11import Carleson.TileStructure
2+ import Carleson.HolderNorm
23
34/-! This should roughly contain the contents of chapter 8. -/
45
@@ -236,17 +237,19 @@ lemma dist_holderApprox_le {z : X} {R t : ℝ} (hR : 0 < R) {C : ℝ≥0} (ht :
236237
237238lemma enorm_holderApprox_sub_le {z : X} {R t : ℝ} (hR : 0 < R) (ht : 0 < t) (h't : t ≤ 1 )
238239 {ϕ : X → ℂ} (hϕ : support ϕ ⊆ ball z R) (x : X) :
239- ‖ϕ x - holderApprox R t ϕ x‖ₑ ≤ ENNReal.ofReal (t/2 ) ^ τ * iHolENorm ϕ z (2 * R) := by
240- rcases eq_or_ne (iHolENorm ϕ z (2 * R)) ∞ with h | h
240+ ‖ϕ x - holderApprox R t ϕ x‖ₑ ≤ ENNReal.ofReal (t/2 ) ^ τ * iHolENorm ϕ z (2 * R) τ := by
241+ rcases eq_or_ne (iHolENorm ϕ z (2 * R) τ ) ∞ with h | h
241242 · apply le_top.trans_eq
242243 symm
244+ simp only [defaultτ] at h
243245 simp [h, ENNReal.mul_eq_top, ht]
244- have : iHolENorm ϕ z (2 * R) = ENNReal.ofReal (iHolNNNorm ϕ z (2 * R)) := by
246+ have : iHolENorm ϕ z (2 * R) τ = ENNReal.ofReal (iHolNNNorm ϕ z (2 * R) τ ) := by
245247 simp only [iHolNNNorm, ENNReal.ofReal_coe_nnreal, ENNReal.coe_toNNReal h]
246248 rw [ENNReal.ofReal_rpow_of_pos (by linarith), this, ← ENNReal.ofReal_mul (by positivity),
247249 ← ofReal_norm_eq_enorm, ← dist_eq_norm]
248250 apply ENNReal.ofReal_le_ofReal
249- apply (dist_holderApprox_le hR ht h't hϕ (HolderOnWith.of_iHolENorm_ne_top h) x).trans_eq
251+ apply dist_holderApprox_le hR ht h't hϕ
252+ (by simpa [nnτ_def] using HolderOnWith.of_iHolENorm_ne_top (τ_nonneg X) h) x |>.trans_eq
250253 simp [field, NNReal.coe_div, hR.le]
251254
252255
@@ -471,14 +474,15 @@ lemma iLipENorm_holderApprox' {z : X} {R t : ℝ} (ht : 0 < t) (h't : t ≤ 1)
471474lemma iLipENorm_holderApprox_le {z : X} {R t : ℝ} (ht : 0 < t) (h't : t ≤ 1 )
472475 {ϕ : X → ℂ} (hϕ : support ϕ ⊆ ball z R) :
473476 iLipENorm (holderApprox R t ϕ) z (2 * R) ≤
474- 2 ^ (4 * a) * (ENNReal.ofReal t) ^ (-1 - a : ℝ) * iHolENorm ϕ z (2 * R) := by
475- rcases eq_or_ne (iHolENorm ϕ z (2 * R)) ∞ with h'ϕ | h'ϕ
477+ 2 ^ (4 * a) * (ENNReal.ofReal t) ^ (-1 - a : ℝ) * iHolENorm ϕ z (2 * R) τ := by
478+ rcases eq_or_ne (iHolENorm ϕ z (2 * R) τ ) ∞ with h'ϕ | h'ϕ
476479 · apply le_top.trans_eq
477480 rw [eq_comm]
481+ simp only [defaultτ] at h'ϕ
478482 simp [h'ϕ, ht]
479483 rw [← ENNReal.coe_toNNReal h'ϕ]
480484 apply iLipENorm_holderApprox' ht h't
