-
rockchip_yolonas_pth_to_onnx.py
Modify From DeepStream Convert Tool + Cut Post process in YOLO-NAS ONNX Model
-
export_yolonas_onnx_to_rknn.py
Modify From https://github.com/MarcA711/rknn-models
-
Convert pth model to onnx (yolo_nas_s, input size 320x320, coco_label) ** You can down input size this step.
Run: python rockchip_yolonas_pth_to_onnx.py -m yolo_nas_s -w last.pth --simplify -n 80 -s 320
-
Convert pth model to onnx (yolo_nas_s, input size 640x640 downsize model to support 320x320, coco_label)
Run: python rockchip_yolonas_pth_to_onnx.py -m yolo_nas_s -w last.pth --simplify -n 80 -s 320
- m: Base Model (yolo_nas_s, yolo_nas_m, yolo_nas_l)
- w: Weight Model
- n: Number Classes
- s: Input Size
-
Convert onnx to rknn
Run: python export_yolonas_onnx_to_rknn.py -t rk3588 -w rk_last.onnx -n 80 -s 320
Run: python export_yolonas_onnx_to_rknn.py -t rk3588 -w rk_last.onnx -n 80 -s 320 -q true
- t: SOC Type (rk3588, rk3566 etc.)
- w: Weight Model (onnx format)
- n: Number Classes (COCO = 80 Classes)
- s: Input Size (320x320)
- q: Quantize (True of False) If True, It's used dataset from datasets folder.
** If You used custom model on frigate. You need modify frigate file. ** Dont' forget install RKNN toolkit2 https://github.com/airockchip/rknn-toolkit2
Compare Graph before and after modify

Result from yolo_nas_s quantize input 640x640


