|
| 1 | +import torch |
| 2 | +import os |
| 3 | +import logging |
| 4 | +from slam_llm.models.slam_model import ( |
| 5 | + slam_model, |
| 6 | + setup_tokenizer, |
| 7 | + setup_encoder, |
| 8 | + setup_encoder_projector, |
| 9 | + setup_llm, |
| 10 | +) |
| 11 | +from slam_llm.utils.train_utils import print_model_size |
| 12 | + |
| 13 | +logger = logging.getLogger(__name__) |
| 14 | + |
| 15 | +def model_factory(train_config, model_config, **kwargs): |
| 16 | + # return necessary components for training |
| 17 | + tokenizer = setup_tokenizer(train_config, model_config, **kwargs) |
| 18 | + |
| 19 | + encoder = setup_encoder(train_config, model_config, **kwargs) |
| 20 | + |
| 21 | + # llm |
| 22 | + llm = setup_llm(train_config, model_config, **kwargs) |
| 23 | + |
| 24 | + # projector |
| 25 | + encoder_projector = setup_encoder_projector( |
| 26 | + train_config, model_config, **kwargs |
| 27 | + ) |
| 28 | + model = slam_model_sec( |
| 29 | + encoder, |
| 30 | + llm, |
| 31 | + encoder_projector, |
| 32 | + tokenizer, |
| 33 | + train_config, |
| 34 | + model_config, |
| 35 | + **kwargs, |
| 36 | + ) |
| 37 | + |
| 38 | + ckpt_path = kwargs.get( |
| 39 | + "ckpt_path", None |
| 40 | + ) # FIX(MZY): load model ckpt(mainly projector, related to model_checkpointing/checkpoint_handler.py: save_model_checkpoint_peft) |
| 41 | + if ckpt_path is not None: |
| 42 | + logger.info("loading other parts from: {}".format(ckpt_path)) |
| 43 | + ckpt_dict = torch.load(ckpt_path, map_location="cpu") |
| 44 | + model.load_state_dict(ckpt_dict, strict=False) |
| 45 | + |
| 46 | + print_model_size( |
| 47 | + model, |
| 48 | + train_config, |
| 49 | + ( |
| 50 | + int(os.environ["RANK"]) |
| 51 | + if train_config.enable_fsdp or train_config.enable_ddp |
| 52 | + else 0 |
| 53 | + ), |
| 54 | + ) |
| 55 | + return model, tokenizer |
| 56 | + |
| 57 | + |
| 58 | +class slam_model_sec(slam_model): |
| 59 | + def __init__( |
| 60 | + self, |
| 61 | + encoder, |
| 62 | + llm, |
| 63 | + encoder_projector, |
| 64 | + tokenizer, |
| 65 | + train_config, |
| 66 | + model_config, |
| 67 | + **kwargs, |
| 68 | + ): |
| 69 | + super().__init__( |
| 70 | + encoder, |
| 71 | + llm, |
| 72 | + encoder_projector, |
| 73 | + tokenizer, |
| 74 | + train_config, |
| 75 | + model_config, |
| 76 | + **kwargs, |
| 77 | + ) |
| 78 | + |
| 79 | + |
| 80 | + @torch.no_grad() |
| 81 | + def inference( |
| 82 | + self, |
| 83 | + wav_path=None, |
| 84 | + prompt=None, |
| 85 | + generation_config=None, |
| 86 | + logits_processor=None, |
| 87 | + stopping_criteria=None, |
| 88 | + prefix_allowed_tokens_fn=None, |
| 89 | + synced_gpus=None, |
| 90 | + assistant_model=None, |
| 91 | + streamer=None, |
| 92 | + negative_prompt_ids=None, |
| 93 | + negative_prompt_attention_mask=None, |
| 94 | + **kwargs, |
| 95 | + ): |
| 96 | + # inference for asr model |
| 97 | + |
| 98 | + device = kwargs.get("device", "cuda") |
| 99 | + if os.path.exists(wav_path): # Audio-Text QA |
| 100 | + import whisper |
| 101 | + |
| 102 | + audio_raw = whisper.load_audio(wav_path) |
| 103 | + audio_raw = whisper.pad_or_trim(audio_raw) |
| 104 | + |
| 105 | + mel_size = getattr( |
| 106 | + self.dataset_config, "mel_size", 80 |
| 107 | + ) # 80 for large v1 and v2, 128 for large v3 |
| 108 | + audio_mel = ( |
| 109 | + whisper.log_mel_spectrogram(audio_raw, n_mels=mel_size) |
| 110 | + .permute(1, 0)[None, :, :] |
| 111 | + .to(device) |
| 112 | + ) |
| 113 | + |
| 114 | + encoder_outs = self.encoder.extract_variable_length_features( |
| 115 | + audio_mel.permute(0, 2, 1) |
| 116 | + ) |
| 117 | + |
| 118 | + if self.model_config.encoder_projector == "q-former": |
| 119 | + audio_mel_post_mask = torch.ones( |
| 120 | + encoder_outs.size()[:-1], dtype=torch.long |
| 121 | + ).to(encoder_outs.device) |
| 122 | + encoder_outs = self.encoder_projector(encoder_outs, audio_mel_post_mask) |
| 123 | + if self.model_config.encoder_projector == "linear": |
| 124 | + encoder_outs = self.encoder_projector(encoder_outs) |
| 125 | + else: # Text QA |
| 126 | + encoder_outs = torch.empty( |
| 127 | + 1, 0, self.llm.model.embed_tokens.embedding_dim |
| 128 | + ).to(device) |
| 129 | + |
| 130 | + prompt = "USER: {}\n ASSISTANT:".format(prompt) |
| 131 | + prompt_ids = self.tokenizer.encode(prompt) |
| 132 | + prompt_length = len(prompt_ids) |
| 133 | + prompt_ids = torch.tensor(prompt_ids, dtype=torch.int64).to(device) |
| 134 | + |
| 135 | + if hasattr(self.llm.model, "embed_tokens"): |
| 136 | + inputs_embeds = self.llm.model.embed_tokens(prompt_ids) |
| 137 | + elif hasattr(self.llm.model.model, "embed_tokens"): |
| 138 | + inputs_embeds = self.llm.model.model.embed_tokens(prompt_ids) |
| 139 | + else: |
| 140 | + inputs_embeds = self.llm.model.model.model.embed_tokens(prompt_ids) |
| 141 | + |
| 142 | + inputs_embeds = torch.cat( |
| 143 | + (encoder_outs, inputs_embeds[None, :, :]), dim=1 |
| 144 | + ) # [audio,prompt] |
| 145 | + |
| 146 | + attention_mask = torch.ones(inputs_embeds.size()[:-1], dtype=torch.long).to( |
| 147 | + inputs_embeds.device |
| 148 | + ) |
| 149 | + |
| 150 | + # generate |
| 151 | + model_outputs = self.generate( |
| 152 | + inputs_embeds=inputs_embeds, attention_mask=attention_mask, **kwargs |
| 153 | + ) |
| 154 | + |
| 155 | + return model_outputs |
0 commit comments