Skip to content

Commit e669b9d

Browse files
authored
Rename phi (03D5) to phi (03C6) (#515)
This PR replaces `ϕ` (U+03D5) with `φ` (U+03C6) throughout. The reason is that `\phi` in VS Code yields the latter symbol. This type of PR rots quickly, so it would be nice if it can be incorporated soon-ish.
1 parent 5f73385 commit e669b9d

File tree

6 files changed

+240
-240
lines changed

6 files changed

+240
-240
lines changed

Carleson/Classical/CarlesonOnTheRealLine.lean

Lines changed: 9 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -391,21 +391,21 @@ open scoped NNReal
391391

392392
instance real_van_der_Corput : IsCancellative ℝ (defaultτ 4) := by
393393
apply isCancellative_of_norm_integral_exp_le
394-
intro x r ϕ r_pos hK f g
394+
intro x r φ r_pos hK f g
395395
rw [defaultτ, ← one_div, measureReal_def, Real.volume_ball,
396396
ENNReal.toReal_ofReal (by linarith [r_pos]), Real.ball_eq_Ioo, ← integral_Ioc_eq_integral_Ioo,
397397
← intervalIntegral.integral_of_le (by linarith [r_pos]), dist_integer_linear_eq,
398398
max_eq_left r_pos.le]
399-
calc ‖∫ (x : ℝ) in x - r..x + r, (Complex.I * (↑(f x) - ↑(g x))).exp * ϕ x‖
400-
_ = ‖∫ (x : ℝ) in x - r..x + r, (Complex.I * ((↑f - ↑g) : ℤ) * x).exp * ϕ x‖ := by
399+
calc ‖∫ (x : ℝ) in x - r..x + r, (Complex.I * (↑(f x) - ↑(g x))).exp * φ x‖
400+
_ = ‖∫ (x : ℝ) in x - r..x + r, (Complex.I * ((↑f - ↑g) : ℤ) * x).exp * φ x‖ := by
401401
congr with x
402402
rw [mul_assoc]
403403
congr
404404
push_cast
405405
rw [_root_.sub_mul]
406406
norm_cast
407-
_ ≤ 2 * π * ((x + r) - (x - r)) * (iLipNNNorm ϕ x r +
408-
(iLipNNNorm ϕ x r / r.toNNReal : ℝ≥0) * ((x + r) - (x - r)) / 2) *
407+
_ ≤ 2 * π * ((x + r) - (x - r)) * (iLipNNNorm φ x r +
408+
(iLipNNNorm φ x r / r.toNNReal : ℝ≥0) * ((x + r) - (x - r)) / 2) *
409409
(1 + |((↑f - ↑g) : ℤ)| * ((x + r) - (x - r)))⁻¹ := by
410410
apply van_der_Corput (by linarith)
411411
· rw [Ioo_eq_ball]
@@ -414,15 +414,15 @@ instance real_van_der_Corput : IsCancellative ℝ (defaultτ 4) := by
414414
· intro y hy
415415
apply norm_le_iLipNNNorm_of_mem hK
416416
rwa [Real.ball_eq_Ioo]
417-
_ = 2 * π * (2 * r) * (iLipNNNorm ϕ x r + r * (iLipNNNorm ϕ x r / r.toNNReal : ℝ≥0))
417+
_ = 2 * π * (2 * r) * (iLipNNNorm φ x r + r * (iLipNNNorm φ x r / r.toNNReal : ℝ≥0))
418418
* (1 + 2 * r * |((↑f - ↑g) : ℤ)|)⁻¹ := by
419419
ring
420-
_ = 2 * π * (2 * r) * (iLipNNNorm ϕ x r + iLipNNNorm ϕ x r)
420+
_ = 2 * π * (2 * r) * (iLipNNNorm φ x r + iLipNNNorm φ x r)
421421
* (1 + 2 * r * |((↑f - ↑g) : ℤ)|)⁻¹ := by
422422
congr
423423
rw [NNReal.coe_div, Real.coe_toNNReal _ r_pos.le, mul_div_cancel₀ _ r_pos.ne']
424-
_ = 4 * π * (2 * r) * iLipNNNorm ϕ x r * (1 + 2 * r * ↑|(↑f - ↑g : ℤ)|)⁻¹ := by ring
425-
_ ≤ (2 ^ 4 : ℕ) * (2 * r) * iLipNNNorm ϕ x r *
424+
_ = 4 * π * (2 * r) * iLipNNNorm φ x r * (1 + 2 * r * ↑|(↑f - ↑g : ℤ)|)⁻¹ := by ring
425+
_ ≤ (2 ^ 4 : ℕ) * (2 * r) * iLipNNNorm φ x r *
426426
(1 + 2 * r * ↑|(↑f - ↑g : ℤ)|) ^ (- (1 / (4 : ℝ))) := by
427427
gcongr
428428
· norm_num

Carleson/Classical/VanDerCorput.lean

Lines changed: 39 additions & 39 deletions
Original file line numberDiff line numberDiff line change
@@ -46,18 +46,18 @@ lemma intervalIntegrable_continuous_mul_lipschitzOnWith
4646
apply mem_image_of_mem
4747
exact Ioo_subset_Icc_self hx
4848

49-
lemma van_der_Corput {a b : ℝ} (hab : a ≤ b) {n : ℤ} {ϕ : ℝ → ℂ} {B K : ℝ≥0}
50-
(h1 : LipschitzOnWith K ϕ (Ioo a b)) (h2 : ∀ x ∈ Ioo a b, ‖ϕ x‖ ≤ B) :
51-
‖∫ x in a..b, exp (I * n * x) * ϕ x‖ ≤
49+
lemma van_der_Corput {a b : ℝ} (hab : a ≤ b) {n : ℤ} {φ : ℝ → ℂ} {B K : ℝ≥0}
50+
(h1 : LipschitzOnWith K φ (Ioo a b)) (h2 : ∀ x ∈ Ioo a b, ‖φ x‖ ≤ B) :
51+
‖∫ x in a..b, exp (I * n * x) * φ x‖ ≤
5252
2 * π * (b - a) * (B + K * (b - a) / 2) * (1 + |n| * (b - a))⁻¹ := by
5353
have hK : 0 ≤ K * (b - a) / 2 := by
5454
apply mul_nonneg (mul_nonneg (by simp) (by linarith)) (by norm_num)
5555
by_cases n_nonzero : n = 0
5656
· rw [n_nonzero]
5757
simp only [Int.cast_zero, mul_zero, zero_mul, exp_zero, one_mul, abs_zero,
5858
add_zero, inv_one, mul_one]
59-
calc ‖∫ x in a..b, ϕ x‖
60-
_ = ‖∫ x in Set.Ioo a b, ϕ x‖ := by
59+
calc ‖∫ x in a..b, φ x‖
60+
_ = ‖∫ x in Set.Ioo a b, φ x‖ := by
6161
rw [intervalIntegral.integral_of_le, ← integral_Ioc_eq_integral_Ioo]
6262
linarith
6363
_ ≤ B * (volume (Set.Ioo a b)).toReal := by
@@ -72,14 +72,14 @@ lemma van_der_Corput {a b : ℝ} (hab : a ≤ b) {n : ℤ} {ϕ : ℝ → ℂ} {B
7272
· exact sub_nonneg_of_le hab
7373
· linarith [Real.two_le_pi]
7474
· exact (le_add_iff_nonneg_right ↑B).mpr hK
75-
wlog n_pos : 0 < n generalizing n ϕ
75+
wlog n_pos : 0 < n generalizing n φ
7676
· /-We could do calculations analogous to those below. Instead, we apply the positive
7777
case to the complex conjugate.-/
7878
push_neg at n_pos
79-
calc ‖∫ x in a..b, cexp (I * ↑n * ↑x) * ϕ x‖
80-
_ = ‖(starRingEnd ℂ) (∫ x in a..b, cexp (I * ↑n * ↑x) * ϕ x)‖ :=
79+
calc ‖∫ x in a..b, cexp (I * ↑n * ↑x) * φ x‖
80+
_ = ‖(starRingEnd ℂ) (∫ x in a..b, cexp (I * ↑n * ↑x) * φ x)‖ :=
8181
(RCLike.norm_conj _).symm
82-
_ = ‖∫ x in a..b, cexp (I * ↑(-n) * ↑x) * ((starRingEnd ℂ) ∘ ϕ) x‖ := by
82+
_ = ‖∫ x in a..b, cexp (I * ↑(-n) * ↑x) * ((starRingEnd ℂ) ∘ φ) x‖ := by
8383
rw [intervalIntegral.integral_of_le (by linarith), ← integral_conj,
8484
← intervalIntegral.integral_of_le (by linarith)]
8585
congr
@@ -107,7 +107,7 @@ lemma van_der_Corput {a b : ℝ} (hab : a ≤ b) {n : ℤ} {ϕ : ℝ → ℂ} {B
107107
apply add_pos_of_pos_of_nonneg zero_lt_one
108108
apply mul_nonneg (by simp) (by linarith)
109109
calc _
110-
_ = ‖∫ x in Set.Ioo a b, cexp (I * ↑n * ↑x) * ϕ x‖ := by
110+
_ = ‖∫ x in Set.Ioo a b, cexp (I * ↑n * ↑x) * φ x‖ := by
111111
rw [intervalIntegral.integral_of_le, ← integral_Ioc_eq_integral_Ioo]
112112
linarith
113113
_ ≤ B * (volume (Set.Ioo a b)).toReal := by
@@ -137,30 +137,30 @@ lemma van_der_Corput {a b : ℝ} (hab : a ≤ b) {n : ℤ} {ϕ : ℝ → ℂ} {B
137137
push_neg at h
138138
have pi_div_n_pos : 0 < π / n := div_pos Real.pi_pos (Int.cast_pos.mpr n_pos)
139139
calc _
140-
_ = ‖∫ x in a..b, (1 / 2 * exp (I * n * x) - 1 / 2 * exp (I * ↑n * (↑x + ↑π / ↑n))) * ϕ x‖ := by
140+
_ = ‖∫ x in a..b, (1 / 2 * exp (I * n * x) - 1 / 2 * exp (I * ↑n * (↑x + ↑π / ↑n))) * φ x‖ := by
141141
congr
142142
ext x
143143
congr
144144
rw [mul_add, mul_assoc I n (π / n), mul_div_cancel₀ _ (by simpa), exp_add, mul_comm I π, exp_pi_mul_I]
145145
ring
146-
_ = ‖1 / 2 * ∫ x in a..b, cexp (I * ↑n * ↑x) * ϕ x - cexp (I * ↑n * (↑x + ↑π / ↑n)) * ϕ x‖ := by
146+
_ = ‖1 / 2 * ∫ x in a..b, cexp (I * ↑n * ↑x) * φ x - cexp (I * ↑n * (↑x + ↑π / ↑n)) * φ x‖ := by
147147
congr
148148
rw [← intervalIntegral.integral_const_mul]
149149
congr
150150
ext x
151151
ring
152-
_ = 1 / 2 * ‖(∫ x in a..b, exp (I * n * x) * ϕ x)
153-
- (∫ x in a..b, exp (I * n * (x + π / n)) * ϕ x)‖ := by
152+
_ = 1 / 2 * ‖(∫ x in a..b, exp (I * n * x) * φ x)
153+
- (∫ x in a..b, exp (I * n * (x + π / n)) * φ x)‖ := by
154154
rw [norm_mul]
155155
congr
156156
· simp
157157
rw [← intervalIntegral.integral_sub]
158158
· exact intervalIntegrable_continuous_mul_lipschitzOnWith hab (by fun_prop) h1
159159
· exact intervalIntegrable_continuous_mul_lipschitzOnWith hab (by fun_prop) h1
160-
_ = 1 / 2 * ‖ (∫ x in a..(a + π / n), exp (I * n * x) * ϕ x)
161-
+ (∫ x in (a + π / n)..b, exp (I * n * x) * ϕ x)
162-
-((∫ x in a..(b - π / n), exp (I * n * (x + π / n)) * ϕ x)
163-
+ (∫ x in (b - π / n)..b, exp (I * n * (x + π / n)) * ϕ x))‖ := by
160+
_ = 1 / 2 * ‖ (∫ x in a..(a + π / n), exp (I * n * x) * φ x)
161+
+ (∫ x in (a + π / n)..b, exp (I * n * x) * φ x)
162+
-((∫ x in a..(b - π / n), exp (I * n * (x + π / n)) * φ x)
163+
+ (∫ x in (b - π / n)..b, exp (I * n * (x + π / n)) * φ x))‖ := by
164164
congr 3
165165
· rw [intervalIntegral.integral_add_adjacent_intervals]
166166
· exact intervalIntegrable_continuous_mul_lipschitzOnWith (by linarith) (by fun_prop)
@@ -172,47 +172,47 @@ lemma van_der_Corput {a b : ℝ} (hab : a ≤ b) {n : ℤ} {ϕ : ℝ → ℂ} {B
172172
(h1.mono (Ioo_subset_Ioo le_rfl (by linarith)))
173173
· exact intervalIntegrable_continuous_mul_lipschitzOnWith (by linarith) (by fun_prop)
174174
(h1.mono (Ioo_subset_Ioo (by linarith) le_rfl))
175-
_ = 1 / 2 * ‖ (∫ x in a..(a + π / n), exp (I * n * x) * ϕ x)
176-
+ (∫ x in (a + π / n)..b, exp (I * n * x) * ϕ x)
177-
-((∫ x in (a + π / n)..(b - π / n + π / n), exp (I * n * x) * ϕ (x - π / n))
178-
+ (∫ x in (b - π / n)..b, exp (I * n * (x + π / n)) * ϕ x))‖ := by
175+
_ = 1 / 2 * ‖ (∫ x in a..(a + π / n), exp (I * n * x) * φ x)
176+
+ (∫ x in (a + π / n)..b, exp (I * n * x) * φ x)
177+
-((∫ x in (a + π / n)..(b - π / n + π / n), exp (I * n * x) * φ (x - π / n))
178+
+ (∫ x in (b - π / n)..b, exp (I * n * (x + π / n)) * φ x))‖ := by
179179
congr 4
180180
rw [← intervalIntegral.integral_comp_add_right]
181181
simp
182-
_ = 1 / 2 * ‖ (∫ x in a..(a + π / n), exp (I * n * x) * ϕ x)
183-
+((∫ x in (a + π / n)..b, exp (I * n * x) * ϕ x)
184-
