Skip to content

How to combine Flash-Diffusion with existing SD3-Medium DreamBooth_LoRAs? #21

@ytwo-hub

Description

@ytwo-hub

When I apply “flash-diffusion” to a SD3 model that has been fine-tuned with DreamBooth-LoRAs, I get a lot of errors, and I'm currently trying to get Flash-Diffusion and DreamBooth-LoRAs to work in this way. I'm currently trying to use this to get Flash-Diffusion and DreamBooth-LoRAs to combine with pytorch_lora_weights.safetensors:

import torch
from diffusers import StableDiffusion3Pipeline, SD3Transformer2DModel, FlashFlowMatchEulerDiscreteScheduler
from peft import PeftModel, LoraConfig, get_peft_model


transformer = SD3Transformer2DModel.from_pretrained(
    "./diffusers/stabilityai/stable-diffusion-3-medium-diffusers",
    subfolder="transformer",
    torch_dtype=torch.float16,
)

# the first LoRA (flash-sd3)
flash_lora = PeftModel.from_pretrained(
    transformer,
    "./jasperai/flash-sd3",
    adapter_name="flash"
)

# Create Stable Diffusion 3 Pipeline
pipe = StableDiffusion3Pipeline.from_pretrained(
    "./diffusers/stabilityai/stable-diffusion-3-medium-diffusers",
    transformer=flash_lora,
    torch_dtype=torch.float16,
    text_encoder_3=None,
    tokenizer_3=None
)

# # Tried that once:
# # the second LoRA (test_lora)
# test_lora_path = "./diffusers/trained-sd3-lora"
# test_lora = PeftModel.from_pretrained(
#     transformer, 
#     test_lora_path, 
#     adapter_name="test_lora"
# )
# # An error is reported:
# # ValueError: Can't find 'adapter_config.json' at './diffusers/trained-sd3-lora'

# Now trying:
test_lora_path = "./diffusers/trained-sd3-lora"

peft_config = LoraConfig(
    r=8,  # LoRA rank
    lora_alpha=32,  # Scaling factor
    target_modules=["q_proj", "v_proj"],  
    lora_dropout=0.1,  
    bias="none",  
    task_type="CAUSAL_LM",  
)

transformer = get_peft_model(transformer, peft_config)

transformer.load_adapter(test_lora_path, adapter_name="test_lora")

# An error is reported:
# ValueError                                Traceback (most recent call last)
# Cell In[7], line 56
#      46 peft_config = LoraConfig(
#      47     r=8,  # LoRA rank
#      48     lora_alpha=32,  # Scaling factor
#    (...)
#      52     task_type="CAUSAL_LM", 
#      53 )
#      55 
# ---> 56 transformer = get_peft_model(transformer, peft_config)
#      58 
#      59 transformer.load_adapter(test_lora_path, adapter_name="test_lora")

# ValueError: Target modules {'v_proj', 'q_proj'} not found in the base model. Please check the target modules and try again.


pipe.scheduler = FlashFlowMatchEulerDiscreteScheduler.from_pretrained(
    "/root/autodl-tmp/diffusers/stabilityai/stable-diffusion-3-medium-diffusers",
    subfolder="scheduler",
)

pipe.to("cuda", torch.float16)

def apply_lora_weights(model, lora1, lora2, weight1=0.5, weight2=0.5):
    for param, lora1_param, lora2_param in zip(model.parameters(), lora1.parameters(), lora2.parameters()):
        param.data = (
            param.data 
            + weight1 * lora1_param.data 
            + weight2 * lora2_param.data
        )

# Combining
apply_lora_weights(pipe.unet, flash_lora, test_lora, weight1=1.0, weight2=1.0)

prompt = "... my prompt"
image = pipe(prompt, num_inference_steps=10, guidance_scale=7.5).images[0]

output_path = "./flash_output.png"
image.save(output_path)
print(f"Image saved to {output_path}")

What is my problem?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions