-
-
Notifications
You must be signed in to change notification settings - Fork 30
Open
Description
Hi @cscherrer,
I tried writing Stan's estimating parameters of a mixture in Soss but I must be missing something. I'm not sure how to translate the loop
for (n in 1:N) {
vector[K] lps = log_theta;
for (k in 1:K) {
lps[k] += normal_lpdf(y[n] | mu[k], sigma[k]);
}
target += log_sum_exp(lps);
}
# https://mc-stan.org/docs/2_28/stan-users-guide/summing-out-the-responsibility-parameter.html
using TransformVariables, LogDensityProblems, DynamicHMC,
DynamicHMC.Diagnostics, Parameters, Statistics, Random, Distributions, Soss
model = @model (N,K) begin
# Replaced LogNormal with HalfCauchy.
σ .~ fill(HalfCauchy(2.), K)
μ .~ fill(Normal(0., 10.), K)
y ~ For(1:N) do n
# What about `lps`?
For(1:K) do k
Normal(μ[k], σ[k])
end
# What about `target?`
end
end
sourceLogdensity(model)
Manually writing
For(1:N) do n
lps = log.(θ)
For(1:K) do k
lps[k] += logpdf(Normal(μ[k], σ[k]), y[n])
end
_ℓ += log(sum(exp.(lps)))
end
doesn't seem right, since I thought _ℓ
gets defined in sourceLogdensity
, not in the model.
Metadata
Metadata
Assignees
Labels
No labels