diff --git a/src/numpy_pandas/dataframe_operations.py b/src/numpy_pandas/dataframe_operations.py index cb4cda2..54538a4 100644 --- a/src/numpy_pandas/dataframe_operations.py +++ b/src/numpy_pandas/dataframe_operations.py @@ -66,14 +66,17 @@ def pivot_table( def agg_func(values): return sum(values) / len(values) + elif aggfunc == "sum": def agg_func(values): return sum(values) + elif aggfunc == "count": def agg_func(values): return len(values) + else: raise ValueError(f"Unsupported aggregation function: {aggfunc}") grouped_data = {} @@ -204,38 +207,42 @@ def percentile(p): def correlation(df: pd.DataFrame) -> dict[Tuple[str, str], float]: + # Identify numeric columns numeric_columns = [ col for col in df.columns if np.issubdtype(df[col].dtype, np.number) ] n_cols = len(numeric_columns) result = {} + # Convert numeric columns to numpy arrays once + arrays = {col: df[col].to_numpy() for col in numeric_columns} + # Precompute NaN masks per numeric column + notna_masks = {col: ~np.isnan(arrays[col]) for col in numeric_columns} + for i in range(n_cols): col_i = numeric_columns[i] + arr_i = arrays[col_i] + mask_i = notna_masks[col_i] for j in range(n_cols): col_j = numeric_columns[j] - values_i = [] - values_j = [] - for k in range(len(df)): - if not pd.isna(df.iloc[k][col_i]) and not pd.isna(df.iloc[k][col_j]): - values_i.append(df.iloc[k][col_i]) - values_j.append(df.iloc[k][col_j]) - n = len(values_i) + arr_j = arrays[col_j] + mask_j = notna_masks[col_j] + # Use a combined valid data mask + valid_mask = mask_i & mask_j + n = valid_mask.sum() if n == 0: result[(col_i, col_j)] = np.nan continue - mean_i = sum(values_i) / n - mean_j = sum(values_j) / n - var_i = sum((x - mean_i) ** 2 for x in values_i) / n - var_j = sum((x - mean_j) ** 2 for x in values_j) / n - std_i = var_i**0.5 - std_j = var_j**0.5 + values_i = arr_i[valid_mask] + values_j = arr_j[valid_mask] + # Use NumPy for statistics + mean_i = np.mean(values_i) + mean_j = np.mean(values_j) + std_i = np.std(values_i) + std_j = np.std(values_j) if std_i == 0 or std_j == 0: result[(col_i, col_j)] = np.nan continue - cov = ( - sum((values_i[k] - mean_i) * (values_j[k] - mean_j) for k in range(n)) - / n - ) + cov = np.mean((values_i - mean_i) * (values_j - mean_j)) corr = cov / (std_i * std_j) result[(col_i, col_j)] = corr return result