|
| 1 | +// ------------------------------ |
| 2 | +// Dependencies |
| 3 | + |
| 4 | +// standard dependencies |
| 5 | +#include <stdint.h> |
| 6 | +#include <string> |
| 7 | +#include <iostream> |
| 8 | + |
| 9 | +// arrow dependencies |
| 10 | +#include <arrow/api.h> |
| 11 | +#include <arrow/compute/api.h> |
| 12 | +#include <arrow/compute/exec/key_hash.h> |
| 13 | + |
| 14 | +#include "common.h" |
| 15 | + |
| 16 | + |
| 17 | +// >> aliases for types in standard library |
| 18 | +using std::shared_ptr; |
| 19 | +using std::vector; |
| 20 | + |
| 21 | +// arrow util types |
| 22 | +using arrow::Result; |
| 23 | +using arrow::Status; |
| 24 | +using arrow::Datum; |
| 25 | + |
| 26 | +// arrow data types and helpers |
| 27 | +using arrow::UInt32Builder; |
| 28 | +using arrow::Int32Builder; |
| 29 | + |
| 30 | +using arrow::Array; |
| 31 | +using arrow::ArraySpan; |
| 32 | + |
| 33 | + |
| 34 | +// aliases for types used in `NamedScalarFn` |
| 35 | +// |> kernel parameters |
| 36 | +using arrow::compute::KernelContext; |
| 37 | +using arrow::compute::ExecSpan; |
| 38 | +using arrow::compute::ExecResult; |
| 39 | + |
| 40 | +// |> other context types |
| 41 | +using arrow::compute::ExecContext; |
| 42 | +using arrow::compute::LightContext; |
| 43 | + |
| 44 | +// |> common types for compute functions |
| 45 | +using arrow::compute::FunctionRegistry; |
| 46 | +using arrow::compute::FunctionDoc; |
| 47 | +using arrow::compute::InputType; |
| 48 | +using arrow::compute::OutputType; |
| 49 | +using arrow::compute::Arity; |
| 50 | + |
| 51 | +// |> the "kind" of function we want |
| 52 | +using arrow::compute::ScalarFunction; |
| 53 | + |
| 54 | +// |> structs and classes for hashing |
| 55 | +using arrow::util::MiniBatch; |
| 56 | +using arrow::util::TempVectorStack; |
| 57 | + |
| 58 | +using arrow::compute::KeyColumnArray; |
| 59 | +using arrow::compute::Hashing32; |
| 60 | + |
| 61 | +// |> functions used for hashing |
| 62 | +using arrow::compute::ColumnArrayFromArrayData; |
| 63 | + |
| 64 | + |
| 65 | +// ------------------------------ |
| 66 | +// Structs and Classes |
| 67 | + |
| 68 | +// >> Documentation for a compute function |
| 69 | +/** |
| 70 | + * Create a const instance of `FunctionDoc` that contains 3 attributes: |
| 71 | + * 1. Short description |
| 72 | + * 2. Long description (limited to 78 characters) |
| 73 | + * 3. Name of input arguments |
| 74 | + */ |
| 75 | +const FunctionDoc named_scalar_fn_doc { |
| 76 | + "Unary function that calculates a hash for each row of the input" |
| 77 | + ,"This function uses an xxHash-like algorithm which produces 32-bit hashes." |
| 78 | + ,{ "input_array" } |
| 79 | +}; |
| 80 | + |
| 81 | + |
| 82 | +// >> Kernel implementations for a compute function |
| 83 | +/** |
| 84 | + * Create implementations that will be associated with our compute function. When a |
| 85 | + * compute function is invoked, the compute API framework will delegate execution to an |
| 86 | + * associated kernel that matches: (1) input argument types/shapes and (2) output argument |
| 87 | + * types/shapes. |
| 88 | + * |
| 89 | + * Kernel implementations may be functions or may be methods (functions within a class or |
| 90 | + * struct). |
| 91 | + */ |
| 92 | +struct NamedScalarFn { |
| 93 | + |
| 94 | + /** |
| 95 | + * A kernel implementation that expects a single array as input, and outputs an array of |
| 96 | + * uint32 values. We write this implementation knowing what function we want to |
| 97 | + * associate it with ("NamedScalarFn"), but that association is made later (see |