- (∫ x in (a + π / n)..b, exp (I * n * x) * ϕ (x - π / n)))
185-
- (∫ x in (b - π / n)..b, exp (I * n * (x + π / n)) * ϕ x)‖ := by
182+
_ = 1 / 2 * ‖ (∫ x in a..(a + π / n), exp (I * n * x) * φ x)
183+
+((∫ x in (a + π / n)..b, exp (I * n * x) * φ x)
184+
- (∫ x in (a + π / n)..b, exp (I * n * x) * φ (x - π / n)))
185+
- (∫ x in (b - π / n)..b, exp (I * n * (x + π / n)) * φ x)‖ := by
186186
congr 2
187187
rw [sub_add_cancel]
188188
ring
189-
_ = 1 / 2 * ‖ (∫ x in a..(a + π / n), exp (I * n * x) * ϕ x)
190-
+ (∫ x in (a + π / n)..b, exp (I * n * x) * (ϕ x - ϕ (x - π / n)))
191-
- (∫ x in (b - π / n)..b, exp (I * n * (x + π / n)) * ϕ x)‖ := by
189+
_ = 1 / 2 * ‖ (∫ x in a..(a + π / n), exp (I * n * x) * φ x)
190+
+ (∫ x in (a + π / n)..b, exp (I * n * x) * (φ x - φ (x - π / n)))
191+
- (∫ x in (b - π / n)..b, exp (I * n * (x + π / n)) * φ x)‖ := by
192192
congr 4
193193
rw [← intervalIntegral.integral_sub]
194194
· congr
195195
ext x
196196
ring
197197
· exact intervalIntegrable_continuous_mul_lipschitzOnWith (by linarith) (by fun_prop)
198198
(h1.mono (Ioo_subset_Ioo (by linarith) le_rfl))
199-
· have : IntervalIntegrable (fun x ↦ cexp (I * ↑n * (x + π / n)) * ϕ x)
199+
· have : IntervalIntegrable (fun x ↦ cexp (I * ↑n * (x + π / n)) * φ x)
200200
volume a (b - π / n) := intervalIntegrable_continuous_mul_lipschitzOnWith
201201
(by linarith) (by fun_prop) (h1.mono (Ioo_subset_Ioo le_rfl (by linarith)))
202202
simpa using this.comp_sub_right (π / n)
203-
_ ≤ 1 / 2 * ( ‖(∫ x in a..(a + π / n), exp (I * n * x) * ϕ x)
204-
+ (∫ x in (a + π / n)..b, exp (I * n * x) * (ϕ x - ϕ (x - π / n)))‖
205-
+ ‖∫ x in (b - π / n)..b, exp (I * n * (x + π / n)) * ϕ x‖) := by
203+
_ ≤ 1 / 2 * ( ‖(∫ x in a..(a + π / n), exp (I * n * x) * φ x)
204+
+ (∫ x in (a + π / n)..b, exp (I * n * x) * (φ x - φ (x - π / n)))‖
205+
+ ‖∫ x in (b - π / n)..b, exp (I * n * (x + π / n)) * φ x‖) := by
206206
gcongr
207207
exact norm_sub_le ..
208-
_ ≤ 1 / 2 * ( ‖(∫ x in a..(a + π / n), exp (I * n * x) * ϕ x)‖
209-
+ ‖(∫ x in (a + π / n)..b, exp (I * n * x) * (ϕ x - ϕ (x - π / n)))‖
210-
+ ‖∫ x in (b - π / n)..b, exp (I * n * (x + π / n)) * ϕ x‖) := by
208+
_ ≤ 1 / 2 * ( ‖(∫ x in a..(a + π / n), exp (I * n * x) * φ x)‖
209+
+ ‖(∫ x in (a + π / n)..b, exp (I * n * x) * (φ x - φ (x - π / n)))‖
210+
+ ‖∫ x in (b - π / n)..b, exp (I * n * (x + π / n)) * φ x‖) := by
211211
gcongr
212212
exact norm_add_le ..
213-
_ = 1 / 2 * ( ‖∫ x in Ioo a (a + π / n), exp (I * n * x) * ϕ x‖
214-
+ ‖∫ x in Ioo (a + π / n) b, exp (I * n * x) * (ϕ x - ϕ (x - π / n))‖
215-
+ ‖∫ x in Ioo (b - π / n) b, exp (I * n * (x + π / n)) * ϕ x‖) := by
213+
_ = 1 / 2 * ( ‖∫ x in Ioo a (a + π / n), exp (I * n * x) * φ x‖
214+
+ ‖∫ x in Ioo (a + π / n) b, exp (I * n * x) * (φ x - φ (x - π / n))‖
215+
+ ‖∫ x in Ioo (b - π / n) b, exp (I * n * (x + π / n)) * φ x‖) := by
216216
congr
217217
all_goals
218218
rw [intervalIntegral.integral_of_le, ← integral_Ioc_eq_integral_Ioo]

Carleson/Defs.lean

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -116,19 +116,19 @@ variable [hXA : DoublingMeasure X A]
116116

117117
/-- The inhomogeneous Lipschitz norm on a ball. -/
118118
def iLipENorm {𝕜 X : Type*} [NormedField 𝕜] [PseudoMetricSpace X]
119-
(ϕ : X → 𝕜) (x₀ : X) (R : ℝ) : ℝ≥0∞ :=
120-
(⨆ x ∈ ball x₀ R, ‖ϕ x‖ₑ) +
121-
ENNReal.ofReal R * ⨆ (x ∈ ball x₀ R) (y ∈ ball x₀ R) (_ : x ≠ y), ‖ϕ x - ϕ y‖ₑ / edist x y
119+
(φ : X → 𝕜) (x₀ : X) (R : ℝ) : ℝ≥0∞ :=
120+
(⨆ x ∈ ball x₀ R, ‖φ x‖ₑ) +
121+
ENNReal.ofReal R * ⨆ (x ∈ ball x₀ R) (y ∈ ball x₀ R) (_ : x ≠ y), ‖φ x - φ y‖ₑ / edist x y
122122

123123
variable (X) in
124124
/-- Θ is τ-cancellative. `τ` will usually be `1 / a` -/
125125
class IsCancellative (τ : ℝ) [CompatibleFunctions ℝ X A] : Prop where
126126
/- We register a definition with strong assumptions, which makes them easier to prove.
127127
However, `enorm_integral_exp_le` removes them for easier application. -/
128-
enorm_integral_exp_le' {x : X} {r : ℝ} {ϕ : X → ℂ} (hr : 0 < r) (h1 : iLipENorm ϕ x r ≠ ∞)
129-
(h2 : support ϕ ⊆ ball x r) {f g : Θ X} :
130-
‖∫ x, exp (I * (f x - g x)) * ϕ x‖ₑ ≤
131-
(A : ℝ≥0∞) * volume (ball x r) * iLipENorm ϕ x r * (1 + edist_{x, r} f g) ^ (- τ)
128+
enorm_integral_exp_le' {x : X} {r : ℝ} {φ : X → ℂ} (hr : 0 < r) (h1 : iLipENorm φ x r ≠ ∞)
129+
(h2 : support φ ⊆ ball x r) {f g : Θ X} :
130+
‖∫ x, exp (I * (f x - g x)) * φ x‖ₑ ≤
131+
(A : ℝ≥0∞) * volume (ball x r) * iLipENorm φ x r * (1 + edist_{x, r} f g) ^ (- τ)
132132

133133
/-- The "volume function" `V`. Preferably use `vol` instead. -/
134134
protected def Real.vol {X : Type*} [PseudoMetricSpace X] [MeasureSpace X] (x y : X) : ℝ :=

Carleson/DoublingMeasure.lean

Lines changed: 11 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -239,9 +239,9 @@ lemma cancelPt_eq_zero [CompatibleFunctions 𝕜 X A] {f : Θ X} : f (cancelPt X
239239
variable [hXA : DoublingMeasure X A]
240240

241241
lemma enorm_integral_exp_le [CompatibleFunctions ℝ X A] {τ : ℝ} [IsCancellative X τ]
242-
{x : X} {r : ℝ} {ϕ : X → ℂ} (h2 : support ϕ ⊆ ball x r) {f g : Θ X} :
243-
‖∫ x, exp (I * (f x - g x)) * ϕ x‖ₑ ≤
244-
(A : ℝ≥0∞) * volume (ball x r) * iLipENorm ϕ x r * (1 + edist_{x, r} f g) ^ (- τ) := by
242+
{x : X} {r : ℝ} {φ : X → ℂ} (h2 : support φ ⊆ ball x r) {f g : Θ X} :
243+
‖∫ x, exp (I * (f x - g x)) * φ x‖ₑ ≤
244+
(A : ℝ≥0∞) * volume (ball x r) * iLipENorm φ x r * (1 + edist_{x, r} f g) ^ (- τ) := by
245245
rcases le_or_gt r 0 with hr | hr
246246
· simp only [ball_eq_empty.2 hr, subset_empty_iff, support_eq_empty_iff] at h2
247247
simp [h2]
@@ -251,26 +251,26 @@ lemma enorm_integral_exp_le [CompatibleFunctions ℝ X A] {τ : ℝ} [IsCancella
251251
simp at this
252252
apply eq_zero_of_isDoubling_zero
253253
simp [this]
254-
rcases eq_or_ne (iLipENorm ϕ x r) ∞ with h1 | h1
254+
rcases eq_or_ne (iLipENorm φ x r) ∞ with h1 | h1
255255
· apply le_top.trans_eq
256256
symm
257257
simp [h1, edist_ne_top, hA, (measure_ball_pos volume x hr).ne']
258258
exact IsCancellative.enorm_integral_exp_le' hr h1 h2
259259

260260
/-- Constructor of `IsCancellative` in terms of real norms instead of extended reals. -/
261261
lemma isCancellative_of_norm_integral_exp_le (τ : ℝ) [CompatibleFunctions ℝ X A]
262-
(h : ∀ {x : X} {r : ℝ} {ϕ : X → ℂ} (_hr : 0 < r) (_h1 : iLipENorm ϕ x r ≠ ∞)
263-
(_h2 : support ϕ ⊆ ball x r) {f g : Θ X},
264-
‖∫ x in ball x r, exp (I * (f x - g x)) * ϕ x‖ ≤
265-
A * volume.real (ball x r) * iLipNNNorm ϕ x r * (1 + dist_{x, r} f g) ^ (-τ)) :
262+
(h : ∀ {x : X} {r : ℝ} {φ : X → ℂ} (_hr : 0 < r) (_h1 : iLipENorm φ x r ≠ ∞)
263+
(_h2 : support φ ⊆ ball x r) {f g : Θ X},
264+
‖∫ x in ball x r, exp (I * (f x - g x)) * φ x‖ ≤
265+
A * volume.real (ball x r) * iLipNNNorm φ x r * (1 + dist_{x, r} f g) ^ (-τ)) :
266266
IsCancellative X τ := by
267267
constructor
268-
intro x r ϕ hr h1 h2 f g
269-
convert ENNReal.ofReal_le_ofReal (h (x := x) (r := r) (ϕ := ϕ) hr h1 h2 (f := f) (g := g))
268+
intro x r φ hr h1 h2 f g
269+
convert ENNReal.ofReal_le_ofReal (h (x := x) (r := r) (φ := φ) hr h1 h2 (f := f) (g := g))
270270
· rw [ofReal_norm_eq_enorm]
271271
congr 1
272272
rw [setIntegral_eq_integral_of_forall_compl_eq_zero (fun y hy ↦ ?_)]
273-
have : ϕ y = 0 := by
273+
have : φ y = 0 := by
274274
apply notMem_support.1
275275
contrapose! hy
276276
exact h2 hy

0 commit comments

Comments
 (0)