-
Notifications
You must be signed in to change notification settings - Fork 714
Open
Labels
PyTorch (traced)bugUnexpected behaviour that should be corrected (type)Unexpected behaviour that should be corrected (type)triagedReviewed and examined, release as been assigned if applicable (status)Reviewed and examined, release as been assigned if applicable (status)
Description
When convert
ing a traced torchvision
model, RuntimeError: PyTorch convert function for op 'torchvision::roi_align' not implemented.
Stack Trace
---------------------------------------------------------------------------
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
/tmp/ipykernel_998/3386583322.py in <module>
5 traced_model = torch.jit.trace(model_to_trace, example_image_pt).eval()
6
----> 7 detector_mlmodel = ct.convert(traced_model, inputs=[ct.ImageType(shape=(1, 3, 224, 224))])
8 detector_mlmodel.save("segmenter.mlmodel")
/opt/conda/lib/python3.7/site-packages/coremltools/converters/_converters_entry.py in convert(model, source, inputs, outputs, classifier_config, minimum_deployment_target, convert_to, compute_precision, skip_model_load, compute_units, package_dir, debug)
454 package_dir=package_dir,
455 debug=debug,
--> 456 specification_version=specification_version,
457 )
458
/opt/conda/lib/python3.7/site-packages/coremltools/converters/mil/converter.py in mil_convert(model, convert_from, convert_to, compute_units, **kwargs)
185 See `coremltools.converters.convert`
186 """
--> 187 return _mil_convert(model, convert_from, convert_to, ConverterRegistry, MLModel, compute_units, **kwargs)
188
189
/opt/conda/lib/python3.7/site-packages/coremltools/converters/mil/converter.py in _mil_convert(model, convert_from, convert_to, registry, modelClass, compute_units, **kwargs)
214 convert_to,
215 registry,
--> 216 **kwargs
217 )
218
/opt/conda/lib/python3.7/site-packages/coremltools/converters/mil/converter.py in mil_convert_to_proto(model, convert_from, convert_to, converter_registry, **kwargs)
279 frontend_converter = frontend_converter_type()
280
--> 281 prog = frontend_converter(model, **kwargs)
282
283 if convert_to.lower() != "neuralnetwork":
/opt/conda/lib/python3.7/site-packages/coremltools/converters/mil/converter.py in __call__(self, *args, **kwargs)
107 from .frontend.torch import load
108
--> 109 return load(*args, **kwargs)
110
111
/opt/conda/lib/python3.7/site-packages/coremltools/converters/mil/frontend/torch/load.py in load(model_spec, inputs, specification_version, debug, outputs, cut_at_symbols, **kwargs)
55 inputs = _convert_to_torch_inputtype(inputs)
56 converter = TorchConverter(torchscript, inputs, outputs, cut_at_symbols, specification_version)
---> 57 return _perform_torch_convert(converter, debug)
58
59
/opt/conda/lib/python3.7/site-packages/coremltools/converters/mil/frontend/torch/load.py in _perform_torch_convert(converter, debug)
102 print("the following model ops are MISSING:")
103 print("\n".join([" " + str(x) for x in sorted(missing)]))
--> 104 raise e
105
106 return prog
/opt/conda/lib/python3.7/site-packages/coremltools/converters/mil/frontend/torch/load.py in _perform_torch_convert(converter, debug)
94 def _perform_torch_convert(converter, debug):
95 try:
---> 96 prog = converter.convert()
97 except RuntimeError as e:
98 if debug and "convert function" in str(e):
/opt/conda/lib/python3.7/site-packages/coremltools/converters/mil/frontend/torch/converter.py in convert(self)
279
280 # Add the rest of the operations
--> 281 convert_nodes(self.context, self.graph)
282
283 graph_outputs = [self.context[name] for name in self.graph.outputs]
/opt/conda/lib/python3.7/site-packages/coremltools/converters/mil/frontend/torch/ops.py in convert_nodes(context, graph)
83 if add_op is None:
84 raise RuntimeError(
---> 85 "PyTorch convert function for op '{}' not implemented.".format(node.kind)
86 )
87
RuntimeError: PyTorch convert function for op 'torchvision::roi_align' not implemented.
Steps To Reproduce
import coremltools as ct
import torch, torchvision
from torchvision.transforms import functional as F, InterpolationMode, transforms as T
import requests
from PIL import Image
import numpy as np
from typing import Dict, Tuple, Optional
# Image conversion tools:
class PILToTensor(torch.nn.Module):
def forward(
self, image: torch.Tensor, target: Optional[Dict[str, torch.Tensor]] = None
) -> Tuple[torch.Tensor, Optional[Dict[str, torch.Tensor]]]:
image = F.pil_to_tensor(image)
return image, target
class ConvertImageDtype(torch.nn.Module):
def __init__(self, dtype: torch.dtype) -> None:
super().__init__()
self.dtype = dtype
def forward(
self, image: torch.Tensor, target: Optional[Dict[str, torch.Tensor]] = None
) -> Tuple[torch.Tensor, Optional[Dict[str, torch.Tensor]]]:
image = F.convert_image_dtype(image, self.dtype)
return image, target
# Load the torchvision model
detector_model = torchvision.models.detection.fasterrcnn_mobilenet_v3_large_fpn(pretrained=True)
detector_model = detector_model.eval()
# Get a sample image
toTensor = T.PILToTensor()
toFloatTensor = T.ConvertImageDtype(torch.float)
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
example_image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
example_image_np = np.array(example_image)
example_image_pt = toFloatTensor(toTensor(example_image))
example_image_pt = example_image_pt.unsqueeze(0)
# Run the sample through the model to demonstrate the model works
y = detector_model(example_image_pt)
# Make an adaptor to convert the model outputs to a tuple
class FasterRCNN_MobileNetV3_AdapterModel(torch.nn.Module):
"""This adapter is only here to unbox the first output."""
def __init__(self, model, w=2):
super().__init__()
self.model = model
def forward(self, x):
result = self.model(x)
return result[0]['boxes'], result[0]['labels'], result[0]['scores']
adapted_detector_model = FasterRCNN_MobileNetV3_AdapterModel(detector_model)
# Trace and convert the model using coremltools
model_to_trace = adapted_detector_model
with torch.inference_mode():
out = model_to_trace(example_image_pt)
traced_model = torch.jit.trace(model_to_trace, example_image_pt).eval()
detector_mlmodel = ct.convert(traced_model, inputs=[ct.ImageType(shape=example_image_pt.shape)])
detector_mlmodel.save("segmenter.mlmodel")
System environment:
coremltools
version: 6.2- OS: Linux (
Linux foohostname 4.19.0-23-cloud-amd64 #1 SMP Debian 4.19.269-1 (2022-12-20) x86_64 GNU/Linux
) - Any other relevant version information (e.g. PyTorch or TensorFlow version):
- Python: 3.7
- PyTorch: 1.11.1+cu102
- Other libraries installed as dependencies of
coremltools
:
Requirement already satisfied: coremltools==6.2 in /opt/conda/lib/python3.7/site-packages (6.2)
Requirement already satisfied: tqdm in /opt/conda/lib/python3.7/site-packages (from coremltools==6.2) (4.64.1)
Requirement already satisfied: protobuf<=4.0.0,>=3.1.0 in /home/jupyter/.local/lib/python3.7/site-packages (from coremltools==6.2) (3.20.1)
Requirement already satisfied: packaging in /opt/conda/lib/python3.7/site-packages (from coremltools==6.2) (21.3)
Requirement already satisfied: numpy>=1.14.5 in /opt/conda/lib/python3.7/site-packages (from coremltools==6.2) (1.21.6)
Requirement already satisfied: sympy in /opt/conda/lib/python3.7/site-packages (from coremltools==6.2) (1.10.1)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /opt/conda/lib/python3.7/site-packages (from packaging->coremltools==6.2) (3.0.9)
Requirement already satisfied: mpmath>=0.19 in /opt/conda/lib/python3.7/site-packages (from sympy->coremltools==6.2) (1.2.1)
Please advise. Thank you!
Metadata
Metadata
Assignees
Labels
PyTorch (traced)bugUnexpected behaviour that should be corrected (type)Unexpected behaviour that should be corrected (type)triagedReviewed and examined, release as been assigned if applicable (status)Reviewed and examined, release as been assigned if applicable (status)