@@ -777,33 +777,36 @@ protected lemma AEMeasurable.czRemainder' {hf : AEMeasurable f} (hX : GeneralCas
777777 exact (hf.sub <| aemeasurable_czApproximation (hf := hf)).restrict
778778
779779/-- Part of Lemma 10.2.5 (both cases). -/
780+ @[fun_prop]
780781protected lemma BoundedFiniteSupport.czApproximation {α : ℝ≥0 ∞} (hα : 0 < α)
781782 (hf : BoundedFiniteSupport f) : BoundedFiniteSupport (czApproximation f α) := by
782783 by_cases h : Nonempty X; swap
783784 · have := not_nonempty_iff.mp h; constructor <;> simp
784785 constructor
785786 · use (aemeasurable_czApproximation (hf := aemeasurable hf)).aestronglyMeasurable
786- refine lt_of_le_of_lt ?_ (eLpNorm_lt_top hf)
787+ refine lt_of_le_of_lt ?_ hf.eLpNorm_lt_top
787788 apply essSup_le_of_ae_le _ <| (ENNReal.ae_le_essSup (‖f ·‖ₑ)).mono (fun x h ↦ ?_)
788789 by_cases hX : GeneralCase f α
789790 · by_cases hx : ∃ j, x ∈ czPartition hX j
790791 · have ⟨j, hj⟩ := hx
791792 rw [czApproximation_def_of_mem hj]
792- exact le_trans (enorm_integral_le_lintegral_enorm _) (setLAverage_le_essSup _)
793+ exact (enorm_integral_le_lintegral_enorm _).trans (setLAverage_le_essSup _)
793794 · simp [czApproximation, eLpNormEssSup, hX, hx, h]
794795 · simp only [czApproximation, hX, reduceDIte]
795- exact le_trans (enorm_integral_le_lintegral_enorm _) (laverage_le_essSup _)
796+ exact (enorm_integral_le_lintegral_enorm _).trans (laverage_le_essSup _)
796797 · by_cases hX : GeneralCase f α; swap
797798 · exact lt_of_le_of_lt (measure_mono (subset_univ _)) <| volume_lt_of_not_GeneralCase hf hX hα
798799 calc volume (support (czApproximation f α))
799800 _ ≤ volume (globalMaximalFunction volume 1 f ⁻¹' Ioi α ∪ support f) := by
800- refine measure_mono (fun x mem_supp ↦ ?_)
801+ gcongr
802+ intro x mem_supp
801803 by_cases hx : ∃ j, x ∈ czPartition hX j
802804 · left; rw [← iUnion_czPartition (hX := hX)]; exact (mem_iUnion.mpr hx)
803805 · right; simpa [czApproximation, hX, hx] using mem_supp
804806 _ ≤ volume _ + volume (support f) := measure_union_le _ _
805807 _ < ∞ := add_lt_top.mpr ⟨globalMaximalFunction_preimage_finite hα hf, hf.measure_support_lt⟩
806808
809+ @[fun_prop]
807810protected lemma BoundedFiniteSupport.czRemainder (hα : 0 < α) {hf : BoundedFiniteSupport f} :
808811 BoundedFiniteSupport (czRemainder f α) :=
809812 hf.sub (hf.czApproximation hα)
@@ -814,8 +817,8 @@ protected lemma BoundedFiniteSupport.czRemainder' (hα : 0 < α) {hf : BoundedFi
814817 (hf.sub (hf.czApproximation hα)).indicator (MeasurableSet.czPartition hX i)
815818
816819protected lemma AEMeasurable.czRemainder (hα : 0 < α) {hf : BoundedFiniteSupport f} :
817- AEMeasurable (czRemainder f α) :=
818- (hf.czRemainder hα).aemeasurable
820+ AEMeasurable (czRemainder f α) := by
821+ fun_prop (discharger := assumption)
819822
820823/-- Part of Lemma 10.2.5, equation (10.2.16) (both cases).
821824This is true by definition, the work lies in `tsum_czRemainder'` -/
0 commit comments