Skip to content

Commit d67c1b4

Browse files
authored
Merge pull request #5541 from galaxyproject/ghoul-uaru
Fix MRSA nanopore tutorial CYOA
2 parents 930c3ed + 78a62d8 commit d67c1b4

File tree

2 files changed

+9
-10
lines changed

2 files changed

+9
-10
lines changed

topics/assembly/tutorials/mrsa-nanopore/tutorial.md

Lines changed: 9 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -22,8 +22,6 @@ tags:
2222
- nanopore
2323
- assembly
2424
- amr
25-
- gmod
26-
- jbrowse1
2725
- microgalaxy
2826
edam_ontology:
2927
- topic_0196 # Sequence Assembly
@@ -153,7 +151,9 @@ The dataset is a FASTQ file.
153151
154152
{% include _includes/cyoa-choices.html option1="Without Illumina MiSeq data" option2="With Illumina MiSeq data" default="Without Illumina MiSeq data" text="Do you have associated Illumina MiSeq data?" disambiguation="miseq"%}
155153
156-
<div class="Existing-Illumina-MiSeq-data" markdown="1">
154+
<span class="Without-Illumina-MiSeq-data"></span>
155+
156+
<div class="With-Illumina-MiSeq-data" markdown="1">
157157
158158
> <hands-on-title>Illumina Data upload</hands-on-title>
159159
> 1. {% tool [Import](upload1) %} the files from [Zenodo]({{ page.zenodo_link }}) or from the shared data library
@@ -197,7 +197,7 @@ FastQC combines quality statistics from all separate reads and combines them in
197197
198198
![FastQC plot showing reads that mostly stay in the read](./images/fastqc.png)
199199
200-
<div class="Existing-Illumina-MiSeq-data" markdown="1">
200+
<div class="With-Illumina-MiSeq-data" markdown="1">
201201
202202
Here, we are going to trim the Illumina data using **fastp** ({% cite Chen2018 %}):
203203
@@ -216,7 +216,7 @@ Here, we are going to trim the Illumina data using **fastp** ({% cite Chen2018 %
216216
> - In *"Read Modification Options"*:
217217
> - In *"Per read cuitting by quality options"*:
218218
> - *Cut by quality in front (5')*: `Yes`
219-
> - *Cut by quality in front (3')*: `Yes`
219+
> - *Cut by quality in tail (3')*: `Yes`
220220
> - *Cutting window size*: `4`
221221
> - *Cutting mean quality*: `20`
222222
> - In *"Output Options"*:
@@ -228,7 +228,7 @@ Here, we are going to trim the Illumina data using **fastp** ({% cite Chen2018 %
228228
229229
Depending on the analysis it could be possible that a certain quality or length is needed. The reads can be filtered using the [Filtlong](https://github.com/rrwick/Filtlong) tool. In this training all reads below 1000bp will be filtered.
230230
231-
<div class="Existing-Illumina-MiSeq-data" markdown="1">
231+
<div class="With-Illumina-MiSeq-data" markdown="1">
232232
233233
When Illumina reads are available, we can use them **if they are good Illumina reads (high depth and complete coverage)** as external reference. In this case, Filtlong ignores the Phred quality scores and instead judges read quality using k-mer matches to the reference (a more accurate gauge of quality).
234234
@@ -240,7 +240,7 @@ When Illumina reads are available, we can use them **if they are good Illumina r
240240
> - In *"Output thresholds"*:
241241
> - *"Min. length"*: `1000`
242242
>
243-
> <div class="Existing-Illumina-MiSeq-data" markdown="1">
243+
> <div class="With-Illumina-MiSeq-data" markdown="1">
244244
> - In *"External references"*:
245245
> - {% icon param-file %} *"Reference Illumina read"*: **fastp** `Read 1 output`
246246
> - {% icon param-file %} *"Reference Illumina read"*: **fastp** `Read 2 output`
@@ -431,7 +431,7 @@ QUAST outputs assembly metrics as an HTML file with metrics and graphs.
431431
> {: .solution}
432432
{: .question}
433433
434-
<div class="Existing-Illumina-MiSeq-data" markdown="1">
434+
<div class="With-Illumina-MiSeq-data" markdown="1">
435435
436436
## Assembly Polishing
437437
@@ -513,4 +513,4 @@ GC (%) | 32.91 | 32.84
513513
514514
# Conclusion
515515
516-
In this tutorial, we prepared long reads (using short reads if we had some) assembled them, inspect the produced assembly for its quality, and polished it (if short reads where provided). The assembly, even if uncomplete, is reasonable good to be used in downstream analysis, like [AMR gene detection]({% link topics/genome-annotation/tutorials/amr-gene-detection/tutorial.md %})
516+
In this tutorial, we prepared long reads (using short reads if we had some) assembled them, inspect the produced assembly for its quality, and polished it (if short reads where provided). The assembly, even if uncomplete, is reasonable good to be used in downstream analysis, like [AMR gene detection]({% link topics/genome-annotation/tutorials/amr-gene-detection/tutorial.md %})

topics/microbiome/tutorials/beer-data-analysis/tutorial.md

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -578,7 +578,6 @@ The species identified for Chimay beers are (from the most abundant to the least
578578
- *Saccharomyces cerevisiae*
579579
- *Saccharomyces mikatea*: a species generally used in winemaking ({% cite bellon2013introducing %})
580580
- *Kazachstania martiniae*: *Kazachstania* is a genus from the family Saccharomycetaceaethe.
581-
582581
- *Saccharomyces kudriavzevii*
583582
- *Brettanomyces bruxellensis*
584583

0 commit comments

Comments
 (0)