@@ -497,7 +497,8 @@ lemma C_control_approximation_effect_pos {ε : ℝ} (εpos : 0 < ε) : 0 < C_con
497497 lt_trans' (lt_C_control_approximation_effect εpos) pi_pos
498498
499499lemma C_control_approximation_effect_eq {ε : ℝ} {δ : ℝ} (ε_nonneg : 0 ≤ ε) :
500- C_control_approximation_effect ε * δ = ((δ * C10_0_1 4 2 * (4 * π) ^ (2 : ℝ)⁻¹ * (2 / ε) ^ (2 : ℝ)⁻¹) / π) + π * δ := by
500+ C_control_approximation_effect ε * δ =
501+ ((δ * C10_0_1 4 2 * (4 * π) ^ (2 : ℝ)⁻¹ * (2 / ε) ^ (2 : ℝ)⁻¹) / π) + π * δ := by
501502 symm
502503 rw [C_control_approximation_effect, mul_comm, mul_div_right_comm, mul_comm δ, mul_assoc,
503504 mul_comm δ, ← mul_assoc, ← mul_assoc, ← add_mul, mul_comm _ (C10_0_1 4 2 : ℝ), mul_assoc]
@@ -507,13 +508,28 @@ lemma C_control_approximation_effect_eq {ε : ℝ} {δ : ℝ} (ε_nonneg : 0 ≤
507508 ring_nf
508509 try rw [mul_assoc, mul_comm (2 ^ _), mul_assoc, mul_assoc, mul_assoc, mul_comm (4 ^ _), ← mul_assoc π⁻¹,
509510 ← Real.rpow_neg_one π, ← Real.rpow_add, mul_comm (π ^ _), ← mul_assoc (2 ^ _), ← Real.mul_rpow]
510- on_goal 1 => congr
511- · norm_num
512- on_goal 1 => ring_nf
513- on_goal 1 => rw [neg_div, Real.rpow_neg]
511+ on_goal 1 =>
512+ field_simp
513+ ring_nf
514+ calc _
515+ _ = (π ^ (1 / (2 : ℝ))) ^ 2 * 2 ^ (1 / (2 : ℝ)) * (ε ^ (1 / (2 : ℝ)))⁻¹ * 2 := by ring
516+ _ = π * 2 ^ (1 / (2 : ℝ)) * (ε ^ (1 / (2 : ℝ)))⁻¹ * 2 := by
517+ -- Golfing of this proof welcome!
518+ congr
519+ rw [← Real.sqrt_eq_rpow π, Real.sq_sqrt', max_eq_left_iff]
520+ positivity
521+ _ = π * (2 ^ (1 / (2 : ℝ)) * 2 ) * (ε ^ (1 / (2 : ℝ)))⁻¹ := by ring
522+ _ = π * 8 ^ (1 / (2 : ℝ)) * (ε ^ (1 / (2 : ℝ)))⁻¹ := by
523+ congr
524+ -- Golfing of this computation is very welcome!
525+ rw [← Real.sqrt_eq_rpow, ← Real.sqrt_eq_rpow]
526+ have : Real.sqrt 4 = 2 := Real.sqrt_eq_cases.mpr <| Or.inl ⟨by norm_num, by positivity⟩
527+ nth_rw 2 [← this]
528+ rw [← Real.sqrt_mul (by positivity) 4 ]
529+ norm_num
530+ _ = (ε ^ (1 / (2 : ℝ)))⁻¹ * π * 8 ^ (1 / (2 : ℝ)) := by ring
514531 all_goals linarith [pi_pos]
515532
516-
517533/- This is Lemma 11.6.4 (partial Fourier sums of small) in the blueprint.-/
518534lemma control_approximation_effect {ε : ℝ} (εpos : 0 < ε) {δ : ℝ} (hδ : 0 < δ)
519535 {h : ℝ → ℂ} (h_measurable : Measurable h)
0 commit comments