Skip to content

cluangar/Convertion-Tool-YOLO-NAS-to-RKNN

Repository files navigation

Detail:

How to use:

  • Convert pth model to onnx (yolo_nas_s, input size 320x320, coco_label) ** You can down input size this step.

    Run: python rockchip_yolonas_pth_to_onnx.py -m yolo_nas_s -w last.pth --simplify -n 80 -s 320

  • Convert pth model to onnx (yolo_nas_s, input size 640x640 downsize model to support 320x320, coco_label)

    Run: python rockchip_yolonas_pth_to_onnx.py -m yolo_nas_s -w last.pth --simplify -n 80 -s 320

    • m: Base Model (yolo_nas_s, yolo_nas_m, yolo_nas_l)
    • w: Weight Model
    • n: Number Classes
    • s: Input Size
  • Convert onnx to rknn

    Run: python export_yolonas_onnx_to_rknn.py -t rk3588 -w rk_last.onnx -n 80 -s 320

    Run: python export_yolonas_onnx_to_rknn.py -t rk3588 -w rk_last.onnx -n 80 -s 320 -q true

    • t: SOC Type (rk3588, rk3566 etc.)
    • w: Weight Model (onnx format)
    • n: Number Classes (COCO = 80 Classes)
    • s: Input Size (320x320)
    • q: Quantize (True of False) If True, It's used dataset from datasets folder.

** If You used custom model on frigate. You need modify frigate file. ** Dont' forget install RKNN toolkit2 https://github.com/airockchip/rknn-toolkit2

Compare Graph before and after modify Screenshot from 2025-05-01 21-48-34

Result from yolo_nas_s quantize input 640x640 Result_yolo_nas_s_i8_s640x640

Result from yolo_nas_s quantize input 320x320 Result_yolo_nas_s_i8_s320x320

Result from yolo_nas_s quantize input 224x224 Result_yolo_nas_s_i8_s224x224

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages