|
| 1 | +""" |
| 2 | +Pytest test for frozen lake evaluation using the evaluation_test decorator. |
| 3 | +
|
| 4 | +This test demonstrates how to use frozen lake environments within the pytest framework, |
| 5 | +similar to the test_frozen_lake_e2e test but integrated with the pytest evaluation system. |
| 6 | +""" |
| 7 | + |
| 8 | +from typing import Any, Dict, List |
| 9 | + |
| 10 | +from eval_protocol.models import EvaluateResult, EvaluationRow, InputMetadata, Message |
| 11 | +from eval_protocol.pytest import evaluation_test |
| 12 | +from eval_protocol.pytest.default_mcp_gym_rollout_processor import MCPGymRolloutProcessor |
| 13 | + |
| 14 | + |
| 15 | +def frozen_lake_to_evaluation_row(data: List[Dict[str, Any]]) -> List[EvaluationRow]: |
| 16 | + """ |
| 17 | + Convert entries from frozen lake dataset to EvaluationRow objects. |
| 18 | + """ |
| 19 | + rows = [] |
| 20 | + |
| 21 | + for row in data: |
| 22 | + eval_row = EvaluationRow( |
| 23 | + messages=[Message(role="system", content=row["system_prompt"])], |
| 24 | + input_metadata=InputMetadata( |
| 25 | + row_id=row["id"], |
| 26 | + dataset_info={ |
| 27 | + "environment_context": row["environment_context"], |
| 28 | + "user_prompt_template": row["user_prompt_template"], |
| 29 | + }, |
| 30 | + ), |
| 31 | + ) |
| 32 | + |
| 33 | + rows.append(eval_row) |
| 34 | + |
| 35 | + return rows |
| 36 | + |
| 37 | + |
| 38 | +@evaluation_test( |
| 39 | + input_dataset=["tests/pytest/data/frozen_lake_dataset.jsonl"], |
| 40 | + dataset_adapter=frozen_lake_to_evaluation_row, |
| 41 | + completion_params=[ |
| 42 | + {"temperature": 0.0, "max_tokens": 4096, "model": "fireworks_ai/accounts/fireworks/models/kimi-k2-instruct"} |
| 43 | + ], |
| 44 | + rollout_processor=MCPGymRolloutProcessor(), |
| 45 | + passed_threshold=0.66, |
| 46 | + num_runs=1, |
| 47 | + max_concurrent_rollouts=3, |
| 48 | + mode="pointwise", |
| 49 | + server_script_path="examples/frozen_lake_mcp/server.py", |
| 50 | +) |
| 51 | +def test_frozen_lake_evaluation(row: EvaluationRow) -> EvaluationRow: |
| 52 | + """ |
| 53 | + Test frozen lake evaluation using the pytest framework. |
| 54 | +
|
| 55 | + This test evaluates how well the model can navigate the FrozenLake environment |
| 56 | + by checking if it successfully reaches the goal while avoiding holes. |
| 57 | +
|
| 58 | + Args: |
| 59 | + row: EvaluationRow object from frozen lake dataset |
| 60 | +
|
| 61 | + Returns: |
| 62 | + EvaluationRow object with evaluation results |
| 63 | + """ |
| 64 | + score = row.get_total_reward() |
| 65 | + |
| 66 | + if score == 1.0: |
| 67 | + reason = "Agent reached the goal" |
| 68 | + else: |
| 69 | + reason = "Agent did not reach the goal" |
| 70 | + |
| 71 | + row.evaluation_result = EvaluateResult( |
| 72 | + score=score, |
| 73 | + reason=reason, |
| 74 | + ) |
| 75 | + |
| 76 | + return row |
0 commit comments