Skip to content

CoreML segfaults on torch.nn.Conv1d #2574

@metascroy

Description

@metascroy

🐞Describing the bug

CoreML segfaults when running torch.ops.aten.conv1d.default.

To Reproduce


import torch

class Model(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.conv = torch.nn.Conv1d(16, 4, 6, stride=8, padding=0, dilation=2, groups=2, bias=False)    
    def forward(self, x):
        return self.conv(x)

model = Model()
inputs = (
    torch.randn(2, 16, 11),
)

eager_outputs = model(*inputs)

ep = torch.export.export(model, inputs)

import coremltools as ct
import numpy as np
ep = ep.run_decompositions({})

eager_outputs = model(*inputs)

mlmodel = ct.convert(ep)

coreml_inputs = mlmodel.get_spec().description.input
coreml_outputs = mlmodel.get_spec().description.output
predict_inputs = {str(ct_in.name): pt_in.detach().cpu().numpy().astype(np.int32) for ct_in, pt_in in zip(coreml_inputs, inputs)}
out = mlmodel.predict(predict_inputs)

print("Eager", eager_outputs)
print("CoremL", out)

This above code results in a segfault.

System environment (please complete the following information):

  • coremltools version: 8.3
  • OS (e.g. MacOS version or Linux type): macOS15

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugUnexpected behaviour that should be corrected (type)triagedReviewed and examined, release as been assigned if applicable (status)

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions