@@ -46,18 +46,18 @@ lemma intervalIntegrable_continuous_mul_lipschitzOnWith
4646 apply mem_image_of_mem
4747 exact Ioo_subset_Icc_self hx
4848
49- lemma van_der_Corput {a b : ℝ} (hab : a ≤ b) {n : ℤ} {ϕ : ℝ → ℂ} {B K : ℝ≥0 }
50- (h1 : LipschitzOnWith K ϕ (Ioo a b)) (h2 : ∀ x ∈ Ioo a b, ‖ϕ x‖ ≤ B) :
51- ‖∫ x in a..b, exp (I * n * x) * ϕ x‖ ≤
49+ lemma van_der_Corput {a b : ℝ} (hab : a ≤ b) {n : ℤ} {φ : ℝ → ℂ} {B K : ℝ≥0 }
50+ (h1 : LipschitzOnWith K φ (Ioo a b)) (h2 : ∀ x ∈ Ioo a b, ‖φ x‖ ≤ B) :
51+ ‖∫ x in a..b, exp (I * n * x) * φ x‖ ≤
5252 2 * π * (b - a) * (B + K * (b - a) / 2 ) * (1 + |n| * (b - a))⁻¹ := by
5353 have hK : 0 ≤ K * (b - a) / 2 := by
5454 apply mul_nonneg (mul_nonneg (by simp) (by linarith)) (by norm_num)
5555 by_cases n_nonzero : n = 0
5656 · rw [n_nonzero]
5757 simp only [Int.cast_zero, mul_zero, zero_mul, exp_zero, one_mul, abs_zero,
5858 add_zero, inv_one, mul_one]
59- calc ‖∫ x in a..b, ϕ x‖
60- _ = ‖∫ x in Set.Ioo a b, ϕ x‖ := by
59+ calc ‖∫ x in a..b, φ x‖
60+ _ = ‖∫ x in Set.Ioo a b, φ x‖ := by
6161 rw [intervalIntegral.integral_of_le, ← integral_Ioc_eq_integral_Ioo]
6262 linarith
6363 _ ≤ B * (volume (Set.Ioo a b)).toReal := by
@@ -72,14 +72,14 @@ lemma van_der_Corput {a b : ℝ} (hab : a ≤ b) {n : ℤ} {ϕ : ℝ → ℂ} {B
7272 · exact sub_nonneg_of_le hab
7373 · linarith [Real.two_le_pi]
7474 · exact (le_add_iff_nonneg_right ↑B).mpr hK
75- wlog n_pos : 0 < n generalizing n ϕ
75+ wlog n_pos : 0 < n generalizing n φ
7676 · /-We could do calculations analogous to those below. Instead, we apply the positive
7777 case to the complex conjugate.-/
7878 push_neg at n_pos
79- calc ‖∫ x in a..b, cexp (I * ↑n * ↑x) * ϕ x‖
80- _ = ‖(starRingEnd ℂ) (∫ x in a..b, cexp (I * ↑n * ↑x) * ϕ x)‖ :=
79+ calc ‖∫ x in a..b, cexp (I * ↑n * ↑x) * φ x‖
80+ _ = ‖(starRingEnd ℂ) (∫ x in a..b, cexp (I * ↑n * ↑x) * φ x)‖ :=
8181 (RCLike.norm_conj _).symm
82- _ = ‖∫ x in a..b, cexp (I * ↑(-n) * ↑x) * ((starRingEnd ℂ) ∘ ϕ ) x‖ := by
82+ _ = ‖∫ x in a..b, cexp (I * ↑(-n) * ↑x) * ((starRingEnd ℂ) ∘ φ ) x‖ := by
8383 rw [intervalIntegral.integral_of_le (by linarith), ← integral_conj,
8484 ← intervalIntegral.integral_of_le (by linarith)]
8585 congr
@@ -107,7 +107,7 @@ lemma van_der_Corput {a b : ℝ} (hab : a ≤ b) {n : ℤ} {ϕ : ℝ → ℂ} {B
107107 apply add_pos_of_pos_of_nonneg zero_lt_one
108108 apply mul_nonneg (by simp) (by linarith)
109109 calc _
110- _ = ‖∫ x in Set.Ioo a b, cexp (I * ↑n * ↑x) * ϕ x‖ := by
110+ _ = ‖∫ x in Set.Ioo a b, cexp (I * ↑n * ↑x) * φ x‖ := by
111111 rw [intervalIntegral.integral_of_le, ← integral_Ioc_eq_integral_Ioo]
112112 linarith
113113 _ ≤ B * (volume (Set.Ioo a b)).toReal := by
@@ -137,30 +137,30 @@ lemma van_der_Corput {a b : ℝ} (hab : a ≤ b) {n : ℤ} {ϕ : ℝ → ℂ} {B
137137 push_neg at h
138138 have pi_div_n_pos : 0 < π / n := div_pos Real.pi_pos (Int.cast_pos.mpr n_pos)
139139 calc _
140- _ = ‖∫ x in a..b, (1 / 2 * exp (I * n * x) - 1 / 2 * exp (I * ↑n * (↑x + ↑π / ↑n))) * ϕ x‖ := by
140+ _ = ‖∫ x in a..b, (1 / 2 * exp (I * n * x) - 1 / 2 * exp (I * ↑n * (↑x + ↑π / ↑n))) * φ x‖ := by
141141 congr
142142 ext x
143143 congr
144144 rw [mul_add, mul_assoc I n (π / n), mul_div_cancel₀ _ (by simpa), exp_add, mul_comm I π, exp_pi_mul_I]
145145 ring
146- _ = ‖1 / 2 * ∫ x in a..b, cexp (I * ↑n * ↑x) * ϕ x - cexp (I * ↑n * (↑x + ↑π / ↑n)) * ϕ x‖ := by
146+ _ = ‖1 / 2 * ∫ x in a..b, cexp (I * ↑n * ↑x) * φ x - cexp (I * ↑n * (↑x + ↑π / ↑n)) * φ x‖ := by
147147 congr
148148 rw [← intervalIntegral.integral_const_mul]
149149 congr
150150 ext x
151151 ring
152- _ = 1 / 2 * ‖(∫ x in a..b, exp (I * n * x) * ϕ x)
153- - (∫ x in a..b, exp (I * n * (x + π / n)) * ϕ x)‖ := by
152+ _ = 1 / 2 * ‖(∫ x in a..b, exp (I * n * x) * φ x)
153+ - (∫ x in a..b, exp (I * n * (x + π / n)) * φ x)‖ := by
154154 rw [norm_mul]
155155 congr
156156 · simp
157157 rw [← intervalIntegral.integral_sub]
158158 · exact intervalIntegrable_continuous_mul_lipschitzOnWith hab (by fun_prop) h1
159159 · exact intervalIntegrable_continuous_mul_lipschitzOnWith hab (by fun_prop) h1
160- _ = 1 / 2 * ‖ (∫ x in a..(a + π / n), exp (I * n * x) * ϕ x)
161- + (∫ x in (a + π / n)..b, exp (I * n * x) * ϕ x)
162- -((∫ x in a..(b - π / n), exp (I * n * (x + π / n)) * ϕ x)
163- + (∫ x in (b - π / n)..b, exp (I * n * (x + π / n)) * ϕ x))‖ := by
160+ _ = 1 / 2 * ‖ (∫ x in a..(a + π / n), exp (I * n * x) * φ x)
161+ + (∫ x in (a + π / n)..b, exp (I * n * x) * φ x)
162+ -((∫ x in a..(b - π / n), exp (I * n * (x + π / n)) * φ x)
163+ + (∫ x in (b - π / n)..b, exp (I * n * (x + π / n)) * φ x))‖ := by
164164 congr 3
165165 · rw [intervalIntegral.integral_add_adjacent_intervals]
166166 · exact intervalIntegrable_continuous_mul_lipschitzOnWith (by linarith) (by fun_prop)
@@ -172,47 +172,47 @@ lemma van_der_Corput {a b : ℝ} (hab : a ≤ b) {n : ℤ} {ϕ : ℝ → ℂ} {B
172172 (h1.mono (Ioo_subset_Ioo le_rfl (by linarith)))
173173 · exact intervalIntegrable_continuous_mul_lipschitzOnWith (by linarith) (by fun_prop)
174174 (h1.mono (Ioo_subset_Ioo (by linarith) le_rfl))
175- _ = 1 / 2 * ‖ (∫ x in a..(a + π / n), exp (I * n * x) * ϕ x)
176- + (∫ x in (a + π / n)..b, exp (I * n * x) * ϕ x)
177- -((∫ x in (a + π / n)..(b - π / n + π / n), exp (I * n * x) * ϕ (x - π / n))
178- + (∫ x in (b - π / n)..b, exp (I * n * (x + π / n)) * ϕ x))‖ := by
175+ _ = 1 / 2 * ‖ (∫ x in a..(a + π / n), exp (I * n * x) * φ x)
176+ + (∫ x in (a + π / n)..b, exp (I * n * x) * φ x)
177+ -((∫ x in (a + π / n)..(b - π / n + π / n), exp (I * n * x) * φ (x - π / n))
178+ + (∫ x in (b - π / n)..b, exp (I * n * (x + π / n)) * φ x))‖ := by
179179 congr 4
180180 rw [← intervalIntegral.integral_comp_add_right]
181181 simp
182- _ = 1 / 2 * ‖ (∫ x in a..(a + π / n), exp (I * n * x) * ϕ x)
183- +((∫ x in (a + π / n)..b, exp (I * n * x) * ϕ x)
184- - (∫ x in (a + π / n)..b, exp (I * n * x) * ϕ (x - π / n)))
185- - (∫ x in (b - π / n)..b, exp (I * n * (x + π / n)) * ϕ x)‖ := by
182+ _ = 1 / 2 * ‖ (∫ x in a..(a + π / n), exp (I * n * x) * φ x)
183+ +((∫ x in (a + π / n)..b, exp (I * n * x) * φ x)
184+ - (∫ x in (a + π / n)..b, exp (I * n * x) * φ (x - π / n)))
185+ - (∫ x in (b - π / n)..b, exp (I * n * (x + π / n)) * φ x)‖ := by
186186 congr 2
187187 rw [sub_add_cancel]
188188 ring
189- _ = 1 / 2 * ‖ (∫ x in a..(a + π / n), exp (I * n * x) * ϕ x)
190- + (∫ x in (a + π / n)..b, exp (I * n * x) * (ϕ x - ϕ (x - π / n)))
191- - (∫ x in (b - π / n)..b, exp (I * n * (x + π / n)) * ϕ x)‖ := by
189+ _ = 1 / 2 * ‖ (∫ x in a..(a + π / n), exp (I * n * x) * φ x)
190+ + (∫ x in (a + π / n)..b, exp (I * n * x) * (φ x - φ (x - π / n)))
191+ - (∫ x in (b - π / n)..b, exp (I * n * (x + π / n)) * φ x)‖ := by
192192 congr 4
193193 rw [← intervalIntegral.integral_sub]
194194 · congr
195195 ext x
196196 ring
197197 · exact intervalIntegrable_continuous_mul_lipschitzOnWith (by linarith) (by fun_prop)
198198 (h1.mono (Ioo_subset_Ioo (by linarith) le_rfl))
199- · have : IntervalIntegrable (fun x ↦ cexp (I * ↑n * (x + π / n)) * ϕ x)
199+ · have : IntervalIntegrable (fun x ↦ cexp (I * ↑n * (x + π / n)) * φ x)
200200 volume a (b - π / n) := intervalIntegrable_continuous_mul_lipschitzOnWith
201201 (by linarith) (by fun_prop) (h1.mono (Ioo_subset_Ioo le_rfl (by linarith)))
202202 simpa using this.comp_sub_right (π / n)
203- _ ≤ 1 / 2 * ( ‖(∫ x in a..(a + π / n), exp (I * n * x) * ϕ x)
204- + (∫ x in (a + π / n)..b, exp (I * n * x) * (ϕ x - ϕ (x - π / n)))‖
205- + ‖∫ x in (b - π / n)..b, exp (I * n * (x + π / n)) * ϕ x‖) := by
203+ _ ≤ 1 / 2 * ( ‖(∫ x in a..(a + π / n), exp (I * n * x) * φ x)
204+ + (∫ x in (a + π / n)..b, exp (I * n * x) * (φ x - φ (x - π / n)))‖
205+ + ‖∫ x in (b - π / n)..b, exp (I * n * (x + π / n)) * φ x‖) := by
206206 gcongr
207207 exact norm_sub_le ..
208- _ ≤ 1 / 2 * ( ‖(∫ x in a..(a + π / n), exp (I * n * x) * ϕ x)‖
209- + ‖(∫ x in (a + π / n)..b, exp (I * n * x) * (ϕ x - ϕ (x - π / n)))‖
210- + ‖∫ x in (b - π / n)..b, exp (I * n * (x + π / n)) * ϕ x‖) := by
208+ _ ≤ 1 / 2 * ( ‖(∫ x in a..(a + π / n), exp (I * n * x) * φ x)‖
209+ + ‖(∫ x in (a + π / n)..b, exp (I * n * x) * (φ x - φ (x - π / n)))‖
210+ + ‖∫ x in (b - π / n)..b, exp (I * n * (x + π / n)) * φ x‖) := by
211211 gcongr
212212 exact norm_add_le ..
213- _ = 1 / 2 * ( ‖∫ x in Ioo a (a + π / n), exp (I * n * x) * ϕ x‖
214- + ‖∫ x in Ioo (a + π / n) b, exp (I * n * x) * (ϕ x - ϕ (x - π / n))‖
215- + ‖∫ x in Ioo (b - π / n) b, exp (I * n * (x + π / n)) * ϕ x‖) := by
213+ _ = 1 / 2 * ( ‖∫ x in Ioo a (a + π / n), exp (I * n * x) * φ x‖
214+ + ‖∫ x in Ioo (a + π / n) b, exp (I * n * x) * (φ x - φ (x - π / n))‖
215+ + ‖∫ x in Ioo (b - π / n) b, exp (I * n * (x + π / n)) * φ x‖) := by
216216 congr
217217 all_goals
218218 rw [intervalIntegral.integral_of_le, ← integral_Ioc_eq_integral_Ioo]
0 commit comments