481- · apply continuous_of_iHolENorm_ne_top' hϕ h'ϕ
485+ · apply continuous_of_iHolENorm_ne_top' (τ_pos X) hϕ h'ϕ
482486 · exact hϕ
483487 · apply fun x ↦ norm_le_iHolNNNorm_of_subset h'ϕ (hϕ.trans ?_)
484488 intro y hy
@@ -495,16 +499,17 @@ def C2_0_5 (a : ℝ) : ℝ≥0 := 2 ^ (7 * a)
495499theorem holder_van_der_corput {z : X} {R : ℝ} {ϕ : X → ℂ}
496500 (ϕ_supp : support ϕ ⊆ ball z R) {f g : Θ X} :
497501 ‖∫ x, exp (I * (f x - g x)) * ϕ x‖ₑ ≤
498- (C2_0_5 a : ℝ≥0 ∞) * volume (ball z R) * iHolENorm ϕ z (2 * R) *
502+ (C2_0_5 a : ℝ≥0 ∞) * volume (ball z R) * iHolENorm ϕ z (2 * R) τ *
499503 (1 + edist_{z, R} f g) ^ (- (2 * a^2 + a^3 : ℝ)⁻¹) := by
500504 have : 4 ≤ a := four_le_a X
501505 have : (4 : ℝ) ≤ a := mod_cast four_le_a X
502506 rcases le_or_gt R 0 with hR | hR
503507 · simp [ball_eq_empty.2 hR, subset_empty_iff, support_eq_empty_iff] at ϕ_supp
504508 simp [ϕ_supp]
505- rcases eq_or_ne (iHolENorm ϕ z (2 * R)) ∞ with h2ϕ | h2ϕ
509+ rcases eq_or_ne (iHolENorm ϕ z (2 * R) τ ) ∞ with h2ϕ | h2ϕ
506510 · apply le_top.trans_eq
507511 symm
512+ simp only [defaultτ] at h2ϕ
508513 have : (0 : ℝ) < 2 * a ^ 2 + a ^ 3 := by positivity
509514 simp [h2ϕ, C2_0_5, (measure_ball_pos volume z hR).ne', this, edist_ne_top]
510515 let t : ℝ := (1 + nndist_{z, R} f g) ^ (- (τ / (2 + a)))
@@ -514,7 +519,7 @@ theorem holder_van_der_corput {z : X} {R : ℝ} {ϕ : X → ℂ}
514519 · simp only [le_add_iff_nonneg_right, NNReal.zero_le_coe]
515520 · simp only [defaultτ, Left.neg_nonpos_iff]
516521 positivity
517- have ϕ_cont : Continuous ϕ := continuous_of_iHolENorm_ne_top' ϕ_supp h2ϕ
522+ have ϕ_cont : Continuous ϕ := continuous_of_iHolENorm_ne_top' (τ_pos X) ϕ_supp h2ϕ
518523 have ϕ_comp : HasCompactSupport ϕ := by
519524 apply HasCompactSupport.of_support_subset_isCompact (isCompact_closedBall z R)
520525 exact ϕ_supp.trans ball_subset_closedBall
@@ -546,14 +551,14 @@ theorem holder_van_der_corput {z : X} {R : ℝ} {ϕ : X → ℂ}
546551 · field_simp
547552 nlinarith
548553 have : ‖∫ x, exp (I * (f x - g x)) * ϕ' x‖ₑ ≤ 2 ^ (6 * a) * volume (ball z R)
549- * iHolENorm ϕ z (2 * R) * (1 + edist_{z, R} f g) ^ (- τ ^ 2 / (2 + a)) := calc
554+ * iHolENorm ϕ z (2 * R) τ * (1 + edist_{z, R} f g) ^ (- τ ^ 2 / (2 + a)) := calc
550555 ‖∫ x, exp (I * (f x - g x)) * ϕ' x‖ₑ
551556 _ ≤ 2 ^ a * volume (ball z (2 * R))
552557 * iLipENorm ϕ' z (2 * R) * (1 + edist_{z, 2 * R} f g) ^ (- τ) := by
553558 simpa only [defaultA, Nat.cast_pow, Nat.cast_ofNat, t] using
554559 enorm_integral_exp_le (x := z) (r := 2 * R) (ϕ := ϕ') ϕ'_supp (f := f) (g := g)
555560 _ ≤ 2 ^ a * (2 ^ a * volume (ball z R))
556- * (2 ^ (4 * a) * (ENNReal.ofReal t) ^ (-1 - a : ℝ) * iHolENorm ϕ z (2 * R))
561+ * (2 ^ (4 * a) * (ENNReal.ofReal t) ^ (-1 - a : ℝ) * iHolENorm ϕ z (2 * R) τ )
557562 * (1 + edist_{z, R} f g) ^ (- τ) := by
558563 gcongr 2 ^ a * ?_ * ?_ * ?_
559564 · exact iLipENorm_holderApprox_le t_pos t_one ϕ_supp
@@ -564,11 +569,11 @@ theorem holder_van_der_corput {z : X} {R : ℝ} {ϕ : X → ℂ}
564569 apply ENNReal.ofReal_le_ofReal
565570 apply CompatibleFunctions.cdist_mono
566571 apply ball_subset_ball (by linarith)
567- _ = 2 ^ (6 * a) * volume (ball z R) * iHolENorm ϕ z (2 * R) *
572+ _ = 2 ^ (6 * a) * volume (ball z R) * iHolENorm ϕ z (2 * R) τ *
568573 ((ENNReal.ofReal t) ^ (-1 - a : ℝ) * (1 + edist_{z, R} f g) ^ (- τ)) := by
569574 rw [show 6 * a = 4 * a + a + a by ring, pow_add, pow_add]
570575 ring
571- _ ≤ 2 ^ (6 * a) * volume (ball z R) * iHolENorm ϕ z (2 * R) *
576+ _ ≤ 2 ^ (6 * a) * volume (ball z R) * iHolENorm ϕ z (2 * R) τ *
572577 (1 + edist_{z, R} f g) ^ (- τ ^ 2 / (2 + a)) := by gcongr;
573578 /- Second step: control `‖∫ x, exp (I * (f x - g x)) * (ϕ x - ϕ' x)‖ₑ` using that `‖ϕ x - ϕ' x‖`
574579 is controlled pointwise, and vanishes outside of `B (z, 2R)`. -/
@@ -584,7 +589,7 @@ theorem holder_van_der_corput {z : X} {R : ℝ} {ϕ : X → ℂ}
584589 congr
585590 ring
586591 have : ‖∫ x, exp (I * (f x - g x)) * (ϕ x - ϕ' x)‖ₑ
587- ≤ 2 ^ (6 * a) * volume (ball z R) * iHolENorm ϕ z (2 * R) *
592+ ≤ 2 ^ (6 * a) * volume (ball z R) * iHolENorm ϕ z (2 * R) τ *
588593 (1 + edist_{z, R} f g) ^ (- τ ^ 2 / (2 + a)) := calc
589594 ‖∫ x, exp (I * (f x - g x)) * (ϕ x - ϕ' x)‖ₑ
590595 _ = ‖∫ x in ball z (2 * R), exp (I * (f x - g x)) * (ϕ x - ϕ' x)‖ₑ := by
@@ -603,14 +608,14 @@ theorem holder_van_der_corput {z : X} {R : ℝ} {ϕ : X → ℂ}
603608 enorm_integral_le_lintegral_enorm _
604609 _ = ∫⁻ x in ball z (2 * R), ‖ϕ x - ϕ' x‖ₑ := by
605610 simp only [enorm_mul, ← ofReal_sub, enorm_exp_I_mul_ofReal, one_mul]
606- _ ≤ ∫⁻ x in ball z (2 * R), ENNReal.ofReal (t/2 ) ^ τ * iHolENorm ϕ z (2 * R) :=
611+ _ ≤ ∫⁻ x in ball z (2 * R), ENNReal.ofReal (t/2 ) ^ τ * iHolENorm ϕ z (2 * R) τ :=
