diff --git a/chapter_linear-regression/linear-regression.md b/chapter_linear-regression/linear-regression.md index 40a15a5b2d..a0c31892c6 100644 --- a/chapter_linear-regression/linear-regression.md +++ b/chapter_linear-regression/linear-regression.md @@ -568,7 +568,7 @@ is to assume that observations arise from noisy measurements, where the noise $\epsilon$ follows the normal distribution $\mathcal{N}(0, \sigma^2)$: -$$y = \mathbf{w}^\top \mathbf{x} + b + \epsilon \textrm{ where } \epsilon \sim \mathcal{N}(0, \sigma^2).$$ +$$y = (\mathbf{w}^\*)^\top \mathbf{x} + b^\* + \epsilon \textrm{ where } \epsilon \sim \mathcal{N}(0, \sigma^2).$$ Thus, we can now write out the *likelihood* of seeing a particular $y$ for a given $\mathbf{x}$ via