Skip to content

AttributeError: 'list' object has no attribute 'val'. When set flexible input shapes #2037

@ThuyyTran

Description

@ThuyyTran

🐞Describing the bug

Traceback (most recent call last):
  File "/media/anlab/data-2tb/ANLAB_THUY/ImageSearcher/ConvertSolar2Coreml.py", line 119, in <module>
    mlprogram = ct.convert(
  File "/home/anlab/anaconda3/envs/convertmodel1/lib/python3.9/site-packages/coremltools/converters/_converters_entry.py", line 551, in convert
    mlmodel = mil_convert(
  File "/home/anlab/anaconda3/envs/convertmodel1/lib/python3.9/site-packages/coremltools/converters/mil/converter.py", line 188, in mil_convert
    return _mil_convert(model, convert_from, convert_to, ConverterRegistry, MLModel, compute_units, **kwargs)
  File "/home/anlab/anaconda3/envs/convertmodel1/lib/python3.9/site-packages/coremltools/converters/mil/converter.py", line 212, in _mil_convert
    proto, mil_program = mil_convert_to_proto(
  File "/home/anlab/anaconda3/envs/convertmodel1/lib/python3.9/site-packages/coremltools/converters/mil/converter.py", line 286, in mil_convert_to_proto
    prog = frontend_converter(model, **kwargs)
  File "/home/anlab/anaconda3/envs/convertmodel1/lib/python3.9/site-packages/coremltools/converters/mil/converter.py", line 108, in __call__
    return load(*args, **kwargs)
  File "/home/anlab/anaconda3/envs/convertmodel1/lib/python3.9/site-packages/coremltools/converters/mil/frontend/torch/load.py", line 75, in load
    return _perform_torch_convert(converter, debug)
  File "/home/anlab/anaconda3/envs/convertmodel1/lib/python3.9/site-packages/coremltools/converters/mil/frontend/torch/load.py", line 114, in _perform_torch_convert
    prog = converter.convert()
  File "/home/anlab/anaconda3/envs/convertmodel1/lib/python3.9/site-packages/coremltools/converters/mil/frontend/torch/converter.py", line 484, in convert
    convert_nodes(self.context, self.graph)
  File "/home/anlab/anaconda3/envs/convertmodel1/lib/python3.9/site-packages/coremltools/converters/mil/frontend/torch/ops.py", line 93, in convert_nodes
    add_op(context, node)
  File "/home/anlab/anaconda3/envs/convertmodel1/lib/python3.9/site-packages/coremltools/converters/mil/frontend/torch/ops.py", line 3923, in avg_pool2d
    _avg_pool(context, node, inputs)
  File "/home/anlab/anaconda3/envs/convertmodel1/lib/python3.9/site-packages/coremltools/converters/mil/frontend/torch/ops.py", line 3876, in _avg_pool
    strides = mb.const(val=kernel_sizes.val, name=strides.name)
AttributeError: 'list' object has no attribute 'val'

To Reproduce

Init model pytorch:

class Network(nn.Module):
    def __init__(self, model):
        super().__init__()
        self.model = model.cpu()
        self.mean = torch.tensor([0.485, 0.456, 0.406]).view(3, 1, 1)
        self.std = torch.tensor([0.229, 0.224, 0.225]).view(3, 1, 1)
    def forward(self,x):
        out1 = self.model(x)   
        reshaped_tensor1 = out1.view(1, 2048)
        return reshaped_tensor1
state = torch.load(os.path.join(get_data_root(), 'networks/model_best.pth.tar'),map_location=torch.device('cpu'))
net_params = {}
net_params['architecture'] = state['meta']['architecture']
net_params['pooling'] = state['meta']['pooling'] 
net_params['local_whitening'] = state['meta'].get('local_whitening', False)
net_params['regional'] = state['meta'].get('regional', False)
net_params['whitening'] = state['meta'].get('whitening', True)
net_params['mean'] = state['meta']['mean']
net_params['std'] = state['meta']['std']
net_params['pretrained'] = False
net = load_network('model_best.pth.tar')
net.load_state_dict(state['state_dict'])
net.eval()
test_model = Network(net)

Convert pytorch to coreml

scale = 1/(0.226*255.0)
bias = [- 0.485/(0.229) , - 0.456/(0.224), - 0.406/(0.225)]
input_shape = ct.Shape(shape=(1, 3, ct.RangeDim(lower_bound=100, upper_bound=800),
                              ct.RangeDim(lower_bound=100, upper_bound=800)))
dummy_input = torch.rand(1,3,300,300)
input_tensor = ct.ImageType(name="my_input", shape=input_shape,scale=scale, bias=bias)
traced_model = torch.jit.trace(test_model.eval(), dummy_input)
traced_model.eval()

mlprogram = ct.convert(
    traced_model,
    minimum_deployment_target=ct.target.iOS13,
    inputs=[input_tensor],
    outputs=[ct.TensorType(name="embeddings")],
    convert_to="neuralnetwork",
    compute_units=ct.ComputeUnit.CPU_ONLY,
)
saved_model = 'ModelConvert/TestModel/Solar300_image_CPU_FlexibleInput.mlmodel'
outputmodel.save(saved_model)

System environment

  • coremltools version: 7.0
  • OS (e.g. MacOS version or Linux type): Linux
  • Any other relevant version information (e.g. PyTorch or TensorFlow version): Torch 1.9.1

Metadata

Metadata

Assignees

No one assigned

    Labels

    PyTorch (traced)bugUnexpected behaviour that should be corrected (type)triagedReviewed and examined, release as been assigned if applicable (status)

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions