|
| 1 | +import xxhash |
| 2 | +import re |
| 3 | + |
| 4 | + |
| 5 | +class SimHash: |
| 6 | + def __init__(self, bits=64): |
| 7 | + self.bits = bits |
| 8 | + |
| 9 | + def _truncate_content(self, content): |
| 10 | + """ |
| 11 | + Truncate large content for similarity comparison to improve performance. |
| 12 | +
|
| 13 | + Truncation rules: |
| 14 | + - If content <= 3072 bytes: return as-is |
| 15 | + - If content > 3072 bytes: return first 2048 bytes + last 1024 bytes |
| 16 | + """ |
| 17 | + content_length = len(content) |
| 18 | + |
| 19 | + # No truncation needed for smaller content |
| 20 | + if content_length <= 3072: |
| 21 | + return content |
| 22 | + |
| 23 | + # Truncate: first 2048 + last 1024 bytes |
| 24 | + first_part = content[:2048] |
| 25 | + last_part = content[-1024:] |
| 26 | + |
| 27 | + return first_part + last_part |
| 28 | + |
| 29 | + def _normalize_text(self, text, normalization_filter): |
| 30 | + """ |
| 31 | + Normalize text by removing the normalization filter from the text. |
| 32 | + """ |
| 33 | + return text.replace(normalization_filter, "") |
| 34 | + |
| 35 | + def _get_features(self, text): |
| 36 | + """Extract 3-character shingles as features""" |
| 37 | + width = 3 |
| 38 | + text = text.lower() |
| 39 | + # Remove non-word characters |
| 40 | + text = re.sub(r"[^\w]+", "", text) |
| 41 | + # Create 3-character shingles |
| 42 | + return [text[i : i + width] for i in range(max(len(text) - width + 1, 1))] |
| 43 | + |
| 44 | + def _hash_feature(self, feature): |
| 45 | + """Return a hash of a feature using xxHash""" |
| 46 | + return xxhash.xxh64(feature.encode("utf-8")).intdigest() |
| 47 | + |
| 48 | + def hash(self, text, truncate=True, normalization_filter=None): |
| 49 | + """ |
| 50 | + Generate a SimHash fingerprint for the given text. |
| 51 | +
|
| 52 | + Args: |
| 53 | + text (str): The text to hash |
| 54 | + truncate (bool): Whether to truncate large text for performance. Defaults to True. |
| 55 | + When enabled, text larger than 4KB is truncated to first 2KB + last 1KB for comparison. |
| 56 | +
|
| 57 | + Returns: |
| 58 | + int: The SimHash fingerprint |
| 59 | + """ |
| 60 | + # Apply truncation if enabled |
| 61 | + if truncate: |
| 62 | + text = self._truncate_content(text) |
| 63 | + |
| 64 | + if normalization_filter: |
| 65 | + text = self._normalize_text(text, normalization_filter) |
| 66 | + |
| 67 | + vector = [0] * self.bits |
| 68 | + features = self._get_features(text) |
| 69 | + |
| 70 | + for feature in features: |
| 71 | + hv = self._hash_feature(feature) |
| 72 | + for i in range(self.bits): |
| 73 | + bit = (hv >> i) & 1 |
| 74 | + vector[i] += 1 if bit else -1 |
| 75 | + |
| 76 | + # Final fingerprint |
| 77 | + fingerprint = 0 |
| 78 | + for i, val in enumerate(vector): |
| 79 | + if val >= 0: |
| 80 | + fingerprint |= 1 << i |
| 81 | + return fingerprint |
| 82 | + |
| 83 | + def similarity(self, hash1, hash2): |
| 84 | + """ |
| 85 | + Compute similarity between two SimHashes as a value between 0.0 and 1.0. |
| 86 | + """ |
| 87 | + # Hamming distance: count of differing bits |
| 88 | + diff = (hash1 ^ hash2).bit_count() |
| 89 | + return 1.0 - (diff / self.bits) |
0 commit comments