607612 lintegral_mono (fun x ↦ enorm_holderApprox_sub_le hR t_pos t_one ϕ_supp x)
608- _ = volume (ball z (2 * R)) * ENNReal.ofReal (t/2 ) ^ τ * iHolENorm ϕ z (2 * R) := by
613+ _ = volume (ball z (2 * R)) * ENNReal.ofReal (t/2 ) ^ τ * iHolENorm ϕ z (2 * R) τ := by
609614 simp; ring
610- _ ≤ (2 ^ a * volume (ball z R)) * ENNReal.ofReal (t/2 ) ^ τ * iHolENorm ϕ z (2 * R) := by
615+ _ ≤ (2 ^ a * volume (ball z R)) * ENNReal.ofReal (t/2 ) ^ τ * iHolENorm ϕ z (2 * R) τ := by
611616 gcongr
612- _ = 2 ^ a * volume (ball z R) * iHolENorm ϕ z (2 * R) * ENNReal.ofReal (t/2 ) ^ τ := by ring
613- _ ≤ 2 ^ (6 * a) * volume (ball z R) * iHolENorm ϕ z (2 * R) *
617+ _ = 2 ^ a * volume (ball z R) * iHolENorm ϕ z (2 * R) τ * ENNReal.ofReal (t/2 ) ^ τ := by ring
618+ _ ≤ 2 ^ (6 * a) * volume (ball z R) * iHolENorm ϕ z (2 * R) τ *
614619 (1 + edist_{z, R} f g) ^ (- τ ^ 2 / (2 + a)) := by
615620 gcongr
616621 · exact one_le_two
@@ -630,18 +635,18 @@ theorem holder_van_der_corput {z : X} {R : ℝ} {ϕ : X → ℂ}
630635 exact ϕ'_comp.mul_left
631636 _ ≤ ‖∫ x, exp (I * (f x - g x)) * (ϕ x - ϕ' x)‖ₑ + ‖∫ x, exp (I * (f x - g x)) * ϕ' x‖ₑ :=
632637 enorm_add_le _ _
633- _ ≤ 2 ^ (6 * a) * volume (ball z R) * iHolENorm ϕ z (2 * R) *
638+ _ ≤ 2 ^ (6 * a) * volume (ball z R) * iHolENorm ϕ z (2 * R) τ *
634639 (1 + edist_{z, R} f g) ^ (- τ ^ 2 / (2 + a)) +
635- 2 ^ (6 * a) * volume (ball z R) * iHolENorm ϕ z (2 * R) *
640+ 2 ^ (6 * a) * volume (ball z R) * iHolENorm ϕ z (2 * R) τ *
636641 (1 + edist_{z, R} f g) ^ (- τ ^ 2 / (2 + a)) := by gcongr;
637- _ = 2 ^ (1 + 6 * a) * volume (ball z R) * iHolENorm ϕ z (2 * R) *
642+ _ = 2 ^ (1 + 6 * a) * volume (ball z R) * iHolENorm ϕ z (2 * R) τ *
638643 (1 + edist_{z, R} f g) ^ (- τ ^ 2 / (2 + a)) := by rw [pow_add, pow_one]; ring
639- _ ≤ 2 ^ (7 * a) * volume (ball z R) * iHolENorm ϕ z (2 * R) *
644+ _ ≤ 2 ^ (7 * a) * volume (ball z R) * iHolENorm ϕ z (2 * R) τ *
640645 (1 + edist_{z, R} f g) ^ (- τ ^ 2 / (2 + a)) := by
641646 gcongr
642647 · exact one_le_two
643648 · linarith
644- _ = (C2_0_5 a : ℝ≥0 ∞) * volume (ball z R) * iHolENorm ϕ z (2 * R) *
649+ _ = (C2_0_5 a : ℝ≥0 ∞) * volume (ball z R) * iHolENorm ϕ z (2 * R) τ *
645650 (1 + edist_{z, R} f g) ^ (- (2 * a^2 + a^3 : ℝ)⁻¹) := by
646651 congr
647652 · simp only [C2_0_5]
0 commit comments