Skip to content

PyTorch stack conversion op doesn't cast like PyTorch does. #1778

@siegelaaron94

Description

@siegelaaron94

🐞Describing the bug

Exporting a PyTorch model with a https://pytorch.org/docs/stable/generated/torch.stack.html operation with float32 and int32 doesn't work correctly, with native PyTorch the 2 different types are cast to float32.

Stack Trace

Traceback (most recent call last):
  File "/dev/opensource/detectron2/export_test.py", line 20, in <module>
    result = ct.convert(model_traced, inputs=[ct.TensorType(name="x", shape=x.shape)])
  File "/dev/opensource/coremltools/coremltools/converters/_converters_entry.py", line 444, in convert
    mlmodel = mil_convert(
  File "/dev/opensource/coremltools/coremltools/converters/mil/converter.py", line 187, in mil_convert
    return _mil_convert(model, convert_from, convert_to, ConverterRegistry, MLModel, compute_units, **kwargs)
  File "/dev/opensource/coremltools/coremltools/converters/mil/converter.py", line 211, in _mil_convert
    proto, mil_program = mil_convert_to_proto(
  File "/dev/opensource/coremltools/coremltools/converters/mil/converter.py", line 281, in mil_convert_to_proto
    prog = frontend_converter(model, **kwargs)
  File "/dev/opensource/coremltools/coremltools/converters/mil/converter.py", line 109, in __call__
    return load(*args, **kwargs)
  File "/dev/opensource/coremltools/coremltools/converters/mil/frontend/torch/load.py", line 57, in load
    return _perform_torch_convert(converter, debug)
  File "/dev/opensource/coremltools/coremltools/converters/mil/frontend/torch/load.py", line 96, in _perform_torch_convert
    prog = converter.convert()
  File "/dev/opensource/coremltools/coremltools/converters/mil/frontend/torch/converter.py", line 281, in convert
    convert_nodes(self.context, self.graph)
  File "/dev/opensource/coremltools/coremltools/converters/mil/frontend/torch/ops.py", line 89, in convert_nodes
    add_op(context, node)
  File "/dev/opensource/coremltools/coremltools/converters/mil/frontend/torch/ops.py", line 1871, in stack
    res = mb.stack(values=values, axis=axis, name=node.name)
  File "/dev/opensource/coremltools/coremltools/converters/mil/mil/ops/registry.py", line 176, in add_op
    return cls._add_op(op_cls_to_add, **kwargs)
  File "/dev/opensource/coremltools/coremltools/converters/mil/mil/builder.py", line 182, in _add_op
    new_op.type_value_inference()
  File "/dev/opensource/coremltools/coremltools/converters/mil/mil/operation.py", line 253, in type_value_inference
    output_types = self.type_inference()
  File "/dev/opensource/coremltools/coremltools/converters/mil/mil/ops/defs/iOS15/tensor_operation.py", line 1262, in type_inference
    raise ValueError(msg)
ValueError: Tensors in 'values' of the stack op (14) should share the same data type. Got [<class 'coremltools.converters.mil.mil.types.type_double.make_float.<locals>.double'>, <class 'coremltools.converters.mil.mil.types.type_int.make_int.<locals>.int'>].

To Reproduce

import torch
import torch.nn as nn
import coremltools as ct

class Broken(nn.Module):
    def __init__(self) -> None:
        super().__init__()

    def forward(self, x):
        y = torch.zeros((1, 3, 512, 512), dtype=torch.int32)
        return torch.stack((x, y))

if __name__ == '__main__':
    model = Broken()
    x = torch.zeros((1, 3, 512, 512), dtype=torch.float32)
    res = model(x)
    print(res.dtype, res.shape)

    model_traced = torch.jit.trace(model, (x, ))
    result = ct.convert(model_traced, inputs=[ct.TensorType(name="x", shape=x.shape)])

System environment (please complete the following information):

  • coremltools version: main sha1: 51b0003
  • OS (e.g. MacOS version or Linux type): macOS 13.2.1
  • Any other relevant version information (e.g. PyTorch or TensorFlow version):
  torch==1.13.1
  torchaudio==0.13.1
  torchvision==0.14.1

Additional context

Rand into this trying to convert detectron2 models with this pull request. The same issue happens if you replace stack with cat btw I assume they are implemented with each other.

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugUnexpected behaviour that should be corrected (type)triagedReviewed and examined, release as been assigned if applicable (status)

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions