvy9paWnS3NysxHg8HqmsrFT+Hh0dlbS0NDl79qwMDAzI9evXJSUlRfx+vxLj8/lEp9NJU1OTvH37Vk6cOCF6vV5CodCK7o+IKBGwOaaoXC6XmEwm0Wq1snHjRnG5XDI8PKzMFxcXi9vtVh3T0tIiubm5otVqZfv27dLW1qaaj0Qicv78eTEajaLT6aSkpEQGBwdXYjv0E7Hm2Gw2C4AFj5qaGhERmZ2dlf3798uGDRtEo9GI2WyWqqoqPtGKo1hzfOrUKdm8ebNotVoxGo1y8OBBef36tWpN1nFi+V/+V797904ASEdHx4L1WMeJ6fHjx7Jjxw7R6XSydetWuXXrlmre7XZLcXGxauzZs2eyc+dO0Wq1kp2dLXfu3Fmw7rVr15SaLygokJcvX/7BXRARJa7/iIjE8841ERERERERUbzxM8dERERERESU9NgcExERERERUdJjc0xERERERERJj80xERERERERJT02x0RERERERJT02BwTERERERFR0mNzTEREREREREmPzTERERERERElPTbHRERERERElPTYHBMREREREVHSY3NMRERERERESe+/jdoTSeZYeAIAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -1109,7 +1106,7 @@ ], "metadata": { "kernelspec": { - "display_name": ".venv", + "display_name": "gfloat", "language": "python", "name": "python3" }, @@ -1123,7 +1120,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.0" + "version": "3.12.3" } }, "nbformat": 4, diff --git a/docs/source/index.rst b/docs/source/index.rst index 25f869f..de2eb28 100644 --- a/docs/source/index.rst +++ b/docs/source/index.rst @@ -26,19 +26,19 @@ formats in Python. Headline features: Provided Formats ---------------- -Formats are parameterized by the primary IEEE-754 parameters of: +Formats are parameterized by the primary parameters of: * Width in bits (k) * Precision (p) - * Maximum exponent (emax) + * Exponent bias (bias) with additional fields defining the presence/encoding of: - * Infinities + * Domain (Finite vs Extended) + * Signed/unsigned * Not-a-number (NaN) values * Negative zero * Subnormal numbers - * Signed/unsigned * Two's complement encoding (of the significand) This allows an implementation of generic floating point encode/decode logic, diff --git a/src/gfloat/__init__.py b/src/gfloat/__init__.py index b47e504..1178415 100644 --- a/src/gfloat/__init__.py +++ b/src/gfloat/__init__.py @@ -14,7 +14,7 @@ from .round_ndarray import round_ndarray from .encode_ndarray import encode_ndarray from .decode_ndarray import decode_ndarray -from .types import FloatClass, FloatValue, FormatInfo, RoundMode +from .types import FloatClass, FloatValue, FormatInfo, Domain, RoundMode # Don't automatically import from .formats. # If the user wants them in their namespace, they can explicitly import diff --git a/src/gfloat/decode.py b/src/gfloat/decode.py index ffb0093..036bbec 100644 --- a/src/gfloat/decode.py +++ b/src/gfloat/decode.py @@ -2,7 +2,7 @@ import numpy as np -from .types import FloatClass, FloatValue, FormatInfo +from .types import FloatClass, FloatValue, FormatInfo, Domain def decode_float(fi: FormatInfo, i: int) -> FloatValue: @@ -46,29 +46,32 @@ def decode_float(fi: FormatInfo, i: int) -> FloatValue: if fi.is_twos_complement and signbit: significand = (1 << t) - significand - expBias = fi.expBias + bias = fi.bias iszero = exp == 0 and significand == 0 and fi.has_zero issubnormal = fi.has_subnormals and (exp == 0) and (significand != 0) isnormal = not iszero and not issubnormal if iszero or issubnormal: - expval = 1 - expBias + expval = 1 - bias fsignificand = significand * 2**-t else: - expval = exp - expBias + expval = exp - bias fsignificand = 1.0 + significand * 2**-t # Handle specials: Infs, NaN, -0, NaN_0 - signed_infinity = -np.inf if signbit else np.inf + # High NaNs fval = None - # All-bits-special exponent (ABSE) - if w > 0 and exp == 2**w - 1: - min_i_with_nan = 2 ** (p - 1) - fi.num_high_nans - if significand >= min_i_with_nan: - fval = np.nan - if fi.has_infs and significand == min_i_with_nan - 1: - fval = signed_infinity + max_positive_code = (1 << (k - fi.signBits)) - 1 + code_without_sign = i & max_positive_code + if code_without_sign > max_positive_code - fi.num_high_nans: + # Return nan, ignore sign + fval = np.nan + + # Infinities + if fi.domain == Domain.Extended: + if code_without_sign == max_positive_code - fi.num_high_nans: + fval = -np.inf if signbit else np.inf # Negative zero or NaN if iszero and i == signmask and not fi.is_twos_complement: diff --git a/src/gfloat/decode_ndarray.py b/src/gfloat/decode_ndarray.py index f09bb10..7d93c13 100644 --- a/src/gfloat/decode_ndarray.py +++ b/src/gfloat/decode_ndarray.py @@ -3,7 +3,7 @@ from types import ModuleType import numpy as np import numpy.typing as npt -from .types import FormatInfo +from .types import FormatInfo, Domain def decode_ndarray( @@ -47,16 +47,17 @@ def decode_ndarray( if fi.is_twos_complement: significand = np.where(sign < 0, (1 << t) - significand, significand) - expBias = fi.expBias + bias = fi.bias fval = np.zeros_like(codes, dtype=np.float64) isspecial = np.zeros_like(codes, dtype=bool) - if fi.has_infs: + if fi.domain == Domain.Extended: fval = np.where(codes == fi.code_of_posinf, np.inf, fval) isspecial |= codes == fi.code_of_posinf - fval = np.where(codes == fi.code_of_neginf, -np.inf, fval) - isspecial |= codes == fi.code_of_neginf + if fi.is_signed: + fval = np.where(codes == fi.code_of_neginf, -np.inf, fval) + isspecial |= codes == fi.code_of_neginf if fi.num_nans > 0: code_is_nan = codes == fi.code_of_nan @@ -76,7 +77,7 @@ def decode_ndarray( fval = np.where(iszero & (sign < 0), -0.0, fval) issubnormal = (exp == 0) & (significand != 0) & fi.has_subnormals - expval = np.where(issubnormal, 1 - expBias, exp - expBias) + expval = np.where(issubnormal, 1 - bias, exp - bias) fsignificand = np.where(issubnormal, 0.0, 1.0) + np.ldexp(significand, -t) # Normal/Subnormal/Zero case, other values will be overwritten diff --git a/src/gfloat/encode.py b/src/gfloat/encode.py index 2b71187..dd739c0 100644 --- a/src/gfloat/encode.py +++ b/src/gfloat/encode.py @@ -4,7 +4,7 @@ import numpy as np -from .types import FormatInfo +from .types import FormatInfo, Domain def encode_float(fi: FormatInfo, v: float) -> int: @@ -36,14 +36,14 @@ def encode_float(fi: FormatInfo, v: float) -> int: # Overflow/underflow if v > fi.max: - if fi.has_infs: + if fi.domain == Domain.Extended: return fi.code_of_posinf if fi.num_nans > 0: return fi.code_of_nan return fi.code_of_max if v < fi.min: - if fi.has_infs: + if fi.domain == Domain.Extended: return fi.code_of_neginf if fi.num_nans > 0: return fi.code_of_nan @@ -65,12 +65,12 @@ def encode_float(fi: FormatInfo, v: float) -> int: exp -= 1 # now sig in range [1, 2) - biased_exp = exp + fi.expBias + biased_exp = exp + fi.bias if biased_exp < 1 and fi.has_subnormals: # subnormal sig *= 2.0 ** (biased_exp - 1) biased_exp = 0 - assert vpos == sig * 2 ** (1 - fi.expBias) + assert vpos == sig * 2 ** (1 - fi.bias) else: if sig > 0: sig -= 1.0 diff --git a/src/gfloat/encode_ndarray.py b/src/gfloat/encode_ndarray.py index caf364c..183865d 100644 --- a/src/gfloat/encode_ndarray.py +++ b/src/gfloat/encode_ndarray.py @@ -1,6 +1,6 @@ # Copyright (c) 2024 Graphcore Ltd. All rights reserved. -from .types import FormatInfo +from .types import FormatInfo, Domain import numpy as np import numpy.typing as npt @@ -40,12 +40,14 @@ def encode_ndarray(fi: FormatInfo, v: npt.NDArray) -> npt.NDArray: else: assert not np.any(nan_mask) - if fi.has_infs: + if fi.domain == Domain.Extended: code[v > fi.max] = fi.code_of_posinf - code[v < fi.min] = fi.code_of_neginf + if fi.is_signed: + code[v < fi.min] = fi.code_of_neginf else: code[v > fi.max] = fi.code_of_nan if fi.num_nans > 0 else fi.code_of_max - code[v < fi.min] = fi.code_of_nan if fi.num_nans > 0 else fi.code_of_min + if fi.is_signed: + code[v < fi.min] = fi.code_of_nan if fi.num_nans > 0 else fi.code_of_min if fi.has_zero: if fi.has_nz: @@ -61,7 +63,7 @@ def encode_ndarray(fi: FormatInfo, v: npt.NDArray) -> npt.NDArray: sig, exp = np.frexp(finite_vpos) - biased_exp = exp.astype(np.int64) + (fi.expBias - 1) + biased_exp = exp.astype(np.int64) + (fi.bias - 1) subnormal_mask = (biased_exp < 1) & fi.has_subnormals biased_exp_safe = np.where(subnormal_mask, biased_exp, 0) diff --git a/src/gfloat/formats.py b/src/gfloat/formats.py index cee8ba7..b559504 100644 --- a/src/gfloat/formats.py +++ b/src/gfloat/formats.py @@ -1,16 +1,18 @@ # Copyright (c) 2024 Graphcore Ltd. All rights reserved. from .block import BlockFormatInfo -from .types import FormatInfo +from .types import FormatInfo, Domain + +import math #: FormatInfo for IEEE-754 Binary64 format format_info_binary64 = FormatInfo( name="binary64", k=64, precision=53, - emax=1023, + bias=2 ** (64 - 53 - 1) - 1, has_nz=True, - has_infs=True, + domain=Domain.Extended, num_high_nans=2**52 - 1, has_subnormals=True, is_signed=True, @@ -22,9 +24,9 @@ name="binary32", k=32, precision=24, - emax=127, + bias=2 ** (32 - 24 - 1) - 1, has_nz=True, - has_infs=True, + domain=Domain.Extended, num_high_nans=2**23 - 1, has_subnormals=True, is_signed=True, @@ -36,9 +38,9 @@ name="binary16", k=16, precision=11, - emax=15, + bias=2 ** (16 - 11 - 1) - 1, has_nz=True, - has_infs=True, + domain=Domain.Extended, num_high_nans=2**10 - 1, has_subnormals=True, is_signed=True, @@ -50,9 +52,9 @@ name="bfloat16", k=16, precision=8, - emax=127, + bias=2 ** (16 - 8 - 1) - 1, has_nz=True, - has_infs=True, + domain=Domain.Extended, num_high_nans=2**7 - 1, has_subnormals=True, is_signed=True, @@ -64,9 +66,9 @@ name="ocp_e5m2", k=8, precision=3, - emax=15, + bias=2 ** (8 - 3 - 1) - 1, has_nz=True, - has_infs=True, + domain=Domain.Extended, num_high_nans=2**2 - 1, has_subnormals=True, is_signed=True, @@ -78,9 +80,9 @@ name="ocp_e4m3", k=8, precision=4, - emax=8, + bias=2 ** (8 - 4 - 1) - 1, has_nz=True, - has_infs=False, + domain=Domain.Finite, num_high_nans=1, has_subnormals=True, is_signed=True, @@ -92,9 +94,9 @@ name="ocp_e2m3", k=6, precision=4, - emax=2, + bias=2 ** (6 - 4 - 1) - 1, has_nz=True, - has_infs=False, + domain=Domain.Finite, num_high_nans=0, has_subnormals=True, is_signed=True, @@ -106,9 +108,9 @@ name="ocp_e3m2", k=6, precision=3, - emax=4, + bias=2 ** (6 - 3 - 1) - 1, has_nz=True, - has_infs=False, + domain=Domain.Finite, num_high_nans=0, has_subnormals=True, is_signed=True, @@ -120,9 +122,9 @@ name="ocp_e2m1", k=4, precision=2, - emax=2, + bias=2 ** (4 - 2 - 1) - 1, has_nz=True, - has_infs=False, + domain=Domain.Finite, num_high_nans=0, has_subnormals=True, is_signed=True, @@ -134,9 +136,9 @@ name="ocp_e8m0", k=8, precision=1, - emax=127, + bias=2 ** (8 - 1) - 1, has_nz=False, - has_infs=False, + domain=Domain.Finite, num_high_nans=1, has_subnormals=False, is_signed=False, @@ -148,9 +150,9 @@ name="ocp_int8", k=8, precision=8, - emax=0, + bias=0, has_nz=False, - has_infs=False, + domain=Domain.Finite, num_high_nans=0, has_subnormals=True, is_signed=True, @@ -158,37 +160,58 @@ ) -def format_info_p3109(k: int, precision: int) -> FormatInfo: +def format_info_p3109( + k: int, + precision: int, + domain: Domain = Domain.Extended, + signedness: bool = True, + may25bias: bool = False, +) -> FormatInfo: """ FormatInfo for P3109 K{k} P{p} formats Args: k (int): Format width in bits p (int): Precision in bits + domain (Domain): Extended (default) or finite + signedness (bool): True (default) if signed, False if unsigned + may25bias (bool): False (default) for may25 bias Returns: FormatInfo class describing the format Raises: - ValueError: If p is not in 1..k-1 + ValueError: If p is not in 1..k ValueError: If k is < 2 """ - if precision < 1 or precision > k - 1: - raise ValueError(f"P3109 format not defined for p={precision}") - - name = f"p3109_{k}p{precision}" - emax = 2 ** (k - 1 - precision) - 1 + if precision < 1 or precision > k: + raise ValueError(f"P3109 format not defined for k={k}, p={precision}") + + if k < 2: + raise ValueError(f"P3109 format not defined for k={k} < 2") + + estr = "e" if domain == Domain.Extended else "f" + sstr = "s" if signedness else "u" + v = "" if not may25bias else "mtfb_" + name = f"{v}p3109_k{k}p{precision}{estr}{sstr}" + if may25bias: + bias = math.floor(2 ** (k - precision - 1) - 1) + else: + if signedness: + bias = math.floor(2 ** (k - precision - 1)) + else: + bias = 2 ** (k - precision) return FormatInfo( name, k=k, precision=precision, - emax=emax, + bias=bias, has_nz=False, - has_infs=True, - num_high_nans=0, + domain=domain, + num_high_nans=0 if signedness else 1, has_subnormals=True, - is_signed=True, + is_signed=signedness, is_twos_complement=False, ) @@ -196,14 +219,19 @@ def format_info_p3109(k: int, precision: int) -> FormatInfo: # Collections of formats _tiny_formats = [ format_info_ocp_e2m1, - format_info_p3109(4, 2), + format_info_p3109(4, 2, Domain.Finite), format_info_ocp_e2m3, format_info_ocp_e3m2, - format_info_p3109(6, 3), - format_info_p3109(6, 4), + format_info_p3109(6, 3, Domain.Finite), + format_info_p3109(6, 4, Domain.Finite), ] -p3109_binary8_formats = [format_info_p3109(8, p) for p in range(1, 7)] +p3109_binary8_formats = [ + format_info_p3109(8, p, domain, signedness) + for p in (1, 3, 4) + for signedness in (True, False) + for domain in (Domain.Extended, Domain.Finite) +] _fp8_formats = [ format_info_ocp_e4m3, diff --git a/src/gfloat/round.py b/src/gfloat/round.py index bce6831..37e37e6 100644 --- a/src/gfloat/round.py +++ b/src/gfloat/round.py @@ -5,7 +5,7 @@ import numpy as np import math -from .types import FormatInfo, RoundMode +from .types import FormatInfo, RoundMode, Domain def _isodd(v: int) -> bool: @@ -48,7 +48,7 @@ def round_float( # Constants p = fi.precision - bias = fi.expBias + bias = fi.bias if rnd in (RoundMode.Stochastic, RoundMode.StochasticFast): if srbits >= 2**srnumbits: @@ -155,7 +155,7 @@ def round_float( ): result = amax else: - if fi.has_infs: + if fi.domain == Domain.Extended: result = np.inf elif fi.num_nans > 0: result = np.nan diff --git a/src/gfloat/round_ndarray.py b/src/gfloat/round_ndarray.py index 1a2a6d2..2efee7a 100644 --- a/src/gfloat/round_ndarray.py +++ b/src/gfloat/round_ndarray.py @@ -1,7 +1,7 @@ # Copyright (c) 2024 Graphcore Ltd. All rights reserved. from typing import Optional, Tuple -from .types import FormatInfo, RoundMode +from .types import FormatInfo, RoundMode, Domain import numpy.typing as npt import array_api_compat @@ -83,7 +83,7 @@ def round_ndarray( xp_maximum = lambda a, b: xp.maximum(xp.asarray(a), xp.asarray(b)) p = fi.precision - bias = fi.expBias + bias = fi.bias is_negative = xp.signbit(v) & fi.is_signed absv = xp_where(is_negative, -v, v) @@ -190,7 +190,7 @@ def to_float(x: npt.NDArray) -> npt.NDArray: result = xp_where(finite_nonzero & put_amax_at, amax, result) # Now anything larger than amax goes to infinity or NaN - if fi.has_infs: + if fi.domain == Domain.Extended: result = xp_where(result > amax, xp.inf, result) elif fi.num_nans > 0: result = xp_where(result > amax, xp.nan, result) diff --git a/src/gfloat/types.py b/src/gfloat/types.py index 4c6cd66..6b7d780 100644 --- a/src/gfloat/types.py +++ b/src/gfloat/types.py @@ -2,6 +2,7 @@ from dataclasses import dataclass from enum import Enum +import math class RoundMode(Enum): @@ -35,6 +36,15 @@ class RoundMode(Enum): StochasticFastest = 9 #: Stochastic rounding - even faster, but more biased +class Domain(Enum): + """ + Enum for domain of values + """ + + Finite = 1 #: Finite values only + Extended = 2 #: Finite values and infinities + + class FloatClass(Enum): """ Enum for the classification of a FloatValue. @@ -84,8 +94,8 @@ class FormatInfo: #: Number of significand bits (including implicit leading bit) precision: int - #: Largest exponent, emax, which shall equal floor(log_2(maxFinite)) - emax: int + #: Exponent bias + bias: int #: Set if format encodes -0 at (sgn=1,exp=0,significand=0). #: If False, that encoding decodes to a NaN labelled NaN_0 @@ -94,7 +104,7 @@ class FormatInfo: #: Set if format includes +/- Infinity. #: If set, the non-nan value with the highest encoding for each sign (s) #: is replaced by (s)Inf. - has_infs: bool + domain: Domain #: Number of NaNs that are encoded in the highest encodings for each sign num_high_nans: int @@ -108,6 +118,31 @@ class FormatInfo: #: Set if the format uses two's complement encoding for the significand is_twos_complement: bool + def __init__( + self, + name: str, + k: int, + precision: int, + *, + bias: int, + has_nz: bool, + domain: Domain, + num_high_nans: int, + has_subnormals: bool, + is_signed: bool, + is_twos_complement: bool, + ): + self.name = name + self.k = k + self.precision = precision + self.bias = bias + self.has_nz = has_nz + self.domain = domain + self.num_high_nans = num_high_nans + self.has_subnormals = has_subnormals + self.is_signed = is_signed + self.is_twos_complement = is_twos_complement + #: ## Derived values @property @@ -118,7 +153,7 @@ def tSignificandBits(self) -> int: @property def expBits(self) -> int: """The number of exponent bits, w""" - return self.k - self.precision + (0 if self.is_signed else 1) + return self.k - self.tSignificandBits - self.signBits @property def signBits(self) -> int: @@ -126,23 +161,13 @@ def signBits(self) -> int: return 1 if self.is_signed else 0 @property - def expBias(self) -> int: - """The exponent bias derived from (p,emax) - - This is the bias that should be applied so that - :math:`floor(log_2(maxFinite)) = emax` + def emax(self) -> int: + """Return + :math:`floor(log_2(maxFinite)) = emax` + Note that for an all-subnormal format, this is not necessarily the + largest value in the exponent field. """ - # Calculate whether all of the all-bits-one-exponent values contain specials. - # If so, emax will be obtained for exponent value 2^w-2, otherwise it is 2^w-1 - t = self.tSignificandBits - num_posinfs = 1 if self.has_infs else 0 - all_bits_one_full = (self.num_high_nans + num_posinfs == 2**t) or ( - self.expBits == 0 and self.has_infs - ) - - # Compute exponent bias. - exp_for_emax = 2**self.expBits - (2 if all_bits_one_full else 1) - return exp_for_emax - self.emax + return math.floor(math.log2(self.max)) # numpy finfo properties @property @@ -199,21 +224,56 @@ def max(self) -> float: """ The largest representable number. """ - num_posinfs = 1 if self.has_infs else 0 - num_non_finites = self.num_high_nans + num_posinfs + num_non_finites = self.num_high_nans + self.num_posinfs + if num_non_finites == 2**self.tSignificandBits: + # All-bits-one exponent field is full, value is in the + # binade below, so significand is 0xFFF..F + isig = 2**self.tSignificandBits - 1 + emax = 2**self.expBits - 2 + elif num_non_finites == 2 ** (self.tSignificandBits + 1): + # Top two binades are full, value is in the + # binade below them. Significand is still 0xFFF..F + isig = 2**self.tSignificandBits - 1 + emax = 2**self.expBits - 3 + else: + assert num_non_finites < 2**self.tSignificandBits + # All-bits-one exponent field is not full, value is in the + # final binade, so significand is 0xFFF..F - num_non_finites + isig = 2**self.tSignificandBits - 1 - num_non_finites + emax = 2**self.expBits - 1 + + if self.is_all_subnormal: + return 2 ** (emax - self.bias) * (isig * 2 ** (1 - self.tSignificandBits)) + else: + return 2 ** (emax - self.bias) * (1.0 + isig * 2**-self.tSignificandBits) + + @property + def e_and_sig_of_max(self) -> float: + """ + Exponent and significand of the largest representable number. + """ + num_non_finites = self.num_high_nans + self.num_posinfs if num_non_finites == 2**self.tSignificandBits: # All-bits-one exponent field is full, value is in the # binade below, so significand is 0xFFF..F isig = 2**self.tSignificandBits - 1 + emax = 2**self.expBits - 2 + elif num_non_finites == 2 ** (self.tSignificandBits + 1): + # Top two binades are full, value is in the + # binade below them. Significand is still 0xFFF..F + isig = 2**self.tSignificandBits - 1 + emax = 2**self.expBits - 3 else: + assert num_non_finites < 2**self.tSignificandBits # All-bits-one exponent field is not full, value is in the # final binade, so significand is 0xFFF..F - num_non_finites isig = 2**self.tSignificandBits - 1 - num_non_finites + emax = 2**self.expBits - 1 if self.is_all_subnormal: - return 2**self.emax * (isig * 2 ** (1 - self.tSignificandBits)) + return 2 ** (emax - self.bias) * (isig * 2 ** (1 - self.tSignificandBits)) else: - return 2**self.emax * (1.0 + isig * 2**-self.tSignificandBits) + return 2 ** (emax - self.bias) * (1.0 + isig * 2**-self.tSignificandBits) @property def maxexp(self) -> int: @@ -231,12 +291,18 @@ def min(self) -> float: if not self.is_twos_complement: return -self.max else: - assert not self.has_infs and self.num_high_nans == 0 and not self.has_nz + assert ( + (self.domain == Domain.Finite) + and (self.num_high_nans == 0) + and not self.has_nz + ) return -(2.0 ** (self.emax + 1)) - elif self.has_zero: - return 0.0 else: - return 2**-self.expBias + # Unsigned + if self.has_zero: + return 0.0 + else: + return 2**-self.bias @property def num_nans(self) -> int: @@ -248,7 +314,11 @@ def num_nans(self) -> int: # Signed if self.is_twos_complement: - assert not self.has_infs and self.num_high_nans == 0 and not self.has_nz + assert ( + (self.domain == Domain.Finite) + and (self.num_high_nans == 0) + and not self.has_nz + ) return 0 return (0 if self.has_nz else 1) + 2 * self.num_high_nans @@ -269,18 +339,18 @@ def code_of_posinf(self) -> int: """ Return a codepoint for positive infinity """ - if not self.has_infs: + if self.domain != Domain.Extended: raise ValueError(f"No Inf in {self}") - return 2 ** (self.k - 1) - 1 - self.num_high_nans + return 2 ** (self.k - self.signBits) - 1 - self.num_high_nans @property def code_of_neginf(self) -> int: """ Return a codepoint for negative infinity """ - if not self.has_infs: - raise ValueError(f"No Inf in {self}") + if not (self.domain == Domain.Extended and self.is_signed): + raise ValueError(f"No -Inf in {self}") return 2**self.k - 1 - self.num_high_nans @@ -314,12 +384,33 @@ def code_of_negzero(self) -> int: return 2 ** (self.k - 1) + @property + def num_posinfs(self) -> int: + """ + Return the number of positive infinities + """ + return 1 if self.domain == Domain.Extended else 0 + + @property + def num_neginfs(self) -> int: + """ + Return the number of negative infinities + """ + return 1 if self.domain == Domain.Extended and self.is_signed else 0 + + @property + def num_infs(self) -> int: + """ + Return the number of infinities + """ + return self.num_posinfs + self.num_neginfs + @property def code_of_max(self) -> int: """ Return a codepoint for fi.max """ - return 2 ** (self.k - self.signBits) - self.num_high_nans - self.has_infs - 1 + return 2 ** (self.k - self.signBits) - 1 - self.num_high_nans - self.num_posinfs @property def code_of_min(self) -> int: @@ -327,11 +418,11 @@ def code_of_min(self) -> int: Return a codepoint for fi.min """ if self.is_signed and not self.is_twos_complement: - return 2**self.k - self.num_high_nans - self.has_infs - 1 + return 2**self.k - self.num_high_nans - self.num_posinfs - 1 elif self.is_signed and self.is_twos_complement: return 2 ** (self.k - 1) else: - return 0 # codepoint of smallest value, whether 0 or 2^-expBias + return 0 # codepoint of smallest value, whether 0 or 2^-bias # @property # def minexp(self) -> int: @@ -385,11 +476,11 @@ def smallest_normal(self) -> float: the significand following IEEE-754. """ if self.has_subnormals: - return 2 ** (1 - self.expBias) + return 2 ** (1 - self.bias) elif self.has_zero: - return 2**-self.expBias + 2 ** (-self.expBias - self.tSignificandBits) + return 2**-self.bias + 2 ** (-self.bias - self.tSignificandBits) else: - return 2**-self.expBias + return 2**-self.bias @property def smallest_subnormal(self) -> float: @@ -398,7 +489,7 @@ def smallest_subnormal(self) -> float: the significand following IEEE-754. """ assert self.has_subnormals, "not implemented" - return 2 ** -(self.expBias + self.tSignificandBits - 1) + return 2 ** -(self.bias + self.tSignificandBits - 1) @property def smallest(self) -> float: diff --git a/test/test_decode.py b/test/test_decode.py index 172a7e9..ad5963b 100644 --- a/test/test_decode.py +++ b/test/test_decode.py @@ -4,7 +4,7 @@ import numpy as np import pytest -from gfloat import FloatClass, decode_float, decode_ndarray +from gfloat import FloatClass, Domain, decode_float, decode_ndarray from gfloat.formats import * @@ -15,7 +15,7 @@ def _isnegzero(x: float) -> bool: methods = ["scalar", "array"] -def get_method(method: str, fi: FormatInfo) -> Callable: +def decode_for_method(method: str, fi: FormatInfo) -> Callable: if method == "scalar": def dec(code: int) -> float: @@ -36,7 +36,7 @@ def dec(code: int) -> float: @pytest.mark.parametrize("method", methods) def test_spot_check_ocp_e5m2(method: str) -> None: fi = format_info_ocp_e5m2 - dec = get_method(method, fi) + dec = decode_for_method(method, fi) fclass = lambda code: decode_float(fi, code).fclass assert dec(0x01) == 2.0**-16 assert dec(0x40) == 2.0 @@ -53,7 +53,7 @@ def test_spot_check_ocp_e5m2(method: str) -> None: @pytest.mark.parametrize("method", methods) def test_spot_check_ocp_e4m3(method: str) -> None: fi = format_info_ocp_e4m3 - dec = get_method(method, fi) + dec = decode_for_method(method, fi) assert dec(0x40) == 2.0 assert dec(0x01) == 2.0**-9 assert _isnegzero(dec(0x80)) @@ -65,7 +65,7 @@ def test_spot_check_ocp_e4m3(method: str) -> None: @pytest.mark.parametrize("method", methods) def test_spot_check_p3109_8p3(method: str) -> None: fi = format_info_p3109(8, 3) - dec = get_method(method, fi) + dec = decode_for_method(method, fi) assert dec(0x01) == 2.0**-17 assert dec(0x40) == 1.0 @@ -77,10 +77,10 @@ def test_spot_check_p3109_8p3(method: str) -> None: @pytest.mark.parametrize("method", methods) def test_spot_check_p3109_8p1(method: str) -> None: fi = format_info_p3109(8, 1) - dec = get_method(method, fi) + dec = decode_for_method(method, fi) - assert dec(0x01) == 2.0**-62 - assert dec(0x40) == 2.0 + assert dec(0x01) == 2.0**-63 + assert dec(0x40) == 1.0 assert np.isnan(dec(0x80)) assert dec(0xFF) == -np.inf assert np.floor(np.log2(dec(0x7E))) == fi.emax @@ -89,7 +89,7 @@ def test_spot_check_p3109_8p1(method: str) -> None: @pytest.mark.parametrize("method", methods) def test_spot_check_binary16(method: str) -> None: fi = format_info_binary16 - dec = get_method(method, fi) + dec = decode_for_method(method, fi) assert dec(0x3C00) == 1.0 assert dec(0x3C01) == 1.0 + 2**-10 @@ -104,7 +104,7 @@ def test_spot_check_binary16(method: str) -> None: @pytest.mark.parametrize("method", methods) def test_spot_check_bfloat16(method: str) -> None: fi = format_info_bfloat16 - dec = get_method(method, fi) + dec = decode_for_method(method, fi) assert dec(0x3F80) == 1 assert dec(0x4000) == 2 @@ -119,12 +119,12 @@ def test_spot_check_bfloat16(method: str) -> None: def test_spot_check_ocp_e2m3(method: str) -> None: # Test against Table 4 in "OCP Microscaling Formats (MX) v1.0 Spec" fi = format_info_ocp_e2m3 - dec = get_method(method, fi) + dec = decode_for_method(method, fi) assert fi.max == 7.5 assert fi.smallest_subnormal == 0.125 assert fi.smallest_normal == 1.0 - assert not fi.has_infs + assert fi.domain == Domain.Finite assert fi.num_nans == 0 assert fi.has_nz @@ -137,12 +137,12 @@ def test_spot_check_ocp_e2m3(method: str) -> None: def test_spot_check_ocp_e3m2(method: str) -> None: # Test against Table 4 in "OCP Microscaling Formats (MX) v1.0 Spec" fi = format_info_ocp_e3m2 - dec = get_method(method, fi) + dec = decode_for_method(method, fi) assert fi.max == 28.0 assert fi.smallest_subnormal == 0.0625 assert fi.smallest_normal == 0.25 - assert not fi.has_infs + assert fi.domain == Domain.Finite assert fi.num_nans == 0 assert fi.has_nz @@ -155,12 +155,12 @@ def test_spot_check_ocp_e3m2(method: str) -> None: def test_spot_check_ocp_e2m1(method: str) -> None: # Test against Table 5 in "OCP Microscaling Formats (MX) v1.0 Spec" fi = format_info_ocp_e2m1 - dec = get_method(method, fi) + dec = decode_for_method(method, fi) assert fi.max == 6.0 assert fi.smallest_subnormal == 0.5 assert fi.smallest_normal == 1.0 - assert not fi.has_infs + assert fi.domain == Domain.Finite assert fi.num_nans == 0 assert fi.has_nz @@ -179,12 +179,12 @@ def test_spot_check_ocp_e2m1(method: str) -> None: def test_spot_check_ocp_e8m0(method: str) -> None: # Test against Table 7 in "OCP Microscaling Formats (MX) v1.0 Spec" fi = format_info_ocp_e8m0 - dec = get_method(method, fi) + dec = decode_for_method(method, fi) fclass = lambda code: decode_float(fi, code).fclass - assert fi.expBias == 127 + assert fi.bias == 127 assert fi.max == 2.0**127 assert fi.smallest == 2.0**-127 - assert not fi.has_infs + assert fi.domain == Domain.Finite assert fi.num_nans == 1 assert dec(0x00) == 2.0**-127 @@ -199,11 +199,11 @@ def test_spot_check_ocp_e8m0(method: str) -> None: def test_spot_check_ocp_int8(method: str) -> None: # Test against Table TODO in "OCP Microscaling Formats (MX) v1.0 Spec" fi = format_info_ocp_int8 - dec = get_method(method, fi) + dec = decode_for_method(method, fi) assert fi.max == 1.0 + 63.0 / 64 assert fi.smallest == 2.0**-6 - assert not fi.has_infs + assert fi.domain == Domain.Finite assert fi.num_nans == 0 assert dec(0x00) == 0.0 @@ -216,25 +216,69 @@ def test_spot_check_ocp_int8(method: str) -> None: @pytest.mark.parametrize("fi", p3109_binary8_formats) def test_p3109_k8_specials(fi: FormatInfo) -> None: - assert fi.code_of_nan == 0x80 - assert fi.code_of_zero == 0x00 - assert fi.code_of_posinf == 0x7F - assert fi.code_of_neginf == 0xFF + if fi.is_signed: + assert fi.code_of_nan == 0x80 + assert fi.code_of_zero == 0x00 + if fi.domain == Domain.Extended: + assert fi.code_of_posinf == 0x7F + assert fi.code_of_neginf == 0xFF + else: + assert fi.code_of_nan == 0xFF + assert fi.code_of_zero == 0x00 + if fi.domain == Domain.Extended: + assert fi.code_of_posinf == 0xFE + + +p3109_formats_to_test = ( + (3, 1), + (3, 2), + (3, 3), + (4, 1), + (4, 2), + (4, 3), + (4, 4), + (6, 1), + (6, 5), + (8, 3), + (8, 1), + (11, 3), +) -@pytest.mark.parametrize("k,p", [(8, 3), (8, 1), (6, 1), (6, 5), (3, 1), (3, 2), (11, 3)]) -def test_p3109_specials(k: int, p: int) -> None: - fi = format_info_p3109(k, p) +@pytest.mark.parametrize("k,p", p3109_formats_to_test) +def test_p3109_specials_signed(k: int, p: int) -> None: + fi = format_info_p3109(k, p, Domain.Extended) assert fi.code_of_nan == 2 ** (k - 1) assert fi.code_of_zero == 0 assert fi.code_of_posinf == 2 ** (k - 1) - 1 assert fi.code_of_neginf == 2**k - 1 + assert decode_float(fi, 2 ** (k - 2)).fval == 1.0 + + fi = format_info_p3109(k, p, Domain.Finite) + assert fi.code_of_nan == 2 ** (k - 1) + assert fi.code_of_zero == 0 + assert decode_float(fi, 2 ** (k - 2)).fval == 1.0 + with pytest.raises(ValueError): + fi.code_of_posinf + with pytest.raises(ValueError): + fi.code_of_neginf + + +@pytest.mark.parametrize("k,p", p3109_formats_to_test) +def test_p3109_specials_unsigned(k: int, p: int) -> None: + fi = format_info_p3109(k, p, Domain.Extended, signedness=False) + assert fi.code_of_nan == 2**k - 1 + assert fi.code_of_zero == 0 + assert fi.code_of_posinf == 2**k - 2 + assert decode_float(fi, 2 ** (k - 1)).fval == 1.0 + with pytest.raises(ValueError): + fi.code_of_neginf @pytest.mark.parametrize("fi", all_formats) @pytest.mark.parametrize("method", methods) def test_specials_decode(method: str, fi: FormatInfo) -> None: - dec = get_method(method, fi) + dec = decode_for_method(method, fi) if fi.has_zero: assert dec(fi.code_of_zero) == 0 @@ -242,9 +286,10 @@ def test_specials_decode(method: str, fi: FormatInfo) -> None: if fi.num_nans > 0: assert np.isnan(dec(fi.code_of_nan)) - if fi.has_infs: + if fi.domain == Domain.Extended: assert dec(fi.code_of_posinf) == np.inf - assert dec(fi.code_of_neginf) == -np.inf + if fi.is_signed: + assert dec(fi.code_of_neginf) == -np.inf assert dec(fi.code_of_max) == fi.max assert dec(fi.code_of_min) == fi.min diff --git a/test/test_encode.py b/test/test_encode.py index 645a320..0888a4f 100644 --- a/test/test_encode.py +++ b/test/test_encode.py @@ -52,13 +52,13 @@ def test_encode_edges(fi: FormatInfo, enc: Callable) -> None: assert enc(fi, fi.max * 1.25) == ( fi.code_of_posinf - if fi.has_infs + if fi.domain == Domain.Extended else fi.code_of_nan if fi.num_nans > 0 else fi.code_of_max ) if fi.is_signed: assert enc(fi, fi.min * 1.25) == ( fi.code_of_neginf - if fi.has_infs + if fi.domain == Domain.Extended else fi.code_of_nan if fi.num_nans > 0 else fi.code_of_min ) diff --git a/test/test_finfo.py b/test/test_finfo.py index 70b2942..ea2a5e6 100644 --- a/test/test_finfo.py +++ b/test/test_finfo.py @@ -27,6 +27,6 @@ def test_finfo(fmt: FormatInfo, npfmt: np.dtype) -> None: def test_constants() -> None: - assert format_info_p3109(8, 1).smallest_subnormal == 2.0**-62 + assert format_info_p3109(8, 1).smallest_subnormal == 2.0**-63 assert format_info_p3109(8, 4).smallest_subnormal == 2.0**-10 assert format_info_p3109(8, 7).smallest_subnormal == 2.0**-6 diff --git a/test/test_jax.py b/test/test_jax.py index 481fcbd..02d5d04 100644 --- a/test/test_jax.py +++ b/test/test_jax.py @@ -10,8 +10,6 @@ import gfloat from gfloat.formats import * -jax.config.update("jax_enable_x64", True) - def test_jax() -> None: """ @@ -19,14 +17,14 @@ def test_jax() -> None: """ a = np.random.randn(1024) - a8 = a.astype(ml_dtypes.float8_e5m2).astype(jnp.float64) + a8 = a.astype(ml_dtypes.float8_e5m2).astype(jnp.float32) fi = format_info_ocp_e5m2 - j8 = gfloat.round_ndarray(fi, jnp.array(a)) # type: ignore [arg-type] + j8 = gfloat.round_ndarray(fi, jnp.array(a)).astype(jnp.float32) # type: ignore [arg-type] np.testing.assert_equal(a8, j8) jax_round_array = jax.jit(lambda x: gfloat.round_ndarray(fi, x)) - j8i = jax_round_array(a) + j8i = jax_round_array(a).astype(jnp.float32) np.testing.assert_equal(a8, j8i) diff --git a/test/test_p3109_spec.py b/test/test_p3109_spec.py new file mode 100644 index 0000000..a1ee5db --- /dev/null +++ b/test/test_p3109_spec.py @@ -0,0 +1,60 @@ +# Copyright (c) 2024 Graphcore Ltd. All rights reserved. +from typing import Callable +import ml_dtypes +import numpy as np +import pytest + +from gfloat import FloatClass, Domain, decode_float, decode_ndarray +from gfloat.formats import * + + +def spec_is_normal(fi: FormatInfo, x: int) -> bool: + r""" + Copy from spec: + + \Case{\isNormal*(x \in \{0, \NInf, \Inf, \NaN\}) \gives \False}\\ + \Case{\isNormal*(x) \gives + \begin{cases} + (x \mod 2^{\k_f - 1}) \div 2^{\p_f - 1} > 0 & \If \s_f = \Signed \\ + x \div 2^{\p_f - 1} > 0 & \If \s_f = \Unsigned + \end{cases} + } + """ + if x in (fi.code_of_zero, fi.code_of_posinf, fi.code_of_neginf, fi.code_of_nan): + return False + + k_f = fi.k + p_f = fi.precision + if fi.is_signed: + # (x \mod 2^{\k_f - 1}) \div 2^{\p_f - 1} > 0 + return (x % 2 ** (k_f - 1)) // 2 ** (p_f - 1) > 0 + else: + # x \div 2^{\p_f - 1} > 0 + return x // 2 ** (p_f - 1) > 0 + + +_p3109_formats_to_test = ( + (2, 1), + (2, 2), + (3, 1), + (3, 2), + (3, 3), + (4, 1), + (4, 2), + (4, 3), + (4, 4), + (6, 1), + (6, 5), + (8, 3), + (8, 1), + (11, 3), +) + + +@pytest.mark.parametrize("k,p", _p3109_formats_to_test) +def test_p3109_specials_signed(k: int, p: int) -> None: + fi = format_info_p3109(k, p, Domain.Extended) + + for i in range(2**fi.k): + fv = decode_float(fi, i) + assert spec_is_normal(fi, i) == (fv.fclass == FloatClass.NORMAL)