| 98 | + * `RegisterScalarFnKernels()` below). |
| 99 | + */ |
| 100 | + static Status |
| 101 | + Exec(KernelContext *ctx, const ExecSpan &input_arg, ExecResult *out) { |
| 102 | + StartRecipe("DefineAComputeKernel"); |
| 103 | + |
| 104 | + if (input_arg.num_values() != 1 or not input_arg[0].is_array()) { |
| 105 | + return Status::Invalid("Unsupported argument types or shape"); |
| 106 | + } |
| 107 | + |
| 108 | + // >> Initialize stack-based memory allocator with an allocator and memory size |
| 109 | + TempVectorStack stack_memallocator; |
| 110 | + auto input_dtype_width = input_arg[0].type()->bit_width(); |
| 111 | + if (input_dtype_width > 0) { |
| 112 | + ARROW_RETURN_NOT_OK( |
| 113 | + stack_memallocator.Init( |
| 114 | + ctx->exec_context()->memory_pool() |
| 115 | + ,input_dtype_width * max_batchsize |
| 116 | + ) |
| 117 | + ); |
| 118 | + } |
| 119 | + |
| 120 | + // >> Prepare input data structure for propagation to hash function |
| 121 | + // NOTE: "start row index" and "row count" can potentially be options in the future |
| 122 | + ArraySpan hash_input = input_arg[0].array; |
| 123 | + int64_t hash_startrow = 0; |
| 124 | + int64_t hash_rowcount = hash_input.length; |
| 125 | + ARROW_ASSIGN_OR_RAISE( |
| 126 | + KeyColumnArray input_keycol |
| 127 | + ,ColumnArrayFromArrayData(hash_input.ToArrayData(), hash_startrow, hash_rowcount) |
| 128 | + ); |
| 129 | + |
| 130 | + // >> Call hashing function |
| 131 | + vector<uint32_t> hash_results; |
| 132 | + hash_results.resize(hash_input.length); |
| 133 | + |
| 134 | + LightContext hash_ctx; |
| 135 | + hash_ctx.hardware_flags = ctx->exec_context()->cpu_info()->hardware_flags(); |
| 136 | + hash_ctx.stack = &stack_memallocator; |
| 137 | + |
| 138 | + Hashing32::HashMultiColumn({ input_keycol }, &hash_ctx, hash_results.data()); |
| 139 | + |
| 140 | + // >> Prepare results of hash function for kernel output argument |
| 141 | + UInt32Builder builder; |
| 142 | + builder.Reserve(hash_results.size()); |
| 143 | + builder.AppendValues(hash_results); |
| 144 | + |
| 145 | + ARROW_ASSIGN_OR_RAISE(auto result_array, builder.Finish()); |
| 146 | + out->value = result_array->data(); |
| 147 | + |
| 148 | + EndRecipe("DefineAComputeKernel"); |
| 149 | + return Status::OK(); |
| 150 | + } |
| 151 | + |
| 152 | + |
| 153 | + static constexpr uint32_t max_batchsize = MiniBatch::kMiniBatchLength; |
| 154 | +}; |
| 155 | + |
| 156 | + |
| 157 | +// ------------------------------ |
| 158 | +// Functions |
| 159 | + |
| 160 | + |
| 161 | +// >> Function registration and kernel association |
| 162 | +/** |
| 163 | + * A convenience function that shows how we construct an instance of `ScalarFunction` that |
| 164 | + * will be registered in a function registry. The instance is constructed with: (1) a |
| 165 | + * unique name ("named_scalar_fn"), (2) an "arity" (`Arity::Unary()`), and (3) an instance |
| 166 | + * of `FunctionDoc`. |
| 167 | + * |
| 168 | + * The function name is used to invoke it from a function registry after it has been |
| 169 | + * registered. The "arity" is the cardinality of the function's parameters--1 parameter is |
| 170 | + * a unary function, 2 parameters is a binary function, etc. Finally, it is helpful to |
| 171 | + * associate the function with documentation, which uses the `FunctionDoc` struct. |
| 172 | + */ |
| 173 | +shared_ptr<ScalarFunction> |
| 174 | +RegisterScalarFnKernels() { |
| 175 | + StartRecipe("AddKernelsToFunction"); |
| 176 | + // Instantiate a function to be registered |
| 177 | + auto fn_named_scalar = std::make_shared<ScalarFunction>( |
| 178 | + "named_scalar_fn" |
| 179 | + ,Arity::Unary() |
| 180 | + ,std::move(named_scalar_fn_doc) |
| 181 | + ); |
| 182 | + |
| 183 | + // Associate a kernel implementation with the function using |
| 184 | + // `ScalarFunction::AddKernel()` |
| 185 | + DCHECK_OK( |
| 186 | + fn_named_scalar->AddKernel( |
| 187 | + { InputType(arrow::int32()) } |
| 188 | + ,OutputType(arrow::uint32()) |
| 189 | + ,NamedScalarFn::Exec |
| 190 | + ) |
| 191 | + ); |
| 192 | + |
| 193 | + EndRecipe("AddKernelsToFunction"); |
| 194 | + return fn_named_scalar; |
| 195 | +} |
| 196 | + |
| 197 | + |
| 198 | +/** |
| 199 | + * A convenience function that shows how we register a custom function with a |
| 200 | + * `FunctionRegistry`. To keep this simple and general, this function takes a pointer to a |
| 201 | + * FunctionRegistry as an input argument, then invokes `FunctionRegistry::AddFunction()`. |
| 202 | + */ |
| 203 | +void |
| 204 | +RegisterNamedScalarFn(FunctionRegistry *registry) { |
| 205 | + auto scalar_fn = RegisterScalarFnKernels(); |
| 206 | + DCHECK_OK(registry->AddFunction(std::move(scalar_fn))); |
| 207 | +} |
| 208 | + |
| 209 | + |
| 210 | +// >> Convenience functions |
| 211 | +/** |
| 212 | + * An optional convenience function to easily invoke our compute function. This executes |
| 213 | + * our compute function by invoking `CallFunction` with the name that we used to register |
| 214 | + * the function ("named_scalar_fn" in this case). |
| 215 | + */ |
| 216 | +ARROW_EXPORT |
| 217 | +Result<Datum> |
| 218 | +NamedScalarFn(const Datum &input_arg, ExecContext *ctx) { |
| 219 | + auto func_name = "named_scalar_fn"; |
| 220 | + return CallFunction(func_name, { input_arg }, ctx); |
| 221 | +} |
| 222 | + |
| 223 | + |
| 224 | +Result<shared_ptr<Array>> |
| 225 | +BuildIntArray() { |
| 226 | + vector<int32_t> col_vals { 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 }; |
| 227 | + |
| 228 | + Int32Builder builder; |
| 229 | + ARROW_RETURN_NOT_OK(builder.Reserve(col_vals.size())); |
| 230 | + ARROW_RETURN_NOT_OK(builder.AppendValues(col_vals)); |
| 231 | + return builder.Finish(); |
| 232 | +} |
| 233 | + |
| 234 | + |
| 235 | +class ComputeFunctionTest : public ::testing::Test {}; |
| 236 | + |
| 237 | +TEST(ComputeFunctionTest, TestRegisterAndCallFunction) { |
| 238 | + // >> Construct some test data |
| 239 | + auto build_result = BuildIntArray(); |
| 240 | + if (not build_result.ok()) { |
| 241 | + std::cerr << build_result.status().message() << std::endl; |
| 242 | + return 1; |
| 243 | + } |
| 244 | + |
| 245 | + // >> Peek at the data |
| 246 | + auto col_vals = *build_result; |
| 247 | + std::cout << col_vals->ToString() << std::endl; |
| 248 | + |
| 249 | + // >> Invoke compute function |
| 250 | + StartRecipe("RegisterAndCallComputeFunction"); |
| 251 | + // |> First, register |
| 252 | + auto fn_registry = arrow::compute::GetFunctionRegistry(); |
| 253 | + RegisterNamedScalarFn(fn_registry); |
| 254 | + |
| 255 | + |
| 256 | + // |> Then, invoke |
| 257 | + Datum col_as_datum { col_vals }; |
| 258 | + auto fn_result = NamedScalarFn(col_as_datum); |
| 259 | + if (not fn_result.ok()) { |
| 260 | + std::cerr << fn_result.status().message() << std::endl; |
| 261 | + return 2; |
| 262 | + } |
| 263 | + |
| 264 | + auto result_data = fn_result->make_array(); |
| 265 | + std::cout << "Success:" << std::endl; |
| 266 | + std::cout << "\t" << result_data->ToString() << std::endl; |
| 267 | + |
| 268 | + EndRecipe("RegisterAndCallComputeFunction"); |
| 269 | + return 0; |
| 270 | +} |
0 commit comments